
RELAXED QUASI DELAY-INSENSITIVE CIRCUITS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Christopher Charles LaFrieda

February 2010



c© 2010 Christopher Charles LaFrieda

ALL RIGHTS RESERVED



RELAXED QUASI DELAY-INSENSITIVE CIRCUITS

Christopher Charles LaFrieda, Ph.D.

Cornell University 2010

Deep submicron technologies are beginning to scale poorly with respect to both

power and performance. It is well known that adding timing assumptions to asyn-

chronous circuits can help to simplify circuits and improve performance. Thus,

applying timing assumptions can help to extend the effectiveness of technology

scaling. However, employing timing assumptions in deep submicron technologies

is risky because of the large process variations that are present. This thesis explores

the use of low risk timing assumptions to improve asynchronous circuits.

We begin with a well-established and robust asynchronous logic style, quasi-

delay insensitive (QDI) circuits. We expose a timing assumption that exists in the

feedback of QDI circuits and extend it for general use. We refer to the resulting

logic family as relaxed quasi delay-insensitive circuits (RQDI). RQDI circuits main-

tain much of the robustness of QDI circuits while providing improved power and

performance. Evaluations show that replacing QDI circuits with RQDI equivalents

can reduce area and energy by 20% and 36%, respectively.

RQDI also allows for new types of circuits which are difficult to design using

strictly QDI logic. We present RQDI circuits for voltage scaling and two phase

signaling. The voltage scaling circuits are novel because they allow for independent

voltage scaling of the forward path (data rails) and the return path (acknowledges).

The two phase circuits are presented in the context of static switching networks,

such as those found in the routing networks in a field-programmable gate array

(FPGA). Evaluations show that our two phase circuits can reduce energy con-



sumption in these structures by more than 50% with an area overhead of less than

10%.

To further evaluate RQDI circuits, we design an asynchronous FPGA using

RQDI two-phase circuits and RQDI voltage scaling circuits. For eight of the MCNC

LGSynth93 benchmarks, RQDI two-phase circuits provide up to a 70 % perfor-

mance improvement and up to a 40 % power reduction. The RQDI voltage scaling

circuits provide an additional 30 % power reduction across these benchmarks.



BIOGRAPHICAL SKETCH

Christopher Charles LaFrieda attended Midwood High School in Brooklyn, NY.

He graduated in 1997 from their Medical Sciences Program. Christopher then

began his undergraduate studies at the State University of New York at Buffalo.

In May of 2001, Christopher graduated from SUNY at Buffalo with a B.S. in both

Computer Science and Computer Engineering.

Christopher began his study at Cornell University in August of 2001. He be-

came a member of Rajit Manohar’s Asynchronous VLSI design group in 2003 and

received his MS in 2005. His research interested were wide-ranging and included

design automation, fault tolerance, computer graphics, 3D integrated circuits and

asynchronous FPGA design. In February 2007, he took a leave of absence to work

at Achronix Semiconductor. At Achronix, he was a principal designer on their first

commercial product, the SPD60. He returned to Cornell in 2008 to complete the

Ph.D. program.

iii



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Prof. Rajit Manohar, for taking a

wayward graduate student under his wing. For all our discussions and debates,

and for his continued support in all my research endeavors, I thank him. I would

also like to thank the other members of my committee, Jose Martinez and David

Albonesi, for our collaborations, their critiques of my work, and helping to make

the Computer Systems Lab (CSL) here at Cornell the success it is today. I thank

Ed Suh for agreeing to proxy during my B Exam on Dave Albonesi’s behave.

I thank the other members of the AVLSI research group here at Cornell: Filipp

Akopyan, Benjamin Hill, Sandra Jackson, Rob Karmazin, Carlos Tadeo Ortega

Otero, Basit Sheikh, and Jonathan Tse. Their hard work, dedication and eager-

ness to help has created an environment conducive to the unbridled exchange of

ideas and concepts. Special thanks to Ben Hill for providing me with the FPGA

benchmarks used in Chapter 6.

I thank my colleagues at Achronix Semiconductor, especially: Virantha Ekanayke,

David Fang, Ilya Ganusov, Clint Kelly, Chris Liu, Rajit Manohar, and Lily Tam.

Working with these experts in asynchronous design is a truly enriching experience.

I would like to thank my parents, Patrick LaFrieda and Barbara Galvagni, my

brothers and sister, Patrick, Joseph and Michele, for supporting me in all ways

possible.

Most of all, I have to thank my wife Amy for always being encouraging and

understanding, for putting up with all the boring nights watching me work, for

having to attend social events solo, and for all the delicious home-cooked meals

that have sustained me the past few years.

iv



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

1.1 Technology Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Power Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Process Variations . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Asynchronous Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Low Power Design . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Fine-Grain Pipelining . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Relaxed Quasi Delay-Insensitive Circuits . . . . . . . . . . . . . . . 7
1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 QDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Four Phase Dual Rail Protocol . . . . . . . . . . . . . . . . 9
2.1.2 Simple Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Logic Template . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Asynchronous Circuit Performance . . . . . . . . . . . . . . . . . . 12
2.2.1 Cycle Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Slack Matching . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Timing Margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Clocked Designs . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Micropipelines . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 QDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Circuit Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 RQDI 19

3.1 Relaxed QDI Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Half Cycle Timing Assumption . . . . . . . . . . . . . . . . 19
3.1.2 HCTA Timing Margin . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 HCHB Circuit Template . . . . . . . . . . . . . . . . . . . . 22
3.1.4 RQDI Testing Challenges . . . . . . . . . . . . . . . . . . . 24
3.1.5 RQDI and Other Asynchronous Circuit Families . . . . . . . 25

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 HCHB Template . . . . . . . . . . . . . . . . . . . . . . . . 26

v



4 RQDI Two-Phase Circuits 30

4.1 Two Phase Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.1 Two Phase Protocol . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 XOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 4:2 Converter . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 2:4 Converter . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Static Switching Networks . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Two Phase Static Switching . . . . . . . . . . . . . . . . . . 40

5 RQDI Voltage Scaling 42

5.1 Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Voltage Scaling and Throughput . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Reconvergent Paths . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.3 Reconvergent Paths with Initial Tokens . . . . . . . . . . . . 50

5.3 Voltage Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Standard Voltage Converter . . . . . . . . . . . . . . . . . . 53
5.3.2 High Voltage to Low Voltage Converter . . . . . . . . . . . . 54
5.3.3 Low Voltage to High Voltage Converter . . . . . . . . . . . . 55
5.3.4 DVHB Circuit Template . . . . . . . . . . . . . . . . . . . . 56

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 DVHB Template . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.3 Parallel Pipelines . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Case Study: FPGA 62

6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Baseline Routing . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.3 Routing Enhancements . . . . . . . . . . . . . . . . . . . . . 64
6.1.4 Configurable Logic Block . . . . . . . . . . . . . . . . . . . . 66

6.2 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.1 Operating vs. Potential Throughput . . . . . . . . . . . . . 67
6.2.2 Determining Vddl . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.3 Area Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.4 Power and Performance . . . . . . . . . . . . . . . . . . . . 70

vi



7 Conclusions 74

Bibliography 76

vii



LIST OF TABLES

1.1 FO4 delay across process corners in a 65 nm process. . . . . . . . 5

3.1 Timing margins associated with various circuit families. Symbols
m, L, and C are the timing margin factor, latency, and cycle time
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Benchmark circuits used in evaluation. Note: these are dual-rail
pipelined circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Target FPGA architectural parameters. . . . . . . . . . . . . . . . 69
6.2 The eight MCNC LGSynth93 Benchmark circuits used in evalua-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Area estimates for FPGA circuits. . . . . . . . . . . . . . . . . . . 71

viii



LIST OF FIGURES

1.1 Supply voltage scaling. . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Dynamic power scaling with a fixed frequency. . . . . . . . . . . . 4
1.3 The ratio of dynamic power to static power for a typical asyn-

chronous logic cell in 65 nm. . . . . . . . . . . . . . . . . . . . . . 5

2.1 Four phase dual rail protocol. . . . . . . . . . . . . . . . . . . . . . 9
2.2 A WCHB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 A two input and one output PCHB template. . . . . . . . . . . . . 11
2.4 A linear pipeline fed with an ideal source. . . . . . . . . . . . . . . 13
2.5 A throughput limiting loop. . . . . . . . . . . . . . . . . . . . . . . 14
2.6 The impact of mismatched slack. Stage F represents a fork and

Stage J represents a join. . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 A stage of synchronous logic. . . . . . . . . . . . . . . . . . . . . . 16
2.8 A micropipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 An error that can occur in QDI logic without the half cycle timing
assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 A loop that demonstrate the impact of timing margins on through-
put. Each stage has a cycle time of ten transitions and a latency
of two transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 The impact of timing margins on frequency for an HCTA timing
assumption and forward path assumptions. . . . . . . . . . . . . . 22

3.4 A two input and one output hchb template. . . . . . . . . . . . . . 23
3.5 The false rail stacks of an and2 process for a PCHB(left) and a

HCHB(right). The numbers are the transistor widths in lambda
units (half minimum gate length). . . . . . . . . . . . . . . . . . . 24

3.6 Forward latency of benchmark circuits across PCHB, PCEHB, and
HCHB templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Total transistor area of benchmark circuits across PCHB, PCEHB,
and HCHB templates. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Frequency of benchmark circuits across PCHB, PCEHB, and HCHB
templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Energy per operation of benchmark circuits across PCHB, PCEHB,
and HCHB templates. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 The rail transition and LEDR two-phase protocols. . . . . . . . . . 31
4.2 A valid RQDI XOR gate. . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Two traces of an XOR gate for two sets of inputs. There is always

exactly one path to Vdd or GND. . . . . . . . . . . . . . . . . . . . 33
4.4 The HC2PFB buffer: dataless (left) and with data (right). . . . . . 34
4.5 A four-phase to two-phase converter. . . . . . . . . . . . . . . . . . 36
4.6 A two-phase to four-phase converter. . . . . . . . . . . . . . . . . . 38
4.7 A statically programmed n-way switch. . . . . . . . . . . . . . . . . 39

ix



4.8 Energy reduction as switch width increases. . . . . . . . . . . . . . 40
4.9 Area overhead as the number of stages increase. . . . . . . . . . . . 41

5.1 The operating frequency of a typical asynchronous circuit in a
65 nm process as its supply voltage is scaled. . . . . . . . . . . . . 43

5.2 Normalized power reduction resulting from Vdd scaling in a typical
asynchronous circuit in a 65 nm technology. Note, that this power
reduction is in addition to the power already saved from operating
at a reduced frequency. . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Impact of Vdd and enable scaling on throughput of a ten-stage half-
buffer pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Eτ 2 for a 14-stage ring with a single token. . . . . . . . . . . . . . 47
5.5 The throughput of the composition of short, ten-stage, and long,

20-stage, half-buffer pipelines. Enable scaling is shown for the long
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Eτ 2 for various voltage scaling schemes for a two-stage short pipeline
and a ten-stage long pipeline. . . . . . . . . . . . . . . . . . . . . . 50

5.7 The throughput of the composition of short, ten-stage, and long,
20-stage, half-buffer pipelines. The throughput plot for the long
pipeline is shifted left when two initial tokens are added (dashed
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8 The standard voltage converter. . . . . . . . . . . . . . . . . . . . . 53
5.9 A pipelined high voltage to low voltage dual rail converter. The

pull up feedback on the enable stack is explicitly shown. . . . . . . 55
5.10 A pipelined low voltage to high voltage dual rail converter. The

pull-up feedback on the enable stack is explicitly shown. . . . . . . 56
5.11 The DVHB circuit template. The shaded logic is in a lower voltage

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.12 Relationship of lb

′ to normalized power during enable scaling for a
DVHB buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.13 Normalized power usage of loops built from four-phase half-buffer
pipelines with one, two and three tokens, k. . . . . . . . . . . . . . 60

5.14 Normalized power usage of two parallel pipelines built from four-
phase half-buffers. The longer pipeline has 20 stages and it contains
zero, one, or two initial tokens, k0. . . . . . . . . . . . . . . . . . . 61

6.1 An asynchronous FPGA fabric composed of switch boxes (SB) and
configurable logic blocks (CLB). . . . . . . . . . . . . . . . . . . . 63

6.2 A 32 x 32 disjoint switch box made from 32 switch points. . . . . . 63
6.3 The three types of routing segments used in this FPGA. . . . . . . 64
6.4 Throughput improvement in hole-limited domain from using two-

phase routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5 The 4:4 low-power switch used in the low-power switch point. The

shaded logic can be configured to use a lower Vdd. . . . . . . . . . . 66

x



6.6 The CLB contains input/output connection boxes, four LUTs, and
phase converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.7 The operating frequency of the shaded node is limited by the least
throughput structure of the two loops and reconvergent path. . . . 68

6.8 Operating frequency of each benchmark for four-phase, two-phase,
and two-phase enable-scaled routing. . . . . . . . . . . . . . . . . . 71

6.9 Normalized power consumption of each benchmark for four-phase,
two-phase, and two-phase enable-scaled routing. All benchmarks
are normalized to the clma benchmark. . . . . . . . . . . . . . . . 72

xi



CHAPTER 1

INTRODUCTION

1.1 Technology Trends

At the time this introduction is being written, something interesting is happening

in the semiconductor world. The usual progression of 30%-scaled technology nodes

is being circumvented. Many semiconductor customers are skipping the 45 nm

technology node [11] and going straight to a 32 nm or 28 nm technology from a

65 nm technology. This practice is being encouraged by foundries, such as IBM

and Intel, who are focusing more on developing 32 nm and 28 nm processes than

on their 45 nm process [8]. What is the reason for the sudden jump in technology

scaling?

The reason for this paradigm shift in process evolution is simple. Process scaling

is no longer packing the punch that it used to. Transistor threshold voltage, Vth, no

longer scales well [12] resulting in a slower scaling of the supply voltage, Vdd. This

has a negative impact on static power, dynamic power, and performance scaling.

The drop in performance scaling can be mitigated by skipping process technologies.

However, this also introduces some unwanted side effects.

With each new process technology comes new challenges in achieving an ade-

quate yield. These challenges are overcome by a combination of tweaking current

process steps and adding new ones. In some cases, the design rules for a technology

must be altered to avoid low yield structures. This not only increases a circuit’s

complexity, but may also increase its area. Accelerating the schedule for develop-

ing process nodes will undoubtedly lead to more complex design rules. Evidence of

this can be seen by observing the dummy transistors added to design rules at the

45 nm and 32 nm process nodes [3]. In order to protect the vulnerable transistors

1



at the edges of a stack, dummy transistors need to be added at both ends of each

stack. Such rules add new levels of complexity for circuit designers and hurt overall

circuit density.

Technology scaling through the deep submicron has greatly increased the im-

portance of minimizing power consumption in circuit design. With poor supply

voltage scaling, dynamic power and static power increase with each technology

node. Scaling through multiple nodes exacerbates this problem. When working

with a power budget, circuit performance may need to be throttled down in order

to meet power constraints. In this sense, lower power circuits may perform better

than circuits that are designed solely for high speed. Therefore, the performance

benefits of accelerated scaling may be lost without reducing the additional power

consumption.

1.1.1 Power Scaling

Figure 1.1 shows how the supply voltage, Vdd, scales from the 130 nm process node

to the 22 nm process node. Up until the 65 nm node, Vdd scaled by roughly 20 %

per technology. For the 45 nm and 32 nm nodes, Vdd only scales by 10% and 5.6%,

respectively. Although it is too early to tell exactly how Vdd scales going into the

22 nm node, based on the current trends it is not unreasonable to assume that it

will not scale much at all. Such poor Vdd scaling leads to dramatic increases in

power consumption.

Typically, the equation for dynamic power consumption is given as follows:

PD = αCVdd
2F (1.1)

The symbol α is the activity factor, C is the capacitance, Vdd is the supply voltage

and F is the frequency. We can redefine C in terms of the number of transistors,

2



Figure 1.1: Supply voltage scaling.

N , and the average capacitance per transistor, Cavg, as follows:

PD = αNCavgVdd
2F (1.2)

We can readily determine how each of these terms scale with the exception of

frequency. Without major modifications to a design, the activity factor will remain

roughly constant with scaling. As per Moore’s Law [22], the total number of

transistors will double with each technology node. The average capacitance will

decrease by 30% per major technology node due to the smaller feature sizes. This

information yields the following equation for power scaling:

PDi

PDi−1

=
Vddi

2

Vddi−1
2

Fi

Fi−1

(1.3)

By applying the supply voltage scaling in Figure 1.1, we can plot dynamic

power as it scales with a fixed frequency as shown in Figure 1.2. Prior to the

45 nm node, scaling with a fixed frequency resulted in a dynamic power savings

of up to 10%. At the 45 nm, 32 nm, and 22 nm nodes there is a 13%, 25%, and

40% increase in dynamic power, respectively. The power increase is exacerbated

3



by scaling through multiple nodes. For example, scaling from 65 nm to 32 nm

results in a 44% increase in dynamic power.

Figure 1.2: Dynamic power scaling with a fixed frequency.

As one would imagine, static power also increases significantly due to poor Vdd

scaling. However, this thesis deals primarily with logic, rather than memory, where

static power is overshadowed by dynamic power. Figure 1.3 depicts the ratio of

dynamic power to static power for a typical asynchronous logic cell across a wide

range of temperatures. Even at 125◦ Celsius, dynamic power is still 300 times

greater than static power in this logic cell. For this reason, we will not consider

static power in this thesis. Although, all power numbers reported will be total

power (including the rather insignificant static power).

1.1.2 Process Variations

Another design concern in deep submicron technologies is the increasing impact

of process variations. Process variations are the result of both systematic and

random effects. Systematic effects exhibit a high degree of spatial correlation

and they usually manifest themselves as die to die variations. Random effects can

4



Figure 1.3: The ratio of dynamic power to static power for a typical asynchronous
logic cell in 65 nm.

cause the critical dimensions of adjacent devices to differ significantly. These types

of variations are particularly bothersome because they can throw off the relative

timing of neighboring circuits. According to the The International Technology

Roadmap for Semiconductors (ITRS), the occurrence of random process variations

will increase sharply as processes scale down to the 22 nm technology node[1].

Table 1.1 lists the FO4 delays across the slow-slow (SS), typical-typical (TT), and

fast-fast (FF) process corners. In this 65 nm process there is a 70% difference in

delay between the slowest, SS, and fastest, FF, corners.

Table 1.1: FO4 delay across process corners in a 65 nm process.
SS Corner TT Corner FF Corner

13.6 ps 18.2 ps 22.6 ps

1.2 Asynchronous Circuits

Asynchronous circuits have some advantages over synchronous circuits that may

help to mitigate the effects of the process trends outlined in the previous section.

5



Specifically, asynchronous circuits are low power, robust to process variations, and

high throughput due to fine-grain pipelining.

1.2.1 Low Power Design

Asynchronous circuits have a couple of advantages over synchronous circuits in

terms of low power design. The lack of a clock network is a substantial advantage.

High-speed clock networks have been known to account for 30-35% of total power

in microprocessors [7]. In addition, asynchronous circuits have the equivalent of

perfect clock gating. High performance asynchronous circuits are composed of

many parallel processes (fine-grain pipelined circuits). These processes communi-

cate over channels using handshakes. Processes that are not involved in the current

computation do not burn dynamic power.

Unfortunately, asynchronous circuits lose some of their power savings in orches-

trating handshakes between processes. Four phase handshakes, used extensively

in quasi delay-insensitive (QDI) circuits, charge and discharge wires in their data

channels four times per cycle. The power dissipated in channels is significant since

wires there tend to be longer than wires that are local to a process. A significant

amount of power is also lost in generating enable/acknowledge signals. This is par-

ticularly frustrating since those signals are not directly involved in computing the

function of a particular process, but rather in detecting the validity and neutrality

of inputs and outputs.

1.2.2 Robustness

Perhaps the greatest benefit that asynchronous circuits provide is their high tol-

erance to process variations, temperature and voltage scaling. QDI circuits detect

each transition in a computation, and therefore are not sensitive to timing mis-

6



matches due to process variations. QDI design is inherently highly reliable. This

is proven by first silicon successes such as: i) the Caltech MiniMIPS [19], ii) the

Cornell 3D FPGA [4], and iii) the Achronix Speedster [23]. In addition, a high-

performance FPGA from Cornell was demonstrated to operate correctly for a wide

range of voltages, .13V to 2.3V, and a wide range of temperatures, 77K to 400K

in a 180 nm process[5].

1.2.3 Fine-Grain Pipelining

Modern QDI design produces fine-grain pipelines with minimal effort. This style of

pipelining allows designers to create high-throughput systems where conventional

synchronous solutions struggle. For example, the Achronix Speedster can run at

1.5 GHz [20], which is three times faster than leading commercial synchronous

FPGAs. Much of this speed advantage is due to the buffering in the interconnect,

which is easier to accomplish in asynchronous logic due to the lack of retiming

constraints.

1.3 Relaxed Quasi Delay-Insensitive Circuits

Relaxed quasi delay-insensitive (RQDI) circuits aim to maintain much of the ro-

bustness of QDI circuits while reducing area and power consumption. Rather than

check every transition in a computation, RQDI circuits use a set of highly conser-

vative timing assumptions to simplify logic. Although many timing assumptions

have been proposed to simplify asynchronous logic, RQDI timing assumptions have

two unique benefits: i) they have large timing margins of 300% or more, and ii)

they do not increase circuit latencies.

7



1.3.1 Contributions

In this thesis we present the following circuit techniques to improve area, power

consumption, and/or performance:

• HCHB Template: We define a new circuit template that reduces the logic

needed to generate enable/acknowledge signals by applying an easily satisfied

timing assumption.

• Voltage Scaling: We implement voltage scaling in two ways. One, we

design efficient voltage converters that operate on data channels to support

multiple voltage domains. Two, we present a circuit template that operates

with its forward path (data logic) in a nominal voltage domain and its return

path (enable/acknowledge) in a lower voltage domain, thus keeping latency

constant.

• Two Phase Circuits: We propose an efficient two phase buffer and protocol

converters for global communication and static switching networks, which are

particularly important in FPGAs [27].

• RQDI FPGA: We apply the above techniques to an asynchronous FPGA.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews asynchronous circuit design.

Chapter 3 defines our conservative timing assumptions and presents an RQDI logic

template. Chapter 4 introduces a two phase circuits for static routing and their

associated protocol converters. Chapter 5 introduces circuits that perform voltage

scaling. Chapter 6 presents a case study involving an asynchronous FPGA and we

conclude in Chapter 7.

8



CHAPTER 2

BACKGROUND

2.1 QDI

Quasi delay-insensitive circuits are designed by decomposing a high level descrip-

tion of an asynchronous system into production rules (pull-up and pull-down net-

works) through numerous steps [17]. For our purposes, we will focus on handshak-

ing expansions (HSE) and pre-established circuit templates.

2.1.1 Four Phase Dual Rail Protocol

Figure 2.1: Four phase dual rail protocol.

The basic QDI primitive for a bit of data is a set three wires, shown in Fig-

ure 2.1. Two of these wires encode data in dual rail form and the third wire is used

as an enable (the more natural inverted version of an acknowledge). After reset,

both data rails are low and enable is high. A high enable signal indicates that the

following stage of logic is ready to receive new data. At this time, one of the data

rails may go high. If the false rail goes high, a zero is being sent. If the true rail

goes high, a one is being sent. When the data has been received, the enable goes

9



low and the data rails reset. Finally, the enable may go high again.

2.1.2 Simple Buffer

A commonly used QDI circuit is the weak condition half-buffer (WCHB) shown in

Figure 2.2 and described with the following HSE:

*[[Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓;

[¬Re ∧ ¬Lf ∧ ¬Lt];Rf ↓,Rt↓;Le↑]

Figure 2.2: A WCHB.

The WCHB takes a dual-rail (four-phase) input and produces a dual rail output.

There are two distinct phases: i) an evaluation phase (the first line of the HSE)

where inputs arrive and the output becomes valid, and ii) a reset phase (the second

line of the HSE) where the inputs and output reset. It is considered a half-buffer

because it takes a pair of them to store a single data token. It has a latency (time it

takes to propagate a token) of two transitions and a cycle time (time from receiving

a token until it can receive another) of ten transitions. The WCHB contains two

c-elements, circles marked with a ’C’, which are state holding elements. The charge

on state holding elements is kept with staticizers, which are weak feedback inverters

(on the order of 10x weaker than the gate itself). Staticizers will not be explicitly

drawn in the remainder of this thesis.

10



2.1.3 Logic Template

A WCHB is handy for buffers, but the precharge half-buffer (PCHB) is preferred

for buffered logic [15]. The PCHB template for two inputs and one output is shown

in Figure 2.3 and the HSE for the PCHB is as follows:

*[[Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓;

[¬Re];Rf ↓,Rt↓; [¬Lf ∧ ¬Lt];Le↑]

Figure 2.3: A two input and one output PCHB template.

Similar to dual rail domino logic [29], QDI logic computes the true and false

rails for each operation. Input validity/neutrality and output input/neutrality can

be detected with simple AND or OR gates. The PCHB reshuffling arranges the

validity and neutrality checks so that they overlap the evaluation and reset of the

computation. The PCHB template has a latency of two transitions and a cycle

time of 14 transitions. The main difference from the WCHB is that the neutrality

of the inputs is detected on Le↓ rather than R↓. As a result, input neutrality can

be detected in multiple transitions without impacting latency, which allows for a

11



greater number of inputs. In a WCHB, neutrality is detected in the pull-up stack

of the data rails. This limits the number of inputs possible in a WCHB because

more inputs means more series PMOS transistors in the pull-up stack. Generally,

we limit ourselves to three series PMOS in any stack. Any more and the rise time

will be poor and charge sharing in dynamic nodes becomes problematic.

An extension to the PCHB is the PCEHB. In the PCEHB, Re and Le are

combined in a separate c-element. This improves the latency by reducing the

number of series PMOS and NMOS in the data rail stacks by one. However, the

PCEHB increases the cycle time by four transitions (a non-inverting c-element is

two transitions and it needs to be set and reset in one cycle) making the total 18

transitions.

2.2 Asynchronous Circuit Performance

2.2.1 Cycle Time

The cycle time of a circuit can be defined as the time from when it receives a token

until it can receive another token. The cycle time of a linear pipeline is equal to the

cycle time of its slowest stage. Figure 2.4 shows a linear pipeline fed with an ideal

token source. As tokens flow through the pipeline, they will spread until there is

a single token for every cycle time/latency buffers. If we observe the output of

the pipeline, a token will appear once every cycle time. Thus, the throughput of

the pipeline is 1/cycle time. In high performance design, a reasonable cycle time

target is 18 transitions.

12



Figure 2.4: A linear pipeline fed with an ideal source.

2.2.2 Latency

The latency of a circuit can be defined as time from when a token arrives at

the input until a token is produced at the output (assuming that the following

stage is ready for a token). In a linear pipeline, throughput is solely dependant

on cycle time. However, complex systems are composed of pipelines with loops

and reconvergent paths where latency may limit throughput. A common (and

grave) mistake made in high performance asynchronous design is to put too much

emphasis on optimizing cycle time and not enough emphasis on optimizing latency.

Figure 2.5 show a pipeline that contains a loop that limits throughput. In order

for loops to run at optimal throughout they must contain a sufficient number of

tokens. The number of tokens in a loop remains fixed during normal operation.

Therefore, these tokens must be inserted into the loop at system reset and are

appropriately named initial tokens. It is not always possible to place enough initial

tokens in a loop to run at full throughput. In these cases, the only way to improve

throughput is to minimize the latency.

2.2.3 Slack Matching

The simplest way to understand the importance of slack matching is to examine

a pipeline with mismatched slack. An example of mismatched slack is shown in

13



Figure 2.5: A throughput limiting loop.

Figure 2.6. In this figure, we show how tokens flow through two paths over the

course three cycles. For simplicity, latency and cycle time are equal to one cycle.

In Cycle 0, tokens can not exit the bottom path because Stage J requires tokens

from both top and bottom paths to proceed. After two cycles, in Cycle 2, Stage J

can produce a new token. However, during these two cycles, Stage F was unable to

produce new tokens because there wasn’t enough slack in the bottom path. Stage

F is one again able to produce a new token in Cycle 3. In this example, adding

two buffers to the bottom path would double the throughput of the pipeline.

2.3 Timing Margins

Process variations result from systematic and random effects. Traditionally, the

systematic effects dominate. This leads to intra-die variations that can be ad-

dressed by binning die based on speed and leakage. Unfortunately, the ITRS[1]

predicts a sharp increase in random effects as we move through the 22 nm process

node. In the face of random effects, even adjacent devices can behave differently. If

the random component become significant, then binning at the die level becomes

less effective because many die will contain slow devices. Each design style has

14



Figure 2.6: The impact of mismatched slack. Stage F represents a fork and Stage
J represents a join.

their own methods of adding timing margins to address process variations.

2.3.1 Clocked Designs

A typical stage of synchronous logic is shown in Figure 2.7. The amount of logic

contained between flops is chosen based on the target operating frequency and

some timing margin. In a stage of synchronous logic, the cycle time and latency

are both a single clock cycle. An advantage of this scheme is the ability to adjust

the clock frequency externally, in order to increase the timing margin. If all delays

are relative to the clock, then the frequency can be tailored based upon the process

variations exhibited by a particular die. However, this scheme may be suboptimal

in the face of random process variations. If the clock frequency is lowered to

accommodate a few slow stages, then the latency and cycle time of the other

stages will be unnecessarily increased.

15



Figure 2.7: A stage of synchronous logic.

2.3.2 Micropipelines

Micropipelines encode data using bundled data [25]. Bundled data is a single

rail scheme (each bit of data is represented with a single wire) that contains a

valid signal and an acknowledge signal. Rather than bitwise encoding of data and

timing information, like dual rail, bundled data encodes the timing for a group of

bits (bundle) in a single valid wire. The timing for each stage, and some built in

timing margin, is implemented by a fixed delay element, as shown in Figure 2.8.

This scheme is inferior to a clocked scheme because the delay can not be ad-

justed externally. A more practical solution would be to add some programmable

delay that can be controlled by an external signal. This delay would likely have to

be applied chip-wide due to limited pins and limited ability to pinpoint delay faults

on a modern chip. With the addition of a programmable delay, micropipelines be-

come equivalent to the synchronous case in terms of adjusting timing margins.

2.3.3 QDI

With QDI logic, timing margins are unnecessary. Timing information is encoded

atomically with data. Completion of any operation can be determined by ex-

amining the data rails. In the face of random process variations, QDI logic will

automatically adjust the timing of the slower stages and leave the faster/nominal

16



Figure 2.8: A micropipeline.

stage unaffected.

2.4 Circuit Guidelines

In general, we try to stick to the following guidelines for high performance asyn-

chronous logic:

1. Avoid three transition or less cutoff paths so that signals are full swing.

2. Keep the latency of each stage to two transitions.

3. Keep the cycle time of each stage within 18 transitions.

4. Dynamic nodes cannot be directly shared between stages. These signals must

be buffered first.

5. Limit PMOS to three in series and NMOS to five in series.

6. The output of all state holding logic is staticized (held by weak feedback).

Guideline 3 may be flexible depending on the application. We often find that even

with a worst case cycle time of 18 transitions the frequency of the system is limited

by the latency of loops with a suboptimal number of tokens. For this reason we

place greater priority on optimizing latency over cycle time. Guideline 4 is meant

17



to prevent bit flips on dynamic nodes. Dynamic nodes are more susceptible to

crosstalk because there are times that they are only driven by weak feedback.

Guideline 5 is important for two reasons. First, too many devices (especially

PMOS) in series results in excessively slow transitions. At this point, it is faster

to break the stage into multiple transitions. Second, this many series devices leads

to large internal capacitances which results in charge sharing problems.

18



CHAPTER 3

RQDI

3.1 Relaxed QDI Logic

QDI circuits are quite robust in terms of process variations and design tolerances.

In this work, we expose a timing assumption used in staticizers for QDI logic and

apply it to other parts of circuits. Our goal is to optimize circuits with respect

to area and power while maintaining the robustness of QDI. The resulting circuits

are no longer strictly QDI. We refer to them as relaxed QDI (RQDI).

3.1.1 Half Cycle Timing Assumption

The WCHB, PCHB, and PCEHB circuit templates (and QDI circuits in general)

are highly tolerant of process variations because each up and down transition is

sensed. The only timing assumption allowed in QDI design is the isochronic fork

assumption [18]. This timing assumption states that the difference in delay between

branches of a wire is insignificant compared to the gate delays of the logic reading

their values.

Figure 3.1: An error that can occur in QDI logic without the half cycle timing
assumption.

Upon closer inspection, however, there is a second timing assumption that

is quite common in QDI circuits. Observe the false rail of a WCHB shown in

Figure 3.1. In order for this circuit to work properly a timing assumption is

19



made with respect to its staticizer. Let us assume that the inverter driving Rf is

incredibly slow. Rf ↓ has fired, due to Lf ↑ and Re↑, but Rf ↑ has not. When L.f ↓

fires, the c-element becomes state holding and the only active current is the weak

feedback. Even though the inverter is weak, it can flip Rf because there is no

opposing current. The resulting error is due to an actual analog problem and not

an isochronic fork.

To avoid such timing errors with staticizers we introduce the half cycle timing

assumption. The half cycle timing assumption (HCTA) is a local timing assump-

tion (internal to a process) that assumes a small amount of logic (one or two

transitions) will always switch within one half cycle of a process. With cycle times

of 10-18 transitions, this assumption has a timing margin of 2.5x-4.5x. In addition,

during the half cycle communication occurs across the channels where wires tend

to be longer than wires internal to a process. Transitions across these wires will

be slower, making the half cycle even longer compared to the two transition logic.

In QDI, the HCTA is only needed to guarantee the correct operation of stati-

cizers. We can reduce logic and design new valid circuits by extending the HCTA

for general use. We refer to the resulting logic as relaxed quasi-delay insensitive

(RQDI). RQDI logic has a robustness similar to QDI logic because they both use

the same timing assumptions and have the same timing margins.

3.1.2 HCTA Timing Margin

Table 3.1 compares the timing margins across different circuit families. QDI and

RQDI exhibit extremely large timing margins without any impact on their latency

or cycle time. With cycle times of 10 to 18 transitions, the up to two transitions

of an HCTA have a timing margin of 250% to 450%. In synchronous logic, timing

margins are increased by reducing the clock frequency. This will simultaneously

20



increase both latency and cycle time. Similarly, the timing margin in bundled data

logic is increased by increasing the delay in the control logic.

Table 3.1: Timing margins associated with various circuit families. Symbols m, L,
and C are the timing margin factor, latency, and cycle time respectively.

Circuit Family Timing Margin Tradeoff

Synchronous m mL, mC
Bundled Data (two-phase) m mL, mC
Bundled Data (four-phase) m mL, 2mC

QDI (staticizers) 2.5x − 4.5x none
RQDI 2.5x − 4.5x none

To illustrate the large timing margins that can be achieved with an HCTA,

observe the loop in Figure 3.2. Each stage of this pipeline has a two transition

latency and a ten transition cycle time. There is a five stage loop with a single

token. This pipeline is balanced in the sense that as the token makes one trip

around the loop, the two input stage would be ready to process the token.

Figure 3.2: A loop that demonstrate the impact of timing margins on throughput.
Each stage has a cycle time of ten transitions and a latency of two transitions.

Figure 3.3 graphs the frequency versus the timing margin for both HCTA and

forward path timing margins for the pipeline in Figure 3.2. Each transition is

assumed to be 50 ps, which is close to an average transition in a 65 nm process.

In this example, an HCTA can have a timing margin of up to 250% without any

impact on the throughput. For a forward path timing assumption, such as the one

used in synchronous logic and micropipelines, this large timing margin will result

21



in an operating frequency that is almost four times slower than nominal.

Figure 3.3: The impact of timing margins on frequency for an HCTA timing as-
sumption and forward path assumptions.

3.1.3 HCHB Circuit Template

We can reduce the logic needed to compute the neutrality in logic templates by

applying the HCTA. Consider the following HSE for the half cycle half-buffer

(HCHB):

*[([Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓; ), {N ↓};

[¬Re], ([¬Lf ∧ ¬Lt];N ↑);Rf ↓,Rt↓;Le↑]

We’ve introduced a variable N , for neutrality, with the intention of only sensing

the N ↑ transition. N detects the neutrality of L and it can be implemented as the

nor of Lf and Lt . N ↓ can fire at the beginning of the evaluation phase (first line

of HSE) when L becomes valid, but doesn’t need to fire until the beginning of the

reset phase (second line of HSE) before Re↓ arrives, a half cycle later. We make

the assumption that N ↓ will fire before the second half of the cycle and add no

logic to detect this transition.

22



Figure 3.4: A two input and one output hchb template.

Applying the half cycle timing assumption results in the HCHB template shown

in Figure 3.4. Validity and neutrality are checked in the data rails similar to the

WCHB. This reduces the logic for Le and gets rid of one series NMOS in the pull

down stack. It takes two transitions to detect the neutrality of the inputs. This

does not affect the two transition latency of the circuit, but makes the cycle time

14 transitions. An additional requirement of the HCHB over the PCHB is that

the pull down networks of the data rails need to wait for all the inputs to become

valid before firing. In some cases the pull down stacks already wait for validity. In

other cases the pull down stacks need to be augmented to wait for input validity.

Figure 3.5 shows the false rails of a PCHB and HCHB and2 process and their

corresponding transistor widths. The false rail of the HCHB has been extended

to wait for the validity of both L0 and L1. The HCHB pull down stack has two

more transistors than the PCHB, but area saved elsewhere in the circuit more than

makes up the difference. In some circuits, e.g. a full adder, the pull down stack

will already guarantee input validity with no additional effort. In circuits with

many inputs, the validity can be checked in a separate single rail pseudo output.

23



Figure 3.5: The false rail stacks of an and2 process for a PCHB(left) and a
HCHB(right). The numbers are the transistor widths in lambda units (half mini-
mum gate length).

However, the biggest area and power savings occur when validity can be checked

in the pull down stacks of the data rails.

3.1.4 RQDI Testing Challenges

A nice feature of QDI circuits is that they can be made to deadlock in the presence

of stuck-at faults [10, 13]. In some cases, RQDI circuits do not strictly maintain

this property. For example, if N in Figure 3.4 is stuck at zero, then the buffer

could reset prematurely. This type of fault may be hard to detect because failure

depends on the timing of Re versus the input data rails on reset. One potential

solution is to check N in Le. However, this would increase the area and the cycle

time. Another solution is to test the circuit at multiple voltages in an attempt

to induce the error. Ultimately, one may be willing to accept this additional risk.

The stuck-at fault model is an abstraction, and as a result it does not model all

possible faults [9]. The N stuck-at-zero fault could also have been modeled as a

24



transistor-stuck-on fault. In this case, the QDI circuit has the same shortcomings

as the RQDI circuit.

3.1.5 RQDI and Other Asynchronous Circuit Families

Mousetrap [24] and GasP [26] are very similar to Micropipelines [25]. Mousetrap

is essentially bundled-data with two-phase handshakes. The control logic (timing),

generates signals that: i) trigger the internal latching, ii) acknowledge the previous

stage, and iii) send a request to the next stage. These types of pipelines add a large

amount of latency to the computation due to the timing margin (see Table 3.1).

GasP requires transistor-level delay matching to function correctly, and thus uses

riskier timing assumptions than RQDI. Single-track [6] circuits use bidirectional

wires for their dual data rails to implement acknowledges. This circuit family vio-

lates one of our principle circuit guidelines of not sharing dynamic nodes between

stages. In addition, it is unclear how to build static multiplexers on bidirectional

wires. Static multiplexers are essential in asynchronous FPGAs and exist in nearly

every stage. Static multiplexers are trivial to build in RQDI (and QDI).

3.2 Results

3.2.1 Setup

All simulations are done with HSpice using model files for a 65 nm process. Wire

capacitances are approximated by adding a 4fF capacitance to each output node.

This amount of capacitance is typical of short wires based on our observations of

extracted layout in this technology. Gates are sized to have the drive strength

of an inverter with its PMOS width set to 20 lambda units and its NMOS width

25



set to 10 lambda units (lambda is defined as half the minimum gate length). All

power and energy numbers are based on total dissipated power.

Table 3.2: Benchmark circuits used in evaluation. Note: these are dual-rail
pipelined circuits.

Name Inputs Outputs Description

and2 2 1 and gate
or2 2 1 or gate
xor2 2 1 exclusive or
fa 3 2 full adder

benc 3 2 booth encoder

The benchmark circuits used in our evaluations are listed in Table 3.2. Latency

and cycle time numbers reported represent the worst case. We measure the worst

case by switching the data rail with the slower stack. For example, the true rail in

the and2 circuit has one extra series NMOS transistor, therefore we exercise that

stack in its simulations. The area reported is the total transistor area of a circuit

(the sum of width ∗ length of each transistor).

3.2.2 HCHB Template

The latency of the five benchmark circuits for the PCHB, PCEHB, and HCHB

templates are shown in Figure 3.6. On average, the latency of the PCEHB is 6% less

than the other circuit templates. The PCEHB is generally lower latency because

Re and Le are combined in a separate c-element, rather than in the data rail stacks.

The HCHB has a similar latency to the PCHB except and2 and or2 circuits where

it’s 6% slower. The pull down stacks in these circuits were augmented to wait for

input validity, which makes them slower.

Figure 3.7 shows a comparison of the total transistor area across the benchmark

circuits. An interesting result is that the PCEHB is slightly smaller than the

PCHB. Once again, this is attributed to its simpler data rail transistor stacks.

The HCHB is about 15% smaller than the PCEHB template and 20% smaller

26



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

a
n

d
2

o
r2

x
o

r2 fa

b
e

n
c

A
V

G

F
o

rw
a

rd
 L

a
te

n
c
y
 (

p
s
)

pchb
pcehb
hchb

Figure 3.6: Forward latency of benchmark circuits across PCHB, PCEHB, and
HCHB templates.

 0

 1

 2

 3

 4

 5

 6

 7

 8

a
n

d
2

o
r2

x
o

r2 fa

b
e

n
c

A
V

G

T
o

ta
l 
T

ra
n

s
is

to
r 

A
re

a
 (

µ
m

2
)

pchb
pcehb

hchb

Figure 3.7: Total transistor area of benchmark circuits across PCHB, PCEHB,
and HCHB templates.

than the PCHB template on average. This is a result of the simplified detection

of input neutrality possible with the half cycle timing assumption.

27



 0

 0.5

 1

 1.5

 2

a
n

d
2

o
r2

x
o

r2 fa

b
e

n
c

A
V

G

F
re

q
u

e
n

c
y
 (

G
H

z
)

pchb
pcehb
hchb

Figure 3.8: Frequency of benchmark circuits across PCHB, PCEHB, and HCHB
templates.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

a
n

d
2

o
r2

x
o

r2 fa

b
e

n
c

A
V

G

E
n

e
rg

y
 P

e
r 

O
p

e
ra

ti
o

n
 (

p
J
)

pchb
pcehb
hchb

Figure 3.9: Energy per operation of benchmark circuits across PCHB, PCEHB,
and HCHB templates.

The HCHB template is consistently higher frequency than the other templates

across all five benchmark circuits, as seen in Figure 3.8. On average, the HCHB is

28



7% higher frequency than the PCHB. The PCEHB has an 18 transition cycle time

and the HCHB and PCHB both have a 14 transition cycle time. However, the

HCHB is higher frequency because many of its transitions, especially those that

detect input neutrality, are simpler. This suggests that HCHB can use even less

area because we can use smaller transistors for these fast transitions to match the

frequency of the PCHB.

The energy per operation (or per cycle) of the benchmark circuits is reported

in Figure 3.9. The HCHB template consistently uses less energy than the PCHB

and PCEHB templates across all five benchmarks. The HCHB template consumes

32% and 36% less energy on average than the PCHB and PCEHB templates re-

spectively. This is a great result because it is accompanied by significant area

savings, a slight frequency improvement, and a negligible latency penalty.

29



CHAPTER 4

RQDI TWO-PHASE CIRCUITS

Two phase handshake protocols are often suggested to reduce power and increase

frequency in asynchronous circuits. The main difficulty with two-phase protocols

is that they are very inefficient in performing logic functions, as has been noted

by others [21]. However, a simple two-phase buffer with similar characteristics to

a WCHB (two transition forward latency and ten or less transition cycle time)

would be useful in two specific applications. The first, and most obvious, is global

communication. The second application is static switching networks.

4.1 Two Phase Logic

4.1.1 Two Phase Protocol

There are two basic protocols used for two-phase handshakes. We will refer to the

first protocol as the rail transition (RT) protocol, as shown on the left of Figure 4.1.

With the RT protocol, you simply transition the rail that you want to send data.

For example, we will send a ’1’ from state ’00’. Both the true rail (the first digit)

and the false rail (the second digit) are logic low in state ’00’. To send a ’1’, we

set the true rail high, which makes the current state ’10’. To send another ’1’, we

set the true rail low and the current state returns to ’00’.

The second basic protocol is the level-encoded dual-rail (LEDR) protocol [2],

as shown on the right side of Figure 4.1. Rather than two data rails, the LEDR

protocol encodes a data signal and a repeat signal. The data rail is always set to

the value of the current token. The repeat rail is toggled when the current token

is the same value as the previous token. Unlike the RT protocol, the value of the

most recently sent token can be inferred from the current state. For example, the

30



Figure 4.1: The rail transition and LEDR two-phase protocols.

two shaded states, ’10’ and ’11’, have most recently sent a ’1’.

Which protocol is superior? The buffer that we will present in Section 4.1.3

works for both protocols. Single bit protocol converters are roughly the same

size for both protocols. However, multi-bit conversions are cheaper with LEDR

because the current state can be determined without examining the previous state.

In addition, readily knowing the current token value makes debugging two-phase

circuits easier. For these reason, we will focus on LEDR circuits in this thesis. We

have explored RT based two-phase circuits in previous work [14].

4.1.2 XOR Gates

XOR gates are used extensively in two-phase logic. They are necessary to detect

transitions in encodings that do not return to zero (reset). XOR gates are not valid

QDI circuits due to the use of both non-inverted and inverted version of inputs.

However, XOR gates are proper RQDI circuits. Under RQDI timing assumptions,

XOR gates do not create short circuit paths or become state holding. Without

31



Figure 4.2: A valid RQDI XOR gate.

this, two-phase circuits would be infeasible.

Figure 4.3 shows the two representative sets of inputs for the XOR gate. It

is essential that for each state the circuit is never state holding and always non-

interfering. The former requires that there is a path to Vdd or GND and the

latter requires that there is never a path to both Vdd and GND. In the figure, we

step through each transition of the circuit. There is a period of time where each

input and its inverted version are the same value because of the delays through

the inverters. In spite of this, there is always exactly one path to Vdd or GND

in every state. In the bottom case, the output of the gate may change before the

output of an inverter does. However, we can assume that the inverter output will

be ready before the next set of inputs arrive due to the HCTA (in some cases the

assumption is on a full cycle).

4.1.3 Buffer

A simple dataless two-phase buffer can be represented by the following HSE:

*[[L = Re];R := L;Le := ¬R]

The resulting circuit is a c-element and an inverter, shown in Figure 4.4. The

circuit becomes more complicated when you incorporate data. The problem is

32



Figure 4.3: Two traces of an XOR gate for two sets of inputs. There is always
exactly one path to Vdd or GND.

that Re changes each cycle and each data rail needs to know which sense of Re to

wait for. We can introduce a state variable to track this, but it would be expensive

to manage it. A better solution is for each rail to wait for the XOR of the opposite

rail with Re, instead of Re alone. The idea is that if the opposite rail caused Re

to change then the output of the XOR will be unchanged since both of its inputs

have switched (in reality the output will switch and then switch back). The HSE

for the two-phase data buffer is:

*[[Lf = XOR(Rt ,Re) −→ Rf := Lf

[]Lt = XOR(Rf ,Re) −→ Rt := Lt]

Le := XOR(Rf ,Rt)]

33



Figure 4.4: The HC2PFB buffer: dataless (left) and with data (right).

The HC2PFB (half cycle two-phase full-buffer) buffer is shown in Figure 4.4.

Note, the HC2PFB works with both the LEDR protocol and RT protocol. The

HC2PFB has a forward latency of two transitions and a cycle time of seven transi-

tions. The pair of XOR gates that process Re can be folded into the c-elements, but

this makes the data rails more complex and increases the latency. The HC2PFB

is 45% larger than the WCHB, however, since the HC2PFB has such a short cycle

time the XOR gates can be undersized to reduce the area penalty. In addition,

each HC2PFB can replace two stages of WCHBs because it can support twice

the number of transitions in a cycle. The slack will remain the same because we

are replacing two half-buffers with a full-buffer. When used in this fashion, the

HC2PFB equivalent circuit is 15% smaller than the WCHB. This is an important

result because the four-phase to two-phase and two-phase to four-phase converters

are significantly larger than the buffer. (In Chapter 6, we use undersizing, solely, to

reduce the area. The resulting additional slack improves performance in FPGAs.)

34



4.2 Converters

4.2.1 4:2 Converter

Consider the following HSE for the four-phase to two-phase converter:

*[[Lf ∧ ¬en −→ Rd↓,Rr↑[]Lf ∧ en −→ Rd↓,Rr↓

[]Lt ∧ ¬en −→ Rd↑,Rr↓[]Lt ∧ en −→ Rd↑,Rr↑];Le↓;

[¬Lf ∧ ¬Lt];Le↑; [Re = en]; en := ¬Re]

The input channel, L, is a standard dual rail channel composed of a true rail, false

rail, and an enable signal. The output channel, R, is an LEDR based channel

composed of a data rail, repeat rail, and an enable signal. One of the key design

requirements of both converters is that every signal be generated as early as pos-

sible. The reasoning behind this is that if the two-phase signals are slow, than the

adjacent two-phase stage may be limited to a simple buffer with no switching logic.

Insidiously, this results in increased area and latency beyond the converter itself.

As a result of producing each signal as early as possible, a local enable variable,

en, is needed to track the current parity of the circuit. Interestingly, it appears

that both rails in R fire each cycle, but one of these firings is vacuous.

The four-phase to two-phase converter is shown in Figure 4.5. The physical

implementation differs slightly from the above HSE. The en variable is implemented

as a dual rail variable to avoid using back-to-back latches in the converter. Back-

to-back latches introduce some non-RQDI timing constraints. The latency of the

converter is three transitions in the worst case because of the need to invert Lf

and Lt . The four-phase to two-phase converter is about 3x larger than a WCHB.

4.2.2 2:4 Converter

The following is the HSE for the two-phase to four-phase converter:

35



Figure 4.5: A four-phase to two-phase converter.

36



*[[¬Ld ∧ Lr = en −→ Rf ↑[]Ld ∧ Lr 6= en −→ Rt↑];Le := ¬en;

[¬Re];Rf ↓,Rt↓; [Re]; en := Le]

The two-phase to four-phase converter takes an LEDR input, L, and produces

a dual rail output, R. The converter is shown in Figure 4.6. Similar to the four

to two-phase converter, the enable signal is implemented as a dual rail variable to

avoid the use of back-to-back latches. This converter also has a forward latency of

three transitions due to inverting the input data rails. It is roughly 3.25x larger

than the WCHB circuit.

4.3 Static Switching Networks

Static switching networks are especially important in FPGAs [27]. Logic clusters

in FPGAs are surrounded by statically configured switching networks. In asyn-

chronous FPGAs, these statically configured switching networks are built up out of

the switches shown in Figure 4.7. Programming bits are set to select which set of

input data rails are the input to the WCHB via the MUX. The output data rails of

the WCHB fanout to other switches and the associated enables/acknowledges must

be combined via a programmable c-element (depicted as pc in the diagram). We

can replace the WCHB with a two-phase buffer and the switch will work without

any further modification.

More than half the area of an asynchronous FPGA is devoted to routing. Two

phase routing is attractive because it can reduce the switching in this area by a

factor of two. In addition, there is potentially enough stages of routing to amortize

the area and latency overhead associated with converting between protocols. It

is important to note that there will not be frequency advantage when using two-

phase circuits in this manner. The frequency is limited by the four-phase circuits

37



Figure 4.6: A two-phase to four-phase converter.

38



Figure 4.7: A statically programmed n-way switch.

performing the logic functions.

4.4 Results

4.4.1 Setup

In asynchronous FPGAs, programmable routing between logic clusters is made up

of stages of the static switch (Figure 4.7). In these experiments, we make this

routing use two-phase logic by replacing the WCHB with an HC2PFB. In fact, we

replace two stages of the WCHB switch with one stage of the HC2PFB switch.

This keeps the slack, latency, area, and cycle time roughly constant between the

two implementations. There is some overhead incurred from the 4:2 and 2:4 phase

converters at the input and output of the routing logic. We vary the number of

two-phase pipeline stages between these converters and measure the area impact

and energy reduction over the original WCHB version.

39



 46

 47

 48

 49

 50

 51

 52

 53

 0  2  4  6  8  10  12  14  16

E
n

e
rg

y
 R

e
d

u
c
ti
o

n
 (

%
)

Switch Width

Switch Width vs. Energy Reduction

Figure 4.8: Energy reduction as switch width increases.

4.4.2 Two Phase Static Switching

Figure 4.8 shows the energy reduction in the two-phase static switch with increas-

ing switch width. As the switch width increases, more static muxing and pro-

grammable c-elements are need to build the switch. As a result, more capacitance

is switching each cycle. Intuitively, one would think that the maximum energy

reduction would be 50%. However, each two-phase buffer replaces two four-phase

buffers. Even in this configuration, the two-phase buffer is higher frequency. At a

switch width of 16 there is over a 52% reduction in energy.

The main drawback to using the two-phase switch is the high cost of converting

between two-phase and four-phase protocols. The two-phase buffer is about 15%

smaller than the two four-phase buffers it replaces. The four-phase to two-phase

converter is 3x larger than a WCHB and the two-phase to four-phase converter

is 3.25x larger than a WCHB. Figure 4.9 tracks the area overhead of 20 stages

of switches with varying widths. In an asynchronous FPGA, neighboring logic

40



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 4  6  8  10  12  14  16  18  20

A
re

a
 O

v
e

rh
e

a
d

 (
%

)

Stages

Stages vs. Area Overhead

switch width 1
switch width 2
switch width 4
switch width 8

switch width 16

Figure 4.9: Area overhead as the number of stages increase.

clusters are typically separated by about 6 stages of 8-wide switches. This would

put the area overhead at roughly 15%. However, we will see in Chapter 6 that

only a fraction of the signals in one section of routing need access to the four-phase

logic making the overhead much less than 15%.

41



CHAPTER 5

RQDI VOLTAGE SCALING

5.1 Voltage Scaling

A high level discussion on voltage scaling in asynchronous architectures can be

found in [16]. Energy efficient pipelines are discussed in [28]. In this chapter we

aim to facilitate voltage scaling in asynchronous circuits by: i)introducing a pair

of efficient voltage converters, and ii) proposing a dual voltage circuit template

that has constant latency. We focus on voltage scaling in pipelines where the

throughput is limited by the architecture. Specifically, we consider token limited

loops and reconvergent paths. The goal is to scale voltage in places where there is

minimal impact on performance.

Typically, the equation for dynamic power consumption is given as follows:

Pdynamic = CVdd
2F (5.1)

In this equation, C is the load capacitance, Vdd is the supply voltage, and F is the

operating frequency of the circuit. We can simplify the relationship between Vdd

and dynamic power via the following:

F ∝ Vdd (5.2)

Pdynamic ∝ Vdd
3 (5.3)

The time it takes to charge a capacitor is proportional to 1/Vdd. Therefore, the

frequency is proportional to Vdd. The resulting operating frequency for Vdd scaling

in a 65 nm process for a typical asynchronous circuit is shown in Figure 5.1. We

avoid scaling past .5 V (roughly twice the threshold voltage) in this technology

because it results in extremely slow circuits. In addition, the power reduction

42



Figure 5.1: The operating frequency of a typical asynchronous circuit in a 65 nm
process as its supply voltage is scaled.

at .5 V is already greater than 90 %. Due to the linear relationship of Vdd and

frequency, dynamic power scales proportionally to Vdd
3.

When circuits are operating at peak throughput, a cubic reduction in power

is possible at the cost of a linear reduction in frequency. However, when circuits

are not operating at peak throughput, it is possible to reduce power in certain

portions of the circuit with negligible impact on frequency. In these cases, the

frequency has already been reduced due to some limitation in the architecture

and as a result there is a linear reduction in power. That leaves a possible Vdd
2

reduction in power when reducing the supply voltage to match the already limited

frequency. Figure 5.2 shows this additional reduction in power from voltage scaling

for a typical asynchronous circuit in a 65 nm technology. Two common throughput

limiting structures we will examine are token limited loops and reconvergent paths.

43



Figure 5.2: Normalized power reduction resulting from Vdd scaling in a typical
asynchronous circuit in a 65 nm technology. Note, that this power reduction is in
addition to the power already saved from operating at a reduced frequency.

5.2 Voltage Scaling and Throughput

The throughput of a pipeline, γ, is often defined as a function of slack per token,

σ, with dynamic slack, r, and peak throughput, T [15]:

γ(σ) =











T
σr σr ≥ 1

T (σ − 1)
σ(1 − r)

σr ≤ 1

The σr ≥ 1 case occurs when the pipeline is token-limited. In other words,

there aren’t enough tokens to keep the pipeline running at full throughput. The

throughput of this type of pipeline is limited by the total forward latency divided

by the number of tokens. The σr ≤ 1 case occurs when the pipeline is hole-limited

(a hole is a buffer absent a token). The throughput of this type of pipeline is

limited by the total backward latency divided by the number of holes.

We consider pipelines composed of one of two types of buffers. For logic func-

tions, we consider pipelines made from four-phase half-buffers. For routing, we

consider pipelines made from two-phase full-buffers (all two-phase buffers are full-

buffers). The throughput of four-phase(4h) and two-phase(2f) logic is computed

44



as follows:

4h : T = min

(

k

nlf
,
n − 2k

2nlb

)

2f : T = min

(

k

nlf
,
n − k

nlb

)

(5.4)

In the above, k is the number of tokens, n is the number of pipeline stages, lf is

the forward latency, and lb is the backward latency. Note that the token-limited

case is the same in both full-buffers and half-buffers.

We envision two possible ways to scale voltage in asynchronous circuits. The

first method is to simply scale Vdd. This increases both the forward and backward

latencies of each stage in a pipeline. The second, and far more interesting, method

is to scale the voltage of the enable (acknowledge) signals and their associated

logic. This method keeps the forward latency fixed, but increases the backward

latency of each stage.

Figure 5.3 shows the impact on throughput when applying each method of

voltage scaling in a ten-stage half-buffer pipeline. The outermost triangle (solid

line) is the throughput of the pipeline without any scaling (the left leg corresponds

to the token-limited domain and the right leg corresponds to the hole-limited

domain). The innermost triangle formed by the dotted and dashed lines represents

the throughput when Vdd is reduced by 40 %. All points off of the base of the

triangle have worse throughput than the nominal Vdd triangle. The triangle with

a dashed right leg and solid left leg corresponds to the throughput of the pipeline

when the enables are scaled by 40 %. Much of the left leg of this triangle is shared

with the nominal Vdd case. This makes enable scaling ideal in cases where the

pipeline is always token-limited.

5.2.1 Loops

Loops are ubiquitous in any reasonably complex design (an example of a loop is

shown in Figure 2.5). The key to running loops at peak throughput is to have

45



Figure 5.3: Impact of Vdd and enable scaling on throughput of a ten-stage half-
buffer pipeline.

just enough tokens in the loop so that no stage is ever waiting for a token. This

happens when n = k(2lf + 2lb)/lf for four-phase buffers and n = k(lf + lb)/lf for

two-phase buffers. Loops are usually token-limited, rather than hole-limited. This

is because adding initial tokens to a loop changes its meaning, while adding buffers

does not. As a result, loops will often operate on the left leg of the solid triangle

in Figure 5.3. This is an ideal case for enable scaling because the enable voltage

can be reduced to some degree without any impact on the throughput.

It is not immediately clear if it is better to scale the voltage across the entire

ring or to only scale the voltage for the enables. The enables can be scaled with

little impact to throughput, but there is also less power to be saved using this

technique. A common metric used to compare the energy efficiency of two circuits

is Eτ 2, where E is energy and τ is the cycle time of the circuit. The goal is to

minimize this value. Eτ 2 is attractive because to the first order it is independent

of operating voltage because E ∝ Vdd
2 and τ 2 ∝ 1/Vdd

2. Figure 5.4 compares Eτ 2

for Vdd scaling and enable scaling in a 14-stage ring with a single token. By this

metric, enable scaling is clearly superior because it has a minima at .75 V while

46



Vdd scaling rises monotonically.

Figure 5.4: Eτ 2 for a 14-stage ring with a single token.

In order to apply enable scaling to loops, we need to choose the appropriate

voltage for the enable signal that saves the most power without reducing through-

put. This is achieved through a two-step process. The first step is to find the

largest backward latency that will not impact the throughput of a token-limited

loop. This occurs when the hole-limited domain intersects the loop’s operating

point on the token-limited domain. For four-phase half-buffers, we solve the fol-

lowing for lb
′, the increased backward latency:

k

nlf
=

n − 2k

2nlb
′

The lb
′ for four-phase(4h) and two-phase(2f) logic is as follows:

4h : lb
′ =

lf (n − 2k)

2k
2f : lb

′ =
lf (n − k)

k
(5.5)

The second step is to characterize the relationship between enable scaling and the

backward latency of a specific buffer stage through analog circuit simulation (as

is done in Section 5.4.1). The optimal value of lb
′ is then cross-referenced against

these results to select the best voltage for the enable signal.

47



5.2.2 Reconvergent Paths

Reconvergent paths are another common structure found in asynchronous archi-

tectures. This type of structure is formed whenever a copy is made of a token

and both the original and the copy are later used together in some computation.

The composition of pipelines may run at full throughput if the amount of slack

(buffering) on each pipeline is matched (an example of slack matching is shown in

Figure 2.6). One of the main goals of an asynchronous designer is to make sure that

slack is matched across parallel pipelines in a reconvergent path. However, this

is a difficult goal to achieve in reconfigurable architectures where the length and

composition of each pipeline are not known at design-time. This is a wide-spread

problem in FPGAs, as we will see in the next chapter.

Figure 5.5: The throughput of the composition of short, ten-stage, and long, 20-
stage, half-buffer pipelines. Enable scaling is shown for the long pipeline.

The throughput of a reconvergent path is the minimum of each pipeline’s

throughput [28]:

γ‖(σa, σb) = min(γa(σa), γb(σb))

The throughput of short, ten-stage, and long, 20-stage, half-buffer pipelines are

48



shown in Figure 5.5. The throughput of the composition of these pipelines is the

overlapping triangle with a solid line on its left leg and a dotted line on its right leg.

In the steady-state, the number of tokens in this structure is determined by the

intersection of the token-limited domain of the long pipeline and the hole-limited

domain of the short pipeline. Solving for the number of tokens, k, in four-phase

and two-phase buffer pipelines results in the following:

4h : k =
nlnslf

2(nslb + nllf )
2f : k =

nlnslf
nslb + nllf

(5.6)

The variables nl and ns represent the number of stages in the long and short

pipelines, respectively. Substituting these values back into Equation 5.4 results in

the following throughput equations for half-buffers and full-buffers:

4h : T =
ns

2(nslb + nllf )
2f : T =

ns

nslb + nllf
(5.7)

Based on Figure 5.5, reconvergent paths are another ideal case for enable scal-

ing. However, we would like to scale the enable on the long path only. Scaling the

enable on both paths would hurt the throughput because it drops the intersection

point on the left leg (solid line) of the throughput triangle. At the circuit level,

this can be implemented using a virtual Vdd. (The overhead of this is minimal in

programmable routing because there are already numerous programming bits per

stage and this only adds one more.) As with rings, it is not clear if enable scal-

ing the long path is the best method. Figure 5.6 compares Eτ 2 for three scaling

schemes: i) Vdd scaling on both paths, ii) Vdd scaling in the long path, and iii)

enable scaling in the long path. Once again, scaling Vdd everywhere has the worst

Eτ 2 and rises monotonically. Scaling Vdd in the long path is somewhat better with

an optimal voltage of .95 V. Enable scaling the long path yields the best Eτ 2 with

an optimal voltage of .8 V.

As we did with loops, we would like to find the largest backward latency (for the

long pipeline) that will not reduce throughput. For reconvergent paths, this occurs

49



Figure 5.6: Eτ 2 for various voltage scaling schemes for a two-stage short pipeline
and a ten-stage long pipeline.

when the hole-limited domain of the long pipeline intersects with the throughput.

For four-phase half-buffer pipelines, we solve the following for lb
′:

T =
nl − 2k

2nllb
′

Substituting k with Equation 5.6 and T with Equation 5.7, yields the following

equations for lb
′:

4h : lb
′ =

nllf
ns

+ lb − lf 2f : lb
′ =

nllf
ns

+ lb − lf (5.8)

5.2.3 Reconvergent Paths with Initial Tokens

When there aren’t any initial tokens, parallel pipelines in a reconvergent path each

contain an equal number of tokens. Tokens enter/exit each pipeline simultaneously.

However, if one of the pipelines is initialized with k0 initial tokens, then it will

always contain k0 more tokens than the other pipeline. Initializing both pipelines

with the same number of tokens is equivalent to not having any initial tokens.

Approaching the steady-state, tokens will be added or removed from the pipelines

50



until they contain an optimal number of tokens. Therefore, we are only concerned

with the difference between of the number of initial tokens in each pipeline. We

define k0 as difference between the number of initial tokens in each pipeline. We

define k as the number of shared tokens between each pipeline (the number of

tokens in the pipeline with fewer initial tokens). Pf and Pm are the pipelines with

fewer initial tokens and more initial tokens, respectively. The number of stages in

Pf and Pm are nf and nm.

Figure 5.7: The throughput of the composition of short, ten-stage, and long, 20-
stage, half-buffer pipelines. The throughput plot for the long pipeline is shifted
left when two initial tokens are added (dashed line).

In relation to Pf , the throughput curve of Pm is shifted left as k0 increases.

The throughput for the pipeline with more initial tokens is:

4h : Tm = min

(

k + k0

nmlf
,
nm − 2(k + k0)

2nmlb

)

2f : Tm = min

(

k + k0

nmlf
,
nm − (k + k0)

nmlb

)

(5.9)

In Figure 5.7, the longer pipeline is Pm. At k0 = 0 the peak of long pipeline is

to the right of the peak of the short pipeline and at k0 = 2 the peak of the long

pipeline is to the left of the peak of the short pipeline. This is significant because

51



the ordering of their peaks changes which legs of each throughput curve intersect

to form the composite throughput curve. When k0 = 0, we can compare nf and nm

directly to determine which has an earlier peak. However, at k0 6= 0 the position

of the peak corresponds to a pipeline with nm
′ = nm − k0τ/lf stages. Therefore,

we compare nf with nm
′ to determine the relative ordering of the peaks.

When nf ≤ nm
′ the throughput is limited by the intersection of the hole-

limited domain of Pf and the token-limited domain of Pm. When nf ≥ nm
′ the

throughput is limited by the intersection of the hole-limited domain of Pm and the

token-limited domain of Pf . We solve for k at the intersection for each case:

4h : k =











nf (nmlf − 2k0lb)
2(nf lb + nmlf )

nf ≤ nm
′

nf lf (nm − 2k0)
2(nmlb + nf lf )

nf ≥ nm
′

2f : k =











nf (nmlf − k0lb)
nf lb + nmlf

nf ≤ nm
′

nf lf (nm − k0)
nmlb + nf lf

nf ≥ nm
′

(5.10)

Substituting the above for k in Equation 5.9 yields the following equations for

throughput:

4h : T =











nf + 2k0

2(nf lb + nmlf )
nf ≤ nm

′

nm − 2k0

2(nmlb + nf lf )
nf ≥ nm

′

2f : T =











nf + k0

nf lb + nmlf
nf ≤ nm

′

nm − k0

nmlb + nf lf
nf ≥ nm

′
(5.11)

As we did in the previous subsection, we need to find the target lb
′ for enable

scaling. When nf ≤ nm
′ we intersect the hole-limited domain of nm with point

(k, T ) on the throughput graph. When nf ≥ nm
′ we intersect the hole-limited

domain of nf with point (k, T ) on the throughput graph. This yields the following:

4h : lb
′ =











nf lb + nmlf
(nf + 2k0)

− lf nf ≤ nm
′

nmlb + nf lf
(nm − 2k0)

− lf nf ≥ nm
′

52



2f : lb
′ =











nf lb + nmlf
(nf + k0)

− lf nf ≤ nm
′

nmlb + nf lf
(nm − k0)

− lf nf ≥ nm
′

(5.12)

5.3 Voltage Converters

In this section, we describe the RQDI circuits that are necessary to convert between

voltage domains and scale enable signals.

5.3.1 Standard Voltage Converter

The standard low to high voltage converter is shown in Figure 5.8. The input signal

in has a voltage range from GND to Vddl. This signal is not directly used in a pull

up network because if Vddl is less than Vdd − Vth, then in cannot turn off PMOS

transistors in the Vdd domain. Instead, in and its inverted version are fed into

the pull down NMOS transistors of a cross coupled PMOS structure. When one

of the NMOS transistors becomes active it begins to discharge its output node.

A short circuit then exists between the NMOS and PMOS transistors. If the

NMOS transistor is sized correctly, it will win the fight with the PMOS transistor

and eventually both cross coupled nodes will switch. Higher voltage signals can

be used freely in lower voltage domains, therefore a high to low converter is not

needed.

Figure 5.8: The standard voltage converter.

53



In asynchronous circuits, we will be converting voltage across channels rather

than across simple signals. For dual rail codes, we have three signals to convert:

the two data rails and the enable rail (acknowledge). In channels going from a

lower to higher voltage domain, the data rails need to be converted to the higher

voltage. In channels going from a higher to lower voltage domain, the enable rail

needs to converted to the higher voltage.

5.3.2 High Voltage to Low Voltage Converter

The short circuit that occurs in the conventional voltage converter can be avoided

by guarding the conversion with high voltage signals that are available in the

handshake. The following is the HSE for high to low voltage converter:

*[([Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓; ), en↑;

[R e ∧ L f ∧ L t]; en↓;Rf ↓,Rt↓;Le↑]

This HSE is similar to the HCHB. The main difference is that we use inverted

versions of the Re, Lf , and Lt. Conveniently, the half cycle timing assumption

allows us to use inverted versions of signals without having to check each transition

on the inverted and non-inverted version of the signal (this is not possible in pure

QDI circuits).

The high to low converter is shown in Figure 5.9. Re↓ is sensed in the en

stack and Re↑ is sensed in the Rf and Rt stacks. The short circuit found in the

conventional converter is avoided by guarding the stacks with Lf and Lt and their

inverted versions. This only leaves the short circuit caused by the weak feedback

that is common to all state holding gates. We can mitigate the impact of the weak

feedback by adding a weak series PMOS for R e in en’s feedback and Re in Rf and

Rt’s feedback. An example of this is shown in the pull up feedback for en. When

54



Figure 5.9: A pipelined high voltage to low voltage dual rail converter. The pull
up feedback on the enable stack is explicitly shown.

R e goes to VDDL, and L f/L t are high, the bottom transistor partially turns on.

At the same time, the top weak PMOS partially turns off which reduces the weak

short circuit current. The transistors marked with a S are made strong by using

a low threshold voltage transistor and over sizing it.

5.3.3 Low Voltage to High Voltage Converter

The low voltage to high voltage converter takes two low-swing data rails and one

full-swing enable as inputs. It outputs two full-swing data rails and one low-swing

enable. The HSE is the same as high voltage to low voltage converter. The main

difference is that the strong inverters are used for the data rail inputs and the

pull-up logic for each stack changes slightly, as shown in Figure 5.10.

55



Figure 5.10: A pipelined low voltage to high voltage dual rail converter. The
pull-up feedback on the enable stack is explicitly shown.

5.3.4 DVHB Circuit Template

Simply scaling the voltage in an asynchronous circuit will increase both its cycle

time and latency. The latency can be kept constant by keeping the logic in the

forward path in the high voltage domain and moving only the logic in the return

path to the low voltage domain. In other words, the data rail stacks use Vdd and

the enable/acknowledge logic uses Vddl. A voltage conversion is needed whenever

the data rail logic uses a signal from the enable logic.

To minimize the forward latency, we start with a PCEHB reshuffling:

*[[Re]; en↑; [Lf −→ Rf ↑[]Lt −→ Rt↑];Le↓;

[¬Re]; en↓;Rf ↓,Rt↓; [¬Lf ∧ ¬Lt];Le↑]

Both the Re and Le signals are in the low voltage domain. The PCEHB reshuffling

56



Figure 5.11: The DVHB circuit template. The shaded logic is in a lower voltage
domain.

57



allows us to remove these signals from the data rails and do the voltage conversion

in the logic for en. Similar to the voltage converters in the previous subsection,

we need to find a high voltage signal to use as a guard in the en logic. The only

choice is to use the validity of the data rails, Rv . The dual voltage half buffer

circuit (DVHB) is depicted in Figure 5.11. The shaded logic is in the low voltage

domain. The voltage conversion occurs in the en0 and en stacks. We use the same

technique as before to lessen the weak feedback during the conversion.

Although the shaded logic seems to be a small part of the circuit, this logic

switches every cycle compared to the data rails where only one rail switches per

cycle. In addition, by making Le and Re low voltage we have reduced the switching

in the channels where wires tend to be longer and more capacitive. Moreover, the

en stack, en0 stack and the data rails only have one series PMOS transistor which

helps to limit their output capacitance (the weak feedback PMOS transistors are

minimum size and do not contribute greatly to the output capacitance).

5.4 Results

5.4.1 DVHB Template

In order to choose the correct voltage for enable scaling, we characterize the back-

ward latency for a DVHB buffer in the target process (65 nm) using Hspice. We

assume that we can accurately adjust the voltage by increments of .05V . Fig-

ure 5.12 shows the backward latency, lb
′, as we scale the enable signal from 1V to

.5V . It also shows the power reduction resulting from enable scaling from 1V to

.5V . Note, the power reduction displayed is on top of the reduction that results

from operating at the reduced frequency.

Although we have reversed the x-axis, lb
′ follows f(x) = 1/x. This is as ex-

58



Figure 5.12: Relationship of lb
′ to normalized power during enable scaling for a

DVHB buffer.

pected because the delay is proportional to 1/Vdd. As a result, lb
′ increases slowly

through about .75V and then more quickly as we approach .5V . This means that

small increases in lb
′ initially result in large voltage drops for the enable signal, but

after about .75V it takes larger increases in lb
′ to see addition drops in voltage.

5.4.2 Loops

To evaluate the potential power savings in loops, we simulate a token ring with a

1-3 tokens and 20-48 stages of half-buffers. The results are shown in Figure 5.13.

When there are 20 stages in the ring and k0 = 2, the pipeline is running at full

throughput and there is no power savings. As the number of ring stages are

increased, the throughput becomes more token-limited and enable scaling is used

to save power.

The k0 = 1 pipeline is always token-limited and power can be save across the

whole range of ring stages. Power only scales to about 70% for two reasons: i)

only roughly half the nodes in the ring run at the lower voltage, and ii) lb
′ is a

f(x) = 1/x function. The k0 = 3 pipeline can not use enable scaling until it

59



Figure 5.13: Normalized power usage of loops built from four-phase half-buffer
pipelines with one, two and three tokens, k.

contains 34-stages because it is hole-limited up until that point.

5.4.3 Parallel Pipelines

To evaluate the potential power savings in reconvergent paths, we simulate a 2-20

stage short pipeline with no initial tokens and a 20-stage long pipeline with 0-3

initial tokens. At k0 = 0 with 20 stages in the short pipeline, the composition runs

at peak throughput. As we decrease the number of stages in the short pipeline,

the throughput decreases and enable scaling reduces power. In this composition,

we only scale the enable in the long pipeline. At 12 stages, the composition runs

at 90% of peak throughput and there is a 10% power reduction. At 2 stages, the

composition runs at 40% of peak throughput and has a power reduction of about

30%.

For k0 = 1 at 20-12 stages, the long pipeline is effectively shorter than the short

pipeline because of the initial token (recall that n′ = n − k0τ/lf ). In this region,

power savings are small because we are scaling the enable on the short pipeline.

This remains true until the number of stages in the short pipeline drops to about

60



Figure 5.14: Normalized power usage of two parallel pipelines built from four-phase
half-buffers. The longer pipeline has 20 stages and it contains zero, one, or two
initial tokens, k0.

11 (at this point the composition runs at peak throughput). For the composition

with k0 = 2, the short pipeline is effectively longer than the long pipeline for the

whole simulation. The power reduction decreases because we are removing stages

from the effectively longer pipeline. The power reduction for this composition is

never larger than 10%. This is due to enable scaling on the short pipeline that

only contains 50% to 10% of the total number of pipeline stages.

61



CHAPTER 6

CASE STUDY: FPGA

6.1 Architecture

The RQDI circuits described in the preceding chapters are most effective when

applied to asynchronous FPGAs. In this section, we present a simple FPGA

architecture with hardware modifications to support RQDI two-phase circuits and

RQDI voltage scaling.

6.1.1 Overview

A high-level overview of the asynchronous FPGA is shown in Figure 6.1. The

FPGA is composed of configurable logic blocks (CLB) connected together through

an array of switch boxes (SB). In a synchronous FPGA, the SB is build from simple

multiplexors. In an asynchronous FPGA architecture, the SB is made of buffered

switches, similar to the one in Figure 4.7. This buffering in the interconnect allows

asynchronous FPGAs to run at much high frequencies than synchronous FPGAs.

However, this buffering also greatly increases the size of the SB and increases its

power consumption. The FPGA is programmed through a chip-wide distributed

memory (not shown).

6.1.2 Baseline Routing

Each switch box has 32 inputs and 32 outputs in each direction, as shown in

Figure 6.2. The switch box is disjoint, i.e., the horizontal and vertical routes only

connect at 32 switch points along their diagonal. As a result, an input can only

exit the switch box on the same track. At each switch point, an input may change

62



Figure 6.1: An asynchronous FPGA fabric composed of switch boxes (SB) and
configurable logic blocks (CLB).

directions or enter the CLB. In order for an input to change tracks, it must enter

and exit the CLB, burning CLB resources. The switch point can handle up to two

different inputs and copy them out to any combination of outputs. Each switch

point contains two four-input to four-output (4:4) switches (Figure 4.7).

Figure 6.2: A 32 x 32 disjoint switch box made from 32 switch points.

It is often the case that outputs of a CLB are inputs to another CLB that is

several tiles away, rather than adjacent to their tile. Due to this, it is unnecessary

for each track to stop at every SB. To take advantage of these cases, different

63



length wire segments are often used to reduce the area of SBs and decrease the

latency through a track. Figure 6.3 shows the three types of wire segments used

in the target architecture. For instance, a hex segment connects SBs that are six

tiles apart. In the target architecture, there are 12 singles, 12 doubles and 8 hexes.

Figure 6.3: The three types of routing segments used in this FPGA.

6.1.3 Routing Enhancements

We have shown, in Chapter 4, the large power saving potential of two-phase

routing. Unfortunately, two-phase buffers are significantly larger than four-phase

buffers. There are two ways to implement two-phase routing for a minimal area

impact: i) replace two four-phase stages with a single two-phase stage, and ii)

replace a single four-phase stage with a single two-phase stage, but undersize the

logic on the backward path to mitigate the area overhead. Typically, the second

option would have a larger area impact, but it provides a compelling performance

advantage.

When four-phase half-buffers are replaced with two-phase full-buffers, the amount

slack in the pipeline is doubled. This alters the throughput curve of the pipeline,

as shown in Figure 6.4. For hole-limited domain, the throughput of the pipeline

is much larger using two-phase circuits. This is a very important result because it

mitigates the performance impact of unbalanced reconvergent paths. Recall, the

throughput of reconvergent paths is limited by the token-limited domain of the

64



longer pipeline and the hole-limited domain of the shorter pipeline. Two-phase

circuits also improve the throughput of the less frequent hole-limited loops.

Figure 6.4: Throughput improvement in hole-limited domain from using two-phase
routing.

In addition to being two-phase, each switch has additional logic to support

enable scaling (voltage scaling on enable signals). Figure 6.5 shows the resulting

two-phase low-power switch point. The shaded logic can be configured to use the

nominal voltage, Vdd, or a lower voltage , Vddl. The programmable c-element labeled

PC2V has a built-in voltage converter. Although it may appear that this switch

point would be much larger than a typical four-phase 4:4 switch, it is less than

10 % larger. The reason is that all of the logic on the backward path, namely the

XOR and PC gates, can be downsized by more than 50 % and the circuit will still

run at the same frequency of a four-phase 4:4 switch. This style of enable scaling

hardware allows each 4:4 switch to be enable-scaled individually. There is a single

low voltage Vddl available on the chip, but each 4:4 switch can be programmed to

use Vddl or the nominal Vdd. The Vddl voltage source is set globally.

Only a small amount of logic in the two-phase 4:4 switch runs at a lower voltage.

However, most of the capacitance in the circuit resides on the external wires (the

65



Figure 6.5: The 4:4 low-power switch used in the low-power switch point. The
shaded logic can be configured to use a lower Vdd.

two data rails and the enable). The capacitance on each external wire is 20 fF,

40 fF, and 120 fF for singles, doubles, and hexes, respectively. This dwarfs the

less than 5 fF capacitances seen on the internal nodes. The lower-voltage enable

rail and one of the nominal-voltage data rails switch each cycle. Therefore, the

amount of capacitance that runs at a lower voltage is nearly 50%.

6.1.4 Configurable Logic Block

The CLB for the target FPGA architecture is shown in Figure 6.6. The CLB

contains a logic core surrounded by an input and output connection boxes. The

connection boxes allow any input or output of the logic core to connect to any

switch point in the SB. Inside the logic core are four four-input lookup tables

(LUT4). The LUT4 outputs one of its 16 preprogrammed values based upon the

four inputs. There are four LUT4s, therefore the logic core has a total of 16 inputs

and 4 outputs. To support two-phase routing, the only alterations needed is the

addition of phase converters for each input and output of the logic core.

66



Figure 6.6: The CLB contains input/output connection boxes, four LUTs, and
phase converters.

6.2 Timing Analysis

User designs that run on high-speed asynchronous FPGAs rarely operate at peak

throughput for two reasons: i) it is not possible to balance all reconvergent paths

and loops with limited routing resources, and ii) the designs may not be pipelined

enough to take full advantage of the underlying architecture. If the designs are

not operating at peak throughput, then power is being wasted when running the

FPGA at the nominal voltage. As we have shown in Chapter 5, enable scaling,

when applied correctly, can reduce power without impacting performance. By

applying some timing analysis to user designs, we can determine the amount of

enable scaling possible at each 4:4 switch. With this information, we can determine

the optimal global Vddl and which 4:4 switches are to be configured to use it.

6.2.1 Operating vs. Potential Throughput

For the purposes of timing analysis, we can construct a graph representation of

user designs that have been mapped to the FPGA. Each node in the graph rep-

resents a buffer stage in the FPGA, e.g., LUTs and switches. From this graph,

we can identify throughput limiting loops and reconvergent paths. The operating

67



throughput, TO, of all the nodes in the graph is limited by:

1. the least throughput node anywhere in the graph

2. the least throughput loop anywhere in the graph

3. the least throughput reconvergent path anywhere in the graph

Although each node is limited by TO, they may have a much higher potential

throughput, TP . Figure 6.7 shows a graph with three potential throughput limiting

structures, i.e., Loop 1, Loop 2, and RCP 1. The TO of the graph is limited by the

structure with the least throughput. The TP of the shaded node may be higher

than TO because it is only affected by the throughput of Loop 1. If TP > TO, then

some about of enable scaling is possible. The precise amount of enable scaling can

be determined by methods describe in the previous chapter. Specifically, finding

the backward latency, lb
′, that makes TP = TO and cross-referencing lb

′ with a

characterization of the underlying circuit implementation, similar to that shown

in Figure 5.12.

Figure 6.7: The operating frequency of the shaded node is limited by the least
throughput structure of the two loops and reconvergent path.

6.2.2 Determining Vddl

Once we know the minimal enable voltage for each node, Vddli, determining the

global Vddl is straightforward. Vddl can be anywhere from 1 V to .5 V at increments

of 50 mV. Therefore, there are only 11 possible values for Vddl. For each possible

68



Vddl, we compare Vddl to the Vddli of each node. If Vddl < Vddli, then no power savings

are possible in this node. If Vddl ≥ Vddli, then we can lookup the associated power

reduction for the underlying circuit with an enable operating at Vddl (similar to

Figure 5.12). We choose a global Vddl that maximizes the overall power reduction.

6.3 Results

6.3.1 Setup

Table 6.1 highlights the most important architectural parameters of the target

asynchronous FPGA. This architecture is designed to support all of the bench-

marks listed in the following subsection.

Table 6.1: Target FPGA architectural parameters.
FPGA

Fabric Maximum Frequency 1.5 GHz
Process Technology 65 nm
Switch Box 32 x 32 Disjoint Network
Wire Segments 12 Singles, 12 Doubles, and 8 Hexes
Logic Core 4 4-input LUTs
Array Size 48 x 48
Place and Route VPR

6.3.2 Benchmarks

The benchmarks used in our evaluations are listed in Table 6.2. These are 8

of the 20 MCNC LGSynth93 benchmarks. Only ten of the MCNC LGSynth93

benchmarks are pipelined and two were excluded because they ran at less than

100 MHz. The standard way synchronous designs are mapped to an asynchronous

architecture is to convert all flops in the design into initial tokens. The only

additional hardware needed to support this is a configurable initial token on the

output of each LUT.

69



Table 6.2: The eight MCNC LGSynth93 Benchmark circuits used in evaluations.
Name Array Size LUT Count

bigkey 36 x 36 1707
clma 47 x 47 8383
diffeq 20 x 20 1497
dsip 36 x 36 1370

elliptic 31 x 31 3604
frisc 30 x 30 3556

s38584.1 41 x 41 6447
tseng 17 x 17 1047

6.3.3 Area Estimates

Table 6.3 lists the area estimates for main components for the baseline FPGA and

the low-power version. These area estimates are determined by comparing the

total diffusion area of the sized netlist for each component against the post-layout

area of similar circuits in this technology. Overall, the low-power FPGA is only

about 12 % larger than the baseline FPGA.

The largest area increase occurs in the low-power CLB, which is about 36 %

larger than the baseline CLB. However, in practice this area increase would be

much less. Typically, the logic core would contain a number of full-adders which

would help to amortize the cost of the phase converters. In addition, the logic core

could be altered to use two-phase bundled-data, which would be more compatible

with the two-phase routing. Converting from LEDR to two-phase bundled-data is

much cheaper than converting from LEDR to QDI.

6.3.4 Power and Performance

Figure 6.8 shows the operating frequency of each benchmark with four-phase (base-

line), two-phase, and two-phase enable-scaled routing. None of the benchmarks

come within 40 % of the peak frequency of the underlying architecture. This is

partly due to the fact that a synchronous place and route tool, VPR, was used

to map the designs to the FPGA. (An academic asynchronous place and route

70



Table 6.3: Area estimates for FPGA circuits.
Circuit Area

Switch Point 245 µm2

Switch Box 7840 µm2

LUT4 185 µm2

Input CBOX 265 µm2

Output CBOX 65 µm2

CLB 1070 µm2

Baseline FPGA 2.05 mm2

Low-Power Switch Point 265 µm2

Low-Power Switch Box 8480 µm2

4:2 Converter 35 µm2

4-wide 2:4 Converter 60 µm2

Low-Power CLB 1450 µm2

Low-Power FPGA 2.29 mm2

tool does not exist yet.) However, even if an asynchronous place and route were

used, these benchmarks do not contain enough pipelining to run near the peak

frequency of the technology. Synthesis at a much higher level would be required to

take full advantage of the high-speed asynchronous FPGA. Even at these speeds,

some of these benchmarks may be 2-3 x faster than they would be running on a

synchronous FPGA.

Figure 6.8: Operating frequency of each benchmark for four-phase, two-phase, and
two-phase enable-scaled routing.

Moving from four-phase routing to two-phase routing results in a 40 % per-

71



formance improvement in bigkey and dsip, and a 70 % performance improvement

in elliptic. These designs were limited by either a reconvergent path or a hole-

limited loop. Two-phase circuits double the slack in the routing, which drastically

improves the throughput in these structures. Due this performance increase, the

power reduction in these benchmarks from two-phase routing is much less than the

other five benchmarks, as shown in Figure 6.9. The bigkey benchmark has a 15%

power decrease, dsip has a 30 % power decrease, and elliptic has a 3 % increase.

There is a 40 % power decrease in the remaining benchmarks. The full 50 % power

decrease is never seen because the slight area increase from using two-phase cir-

cuits makes the wires in the routing a bit longer and more capacitive. However,

even a 40 % power reduction is quite large.

Figure 6.9: Normalized power consumption of each benchmark for four-phase, two-
phase, and two-phase enable-scaled routing. All benchmarks are normalized to the
clma benchmark.

Enable scaling provides an additional 28 % power reduction across all bench-

marks. The choice of Vddl for clma and s38584.1 is .55 V and .5 V is used for all the

other benchmarks. The power reductions are close to the theoretical 35 % power

reduction possible from enable scaling down to these operating frequencies. This

72



occurs because a high percentage of switches can be enable scaled. The structures

that prevent enable scaling, such as being on the short path of a reconvergent path

or on a hole-limited loop, are rare. In addition, two-phase routing fixes some of

these structures and prevents them from limited enable scaling. Although elliptic

sees a total power reduction of only 25 % because of its 70% performance increase,

the other benchmarks experience a power reduction of 40% - 60%.

73



CHAPTER 7

CONCLUSIONS

We have presented a class of circuits that are derived by starting with quasi delay-

insensitive circuits and applying a conservative timing assumption, namely the

half cycle timing assumption. We refer to these as relaxed quasi delay-insensitive

circuits. We used these circuits to help reduce power consumption in a few ways.

First, we developed the half cycle half buffer (HCHB) circuit template that reduces

the amount logic needed to generate enable/acknowledge signals. The HCHB

template reduces area by 15% and energy by 32% on average across our benchmark

circuits. Second, we presented a two phase buffer for use in global communication

and static switching networks. This buffer was shown to reduce energy in static

switches by over 50%. Third, we showed how to fold voltage converters into the

HCHB buffer. We also proposed the dual voltage half buffer (DVHB) to allow

voltage scaling on the enable/acknowledge logic (return path) while keeping the

data logic (forward path) in a high voltage domain to maintain a constant forward

latency.

As a case study, we designed an asynchronous FPGA using RQDI two-phase

circuits and RQDI voltage scaling circuits. For eight of the MCNC LGSynth93

benchmarks, RQDI two-phase circuits provide up to a 70 % performance improve-

ment and up to a 40 % power reduction. The RQDI voltage scaling circuits provide

an additional 30 % power reduction across these benchmarks. The total power re-

duction is up to 60 %.

In conclusion, RQDI circuits are an important first step to mitigate the power

increases expected from technology scaling in the deep submicron. Although, even

more aggressive power saving techniques will likely be necessary in future technolo-

gies. In addition, RQDI circuits should be given serious consideration in all future

74



asynchronous FPGA designs due to their low overhead, large power reductions,

and large performance improvements.

75



BIBLIOGRAPHY

[1] The international technology roadmap for semiconductors. http://public.

itrs.net.

[2] Mark E. Dean, Ted E. Williams, and David L. Dill. Efficient self-timing with
level-encoded 2-phase dual-rail (ledr). In Proceedings of the 1991 University
of California/Santa Cruz conference on Advanced research in VLSI, pages
55–70, Cambridge, MA, USA, 1991. MIT Press.

[3] Chris Edwards. The wrong answers. http://kn.theiet.org/magazine/

issues/0911/the-wrong-answers-0911.cfm, June 2009.

[4] David Fang, Christopher LaFrieda, Song Peng, , and Rajit Manohar. A 3-
tier asynchronous fpga. In Proceedings of the 23rd International VLSI/ULSI
Multilevel Interconnection Conference, 2006.

[5] David Fang, John Teifel, and Rajit Manohar. A high-performance asyn-
chronous fpga: Test results. In IEEE Symposium on Field-Programmable
Custom Computing Machines, 2005.

[6] M. Ferretti and P. Beerel. Single-track asynchronous pipeline templates using
1-of-n encoding. In DATE ’02: Proceedings of the conference on Design,
automation and test in Europe, page 1008, Washington, DC, USA, 2002. IEEE
Computer Society.

[7] Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson. Power consid-
erations in the design of the alpha 21264 microprocessor. In 35th Design
Automation Conference, pages 726–731, 1998.

[8] Ben Hardwidge. Ibm technology alliance reveals 28nm chip
plans. http://www.bit-tech.net/news/hardware/2009/04/17/

ibm-reveals-28nm-technology-plans/1, April 2009.

[9] Charles Hawkins, Ali Keshavarzi, and Jaume Segura. A view from the bottom:
Nanometer technology ac parametric failures why, where, and how to detect.
Defect and Fault-Tolerance in VLSI Systems, IEEE International Symposium
on, 0:267, 2003.

[10] Pieter Johannes Hazewindus. Testing delay-insensitive circuits. PhD thesis,
Pasadena, CA, USA, 1992.

76



[11] Rick Hodgin. Intels manufacturing prowess skips some 45nm cpus,
goes straight to 32nm. http://www.geek.com/articles/chips/

intels-manufacturing-prowess-skips-some-45nm-cpus-goes-/

straight-to-32nm-20090618, June 2009.

[12] Mark Horowitz. Scaling, power and the future of cmos. In VLSID ’07: Pro-
ceedings of the 20th International Conference on VLSI Design held jointly
with 6th International Conference, page 23, Washington, DC, USA, 2007.
IEEE Computer Society.

[13] Christopher LaFrieda and Rajit Manohar. Fault detection and isolation tech-
niques for quasi delay-insensitive circuits. In DSN ’04: Proceedings of the
2004 International Conference on Dependable Systems and Networks, page 41,
Washington, DC, USA, 2004. IEEE Computer Society.

[14] Christopher LaFrieda and Rajit Manohar. Reducing power consumption with
relaxed quasi delay-insensitive circuits. In ASYNC ’09: Proceedings of the
2009 15th IEEE Symposium on Asynchronous Circuits and Systems (async
2009), pages 217–226, Washington, DC, USA, 2009. IEEE Computer Society.

[15] Andrew Matthew Lines. Pipelined asynchronous circuits. Master’s thesis,
California Institute of Technology, 1996.

[16] R. Manohar and M. Nystrom. Implications of voltage scaling in asynchronous
architectures. Technical report, Cornell Computer Systems Lab CSL-TR-
2001-1013, April 2001.

[17] Alain J. Martin. Compiling communicating processes into delay-insensitive
vlsi circuits. Distributed Computing, 1(4), 1986.

[18] Alain J. Martin. Programming in vlsi: from communicating processes to
delay-insensitive circuits. pages 1–64, 1990.

[19] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystroem, Paul Penzes,
Robert Southworth, and Uri Cummings. The design of an asynchronous mips
r3000 microprocessor. In Advanced Research in VLSI, pages 164–181, 1997.

[20] Clive Maxfield. New 1.5 ghz fpgas shipping now! http://www.pldesignline.
com/210601830, September 2008.

[21] Amitava Mitra, William F. McLaughlin, and Steven M. Nowick. Efficient
asynchronous protocol converters for two-phase delay-insensitive global com-

77



munication. In ASYNC ’07: Proceedings of the 13th IEEE International Sym-
posium on Asynchronous Circuits and Systems, pages 186–195, Washington,
DC, USA, 2007. IEEE Computer Society.

[22] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965.

[23] Kevin Morris. Fast. very, very fast. http://www.fpgajournal.com/

articles 2008/20080916 fast.htm, September 2008.

[24] Montek Singh and Steven M. Nowick. Mousetrap: high-speed transition-
signaling asynchronous pipelines. IEEE Trans. Very Large Scale Integr. Syst.,
15(6):684–698, 2007.

[25] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, 1989.

[26] Ivan Sutherland and Scott Fairbanks. Gasp: A minimal fifo control. In
ASYNC ’01: Proceedings of the 7th International Symposium on Asyn-
chronous Circuits and Systems, page 46, Washington, DC, USA, 2001. IEEE
Computer Society.

[27] John Teifel and Rajit Manohar. Highly pipelined asynchronous fpgas. In
FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international sympo-
sium on Field programmable gate arrays, pages 133–142, New York, NY, USA,
2004. ACM.

[28] John Teifel, Rajit Manohar, David Fang, Clint Kelly, and David Biermann.
Energy-efficient pipelines. In ASYNC ’02: Proceedings of the 8th International
Symposium on Asynchronus Circuits and Systems, page 23, Washington, DC,
USA, 2002. IEEE Computer Society.

[29] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective (3rd Edition). Addison Wesley, 3 edition, May 2004.

78




