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This thesis concerns the development and implementation of efficient optimiza-

tion algorithms for simulation based functions (real world problems) that are

computationally expensive to evaluate.

The first contribution is a new parallel algorithm, RODDS for global opti-

mization. RODDS algorithm is a stochastic heuristic global search algorithm,

which effectively uses multi-core computers to reduce the computational ex-

pense of an optimization problem. The RODDS algorithm introduces the use of

hyperspheres in candidate point generation. The optimization search is based

on the concept of dynamically changing the dimensions perturbed to direct the

search from a global to a local focus. Hyperspheres are used to prevent cluster-

ing of candidate points in optimization process to efficiently search the domain.

We present numerical results on test problems as well as real world applica-

tion problems from environmental engineering (groundwater management and

watershed calibration) to document RODDS effectiveness when the computa-

tional budget is limited. RODDS algorithm achieves efficiencies greater than 1

for most applications which is very significant since implementation of parallel

processing usually results in efficiency well below 1. We also present numeri-

cal results to show the efficiency of the use of hyperspheres in candidate point

generation in RODDS by comparing with a parallel implementation without the



hyperspheres.

The next contribution is application of Radial basis function (RBF) based

methods on computationally expensive optimization problems. We compare

the performance of RBF methods with several popular global optimization algo-

rithms (derivative based and heuristic) on two Groundwater superfund remedi-

ation sites (Pump and Treat system). These are two field sites Umatilla Chemical

Depot (19,728 acres) and Blaine Ammunition Depot (48,800 acres). We present

numerical results to indicate that RBF based methods are much more effective

algorithms for computationally expensive groundwater problems, followed by

a heuristic algorithm DDS. Under limited budget RBF based methods on aver-

age outperform traditional methods by an order of 100.

The third contribution is a new methodology of integrating a new integer

value optimizer (Search over Integers with Tabu (SIT)) with continuous value

optimizer (RBF based method) to solve fixed cost problems (which are Mixed In-

teger value problems, MIVP). Mixed integer value problems (MIVP) in general

have large search domain thus the optimization process is computationally very

expensive. This approach tries to take advantage of the fact that SIT is effective

for optimizing discrete variables, while response surface method is much more

efficient for optimizing continuous value variables. This study tries to limit the

computational expense of such kind of problems by implementing a Sequential

Response Surface method in conjunction with SIT. We present numerical results

to show the effectiveness of integration methodology in comparison to Genetic

Algorithm based NSGA-II (Deb et. al., 2003) and the MIVP optimizer, NOMAD

(Abramson et. al. 2008). The SIT-RBF methodology is shown to be distinctly

better than GA (SIT-RBF resulting in 150 times better solution than GA) under

limited computational budget.
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CHAPTER 1

INTRODUCTION

With our ever increasing understanding of different physical, chemical and bi-

ological processes, we are able to devise improved mathematical models that

describe these processes. The computational implementations of these mathe-

matical models provide a basis to forecast and simulate different alternatives.

The decision makers or engineers can then choose the best possible option or an

”optimal policy”. The need for the use of an optimization algorithm to choose

the ”optimal policy” arises when the range of parameter values and the num-

ber of parameter combinations is too large for analysts to enumerate or to test

all possible alternatives. So for these kinds of problems optimization algorithms

are a tool to guide the search to good solutions.

A typical framework used for these kinds of real world optimization prob-

lems is ”Simulation-Optimization”. The simulation model attempts to mimic re-

ality using numerical approximations of process based equations, and the opti-

mization model then tries to find the best set of input parameters (from domain)

for the simulation model. Figure 1.1 depicts the framework used to choose an

optimal policy. Here the upper box describes a loop that is repeated many times

i.e. the simulation model is run many times, each time with a different set of

input parameters. These different sets of input parameters are generated by

optimization algorithm based on a particular criterion. Each optimization al-

gorithm has its unique way of starting the search (for optimal solution) and

generating candidate points for subsequent simulation runs.

The increasing complexity of the environmental models comes at the cost of

increased computational expense i.e. CPU units (time) required for one such

1



 Simulation 

Model 

Optimization 

Algorithm 

Optimal Policy 

Objective Function 

Value 

Set of Decision Variables 

to be optimized 

Figure 1.1: Simulation-Optimization for Optimal policy

simulation. The identification of an optimal policy or optimal parameters re-

quires this expensive simulation to be repeated many number of times. Most

of the earlier work done for addressing these kinds of simulation-optimization

problems are based on the standard linear programming and global optimiza-

tion tools like Genetic Algorithms (GA) etc. The problem with these methods is

that they need simulation model to be run many many times. For a computa-

tionally expensive models, it becomes practically impossible to perform a large

number of simulations e.g. hundreds or sometimes even thousands. There-

fore, it becomes essential to use an optimization algorithm that minimizes the

computational expense for an optimization trial by requiring relatively few sim-

ulations.

Another feature of many practical optimization problems is that they require

”Global Optimization”. Global optimization here refers to the class of problems

with many local optimal solutions. Thus a good optimization algorithm for
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these kind of problems should be able to efficiently explore the search space

within a certain time frame. The focus of this thesis is to address the issue of

efficient optimization of computationally expensive real world environmental

problems. Stochastic RBF (Regis and Shoemaker (2007)), Simulated Annealing

(Sadiq and Sait (1999)), Genetic Algorithms (Goldberg (1989)) are some global

optimization algorithms, which have been shown to converge to optimal solu-

tion. But these proofs are based on the assumption of infinite model simula-

tions, thus making their proof of convergence questionable for most practical

applications (i.e. fixed number of model simulations).

To summarize, this thesis focuses on optimization algorithms for problems

with the following characteristics

1. Only the objective function values from the simulation model are available

to the algorithm i.e. No accurate derivatives are available inexpensively.

2. Function simulation is computationally expensive.

3. Test problems are Global optimization problems i.e. could have more than

one local optimum.

The developed algorithms are tested on two groundwater EPA superfund

sites. The total cost for cleaning up contaminated groundwater can exceed many

millions of dollars and the whole cleanup process can take many years. The total

cost and the time to do the cleanup depends on the pumping policy that is cho-

sen for the whole management period. Applying optimization can significantly

reduce the cost as compared to remediation plans formulated by trial and er-

ror simulations. Another reason to choose groundwater contamination sites for

the developed algorithms is that the simulation is computationally expensive.
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Hence the whole optimization process becomes computationally very intensive

thus motivating the need for development of computationally efficient meth-

ods. Although this thesis focuses on groundwater and watershed models, the

results are just as relevant to all environmental simulations of a computationally

demanding models.

Computational expense of an optimization trial can be minimized in two

ways, a) by efficiently using modern parallel computing tools and b) by using

algorithms that minimize the number of model simulations to obtain a good so-

lution point. Chapter 2 of this thesis reduces the computational wall clock time

of an optimization trial by efficiently using the parallel computing tools. This

chapter introduces a stochastic heuristic global search algorithm, Radii based

Dynamically Dimensioned Search (RODDS). The RODDS algorithm tries to ef-

fectively use the multi-core machines to reduce the computational expense. The

algorithm discussed is then applied for an optimal groundwater remediation

design using a pump and treat method for determining the optimal pump-

ing strategy. The method is applied to design an optimal pumping strategy

for containment of multiple plumes at Umatilla Chemical Depot, Oregon. A

simulation-optimization approach was used to determine an optimal policy.

The performance of RODDS is then compared with a serial algorithm (DDS)

and a parallel version of DDS. The study indicates that relatively good results

can be achieved with considerable savings in time by using parallel RODDS

implementation.

Chapter 3 focuses on minimizing the number of expensive function evalu-

ations for an optimal solution by using a Response surface based optimization

method. For two complex real groundwater sites (which require remediation
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using a pump and treat system) the performance of the function approximation

based methods is compared to traditional nonlinear and heuristic optimization

methods. Independent trials of optimization runs are carried out to provide suf-

ficient data for statistical testing. The algorithms are distinguished using differ-

ent statistical procedures and metrics. Algorithms are tested on two superfund

sites, Umatilla Chemical Depot, Oregon and computationally more expensive

Blaine Ammunition Depot Hastings, Nebraska.

Chapter 4 addresses the issue of computational expense of a fixed cost prob-

lems (mixed integer nonlinear problem). This kind of problems arise in cases

where installation costs must be accounted in addition to Operation and Main-

tenance cost. The complexity mainly arises due to discrete nature of the installa-

tion costs as these costs have a binary variable associated with them i.e. whether

a facility should be constructed or not. Based on which of the chosen facilities

are to be constructed there is an optimal operation policy. This optimal policy

changes when a different set of facilities is chosen to be constructed. The result-

ing mixed integer nonlinear problem has an extremely large solution space. It

becomes practically impossible to enumerate the number of possible installation

configurations. This chapter introduces a new methodology which uses a new

method SIT (developed in this thesis) with a Response Surface based method

(Stochastic RBF) for solution of these kinds of fixed cost problems. The method-

ology developed for this study uses radial basis function as a surrogate for ac-

tual computationally expensive objective function simulation. The main focus

of this study is to sequentially use the actual cost function evaluation informa-

tion across different integer configurations to improve the accuracy of surrogate

function approximations. The study compares the new methodology with GA

based NSGA (Deb (2003)) and a mixed integer value optimizer, NOMAD on
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two test and one real groundwater problem.

The increasing complexity of the environmental models comes at the cost

of large number of parameters. Not all of these parameters can be determined

by laboratory experiments. Also parameters estimated in the laboratory may

not work well in field scale model. Often in such cases Automatic calibration is

used. Automatic Calibration refers to use of an optimization algorithm to iden-

tify the parameter set that produces the best goodness of fit measure. Often the

goodness of fit measure is non-convex function of parameters, thus derivative

based methods are not suitable. RODDS algorithm introduced in chapter 2 is

implemented for the first time on an calibration problem in chapter 5. RODDS

algorithm tries to minimize the computational expense of calibration problem

by effectively utilizing the multi-core machines. The algorithm is then tested on

two real Townbrook and Cannonsville calibration problems.

We have developed a new parallel global optimization algorithm (RODDS)

targeting computationally expensive simulation-based optimization problems

in Water Resources. We have compared the performance of Response Surface

based methods with the conventional methods. We have used the structure of

RBF’s to develop global optimization algorithm (SIT-RBF) to address fixed cost

problems. We have tested the algorithms on a variety of applications (Ground-

water Remediation and Watershed Calibration) and shown that they perform

well, when relatively few expensive function evaluations are available.
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CHAPTER 2

IMPLEMENTATION OF A NEW PARALLEL ALGORITHM FOR

COMPUTATIONALLY EXPENSIVE GROUNDWATER MODELS:

UMATILLA ARMY DEPOT, OREGON

2.1 Introduction

A typical framework used to model a real world optimization application is

”Simulation-Optimization”. The simulation model attempts to mimic reality

using numerical approximations of partial differential equations and the opti-

mization model then tries to find the best set of decision variables for the sim-

ulation model. In other words the ”Simulation-Optimization” approach tries

to couple simulation models to optimization algorithms. The purpose of this

could be model calibration or the design or management of facilities. In general

the optimization part involves running the simulation model many many times,

so in cases where one such simulation (e.g. a groundwater transport problem)

is computationally expensive, the whole process becomes very CPU intensive

perhaps to the point of being infeasible. Sometimes the whole process may run

for weeks or even months. In other situations the entire optimization process

needs to be repeated many number of times each time with a different set of

parameters. This again could run for a long time. It is possible to decrease the

computational time by using an highly scalable parallel algorithm. Many serial

algorithms are not very efficient in that, there is not much reduction in the ”wall

clock” time even when many processors are used. A computationally expensive

Groundwater remediation problem is used as an example. In addition to high

computational expense, a groundwater remediation problem has high cost so
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the optimization is useful (Becker et.al. 2006).

This study introduces a parallel stochastic heuristic global search algorithm,

Radii based Dynamically Dimensioned Search (RODDS). RODDS algorithm is

developed to take advantage of commonly available parallel facilities rang-

ing from individual multi-core machines to parallel clusters (TERAGRID re-

sources). The new algorithm is inspired by Dynamically Dimensioned Search

(DDS) algorithm (Tolson and Shoemaker, 2007). DDS algorithm is based on the

concept of dynamically changing dimension perturbations to direct the search

from global to local. DDS has worked very well in serial applications, but in this

study it will be shown that RODDS works better than DDS as the number of pro-

cessors increase. RODDS improvement over DDS is due to use of hyperspheres

to avoid clustering the search points. The way to define the hyperspheres to be

efficient over a range of optimization problems is a major aspect of the develop-

ment of RODDS as discussed in later sections.

This paper is organized as follows. Section 2.2 introduces/explains the algo-

rithm and its parameters. The optimization test problems and the groundwater

bioremediation problem is explained in section 2.3. Section 2.4 goes over the

comparison of the algorithms and the results. Results are then discussed in sec-

tion 2.5. Last section 2.6 highlights the conclusions for this study. Appendix

A shows the general structure of RODDS algorithm and explains the candidate

point generation procedure (hyperspheres).
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2.2 Methodology

The Radii based Optimization using Dynamically Dimensioned Search (RODDS) al-

gorithm is a stochastic heuristic global search algorithm that was developed to

reduce the computational expense of optimization problems by effectively uti-

lizing the multi processors machines. The algorithm tries to locate good optimal

solution points within specified number of function evaluations. The algorithm

is inspired by serial algorithm DDS (Tolson and Shoemaker, 2007). As in se-

rial DDS the RODDS algorithm searches globally at the start of the search and

becomes a local search as the number of iterations approaches the maximum

allowable number of function evaluations. The transition from global to lo-

cal search is achieved by dynamically and probabilistically limiting the dimen-

sional space of the neighborhood i.e. the neighborhood size for each processor

decreases as a function of iteration number (as the search progresses). The can-

didate points are generated by perturbing the current best solution point in the

randomly selected dimensions. The choice of these evaluation points (for all

processors) depends on all previously evaluated points and the respective func-

tion values i.e. RODDS tries to stay away from all previously generated high-

cost points. RODDS differs from DDS in a way that it uses hyperspheres of

some radius (r) to prevent search points for being too close to each other. This

factor is especially important for parallel optimization. Much of the focus of

this research is on defining the radii so that the method is effective on a range of

problems. The radius of the hypersphere (discussed in section 2.2.2) depends on

the input parameters initial and final radius adjusted by a factor. Immediately

below is the algorithm steps followed by an explanation/discussion of each of

the step.
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2.2.1 Algorithm : RODDS

Step-1. Define Inputs

a. Neighborhood perturbation size parameter, r (0.2 is default).

b. Initial and final radii’s i.e. Ro and Rl.

c. Maximum number of function evaluations by each processor,

m.

d. Number of dimensions, D.

e. Number of processors to be used, w.

Step-2. Define Starting conditions i.e. choose Xbest i.e. the current best

solution point and the corresponding function value Fbest from a set

of uniformly generated random points:

a. Generate w number of randomly spaced solution points {Xk|Xk ∈

Rn, k = 1, ...,w}, and each processor then evaluates the function

at these points.

b. Set Fbest = Min(F(X1), F(X2), ...., F(Xw)) and Xbest = Xmin, let Xbest

equal the point such that F(Xbest) = Fbest. Also set Fworst =

Max(F(X1), F(X2), ..., F(Xw)).

Step-3. Define hypersphere

a. Calculate α =
(

Rl
Ro

) 1
m .

b. Initiate function evaluation counter, i = 1.

Each processor ( j = 1, ...,w) performs step 4 through 8

Step-4. Define Neighborhood N( j) for processor j
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a. Calculate probability of each decision variable being included

in neighborhood N( j) as a function of the current iteration count

P = 1 − Log(w∗(i−1))
Log(m∗w)

b. Randomly select J of the D decision variables for inclusion in

neighborhood i.e. For d = 1, 2, ...,D decision variables, add d to

N( j) with probability

P′ = P ∗
(
1 − (k − 1)

w

)
, (2.1)

then |N( j)| is the number of decision variables changed by pro-

cessor j in iteration i.

c. If N( j) empty, select one random d from (1, ...,D) for N( j).

Step-5. Generate candidate solution point Xnew( j) from Xbest =

[xbest
1 , ...., x

best
D ].

a. Perturb the best solution point by normal random variable with

zero mean and standard deviation σ in |N( j)| dimensions i.e.

selected dimensions from previous step

xnew
c = xbest

c + σ ∗ N(0, 1) if c ∈ N( j) otherwise xnew
c = xbest

c

Xnew( j) = [xnew
1 , ..., x

new
c , .., x

new
D ]

b. For all dimensions check for bound violation and reflect if nec-

essary i.e. if xmax
c is the upper bound for cth dimension, xmin

c is the

lower bound for cth dimension.

• If xnew
c ≤ xmin

c ; xnew
c = min(xmax

c , (xmin
c + (xmin

c − xnew
c )))

• If xnew
c ≥ xmin

c ; xnew
c = max(xmin

c , (xmax
c − (xnew

c − xmax
c )))

Step-6. Implement hypersphere criteria i.e. the current point Xnew( j)

should be away from all previously evaluated points.
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a. Set maxdi f f = (Fbest − Fworst).

b. Let Z be set of all previously evaluated points by all processors

for Xs ∈ Z.(
∥Xs − Xnew( j)∥

√
n

)
≤ Ro ∗ αi ∗ min

(
1,

log(1 + cost(Xs) − costbest)
log(maxdi f f )

)
(2.2)

If equation above is true go to step 4 otherwise go to step 7.

Step-7. Each processor evaluates the respective function value (F(Xnew(1)))

and passes it to primary processor.

Primary processor performs step 8 through 10.

Step-8. Update the best solution if required.

a. Set Fnew = Min(F(Xnew(1)), F(Xnew(2)), ..., F(Xnew( j)), ..., F(Xnew(w))).

b. Update current best solution if necessary i.e. If Fnew ≤ Fbest up-

date the best solution Fbest = Fnew and Xbest = Xnew.

Step-9. Update iteration counter (i) and

Fworst = Max(F(Xnew(1)), ..., F(Xnew( j)), ..., F(Xnew(w))).

Step-10. Check stopping criterion i.e. stop when i reaches m otherwise go

to step 4.

The RODDS algorithm begins with the master processor executing the first

three steps of the algorithm (i.e. basically setting up the run). Step-1 sets up

the algorithm parameters and specifies the optimization problem. Algorithm

parameters involve initial (Ro) and final radius (Rl), neighborhood perturbation

factor (r) and maximum allowed function evaluations (m). Other inputs include

the problem size i.e. the number of decision variables (D) and the number of
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processors to be used for the run (w). For this study of starting points is an

integer function of the number of processors, w for efficiency.

Step 2 involves defining the starting conditions. In step-2a the main proces-

sor generates a set of starting points. For this study the algorithm generates a set

of randomly generated points, but the algorithm is flexible to start from a user

specified set of points. The master processor then assigns the evaluation of the

starting points to processors. Once function evaluation is done for the starting

points, the control and the respective objective function values are passed on to

the main processor. In step 2b the main processor collects all the information

and initiates the best cost(Fbest) to be the point (Xmin) with minimum cost among

the starting points. This least cost point (Xbest) is used to generate the next set of

candidate points in step-5. The initial set of points and the respective cost values

are saved for hypersphere radii calculation in step-6. For efficiency in terms of

memory used and to limit communication cost, only the main processor saves

the solution point data (point and the cost) i.e. instead of saving multiple copies

on different processors only one copy of the information is saved.

In step-3a alpha, α is calculated which is the rate at which the hypersphere

shrinks. The hypersphere for the best point shrinks exponentially starting from

initial radius (Ro) to the final radius (Rl) (discussed in next section). Step-3b sets

up the counter (i) which keeps track of the number of function evaluations done

by each processor and implements the termination criterion i.e. terminates the

algorithm once maximum function (m) evaluations is reached. Later steps will

loop back to step 4 since it is the first step not involved in the initial setup part.

The execution part gets repeated until allowed number of function evaluations

(m) is reached.
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Step 4 and 5, deal with candidate point generation. Step 4a calculates the

probability of a particular dimension to be included in candidate point gener-

ation. Step 4b builds up the neighborhood space (N) i.e. chooses dimensions

to be perturbed. Choice for the size of this set (|N|) depends on the maximum

allowed function evaluations, processor number and the desired efficiency. A

factor in Step-4b (explained in next section) for processor number helps in ex-

ploring the solution space better i.e. choice of set size is ensured to be different

for various processors in any particular iteration. Step-5 generates a set of can-

didate solution points. The candidate points are generated by perturbing the

best solution in randomly selected dimensions (Step-5a). The perturbations are

sampled from a Normal distribution of mean zero and unit variance. Step-5b

checks for the bounds of the decision variables i.e. the constraints. In case of

violation reflection method is used to implement the bound. Step 6 implements

the hypersphere criterion (discussed in next section) i.e. the candidate points

thus generated have to satisfy the radii criterion i.e. candidate points must lie

out the hypersphere whose size depends on iteration number (i), maximum al-

lowed function evaluations (m), current best cost value (Fbest) and the function

values at all previously generated points. If the candidate point happens to lie

within the hypersphere, the whole generation procedure (Steps 4-6) is repeated

until candidate points satisfy the radii criterion.

In step 7 the computationally expensive function evaluation of F(Xnew( j)) is

done for all the candidate points Xnew( j) ( f or j = 1, ...,w). At this point each

processor, including the main processor, evaluates the function. After function

evaluation, for F(Xnew( j)) done by the jth processor, the control and the evaluated

objective function value, is passed back to the main processor.
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In the final stage (Step 8-10) of any particular iteration the master proces-

sor collects all the information i.e. function values at the candidate points and

updates the best cost and the respective point if needed. Step 9 updates the

counter (i) and the worst cost Fworst (if needed). Step 10 then sends the control

back to step 4 incase the counter (i) is less then the maximum number of allowed

function evaluations (m).

2.2.2 Algorithm Discussion

A parallel algorithm needs to generate more than one candidate points at any

step for expensive function evaluation. These points must be systematically

generated to explore the search space, otherwise lot of computation time would

be wasted. The idea behind using hyperspheres is to keep the newly generated

candidate points in step 5 of the pseudocode away from all previously evaluated

expensive solution points. This helps in getting to a good solution point by

helping the algorithm to either stay away from local minima or escaping local

minima, if it is caught in one (local minima). A lot of effort in this study focussed

in getting to the current form of hypersphere equation (equation 2.2). Various

other forms were tried, the first one for the same purpose was with hypersphere

radius starting with some initial radius (Ro) and exponentially going down to

(Rl).

(
∥Xs − Xnew( j)∥

√
n

)
≤ Ro ∗ αi (2.3)

The problem with this form of the equation is that it gives equal weight of all

previously evaluated points. As per this equation the newly generated point has
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to be equal distance away from a good as well as a bad solution point. This led

to algorithm getting stuck in local minima. Various other forms of the equation

were implemented and then tested.(
∥Xs − Xnew( j)∥

√
n

)
≤ Ro ∗ αi ∗ min

(
1,

(cost(Xs) − costbest)
maxdi f f

)
(2.4)

The equation 2.4 was another form of the equation which performed well for

some of the tested functions but it ran into trouble when objective function

range (Fworst − Fbest) is relatively big i.e. bigger range resulted in bigger maxdi f f

making whole right side of equation very very small (hypersphere radii reduces

to zero for all points). The current form of equation (equation 2.5) takes care of

this problem by keeping the right side within reasonable limit.(
∥Xs − Xnew( j)∥

√
n

)
≤ Ro ∗ αi ∗ min

(
1,

log(1 + cost(Xs) − costbest)
log(maxdi f f )

)
(2.5)

This hypersphere criterion is checked for all previously evaluated points.

The right hand side of the equation goes to zero for the case of current best

point i.e. cost(Xs) = costbest i.e. there is no restriction around the current best

point. This helps the algorithm freedom to move to a better solution point even

if it is close to current best point. Also the equation 2.5 reduces to equation 2.3

for worst or near worst points, assigning bigger hypersphere radii’s to these

points respectively. This essentially means that the final radii’s (near the end

of optimization run) for the worst or near worst points is the Rl, one of the

input parameters. The figure 2.1 compares the performance of three different

criterions explained above for Schoen function. Equation 2.5 outperforms the

other two criterions for all the tested functions.

Equation 2.1 tries to ensure that the points generated by different processors

at a particular iteration come from different N( j)’s. This equation assigns differ-
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Figure 2.1: RODDS Hypersphere criterion comparison

ent probabilities to respective processors hence making sure that the neighbor-

hood N( j) selected by individual processors are different. This adds to diversity

of candidate points thus resulting in better exploration of search space.

2.2.3 Algorithm Parameters

RODDS has three parameters to be tuned and they are hypersphere radii’s (at

start (Ro) and at the end (Rl) of the search) and the scalar neighborhood size

perturbation parameter (r). The initial radius (Ro), multiplied by a factor, de-

fines the minimum Euclidean norm distance between the set of initial points

and the set of candidate points generated in first iteration, respectively. Sim-

ilarly the final radius, multiplied by a factor, defines the minimum Euclidean

norm distance between the set of points generated in last iteration and set of

all previously generated points. Above mentioned factor (discussed in previ-

ous section) tries to assign high radii weight’s to high cost points and low radii

weight’s to the near best solution points,at a particular iteration. All intermedi-
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ate radii’s are functions of starting radius, ending radius, the evaluation number

and the respective objective function values of all previously evaluated points.

These radii’s (initial and final) depend on dimension of the problem and the ex-

pected range of the function value. The recommended values of initial and final

radii’s are 0.3 and 0.05 respectively, because these values give enough chance

to the algorithm to stay away from expensive points. In case range of objective

function is relatively small recommended value for the final radius is 0.01. The

perturbation factor ′r′ comes from the serial version on DDS; it defines the ran-

dom perturbation size standard deviation as a fraction of the decision variable

range. As recommended by Tolson and Shoemaker (2007) value of 0.2 is used.

While generation candidate points, upper and lower bounds are imposed by re-

flection method. As found by Tolson and Shoemaker (2007) the reflection type

boundary conditions allow decision variables to approach their optimal values

easier and faster than the other methods. Lastly the maximum evaluations ′m′

is also an algorithm input. In this study ′m′ is maximum number of function

evaluations done by each processor i.e. total number of function evaluations is

′m′ times the number of processors used.

2.3 Optimization Test Problems

2.3.1 Ground Water

The demonstration site for this study was adapted from NAVFAC (Naval Facil-

ities Engineering Command) technical report TR-2237-ENV, NAVFAC ,2004. The

Chosen facility ”Umatilla Chemical Depot” is located in northeastern Oregon.
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Site Description

Umatilla Chemical Depot is a 19,728 acre military reservation established in

1941 as an ordnance depot for storage and handling of munitions. From the

1950s until 1960s the depot was used as an on-site explosives washout plant.

The plant processed munitions to remove and recover explosives using a pres-

surized hot water system. The wash water from the plant was disposed in two

unlined lagoons, from where the wash water infiltrated into the soil system.

During this time, an estimated 85 million gallons on wash water was discharged

to the lagoons.

Two of the most common contaminants, RDX (Hexahydro-1,3,5-trinitro-

1,3,4-triazine, and commonly referred to as Royal Demolition Explosive) and

TNT (2,4,6-Trinitrotoluene) are used as indicator contaminants. A pump-and-

treat system was designed by the U.S. Army Corps of Engineers (USACE, 1996

and 2000) to contain and remove the RDX and TNT plumes. The USACE de-

signed pump-and-treat system consists of three pumping wells and 3 recharge

basins (shown in figure 2.2). One of the pumping wells and the infiltration

basins were marked as inactive in the report. The cost of activating the inac-

tive well is considerably less than the cost of installing a new well and there is

no installation/activation cost associated with any other existing wells. Existing

wells/basins and the inactive wells/basins play role in the cost definitions. The

contaminated groundwater is extracted from the wells and then sent to GAC

units, which remove the contaminants. The treated water is then discharged to

the infiltration basins.
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Figure 2.2: Umatilla Site Map : NAVFAC (Naval Facilities Engineering Com-
mand) technical report TR-2237-ENV,2004 showing location of
extraction wells and infiltration fields (recharge basins)

Model Description

Groundwater flow is simulated using the MODFLOW code (Harbaugh, 2000).

The MODFLOW-2000 1.18 version was used in Umatilla model. The study

model has 125 rows, 132 columns and 5 layers, with variable grid spacing of

24.8ft - 647.9ft along the rows and 21.6ft - 660.7ft along the columns. Models

layers are

• Layer 1: Alluvial aquifer, unconfined

• Layer 2: Silt and weathered basalt, convertible (confined/unconfined)

• Layer 3: Silt and weathered basalt, convertible (confined/unconfined)
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• Layer 4: Silt and weathered basalt, convertible (confined/unconfined)

• Layer 5: Silt and weathered basalt, convertible (confined/unconfined)

The formulation-1 only focuses on contaminant transport in layer 1 of the

model. The model boundary conditions for all four sides of the model domain

were simulated as constant head. The Groundwater contaminant transport is

simulated with MT3DMS (Zheng (1990)).

The model is structured into three phases i.e. input, simulation and out-

put. The model takes Hydro-geological data, Domain-discretization data and

the pumping data as input. The pumping data consists of pumping well lo-

cations with the respective pumping rate (to be optimized in this study). The

formulation used for this study treats only the pumping rates as the decision

variables for fixed well locations. After input phase the simulation is done us-

ing MODFLOW and MT3D. The study model simulates TNT and TCE (the two

chosen parameters). And in the end objective function is calculated using the

pumping data (input decision variables) and the simulated concentrations (Cmax
RDX

and Cmax
T NT ) at the end of simulation period. The model units are in feet and years.

2.3.2 Optimization Formulation

Objective Function

The objective of this formulation is to minimize the total costs (including both

fixed capital costs and operation/maintenance costs) for the entire project dura-

tion i.e.

min
Q

(CCW + VCE(Q) + VCG(Q) + PenaltyCost(Q,C)) (2.6)
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Subjected to: Cmax
RDX ≤ 2.1ppb and Cmax

T NT ≤ 2.8ppb

where,

• CCW (Q): Capital costs of new wells ($75,000 for installing a new well,

$25000 for putting an existing unused well into service i.e. well 3 in this

study)

• VCE (Q): Variable electric cost of operation

• VCG (Q): Variable costs of GAC units

• Penalty Cost (Q,C): For violating the concentration constraint, pumping

constraint

where, Q=(Q1,Q2, ...,Q10) is the respective well pumping rate (i=1,...,8 are pump-

ing wells and j=9-10 are recharge basins with the last recharge basin getting a

recharge of (Total pumping-Total recharge)) and C(Q) is maximum contaminant

concentration of TNT and RDX respectively (Cmax
RDX and Cmax

T NT ) .

All the cost terms are computed in net present value (NPV) with the follow-

ing discount function NPV = costiy
(1+r)iy−1 . Where, NPV is the net present value of a

cost incurred in year iy with a discount rate of r=5%. The cost term is evaluated

at the end of each year to account for annual discounting and to ensure that no

costs are incurred after cleanup is achieved.

Constraints

The formulation includes following constraints that must be satisfied while the

objective function is minimized
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1. The modeling period consists of 1 management period of 4 years, with

pumping rates kept constant throughout this period.

2. Cleanup must be achieved at the end of 4 years. In other words, the max-

imum concentrations (over space) of RDX and TNT (Cmax
RDX,C

max
T NT respec-

tively) in model layer 1 must be less than their respective cleanup targets

by the end of 4 years Cmax
RDX ≤ 2.1ppb and Cmax

T NT ≤ 2.8ppb. Cmax
RDX and Cmax

T NT

are computed by the MODFLOW-MT3D model for the given values of the

vector Q of pumping and recharge rates.

3. The total pumping rate, after adjustment for the average amount of system

uptime, cannot exceed 1300 gpm, i.e. the current maximum capacity of

the treatment plant 1
α

Qtotal ≤ 1300, where α is a coefficient representing the

average amount of system uptime (α=0.9 for this study)

4. The pumping capacity of individual wells must not exceed 400 gpm in the

less permeable portion of the aquifer and 1000 gpm in permeable portion

Qtotal ≤ 400

5. The total amount of pumping must equal the total amount of injection

through the infiltration basins within an error tolerance (implemented in

this study by 3rd recharge basin getting the balance of (Total pumping)-

(Total recharge))

2.3.3 Optimization-Modeling Approach

The optimization formulation tries to do the cleanup by finding the optimal

pumping and recharge rates for fixed locations (8 in number and 3 recharge

basins). Figure 2.2 shows the location of existing pumping wells and the in-
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filtration basins (Recharge basins). Thus, the optimization goal is to identify a

pumping strategy that lowers the Cmax values of RDX and TNT to their respec-

tive cleanup targets of 2.1 and 2.8 ppb in layer 1 within 4 years while satisfying

all the pumping constraints. For this study the specific objective is to identify the

best pumping rates on eight pumping wells and two recharge basins. The max-

imum allowed concentration constraint and the total pumping constraint are

implemented by using the penalty functions hence the solution points not satis-

fying either of the two constraints (concentration and pumping) are penalized,

which forces the algorithm to look for solution points that satisfy the above-

mentioned constraints. The flow and transport model takes approximately 5

mins per simulation on a Pentium 2.2 Ghz computer.

2.3.4 Test Functions

RODDS algorithm runs in this study involved trial runs test functions rang-

ing from 10- to 30- dimension, with 400 to 2000 total function evaluations per

optimization trial. Four global optimization test functions (Ackley, Schoen,

Griewank and Rastrigin) were chosen. These test functions are not expensive

to evaluate but are multi-modal and possess some detectable trends or patterns

typical to a global optimization problem. The test functions are not explicitly

defined here instead summarized in table 2.1 with respective references.
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Table 2.1: Test Functions for RODDS algorithm

Test Function n Domain Reference

Ackley 10/30 [-1,3] Ackley(1987)

Schoen 17 [-1,3] Schoen

Griewank 10 [-2,2] Griewank(1981)

Rastrigin 10/30 [-1,3] Rastrigin(1974)

Note:-All these domains were normalized to be within [-1 1]

2.4 Results

2.4.1 Outline of Algorithm Comparison

The idea behind developing RODDS was to develop an efficient algorithm,

which effectively utilizes available parallel resources, to identify good solution

points for a global optimization problems where wall clock time is limited. Thus

the experimental runs for the study were designed to test the algorithm with a

fixed number of function evaluations under varying number of processors (i.e.

as number of processors increase the effective wall clock time decreases). The

results presented here compare the performance of RODDS with the serial ver-

sion of DDS and a straight forward implementation of DDS algorithm in parallel

(called DDS-PC). The main difference between the RODDS and the DDS-PC is

that RODDS uses hyperspheres to stay away from local minima’s for better ex-

ploration of search space. In order to compare the effectiveness of this method

of candidate point generation, the plots include a version of DDS-PC.

RODDS algorithm was run on four different test problems with workers
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varying from 4 to 32. The number of workers used for the trial runs varied

from 4 to 32 i.e. 4, 8, 16 and 32 with respective decrease in wall clock time. Table

2.1 lists the test functions along with their respective decision dimensions. For

the groundwater problem RODDS was run with 4, 8 and 16 processors. Algo-

rithm comparison for all the plots was limited to RODDS (with n processors),

RODDS with 1 processor, Serial DDS and DDS-PC, so as to clearly highlight the

comparison between the serial and the parallel version.

To take into account the stochastic nature of the algorithms, we did 30 tri-

als each of the three algorithms RODDS, DDS-PC and the serial DDS. There

were 30 sets of starting points xinitial values used in step 3 and each algorithm

started a trial with each of the sets, to remove any bias from the starting val-

ues. The test functions for algorithm trial runs ranged from 6-dimensions to 30

dimensions global optimization problems. The maximum number of model or

function evaluations per optimization run were chosen to vary from 400 to 1600,

so as to cover the range of maximum ground water model evaluations used to

solve an expensive global optimization problem (groundwater problem for this

study). To improve computational efficiency, in all the cases the maximum al-

lowed function evaluations were chosen as integer multiple of the respective

number of processors used for the run. For algorithm convergence comparison,

the best solution found is plotted against the respective number of objective

function evaluations for each algorithm. In other words, for a particular algo-

rithm, the average of the best solution found so far across all optimization trials

is plotted against the respective number of function evaluations, which takes

into account the fact that RODDS does ′w′ (i.e. the number of processors) func-

tion evaluations per iteration.
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The serial DDS is initialized to the best of 0.005 ∗ m uniform random so-

lutions (where m is the total number of DDS objective function evaluations to

solve the problem) and the neighborhood perturbation size parameter, r, is set

to the value of 0.2, as recommended by Tolson and Shoemaker (2007). RODDS

algorithm is initialized with of ′w′ uniform random solutions, where ′w′ is the

number of processors used for the trial. The neighborhood perturbation size pa-

rameter, r is set to the value of 0.2. Section 2.2.3 suggests a way to choose these

radii’s. All three algorithms i.e RODDS, DDS-PC and DDS stop only when the

maximum function evaluation limit is reached.

Results are presented here in three sections. Section 2.4.2 compares the per-

formance of RODDS algorithm with the serial version of DDS and the DDS-PC

for some test problems. This section also compares the algorithm performance

with respect to processors used i.e. it compares algorithm performance when

the number of processors employed in the optimization run are increased or

the wall clock time is decreased. This comparison was limited to RODDS only,

to clearly highlight the effect of change in the number of processors used for

the run. Section 2.4.4 discusses the performance comparison of RODDS on a

ground water flow transport model (Umatilla). The last section 2.4.3 discusses

and compares the results in terms of parallel computing metrics i.e. speedup

and efficiency.

2.4.2 Test Functions

Figures 2.3 and 2.4 compare the performance of RODDS algorithm with the se-

rial DDS (Tolson and Shoemaker, 2007), DDS-PC and RODDS 1-processor for 30-
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dimensional Ackley and 17-dimensional schoen function. Plots here show only

the results for two of the tested functions but performance on other tested func-

tions is compared using tables for parallel metrics (2.4.3). Figure 2.3(a) compares

the algorithm performance with 4 processors. Similarly figures 2.3(b), 2.3(c) and

2.3(d) compare the algorithm performance with 8, 16 and 32 processors respec-

tively. Plots show the convergence plot for the objective function values with

varying number of processors used for the respective runs, with the maximum

allowed function evaluations being limited to 400 to 1600. For each plot, the

function value (y -axis) is plotted against the specific ith function evaluation (x-

axis). This function value is averaged over 30 trial runs for the best solution

found on or before the ith function evaluation, respectively. For RODDS algo-

rithm the one iteration equals ′w′ function evaluations, where ′w′ is the number

of processors used for the run. In cases where maximum number is limited to

400, algorithm performance is only compared for 4,8 and 16 processors.

Figure 2.5 summarizes the performance of RODDS with respect to the num-

ber of processors used for the run. Each figure plots the results for the different

test functions with respect to the respective number of processors used for that

particular run. The maximum allowed function evaluations per processor were

chosen such that each run does same amount of total function evaluations in

total. These plots show how the performance of RODDS is affected by increase

in number of processors.
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Figure 2.3: RODDS Results on 30-dimensional Ackley function: (a) with 4
Processors; (b) with 8 Processors; (c) with 16 Processors; and,
(d) with 32 Processors

2.4.3 Parallel Metrics

The commonly used measures for the goodness of a parallel implementation are

speedup and efficiency. Speedup is a measure of time gained i.e. by how much a

parallel algorithm is faster than the respective serial algorithm. Efficiency metric

reflects the processor utilization i.e. how well the work is distributed among the

processors. Since RODDS is a stochastic algorithm and assumes a fixed number

of evaluations, the calculation of these metrics is based on the objective function
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Figure 2.4: RODDS Results on 17-dimensional Schoen function: (a) with 4
Processors; (b) with 8 Processors; (c) with 16 Processors; and,
(d) with 32 Processors

values obtained after a fixed number of iterations. So for this study, we modified

these criteria’s based on the runs it took a particular algorithm to reach within

c% of the final answer obtained by DDS-serial averaged over 30 trials (explained

below). This ′c′ value is chosen based on results of DDS-PC.

Parallel metrics for RODDS and DDS-PC algorithms on the tested functions

are listed using tables (Tables 2.8-2.7) respectively. Figure 2.6 explains the rela-

tion between wall clock times and modified metrics and the following tables for
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Figure 2.5: RODDS Processor performance comparison: (a) Ackley func-
tion; (b) Schoen function;

respective functions list the modified metrics. First column ′np′, lists the num-

ber of processors used for a particular run. The next column lists the difference

between the results of RODDS and DDS-serial at the end of optimization run

averaged over 30 trials, D f . WT f is the wall clock units to get to Serial answer,

whereas T f is the total CPU units to get to Serial answer i.e. nprocs ∗WTp. Next

column lists the average number of function evaluation to reach within c% of

the serial answer, for a respective algorithm. The ’S p − c%’, is the ratio of ’serial

run to get to within c% of final serial answer’ to ’total CPU units to get to serial

answer’ i.e. Ts
Tp

, averaged over 30 trials. And the last column lists ’E f − c%’, the

ratio of ’S p − c%’ to the respective number of processors used.

Table 2.8 lists the parallel metrics for Umatilla groundwater problem.

Similarly Tables 2.3-2.7 list the parallel metrics for 10-dimensional Ackley,

30-dimensional Ackley, 17-dimensional Schoen, 10-dimensional Rastrigin,30-

dimensional Rastrigin and 10-dimensional Griewank function respectively.
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Figure 2.6: RODDS Metric Definitions

Table 2.2: RODDS results for 10-Dimensional Ackley Function. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(1%) S p(1%) E f (1%)

1 0.5 411 411

4 0.5 103 412 81 5.83 1.46

8 0.5 55 440 42 11.24 1.41

16 0.4 33 528 24 19.67 1.23

32 0.2 21 672 16 29.50 0.92

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 472

4 -0.1 68 3.93 0.98

8 -0.1 36 6.94 0.87

16 -0.8 36 13.11 0.81

32 -1 24 19.67 0.61

b) DDS-PC

Table 2.3: RODDS results for 30-Dimensional Ackley Function. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(1%) S p(1%) E f (1%)

1 0.4 1720 1720

4 0.4 434 1736 369 4.17 1.04

8 0.6 206 1648 173 8.90 1.11

16 0.5 107 1712 91 16.92 1.06

32 -0.1 60 1920 60 25.67 0.802

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 1538

4 -0.1 415 3.71 0.92

8 -0.4 223 6.91 0.86

16 -0.7 116 13.28 0.83

32 -1.5 Failed - -

b) DDS-PC
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Table 2.4: RODDS results for 17-Dimensional Schoen Function. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(1%) S p(1%) E f (1%)

1 4 964 964

4 3 230 920 225 5.72 1.43

8 5.3 83 664 82 15.68 1.96

16 5.2 44 704 43 29.91 1.87

32 2.8 31 992 30 42.87 1.34

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 1286

4 -4 Failed - -

8 -7 Failed - -

16 -3 Failed - -

32 -3 Failed - -

b) DDS-PC

Table 2.5: RODDS results for 10-Dimensional Rastrigin Function. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(1%) S p(1%) E f (1%)

1 0.9 581 581

4 0.8 139 556 123 5.03 1.19

8 0.9 67 536 58 10.67 1.33

16 0.6 39 624 33 18.76 1.17

32 -0.1 25 800 23 26.91 0.84

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 619

4 -0.1 165 3.75 0.94

8 -0.2 90 6.88 0.86

16 -0.8 48 12.90 0.8

32 -2.6 Failed - -

b) DDS-PC

Table 2.6: RODDS results for 30-Dimensional Rastrigin Function. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(1%) S p(1%) E f (1%)

1 2 1464 1464

4 1.9 374 1496 366 4.19 1.05

8 1.6 197 1576 185 8.3 1.04

16 0.3 99 1584 96 16 1

32 -1.3 50 1600 Failed - -

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 1536

4 -2 Failed - -

8 -3.9 Failed - -

16 -7.1 Failed - -

32 -15.2 Failed - -

b) DDS-PC

2.4.4 Groundwater Problem

The groundwater flow contamination problem in section 2.3.1 is solved here

using the RODDS, DDS-PC and DDS-serial. Figure 2.7(a) compares the perfor-

33



Table 2.7: RODDS results for 10-Dimensional Griewank Function. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(1%) S p(1%) E f (1%)

1 15.2 350 350

4 12.8 81 328 82 4.8 1.2

8 7.4 46 376 47 8.38 1.05

16 5.4 23 384 24 16.4 1.03

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 394

4 -2 Failed - -

8 -10 Failed - -

16 -20 Failed - -

b) DDS-PC

Table 2.8: RODDS results for 10-Dimensional Umatilla Problem. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(10%) S p(10%) E f (10%)

1 7.1 240 240

4 5.3 76 304 41 6.46 1.6

8 4.8 44 352 33 8.00 1.05

16 6.5 22 352 15 17.67 1.1

a) RODDS

np D f Ts(10%) S p(10%) E f (10%)

1 0 265

4 -4.7 73 3.6 0.9

8 -4.5 50 5.3 0.66

16 -5.9 30 8.83 0.55

b) DDS-PC

mance of RODDS with serial DDS (Tolson et. al.) and DDS-PC for 4, 8 and

16 processors respectively. Figure 2.7(d) compares the performance of RODDS

with respect to the number of processors used for the run. Similar to test func-

tions for each figure, the function value (y -axis) is plotted against the specific ith

function evaluation (x- axis). Each plot lists the wall clock time the respective al-

gorithm took for the serial and the parallel run. Algorithm comparisons for the

groundwater problem in Figures were limited to the RODDS, serial DDS and

DDS-PC algorithms to in order to clearly highlight some general algorithm per-

formance differences. Due to relatively high wall clock expense of the ground-

water problem the number of trials were limited to 10. So the function value on

y-axis is the average over 10 trial runs for the best solution found on or before

the ith function evaluation, respectively.
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Figure 2.7: RODDS Results on Umatilla Groundwater problem: (a) with 4
Processors; (b) with 8 Processors; (c) with 16 Processors; and,
(d) Processor performance comparison

2.5 Discussion

RODDS algorithm tries to find good solution points for global optimization

problems within fixed computational budget, by efficiently utilizing the avail-

able parallel tools. Initially it is reasonable to expect that in cases where num-

ber of processors times maximum allowed function evaluations per processor

is constant, as the number of processor increases the quality of results in terms

of speedup and efficiency would decrease. But this study tries to stress on the
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fact that efficient candidate point selection can greatly help maintaining good

speedup and efficiency. This study tries to achieve or maintain good speedups

and efficiency by combining the idea of hyperspheres with dynamic dimension-

ing. This study presents no evidence that RODDS is better algorithm than DDS,

when the total available time is essentially unlimited (i.e. no bound for total

allowable function evaluations).

Figure 2.3(a) shows that RODDS with 4 workers performs the best of all the

compared algorithms on Ackley function. Figures 2.3(b), 2.3(c) and 2.3(d) com-

pare the algorithm performance for Ackley function with 8, 16 and 32 work-

ers respectively. Similarly Figures 2.4(a), 2.4(b), 2.4(c) and 2.4(d) compare the

algorithm performance respectively for Schoen function. In general RODDS

performed better than the serial DDS with workers up to 16 for all the tested

functions. The difference in the average best solutions obtained is much more

clear for 4 and 8 workers (i.e. the results were better with 1/4th or 1/8th the

serial computational time). For 3 out of 4 test functions chosen the runs with

workers up to 16 gave better results and the fourth one gave similar quality

results. The results obtained with 32 workers were of the same quality as ob-

tained by the serial DDS for all the test functions. Both the plots (2.4 and 2.3)

for DDS-PC show the effect of not using the hyperspheres in point selection.

The DDS-PC algorithm is more susceptible to stop (or get stuck) at local min-

ima’s. Thus the performance of DDS-PC is much more sensible to the number

of processors used.

Tables 2.8-2.7 list the modified speedups and efficiencies for the different

functions. Results on all test functions (tables 2.3-2.7) and the groundwater

problem (Section 2.8) present evidence that RODDS maintains good efficiency
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and speedups. In fact the results for all function including the groundwater

problem show that RODDS gets better answers up to 8 processors (efficiencies>

1 and speedups> w). In other words RODDS gets better solution points with

significantly less wall clock time e.g. 1/8th the serial time in case with 8 pro-

cessors. In some cases the results with 16 were better than the ones from the

run. And the results with 32 processors were similar to the ones from serial run

if not better. The results for the groundwater problem in section 2.3.1 demon-

strates (Figure 2.7) that RODDS locates good solution points with significantly

less wall clock time. RODDS also tries to uniformly allocate the work among all

the workers (processors), thus achieving a good efficiency.

One interesting thing to notice in RODDS results (tables 2.8-2.7 ) is that for

some runs efficiencies with 16 workers is better than 8 workers which is not

what is expected. Authors believe that this accounts from the fact that RODDS

in parallel has the ability to move in multiple directions from the same point.

Thus it is more adaptive to avoid local minima as serial DDS moves only in one

direction at a particular iteration.

In comparison to DDS-serial the RODDS requires more tuning i.e. it has two

more additional parameters. The additional parameters are initial and the final

hypersphere radii’s. Both of these parameters depend on the dimensionality of

the problem and the expected cost range of the function. In case of high dimen-

sionality and wide range the values of 0.45 and 0.2, for initial and final radii’s

are recommended respectively. For lower dimensional problems values of 0.25

and 0.1 are recommended. Using these hyperspheres helps RODDS avoid get-

ting stuck in local minimas by forcing it to choose points away from expensive

points (in terms of objective function).
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2.6 Conclusion

Numerical results demonstrate that the RODDS algorithm is able to computa-

tionally efficiently use parallelism to get good results for the range of test func-

tions and groundwater remediation example problem considered in this study.

RODDS outperforms DDS-serial with 4,8 and 16 processors (thus resulting in

speedups greater than 4, 8 and 16 respectively). For RODDS run with 32 pro-

cessors, the solutions obtained are very close to the solutions obtained from

serial DDS i.e. achieving near perfect speedup of 32. RODDS algorithm in gen-

eral was able to reach efficiencies of greater than one also all of these efficiencies

were much better as compared to DDS-PC, which show that the idea of hyper-

spheres helped RODDS to escape some local minima points and get to better so-

lution point then DDS-PC. The value of RODDS is greatest for computationally

demanding models where there is limited time to get results. In this study, the

objective function or model evaluations were mainly limited to 1600 or fewer, in

all the runs RODDS produced quality solutions (in terms of objective function

value) in comparison with the DDS-serial. RODDS algorithm like DDS is quite

simple, thus can be easily coded in whatever programming language of choice.

With the increasing availability of cheap multi-core machines and the sim-

plistic characteristics of RODDS make it an attractive optimization tool for En-

vironmental simulations. The speedups achieved by RODDS are significant as

when coupled with a parallelized model (using parallel simulation), the result-

ing overall speedup can result in big time savings e.g. RODDS with 16 proces-

sors on a parallelized function using 10 processors can result in overall speedup

of 160. The demonstration runs for this study limited the number of proces-

sors to 32 (for test functions with maximum of 1600 total function evaluations
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i.e. 50 evaluations per worker) but the results can be generalized for functions

which need far more total function evaluations. For these functions the number

of processors used can be much greater than 32. Although this study focused

on test functions and groundwater model, the results are just as relevant to all

environmental simulations of a computationally demanding model.
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CHAPTER 3

RESPONSE SURFACE AND HEURISTIC OPTIMIZATION METHODS

APPLIED TO COMPUTATIONALLY EXPENSIVE GROUNDWATER

CONTAMINANT TRANSPORT MODELS

3.1 Introduction

The total cost of cleaning up contaminated groundwater can exceed many

millions of dollars and the cleanup duration can run into years. Two of the

most commonly used methods are ”Pump and Treat system (P&T)” and bio-

remediation. In pump and treat system extraction wells take out contaminated

water from an aquifer and pump in clean water for hydraulic gradient control,

while in bio-remediation wells inject electron acceptors. Total cost in both of

these methods depends on pumping policy. Pumping policy here refers to the

pumping well locations and the respective rates.

Numerical models are used to decide an optimal pumping policy, which

minimizes the overall cost of cleanup. ”Simulation-Optimization” is the most

common approach used for such kind of applications. Simulation model at-

tempts to mimic reality using numerical approximations of partial differential

equations that describe the transport of pollutants in response to pumping then

the optimization model tries to find the best set of pumping rates to input to the

simulation model. The ”Simulation-Optimization” approach basically tries to

couple simulation models to optimization algorithms. The optimization process

in general involves repeating the simulation process many many times. Thus if

such methods are applied to a large scale problem, the optimization process

becomes very computationally demanding. Various types of optimization algo-
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rithms such as derivative based algorithms or heuristic algorithms have been

used for deciding an optimal policy.

Given a deterministic continuous function f (Q) where Q = (Q1,Q2, ......,Qn)

and n is the number of continuous decision variables. The optimization problem

is:

min
Q

( f (Q)) (3.1)

Subjected to:-

Qmin ≤ Q j ≤ Qmax for j = 1, ..., n;

Gi(Q) ≥ 0 f or i = 1, .....,M

Here Gi(Y) is nonlinear constraint that could possibly have a multi-modal

surface. For example if f (Q) is a simulation model and θi(Q) is an output of the

simulation (say contaminant concentration) then Gi(Q) = Cmax − θi(Q) ≥ 0 i.e.

value of θi(Q) is equal to or less than Cmax. In case when the nonlinear constraint

is computationally expensive to evaluate it can be included in objective function

(equation 3.1) using penalty function approach.

This paper describes the first comparison of recently developed global op-

timization models to design remediation of a large groundwater Umatilla site

and the even more computationally expensive simulation model for Blaine a

48800 acre facility. Most of the earlier work done for solving these kinds of op-

timization problems are based on the standard linear programming and global

optimization tools like Genetic Algorithms (GA) etc. Optimal control models

have been developed by Ahlfeld et. al. (1996), Atwood et.al. (1985) Shoemaker

et.al. (1992) that optimize pumping rates at the wells to minimize the overall

cost. Several authors have used heuristic global optimization tools: El Har-
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rouni et al. (1996), Wang and Zheng (1997), Aly and Peralta (1999b); Becker

et.al. (2006); Espinoza et. al. (2005) used genetic algorithms (GA); Karatzas and

Pinder,1992; presented an outer approximation method; Aral and Guan (1996)

used a differential GA. Several other authors have tried to solve for optimal

pumping strategy. The problem with some of these methods is that they need

simulation model to be run many many times. In cases where one such sim-

ulation is computationally expensive the whole optimization process becomes

very expensive. In order to reduce the computational time, several authors have

tried to implement hybrid approaches such as combining artificial neural net-

works (ANNs) with GA’s (Solomatine (1998), Dibike et al. (1999) and Rao and

Jamieson (1997)). The aim of this study is explore the implementation of Radial

Basis Function (RBF) based methods and a heuristic algorithm DDS developed

by Tolson and Shoemaker, 2007; for solving these kind of problems.

In this study the performance of Response surface methods (gradient-free

methods) is compared against traditional gradient based and heuristic algo-

rithms on computationally expensive groundwater models. The aim is to iden-

tify algorithms that consistently find good solution points with modest com-

putational effort. Multiple optimization trials of each algorithm were run to

statistically measure the variability of algorithm performance. In practice it is

generally not feasible to conduct multiple trials so statistical comparison is used

to choose the best algorithm for the problem. The algorithm performance is

studied under fixed computational time i.e. by fixing the number of allowed

maximum function evaluations.

This study is organized as follows. Section 3.2 introduces/explains the var-

ious algorithms and their parameters. The two application problems i.e. the
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groundwater remediation problems Umatilla Chemical Depot and Blaine Am-

munition Depot are explained in section 3.3. Section 3.4 describes the perfor-

mance comparison of the various algorithms tested and the statistical results.

Results are then discussed in section 3.5. Last section 3.6 highlights the conclu-

sions of the study.

3.2 Algorithm Description

The goal of this paper is to examine a range of global optimization methods on

some field scale groundwater remediation problems. The study includes a sur-

rogate model optimization method Stochastic RBF (Regis and Shoemaker, 2007,

2009). It also compares their performance to other commonly used methods.

The study also involves a class using a systematic multistart method (Multi-

Level Single Linkage, MLSL) in conjunction with local optimization methods.

Two classes of evolutionary algorithms population based and non-population

based metaheuristics were considered for the optimization run. The heuristic al-

gorithms used for the study were Simulated Annealing, Real-coded Genetic Al-

gorithms and Dynamic Dimensioned search (DDS). For all heuristic algorithms

the algorithm parameters were chosen based on previous research or based on

the author’s experience. No detailed analysis were made to find optimal algo-

rithm parameters since this would require significant amount of computational

time and resources in terms of groundwater model simulations. All the listed

algorithms were tested on Umatilla model, whereas only selected algorithms

were tested on the computationally more expensive Blaine model.
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3.2.1 Multi Start Local Optimizers for Global Optimization

A major difference between a local optimization algorithm and a global opti-

mization algorithm is that a local optimization method will stop searching when

it finds a local minimum, which might or might not be global minimum. One

approach to incorporate a local optimizer into global optimization is to restart

the local optimization algorithm at a new starting point, after the algorithm

stops at a local minima. This restarting operation is repeated each time an al-

gorithm finds a local minima. The choice of starting points is one of the main

criterions for the performance of local search algorithm. So it is important to

choose the new starting points effectively. Otherwise the algorithm could reach

the same local minima more than once thus resulting in waste of computational

effort and time.

Multi-Level Single Linkage (MLSL) developed by Rinnooy Kan & Timmer

(1987) is one method for restarting local optimizers, so that a local optimizer

can be used for global optimization problems. Multi-Level Single Linkage uses

a critical distance criterion for selecting starting points. Each iteration of MLSL

involves: (1) generating a uniform random sample of N points from the search

space and adding it to the sample from previous iterations; (2) evaluating the

objective function at the new sample points; (3) selecting some fraction of the

sample points with the best objective function values; and (4) starting a local

optimization run at each selected sample point, unless it has been used as a

starting point from the previous iteration, or if there is another sample point

with a lower function value that is within some critical distance of the selected

point. For more details reader is referred is Rinnooy Kan & Timmer, 1987. When

used with a optimization that is proven to converge to the global optimum,
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MLSL (by Rinnooy Kan & Timmer, 1987) was proven to converge to the global

optimum.

3.2.2 Local Methods with MLSL

Derivative based method

Derivative based Optimization methods are the oldest nonlinear methods and

will only find local minima. But calculation of derivatives for complex large

scale simulation models is time consuming, possible inaccurate, and in some

cases impossible (for example if there is no source code available). Finite differ-

ences can be used as an alternative to calculate derivatives when well defined

analytical structure is not available, but is the computationally very expensive

as function needs to be evaluated more than once for one derivative calculation.

Sequential Quadratic Programming (SQP) with finite difference derivatives was

used in this study as it is a standard and well-known derivative-based optimiza-

tion method. SQP is implemented in the FMINCON solver in the MATLAB

Optimization Toolbox (The Mathworks, 2010), where derivatives are calculated

using finite differences.

Implicit Filtering

Implicit Filtering (Gilmore & Kelley, 1995) is a modified form of a derivative-

based method that uses finite differences to estimate derivatives. Implicit Filter-

ing uses a unique way to select the step sizes for the finite differences, to accom-

modate roughness in the objective function (e.g. those arising from numerical
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solutions to equations in a simulation model). Implicit Filtering varies the step

sizes for the finite difference approximation. MATLAB Implicit Filtering code

provided by Kelley (1999) is used.

Pattern Search

Pattern Search (Torczon, 1997) is a derivative-free local optimization method

where each iteration consists of searching a set of points called a pattern which

expands or shrinks depending on whether any point within the pattern has a

lower objective function value than the current point. At each step, the algo-

rithm searches a set of points, called a mesh, around the current best point. The

algorithm forms this mesh by adding the current point to a scalar multiple of a

fixed set of vectors called a pattern. If the algorithm finds a point in the mesh

that improves the objective function at the current point, the new point becomes

the current point at the next step of the algorithm. The mesh has a rigid structure

at one iteration that could require extra evaluations of computationally expen-

sive functions. Here, we use the implementation of pattern search available in

the MATLAB Genetic Algorithm and Direct Search Toolbox (2009).

3.2.3 Global Optimization Methods

Simulated Annealing

Simulated Annealing (SA) is a random-search technique which exploits an anal-

ogy of an global optimization problem with the way a metal cools and freezes

into a minimum energy state (crystalline structure, the annealing process). A
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cooling schedule proposed by Aarts et al.1989, is employed in this study. The

schedule uses a statistical analysis of the problem and adjusts the schedule to

make the execution time polynomial. For a detailed implementation of SAs the

reader is referred to Sadiq and Sait (1999).

Genetic Algorithm

Yoon and Shoemaker (2001) showed that real coded Genetic algorithms (GA)

outperformed the binary coded genetic algorithms for optimal policy design of

groundwater problems. A real coded GA was used with a population size of

20, one point crossover and mutation probabilities of 0.95 and 0.1 respectively

was used in this study. Earlier work on groundwater management optimization

(Willis (2001)) showed that GA with elitism is more effective than the conven-

tional GA. For this study two elite members of each population were allowed to

survive through to the next generation. For a detailed implementation of GAs

the reader is referred to the book by Goldberg (1989).

Dynamic Dimensioned Search

Dynamic Dimensioned Search (DDS) algorithm was developed by Tolson and

Shoemaker (2007). The DDS algorithm tries to minimize the computational

expense of an optimization problem and tries to locate good optimal solu-

tion points within specified number of function evaluations. DDS algorithm

searches globally at the start of the search and becomes a local search as the

number of iterations approaches the maximum allowable number of function

evaluations. The transition from global to local search is achieved by dynami-
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cally and probabilistically limiting the dimensional space of the neighborhood

i.e. the number of dimensions decreases as a function of iteration number (func-

tion evaluations), as the search progresses. The candidate points are generated

by perturbing the current best solution point in the randomly selected dimen-

sions.

Shuffled Complex Evolution

Shuffled Complex Evolution (Duan et al.1993) has been used widely for water-

shed optimization and has also been used for groundwater management op-

timization (Eusuff and Lansey (2004), . Originally SCE is designed to be run

for enough model simulations (relatively computationally cheap functions) that

the method has converged to the optimal solution. Algorithm developers de-

veloped algorithm for cases, that run very quickly so that many thousands of

simulations were feasible. The goal of this paper is obtain a close-to-optimal so-

lution using relatively few simulations. Hence, this study tries to accomplish a

different goal to that for which SCE was originally developed. In the numerical

experiments, we used the Matlab SCE code written by Q. Duan downloaded

from MATLAB Central (http://www.mathworks.com/matlabcentral/).

3.2.4 Response Surface based methods

Response Surface based methods use a surrogate mathematical model as an ap-

proximation for the computationally expensive optimization objective to guide

the search for suitable parameters. The idea is to fit an approximation to the

objective function values from prior generations. The function approximation
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algorithms used in this paper use Radial Basis Functions (RBF) (Buhmann, 2003;

Powell, 1999) to approximate the expensive objective function. The purpose

of using this RBF approximation is to reduce the computational expense of an

optimization problem by allowing the RBF approximation to screen out candi-

date points which are unlikely to be highly fit before the actual simulations are

done. Four response surface based methods are tested in this study Controlled

Gutmann RBF (CGRBF, Gutmann (2001)), Evolution Strategy with Global RBF

approximation (ESGRBF, Regis and Shoemaker (2004)), Multistart Local Metric

Stochastic RBF (MLMSRBF, Regis and Shoemaker (2007)) and Global Optimiza-

tion by Radial Basis function Interpolation in Trust Regions (GORBIT, Wild and

Shoemaker (2009)).

For an optimization problem, if x1, x2....xn are the previously evaluated set of

parameters, a cubic RBF interpolation model sn(x) that approximates the objec-

tive function has the form

sn(x) =
n∑

i=1

λiϕ(∥x − xi∥2) + bT x + a (3.2)

where, λ1, λ2, ...........λn ∈ R, b ∈ Rd, a ∈ R, ϕ is a radial function and ∥.∥ is the

Euclidean norm. The coefficients of the above model are chosen such that the

interpolant passes through all the design points. The way to choose the ex-

perimental design points x1, x2....xn differentiates the algorithm suggested by

Gutmann and CGRBF i.e. Gutmann (2001) evaluates the costly function at the

corners of the domain D, so that there are 2d points, where d is the dimension.

This becomes too expensive for higher dimensional models. Regis and Shoemaker

(2007) suggested the use of a Latin Hypercube Experimental design (LHD) for

fitting the initial response surface. For d decision variables (d+1)(d+2)
2 symmet-

ric Latin hypercube design points were used for initial surface. For a detailed

mathematical description of the algorithm the reader is referred to the paper
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by Gutmann (2001). MLMSRBF (Regis and Shoemaker (2007)) differs from CG-

BRF in the way the next evaluation point is chosen. The next evaluation point

in this case is chosen to be best point from a set of randomly generated candi-

date points. For algorithmic details reader is referred to the work by Regis and

Shoemaker, 2007. ESGRBF algorithm couple RBF surrogate methods with evolu-

tionary strategy. ESGRBF algorithm is a variant of ESBRF by Regis & Shoemaker

(2004). The difference between the ESRBF and ESGRBF algorithms is that the

former uses local RBF approximations while the latter uses global RBF approx-

imations (i.e. uses all data points to fit the RBF model). In each generation, of

the generated offsprings only those are chosen which are most likely to fit (us-

ing RBF approximations). For more details on ESGRBF the reader is referred

to Regis and Shoemaker, 2004. GORBIT (Wild and Shoemaker, 2009) attempts to

implement trust regions within the RBF framework.

3.3 Groundwater Remediation Sites Description

The demonstration sites for this study were adapted from NAVFAC (Naval Fa-

cilities Engineering Command) technical report TR-2237-ENV, NAVFAC 2004. The

two chosen sites are Umatilla Chemical Depot and Blaine Ammunition Depot.
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3.3.1 Umatilla Chemical Depot

Site History

The Chosen facility ”Umatilla Chemical Depot” is located in northeastern Ore-

gon. It is a 19,728 acres military reservation established in 1941 as an ordnance

depot for storage and handling of munitions. From the 1950s until 1960s the

depot was used as an onsite explosives washout plant. The plant processed

munitions to remove and recover explosives using a pressurized hot water sys-

tem. The wash water from the plant was disposed in two unlined lagoons, from

where the wash water infiltrated into the soil system. During this time, an esti-

mated 85 million gallons on wash water was discharged to the lagoons.

Two of the many contaminants, RDX (Hexahydro-1,3,5-trinitro-1,3,4-

triazine, and commonly referred to as Royal Demolition Explosive) and TNT

(2,4,6-Trinitrotoluene) are used as indicator parameters. A pump-and-treat sys-

tem was designed by the U.S. Army Corps of Engineers (USACE, 1996 and 2000)

to contain and remove the RDX and TNT plumes (Figure 3.1). In this study the

objective to find the optimal pumping rates and recharge rates for the locations

suggested by NAVFAC (Naval Facilities Engineering Command) technical report

TR-2237-ENV, NAVFAC 2004. The contaminated groundwater is extracted from

the wells and then sent to GAC units, which removes the contaminants. The

treated water is then discharged to the infiltration basins.
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Figure 3.1: Umatilla Site Map : NAVFAC (Naval Facilities Engineering Com-
mand) technical report TR-2237-ENV, 2004 showing location of
extraction wells and infiltration fields(recharge basins)

Model Description

The study simulates the groundwater flow using the MODFLOW (Harbaugh

et.al., 2000) code. The MODFLOW (Harbaugh et.al., 2000) code is maintained

by U.S. Geological Survey. The study model has 125 rows, 132 columns and 5

layers, with variable grid spacing of 24.8ft - 647.9ft along the rows and 21.6ft -

660.7ft along the columns. Models layers are

1. Layer 1: Alluvial aquifer, unconfined

54



2. Layer 2: Silt and weathered basalt, convertible (confined/unconfined)

3. Layer 3: Silt and weathered basalt, convertible (confined/unconfined)

4. Layer 4: Silt and weathered basalt, convertible (confined/unconfined)

5. Layer 5: Silt and weathered basalt, convertible (confined/unconfined)

The formulation considered in this study only focuses on contaminant transport

in layer 1 of the model. The model boundary conditions for all four sides of the

model domain were simulated as constant head. The Groundwater contami-

nant transport is simulated with MT3DMS (Ver 5.2) (Zheng, 1990).

The model is structured into three phases i.e. input, simulation and out-

put. The model takes Hydro-geological data, Domain-discretization data and

the pumping data as input. The pumping data consists of pumping well lo-

cations with the respective pumping rate (to be optimized in this study). The

formulation used for this study treats only the pumping rates as the decision

variables for fixed well locations. After input phase the simulation is done us-

ing MODFLOW and MT3D. The study model simulates TNT and TCE (the two

chosen parameters). And in the end objective function is calculated using the

pumping data (input decision variables) and the simulated concentrations (Cmax
RDX

and Cmax
T NT ) at the end of simulation period. The model units are in feet and years.

Objective Function

The objective of this formulation is to minimize the total operation costs (i.e.

continuous value problem) for the entire project duration i.e.

min
Q

(VCE(Q) + VCG(Q) + PenaltyCost(Q,C)) (3.3)
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where,

VCE (Q): Variable electric cost of operation wells.

VCG (Q): Variable costs of GAC units.

Penalty Cost (Q,C): For violating the concentration constraint, pumping con-

straint.

where, Q=(Q1,Q2....Q10) is the respective well pumping rate (i = 1, ..., 8 are

pumping wells and j = 9 − 10 are recharge basins with the last recharge

basin getting a recharge as per constraint 6). C(Q) is maximum contaminant

concentration of TNT and RDX respectively (Cmax
RDX and Cmax

T NT ) simulated using

MODFLOW-MT3D model.

All the cost terms are computed in net present value (NPV) with the follow-

ing discount function NPV = costiy
(1+r)iy−1 . Where, NPV is the net present value of a

cost incurred in year iy with a discount rate of r=5%. The cost term is evaluated

at the end of each year to account for annual discounting and to ensure that no

costs are incurred after cleanup is achieved.

Constraints

The formulation includes the following constraints that must be satisfied while

the objective function is minimized

1. The modeling period consists of 1 management period of 4 years, with

pumping rates kept throughout this period.

2. Cleanup must be achieved at the end of 4 years. In other words, the max-
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imum concentrations of RDX and TNT in model layer 1 must be less than

their respective cleanup targets by the end of 4 years Cmax
RDX ≤ 2.1ppb and

Cmax
T NT ≤ 2.8ppb

3. The total pumping rate, after adjustment for the average amount of system

uptime, cannot exceed 1300 gpm. Hence the current maximum capacity

of the treatment plant 1
α

Qtotal ≤ 1300, where α is a coefficient representing

the average amount of system uptime (α=0.9 for this study)

4. RDX and TNT concentrations must not exceed their respective cleanup

levels beyond a specified area when evaluated at the end of each manage-

ment period.

5. The total amount of pumping must equal the total amount of injection

through the infiltration basins within an error tolerance. This is insured by

setting the total recharge to the third basin to be equal to the sum of pump-

ing for all extraction wells minus the recharge to the first two recharge

basins.

Optimization-Modeling Approach

The optimization formulation tries to do the cleanup by finding the optimal

pumping and recharge rates for fixed locations (8 in number and 3 recharge

basins). Figure 3.1 shows the location of existing pumping wells and the in-

filtration basins (Recharge basins). Thus, the optimization goal is to identify a

pumping strategy that lowers the Cmax values of RDX and TNT to their respec-

tive cleanup targets of 2.1 and 2.8 ppb in layer 1 within 4 years while satisfying

all the pumping constraints. For this study the specific objective is to identify the

best pumping rates on eight pumping wells and two recharge basins. The max-
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imum allowed concentration constraint and the total pumping constraint are

implemented by using the penalty functions hence the solution points not satis-

fying either of the two constraints (concentration and pumping) are penalized,

which forces the algorithm to look for solution points that satisfy the above-

mentioned constraints. The flow and transport model takes approximately 5

mins per simulation on a Pentium 2.2 Ghz computer.

3.3.2 Blaine Ammunition Depot

Site History

The Blaine site covers significantly larger area than Umatilla and its model is

much more computationally expensive to simulate than Umatilla model. The

Blaine Naval Ammunition Depot (NAD) comprises 48,800 acres just east of

Hastings,Nebraska. It was build in early 1940s as an active ammunition facility

during World War II and the Korean Conflict. While producing nearly half of

the Naval ammunition used in World War II, this facility generated that was

disposed of on the site through surface impoundments and natural drainage

areas of the facility, and disposal of solid waste and explosives. Large tracts of

the former Blaine NAD were sold to various individuals, businesses and mu-

nicipalities in mid-1960s, as a result there are over 100 irrigation wells in the

area.

Groundwater contamination at this site is primarily due to chemical spills

and discharge of wastewater to surface impoundments, wastewater systems

and natural drainages. The contaminants of concern are VOCs and explo-

sives. Two contaminants, Trichloroethylene (TCE), a probable carcinogen, and

58



Trinitrotoluene (TNT), a possible carcinogen, are used as indicator parameters.

Groundwater is encountered approximately 100 feet below ground surface. The

semi-confined layer is the major water supply aquifer in the region. The ground-

water flow directions are altered in irrigation seasons due to heavy pumping.

Model Description

Groundwater flow is simulated using MODFLOW (Harbaugh et.al., 2000) code.

The study model has 136 rows, 82 columns and 6 layers, with variable grid

spacing of 400 ft by 400 ft in the center of the model to 2000 ft to 2000 ft near the

model edges. Three hydrogeologic units in the saturated zone of interest are

1. The unconfined aquifer (model layer 1)

2. The upper confining layer (model layer 2)

3. The semi-confined aquifer (model layers 3-6)

Transport of the contaminants TNT and TCE is modeled using MT3DMS

(Zheng, 1990).

Objective Function

The objective of this formulation is to minimize the total operation costs (i.e.

continuous value problem) with respect to fixed well locations for the entire

project duration. The Objective function is

min
Q

(VCE(Q) + VCG(Q) + PenaltyCost(Q,C)) (3.4)

where,
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1. VCE (Q): Variable electric cost of operation wells

2. VCG (Q): Variable costs of GAC units

3. Penalty Cost (Q,C): For violating the concentration constraint, pumping

constraint

where, Q=(Q1,Q2....Q15) is the respective well pumping rate and C(Q) is maxi-

mum contaminant concentration of TCE and TNT respectively (Cmax
TCE and Cmax

T NT )

simulated by MODFLOW-MT3D model.

Constraints

The formulation includes following constraints that must be satisfied while the

objective function is minimized. The biggest difference between the constraints

for Blaine problem and Umatilla problem is that there is no constraint on total

pumping (Umatilla 3rd constraint ) and also the total pumping need not to be

equal to total recharge (Umatilla 5th Constraint ).

1. The modeling period consists of 6 management period of 5 years, with

pumping rates kept throughout this period.

2. Cleanup must be achieved at the end of 30years. In other words, the max-

imum concentrations of TCE and TNT in model layer 1 must be less than

their respective cleanup targets by the end of 30 years Cmax
TCE ≤ 5.0ppb and

Cmax
T NT ≤ 2.8ppb

3. The pumping capacity of individual wells must not exceed 350 gpm in the

less permeable portion of the aquifer.
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4. TCE and TNT concentrations must not exceed their respective cleanup

levels beyond a specified area when evaluated at the end of each manage-

ment period.

Optimization-Modeling Approach

The optimization goal for the Blaine NAD site is to identify a pumping strategy

that lowers the Cmax values of TCE and TNT to their respective cleanup targets of

5.0 and 2.8 ppb within 4 years while satisfying the pumping constraints for indi-

vidual well. For this study the specific objective is to identify the best pumping

rates on 15 pumping wells over six management periods. The maximum al-

lowed concentration constraint is implemented by using the penalty functions

hence the solution points not satisfying any of the two constraints (concentra-

tion and pumping) are penalized. The flow and transport model takes approxi-

mately 45 mins per simulation on a Pentium 2.2 Ghz PC.

3.4 Results

3.4.1 Umatilla Results

Convergence plot comparison

The performance of algorithms tested on Umatilla function is shown in figure

3.2. The average best value of objective function (y -axis (log scale)) is plotted

against the specific ith function evaluation (x- axis). Average best value indicates
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the average objective value for the best solution obtained until that ith function

evaluation over 10 trials.

For this formulation the Radial Basis Function methods seems to outperform

all other algorithms. Specifically the stochastic radial basis function method

(MLMSRBF) outperforms all other optimization methods. The ESGRBF and

CGRBF also performed well followed by a heuristic algorithm (DDS). Other

traditional heuristic algorithms Simulated Annealing (SA)/Genetic Algorithms

(GA), Shuffled Complex Evolution (SCE) and derivative based FMINCON

methods are inferior in performance to the RBF methods as evidenced by on

average higher objective function values with increase in function evaluations.

The quality of results obtained by different algorithms is compared in section

3.5. (Description and references of all the algorithms are given in Section 3.2).

Empirical CDF Plots

Empirical Cumulative Density Functions (CDF) plots are another measure used

to compare the reliability of algorithm performance. These plots indicate if any

one of the algorithms stochastically dominates some other algorithm. Empir-

ical CDF plots are constructed from probabilistic weights assigned to ordered

statistics. Figure 3.3 compares the empirical CDF plots of all the algorithms for

Umatilla groundwater contamination transport model. Weibull’s plotting posi-

tions were used to assign weights to ordered best-objective values from the 10

trials of each algorithm. The weights were assigned using i/(n + 1), where i is

the rank of the ordered best objective value and n is the total number of data

points. This study focuses on minimization problem, hence the empirical CDF
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Figure 3.2: Global Optimization Methods on 10 Dimensional Umatilla
Function. References of all methods given in section 3.2

that has a high probability for a lower objective value should be preferred. So

the CDF plot for a good algorithm should be to the far left. If algorithm A’s CDF

is always to the left of algorithm B’s CDF, the algorithm A is said to dominate

algorithm B. Figure 3.3 shows that MLMSRBF (Stochastic RBF) stochastically

dominates all other tested algorithms. The two RBF methods i.e. ESGRBF and

CGRBF also have excellent CDF. It can be noted that Multi-start Fmincon found

two very good solution points but also got stuck in local minima at other times

thus suggesting that a high reliability cannot be expected. Of all the heuristic

algorithms tested DDS performed the best and SA was the worst. GA results

are well spread out thus suggesting that they are less reliable and less effective

than other algorithms. SCE and DDS perform worse than RBF methods but bet-

ter than methods SA, Pattern Search and Implicit Filtering. GORBIT another
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RBF method based on trust regions did not perform good results on the tested

Groundwater function.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean of the Objective Function averaged over 10 trials (log scale)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

 

 

Stochastic RBF
ESGRBF
CGRBF
MLSL−ImFil
MLSL−Fmincon
MLSL

P
atternSearch

SCE
GORBIT
SA
DDS
GA

Figure 3.3: Comparison of Empirical Cumulative Density Functions for
tested Algorithms on Umatilla Function after 400 simulations.
References of all methods given in section 3.2

Box plots

In practice under time constraints with long simulation times it is very unlikely

that multiple optimization trials will be performed for optimization. Therefore

an algorithm which produces good solutions consistently becomes a superior

choice over another algorithm which is as likely to produce an excellent solution
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as a poor solution. Figure 3.2 only shows the mean values, they do not show

the variability in the solutions produced by each algorithm. The variability in

the solutions of the algorithm are compared using box plots as in Figure 3.4.

The box plots show the median, inter quartile range (as signified by the ends

of the box), whiskers (for data that extend beyond the quartiles) and outliers

(>1.5 times the inter-quartile range beyond each quartile) based on a specified

number of trials (10 in this case). ESGRBF method produces the results with

least variability. MLMSRBF finds two very good solution points thus making

it slightly more variable that the other two RBF methods but with much lower

mean. Multi-Start Fmincon has some excellent solutions but also has very poor

solutions thus resulting in high variability. All other methods have either more

variability and/or have far worse means.

Statistical Testing

In order to ensure a fair comparison between the tested algorithms this study

tries to initiate all the algorithms from same set points (set to take into account

the population and non-population based methods). Pairwise two sample sta-

tistical tests were performed for significant difference in the means of the ob-

jective function values for the best objective function value by each algorithm.

Table 3.1 shows the p-values for each pairwise test. A p-value is the smallest

value of the type-I error (i.e. incorrectly rejecting the null hypothesis when it is

true) such that the observed results would be sufficient to reject the null hypoth-

esis (which in this case is that the algorithms are same). A low p-value suggests

a strong evidence for rejection of null hypothesis (i.e. that one algorithm is bet-

ter than another). Two types of statistical tests were used to decide about the
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Figure 3.4: Box plot of Best Solution found for Each Algorithm based on 10
trials on Umatilla Function after 400 simulations. References of
all methods given in section 3.2

algorithm differences i.e two-sample t − tests and two-sample Wilcoxon rank

sum test. The t − test assumes underlying distribution to be normal, which is

justifiable when a large number of samples are used in calculating the means. If

the number of samples available are less than 30 (approximately), the normal-

ity assumption for the means may not hold to justify a t − test. In such cases a

non-parametric procedure (i.e. Wilcoxon rank sum test) which does not assume

normality of means is more reasonable. Wilcoxon rank sum test still requires

that the two populations have the same shape and spread. Statistical t− test and

Wilcoxon rank sum test results for Umatilla function indicate that MLMSRBF al-

gorithm produces significantly different (lower) mean at a 5% significance level

from all the other tested algorithms, thereby providing strong evidence of supe-
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rior algorithm performance. Test results for comparison of ESGRBF and CGRBF

fails to indicate any significant difference at 5% significance level between the

results produced by these two algorithms. Test results for comparison of DDS

with ESGRBF or with CGRBF also fail to decide which of these algorithms is bet-

ter at 5% level, but RBF based methods (MLMSRBF, ESGRBF or CGRBF) clearly

are superior at 10% significance level.

The comparisons in the previous section indicate clearly that the Re-

sponse Surface based methods perform well with a limited computational bud-

get.These methods are relatively better suited to handle global optimization

problems with multiple local minima. The failure of some of these methods can

be accounted to the fact that in this study as the objective function is expensive,

the number of simulations that can be performed is relatively small. Based on

these results only some algorithms were chosen to be run on computationally

more expensive Blaine function.

3.4.2 Blaine results

The algorithms chosen to be applied on Blaine included the best algorithms

MLMSRBF and the other RBF algorithm ESGRBF, that did well. We also in-

cluded the heuristic’s DDS and GA and the most common type of multistart

method, which is Mulistart-Fmincon. The performance of selected algorithms

chosen to be run on blaine function (i.e. MLMSRBF, ESGRBF, DDS, Multistart-

Fmincon and GA) is shown is figure 3.5. The figure 3.5 shows the convergence

plot for the respective algorithms (averaged objective function value v/s re-

spective function evaluations). The response surface method MLMSRBF out-
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performs all other methods and GA performs the worst. For Blaine function the

other heuristic algorithm DDS outperforms the ESGRBF.
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Figure 3.5: Global Optimization Methods on 15 Dimensional Blaine Func-
tion. References of all methods given in section 3.2

3.5 Discussion

In this section we attempt to investigate the failure of some of the tested algo-

rithms. The failure of different algorithms is mainly due to nonlinearity (hence

multimodal characteristic) of objective function. The non linearity in Umatilla

objective function arises mainly due to two penalty functions i.e. two con-

straints. The first forces the formulation to pump (across all wells) less than

certain fixed amount and the second constraint forces the concentration at the
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end of the simulation period to be less than the standard for the two contami-

nants respectively. Whereas for Blaine function the nonlinearity is mainly due to

concentration constraint. Failure of some of the tested algorithms is mainly due

to their failure in satisfying these nonlinear constraints. Table 3.3 lists the con-

straints behavior (selected algorithms) for Umatilla function at the end of sim-

ulation period for the optimization trial that gives the median objective func-

tion for the algorithm. Table 3.4 lists the respective pumping rates. The ta-

ble also lists the respective objective function values with constraint violations

and corresponding penalties for the respective optimal solution points. For the

median trial MLMSRBF is the only algorithm that satisfies all the constraints,

hence resulting in minimum objective function value. Median solution for ES-

GRBF fails to satisfy RDX constraint whereas FMINCON fails to satisfy both

RDX and TNT constraint. Genetic Algorithms (GA) perform the worst and it

fails to satisfy all three constraints. The purpose of tables 3.3 and 3.4 is show the

difference in quality of results obtained by different algorithms in terms of con-

straints and objective function values. Similarly table 3.5 list the pumping rates

for respective wells for Blaine function. The table also list the objective function

values obtained by respective algorithms after 200 function simulations. The

table again shows that MLMSRBF performs the best (lowest objective function

value) whereas GA’s perform the worst (highest objective function value).

The MLMSRBF, which has stochastic component in addition to RBF to re-

duce the number of simulations performs the best of all the tested algorithms.

ESGRBF, which is an evolutionary algorithm coupled with a function approxi-

mation to reduce the number of simulations also gave good results for Umatilla

function. Controlled Gutmann (CGRBF) which tries to evaluate the costly func-

tion only at selected points instead of all corners also gave very good results. For
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Table 3.3: Algorithm Comparison in terms of Constraints satisfied for
Umatilla test function for an optimization trial (median for ob-
jective function values among 10 trials) after 400 simulations.
References of all methods given in section 3.2

Algorithm RDX constrainta TNT constraintb Pumping constraintc

MLMSRBF Satisfied Satisfied Satisfied

ESGRBF Not satisfied Satisfied Satisfied

Fmincon Not satisfied Not satisfied Satisfied

GA Not satisfied Not satisfied Not satisfied

a refers to Cmax
RDX ≤ 2.1ppb at the end of simulation period

b refers to Cmax
T NT ≤ 2.8ppb at the end of simulation period

c refers to αQtotal ≤ 1300

these types of constrained optimization problems i.e. with multiple local min-

ima and a rough surface (due to numerical approximations/limitations) that are

computationally expensive to evaluate the function approximations appear to

be quite effective. The MLMSRBF, ESGRBF and CGRBF (not done for Blaine)

drop more quickly in objective function value on both the Umatilla and Blaine

problems than all the other methods i.e. they are able to avoid long periods

of function evaluations without any improvement. One other attractive feature

about RBF methods was no parameter tuning.

The two derivative-based methods, the SQP-Fmincon and the Implicit Filter-

ing Method coupled with MLSL did not perform well on the two problems. The

failure of these methods can be accounted to the limited computational budget,

dimensionality and the rough surface of the objective function (due to numer-

ical approximations/limitations). The derivative based methods converged to

local minima not the global minima. The convergence plot shows that for both
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Table 3.4: Algorithm Comparison in terms of pumping rates for Umatilla
test function for an optimization trial (median for objective func-
tion values among 10 trials) after 400 simulations. References of
all methods given in section 3.2

Well index Pumping Rates (GPM)

MLMSRBF ESGRBF Fmincon GA

Pumping Well 1 40 0 0 256

Pumping Well 2 111 257 193 47

Pumping Well 3 320 385 356 11

Pumping Well 4 10 28 0 24

Pumping Well 5 244 179 399 351

Pumping Well 6 398 294 46 338

Pumping Well 7 0 5 169 56

Pumping Well 8 47 0 0 96

Recharge Basin 1 0 0 62 59

Recharge Basin 2 561 543 0 781

Recharge Basin 3 609 605 1101 341

Objective Function 891 1585 2520 2.1 × 105

Penalty Function 0 680 1500 2 × 105

*Max(0,Cmax
RDX − 2.1ppb) 0 0.3 1.1 2.1

*Max(0,Cmax
T NT − 2.8ppb) 0 0 0.3 2.3

*Represents the two concentration constraints Cmax
RDX ≤ 2.1ppb and Cmax

T NT ≤ 2.8ppb at
the end of simulation
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Table 3.5: Algorithm Comparison in terms of pumping rates for Blaine test
function for an optimization trial (median for objective function
values among 10 trials) after 200 simulations. References of all
methods given in section 3.2

Well index Pumping Rates (GPM)

MLMSRBF ESGRBF Fmincon GA

Pumping Well 1 1 161 115 181

Pumping Well 2 141 99 281 156

Pumping Well 3 83 283 97 113

Pumping Well 4 143 234 176 194

Pumping Well 5 100 190 122 115

Pumping Well 6 228 218 314 255

Pumping Well 7 159 91 222 46

Pumping Well 8 24 149 223 114

Pumping Well 9 228 342 325 301

Pumping Well 10 249 229 137 379

Pumping Well 11 209 286 670 261

Pumping Well 12 162 167 335 106

Pumping Well 13 147 103 98 49

Pumping Well 14 240 243 269 302

Pumping Well 15 27 0 96 107

Total Pumping 2150 2803 2884 2686

Objective Function 5 × 104 5.8 × 104 7.2 × 104 6.8 × 104
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these algorithms the best objective function value is improving but at a much

slower rate than the RBF based methods i.e. if given enough function evalua-

tions (increased computational budget) algorithms will be able to find optimal

solution points. It is surprising to note that multi start Fmincon outperforms

multi start Implicit filtering. The results show that Fmincon was able to find

two good solution points but also some worst solution points, thus making this

an unreliable method.

Pattern Search (Torczon, 1997) is similar to the classical simplex reflection

method by Nelder & Mead (1965), which is incorporated in the SCE algo-

rithm. Pattern Search methods is local optimizer. MLSL-Pattern Search uses

multi-level single linkage to convert the local optimizer into a global opti-

mizer,whereas SCE has its own unique method for developing a global opti-

mizer from the simplex reflection procedure. Both of these methods were devel-

oped for models, that run very quickly so that many thousands of simulations

were feasible. The aim of this study to suggest algorithms that can be used to

find good solution (optimal) points for an optimization problem (computation-

ally expensive simulation) under limited computational budget. These methods

again can find good solution points if given enough computational budget.

Of all the heuristic algorithms tested, Simulated Annealing and Genetic Al-

gorithms did not perform well, whereas a new heuristic algorithm DDS per-

formed well. In case of GA and SA, as the objective function is expensive to

compute, the number of simulations that were performed for identification of

algorithm parameters such as population size, crossover and mutation proba-

bilities were limited. It was observed that the GA population nearly converged

to the elite member (the best solution) after first few generations, which then
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placed a heavy emphasis on mutation to produce any improvement. Since a

larger population size results in fewer iterations, it is not likely that increasing

the population size would produce an improvement when the number of func-

tion evaluations is fixed. It is worth discussing the success of DDS. DDS is new

global optimization algorithm that is very simple. DDS was the most successful

method that did not use a response surface as a surrogate during the optimiza-

tion search. Other attractive features of DDS is that it has only one parameter to

tune and is very easy to implement.

3.6 Conclusion

The results of optimal policy design for pump and treat system (i.e. contin-

uous value pumping rate variables) illustrate the efficacy of Response surface

based methods. The study compared some Response surface based methods

with heuristic and derivative based methods. The study coupled some local

optimizers with Multi-Level Single Linkage (MLSL) multistart procedure to use

a local optimization algorithm for solving global optimization problems. The

results indicated that under limited computational budget (i.e. limit on the

number of computationally expensive simulations/function evaluations), the

Response surface based methods (MLMSRBF, ESGRBF and CGRBF) were the

most effective algorithms with DDS being second best to these RBF methods.

These results also show that Response surface based methods can replace tra-

ditionally used methods for optimal policy design over multiple management

periods and also can be coupled with some integer programming solver (such

as Tabu Search) to solve mixed integer programming models.
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These results are based on groundwater pump and treat system problems

and do not prove that RBF methods will always be better than other algorithms

such as SCE, Implicit filtering on water resource problems. However the results

still suggest that some of these Response Surface based methods and DDS, a

simple new heuristic algorithm, should be considered as alternatives to widely

used methods such as SCE and evolutionary algorithms.

77



BIBLIOGRAPHY

[1] Aarts E. and Korst.J., Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing.

John Wiley & Sons, 1989.

[2] Ahlfeld, D.P., Mulvey, J.M. and Pinder, G.F., 1986, Designing optimal strate-

gies for contaminated groundwater remediation, Advanced Water Resources,

9, 7784.

[3] Aly, A. H., and Peralta, R. C. (1999b). Optimal design of aquifer cleanup sys-

tems under uncertainty using a neural network and a genetic algorithm. Water

Resour. Res., 35(8), 25232532.

[4] Aral, M. M., and Guan (1996), Optimal groundwater remediation design using

differential genetic algorithm, J. Computational Methods in Water Resources

XI (1), 349-357, Computational Mechanics Publications.

[5] Atwood, D., & Gorelick, S. (1985) Hydraulic Gradient Control for Groundwa-

ter Contaminant Removal. J. of Hydraul. 76, 85-106.

[6] Becker, D., Minsker, B., Greenwald, R., Zhang, Y., Harre, K., Yager,

K., Zheng, C. and Peralta, R. (2006),Reducing Long-Term Remedial Costs

by Transport Modeling Optimization. Ground Water, 44: 864875. doi:

10.1111/j.1745-6584.2006.00242.x.

[7] Buhmann, M. D. (2003) Radial Basis Functions. Cambridge University Press ,

Cambridge, UK

[8] Chang, L.-C., Shoemaker, C. A., and Liu(1992), P. L.-F., Optimal time-

varying pumping rates for groundwater remediation: Application of a con-

strained optimal control algorithm. Water Resources Research, 28(12), 3157-

3173.

78



[9] Dibike, Y.B., Solomatine, D., and Abbott, M.B. On the encapsulation of nu-

merical hydraulic models in artificial neural networks. J. Hydraulic Research,

37, 147-161,1999.

[10] Duan, Q. , Gupta, V. K. and Sorooshian, S. (1993) Shuffled complex evolution

approach for effective and efficient global minimization. J. Optimization Theory

and Applications 76:3 , pp. 501-521.

[11] Devore J. L., Probability and Statistics for Engineering and the Sciences,

Kluwer Academic Publishers, Boston, MA, 1997.

[12] El Harrouni K., Ouazar, D., Walters, G. A., and Cheng, A. H.-D. Ground-

water optimization and parameter estimation by genetic algorithm and dual reci-

procity boundary element method. Engineering Analysis with Boundary Ele-

ments, 18(4), 287-296, 1996.

[13] Espinoza, F. P., Minsker, B. S., and Goldberg, D. E. (2005). Adaptive hybrid

genetic algorithm for groundwater remediation design. J. Water Resour. Plann.

Manage., 131(1), 1424. [ISI]

[14] Eusuff Muzaffar M. and Lansey Kevin E., Optimal Operation of Artificial

Groundwater Recharge Systems Considering Water Quality Transformations

Water Resources Management Volume 18, Number 4, 379-405, 2004.

[15] Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000,

MODFLOW-2000, The U.S. Geological Survey modular ground-water model

– User guide to modularization concepts and the Ground-Water Flow Process:

U.S. Geological Survey Open-File Report 00-92, 121 p.

[16] Gilmore, P. & Kelley, C. T. (1995) An implicit filtering algorithm for optimiza-

tion of functions with many local minima.SIAM J. Optimization 5, 269285.

79



[17] Goldberg, D.E., 1989, Genetic algorithms in search, optimization, and machine

learning, Addison-Wesley publishing company inc., Massachusetts, 432p.

[18] Gorelick, S.M., Voss, C.I., Gill, P.E., Murry, W., Saunders, M.A. and Wright,

M.H., 1984, Aquifer reclamation design: The use of contaminant transport sim-

ulation combined with nonlinear programming, Water Resources Research, 20,

415427.

[19] Gutmann, H.M. 2001b. A radial basis function method for global optimization.

Journal of Global Optimization 19 201.227.

[20] Kelley, C. T. (1999) Iterative Methods for Optimization. SIAM, Philadelphia,

Pennsylvania, USA.

[21] Karatzas, G. P., and Pinder, G. F. Groundwater management using numerical

simulation and the outer approximation method for global optimization. Water

Resources Research, 29(10), 3371-3378, 1993.

[22] Karatzas, G. P., and Pinder, G. F. Combination of groundwater simulation with

an outer approximation methods for global optimization. Computational Meth-

ods in Water Resources IX (1), 337-344, Computational Mechanics Publi-

cations, 1992.

[23] Maskey, S., Jonoski, A., and Solomatine, D. P. Groundwater Remediation

Strategy Using Global Optimisation Algorithms. J. Water Resources Planning

and Management, ASCE, 1999.

[24] Naval Facilities Engineering Command (NAVFAC) technical report TR-

2237-ENV, 2004.

[25] Mugunthan P., Shoemaker C., and Regis R.,Comparison of function approx-

imation,heuristic and derivative-based methods for automatic calibration of com-

putationally expensive groundwater bioremediation models, Water Resour. Res.,

80



41 (2005).

[26] Nelder, John A.; R. Mead. A simplex method for function minimization . Com-

puter Journal 7: 308313. doi:10.1093,comjnl,7.4.308, 1965.

[27] Powell, M. J. D. Muller, M. , Buhmann, M. , Mache, D. and Felten, M. (eds)

(1999) Recent research at Cambridge on radial basis functions. New Develop-

ments in Approximation Theory 132 , pp. 215-232. International Series of

Numerical Mathematics , Birkhauser Verlag, Basel, Switzerland

[28] Rao, Z.-F., and Jamieson, D. G. The use of neural networks and genetic algo-

rithms for design of groundwater remediation schemes. Hydrology and Earth

System Sciences,1(2), 345-356, 1997.

[29] Reed P.,Minsker B., and Goldberg D. E., Designing a competent simple genetic

algorithm for search and optimization, Water Resour. Res., vol. 36, no. 12, pp.

3757-3761, 2000.

[30] Regis, R. G. & Shoemaker, C. A. (2004) Local function approximation in evo-

lutionary algorithms for the optimization of costly functions. IEEE Trans. Evo-

lutionary Computation 8(5), 490505

[31] Regis, R. G. and Shoemaker C. A., A Stochastic Radial Basis Function Method

for the Global Optimization of Expensive Functions. INFORMS Journal on

Computing, Vol. 19, No. 4, pp. 497-509, Fall 2007.

[32] Regis, R. G. and Shoemaker C. A., Improved Strategies for Radial Basis Func-

tion Methods for Global Optimization. Journal of Global Optimization, Vol.

37, No. 1, pp. 113-135, 2007.

[33] Rinnooy Kan, A. H. G. & Timmer, G. T. (1987) Stochastic global optimiza-

tion methods. Part II: Multi level methods. Mathematical Programming 39,

5778.

81



[34] Sait Sadiq M and Youssef,Habib(1999) Iterative Computer Algorithms with

Applications in Engineering IEEE Computer Society, Los Alamitos, California.

[35] Solomatine, D.P. Genetic and other global optimization algorithms comparison

and use in calibration problems. Proc., 3rd Int. Conf. on Hydroinformatics,

1021-1027,1998.

[36] S. Wild, R. G. Regis, and C. A. Shoemaker. ORBIT: Optimization by Ra-

dial Basis Function Interpolation in Trust-Regions. SIAM Journal on Scientific

Computing, Vol. 30, No. 6, pp. 3197-3219, 2008.

[37] S. Wild, and C. A. Shoemaker (2009) GORBIT: Global Optimization by Mul-

tistart Radial Basis Function Algorithms submitted

[38] Tolson, B. A., and C. A. Shoemaker (2007), Dynamically dimensioned search

algorithm for computationally efficient watershed model calibration, Water Re-

sour. Res., 43, W01413, doi:10.1029/2005WR004723. Jan. 2007

[39] Tolson, B. A. (2005) Automatic Calibration, Management and Uncertainty

Analysis: Phosphorous transport in the Cannonsville Watershed. PhD The-

sis, School of Civil and Environmental, Cornell University, Ithaca, New

York,USA.

[40] The Mathworks, Inc. (2009a) Genetic Algorithm and Direct Search Toolbox for

Use with MATLAB: Users Guide, version 1. The Mathworks, Inc., Natick,

Massachusetts, USA.

[41] The Mathworks, Inc. (2009a) Optimization Toolbox for Use with MATLAB:

User’s Guide, version 3. The Mathworks, Inc. Natick, Massachusetts, USA

[42] Torczon, V. (1997) On the convergence of pattern search algorithms. SIAM J.

Optimization 7, 125.

82



[43] Yoon, J.-H., C. A. Shoemaker. Comparison of optimization methods for ground-

water bioremediation. J. Water Resources Planning Management 125(1) 5463,

1999.

[44] Yoon J.H and Shoemaker C.A. , Improved real-coded GA for groundwater

bioremediation, J. Water Resour. Plan Management, vol. 125, no. 1, pp.54-

63,1999.

[45] Wang, M., and Zheng, C. Optimal remediation policy selection under general

conditions. Ground Water, 35(5), 757-764, 1997.

[46] Willis M. B. , Modeling,Optimization and Sensitivity Snalysis of Reductive

Dechlroination of Chlorinated Ethenes with Microbial Competition in Ground-

water, Ph.D. dissertation, Cornell University, Ithaca, NY, 2001

[47] Zheng, C., 1990, MT3D: A modular three-dimensional transport model for sim-

ulation of advection, dispersion, and chemical reactions in groundwater systems,

Report to the U.S. Environmental Protection Agency, Ada, OK, 170p.

[48] Zheng, C. and Wang, P.P., 1998, MT3DMS, A modular three-dimensional mul-

tispecies transport model for simulation of advection, dispersion and chemical re-

actions of contaminants in groundwater systems, Vicksburg, Miss., Waterways

Experiment Station, U.S. Army Corps of Engineers. 238p.

83



CHAPTER 4

GLOBAL OPTIMIZATION FOR FIXED COST PROBLEMS WITH

APPLICATION TO LARGE GROUNDWATER PROBLEM

4.1 Introduction

This study integrates our method Search over Integers with Tabu List (SIT) with

a Response surface based global optimization method (Stochastic RBF) to solve

fixed cost global optimization problems, i.e. a problem with both discrete and

continuous-value decision variables. An important area where this problem

arises is for an objective function that minimizes the sum of installation cost

for a facility and the operation-maintenance cost for that facility over time. We

will consider a case where N facilities can be constructed and as a result of the

construction of a particular facility a fixed cost of F j must be paid. Then there

are continuous decision variables y j; j = 1, ...,NI which are zero if the facility is

not built and otherwise can be any real number ∈ [o, ymax]. Associated with the

jth facility is integer variable I j = 1 if the facility is built and otherwise I j = 0.

Sometimes there might be some pre-existing facilities thus there is no fixed cost

associated with these facilities but they still have continuous variables associ-

ated with them (i.e. additional continuous value variables). Let NC be the total

continuous value variables thus NC ≥ NI . The optimization problem is then

expressed as

min
Y

(
NI∑
j=1

I jF j + V(Y)) (4.1)

where,

y j ≤ I jymax f or j = 1, ...,NI (4.2)
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and

Gi(Y) ≥ 0 f or i = 1, .....,M (4.3)

Here Y is a vector of all continuous value variables y j; j = 1, ....,NC. Gi(Y) is

nonlinear constraint that could possibly have a multi-modal surface. Equation

4.2 is used to ensure that if there is no facility at location j then y j must be zero

for all j = 1, ...,NI . ymax
i is a constant that is the maximum value of y j. Equation

4.3 represents a series of other constraints on the ′Y ′ vector. For example if θ(Y)

is a simulation model and fi(Y) is an output of the simulation (say contaminant

concentration) then Gi(Y) = Cmax − fi(Y) ≥ 0 i.e. value of fi(Y) is equal to or less

than Cmax.

There are generally two types of decision variables (integer and continu-

ous value variables) that need to be considered in a typical practical water re-

sources management problem (i.e groundwater remediation design problem for

this study). During a particular run once the integer variable configuration (well

locations) is fixed the installation cost is no longer a variable i.e. the objective

function is then to minimize the operation and maintenance cost for that config-

uration. Such kind of Mixed-Integer Variable Problems (MIVP) problems in wa-

ter resources management are difficult to optimize especially if V(Y) or Gi(Y) are

multi-modal. The inherent relation between the two decision variables makes

this a problem with extremely large search domain hence computationally very

expensive for real world problems.

There have been a number of papers on for these kinds of problems with

continuous value variables including linear approaches [Gorelick et.al. (1979),

Willis (1979), Remson and Gorelick (1980), Yoon and Shoemaker (1999)] and

nonlinear local optimization methods [Ahlfeld (1997), Ahlfeld and Mulligan
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(2000)]. Mixed integer applications for these kind of problems can be broadly

categorized according to different optimization approaches: a) Mixed Integer

Linear Management modeling approach, b) Mixed Integer Nonlinear local op-

timization methods c) with Global heuristic methods (e.g. Genetic Algorithms

(GA), Simulated Annealing (SA)) and d) Mixed integer with Response Surface.

The linear management model fails to take into account the nonlinear behavior

of contaminant transport modeling.

Nonlinear methods were used by Gorelick et. al. (1984), Ahfeld (1987) in

their work incorporating nonlinear techniques into groundwater management

process but these analysis did not include integer variables or fixed cost. Var-

ious researchers used MINOS (Murtagh and Saunders (1980), McKinney and

lin (1995)) or NPSOL (Gill et al., 1986) to solve these problems. Both MINOS

and NPSOL are local optimizers thus cannot be used for problems with integer

variables and objective functions with multiple local minima. Hemker et. al.

(2006,2008) implement a branch-and-bound approach that uses surrogate func-

tions for a hydraulic capture problem, which is linear. Their study does not in-

clude contamination transport which the main reason for multi-modal behavior

of remediation problem. Holmstrom et. al. (2008) developed a Response surface

method based on Kriging and Radial Basis Function (RBF) interpolation to solve

global mixed variable optimization problems. This methodology ARBFMIP

(TOMLAB implementation) when applied (in this study) to large scaled prob-

lems (equal number of binary/integer and continuous value variables) gener-

ated ill conditioned matrices and did not run. The example problem in this

paper had 3 integer variables and 5 continuous variables whereas our problem

has 10 integer and 10 continuous variables. NOMAD (Abramson et. al., 2008) is

a new MIVP optimizer which to the authors knowledge hasn’t been applied in
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Water resources. Zheng and Wang (1999) developed an integrated approach for

remediation design using Tabu Search and Genetic Algorithms. Aly and Peralta

(1999) integrated neural networks with Genetic Algorithms. Becker et. al. (2006)

used two simulation-optimization packages: SOMOS, developed at Utah State

University (USU) (Peralta 2003), and MGO, (Zheng and Wang 2002a). Both of

the packages used in this project implement heuristic algorithms: genetic algo-

rithms (Holland 1975; Goldberg 1989), simulated annealing (Metropolis et al.

1953), and tabu search (Glover 1986, 1989). In their study authors acknowledge

the fact that “these global methods often require intensive computational effort

but have become more practical for application on personal computers as com-

puter speeds have increased”. Various researchers have implemented hybrid

heuristic methods for these problems (Peralta et. al. (2005)). Jin et. al. (2009) im-

plement parallel hybrid optimization framework that uses genetic algorithms

(GA) coupled with local search approaches (GA-LS) to solve groundwater in-

verse problems. Such approach becomes computationally very expensive for

large scale models where one model simulation takes significant time i.e. some-

times one such simulation may run for weeks or months.

The methodology developed here (Mixed integer with Response Surface)

suggests a two layered system i.e. Response surface based method for con-

tinuous value variables and SIT for integer value variables. For computation-

ally expensive functions, a sensible approach is to use response surface models

(also known as surrogate models) for the expensive function. Examples of re-

sponse surface models Radial Basis Functions (RBF) (Buhmann 2003, Powell

1992), Kriging models (Cressie 1993), and neural networks. Response surface

models have been used in the optimization of expensive functions. One of the

main attractive features of response surface based methods is that the meth-
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ods are ”gradient free” i.e. the methods do not need actual gradient informa-

tion for optimization run. This feature makes this kind of method very suit-

able for environmental problems as they generally involve a complex simula-

tion model. None of the response surface methods (including the method used)

needs any additional information other than function values for minimization.

The methodology implements Radial Basis function based method to reduce the

computational time i.e. radial basis function is used as surrogate for simulation.

This initial surrogate function is built by evaluating expensive function at some

initially generated points (Latin hypercube points for this study). This quality of

results from the surrogate function improves as the search progresses i.e. more

and more actual (expensive) cost function evaluations are done. The main focus

of this study is to sequentially use the actual cost function evaluation informa-

tion across different integer configurations to improve the accuracy of surrogate

function approximations.

This study uses Multistart Local Metric Stochastic RBF (MLMSRBF) called

here Stochastic RBF, developed by Regis and Shoemaker (2007). The integra-

tion of Stochastic RBF with SIT methodology is first applied on a test problem

and hypothetical aquifer, then is tested for a real groundwater aquifer. The

methodology we develop for the integration of SIT and the Stochastic RBF is

novel and is described in section 4.3.3. The results are then compared to GA,

since GA’s are widely used for these kind of problems and a mixed variable op-

timization tool NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct

Search), implementation of the Mesh Adaptive Direct Search (MADS) algorithm

(http://www.gerad.ca/nomad/Project/Home.html).

This paper is organized as follows. Section 4.2 introduces/explains the ap-
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plication problems with details of objective function and constraints. The al-

gorithm and its parameters are explained in section 4.3.3. Results are then dis-

cussed in section 4.6, last section 4.7 highlights the conclusions.

4.2 Model Description

The newly developed SIT-RBF methodology is tested on two test problems (one

test problem and one hypothetical groundwater problem) and one real ground-

water remediation demonstration site. The demonstration site, Umatilla Chemi-

cal Depot,is adapted from NAVFAC (Naval Facilities Engineering Command) tech-

nical report TR-2237-ENV.

4.2.1 Test Problems

The SIT-RBF algorithm is first tested on a test problem and hypothetical ground-

water test problem. The objective function for both the test problems is to mini-

mize the sum of fixed (O&M cost) and the variable cost subjected to some con-

straints. The fixed cost depends on the integer variable configuration, whereas

the variable cost depends on the continuous variables. The integer variables are

essentially binary variables (0 or 1) and the continuous variables are bounded

with upper and lower limit.

The test problem is modified form of 17-dimensional continuous value

Schoen problem (1993). The Schoen function is modified into a fixed value prob-

lem such that the total cost is minimum when the five of the decision variables

are zero i.e. no installation cost for these variables. Hence the objective is to find
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this optimal configuration in terms of integer variables (17 in number) and the

respective continuous variable values (17 in number).

min
Y

(
NI∑
j=1

I jF j + VC(Y)) (4.4)

Subjected to:-

ymin ≤ y j ≤ ymax for j = 1, ...,NC and

y j ≤ I j ∗ ymax(Fixed cost constraint) for j = 1, ...,NI

where, NI is the number of integer variables and Y = [y1, ...., yNC ] is a set

of NC continuous variables, I j is the binary variable (0 or 1) associated with

jth continuous variable (y j), F j is fixed cost associated with jth variable (I j) and

VC(Y) is the variable cost which depends on vector Y .

The objective function for 32-dimensional hypothetical groundwater test

problem is to minimize the O&M cost such that concentration constraint is sat-

isfied at the end of simulation period. Each of the 32 continuous variables has a

fixed cost attached with it. The total cost is minimum when some of these con-

tinuous variables are zero. Hence the objective is to minimize the total cost in

terms of integer (32 in number) and binary variables (32 in number) subjected

to concentration constraint being satisfied at the end of simulation period. For-

mulation for this problem has one additional constraint from the test problem

i.e. concentration constraint must be satisfied at the end of simulation period,

hence the objective function is modified to incorporate penalty when concentra-

tion constraint is violated.

min
Y

(
NI∑
j=1

I jF j + VC(Y) + penalty f unction(C)) (4.5)

Subjected to:-
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ymin ≤ y j ≤ ymax for j = 1, ...,NC;

y j ≤ I j ∗ ymax(Fixed cost constraint) for j = 1, ...,NI and

C ≤ Cmax(Incorporated using penalty function)

where, NI is the number of integer variables and Y = [y1, ...., yNC ] is a set of

NC continuous variables, C is the maximum concentration at end of simulation

period measured at observation wells, I j is the binary variable (0 or 1) associated

with jth continuous variable (y j), F j is fixed cost associated with jth variable (y j)

and VC(Y) is the variable cost which depends on Y .

4.2.2 EPA Groundwater Site:Umatilla Chemical Depot

Site History

Umatilla Chemical Depot, located in northeastern Oregon is a 19,728 acre mili-

tary reservation established in 1941 as an ordinance depot for storage and han-

dling of munitions. From the 1950s until 1960s the depot was used as an on-site

explosives washout plant. The plant processed munitions to remove and re-

cover explosives using a pressurized hot water system. The wash water from

the plant was disposed in two unlined lagoons, from which the wash water in-

filtrated into the soil system. During this time, an estimated 85 million gallons

of wash water was discharged to the lagoons.

Two contaminants, RDX (Hexahydro-1,3,5-trinitro-1,3,4-triazine, and com-

monly referred to as Royal Demolition Explosive) and TNT (2,4,6-

Trinitrotoluene) were used as indicator parameters. U.S. Army Corps of En-
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Figure 4.1: Site Map : NAVFAC (Naval Facilities Engineering Command)
technical report TR-2237-ENV

gineers designed a pump-and-treat system (USACE, 1996 and 2000) to con-

tain and remove the RDX and TNT plumes (Figure 4.1). USACE designed

pump-and-treat system consisted of three pumping wells and 2 recharge basins

(shown in figure). One of the pumping wells and the infiltration basins are

marked as inactive for this study. The cost of activating the inactive well is

considerably less than the cost of installing a new well whereas there is no

installation/activation cost associated with any other existing wells. Existing

wells/basins and the inactive wells/basins play role in the cost definitions. This

study uses binary variables associated with all of the pumping well locations i.e.
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’1’ if active and ’0’ if inactive. Existing USACE design sets up the initial condi-

tions (initial hydraulic heads and contaminant concentrations) for the model

used in this study. The contaminated groundwater is extracted from the wells

and then sent to GAC units, which remove the contaminants. The treated water

is then discharged to the infiltration basins.

Model Description

Groundwater flow is simulated using the MODFLOW code. MODFLOW is a

three-dimensional finite-difference groundwater model that was first published

in 1984 (Harbaugh et.al., 2000) and has been updated several times. The study

model has 125 rows, 132 columns and 5 layers, with variable grid spacing of

24.8ft - 647.9ft along the rows and 21.6ft - 660.7ft along the columns. The for-

mulation only focuses on contaminant transport in layer 1 of the model. The

model boundary conditions for all four sides of the model domain were simu-

lated as constant head. The Groundwater contaminant transport is simulated

with MT3DMS (version 5.2) which is the latest (1998) version of MT3D. MT3D

was developed by Chunmiao Zheng (1990).

The study model is structured into three phases i.e. input, simulation and

output. The model takes Hydro-geological data, Domain-discretization data

and the pumping data as input. The pumping data consists of pumping well

locations with the respective pumping rate. The formulation used for this study

treats only the pumping rates as the decision variables for fixed well locations.

After input phase the simulation is done using MODFLOW and MT3D. The

study model simulates TNT and TCE (the two chosen parameters). And in the

end objective function is calculated using the pumping data (input) and the
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simulated concentrations at the end of simulation period. The model units are

in feet and years.

Optimization Formulation

Decision Variables

The overall objective for this function to choose optimal well parameters i.e.

well locations and the respective extraction/recharge rate of the wells. The in-

teger problem formulation is designed to choose optimal set of pumping wells

from all possible well locations and the continuous value formulation finds the

respective optimal pumping rates. Each pumping well has a binary variable

(location) associated with it, i.e ’1’ if active or ’0’ if inactive and the respective

pumping rates (continuous variable). For this formulation there were 8 binary

variables and 10 continuous variables i.e. 8 pumping wells to choose from and

2 infiltration basins with fixed locations.

Objective Function

The objective of this formulation is to minimize the total costs (installation and

operation i.e. mixed value problem) for the project duration (Formulation 1

from NAVFAC report). i.e.

min
Y,I

(
nwells∑

j=1

I jF j + VCE(y) + VCG(y) + penaltyCost(Y,CC)) (4.6)

where, I j is the binary variable associated with jth well and nwells is the num-

ber of wells, F j is the fixed cost associated with the respective well ($75,000 for

installing a new well, $25000 for putting an existing unused well into service
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i.e. well 3 in this study), Y is vector of pumping rates for all wells and CC is

maximum Contaminant Concentrations of the respective indicator parameters

(Cmax
RDX and Cmax

T NT ). The cost term VCE(Y) is variable electric cost of operation,

VCG(Y) is variable cost of GAC units and PenaltyCost(Y,CC) is for violating the

concentration constraint, pumping constraint.

All the cost terms are computed in net present value (NPV) with the follow-

ing discount function NPV = costiy
(1+r)iy−1 . where NPV is the net present value of a

cost incurred in year iy with a discount rate of r=5%. The cost term is evaluated

at the end of each year to account for annual discounting and to ensure that no

costs are incurred after cleanup is achieved.

Constraints

The formulation includes model constraints that must be satisfied while the

objective function is minimized. The modeling period consists of 1 manage-

ment period of 4 years, with pumping rates kept throughout this period. The

maximum concentrations of RDX and TNT in model layer 1 must be less than

their respective cleanup targets by the end of 4 years Cmax
RDX ≤ 2.1ppb and

Cmax
T NT ≤ 2.8ppb. The total pumping rate cannot exceed 1100 gpm and the pump-

ing capacity of individual wells must not exceed 400 gpm. RDX and TNT con-

centrations must not exceed their respective cleanup levels beyond a specified

area when evaluated at the end of each management period. The total amount

of pumping must equal the total amount of injection through the infiltration

basins within an error tolerance (implemented in this study by 3rd recharge

basin getting the balance of (Total pumping)-(Total recharge)). The two addi-

tional formulation constraints are I is binary variable (0 or 1) and the fixed cost
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constraint on all wells i.e. pumping capacity is only optimized if the respective

well is chosen to be installed (y j ≤ I j ∗ ymax for all wells).

Optimization-Modeling Approach

Figure 4.1 shows the location of existing extraction wells and the infiltration

fields. Thus, the optimization goal is to identify a pumping strategy that lowers

the Cmax values of RDX and TNT to their respective cleanup targets of 2.1 and

2.8 ppb within 4 years while satisfying all the pumping constraints. The max-

imum allowed concentration constraint and the total pumping constraint are

implemented by using the penalty functions hence the solution points not sat-

isfying any of the two constraints (concentration and pumping) are penalized,

which forces the algorithm to look for solution points that satisfy the above-

mentioned constraints. The flow and transport model takes approximately 5

mins per simulation on a Pentium 2.2 Ghz PC.

4.3 New Algorithm : SIT-RBF Description

The goal of this study is to integrate an integer value optimization solver i.e. SIT

with a continuous value solver to solve a fixed cost problem i.e. Response sur-

face based, Stochastic RBF to solve a practical mixed value optimization prob-

lem. Response Surface based methods use a mathematical model as a surro-

gate for the optimization objective to guide the search for suitable parameters.

The idea behind these methods is to fit an approximation to the objective func-

tion values from prior generations. A better initial fitting process in case of a

computationally expensive functions sometimes can save a significant amount
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of computational time by reducing the number of actual function evaluations

needed during the run. The methodology suggested here tries to save on com-

putational time by using the information (a response surface for VC(Y) based

on earlier simulations done) from one configuration (i.e. a particular configura-

tion of integer values) for subsequent configurations of integer value variables

(which are subset of initial, explained in 4.3.3). The integration methodology is

described in detail after discussing the individual algorithms.

4.3.1 Search over Integers with Tabu (SIT)

The Search over integers with Tabu (SIT) algorithm is heuristic that incorpo-

rates a TAbu List as used in Tabu Search but does not use other aspects of Tabu

Search. SIT uses Tabu list to prevent cycling back to some solution points related

to previously generated value. The tabu status of a solution point is overridden

if that point has an objective value that exceeds the best solution cost.

4.3.2 Response Surface based method

Response Surface based methods use a mathematical model as a surrogate for

the optimization objective function to guide the search for suitable parame-

ters.The idea is to fit an approximation to the objective function values from

prior generations. The function approximation algorithms used in this paper

use Radial Basis Functions (RBF)(Buhmann, 2003; Powell, 1999) to approxi-

mate the expensive objective. The purpose of using this RBF approximation

is to reduce the computational expense of an optimization problem by allowing
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the RBF approximation to screen out candidate points which are unlikely to be

highly fit before the actual simulations are done. The response surface method

used for this study is Multistart Local Metric Stochastic RBF (MLMSRBF) devel-

oped by Regis and Shoemaker (2007) which is called ”Stochastic RBF” in this

paper.

For an optimization problem, if x1, x2....xn xk ∈ Rn are the previously evalu-

ated set of parameter, a cubic RBF interpolation model (Gutmann) that approxi-

mates the objective function has the form

sn(x) =
n∑

i=1

λiϕ(∥x − xi∥2) + bT x + a (4.7)

where, λ1, λ2, ...........λn ∈ R, b ∈ Rd, a ∈ R, ϕ is a radial function and ∥.∥ is the

Euclidean norm. The coefficients of the above model are chosen such that the

interpolant passes through all the design points. Gutmann (2001) evaluates the

costly function at the corners of the domain d, so that there are 2d points, where

d is the dimension. This becomes too expensive for higher dimensional models,

Regis and Shoemaker (2007) suggested the use of a Latin Hypercube Experimen-

tal design (LHD) for fitting the initial response surface. For d decision variables

(2 ∗ d + 1) symmetric Latin hypercube design points were used for initial sur-

face. In this study this initial fit for any function is done only once i.e. at the

start of optimization run, but is used for all other possible integer variable con-

figurations. For a detailed mathematical description of the algorithm the reader

is referred to the paper by Regis and Shoemaker (2007). Stochastic RBF chooses

the next evaluation point as the best point from a set of randomly generated

candidate points. For algorithmic details, the reader is referred to the work by

Regis and Shoemaker, 2007.
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4.3.3 Description of SIT-RBF Algorithm

Flowchart 4.2 shows the general structure, while the steps below describe the

integration methodology between the SIT and Stochastic RBF. The flowchart is

shown here to give the reader a general idea about the integration methodology

(explained in detail with Steps 1-6 below). The idea behind the integration is to

sequentially use the information from a run with a particular set of integers to

guide the search for a solution in a specified sub-set.

Let NC be the number of continuous variables and NI be the number of in-

teger variables to be optimized. The variables NC and NI are different for the

cases when there is no fixed cost associated with some of continuous variables

(so NI ≤ NC).

We will define Dk as the set of all binary vectors with NI elements. We will

define Dk as the set of all binary vectors in which exactly k of the elements are

zero. The members of Dk are denoted as Ik. There are many possible Ik so we

will denote them as Ik(m), m = 1, ...., |Dk| if we want to consider all members of

Dk. Hence I0 = (1, 1, ...., 1) ∈ D0 and Ik = (Ik
1, ....., I

k
NI

) ∈ Dk.

Let Φ(Ik) be the set of all real vectors of length NC where yi ≤ Ik
j ∗ ymax, j =

1, ....,NI .

The objective function for the algorithm SIT (Search over integers with Tabu)

at a particular k is to minimize

min
Ik∈Dk

H(Ik) =
∑

j

Ik
j F j +C(Ik) (4.8)

where Ik is a vector and Ik
j is its jth component. Let Ik

best ∈ Dk be the best inte-

ger configuration found for a particular k that minimizes equation 4.8. The SIT
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Update Integer variable configuration (Step 2) 

Initiate SIT (Step 1) 

Initial Stochastic RBF run using LHD 

(Step 1.1.1) 

Generate TS neighborhood candidate 

points (Step 3) 

Update Integer variable configuration (Step 2) 

Stochastic RBF run for each candidate 

point using all previous function 

evaluations information (Step  4) 

Update Best Cost and Tabu list (Step 5) 

Check stopping 

criteria (Step 6) 

Stop 

Figure 4.2: SIT-RBF methodology Flowchart with references to Algorithm
Steps. Step 5 is the most computationally expensive. Step 3 to
Step 5 can be done in parallel

evaluates H(Ik) for all Ik in a neighborhood of current best solution Ik
best. C(Ik)

in equation 4.8 is computed by continuous global optimization with response

surface for optimization problem from equation 4.9 and 4.10 (below).

C(Ik) = min
Yk
θ(Yk) (4.9)
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subject to

0 ≤ yk
i ≤ Ik

i ymax f or (i = 1, ...,NC) (4.10)

where, θ(Yk) is the cost associated with Yk = (yk
1, y

k
2, ...., y

k
NC

).

Evaluating θ(Y) in equation 4.10 requires a computationally expensive sim-

ulation and can include penalty functions to incorporate constraints. We use

Stochastic RBF (Regis and Shoemaker, 2007) as the continuous global optimiza-

tion method. Stochastic RBF here uses an RBF approximation Q(Y) for all

Y ∈ RNC . A contains all the points (Y, θ(Y)) that have been evaluated by costly

simulation of θ and Q(Y) is a RBF spline surface that has interpolated all the

points in the current set A. Recall that Ik refers to a binary vector I = (Ik
1, ..., I

k
n)

where exactly k of the Ik
i = 0. Hence in the neighborhood of the current best

solution in Step 3, any flip of a vector bit from 0 to 1 must be matched by a flip

of another bit from 1 to 0.

Let ybest(Ik) be the vector of continuous variables that gives the minimum of

equation 4.9 and 4.10 (from Stochastic RBF subjected to tabu constraints), so

C(Ik) = θ(Ybest(Ik)) (4.11)

where Ybest(Ik) satisfies equation 4.10. The SIT search continues to find the best

solution (Ik
best,Y

k
best) within maxevals function evaluations. Other inputs for the

algorithm include Nnei, the neighborhood size for SIT and tenure length i.e tabu

list length. The Tabu list (ϕ) prevents acceptance of an Ik(m) that involves a swap

of 0 and 1 between elements ( j, k) that are on a tabu list unless H(Ik(m)) is better

than the best solution so far.
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Steps in SIT-RBF Algorithm

The following gives the exact steps. Followed by steps is a discus-

sion/explanation of them.

Step-1. SIT Initialization :

1.1. Global optimization algorithm (Stochastic RBF) is run in

RNC dimensional continuous space with k = 0, I0
i = 1 for

i = 1, ....,NI .

1.1.1. Compute the expensive simulation function

θ(Zi) i = 1, ..., (2NC + 1) where Zi are points from

a symmetric Latin hypercube design points. Con-

struct the initial RBF surface Q(Y) that interpolates

the points (Zi, θ(Zi)).

1.1.2. Save all function evaluations and implement

Stochastic RBF to find Y0
best(I

0) = (Ybest,1, ....Ybest,NC ),

which is best solution given I0 = [1, 1, ....1]. The

continuous cost is C(I0
best) (equation 4.9 with k=0).

1.2. Add respective fixed cost to all evaluated points to com-

pute H(I0) =
∑NI

i=1 I0
i Fi +C(I0) (equation 4.8).

1.3. Set Hbest = H(I0) and initialize Tabu list, ϕ (empty set).

Step-2. Update k.

2.1. Set l = 0;

2.2. for i = (1, ....,NI)

If Yk
best,i(I

k
best) = 0 then Inew

i = 0 and l = l + 1.
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If Yk
best,i(I

k
best) > 0 then Inew

i = 1.

2.3. If l , k go to step 2.4, Otherwise, if l = k choose a random

integer q from the set T = {J|J is integer and Inew
J , 0}. Then

set Inew
q = 0, l = l + 1 and go to step 2.4 .

2.4. Assign k = l.

Step-3. Generate the neighborhood configurations in integer space i.e.

Ik(1), ..., Ik(Nnei); where Nnei is the number of individuals in the neigh-

borhood.

Step-4. Do steps 4.1 − 4.2 for each neighborhood configuration, Ik(m) for

m = (1, ...,Nnei) (As discussed in section 4.3.4 this step can be done in

parallel on Nnei processors).

4.1. Implement Stochastic RBF to find Yk
best(I

k(m)), which is best

solution given Ik(m) i.e. C(Ik(m)) from equations 4.9-4.10.

During this step Stochastic RBF is using a response surface

Q(Y) that interpolates all previous simulations of (yi, θ(yi))

(stored in set A) to solve equation 4.9. Add all costly sim-

ulation results (yi, θ(yi)) during the stochastic RBF search to

the setA.

4.2. Add respective fixed cost to all evaluated points at the end

of optimization run to compute H(Ik) =
∑NI

( j=1) Ik
j F j + C(Ik)

(equation 4.8).

Step-5. Among the best solution Hk(Ik(m)) evaluated, pick the best Ik(m)

and denote it Ik
min and Hk

min = Hk(Ik
min). In this step Ik(m) is tabu of

swapping of 0 and 1 occurring at locations that are on the tabu list.
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5.1. If the minimum cost configuration(element swap) is not in

the tabu list (ϕ) update the best solution point Yk
best(I

k
best) =

Yk
min(Ik

min). Otherwise update only if minimum cost is less

than current best cost (Hbest)

5.2. If Hk
min ≤ Hbest update Hbest=Hk

min.

5.3. Update the tabu list (ϕ) i.e. add the indices of elements

swapped(S tep − 3) if the tabu list is not full; otherwise,

delete the oldest entry in tabu list and record the swap.

Step-6. Check Stopping criteria i.e maxevals otherwise go to step 2.

4.3.4 Discussion of SIT-RBF Algorithm

Step 1 runs the Stochastic RBF without any prior information to find optimal

continuous variable values (Y0
best). The initial RBF setup is done using Symmet-

ric Latin Hypercube Sampling (Step 1.1.1). Step 1.1.2 starts with a configuration

which has maximum number of integer value variables (NI) needed to solve the

continuous value optimization problem i.e. the configuration with maximum

fixed cost. This is done by setting all integer variables (Ik), to 1 (i.e. all facilities

on and k = 0). Then Stochastic RBF optimization is run to find optimal solu-

tion of NC-dimensional continuous value optimization problem in Section 4.2.

Stochastic RBF runs only on continuous value decision variables i.e. objective

function (θ(Yk)) from equation 4.9. In other words this step tries to find optimal

pumping rates (Y0
best) for I0 = 1; k = 1, ...NI. Once optimal continuous variable

values (Y0
best) are determined installation cost based on the integer variable con-

figuration is added to the cost values (Step 1.2) from the Stochastic RBF (equa-
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tion 4.8). Step 1.3 initiates the Hbest and tabu list (ϕ) , which saves the indices of

elements swapped for neighborhood generation in Step 3.

In Step 2 the variable k is updated. In Step 2.1 and Step 2.2, l is used to count

the number of zeros in Yk
best(I

k
best). If there are only k zeros in Yk

best(I
k
best) then

Step 2.3 randomly selects a component q where Ik
q will be zero in starting the

next Step 3. In other words if the optimal solution point (Ybest,i from Step 1) to

the continuous value problem θ(Y) has a zero value in particular dimension i.e

Ybest,i = 0; i = 1, ...,NI , then the ith element of integer vector is updated Inew
i = 0. If

there is no change in integer configuration (k = l), a random zero is introduced in

integer space to choose a random integer q from the set of non-zeros in Ik
best and

set Inew
q = 0. For example the solution obtained from Stochastic RBF might be of

two forms i.e. some continuous value variable values of zero (e.g. with integer

space [1,0,1,0,1]) or without any zeros (e.g. with integer space [1,1,1,1,1]). In

case the optimal solution from Stochastic RBF looks like [1,1,1,1,1], the method-

ology introduces a zero in a randomly picked dimension from integer space,

otherwise (i.e. for something like [1,0,1,0,1]) this step is skipped.

Step 3 then generates a set of possible neighborhood configurations by swap-

ping 0 and 1 respectively. Each of these configurations Ik(1), ..., Ik(Nnei) has its

own respective installation cost based on the integer configuration (Ik(m)) se-

lected for that particular case. In this study the neighborhood size Nnei was cho-

sen such that step 4 can be done in parallel (done in this study) i.e. Nnei equals

the number of processors used (limited to 8-16 for all tested functions).

The neighborhood generated (Ik(1), ..., Ik(Nnei)) in Step 3 is then explored in

Step 4. Here in Step 4.1 Stochastic RBF is run for each integer configuration

(Ik( j), j = 1, ...,Nnei) with all the information in set A as input data for the initial
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Radial Basis Function (RBF) fit and subsequent RBF function value approxima-

tions. This step finds the optimal solution to the continuous value problem

(Yk
best) for the neighborhood configurations Ik(m); m = (1, ...,Nnei) generated in

Step 3. The number of actual function evaluations done in this step are consid-

erably less than Step 2 as the prior information (setA) helps in fitting and getting

the estimates of actual function value from the RBF. Once optimal continuous

variable values (Yk
best) are determined installation cost based on the integer vari-

able configuration is added to the cost values (Step 4.2).

Step 5 updates the best cost (Hbest) and tabu list (ϕ). If the minimum solu-

tion in the neighborhood Ik
min is not in the tabu list then the best solution point

(Ik
best,Y

k
best is updated to equal Ik

min,Y
k
min. Otherwise it is updated only if minimum

cost Hk
min is less than Hbest. Step 5.2 updates the best cost (Hbest) if H(Ik

min) is less

than best solution point. In Step 5.3 for tabu list updating, the indices of ele-

ments swapped in Step 3 for neighborhood generation are added to ϕ if the tabu

list is not full. Otherwise, oldest entry in tabu list is replaced with the newest.

Step 6 controls the termination criteria, which in this study was the total number

of function evaluations (maxevals).

4.4 Alternative Algorithms for Fixed Cost Problems

4.4.1 Genetic Algorithm

The results from the suggested methodology (SIT-RBF) are compared with Ge-

netic algorithms as GA’s are quite popular for these type of problems. This

study uses Genetic Algorithm (NSGA-II) for comparison with Tabu-Stochastic
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RBF integration. NSGA is a multi-objective Genetic algorithm based on non-

dominated sorting algorithm developed by Deb et. al. (2002). Deb et.al. in their

study demonstrated that the NSGA performed better than various other GA

based algorithms. Also NSGA is designed to solve mixed value (integer vari-

ables and continuous value variables) problems. In this study NSGA is used

on a single objective problem formulation with constraints in order to do the

comparison with the suggested methodology. In other terms NSGA was im-

plemented to solve a mixed integer valued optimization problem (binary and

continuous decision variables). The NSGA-II algorithm includes elitism and

uses a binary tournament operator for selection. The crossover and mutation

operations are performed independently on both real and binary coded vari-

ables. Box constraints are enforced in generation of candidate design variables

whereas the constraints on binary/integer variables are implemented as non-

negative functions. Numerical values of the various parameters i.e. population

size, number of generations, crossover/mutation probability were chosen by

taking into account considerations from (Reed et. al. 2000; Mayer et. al. 2002).

4.5 NOMAD(Nonsmooth Optimization by Mesh Adaptive Di-

rect Search)

NOMAD a C++ implementation of MADS algorithm is used in this study

for comparison of results with the SIT-RBF methodology. It is a freely avail-

able at http://www.gerad.ca/nomad/Project/Home.html (under General Pub-

lic License) constrained optimization tool for black-box functions developed

by Abramson et.al.(2009). Mesh Adaptive Direct Search (MADS) algorithm
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for non-linear optimization is based on Generalized Pattern Search algorithms.

These algorithms are iterative with each iteration consisting of two phases: an

Search and a local Poll phase. In search phase the objective function is evalu-

ated over a finite number of mesh points to find a new point with lower ob-

jective function value, if algorithm fails to find an improved mesh point it calls

the POLL procedure where a barrier objective function (at neighboring mesh

points) is evaluated to find a lower function value. If POLL also fails to find an

improved point then the mesh is refined and the procedure is repeated. NO-

MAD implementation can be parameterized to use Response Surface Surrogate

approximations for continuous value decision variables but not for mixed in-

teger value problems. For more details reader is referred to Abramson et. al.

(2009).

4.6 Results

The goal of this study is to integrate a integer variable optimizer SIT with global

continuous value optimizer (Stochastic RBF). Thus the experimental runs were

designed to test the suggested integration methodology (SIT-RBF) against two

open source codes for Mixed Integer value problem (MIVP) optimizers, NSGA

(Deb et. al. (2002)) and NOMAD (Abramson et.al.(2009)). Because of the

stochastic nature of suggested methodology (SIT-RBF) and NSGA, 10 trials were

run for both the hypothetical test problems and 5 for the Umatilla test problem.

The results presented are averaged over all trials. The next section presents the

results for the algorithm comparison with discussion about the algorithm.
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4.6.1 Algorithm Comparison

The results for this study uses convergence plots for the objective function val-

ues to compare the three algorithms. On the plots the points (e, v) correspond

to e=number of function values that have been evaluated and v is the average

over all trials of the best objective function value obtained in e. Figure 4.3 and

4.4 compare the performance of algorithms on test function and hypothetical

groundwater test problem. Figure 4.5 compares the algorithm performance for

Umatilla groundwater problem. The lowest curves are best since they indicate

the algorithm got closer to the minimum solution in fewer evaluations than the

other algorithms.
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Figure 4.3: SIT-RBF Algorithm performance comparison for test function
(Averaged over 10 trials). Lowest Curve is best

For all functions, for a fixed number of total allowed function evaluations

the SIT-RBF integrated methodology significantly outperforms the other two
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methods (NOMAD and NSGA). NOMAD and NSGA performed relatively bet-

ter for Umatilla as compared to test problems i.e. the best cost solution seems

to improving. An explanation of success of SIT-RBF methodology in locating a

good solution with specified function evaluations can be attributed to two rea-

sons. First one the sequential use of previously evaluated points to construct

RBF surfaces i.e. relatively better RBF surfaces lead to improved RBF approx-

imations. The second reason is the underlying global nature of Stochastic RBF

i.e. Stochastic RBF is a global optimizer thus it is better equipped to solve global

optimization problems. The two other tested algorithms need significant num-

ber of additional function evaluations to locate a good solution point.
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Figure 4.4: SIT-RBF Algorithm performance comparison for groundwater
test problem (Averaged over 10 trials). Lowest Curve is best

In this section we try to analyze the success of integrated methodology using

a hypothetical problem (5 continuous and 5 integer variables). The idea behind

of whole methodology is based on using the function evaluation data for one
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configuration for fitting a response surface with a different configuration. An-

other important factor to be taken into account is that the Stochastic RBF method

never deals or sees any fixed cost. Fixed costs are added once the Stochastic RBF

run is finished and subtracted when inputting the prior information Stochastic

RBF for next configuration. When initial Stochastic RBF is run on this hypotheti-

cal problem (NC = NI = 5) the resulting solution (Yk
min) could have between 0 and

k zeros. Since all the solutions for Yk have NC elements (zero or non zero), the

points Yk can contribute to the building of the NC dimensional response surface

Q(Y) that approximates θ(Y) in equation 4.9. Thus the previously computed ex-

pensive function evaluations (θ(Y)) for k < K (where K is any index) can be used

to approximate the Response surface resulting in the step with k = K. Thus with

prior information of actual function evaluations, the subsequent optimization

runs for higher values of k require relatively many fewer function evaluations.

Other reasons for the success of this methodology can be attributed to success

of Stochastic RBF as a global optimizer of θ(Y). It has been tested successfully

on various different types of problems (Regis and Shoemaker, 2007)

Umatilla Groundwater problem

This part discusses the quality of results obtained for Umatilla groundwater

site for the three optimization methods Genetic Algorithm (GA), NOMAD and

the new method SIT-RBF described in this paper. Table 4.1 lists the pumping

rates for one optimization trial. The table 4.1 also lists the respective objective

function value for the respective optimal solution points.

The table 4.1 highlights the difference in quality of results obtained by differ-
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ent algorithms in terms of wells chosen and objective function values at the end

of optimization trial (median). The results obtained from SIT-RBF methodology

have much lower objective function values as compared to GA and NOMAD.

The difference in magnitudes of objective function value is due to penalty func-

tion i.e. Cmax
RDX ≤ 2.1ppb and Cmax

T NT ≤ 2.8ppb at the end of simulation. The con-

straint violations and corresponding penalties are also listed in the table. The

median trial solution (table 4.1) for SIT-RBF methodology chooses 4 pumping

wells and two of these wells have no fixed cost (pre-existing wells). SIT chooses

two new wells where as NOMAD chooses 4 new pumping wells thus more

fixed cost. Thus in comparison to NOMAD, SIT-RBF chooses an option with

less fixed cost while satisfying all the constraints (concentration constraints on

RDX and TNT). Genetic algorithm performs the worst it uses all but one well

and also the total pumping it suggests is considerably more than the pumping

policy suggested by SIT-RBF and NOMAD methods.

Figures 4.6, 4.7, 4.8 and 4.9 show the contour plots for the two contaminants.

The color bar on all plots shows the concentrations for the two contaminants

RDX and TNT, respectively. Figure 4.6 plots the initial contour plot for contam-

inants TNT and RDX, here the maximum concentration of RDX and TNT are

25ppb and 80ppb, respectively (as shown by color bar). The figure 4.7 shows the

contour plots in case when no management (pumping) policy is implemented.

Here contaminant concentration decreases slightly (concentration of 20ppb and

70ppb for RDX and TNT) mainly due to dispersion of contaminant. Figure 4.8

shows the contour plot at the end of simulation period for the optimal solution

found (median trial) by SIT-RBF methodology (with maximum concentration of

2ppb and 2.5ppb for RDX and TNT, respectively). Figure 4.9 shows the same for

optimal policy by NOMAD with maximum concentration of 3ppb and 2ppb for
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Table 4.1: Algorithm Comparison in terms of pumping rates for Umatilla
problem for an optimization (median for each algorithm with
1600 simulations) trial. Only pumping wells have fixed cost so
NC = 11 and NI = 8. The Objective function is from equation 4.6.

Well index Pumping Rates (GPM)

SIT-RBF NOMAD GA

Pumping Well 1 - - -

Pumping Well 2 395 80 164

Pumping Well 3 329 23 368

Pumping Well 4 - - 246

Pumping Well 5 348 399 132

Pumping Well 6 95 399 26

Pumping Well 7 - 218.9 154

Pumping Well 8 - 65 234

Recharge Basin 1 - - 399

Recharge Basin 2 399 100 646

Recharge Basin 3 768 1065 279

Total pumping 1167 1165 1324

Objective Function 977 6309 1.5 × 105

Penalty Function 0 4500 1.49 × 105

*Max(0,Cmax
RDX − 2.1ppb) 0 1.1 4.2

*Max(0,Cmax
T NT − 2.8ppb) 0 0 3.4

*Represents the two concentration constraints Cmax
RDX ≤ 2.1ppb and Cmax

T NT ≤ 2.8ppb at
the end of simulation
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Figure 4.5: SIT-RBF Algorithm performance comparison for Umatilla
groundwater problem (Averaged over 5 trials). Lowest Curve
is best

RDX and TNT, respectively. Comparison of figure 4.7 with 4.8 and 4.9 empha-

sizes on the need of a management policy for remediation. The contour plots

shows that the optimal policy from NOMAD run fails to satisfy the concentra-

tion constraints for RDX i.e. Cmax
RDX ≤ 2.1ppb as compared to SIT-RBF methodol-

ogy which satisfies both constraints. This constraint violation results in higher

objective function value for NOMAD solution. The GA solution violates both

the constraints i.e for RDX and TNT, thus resulting in very high objective func-

tion value.

Becker et.al. (2006) in their study emphasize on the need of optimization

algorithms for groundwater remediation problems. Detailed computational re-

sults are not provided by the analysis of the same Umatilla problem by Becker

et.al. (2006). Their paper implies that up to 8000 objective function simulations
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Figure 4.6: Initial Contamination Contour Plot (Color bar represents the
respective concentration): (a) RDX ; (b) TNT;
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Figure 4.7: Contamination Contour Plot without any management policy
(Color bar represents the respective concentration): (a) RDX ;
(b) TNT;

were done to reach the objective function value of same order as obtained by

SIT-RBF. The optimization approaches ((Peralta (2003) and Zheng and Wang

2002a) used by Becker et. al. (2006) were designed specifically to run with older

versions of MODFLOW (Harbaugh et.al., 2000) and MT3D (Chunmiao Zheng

(1990)). Hence could not be implemented for this study. They do not report the

results of multiple trials or the relationship between the objective function and
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Figure 4.8: Contamination Contour Plot for optimal solution from SIT-RBF
methodology (Color bar represents the respective concentra-
tion): (a) RDX ; (b) TNT;
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Figure 4.9: Contamination Contour Plot for optimal solution from NO-
MAD (Color bar represents the respective concentration): (a)
RDX ; (b) TNT;

the number of evaluations.
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4.7 Conclusion

The results of optimal policy design for pump and treat system (i.e. continu-

ous value pumping rate variables) illustrate the success of SIT-RBF integrated

methodology. The SIT-RBF tries to use sequentially the expensive function eval-

uation information (candidate points with respective function values) from dif-

ferent integer variables configuration to build RBF surfaces for new configura-

tion. This prior information improves RBF approximations hence reduces the

amount of function evaluations to be done to find optimal value of continuous

value variables corresponding to new configuration. The study compared the

suggested SIT-RBF methodology with NSGA and NOMAD for a mixed integer

value problems. NOMAD got to solution point of same magnitude as by SIT-

RBF with 5000 function evaluations. Whereas our suggested methodology SIT-

RBF used 1600 (1600/5000=32%) function evaluations. The results presented

indicate that under limited computational budget, the integrated methodology

was much more effective than the using any stand-alone mixed integer value

problem solver.

These results are based on groundwater pump and treat system problems

and some test problems do not prove that integrated methodology method

will always be better than other algorithms MIVP problems. However the

results still suggest that innovative integration with recent methods such as

RBF based global optimization methods should be considered as alternatives

to widely used methods such as evolutionary algorithms and mixed value non-

linear methods.
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CHAPTER 5

PARALLEL CALIBRATION OF COMPUTATIONALLY EXPENSIVE

WATERSHED MODEL WITH APPLICATION TO CANNONSVILLE

WATERSHED

5.1 Introduction

Our increasing understanding of natural systems enables us to implement

larger scaled complex mathematical and numerical models. This increasing

complexity of these numerical models comes at the cost of increase in the num-

ber of effective physical and/or conceptual model parameters. Not all of these

parameters can be determined by laboratory experiments and often the labora-

tory estimated parameters don’t work well in field scale model. These model

parameters then need to be adjusted so that model predictions closely replicate

the observed environmental system response (field measurements). This pro-

cess of model parameter-adjustment to the observed data is called calibration.

The traditional approach i.e. manual calibration by trial-and-error can be ex-

tremely labor intensive and difficult/sometimes even impossible to implement

for complex model calibration situations where models are calibrated to large

measured system over long time durations.

Automatic calibration involves the use of an optimization algorithm to

search through the possible values of these parameters to obtain a set of re-

spective parameters based on a specified goodness-of-fit. A typical goodness

of fit measure (objective function) is the sum of squared errors (S S E). These

kinds of problems are also sometimes referred to as ”inverse problems”. In gen-

eral any kind of optimization process involves running the simulation model
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many many times, so for cases where one such simulation is computationally

expensive (i.e. long computational time) the whole process becomes very ex-

pensive, sometimes the whole process may run for weeks or months. Gupta et.

al (1999) and Singh and Woolhiser (2002) list three factors influencing the whole

calibration process: calibration data, objective function formulation and the op-

timization algorithm. This study focuses on the third factor by implementing a

parallel optimization algorithm for computationally expensive calibration prob-

lems. Parallel algorithms can significantly reduce the computational burden for

a calibration problem. This study will focus on the automatic calibration of

one particular type of environmental models i.e. watershed simulation models

however the results are relevant to all types of environmental simulations.

Watershed calibration problem tends to have multiple local minima so they

require global optimization methods. Shoemaker et al. (2007) demonstrate the

necessity of global optimization methods for watershed models by showing that

local optimization methods fail to find the best solutions. A variety of global op-

timization methods have been used for watershed calibration, including genetic

algorithms (e.g. Franchini, 1996; Franchini et al., 1998; Wang, 1997), Adaptive

Cluster Covering (ACCO) (Solomatine, 1998; Solomatine et al., 2000), and Shuf-

fled Complex Evolution (SCE) (Duan et al., 1993). Most of these algorithms were

based on large number of function evaluations and hence have high computa-

tional cost for computationally expensive complex hydrological models.

This study investigates the effectiveness of new parallel algorithm, Radii

based Dynamically Dimensioned Search (RODDS) for watershed calibration.

These automatic calibration methods will be applied to a SWAT model of sin-

gle sub-basin and multiple sub-basin models of the Cannonsville Reservoir wa-
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tershed in the Catskills region of New York, USA. The RODDS algorithm is

designed to be a scalable parallel algorithm that minimizes the computational

expense of an optimization problem (one simulation is computationally expen-

sive) to locate good optimal solution points. The algorithm is inspired from

serial algorithm DDS (Tolson and Shoemaker, 2007). Tolson and Shoemaker

(2007) in their study compare the performance of serial algorithm DDS with

SCE, so this study focuses on comparison of RODDS results against the results

obtained by serial DDS. This study focuses on comparison the performance of

parallel RODDS algorithm with the serial DDS and straightforward parallel im-

plementation of DDS (which is different from RODDS). Details of the algorithm

are given in Singh, 2011.

5.2 Model Description

RODDS algorithm is tested on two watershed models for Cannonsville Reser-

voir in Upstate New York. Tolson & Shoemaker (2007) applied a modified ver-

sion of the Soil and Water Assessment Tool version 2000 (Neitsch et al., 2001)

watershed simulation model to predict flow, sediment and phosphorus for the

above-mentioned watershed. The Soil and Water Assessment Tool (SWAT) is

maintained by USDA Agricultural Research Service at the Grassland, Soil and

Water Research Laboratory in Temple, Texas, USA.

The SWAT simulation model is used to predict the impact of land manage-

ment practices on water, sediment and agricultural chemical yields in large com-

plex watersheds with varying soils, land use and management conditions over

long periods of time. Benaman et al. (2005) and Benaman (2003) used the SWAT
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model to simulate for flow and sediment in the Cannonsville watershed. This

model was then extended to include particulate and dissolved phosphorous by

Tolson & Shoemaker (2007). In this study a parallel algorithm RODDS is used

for solving the automatic calibration problems and the results are then com-

pared with the serial algorithm, DDS (Tolson and Shoemaker, 2007).

The Cannonsville Reservoir is one of the main sources of drinking water to

New York City. It is located in Delaware County in the Catskill region of Upstate

New York. The Watershed is approximately 1200 km2 in area, most of which is

dominated by forests and agricultural lands. Agricultural practices in the wa-

tershed are monitored for controlling the phosphorous loading to the reservoir

i.e. if not monitored it can result in eutrophication. A treatment plant for re-

moval of algae from eutrophication is estimated to cost NY city over US $8 bil-

lion. Further details about the SWAT2005 model application to the Cannonsville

Reservoir Watershed are provided in Tolson and Shoemaker (2005).

The goal for this study is to implement the parallel algorithm RODDS on a

real world calibration problem. For this purpose two scales of SWAT2005 mod-

els within the Cannonsville Reservoir Watershed were selected for this study.

The smaller single basin Town Brook (37 km2) watershed is inside the larger

multiple sub-basin Cannonsville (1200 km2) watershed. The New York State De-

partment of Environmental Conservation (NYS DEC) provided daily TS S and

total phosphorus loads calculated at each monitoring location. The NYS DEC

monitoring program is described in Longobucco and Rafferty (1998).

Four calibration problems were extracted from Tolson and Shoemaker (2007)

for this study i.e. two formulations each from Townbrook and Cannonsville

watershed. First set of formulation calibrates only the flow parameters whereas

129



the second set simultaneously calibrates flow, sediment, dissolved phosphorous

and other parameters respectively. The parameter ranges were based on ranges

in the SWAT2005 model documentation (Neitsch et al., 2005) to replicate the

calibration process for the selected study area. Following subsections describe

the formulations used for automatic calibration.

5.2.1 Optimization Formulation

For automatic calibration, a calibration problem is formulated as a box-

constrained minimization problem, where objective function is some measure of

error in calibration. For this study the objective was to calibrate the SWAT2005

model for input against real measured data. The algorithm comparison was

done for four different scenarios i.e. Formulation-1 (described below) with two

scenarios (Scenario 1-1 for Townbrook and Scenario 1-2 for Cannonsville) and

Formulation-2 (described below) with two scenarios (Scenario 2-1 for Town-

brook and Scenario 2-2 for Cannonsville).

Formulation-1: Flow Calibration (Scenario 1-1 and Scenario 1-2)

For single basin Townbrook (Scenario 1-1) and multi basin Cannonsville water-

sheds (Scenario 1-2), SWAT2005 models were calibrated respectively for flow

against real measured flow data using the optimization model:-

min
x

S S EQ(x) =
T∑

t=1

(Qmeast − Qsimt(x))2 (5.1)
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subject to

xmin
i ≤ xi ≤ xmax

i , i = 1, ......,D (5.2)

where S S EQ is the sum of squared error for daily flows, x is a vector of D model

parameters that are each subject to bound constraints, Qmeast and Qsimt are

the measured and simulated flows (model output) on day t, and T is the total

number of days in the calibration period. D is the number of parameters (15 for

flow calibration for scenarios 1-1 and 1-2). For Townbrook (Scenario 1-1) in this

T is 2192 days (October 1998-September 2004) and for Cannonville (Scenario 1-

2), T is 2192 days (January 1994- December 1999). Formulations are discussed

further in Tolson and Shoemaker (2007). Table 5.1 lists the calibrated parameters

with the respective description and bounds.

Table 5.1: SWAT2005 flow related parameters used in

Formulation 1 and Formulation 2

Parameter

No. (i)

Parameter

Name

Brief Description Lower

Bound

(xmin
i )

Upper

Bound

(xmax
i )

1. S FT MP Snow fall temperature (oC) -5 5

2. S MT MP Snow melt base tempera-

ture threshold (oC)

-5 5

3. S MFMX Melt factor for snow (mm

H2O/ C-day)

1.5 8

4. T IMP Snow pack temperature

lag factor

0.01 1

5. S URLAG Surface runoff lag coeffi-

cient

1 24
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Table 5.1: (continued)

Parameter

No. (i)

Parameter

Name

Brief Description Lower

Bound

(xmin
i )

Upper

Bound

(xmax
i )

6. GW DELAY Groundwater delay time

(days)

0.001 500

7. ALPHA BF Baseflow alpha factor 0.001 1

8. GWQMN Threshold groundwater

depth for return flow

(mm)

0.001 500

9. LAT TT IME Lateral flow travel time

(days)

0.001 180

10. ES CO Soil evaporation compen-

sation factor

0.01 1

11. CN2a Runoff Curve Number

multiplicative factor

0.75 1.25

12. DepthT b Soil profile total depth

range factor

0 1

13. BDb Moist bulk Density factor 0 1

14. AWCb Available water capacity

range factor

0 1

15. Ksatb Saturated hydraulic con-

ductivity range factor

0 1

a CN2 is a multiplicative factor used to simultaneously adjust all spatially
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variable base runoff curve numbers (CN2) up to a maximum of 98.0

b DepthT , BDb, AWC b and Ksatb are factors linearly scaling the soil type

specific physical properties (S OIL depth, S OIL bd, S OIL Kdat and S OIL AWC)

between their minimum (factor=0) and maximum (factor=1) values as reported

in Tolson and Shoemaker (2007).

Formulation-2: Simultaneous Flow, Sediment and Phosphorous Calibration

For this formulation single basin Townbrook and multi basin Cannonville wa-

tershed SWAT2005 models were calibrated respectively, (simultaneously) for

flow, sediment and total phosphorous against real daily flow and water quality

loading data. For this formulation to take into account the difference in mag-

nitudes of flow, sediment and total phosphorous measurements the objective

function defined in equation 5.1 needs to be modified or normalized. In this

study the calibration is done using the following optimization formulation:-

min
x

Ex =
(
∑T

t=1(Qmeast − Qsimt(x))2)1/2

std(Qmeast)

+
(
∑T

t=1(S S meast − S S simt(x))2)1/2

std(S S meast)

+
(
∑T

t=1(MPmeast − S S simt(x))2)1/2

std(MPmeast)

+
(
∑T

t=1(OPmeast − PPsimt(x))2)1/2

std(OPmeast)
(5.3)

subject to

xmin
i ≤ xi ≤ xmax

i , i = 1, ......,D (5.4)

where Ex is the normalized sum of squared error for daily flows, sediments and

total phosphorous. x is a vector of D model parameters that are each subject to

bound constraints. Qmeast and Qsimt(x) are the measured and simulated flows
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(model output) on day t. S S meast and S S simt(x) are the measured and simu-

lated suspended sediments (model output) on day t. MPmeast and MPsimt(x)

are the measured and simulated mineral phosphorous (model output) on day

t. OPmeast and OPsimt(x) are the measured and simulated organic phosphorous

(model output) on day t. T is the total number of days in the calibration period.

D is the number of parameters (32 for simultaneous flow, sediment and phos-

phorous calibration i.e. for Scenarios 2-1 and 2-2). For Townbrook (Scenarios

2-1) in this formulation, T is 2192 days (October 1998-September 2004), and for

Cannonville (Scenarios 2-2), T is 2192 days with a different calibration period

(January 1994- December 1999).

Table 5.1 lists the parameters used to calibrate the model to flow (Formu-

lation 1) with the respective description and bounds. Additional phosphorous

and sediment parameters and bounds used only in Formulation-2 are listed in

Table 5.2.

Table 5.2: SWAT2005 Additional Sediment and Phos-

phorous related parameters in Formulation 2 but not

in Formulation-1

Parameter

No. (i)

Parameter

Name

Brief Description Lower

Bound

(xmin
i )

Upper

Bound

(xmax
i )

1-15. Table 5.1 Flow parameters as in For-

mulation 1

16. ADJ PKR Peak rate adjustment fac-

tor for sediment routing in

tributary channels

0.5 1.5
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Table 5.2: (continued)

Parameter

No. (i)

Parameter

Name

Brief Description Lower

Bound

(xmin
i )

Upper

Bound

(xmax
i )

17. PRF Peak rate adjustment fac-

tor for sediment routing in

main channel

0.5 1.5

18. S PCON Channel sediment routing

parameter (linear)

0.0001 0.001

19. S PEXP Channel sediment routing

parameter(exponential)

1 2

20. LAT S ED Sediment Concentration in

lateral and groundwater

flow (mg/l)

0.1 22.8

21. S LS UBBS N f a Average slope length (m) 0.5 1.5

22. S LS OIL f a Slope length for lateral

subsurface flow (m)

0.5 1.5

23. CH EROD Channel erodibility factor 0 0.6

24. CLAY f b Soil layer clay content

range factor

0 1

25. ROCK f b Soil layer rock content

range factor

0 1

135



Table 5.2: (continued)

Parameter

No. (i)

Parameter

Name

Brief Description Lower

Bound

(xmin
i )

Upper

Bound

(xmax
i )

26. MUS LE ad jc Cannonville model spe-

cific calibration factor con-

trolling snow cover influ-

ence on sediment yield

0 1

27. PPERCO Phosphorous percolation

coefficient (10 m3/mg)

10 17.5

28. PHOS KD Phosphorous soil par-

titioning coefficient

(m3/mg)

100 200

29. CMN Rate factor for humus min-

eralization of active or-

ganic Phosphorous

0.0001 0.003

30. P UPDIS Phosphorous uptake dis-

tribution factor

0.1 100

31. ERORGP Phosphorous enrichment

ratio for loading with

sediment

1 5

32. PS P Phosphorous availability

index

0.01 0.75

a S LS UBBS N f , S LS OIL f and CN2 f are multiplicative factors used to
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simultaneously adjust all spatially variable base values of the S LS UBBS N,

S LS OIL and CN2 parameters, respectively.

b CLAY f and ROCK f are factors linearly scaling the soil type specific physi-

cal properties (CLAY and ROCK) between their minimum (factor = 0) and maxi-

mum (factor = 1) values as reported in Tolson and Shoemaker (2007). The ranges

for CLAY and ROCK were derived from soil survey data.

c The MUS LEad j parameter was added to SWAT for the Cannonsville appli-

cation (Tolson and Shoemaker, 2007) and controls the snow cover influence on

Hydrologic Response Unit sediment yield.

5.3 Algorithm Description

Radii based Optimization using Dynamically Dimensioned Search, RODDS

(Chapter 2, Singh, 2011) algorithm is a parallel stochastic heuristic global search

algorithm that tries to minimize the computational expense of an optimiza-

tion problem by effectively utilizing the multi-core machines. The algorithm

is inspired by but different from serial algorithm DDS (Tolson and Shoemaker,

2007). The RODDS algorithm searches (as in serial DDS) globally at the start of

the search and becomes a local search as the number of iterations approaches

the maximum allowable number of function evaluations. This transition is

achieved by dynamically and probabilistically limiting the dimensional space

of the neighborhood as the search progresses.

The candidate points in RODDS are generated by perturbing the current best

solution point in randomly selected dimensions. At a particular iteration the
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choice of these evaluation points (for all processors) depends on all previously

evaluated points and the respective function values i.e. RODDS tries to stay

away from all previously generated high-cost points. The RODDS algorithm in-

put parameters involve initial and final radii’s, neighborhood perturbation fac-

tor, maximum allowed function evaluations, the problem size and the number

of processors to be used for the run. The algorithm starts with a set of ran-

domly generated uniformly spaced points. Each processor then evaluates the

function and returns the objective function value to the main processor. Then

a set of possible candidate points are generated. One of the main features of

RODDS algorithm is that points evaluated by the expensive simulation are not

allowed to by within the radius length of a point where an expensive simula-

tion has been done. The radius length of this hypersphere decreases with the

RODDS iteration number. The radius of this hypersphere depends on iteration

number, maximum allowed function evaluations, current best cost value and

the function values at all previously generated points (Chapter 2, Singh, 2011).

If the candidate point happens to lie within the hypersphere, the whole genera-

tion procedure is repeated till this radii criterion is satisfied. Once the candidate

solution points are generated, the main processor again assigns the candidate

solution points to individual processors and the whole process (expensive ob-

jective function evaluation) is repeated until maximum allowed evaluations is

exhausted. For more details reader is referred to (Chapter 2, Singh, 2011).

RODDS is designed to require little or no tuning of algorithms. The maxi-

mum number of simulations the user is willing to do to obtain a solution is “m”.

This number is known to the user and is hence not a tuned algorithm parameter.

The variance for generating new points is r and we recommend using the de-

fault values of r = 0.2 (as suggested in Tolson and Shoemaker (2007)). RODDS
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has two parameters describing the initial and final radius size. We recommend

using the default values of Rinitial = 0.3 and R f inal = 0.05

5.4 Outline of Algorithm comparisons

The goal of this study is to implement a parallel RODDS algorithm to identify

good solution points for computationally expensive calibration problems when

wall clock time is limited. Thus the experimental runs for the study were de-

signed to test the algorithm with a fixed number of total function evaluations

(across all processors) under varying number of processors. So in the experi-

ments as the number of processors increase, the effective wall clock time de-

creases. The results presented here compare the performance of RODDS with

the serial version of DDS and our implementation of parallel DDS (called DDS-

PC). The main difference between the RODDS and the DDS-PC is that RODDS

uses hyperspheres to stay away from local minima for better exploration of

search space. In order to compare the effectiveness of this method of candidate

point generation, the plots include a version of DDS-PC as well as serial DDS.

Tolson and Shoemaker (2007) in their DDS paper compared the performance

of DDS algorithm with SCE and showed it to outperform SCE when number of

simulations are limited. Hence this study focuses on comparison of new Parallel

algorithm with the serial one.

Results for the study are presented in three sections and the last section

then discusses the quality of results. Section 5.5 compares the performance of

RODDS algorithm with the serial version of DDS and the DDS-PC, for water-

shed calibration test problems. Section 5.6 discusses the performance compari-
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son with increase in the number of processors used for that respective run (i.e.

decrease in wall clock time). Section 5.7 discusses and compares the results in

terms of parallel computing metrics i.e. speedup and efficiency. Section 5.8

summarizes and discusses the quality of results obtained for the tested formu-

lations.

5.5 Algorithm Performance Comparison

The first set of plots summarize the results of optimization run for all the Sce-

narios 1-1, 1-2, 2-1 and 2-2. The figures 5.1 and 5.2 compare the performance of

RODDS algorithm with the serial DDS (Tolson and Shoemaker, 2007), DDS-PC

and RODDS 1-processor for the Townbrook problem for formulation 1 and for-

mulation 2 respectively. Optimization runs and comparisons were done with

4, 8, 16 and 32 processors (thus 4, 8, 16 and 32 times computational time sav-

ings) respectively. Plots show the convergence plot for the objective function

values with varying number of processors used for the respective runs, with

the maximum allowed function evaluations being limited to 400 for the 15 di-

mensional formulation-1 and 1600 for the 32 dimensional formulation-2. For

each figure, the function value (y -axis) is plotted against the specific ith function

evaluation (x- axis). This function value is the averaged over 30 trial runs for

the best solution found on or before the ith function evaluation, respectively. For

RODDS algorithm the one iteration equals ’w’ function evaluations, where ’w’ is

the number of processors used for the run. Similarly figures 5.3 and 5.4 compare

the performance of the tested algorithms on Cannonsville function.

Figure 5.1(a) and 5.3(a) show that RODDS with 4 processors performs pretty

140



well in comparison to serial DDS. In general RODDS performed better than

the serial DDS with processors up to 16. In case of 32 processors the quality

of results for same number (as in serial) function evaluations is not as good as

the serial RODDS solution. Similarly sections 5.1(b), 5.1(c) and 5.1(d) compare

the algorithm performance with 8, 16 and 32 processors respectively. The dif-

ference in the average best solutions obtained is much more clear in case with

processors 4 and 8 (i.e. the results were better with 1/4th or 1/8th the serial

computational time).

5.6 Processor Performance Comparison

Figures 5.5 and 5.6 summarizes the performance of RODDS with respect to the

number of processors used for the run. Each figure plots the results for the dif-

ferent test functions with respect to the respective number of processors used for

that particular run. The maximum allowed function evaluations per processor

were chosen such that each run does same amount of total function evaluations

in total. These figures show how the performance of RODDS is affected by in-

crease in number of processors. Results (figures 5.5 and figures 5.6) here show

that the idea of hyperspheres help RODDS to maintain good efficiency in terms

of quality of results as the number of processors used in a particular run is in-

creased. These plots show that as the number of processor increases, RODDS

maintains good efficiency in terms of objective function value.
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Figure 5.1: Results for Formulation-1 on Townbrook model: (a) with 4 Pro-
cessors (Wall clock time 16 mins); (b) with 8 Processors (Wall
clock time 9 mins); (c) with 16 Processors (Wall clock time 7
mins); and, (d) with 32 Processors (Wall clock time 5 mins). In
all cases Wall clock time for serial DDS and RODDS-1 processor
is 60 mins

5.7 Metrics of Parallel Performance

The most commonly used parallel implementation metrics are speedup and ef-

ficiency. Speedup is a measure of time gained i.e. by how much a parallel al-

gorithm is faster than the respective serial algorithm. Efficiency metric reflects

the processor utilization i.e. how well the work is distributed among the pro-
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Figure 5.2: Results for Formulation-2 on Townbrook model: (a) with 4 Pro-
cessors (Wall clock time 70 mins); (b) with 8 Processors (Wall
clock time 36 mins); (c) with 16 Processors (Wall clock time 19
mins); and, (d) with 32 Processors (Wall clock time 10 mins). In
all cases Wall clock time for serial DDS and RODDS-1 processor
is 266 mins

cessors. We defined these criteria’s based on the runs it took for an algorithm

to reach within 1% of the final answer obtained by DDS-serial averaged over 10

trials for the Townbrook model (Scenarios 1-1 and 2-1), Cannonsville (Scenarios

1-2) and 5 trials for the Cannonsville (2-2).

Tables 5.3 to 5.6 list the parallel metrics for the watershed functions for

RODDS and DDS-PC, respectively. Figure 5.7 explains the relation between
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Figure 5.3: Results for Formulation-1 on Cannonsville model: (a) with 4
Processors (Wall clock time 204 mins); (b) with 8 Processors
(Wall clock time 104 mins); (c) with 16 Processors (Wall clock
time 54 mins); and, (d) with 32 Processors (Wall clock time 34
mins). In all cases Wall clock time for serial DDS and RODDS-1
processor is 800 mins

wall clock times and modified metrics and the following tables for respective

functions list the modified metrics. These tables use the following definitions:

• np is the number of processors used for a particular run.

• D f is the difference between the results of RODDS and DDS-serial at the

end of optimization run averaged over 30 trials.
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Figure 5.4: Results for Formulation-2 on Cannonsville model: (a) with 4
Processors (Wall clock time 13.5 hours); (b) with 8 Processors
(Wall clock time 6.75 hours); (c) with 16 Processors (Wall clock
time 3.4 hours); and, (d) with 32 Processors (Wall clock time 1.8
hours). In all cases Wall clock time for serial DDS and RODDS-
1 processor is 54 hrs

• WT f is the wall clock units to get to Serial answer.

• T f is the total CPU units to get to Serial answer i.e. nprocs*WTp.

• T f (c%) is the wall clock units to reach within c% of the serial answer, for a

respective algorithm.

• Speedup S p−1% is the ratio of ’serial run to get to within c% of final serial

answer’ to ’total CPU units to get to serial answer’ i.e. Ts
Tp

, averaged over
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Figure 5.5: Processor performance comparison on Townbrook model: (a)
Formulation-1; (b) Formulation-2;
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Figure 5.6: Processor performance comparison on Cannonsville model: (a)
Formulation-1; (b) Formulation-2;

30 trials.

• Efficiency E f − 1% is the ratio of ’S p − 1%’ to the respective number of

processors used.
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Table 5.3: RODDS Results for Formulation-1 on Townbrook. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(1%) S p(1%) E f (1%)

1 2.8 227 227

4 1.7 66 264 65 5.2 1.3

8 2.3 29 232 25 13.6 1.7

16 1.6 20 320 17 19.9 1.2

32 0.5 12 384 10 33.9 1.06

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 339

4 -0.1 99 3.4 0.85

8 -0.3 46 7.4 0.93

16 -0.6 25 13.56 0.85

32 -5.4

b) DDS-PC

Table 5.4: RODDS Results for Formulation-2 on Townbrook. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(2%) S p(2%) E f (2%)

1 0.2 1355 1355

4 0 382 1528 170 5.6 1.4

8 0.08 200 1600 101 9.4 1.18

16 -0.3 100 1600 54 17.6 1.1

32 -0.2 - - 25 38 1.18

a) RODDS

np D f Ts(1%) S p(2%) E f (2%)

1 0 950

4 -0.8 240 3.9 0.97

8 -1.9 184 5.16 0.64

16 -2 82 11.58 0.73

32 -2.3

b) DDS-PC
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Table 5.5: RODDS Results for Formulation-1 on Cannonsville. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(2%) S p(2%) E f (2%)

1 3.4 294 294

4 2.1 84 336 75 3.8 0.95

8 0.2 47 376 39 7.4 0.92

16 0.1 23 368 21 18.5 1.1

32 -1.7 - - 13 22 0.69

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 290

4 -1.2 99 2.9 0.72

8 -1.2 49 5.9 0.73

16 -4.3 - - -

32 -2.4 - - -

b) DDS-PC

Table 5.6: RODDS Results for Formulation-2 on Cannonsville. a) is for
RODDS and b) is for DDS-PC

np D f WT f T f Tp(2%) S p(2%) E f (2%)

1 0.1 1557 1557

4 0.5 342 1368 219 4.9 1.23

8 0.1 184 1472 126 8.5 1.06

16 0.1 96 1536 64 16.75 1.05

32 -0.5 - - 42 25.52 0.8

a) RODDS

np D f Ts(1%) S p(1%) E f (1%)

1 0 1072

4 -0.4 256 4.18 1.04

8 -1.2 155 6.9 0.86

16 -0.9 80 13.4 0.84

32 -2.4

b) DDS-PC
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5.8 Discussion

This section is divided in two parts. The first section discusses the algorithm

performance and second one briefly discusses the quality of results obtained.

Numerical results from the optimization runs (figures 5.1-5.4) demonstrate that

the RODDS algorithm is able to efficiently (computationally) use parallelism

to get good results for the Townbrook and Cannonsville watershed calibration

problems. Plots 5.1(a) and 5.3(a) show that RODDS outperforms DDS-serial as

well DDS-PC, for 1/4th saving in time. Similar results are obtained for 1/8th

and 1/16th time savings. For 1/32nd time savings it gets to answers very close

to serial values. Cannonsville plots (5.5 and 5.6) also support the above-said

statement. Tables 5.3 to 5.5 lists the modified speedups and efficiencies for the

two calibration models. RODDS algorithm in general was able to reach effi-

ciencies of greater than one also all of these efficiencies were much better as

compared to DDS-PC (a parallel implementation for DDS), which show that the

idea of hyperspheres helped RODDS to escape some local minima points and

get to better solution point then DDS-PC.

The fact that RODDS is able to get better solution points than even serial DDS

is remarkable since this results in a speed up that is greater than the number of

processors and hence an efficiency greater than one. DDS-PC in general was

able to locate few good points but also some bad ones. Shoemaker et. al. (2007)

showed the multimodal shape of the S S E surface for the Townbrook SWAT

model. The optimization method has to search over this surface with many lo-

cal minima which promotes the need for an global optimization method which

can avoid getting trapped in local minima. RODDS tries to use the idea of radii’s

(hyperspheres) to avoid or escape from local minima (if caught in one) in paral-
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lel. The idea of using radii’s for candidate point generation is to stay away from

poor objective function value points as well as all previously calculated points.

One important factor is that there is no restriction around the current best point.

As the search progresses, the radius shrinks so that algorithm becomes a local

optimization algorithm at the end of the run.

It is very noticeable that the efficiency E f is greater than 1 for most applica-

tions of RODDS in Tables 5.3-5.5. This is very significant since implementation

of parallel processing usually result in efficiency well below 1. Tables also show

one interesting behavior to notice in RODDS results, for some runs efficiencies

with 8 and 16 processors is better than 4 processors which is not expected since

the parallel efficiency usually decreases with the number of processors. For

example in Table 5.3 a) for row 3 (=8 processors) E f is 1.7 and for row 2 (=4 pro-

cessors) E f is 1.3. Authors suggest this is because the “best solution” used in the

next iteration is the best among the psimulations tested in one iterations. With

serial DDS the next solution is only compared with the previous best solution.

Thus it is more adaptive to avoid local minima as serial DDS moves only in one

direction at a particular iteration.

In general for Scenario 2-2 i.e. simultaneous Flow, Sediment, Dissolved

phosphorous and Organic phosphorous calibration for Cannonsville watershed

(2192 observations), RODDS with 32 processors on average obtained correla-

tion coefficients of 0.72, 0.65, 0.59 and 0.75 with a percentage bias of 4, 18, 23

and 38 respectively. However these values depend more the objective function

formulations. This study focuses on implementation of RODDS on calibration

so experimenting with the objective function formulations is beyond the scope

of this paper.

150



5.9 Conclusion

For the two tested real watershed calibration problems, numerical results

demonstrate that RODDS algorithm effectively used the parallel processing for

automatic calibration. In general RODDS was able to locate solution points at

least as good as the serial algorithm DDS but the wall clock time for RODDS was

usually less than 1/P as long as the serial time (where P is the number of proces-

sors), which occurs when the efficiency E f is greater than 1. The value of parallel

algorithms in general (RODDS in this study) is greatest for computationally de-

manding models where there’s limited time to get results. For example in this

study where the objective function or model evaluations were limited, RODDS

with 16 processors was able to locate as good solution point in 3.40 hours as

were obtained by serial algorithm in 54 hours. RODDS algorithm like DDS is

quite simple and thus can be easily coded in whatever programming language

of choice. For the current study the algorithm has been implemented in MAT-

LAB. RODDS is an attractive optimization tool for calibration of Watershed and

other environmental simulation models because of increasing availability of in-

expensive multi-core machines and the simple characteristics of RODDS algo-

rithm.
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CHAPTER 6

CONCLUSION

This dissertation focuses on development and implementation of computa-

tionally efficient optimization algorithms for groundwater management and

calibration of computationally expensive models. A new parallel algorithm,

RODDS was developed and implemented on groundwater management and

watershed calibration models. A new methodology SIT-RBF is developed

in an attempt to minimize the computational expense of fixed cost problems

(mixed integer problems) by implementing a sequential response surface based

method.

RODDS is a new parallel optimization algorithm developed to find near op-

timal solution points for global optimization problems within fixed computa-

tional budget (with reduced total wall-clock time). RODDS algorithm imple-

ments hyperspheres to efficiently explore the search space in parallel. It was

demonstrated through five test functions, a real groundwater contamination

transport model and two real watersheds that for a given computational bud-

get RODDS consistently identified near optimal solution points as obtained by

serial algorithm for all functions. Numerical results show that RODDS algo-

rithm was able to reach efficiencies for up to 32 processors greater than one as

compared to Serial DDS for all tested functions. This is an excellent result since

parallel efficiencies are typically much lower than 1 (e.g. 0.5) as the number of

processors increase. Results also show the efficiency of hyperspheres used in

RODDS candidate point generation by comparing the results with parallel im-

plementation without the hyperspheres e.g. for the groundwater remediation

problem with 16 processors RODDS achieved an efficiency of 1.1 as compared to
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efficiency of 0.55 by the parallel implementation without the hyperspheres. The

increasing availability of cheap multi-core machines coupled with simple char-

acteristics of RODDS makes it an attractive optimization tool for Environmental

simulations. In the future, we hope to better delineate the types of functions on

which we expect RODDS to perform well. We also want to test RODDS perfor-

mance with large number of processors (> 500) and on a parallelized simulation

model (using parallel simulation for higher speedups). For example, RODDS

with 20 processors using simulations each efficiently running on 25 processors

can use 500 processors efficiently. Future studies will also be devoted to further

analyzing the sensitivity of the performance relative to the parameter selection.

The results of algorithm comparisons (chapter 3) indicate that response sur-

face based optimization methods can be effective tools in designing the man-

agement policy for computationally expensive groundwater models. The per-

formance of four response surface based optimization methods was compared

with heuristic and derivative-based methods for two EPA groundwater super-

fund sites i.e. Umatilla Chemical Depot,Oregon and Blaine Ammunition De-

pot, Nebraska. The response surface based methods were shown to be robust

to different formulations of the objective function and different levels of com-

putational complexity of the groundwater model. In multiple independent op-

timization trials, the stochastic RBF (Regis and Shoemaker, 2007) had a lower

mean with small variance of the objective function values than heuristic and

derivative-based optimization methods. For example in case of Umatilla prob-

lem Stochastic RBF had solution over an order of magnitude better than con-

ventional methods. In the future, we intend to implement response surface

based optimization methods to other application areas in water resources sys-

tems (water distribution networks etc.).
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A new methodology SIT-RBF, integrating SIT integer optimization with Re-

sponse surface based method was developed to minimize the computational

expense for long term management policy of fixed cost problems in Water Re-

sources. SIT algorithm generates a fixed number of candidate integer config-

urations from the neighborhood. The suggested SIT-RBF methodology tries to

use sequentially the expensive function evaluation information (decision vari-

ables with respective function values) from different integer variables configu-

ration to build RBF surfaces for the new configuration. This prior information

improves the initial RBF fit for the new configuration thus the RBF approxi-

mations, hence reduces the amount of function evaluations to be done to find

optimal value of continuous value variables corresponding to the new config-

uration. The study compared the suggested SIT-RBF methodology with GA

based NSGA and a stand-alone mixed integer value optimizer, NOMAD. The

results presented indicate that under limited computational budget, the inte-

grated methodology was much more effective than the using these other two

methods, which appear to be the most efficient among previous methods for

this problem. For the groundwater remediation problem (Umatilla) the SIT-

RBF methodology had solution over 150 times better than the conventionally

used GA. This methodology can feasibly be used for much larger water re-

sources simulation models than is possible with previously existing methods.

In the future, we expect to do more numerical testing of the algorithm to bet-

ter understand SIT-RBF performance. These numerical studies will also help us

determine good default parameters for SIT-RBF. We also want to improve the

SIT algorithm by generating dynamic number of candidate points from neigh-

borhood to possibly explore whole neighborhood space. In this context it will

also be critical to determine the benefits of using all previous simulation infor-
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mation (decision variables with respective function values) versus using only

some of the function evaluation information. We believe that using only some

of the function value information might improve the performance of SIT-RBF

methodology. We also intend to pursue versions of SIT-RBF that can take ad-

vantage of parallel computing environments for RBF minimizations (Parallel

Stochastic RBF).

New Methods RODDS, SIT-RBF are shown to be very effective on water re-

sources problem in two major sub areas Groundwater Hydrology and Water-

shed Hydrology. Although this study focused on groundwater management

and watershed calibration models, the results are just as relevant to all environ-

mental simulations of a computationally demanding model.

In further research, the suggested methodologies (RODDS and SIT-RBF)

should also be extended for much larger scaled water resources problems and to

the problems from other application areas using traditional optimization meth-

ods.
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APPENDIX A

THE RODDS ALGORITHM

This appendix shows the general structure of RODDS algorithm and the way it

generates candidate points for expensive objective function evaluation. RODDS

is a new parallel optimization algorithm which tries to find near optimal so-

lution points for global optimization problems by efficiently using nowadays

commonly available multi-core machines. Figure A.1 shows the flowchart for

the algorithm. The algorithm starts with main processor generating initial set

of decision variables. This initial set is then passed on to respective processors

for simulation run. After simulation run each individual processor passes on

the respective objective function value to main processor. The main processor

then generates the next set of candidate points for simulation A.1 and the whole

process is repeated till maximum allowed function evaluations are exhausted.

A.1 Candidate Point Generation

RODDS algorithm uses hyperspheres in candidate point generation. The al-

gorithm needs to generate more than one candidate points at any step for ex-

pensive function evaluation (by all processors). These points are systematically

generated to efficiently explore the search space. The idea behind using hyper-

spheres is to keep the newly generated candidate points away from all previ-

ously evaluated expensive solution points. The radius of the hypersphere de-

pends on the input parameters initial and final radius adjusted by a factor. This

factor assigns higher weight to solution points with high objective function val-

ues. The radii for these hyperspheres decreases as the search progresses. Figure
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Figure A.1: RODDS Flowchart

A.2 shows the hypersphere idea for a two dimensional (two decision variable)

model. Here circles represent hyperspheres at different stages of search process
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i.e. dark ones represent the initial hyperspheres and lighter ones represent at

later stage (hypersphere shrinks). At a particular iteration, candidate point gen-

eration process is repeated if the generated point falls inside the hypersphere.

 

Figure A.2: RODDS Candidate point selection
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