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Robotics faces many unique challenges as robotic platforms move out of the lab

and into the real world. In particular, the huge amount of variety encountered

in real-world environments is extremely challenging for existing robotic control

algorithms to handle. This necessistates the use of machine learning algorithms,

which are able to learn controls given data. However, most conventional learning

algorithms require hand-designed parameterized models and features, which are

infeasible to design for many robotic tasks. Deep learning algorithms are general

non-linear models which are able to learn features directly from data, making them

an excellent choice for such robotics applications. However, care must be taken to

design deep learning algorithms and supporting systems appropriate for the task

at hand. In this work, I describe two applications of deep learning algorithms and

one application of hardware neural networks to difficult robotics problems. The

problems addressed are robotic grasping, food cutting, and aerial robot obstacle

avoidance, but the algorithms presented are designed to be generalizable to related

tasks.
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CHAPTER 1

INTRODUCTION

Figure 1.1: Variety of robotic tasks: In the real world, robots must perform a huge
range of tasks in order to function effectively. Here, I show several tasks which I address
in this work – from left to right, grasping novel objects, cutting novel food items, and
avoiding various obstacles. Each of these tasks themselves also involves a huge amount
of variety – the robot must be able to pick up any household object, cut any food item,
or avoid any obstacle.

The field of robotics is at a very exciting point. Owing both to advances in

algorithms and increasing computational power, robots are poised to move out of

the lab and other special purpose applications such as manufacturing, and into our

everyday lives. This can be seen especially from the recent upsurge in interest in

autonomous vehicles, but robotics has the potential for even greater impact.

As robotics begins to move from the lab to the real world, robots face many new

challenges, some of which are shown in Figure 1.1. Consider a household personal

assistant robot. Such a robot must perform many complex tasks, such as sorting

and folding clothes, operating appliances, picking up and cleaning, and preparing

food in the kitchen. Moreover, it must handle the huge variety of objects, materials,

and the like associated with these tasks – for example, picking up different objects,

some of which it may never have seen before, or preparing different food items.

For many of these problems, there exists only an abstract relationship between the

1



robot’s visible inputs and the task at hand – for example, attempting to control

from vision data, or determine material properties from haptic feedback.

Traditionally, a roboticist, or team thereof, would hand-design controllers for

each task we want a robot to perform. Even for tasks which human users can

perform intuitively, such as grasping objects or cutting food, these controllers can

be very difficult to design because we aren’t able to easily translate this natural

intuition into code. It can also be extremely challenging to scale these approaches

up to the huge amount of variety our robots must deal with in the real world –

grasping every object in your home, cutting any food item, etc.

For these reasons, in recent years machine learning algorithms have seen

widespread use for robotics applications. Rather than forcing the engineer to

hand-code an entire end-to-end robotic system, machine learning allows portions

of the system to be learned from some training data. This approach allows us to

model concepts which might be difficult or impossible to properly hand-model. It

also allows for adaptable models – as long as the form of the model is general, it

can be adapted to more or different cases simply by providing training data for

these new cases.

While machine learning algorithms have many advantages for robotic applica-

tions, they can still be difficult to apply to new problems. First, many learning al-

gorithms require time-consuming optimization to perform inference, making them

infeasible for robotic applications with strict time constraints. Designing models

general enough to apply to other cases of the same problem, while still specific

enough to be a good fit for the problem, can be very challenging, particularly with

the huge variety seen in real-world robotics. In addition, most machine learning

algorithms require significant hand-engineering in terms of designing features –

2



transformations of the raw input, e.g. images, dynamics information, etc. given

to the robot, into a form more useful for the learning algorithm. While design-

ing good features is critical to the success of a machine learning algorithm for a

particular problem, such features are often unitiutive, problem-specific, and take

significant effort to design.

More recently, deep learning approaches have shown impressive performance

across a wide range of domains, including computer vision, audio processing, nat-

ural language processing, and others. These algorithms are based on neural net-

works, highly-parameterized models which use multiple layers of representation to

transform data into a task-specific representation. By using unsupervised feature

learning algorithms, deep learning approaches are able to pre-initialize these net-

works with useful features, avoiding the overfitting problems commonly seen when

neural networks are trained without this initialization. This and several other use-

ful properties, described in more detail below, make deep networks an excellent

choice for robotic applications.

In this work, I will begin with a general description of deep learning algorithms

and their strengths. I will then discuss their particular advantages as learning

algorithms for robotics applications. Finally, I will present three applications of

deep/neural network algorithms to diverse robotics problems – grasping, cutting

unknown food materials, and aerial robot obstacle avoidance – highlighting the

strengths of these algorithms in real-world robotics applications.
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Figure 1.2: Deep network and auto-encoder: Left: A deep network with two hidden
layers, which transform the input representation, and a logistic classifier at the top layer,
which uses the features from the second hidden layer to predict output. Right: An auto-
encoder, used for pretraining. A set of weights projects input features to a hidden layer.
The same weights are then used to project these hidden unit outputs to a reconstruction
of the inputs. In the sparse auto-encoder (SAE) algorithm, the hidden unit activations
are also penalized.

1.1 Deep Learning

While deep learning is a broad class of learning algorithms, with many different

associated inference models, most approaches learn a set of connection weights to

be used by a neural network model for inference. A neural network, such as that

shown in Fig. 1.2-left typically consists of multiple layers of artificial “neurons.”

Each neuron has weighted connections to each neuron in the previous layer, or

to the network’s inputs if the neuron sits at the lowest layer. The neuron then

forms output by passing the weighted sum of its inputs through some nonlinear

activation function (for example a sigmoid, σ(a) = 1/(1 + exp(−a)).) This output

is then sent to the next layer. Ideally, each layer of features will represent a better

abstraction of the input data, so that the final layer of features will be a better

representation for some classifier than the raw features fed into the network.
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For example, take W [ℓ] as the network weights for layer ℓ, h[ℓ] as the corre-

sponding “hidden” representation generated using these weights, Kℓ as the size of

this hidden representation for layer l, x as the raw input features, N as the number

of these features, and ŷ as the network’s predicted output, e.g. we want to model

P (ŷ = 1|x). Then, a simple two-layer deep network with a logistic classifier at the

top layer might proceed as:

h
[1]
j = σ

(

N
∑

i=1

xiW
[1]
i,j

)

h
[2]
j = σ

(

K1
∑

i=1

h
[1]
i W

[2]
i,j

)

P (ŷ = 1|x; Θ) = σ

(

K2
∑

i=1

h
[2]
i W

[3]
i

)

(1.1)

Note that, while the above network performs a binary classification task, it is

simple to swap out the top-layer classification function for other tasks, e.g. using

a softmax function for multi-class classification, or a linear weighting of the top-

layer features for regression. This modularity is a major strength of neural network

approaches.

Back-propagation: The above defined the inference procedure for a neural

network, assuming the weights W had already been initialized. However, for

this network to be useful, these weights must be learned from data to repre-

sent the nonlinearity we want to model. As with most learning algorithms, we

have some cost function C(P (ŷ = 1|x), y∗) which gives the cost of prediction

probability P (ŷ = 1|x) given ground-truth label y∗. During learning, we will op-

timize this cost over our entire dataset of training examples (x, y∗), e.g. taking

Θ = {W [1],W [2],W [3]} and using t to indexM total training cases, and C(X, Y,Θ)
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as the cost across the entire dataset, learning proceeds as:

C(X, Y,Θ) =
M
∑

k=1

C(P (ŷ(t) = 1|x(t)), y∗(t)) (1.2)

Θ∗ = arg min
Θ

C(X, Y,Θ) (1.3)

In most cases, we will use a gradient-based learning algorithm to optimize Θ.

This requires the gradient of the cost function with respect to each parameter

being optimized, i.e. ∂C(X, Y,Θ)/∂Θ.

While gradients for the top-layer weights W [3] are the same as those for a

standard logistic classifier taking h[2] as input, gradients for the previous layers’

weights are more complicated. For these, we use back-propagation, iteratively

computing the gradient of the cost function with respect to the previous layer’s

hidden units, then using this gradient to compute the gradient with respect to that

layer’s weights, continuing this process until we have gradients for all these weights.

Since the gradient of the cost function with respect to each layer’s hidden units

depends only on the same gradient for the next layer and the next layer’s weights,

this back-propagation requires only a single backwards pass through the network

to compute all these gradients. Simplifying notation by defining ∂C(t)/∂h[2](t) as

the gradient of the cost for case t with respect to h[2], we would back-propagate to

the first-layer weights as:

∂C(t)

∂W
[1]
i

=
∂C(t)

∂h[2](t)
∂h[2](t)

∂h[1](t)
∂h[1](t)

∂W
[1]
i

(1.4)

This gives an efficient method for computing the gradients of the cost function

with respect to each layer’s weights. In Chapter 3, I will use a similar idea to

efficiently compute cost-function gradients with respect to network inputs.
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Unsupervised Feature Learning: Even moderately-sized neural networks will

have a huge number of parameters which must be learned – for example, a net-

work passing a 20x20 pixel image through two 200-unit layers will have 120,000

(20x20x200 + 200x200) different weights. This huge degree of parameterization

has both advantages and disadvantages. While it allows these models to act as

general nonlinear learners, capable of fitting nearly any function, it also makes

them extremely vulnerable to overfitting, learning models which perform well on

their training data but do not generalize to new cases. Such generalization is ex-

tremely important for robotics, which must operate in the real world, handling

cases never seen before by the learning algorithm. This can be partly addressed

using regularization, or by increasing the amount of training data available. In

Chapter 2 I will show that using specialized regularization, in particular, improves

results. However, regularization is not a complete solution to overfitting, and can

impact model performance if applied too strongly. Additional training data is more

effective, but can be time-consuming to collect for complex robotic tasks.

Modern deep learning approaches use new learning algorithms to avoid these

overfitting issues. Historical neural network methods would simply randomly

initialize network weights, then back-propagate some cost function as described

above. Since neural network optimization is inherently non-convex, it will con-

verge only to a local minimum. Initializing the network randomly often leads this

optimization to reach minima which overfit the training data. The core problem

here is that, while each layer of the network is supposed to represent a more-useful

abstraction of the input data, randomly initialized weights will not do so, forcing

the algorithm to simultaneously learn a feature representation and a classifier from

that initial poor feature representation.
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Modern deep learning algorithms remedy this problem by using unsupervised

feature learning algorithms. Rather than simultaneously learning a classifier and

the features used for that classifier, these algorithms use unsupervised feature

learning algorithms to initialize each layer of the network to a good representa-

tion. For example, we might intialize the previous network’s first-layer weights

using the sparse autoencoder (SAE) algorithm [46], as illustrated in Fig. 1.2-right,

which optimizes a layer’s weights to give a sparse representation which is able to

reconstruct the layer’s inputs. Taking x̂ as the reconstruction of x, g(a) as some

sparsity function penalizing hidden-unit activations (e.g. the L1 sum of unit acti-

vations), and λ as a scaling factor defining the weighting between the two, we can

initialize W [1] as:

W [1]∗ = arg min
W [1]

M
∑

t=1

(||x̂(t) − x(t)||22 + λ

K1
∑

j=1

g(h
[1](t)
j )) (1.5)

h
[1](t)
j = σ(

N
∑

i=1

x
(t)
i W

[1]
i,j )

x̂
(t)
i =

K
∑

j=1

h
(t)
j W

[1]
i,j (1.6)

Since this algorithm is generic to its inputs, it could be re-used similarly to

learn W [2] to give a sparse representation for h[2] which can reconstruct h[1]. In

this way, we can use the same feature learning algorithm to iteratively initialize our

entire network, first learning lower layers, then fixing their outputs and learning

features from them to learn the next layer’s weights.

These feature learning approaches are one of the major strengths of modern

deep learning methods. Since these algorithms are able to learn good features from

data, they are much less sensitive to input representations than other conventional
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learning algorithms such as support vector machines, Gaussian processes, and oth-

ers. Deep learning algorithms are able to learn good representations and solve

problems even from basic representations such as raw pixels, avoiding the need

to hand-design features as with other learning algorithms, saving significant engi-

neering effort for many of the complex problems encountered in robotics, where

features can be unintuitive and hard to design.

1.2 Deep Learning for Robotics

Robotics presents many unique challenges for learning algorithms. First, robots

must perform a wide range of tasks, and it is often time-consuming or even infeasi-

ble to code completely new learning algorithms and features for each task. Second,

robots must handle a huge amount of variety in the real world, which is difficult

for many learning algorithms to handle. Finally, time is at a premium in most

robotic applications, so learning algorithms must lend themselves to fast inference

to be useful for robotic applications. Below, I will describe how the strengths of

deep learning algorithms make them ideal choices for robotics.

Generality: Because deep networks are non-linear models with an extremely

high number of parameters (typically on the order of millions), they are effectively

general non-linear models, capable of learning any functional mapping from in-

puts to outputs. This is extremely useful for robotics applications, which typically

encounter a huge range of nonlinearities, many of which are difficult or impossi-

ble to model. For example, both the mapping of pixels to graspability shown in

Chapter 2 and the food-cutting dynamics shown in Chapter 3 would be extremely

difficult to model by hand, but are able to be modeled by a deep network.
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However, one significant caveat is that the huge number of learned param-

eters of a deep network also makes these models susceptible to high degrees of

overfitting. This can be mitigated by designing network structures and learning

algorithms which are a better fit for the form of the function being modeled. In

Chapter 2, I will give a new learning algorithm which improves results for multi-

modal RGB-D data, and in Chapter 3 I will give a new recurrent deep architecture

which learns latent features integrating long-term information for food-cutting and

other time-varying dynamics tasks. These two applications demonstrate the need

for careful design of networks and learning algorithms, as using the right approach

significantly improves results.

Feature Learning: As described above, modern deep learning techniques make

use of unsupervised feature learning algorithms to learn good features from data to

initialize the network. This allows the final back-propagation step to obtain better,

more general results by starting from a good representation of the problem.

These feature learning methods are particularly important in robotics, as for

many robotic tasks, it is very difficult to design useful features by hand. For exam-

ple, hand-designing visual features useful for grasping, as discussed in Chapter 2

or features allowing us to model the complex dynamics involved in tasks like the

food cutting discussed in Chapter 3 is extremely challenging. In Chapter 2, I will

show that learned features can even outperform carefully hand-designed features.

Feature learning also aids genearlizability of these algorithms by adapting even

the basic features used by the algorithm based on the given training data. This is

useful because even applications using similar input data might require very differ-

ent representations of that data. By contrast, using a traditional hand-engineering

approach, we would either have to use the same features for both applications,
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which might weaken performance, or design new features for the second appli-

cation, which would require significant effort. For example, adapting a system

designed to cut food, as in Chapter 3, to another problem, such as scrubbing

dishes, would require a very different set of features, but the deep learning algo-

rithm I present in that chapter would be able to automatically learn these from

data for that task.

Efficiency and Parallelism: Another major advantage of deep networks is

their efficient, and natively parallel, inference. Fast inference is very important

in robotics – a grasp detection algorithm which takes ten minutes to detect a

grasp is not very useful in the real world. In more extreme cases, efficiency is

a hard requirement – for example, real-time controllers often operate at rates of

100 or even 1000 Hz, and models used for model-predictive control (MPC), as in

Chapter 3, must operate at similar rates to ensure the given controls are truly

optimal.

In deep networks, inference typically consists of a series of matrix multiplica-

tions to weight inputs followed by element-wise non-linear operations (e.g. applying

a sigmoid activation function.) Thus, inference does not require optimization, as

is the case in other models such as conditional random fields (CRFs) and many

others, allowing my model in Chapter 3 to predict at a rate of 1.2 kHz. Further-

more, such operations are extremely parallelizable – GPU implementations of deep

network inference have become ubiquitious, significantly increasing performance.

However, the structure of a deep network, composed of many individual “neurons,”

all peforming the same operation (except using different parameters), also lends

itself well to direct parallel hardware implementations, which can be extremely ef-

ficient both in terms of time and power consumption, as shown in Chapter 4. The
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later, in particular, is critical for many battery-limited robotic platforms, such as

miniature aerial vehicles.

Deep network inference time is also easily scalable – if faster inference (or a lower

hardware footprint) is required, the number of units in the network can simply be

reduced. While this might trade accuracy for performance, a similar tradeoff will

likely be encountered when trying to speed up any machine learning algorithm.

However, most other learning algorithms would require significant work to similarly

reduce the feature set, since the engineer would have to test different feature sets

and weight the tradeoffs each gives in terms of accuracy vs. performance. Deep

learning approaches let us simply define the size of the feature set to be learned

and allow the algorithm to learn an optimal task-specific feature set of that size. I

will demonstrate the power of this scalability in Chapter 3 as it allows that system

to run at real-time rates with only a slight decrease in accuracy.

1.3 Related Work

In this section, I will describe some general related work in deep learning and

robotic manipulation. In the following chapters, I will describe work related to

each chapter’s specific applications and methods.

1.3.1 Deep Learning

Modern deep learning methods retain the advantages of neural networks, while us-

ing new algorithms and network architectures to overcome their drawbacks. Due to

their effectiveness as general non-linear learners [7], deep learning has been applied
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to a broad spectrum of problems, including visual recognition [50, 79], natural lan-

guage processing [27], acoustic modeling [95], and many others. Recurrent deep

networks have proven particularly effective for time-dependent tasks such as text

generation [141] and speech recognition [47]. Factored conditional models using

multiplicative interactions have also been shown to work well for modeling short-

term temporal transformations in images [91]. More recently Taylor and Hinton

[143] applied these models to human motion, but did not model any control inputs,

and treated the conditioning features as a set of fully-observed “motion styles”. In

Chapter 3, I will use both recurrent and factored conditional units to model the

response of a dynamic system to control inputs.

Deep Learning for Manipulation

A few works have applied deep learning directly to robotic manipulation. Sung

et al. [139] use deep learning to perform transfer learning for trajectories for ma-

nipulating household appliances. In both cases, their deep learning methods are

limited to determining a manipulation plan – a grasping pose in the former case,

and an end-effector trajectory in the latter – and then standard motion control

algorithms are used to execute this plan. No deep networks are used for online

control. Levine et al. [82] use a deep network to learn control policies. Their

approach does not apply deep learning to modeling system dynamics, as I do in

Chapter 3, and will be discussed in more detail in that chapter.

Deep Learning for Visual Detection: The majority of work in deep learning

focuses on classification problems. Only a handful of previous works have applied

these methods to detection problems [107, 78, 24]. For example, Osadchy et al.

[107] and LeCun et al. [78] applied a deep energy-based model to the problem

of face detection, Sermanet et al. [131] applied a convolutional neural network for
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pedestrian detection, and Coates et al. [24] used a deep learning approach to detect

text in images. Girshick et al. [44] used learned convolutional features over image

regions for object detection, while Szegedy et al. [142] used a multi-scale approach

based on deep networks for the same task.

All these approaches focused on object detection and similar problems, in which

the goal is to find a bounding box which tightly contains the item to be detected,

and for each item, all valid bounding boxes will be similar. In Chapter 2 I will apply

a deep network to visual detection for robotic grasping with RGB-D data. In the

grasp detection problem, there may be several valid grasps for an object in different

regions, making it more important to select the one with the highest chance success.

In addition, orientation matters much more to robotic grasp detection, as most

grasps will only be viable for a small subset of the possible gripper orientations.

My approach to grasp detection will also generalize across object classes, and even

to classes never seen before by the system, as opposed to the class-specific nature

of object detection.

Multimodal Deep Learning: Recent works in deep learning have extended

these methods to handle multiple modalities of input data, such as audio and

video [104], text and image data [138], and even RGB-D data [134, 14]. However,

all of these approaches have fallen into two camps - either learning completely

separate low-level features for each modality [104, 138], or simply concatenating

the modalities [134, 14]. The former approaches have proven effective for data

where the basic modalities differ significantly, such as the aforementioned case of

text and images, while the latter is more effective in cases where the modalities

are more similar, such as RGB-D data.

For some new combinations of modalities and tasks, it may not be clear which
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of these approaches will give better performance. In fact, in the ideal feature set,

different features may use different subsets of the modalities. In Chapter 2, I will

give a structured regularization method which guides the learning algorithm to

select such subsets, without imposing hard constraints on network structure.

1.3.2 Robotic Manipulation

In this section, I will give a brief overview of related work in robotic manipulation

problems similar to those presented in Chapters 2 and 3. I will present more

detailed related work on those applications in those chapters.

Robotic Grasping

Robotic grasping has been an active research area for many years, but continues

to be a challenging, unsolved problem. Many current works [32, 45, 148] synthesize

grasps assuming a known 3D object model. While this allows for high-quality

grasps, it does not allow these algorithms to generalize to new, unknown objects.

My approach, presented in Chapter 2, and many others [128, 36, 54, 76, 61] use

learning algorithms to detect grasps for novel objects from vision data. In contrast

to these existing methods, my approach will learn even the basic features used to

detect grasps, from raw pixel data. For a much more extensive overview of these

and other robotic grasping methods, see Section 2.2.

Manipulating Deformable Objects

Many robotics works which manipulate deformable objects create task-specific

systems and controllers. For example, Bollini et al. [16] developed such a system

for baking cookies, Beetz et al. [6] for making pancakes, and Maitin-Shepard et al.
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[86] for towel folding. Gemici and Saxena [42] developed a more general system

which learns to perform a range of tasks based on defined object properties. In

Chapter 3, I will present a system which is general both to the task at hand and

the specific objects and materials involved, learning a latent representation of these

objects’ properties. I refer the reader to Section 3.2 for a more detailed overview

of these and other related works.

1.4 This Work

The remainder of this work will present three diverse applications of either deep

learning or neural network methods to robotic tasks:

Chapter 2 – Deep Learning for Detecting Robotic Grasps: Here, the

robot’s goal is to grasp a novel object – i.e. one the robot has never seen before –

using only a single frame of image and depth (RGB-D ) data taken from a sensor

such as a Microsoft Kinect. I treat this as a visual detection problem, and use a

deep network to rank candidate grasps. This shows deep networks’ ability to learn

even abstract nonlinearities such as mapping RGB-D pixels to graspability. To

improve detection efficiency, I employ a two-pass detection system where a smaller

deep network is used to obtain a small set of top-ranked candidate grasps, which

are then re-ranked by a larger network. I also present a new algorithm which

uses structured regularization to learn more robust multimodal features, better

integrating, for example, color and depth information obtained from Kinect. I

validate these algorithms both in offline detection experiments on a large-scale

grasping dataset and in real-world robotic experiments on both a PR2 and Baxter

robot.
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Chapter 3 – DeepMPC: Learning Deep Latent Features for Model Pre-

dictive Control: In this work, the robot’s goal is to cut through an unknown

food item at the fastest rate possible. This is an interesting control problem be-

cause of the complex, nonlinear dynamics (static friction, adhesion, deformation,

etc.) and variety (different materials, varying temperatures, varying layers, etc.)

involved in the problem. Due to this complexity, hand-coding effective controllers

is extremely difficult, so instead I use a model-predictive controller (MPC) which

optimizes control inputs for some cost over predicted future system states. The

chief difficulty in implementing an MPC algorithm, particularly for such a complex

problem, lies in obtaining an accurate predictive dynamics model. To this end, I

develop a new deep network and learning algorithm designed to handle the com-

plex dynamics and variations present in food-cutting and other similar problems.

I validate this model both in offline prediction experiments and using a real-time

MPC system on a PR2 robot.

Chapter 4 – Low-Power Parallel Algorithms for Single Image based Ob-

stacle Avoidance in Aerial Robots: Here, the goal is for an aerial robot

to detect and avoid various types of obstacles from monocular vision. For aerial

robots with limited battery life, power is at a premium, typically making pro-

cessing hardware powerful enough to run e.g. vision algorithms. Thus, here, I

use novel neural hardware with extremely low power consumption to implement

the obstacle detection system. Since the initial obstacle maps inferred using only

local classifiers are extremely noisy and would not be well-suited to use for real-

world control, I implement belief propagation over a conditional random field in

this neural hardware to integrate non-local information, significiantly improving

results.
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CHAPTER 2

DEEP LEARNING FOR DETECTING ROBOTIC GRASPS

Figure 2.1: Detecting robotic grasps: Left: A cluttered lab scene labeled with rect-
angles corresponding to robotic grasps for objects in the scene. Green lines correspond to
robotic gripper plates. I use a two-stage system based on deep learning to learn features
and perform detection for robotic grasping. Center: A Baxter robot “Yogi” successfully
executing a grasp detected by my algorithm. Right: The grasp detected for this case, in
the RGB (top) and depth (bottom) images obtained from Kinect.

2.1 Introduction

Robotic grasping is a challenging problem involving perception, planning, and

control. Some recent works [124, 128, 61, 151] address the perception aspect of

this problem by converting it into a detection problem in which, given a noisy,

partial view of the object from a camera, the goal is to infer the top locations

where a robotic gripper could be placed (see Figure 2.1). Unlike generic vision

problems based on static images, such robotic perception problems are often used

in closed loop with controllers, so there are stringent requirements on performance

and computational speed. In the past, hand-designing features has been the most

popular method for several robotic tasks [85, 71]. However, this is cumbersome

and time-consuming, especially when incorporating new input modalities such as

RGB-D cameras.

This work originally presented as a conference paper at Robotics: Science and Systems (RSS)
2013, and in the International Journal of Robotics Research (IJRR) Special Issue on Robot Vision
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Recent methods based on deep learning [7] have demonstrated state-of-the-art

performance in a wide variety of tasks, including visual recognition [75, 136], audio

recognition [80, 95], and natural language processing [28]. These techniques are

especially powerful because they are capable of learning useful features directly

from both unlabeled and labeled data, avoiding the need for hand-engineering.

However, most work in deep learning has been applied in the context of recog-

nition. Grasping is inherently a detection problem, and previous applications of

deep learning to detection have typically focused on specific vision applications

such as face detection [107] and pedestrian detection [131]. The goal here is not

only to infer a viable grasp, but to infer the optimal grasp for a given object that

maximizes the chance of successfully grasping it. This differs significantly from the

problem of object detection. Thus, the first major contribution of my work is to

apply deep learning to the problem of robotic grasping, in a fashion which could

generalize to similar detection problems.

The second major contribution of my work is to propose a new method for han-

dling multimodal data in the context of feature learning. The use of RGB-D data,

as opposed to simple 2D image data, has been shown to significantly improve

grasp detection results [61, 32, 128]. In this work, I present a multimodal feature

learning algorithm which adds a structured regularization penalty to the objective

function to be optimized during learning. As opposed to previous works in deep

learning, which either ignore modality information at the first layer (i.e., encourage

all features to use all modalities) [134] or train separate first-layer features for each

modality [104, 138], my approach allows for a middle-ground in which each feature

is encouraged to use only a subset of the input modalities, but is not forced to use

only particular ones.

2015. This was joint work with Honglak Lee and Ashutosh Saxena.
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I also propose a two-stage cascaded detection system based on deep learning.

Here, I use fewer features for the first pass, providing faster, but only approximately

accurate detections. The second pass uses more features, giving more accurate

detections. In my experiments, I found that the first deep network, with fewer

features, was better at avoiding overfitting but less accurate. I feed the top-ranked

rectangles from the first layer into the second layer, leading to robust early rejection

of false positives. Unlike manually designed two-step features as in [61], my method

uses deep learning, which allows me to learn detectors that not only give higher

performance, but are also computationally efficient.

I test my approach on a challenging dataset, where I show that my algorithm

improves both recognition and detection performance for grasping rectangle data.

I also show that my two-stage approach is not only able to match the performance

of a single-stage system, but, in fact, improves results while significantly reducing

the computational time needed for detection.

In summary, the contributions of this work are:

• I present a deep learning algorithm for detecting robotic grasps. To the best

of my knowledge, this is the first work to do so.

• In order to handle multimodal inputs, I present a new way to apply structured

regularization to the weights to these inputs based on multimodal group

regularization.

• I present a multi-step cascaded system for detection, significantly reducing

its computational cost.

• My method outperforms the state-of-the-art for rectangle-based grasp detec-

tion, as well as previous deep learning algorithms.

• I implement my algorithm on both a Baxter and a PR2 robot, and show
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success rates of 84% and 89%, respectively, for executing grasps on a highly

varied set of objects.

The rest of this work is organized as follows: I discuss related work in Sec-

tion 2.2. I present my two-step cascaded detection system in Section 2.3, and some

additional details in Section 2.4. I then describe my feature learning algorithm and

structured regularization method in Section 2.5. I present my experiments in Sec-

tion 2.6, and discuss results in Section 2.7. I then present experiments on both

Baxter and PR2 robots in Section 2.8. I present several interesting directions for

future work in Section 2.9, then conclude in Section 2.10.

2.2 Related Work

2.2.1 Robotic Grasping

In this section, I will focus on perception- and learning-based approaches for robotic

grasping. For a more complete review of the field, I refer the reader to review papers

by Bohg et al. [15], Sahbani et al. [122], Bicchi and Kumar [12] and Shimoga [133].

Most works define a “grasp” as an end-effector configuration which achieves

partial or complete form- or force-closure of a given object. This is a challenging

problem because it depends on the pose and configuration of the robotic gripper as

well as the shape and physical properties of the object to be grasped, and typically

requires a search over a large number of possible gripper configurations. Early

works [74, 105, 113] focused on testing for form- and force-closure, and synthesizing

grasps fulfilling these properties according to some hand-designed “quality score”
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[39]. More recent works have refined these definitions [117]. These works assumed

full knowledge of object shape and physical properties.

Grasping Given 3D Model: Fast synthesis of grasps for known 3D models

remains an active research topic [32, 45, 148], with recent methods using advanced

physical simulation to find optimal grasps. Gallegos et al. [41] performed opti-

mization of grasps given both a 3D model of the object to be grasped and the

desired contact points for the robotic gripper. Pokorny et al. [112] define spaces

of graspable objects, then map new objects to these spaces to discover grasps.

However, these works are only applicable when the full 3D model of the object

is exactly known, which may not be the case when a robot is interacting with a

new environment. I note that some of these physics-based approaches might be

combined with my approach in a multi-pass system, discussed further in Sec. 2.9.

Sensing for Grasping: In a real-world robotic setting, a robot will not have

full knowledge of the 3D model and pose of an object to be grasped, but rather

only incomplete information from some set of sensors such as color or depth cam-

eras, tactile sensors, etc. This makes the problem of grasping significantly more

challenging [15], as the algorithm must use more limited and potentially noisier

information to detect a good grasp. While some works [25, 108] simply attempt to

estimate the poses of known objects and then apply full-model grasping algorithms

based on these results, others avoid this assumption, functioning on novel objects

which the algorithm has not seen before.

Such works often made use of other simplifying assumptions, such as assuming

that objects belong to one of a set of primitive shapes [110, 17], or are planar

[98]. Other works produced impressive results for specific cases, such as grasping

the corners of towels [85]. While such works escape the assumption of a fully-
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known object model, hand-coded grasping rules have a hard time dealing with the

wide range of objects seen in real-world human environments, and are difficult and

time-consuming to create.

Learning for Grasping: Machine learning methods have proven effective for

a wide range of perception problems [146, 50, 79, 134, 14], allowing a perception

system to learn a mapping from some feature set to various visual properties. Early

work by Kamon et al. [65] showed that learning approaches could also be applied

to the problem of grasping from vision, introducing a learning component to grasp

quality scores.

Recent works have employed richer features and learning methods, allowing

robots to grasp known objects which might be partially occluded [60] or in an

unknown pose [31] as well as fully novel objects which the system has not seen

before [124]. Here, I will address the latter case. Earlier work focused on de-

tecting only a single grasping point from 2D partial-view data, using heuristic

methods to determine a gripper pose based on this point. [126]. The use of 3D

data was shown to significantly improve these results [128] thanks to giving direct

physical information about the object in question. With the advent of low-cost

RGB-D sensors such as the Kinect, the use of depth data for robotic grasping has

become ubiquitous.

Several other works attempted to use the learning algorithm to more fully con-

strain the detected grasps. Ekvall and Kragic [36] and Huebner and Kragic [54]

used shape-based approximations as bases for learning algorithms which directly

gave an approach vector. Le et al. [76] treated grasp detection as a ranking problem

over sets of contact points in image space. Jiang et al. [61] represented a grasp as

a 2D oriented rectangle in image space, with two edges corresponding to the grip-
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per plates, using surface normals to determine the grasp approach vector. These

approaches allow the detection algorithm to detect more exactly the gripper pose

which should be used for grasping. In this work, I will follow the rectangle-based

method.

Learning-based approaches have shown impressive results in grasping novel

objects, showing that learning some parameters of the detection system can out-

perform human tuning. However, these approaches still require a significant degree

of hand-engineering in the form of designing good input features.

Other Applications with RGBD Data. Due to the availability of inexpensive

depth sensors, RGB-D data has been a significant research focus in recent years for

various robotics applications. For example, Jiang et al. [63] consider robotic place-

ment of objects, while Teuliere and Marchand [144] used RGB-D data for visual

servoing. Several works, including those of Endres et al. [37] and Whelan et al. [149]

have extended and improved Simultaneous Localization and Mapping (SLAM) for

RGB-D data. Object detection and recognition has been a major focus in research

on RGB-D data [26, 73, 20]. Most such works use hand-engineered features such

as [121]. The few works that perform feature learning for RGB-D data [134, 14]

largely ignore the multimodal nature of the data, not distinguishing the color and

depth channels. Here, I present a structured regularization approach which allows

me to learn more robust features for RGB-D and other multimodal data.

2.2.2 Deep Learning

Structured Learning and Structured Regularization: Several approaches

have been proposed which attempt to use a specially-designed regularization func-
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Figure 2.2: Detecting and executing grasps: From left to right: My system obtains
an RGB-D image from a Kinect mounted on the robot, and searches over a large space
of possible grasps, for which some candidates are shown. For each of these, it extracts
a set of raw features corresponding to the color and depth images and surface normals,
then uses these as inputs to a deep network which scores each rectangle. Finally, the top-
ranked rectangle is selected and the corresponding grasp is executed using the parameters
of the detected rectangle and the surface normal at its center. Red and green lines
correspond to gripper plates, blue in RGB-D features indicates masked-out pixels.

tion to impose structure on a set of learned parameters without directly enforcing

it. Jalali et al. [59] used a group regularization function in the multitask learn-

ing setting, where one set of features is used for multiple tasks. This function

applies high-order regularization separately to particular groups of parameters.

Their function regularized the number of features used for each task in a set of

multi-class classification tasks solved by softmax regression. Intuitively, this en-

codes the belief that only some subset of the input features will be useful for each

task, but this set of useful features might vary between tasks.

A few works have also explored the use of structured regularization in deep

learning. The Topographic ICA algorithm [55] is a feature-learning approach that

applies a similar penalty term to feature activations, but not to the weights them-

selves. Coates and Ng [23] investigate the problem of selecting receptive fields, i.e.,

subsets of the input features to be used together in a higher-level feature. The

structure of the network is learned first, then fixed before learning the parameters

of the network.
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Figure 2.3: Illustration of my two-stage detection process: Given an image of an
object to grasp, a small deep network is used to exhaustively search potential rectangles,
producing a small set of top-ranked rectangles. A larger deep network is then used to
find the top-ranked rectangle from these candidates, producing a single optimal grasp
for the given object.

2.3 Deep Learning for Grasp Detection:

System and Model

In this work, I will present an algorithm for robotic grasp detection from a single

RGB-D view. My approach will be based on machine learning, but distinguish

itself from previous approaches by learning not only the weights used to rank

prospective grasps, but also the features used to rank them, which were previously

hand-engineered.

I will do this using deep learning methods, learning a set of RGB-D features

which will be extracted from each candidate grasp, then used to score that grasp.

My approach will include a structured multimodal regularization method which

improves the quality of the features learned from RGB-D data without constraining

network structure.

In my system for robotic grasping, as shown in Fig. 2.2, the robot first obtains

an RGB-D image of the scene containing objects to be grasped. A small deep

network is used to score potential grasps in this image, and a small candidate set

of the top-ranked grasps is provided to a larger deep network, which yields a single
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best-ranked grasp.

In this work, I will represent potential grasps using oriented rectangles in the

image plane as seen on the left in Fig. 2.2, with one pair of parallel edges corre-

sponding to the robotic gripper [61]. Each rectangle is thus parameterized by the

X and Y coordinates of its upper-left corner, its width, height, and orientation

in the image plane, giving a five-dimensional search space for potential grasps.

Grasps will be ranked based on features extracted from the RGB-D image region

contained inside their corresponding rectangle, aligned to the gripper plates, as

seen in the center of Fig. 2.2.

To translate a rectangle such as that shown on the right in Fig. 2.2 into a gripper

pose for grasping I find the point with the minimum depth inside the central third

(horizontally) of the rectangle. I then use the averaged surface normal around

this point to determine the approach vector for the gripper. The orientation of

the detected rectangle is translated to a rotation around this vector to orient the

gripper. I use the X-Y coordinates of the rectangle center along with the depth of

the closest point to determine a grasping point in the robot’s coordinate frame. I

compute a pre-grasp position by shifting 10 cm back from the grasping point along

this approach vector and position the gripper at this point. I then approach the

object along the approach vector and grasp it.

Using a standard feature learning approach such as sparse auto-encoder [46],

a deep network can be trained for the problem of grasping rectangle recognition

(i.e., does a given rectangle in image space correspond to a valid robotic grasp?).

However, in a real-world robotic setting, my system needs to perform detection

(i.e., given an image containing an object, how should the robot grasp it?). This

task is significantly more challenging than simple recognition.
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Two-stage Cascaded Detection: In order to perform detection, one naive

approach could be to consider each possible oriented rectangle in the image (per-

haps discretized to some level), and evaluate each rectangle with a deep network

trained for recognition. However, such near-exhaustive search of possible rectan-

gles (based on positions, sizes, and orientations) can be quite expensive in practice

for real-time robotic grasping.

Motivated by multi-step cascaded approaches in previous work [61, 146], I

instead take a two-stage approach to detection: First, I use a reduced feature set

to determine a set of top candidates. Then, I use a larger, more robust feature set

to rank these candidates.

However, these approaches require the design of two separate sets of features.

In particular, it can be difficult to manually design a small set of first-stage fea-

tures which is both quick to compute and robust enough to produce a good set

of candidate detections for the second stage. Using deep learning allows me to

circumvent the costly manual design of features by simply training networks of

two different sizes, using the smaller for the exhaustive first pass, and the larger

to re-rank the candidate detection results.

Model: To detect robotic grasps from the rectangle representation, I model the

probability of a rectangle G(t), with features x(t) ∈ R
N being graspable, using a

random variable ŷ(t) ∈ {0, 1} which indicates whether or not I predict G(t) to be

graspable. I use a deep network similar to that previously defined in Section 1.1

to model the probability of this rectangle being graspable, P (ŷ(t) = 1|x(t)).
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2.3.1 Inference and Learning

During inference, my goal is to find the single grasping rectangle with the maxi-

mum probability of being graspable for some new object. With G representing a

particular grasping rectangle position, orientation, and size, I find this best rect-

angle as:

G∗ = arg max
G

P (ŷ(t) = 1|φ(G); Θ) (2.1)

Here, the function φ extracts the appropriate input representation for rectangle G.

During learning, my goal is to learn the parameters Θ that optimize the

recognition accuracy of my system. Here, input data is given as a set of pairs

of features x(t) ∈ R
N and ground-truth labels y(t) ∈ {0, 1} for t = 1, . . . ,M . As

described above I use a two-phase learning approach. First, I pre-train the hidden-

layer weights W [1] and W [2] using an algorithm similar to the SAE approach given

in Equation 1.6, but also including a regularization term, f(W ), weighted by β:

W ∗ = arg min
W

M
∑

t=1

(||x̂(t) − x(t)||22 + λ

K
∑

j=1

g(h
(t)
j )) + βf(W ) (2.2)

During the supervised phase of the learning algorithm, I then jointly learn clas-

sifier weightsW [3] and fine-tune hidden layer weightsW [1] andW [2] for recognition,

using back-propagation as described in Section 1.1. I maximize the log-likelihood

of the data along with regularization penalties on hidden layer weights:

Θ∗ = arg max
Θ

M
∑

t=1

logP (ŷ(t) = y(t)|x(t); Θ)

− β1f(W
[1])− β2f(W

[2]) (2.3)
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Two-stage Detection Model: During inference for two-stage detection, I

will first use a smaller network to produce a set of the top T rectangles with the

highest probability of being graspable according to network parameters Θ1. I will

then use a larger network with a separate set of parameters Θ2 to re-rank these

T rectangles and obtain a single best one. The only change to learning for the

two-stage model is that these two sets of parameters are learned separately, using

the same approach.

2.4 System Details

In this section, I will define the set of raw features which my system will use, form-

ing x in the equations above, and how they are extracted from an RGB-D image.

Some examples of these features are shown in Fig 2.2.

My algorithm uses only local information - specifically, I extract the

RGB-D sub-image contained within each rectangle, and use this to generate fea-

tures for that rectangle. This image is rotated so that its left and right edges

correspond to the gripper plates, and then re-scaled to fit inside the network’s

receptive field.

From this 24x24 pixel image, seven channels’ worth of features are extracted,

giving 24x24x7 = 4032 input features. The first three channels are the image in

YUV color space, used because it represents image intensity and color separately.

The next is simply the depth channel of the image. The last three are the X, Y, and

Z components of surface normals computed based on the depth channel. These are

computed after the image is aligned to the gripper so that they are always relative

to the gripper plates.
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Figure 2.4: Preserving aspect ratio: Left: a pair of sunglasses with a potential
grasping rectangle. Red edges indicate gripper plates. Center: image taken from the
rectangle and rescaled to fit a square aspect ratio. Right: same image, padded and
centered in the receptive field. Blue areas indicate masked-out padding. When rescaled,
the rectangle incorrectly appears graspable. Preserving aspect ratio and padding allows
the rectangle to correctly appear non-graspable.

Figure 2.5: Improvement from mask-based scaling: Left: Result without mask-
based scaling. Right: Result with mask-based scaling.

2.4.1 Data Pre-Processing

Whitening data is critical for deep learning approaches to work well, especially

in cases such as multimodal data where the statistics of the input data may vary

greatly. While PCA-based approaches have been shown to be effective [56], they

are difficult to apply in cases such as mine where large portions of the data may

be masked out.

Depth data, in particular, can be difficult to whiten because the range of values

may be very different for different patches in the image. Thus, I first whiten each

depth patch individually, subtracting the patch-wise mean and dividing by the
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Figure 2.6: Three possible models for multimodal deep learning: Left: fully
dense model—all visible features are concatenated and modality information is ignored.
Middle: modality-specific sparse model - separate first layer features are trained for
each modality. Right: group-sparse model—a structured regularization term encourages
features to use only a subset of the input modes.

patch-wise standard deviation, down to some minimum.

For multimodal data, the statistics of the data for each modality should match

as closely as possible, to avoid learning features which are biased towards or away

from using particular modes. This is particularly important when regularizing

each modality separately, as in my approach. Thus, I drop mean values for each

feature separately, but scale the data for each channel by dividing by the standard

deviation of all its features combined.

2.4.2 Preserving Aspect Ratio

It is important for to preserve aspect ratio when feeding features into the network.

This is because distorting image features may cause non-graspable rectangles to

appear graspable, as shown in Fig. 2.4. However, padding with zeros can cause

rectangles with less padding to receive higher graspability scores, as the network

will have more nonzero inputs. It is important to account for this because in many

cases the ideal grasp for an object might be represented by a thin rectangle which

would thus contain many zero values in its receptive field from padding.
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To address this problem, I scale up the magnitude of the available input for each

rectangle based on the fraction of the rectangle which is masked out. In particular,

I define a multiplicative scaling factor for the inputs from each modality, based on

the fraction of each mode which is masked out, since each mode may have a

different mask.

In the multimodal setting, I assume that the input data x is known to come from

R distinct modalities, for example audio and video data, or depth and RGB data.

I define the modality matrix S as an RxN binary matrix, where each element

Sr,i indicates membership of visible unit xi in a particular modality r, such as

depth or image intensity. The scaling factor for mode r is then defined as: Ψ
(t)
r =

∑N
i=1 Sr,i/

(

∑N
i=1 Sr,iµ

(t)
i

)

, where µ
(t)
i is 1 if x

(t)
i is masked in, 0 otherwise. The

scaling factor for case i is: ψ
(t)
i =

∑R
r=1 Sr,iΨ

(t)
r .

I could simply scale up each value of x by its corresponding scale factor when

training my model, as x′
(t)
i = ψ

(t)
i x

(t)
i . However, since my sparse autoencoder

penalizes squared error, scaling x linearly will scale the error for the corresponding

cases quadratically, causing the learning algorithm to lend increased significance

to cases where more data is masked out. Instead, I can use the scaled x′ as input

to the network, but penalize reconstruction based on the original x, only scaling

after the squared error has been computed:

W ∗ = arg min
W

M
∑

t=1

(

N
∑

i=1

ψ
(t)
i (x̂

(t)
i − x

(t)
i )2 + λ

K
∑

j=1

g(h
(t)
j )

)

(2.4)

I redefine the hidden units to use the scaled visible input:

h
(t)
j = σ

(

N
∑

i=1

x′
(t)
i Wi,j

)

(2.5)

This approach is equivalent to adding additional, potentially fractional, ‘virtual’

visible units to the model based on the scaling factor for each mode. In practice,
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(a) Features corresponding to positive grasps. (b) Features corresponding to negative grasps.

Figure 2.7: Features learned from grasping data: Each feature contains seven
channels - from left to right, depth, Y, U, and V image channels, and X, Y, and Z
surface normal components. Vertical edges correspond to gripper plates. Left: eight
features with the strong positive correlations to rectangle graspability. Right: similar,
but negative correlations. Group regularization eliminates many modalities from many
of these features, making them more robust.

I found it necessary to limit the scaling factor to a maximum of some value c, as

Ψ′(t)
r = min(Ψ

(t)
r , c).

As shown in Table 2.3 my mask-based scaling technique at the visible layer

improves grasping results by over 25% for both metrics. As seen in Figure 2.5, it

removes the network’s inherent bias towards square rectangles, exhibiting a much

wider range of aspect ratios that more closely matches that of the ground-truth

data.

2.5 Structured Regularization for Feature Learning

A naive way of applying feature learning to multimodal data is to simply take x (as

a concatenated vector) as input to the model described above, ignoring information

about specific modalities, as seen on the lefthand side of Figure 2.6. This approach

may either 1) prematurely learn features which include all modalities, which can

lead to overfitting, or 2) fail to learn associations between modalities with very

different underlying statistics.
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Instead of concatenating multimodal input as a vector, Ngiam et al. [104] pro-

posed training a first layer representation for each modality separately, as shown

in Figure 2.6-middle. This approach makes the assumption that the ideal low-level

features for each modality are purely unimodal, while higher-layer features are

purely multimodal. This approach may work better for some problems where the

modalities have very different basic representations, such as the video and audio

data (as used in [104]), so that separate first layer features may give better per-

formance. However, for modalities such as RGB-D data, where the input modes

represent different channels of an image, learning low-level correlations can lead to

more robust features – my experiments in Section 2.6 show that simply concate-

nating the input modalities significantly outperforms training separate first-layer

features for robotic grasp detection from RGB-D data.

For many problems, it may be difficult to tell which of these approaches will

perform better, and time-consuming to tune and comparatively evaluate multiple

algorithms. In addition, the ideal feature set for some problems may contain

features which use some, but not all, of the input modalities, a case which neither

of these approaches are designed to handle.

To solve these problems, I propose a new algorithm for feature learning for

multimodal data. My approach incorporates a structured penalty term into the

optimization problem to be solved during learning. This technique allows the model

to learn correlated features between multiple input modalities, but regularizes the

number of modalities used per feature (hidden unit), discouraging the model from

learning weak correlations between modalities. With this regularization term, the

algorithm can specify how mode-sparse or mode-dense the features should be,

representing a continuum between the two extremes outlined above.
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Regularization in Deep Learning: In a typical deep learning model, L2

regularization (i.e., f(W ) = ||W ||22) or L1 regularization (i.e., f(W ) = ||W ||1) are

commonly used in training (e.g., as specified in Equations (2.2) and (2.3)). These

are often called a “weight cost” (or “weight decay”), and are left implicit in many

works.

Applying regularization is well known to improve the generalization perfor-

mance of feature learning algorithms. One might expect that a simple L1 penalty

would eliminate weak correlations in multimodal features, leading to features which

use only a subset of the modes each. However, I found that in practice, a value of

β large enough to cause this also degraded the quality of features for the remaining

modes and lead to decreased task performance.

Multimodal Regularization: Structured regularization, such as in [59], takes

a set of groups of weights, and applies some regularization function (typically

high-order) separately to each group. In my structured multimodal regularization

algorithm, each modality will be used as a regularization group separately for each

hidden unit. For example, a group-wise p-norm would be applied as:

f(W ) =
K
∑

j=1

R
∑

r=1

(

N
∑

i=1

Sr,i|W
p
i,j|

)1/p

(2.6)

where Sr,i is 1 if feature i belongs to group r and 0 otherwise. Using a high value

of p allows me to penalize higher-valued weights from each mode to each feature

more strongly than lower-valued ones. This also means that forming a high-valued

weight in a group with other high-valued weights will accrue a lower additional

penalty than doing so for a group with only low-valued weights. At the limit

(p → ∞), this group regularization becomes equivalent to the infinity (or max)
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norm:

f(W ) =
K
∑

j=1

R
∑

r=1

max
i
Sr,i|Wi,j| (2.7)

which penalizes only the maximum weight from each mode to each feature. In

practice, the infinity norm is not differentiable and therefore is difficult to apply

gradient-based optimization methods; here, I use the log-sum-exponential as a

differentiable approximation to the max norm.

In experiments, this regularization function produces first-layer weights concen-

trated in fewer modes per feature. However, I found that at values of β sufficient

to induce the desired mode-wise sparsity patterns, penalizing the maximum also

had the undesirable side-effect of causing many of the weights for other modes to

saturate at their mode’s maximum, suggesting that the features were overly con-

strained. In some cases, constraining the weights in this manner also caused the

algorithm to learn duplicate (or redundant) features, in effect scaling up the fea-

ture’s contribution to reconstruction to compensate for its constrained maximum.

This is obviously an undesirable effect, as it reduces the effective size (or diversity)

of the learned feature set.

This suggests that the max-norm may be overly constraining. A more desirable

sparsity function would penalize nonzero weight maxima for each mode for each

feature without additional penalty for larger values of these maxima. I can achieve

this effect by applying the L0 norm, which takes a value of 0 for an input of 0, and

1 otherwise, on top of the max-norm from above:

f(W ) =
K
∑

j=1

R
∑

r=1

I{(max
i
Sr,i|Wi,j|) > 0} (2.8)

where I is the indicator function, which takes a value of 1 if its argument is true,

0 otherwise. Again, for a gradient-based method, I used an approximation to the
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Figure 2.8: Example objects from the Cornell grasping dataset: [61]. This
dataset contains objects from a large variety of categories.

L0 norm, such as log(1 + x2). This regularization function now encodes a direct

penalty on the number of modes used for each weight, without further constraining

the weights of modes with nonzero maxima.

Figure 2.7 shows features learned from the unsupervised stage of my group-

regularized deep learning algorithm. I discuss these features, and their implications

for robotic grasping, in Section 2.7.

2.6 Experiments

2.6.1 Dataset

I used the extended version of the Cornell grasping dataset for my exper-

iments. This dataset, along with code for this chapter, is available at
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http://pr.cs.cornell.edu/deepgrasping. I note that this is an updated ver-

sion of the dataset used in [61], containing several more complex objects, and thus

results for their algorithms will be different from those in [61]. This dataset con-

tains 1035 images of 280 graspable objects, several of which are shown in Fig. 2.8.

Each image is annotated with several ground-truth positive and negative grasping

rectangles. While the vast majority of possible rectangles for most objects will be

non-graspable, the dataset contains roughly equal numbers of graspable and non-

graspable rectangles. I will show that this is useful for an unsupervised learning

algorithm, as it allows learning a good representation for graspable rectangles even

from unlabeled data.

I performed five-fold cross-validation, and present results for splits on per image

(i.e., the training set and the validation set do not share the same image) and per

object (i.e., the training set and the validation set do not share any images from

the same object) basis. Hyper-parameters were selected by validating performance

on a separate set of 300 grasps not used in any of the cross-validation splits.

I take seven 24x24 pixel channels as described in Section 2.4 as input, giving

4032 input features to each network. I trained a deep network with 200 hidden

units each at the first and second layers using my learning algorithm as described

in Sections 2.3 and 2.5. Training this network took roughly 30 minutes. For trials

involving my two-pass system, I trained a second network with 50 hidden units at

each layer in the same manner. During inference I performed an exhaustive search

using this network, then used the 200-unit network to re-rank the 100 highest-

ranked rectangles found by the 50-unit network.
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2.6.2 Baselines

I compare my recognition results in the Cornell grasping dataset with the features

from [61], as well as the combination of these features and Fast Point Feature

Histogram (FPFH) features [120]. I used a linear SVM for classification, which

gave the best results among all other kernels. I also report chance performance,

obtained by randomly selecting a label in the recognition case, and randomly

assigning scores to rectangles in the detection case.

I also compare my algorithm to other deep learning approaches. I compare

to a network trained only with standard L1 regularization, and a network trained

in a manner similar to [104], where three separate sets of first layer features are

learned for the depth channel, the combination of the Y, U, and V channels, and

the combination of the X, Y, and Z surface normal components.

2.6.3 Metrics for Detection

For detection, I compare the top-ranked rectangle for each method with the set of

ground-truth rectangles for each image. I present results using two metrics, the

“point” and “rectangle” metric.

For the point metric, similar to Saxena et al. [126], I compute the center point

of the predicted rectangle, and consider the grasp a success if it is within some

distance from at least one ground-truth rectangle center. I note that this metric

ignores grasp orientation, and therefore might overestimate the performance of an

algorithm for robotic applications.

For the rectangle metric, similar to Jiang et al. [61], let G be the top-ranked
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Figure 2.9: Learned 3D depth features: 3D meshes for depth channels of the four
features with strongest positive (top) and negative(bottom) correlations to rectangle
graspability. Here X and Y coordinates corresponds to positions in the deep network’s
receptive field, and Z coordinates corresponds to weight values to the depth channel
for each location. Feature shapes clearly correspond to graspable and non-graspable
structures, respectively.

Table 2.1: Recognition results for Cornell grasping dataset.

Algorithm Accuracy (%)
Chance 50
Jiang et al. [61] 84.7
Jiang et al. [61] + FPFH 89.6
Sparse AE, separate layer-1 feat. 92.8
Sparse AE 93.7

Sparse AE, group reg. 93.7

grasping rectangle predicted by the algorithm, and G∗ be a ground-truth rectangle.

Any rectangles with an orientation error of more than 30o from G are rejected.

From the remaining set, I use the common bounding box evaluation metric of

intersection divided by union - i.e. Area(G ∩G∗)/Area(G ∪G∗). Since a ground-

truth rectangle can define a large space of graspable rectangles (e.g., covering the

entire length of a pen), I consider a prediction to be correct if it scores at least

25% by this metric.
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2.7 Results and Discussion

2.7.1 Deep Learning for Robotic Grasp Detection

Figure 2.7 shows the features learned by the unsupervised phase of my algorithm

which have a high correlation to positive and negative grasping cases. Many of

these features show non-zero weights to the depth channel, indicating that it learns

the correlation of depths to graspability. I can see that weights to many of the

modalities for these features have been eliminated by my structured regularization

approach. In particular, many of these features lack weights to the U and V (3rd

and 4th) channels, which correspond to color, allowing the system to be more robust

to different-colored objects.

Figure 2.9 shows 3D meshes for the depth channels of the four features with

the strongest positive and negative correlations to valid grasps. Even without any

supervised information, my algorithm was able to learn several features which cor-

relate strongly to graspable cases and non-graspable cases. The first two positive-

correlated features represent handles, or other cases with a raised region in the

center, while the second two represent circular rims or handles. The negatively-

correlated features represent obviously non-graspable cases, such as ridges perpen-

dicular to the gripper plane and “valleys” between the gripper plates. From these

features, I can see that even during unsupervised feature learning, my approach is

able to learn a representation useful for the task at hand, thanks purely to the fact

that the data used is composed of half graspable and half non-graspable cases.

From Table 2.1, I see that the recognition performance is significantly improved

with deep learning methods, improving 9% over the features from [61] and 4.1%
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Table 2.2: Recognition results for different modalities, for a deep network pre-
trained using SAE.

Modes Accuracy (%)
Chance 50
RGB 90.3
Depth 92.4
Surf. Normals 90.3
Depth + Surf. Normals 92.8
RGB + Depth + Surf. Normals 93.7

over those features combined with FPFH features. Both L1 and group regulariza-

tion performed similarly for recognition, but training separate first layer features

decreased performance slightly. This shows that learned features, in addition to

avoiding hand-design, are able to improve performance significantly over the state

of the art. It demonstrates that a deep network is able to learn the concept of

“graspability” in a way that generalizes to new objects it hasn’t seen before.

Table 2.2 shows that even using any one of the three input modalities (RGB,

depth, or surface normals), my algorithm is able to learn features which outperform

hand-engineered ones for recognition. Depth gives the highest performance of any

single-mode network. Combining depth and normal information improves results

over either alone, indicating that they give non-redundant information.

The highest accuracy is still obtained by using all the input modalities. This

shows that combining depth and color information leads to a system which is more

robust than either modality alone. This is due to the fact that some graspable

cases (rims of monochromatic objects, etc.) can only be detected using depth

information, while in others, the depth channel may be extremely noisy, requiring

the use of color information. From this, I can see that integrating multimodal

information, a major focus of this work, is important in recognizing good robotic

grasps.
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Table 2.3: Detection results for point and rectangle metrics, for various learning
algorithms.

Algorithm
Image-wise split Object-wise split
Point Rect Point Rect

Chance 35.9 6.7 35.9 6.7
Jiang et al. [61] 75.3 60.5 74.9 58.3
SAE, no mask-based scaling 62.1 39.9 56.2 35.4
SAE, separate layer-1 feat. 70.3 43.3 70.7 40.0
SAE, L1 reg. 87.2 72.9 88.7 71.4
SAE, struct. reg., 1st pass only 86.4 70.6 85.2 64.9
SAE, struct. reg., 2nd pass only 87.5 73.8 87.6 73.2
SAE, struct. reg. two-stage 88.4 73.9 88.1 75.6

Table 2.3 shows that the performance gains from deep learning for recognition

carry over to detection, as well. Once mask-based scaling has been applied, all deep

learning approaches except for training separate first-layer features outperform

the hand-engineered features from [61] by up to 13% for the point metric and

17% for the rectangle metric, while also avoiding the need to design task-specific

features. Without mask-based scaling, the system performs poorly, due to the

bias illustrated in Fig. 2.5. Separate first-layer features also give weak detection

performance, indicating that the relative scores assigned by this form of network

are less robust than those learned using my structured regularization approach.

Using structured multimodal regularization also improves results over standard

L1regularization by up to 1.8%, showing that my method also learns more ro-

bust features than standard approaches which ignore modality information. Even

though using the first-pass network alone underperforms the second-pass network

alone by up to 8.3%, integrating both in my two-pass system outperforms the solo

second-pass network by up to 2.4%. This shows that the two-pass system improves

not only efficiency, but accuracy as well. The performance gains from multimodal

regularization and the two-pass system are discussed in detail below.

My system outperforms all baseline approaches by all metrics except for the
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Figure 2.10: Visualization of grasping scores for different grippers: Red indicates
maximum score for a grasp with left gripper plane centered at each point, blue is similar
for the right plate. Best-scoring rectangle shown in green/yellow.

Figure 2.11: Improvements from group regularization: Cases where my group
regularization approach produces a viable grasp (shown in green and yellow), while a
network trained only with simple L1 regularization does not (shown in blue and red).
Top: RGB image, bottom: depth channel. Green and blue edges correspond to gripper.

point metric in the object-wise split case. However, I can see that the chance

performance is much higher for the point metric than for the rectangle metric.

This shows that the point metric can overstate performance, and the rectangle

metric is a better indicator of the accuracy of a grasp detection system.

Adaptability: One important advantage of my detection system is that I can

flexibly specify the constraints of the gripper in my detection system. This is
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particularly important for a robot like Baxter, where different objects might require

different gripper settings to grasp. I can constrain the detectors to handle this.

Figure 2.10 shows detection scores for systems constrained based on two different

settings of Baxter’s gripper, one wide and one thin. The implications of these

results for other types of grippers will be discussed in Section 2.9.

2.7.2 Multimodal Group Regularization

My group regularization term improves detection accuracy over simple L1 regu-

larization. The improvement is more significant for the object-wise split than for

the image-wise split because the group regularization helps the network to avoid

overfitting, which will tend to occur more when the learning algorithm is evaluated

on unseen objects.

Figure 2.11 shows typical cases where a network trained using my group reg-

ularization finds a valid grasp, but a network trained with L1 regularization does

not. In these cases, the grasp chosen by the L1-regularized network appears valid

for some modalities – the depth channel for the sunglasses and nail polish bottle,

and the RGB channels for the scissors. However, when all modalities are consid-

ered, the grasp is clearly invalid. The group-regularized network does a better

job of combining information from all modalities and is more robust to noise and

missing data in the depth channel, as seen in these cases.
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Figure 2.12: Improvements from two-stage system: Example cases where the two-
stage system produces a viable grasp (shown in green and yellow), while the single-stage
system does not (shown in blue and red). Top: RGB image, bottom: depth channel.
Green and blue edges correspond to gripper.

2.7.3 Two-stage Detection System

Using my two-pass system enhanced both computational performance and accu-

racy. The number of rectangles the full-size network needed to evaluate was re-

duced by roughly a factor of 1000. Meanwhile, detection performance increased by

up to 2.4% as compared to a single pass with the large-size network, even though

using the small network alone significantly underperforms the larger network. In

most cases, the top 100 rectangles from the first pass contained the top-ranked rect-

angle from an exhaustive search using the second-stage network, and thus results

were unaffected.

Figure 2.12 shows some cases where the first-stage network pruned away rectan-

gles corresponding to weak grasps which might otherwise be chosen by the second-

stage network. In these cases, the grasp chosen by the single-stage system might

be feasible for a robotic gripper, but the rectangle chosen by the two-stage system

represents a grasp which would clearly be successful.

47



Figure 2.13: Robotic experiment objects: Several of the objects used in experiments,
including challenging cases such as an oddly-shaped RC car controller, a cloth towel,
plush cat, and white ice cube tray.

The two-stage system also significantly increases the computational efficiency

of my detection system. Average inference time for a MATLAB implementation

of the deep network was reduced from 24.6s/image for an exhaustive search using

the larger network to 13.5s/image using the two-stage system.

2.8 Robotic Experiments

In order to evaluate the performance of my algorithms in the real world, I ran

an extensive series of robotic experiments. To explore the generalizability and

effect of the robot on the success rate of my algorithms, I performed experiments

on two different robotic platforms, a Baxter Research Robot (“Yogi”) and a PR2

(“Kodiak”).

Baxter: The first platform used is a Baxter Research Robot, which I call “Yogi.”

48



Figure 2.14: Robots executing grasps: My robots grasping several objects from the
experimental dataset. Top row: Baxter grasping a quad-rotor casing, coffee mug, ice
cube tray, knife, and electric shaver. Middle row: Baxter grasping a desk lamp, cheese
grater, umbrella, cloth towel, and hot glue gun. Bottom row: PR2 grasping a plush cat,
RC car controller, cereal box, toy elephant, and glove.
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Table 2.4: Results for robotic experiments for Baxter, sorted by object category, for a total of 100 trials.
Tr. indicates number of trials, Acc. indicates accuracy (in terms of success percentage.)

Kitchen tools Lab tools Containers Toys Others

Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc.
Can opener 3 100 Kinect 5 100 Colored cereal box 3 100 Plastic whale 4 75 Electric shaver 3 100
Knife 3 100 Wire bundle 3 100 White cereal box 4 50 Plastic elephant 4 100 Umbrella 4 75
Brush 3 100 Mouse 3 100 Cap-shaped bowl 3 100 Plush cat 4 75 Desk lamp 3 100
Tongs 3 100 Hot glue gun 3 67 Coffee mug 3 100 RC controller 3 67 Remote control 5 100
Towel 3 100 Quad-rotor 4 75 Ice cube tray 3 100 XBox controller 4 50 Metal bookend 3 33
Grater 3 100 Duct tape roll 4 100 Martini glass 3 0 Plastic frog 3 67 Glove 3 100
Average 100 Average 90 Average 75 Average 72 Average 85

Overall 84

Table 2.5: Results for robotic experiments for PR2, sorted by object category, for a total of 100 trials.
Tr. indicates number of trials, Acc. indicates accuracy (in terms of success percentage.)

Kitchen tools Lab tools Containers Toys Others

Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc.
Can opener 3 100 Kinect 5 100 Colored cereal box 3 100 Plastic whale 4 75 Electric shaver 3 100
Knife 3 100 Wire bundle 3 100 White cereal box 4 100 Plastic elephant 4 100 Umbrella 4 100
Brush 3 100 Mouse 3 100 Cap-shaped bowl 3 100 Plush cat 4 100 Desk lamp 3 100
Tongs 3 100 Hot glue gun 3 67 Coffee mug 3 100 RC controller 3 67 Remote control 5 100
Towel 3 100 Quad-rotor 4 100 Ice cube tray 3 100 XBox controller 4 25 Metal bookend 3 67
Grater 3 100 Duct tape roll 4 100 Martini glass 3 0 Plastic frog 3 67 Glove 3 100
Average 100 Average 95 Average 83 Average 72 Average 95

Overall 89
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Baxter has two arms with seven degrees of freedom each and a maximum reach of

104 cm, although I used only the left arm for these experiments. The end-effector

for this arm is a two-finger parallel gripper. I augmented the gripper tips using

rubber bands for additional friction. Baxter’s grippers are interchangable, and I

used two settings for these experiments - a “wide” setting with an open width of

8 cm and closed width of 4 cm, and a “thin” setting with an open width of 4 cm

and a closed width of 0 cm (completely closed, gripper tips touching).

To detect grasps, I mounted a Kinect sensor to Yogi’s head, approximately

1.75 m above the ground. angled downwards at roughly a 75o angle towards a

table in front of it. The Kinect gives RGB-D images at a resolution of 640x480

pixels. I calibrated the transformation between the Kinect’s and Yogi’s coordinate

frames by marking four points corresponding to a set of 3D axes, and obtaining

the coordinates of these points in both Kinect’s and Yogi’s frames.

All control for Baxter was done by specifying an end-effector position and

orientation, and using the inverse kinematics provided with Baxter to determine

a set of joint angles for this pose. Baxter’s built-in control systems were used to

drive the arm to these new joint angles.

PR2: My second platform was a PR2 robot, “Kodiak.” Similar to Baxter, PR2

has two 7-DoF arms with approximately 1 m reach, and I used only the left for

these experiments. PR2’s grippers open to a width of 8 cm, and are capable of

closing completely from that span, so I did not need to use two settings as with

Baxter. I augmented PR2’s gripper friction with gaffer tape on the fingertips.

For the experiments on PR2, I used the Kinect already mounted to Kodiak’s

head, and used ROS’s built-in functionality to obtain 3D locations from that Kinect
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and transform these to Kodiak’s body frame for manipulation. Control was per-

formed using the ee cart stiffness controller [16] with trajectories provided by my

own custom MATLAB code.

Experimental Setup: For each experiment, I placed a single object within a 25

cm x 25 cm square on the table, approximately 1.2 m below the mounting point

of the Kinect. This square was chosen to be well-contained within each robot’s

workspace, allowing objects to be reached from most approach vectors. Object

positions and orientations were varied between trials, although objects were always

placed in configurations in which at least one viable grasp was visible and accessible

to the robot.

When using Baxter, due to the limited stroke (span from open to closed) of

its gripper, I pre-selected one of the two gripper settings discussed above for each

object. I constrained the search space as illustrated in Fig. 2.10 to find grasps for

that particular setting.

To detect grasps, I first took an RGB-D image from the Kinect with no objects

in the scene as a background image. The depth channel of this image was used to

segment objects from the scene, and to correct for the slant of the Kinect. Once

an object was segmented, I used my algorithm, as described above, to obtain a

single best-ranked grasping rectangle.

The search space for the first-pass network progressed in 15-degree increments

from 15 to 180 degrees (angles larger than 180 being mirror-images of grasps al-

ready tested), searching over 10-pixel increments across the image for the X and

Y coordinates of the upper-left corner of the rectangle. For the thin gripper set-

ting, rectangle widths and heights from 10 to 40 pixels in 10-pixel increments were
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searched, while for the thick setting these ranged from 40 pixels to 100 pixels in

20-pixel increments. In both cases, rectangles taller than they were wide were

ignored. Once a single best-scoring grasp was detected, I translated it to a robotic

grasp consisting of a grasping point and an approach vector using the rectangle’s

parameters and the surface normal at the rectangle’s center as described above.

To execute the grasp, I first positioned the gripper at a location 10 cm back

from the grasping point along the approach vector. The gripper was oriented to

the approach vector, and rotated around it based on the orientation of the detected

grasping rectangle.

Since Baxter’s arms are highly compliant, slight imprecisions in end-effector

positioning are to be expected – I found that errors of up to 2 cm were typical.

Thus, I implemented a visual servoing system using its hand camera, which pro-

vides RGB images at a resolution of 320x200 pixels. I used color segmentation to

separate the object from the background, and used its lateral position in image

space to drive Yogi’s end-effector to center the object. I did not implement visual

servoing for PR2 because its gripper positioning was found to be precise to within

0.5 cm.

After visual servoing was completed, I drove the gripper 14 cm forwards from

its current position along the approach vector, so that the grasping point was well-

contained within it. I then closed the gripper, grasping the object, and moved it

30 cm upwards. A grasp was determined to be successful if it was sufficient to lift

the object and hold it for one second.

Objects to be Grasped: For my robotic experiments, I collected a diverse

set of 35 objects within a size of .3 m x .3 m x .3 m and weighing at most 2.5
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kg (although most were less than 1 kg) from my offices, homes, and lab. Many of

them are shown in Fig. 2.13. Most of these objects were not present in the training

dataset, and thus were completely new to the grasp detection algorithm.

Due to the physical limitations of the robots’ grippers, I found that five of these

objects were not graspable even when given a hand-chosen grasp. The small pair

of pliers was too low to the table to grip properly. The spray paint can was too

smooth for the gripper to get enough friction to lift it. The weight of the hammer

was too imbalanced, causing the hammer to rotate and slip out of the gripper when

grasped. Similar problems were encountered with the bicycle U-lock. The bevel

spatula’s handle was too close to the thin-set size of Baxter’s gripper, so that I

could not position it precisely enough to grasp it reliably. I did not consider these

objects for purposes of my experimental results, since my focus was on evaluating

the performance of my grasp detection algorithm.

Results: Table 2.4 shows the results of my robotic experiments on Baxter for the

remaining 30 objects, a total of 100 trials. Using my algorithm, Yogi was able to

successfully execute a grasp in 84% of the trials. Figure 2.14 shows Yogi executing

several of these grasps. In 8% of the trials, my algorithm detected a valid grasp

which was not executed correctly by Yogi. Thus, I were able to successfully detect

a good grasp in 92% of the trials. Video of some of these trials is available at

http://pr.cs.cornell.edu/deepgrasping.

PR2 yielded a higher success rate as seen in Table 2.5, succeeding in 89% of

trials. This is largely due to the much wider span of PR2’s gripper from open to

closed and its ability to fully close from its widest position, as well as PR2’s ability

to apply a larger gripping force. Some specific instances where PR2 and Baxter’s

performance differed are discussed below.
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For comparison purposes, I ran a small set of control experiments for 16 of the

objects in the dataset. The control algorithm simply returned a fixed-size rectangle

centered at the object’s center of mass, as determined by depth segmentation from

the background. The rectangle was aligned so that the gripper plates ran parallel

to the object’s principal axis. This algorithm was only successful in 31% of cases,

significantly underperforming my system.

On Baxter, my algorithm sometimes detected a grasp which was not realizable

by the current setting of its gripper, but might be executable by others. For

example, my algorithm detected grasps across the leg of the plush cat, and the

region between the handle and body of the umbrella, both too thin for the wide

setting of Baxter’s gripper to grasp since it has a minimum span of 4 cm. Since

PR2’s gripper can close completely from any position, it did not encounter these

issues and thus achieved a 100% success rate for both these objects.

The XBox controller proved to be a very difficult object for either robot to

grasp. From a top-down angle, there is only a small space of viable grasps with a

span of less than 8 cm, but many which have either a slightly larger span (making

them non-realizable by either gripper), or are subtly non-viable (e.g. grasps across

the two “handles,” which tend to slip off.) All viable grasps are very near to the 8

cm span of both grippers, meaning that even slight imprecision in positioning can

lead to failure. Due to this, Baxter achieved a higher success rate for the XBox

controller thanks to visual servoing, succeeding in 50% of cases as compared to the

25% success rate for PR2.

My algorithm was able to consistently detect and execute valid grasps for a red

cereal box, but had some failures on a white and yellow one. This is because the

background for all objects in the dataset is white, leading the algorithm to learn
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features relating white areas at the edges of the gripper region to graspable cases.

However, it was able to detect and execute correct grasps for an all-white ice cube

tray, and so does not fail for all white objects. This could be remedied by extending

the dataset to include cases with different background colors. Interestingly, even

though the parameters of grasps detected for the white box were similar for PR2

and Baxter, PR2 was able to succeed in every case while Baxter succeeded only half

the time. This is because PR2’s increased gripper strength allowed it to execute

grasps across corners of the box, crushing it slightly in the process.

Other failures were due to the limitations of the Kinect sensor. I were never

able to properly grasp the martini glass because its glossy finish prevented Kinect

from returning any depth estimates for it. Even if a valid grasp were detected

using color information only, there was no way to infer a proper grasping position

without depth information. Grasps for the metal bookend failed for similar reasons,

but it was not as glossy as the martini glass, and gave enough returns for some to

succeed.

However, my algorithm also had many noteworthy successes. It was able to

consistently detect and execute grasps for a crumpled cloth towel, a complex and

irregular case which bore little resemblance to any object in the dataset. It was

also able to find and grasp the rims of objects such as the plastic baseball cap

and coffee mug, cases where there is little visual distinction between the rim and

body of the object. These objects underscore the importance of the depth channel

for robotic grasping, as none of these grasps would be detectable without depth

information.

My algorithm was also able to successfully detect and execute many grasps for

which the approach vector was non-vertical. The grasps shown for the coffee mug,
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desk lamp, cereal box, RC car controller, and toy elephant shown in Fig. 2.14

were all executed by aligning the gripper to such an approach vector. Indeed,

many of these grasps may have failed had the gripper been aligned vertically. This

shows that my algorithm is not restricted to detecting top-down grasps, but rather

encodes a more general notion of graspability which can be applied to grasps

from many angles, albeit within the constraints of visibility from a single-view

perspective.

While a few failures occurred, my algorithm still achieved a high rate of ac-

curacy for other oddly-shaped objects such as the quad-rotor casing, RC car con-

troller, and glue gun. For objects with clearly defined handles, such as the cheese

grater, kitchen tongs, can opener, and knife, my algorithm was able to detect

and execute successful grasps in every trial, showing that there is a wide range of

objects which it can grasp extremely consistently.

2.9 Discussion and Future Work

My algorithm focuses on the problem of grasp detection for a two-fingered parallel-

plate style gripper. It would be directly applicable to other grippers with fixed

configurations, simply requiring new training data labeled with grasps for the

gripper in question. My system would allow even the basic features used for grasp

detection to adapt to the gripper. This might be useful in cases such as jamming

grippers [62], or two-fingered grippers with differently-shaped contact surfaces,

which might require different features to determine a graspable area.

My detection algorithm does not directly address the problem of 3D orientation

of the gripper – this orientation is determined only after an optimal rectangle has
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been detected, orienting the grasp based on the object’s surface normals. However,

just as my approach here considers aligns a 2D feature window to the gripper, an

extension of this work might align a 3D window – using voxels, rather than pixels,

as its basic unit of representation for input features to the network. This would

allow the system to search across the full 6-DoF 3D pose of the gripper, while still

leveraging the power of feature learning.

My system gives only a gripper pose as output, but multi-fingered reconfig-

urable hands also require a configuration of the fingers in order to grasp an object.

In this case, my algorithm could be used as a heuristic to find one or more lo-

cations likely to be graspable (similar to the first pass in my two-pass system),

greatly reducing the search space needed to find an optimal gripper configuration.

My algorithm also depends only on local features to determine grasping loca-

tions. However, many household objects may have some areas which are strongly

preferable to grasp over others - for example, a knife might be graspable by the

blade, or a hot glue gun by the barrel, but both should actually be grasped by

their respective handles. Since these regions are more likely to be labeled as gras-

pable in the data, my system already weakly encodes this, but some may not be

readily distinguishable using only local information. Adding a term modeling the

probability of each region of the image being a semantically-appropriate area to

grasp the object would allow me to incorporate this information. This term could

be computed once for the entire image, then added to each local detection score,

keeping detection efficient.

In this work, my visual-servoing algorithm was purely heuristic, simply at-

tempting to center the segmented object underneath the hand camera. However,

in future work, a similar feature-learning approach might be applied to hand cam-
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era images of graspable and non-graspable regions, improving the visual servoing

system’s ability to fine-tune gripper position to ensure a good grasp.

Many robotics problems require the use of perceptual information, but can be

difficult and time-consuming to engineer good features for, particularly when using

RGB-D data. In future work, my approach could be extended to a wide range of

such problems. My system could easily be applied to other detection problems

such as object detection or obstacle detection. However, it could also be adapted

to other similar problems, such as object tracking and visual servoing.

Multimodal data has become extremely important for robotics, due both to

the advent of new sensors such as the Kinect and the application of robots to

more challenging tasks which require multiple modalities of information to perform

well. However, it can be very difficult to design features which do a good job of

integrating many modalities. While my work focuses on color, depth, and surface

normals as input modes, my structured multimodal regularization algorithm might

also be applied to others. This approach could improve performance while allowing

roboticists to focus on other engineering challenges.

2.10 Conclusions

I presented a system for detecting robotic grasps from RGB-D data using a deep

learning approach. My method has several advantages over current state-of-the-art

methods. First, using deep learning allows me to avoid hand-engineering features,

learning them instead. Second, my results show that deep learning methods sig-

nificantly outperform even well-designed hand-engineered features from previous

work.
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I also presented a novel feature learning algorithm for multimodal data based on

group regularization. In extensive experiments, I demonstrated that this algorithm

produces better features for robotic grasp detection than existing deep learning

approaches to multimodal data. My experiments and results, both offline and on

real robotic platforms, show that my two-stage deep learning system with group

regularization is capable of robustly detecting grasps for a wide range of objects,

even those previously unseen by the system.
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CHAPTER 3

DEEPMPC: LEARNING DEEP LATENT FEATURES FOR MODEL

PREDICTIVE CONTROL

Figure 3.1: Cutting food: My PR2 robot uses my algorithms to perform complex,
precise food-cutting operations. Given the large variety of material properties, it is
challenging to design appropriate controllers.

3.1 Introduction

As robots perform tasks in the real world, they must be able to handle a large vari-

ety of environments, objects, materials, and more. Traditional robotics approaches

which hand-code controllers and models are ill-equipped to deal with this, both

because it is time-consuming to create controllers for all such cases, and because a
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human programmer cannot possibly anticipate the large variety of situations that

may be encountered.

Most real-world tasks involve interactions with complex, non-linear dynamics.

Although practiced humans are able to control these interactions intuitively, de-

veloping robotic controllers for them is very difficult. Several common household

activities fall into this category, including scrubbing surfaces, folding clothes, in-

teracting with appliances, and cutting food. Other applications include surgery,

assembly, and locomotion. These interactions are characterized by hard-to-model

effects, involving friction, deformation, and hysteresis. The compound interaction

of materials, tools, environments, and manipulators further alters these effects.

Consequently, the design of controllers for such tasks is highly challenging.

In recent years, “feed-forward” model-predictive control (MPC) has proven

effective for many complex tasks, including quad-rotor control [132], mobile robot

maneuvering [51], full-body control of humanoid robots [38], and many others

[88, 49, 33]. The key insight of MPC is that an accurate predictive model allows

me to optimize control inputs for some cost over both inputs and predicted future

outputs. Such a cost function is often easier and more intuitive to design than

completely hand-designing a controller. The chief difficulty in MPC lies instead in

designing an accurate dynamics model.

Let us consider the dynamics involved in cutting food items, as shown in

Fig. 3.1, for the wide range of materials shown in Fig. 3.2. An effective cut-

ting strategy depends heavily on properties of the food, including its coefficient

of friction with the knife, elastic modulus, fracture effects, and hysteretic effects

This work originally presented as a conference paper at Robotics: Science and Systems (RSS)
2015, and is under submission to the International Journal of Robotics Research (IJRR). This
was joint work with Ross Knepper and Ashutosh Saxena.
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such as plastic deformation [96]. These variations lead humans to such diverse

cutting strategies as slicing, sawing, and chopping. In fact, properties can even

vary within a single material – compare cutting through the skin of a lemon to

cutting its flesh. Thus, a major challenge of this work is to design a model which

can estimate and make use of global environmental properties such as the material

and tool in question and temporally-changing properties such as the current rate

of motion, depth of cutting, enclosure of the knife by the material, and layer of

the material the knife is in contact with. While some works [42] attempt to define

parameters modeling these properties, it is very difficult to design a set that truly

captures all these complex inter- and intra-material variations.

Developing a model for such a complex task is thus extremely challenging.

The model must be able to handle a wide range of non-linear dynamics. It must

also be able to model the effects of a huge range of properties and variations on

these effects, and infer these properties online while acting. They must be able

to model the entire range of variations in dynamics the model might see in the

real world, extremely challenging to do with hand-defined properties. In order to

be useful for MPC, the model’s outputs must be differentiable with respect to its

inputs, and both forward prediction and backwards gradient computation must be

time-efficient in order to allow real-time optimization of the control inputs.

For these reasons, I take a deep learning approach. In the recent past, such

methods have proven effective for learning latent task-specific features across many

domains [7, 50, 79, 27, 95, 58, 140]. In this chapter, I give a novel deep architecture

for physical prediction for complex tasks such as food cutting. When this model is

used for predictive control, it yields a DeepMPC controller which is able to learn

task-specific controls.
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Since deep networks can act as universal function approximators [7], they can

model even complex, non-linear dynamics. I make use of conditional multiplicative

structures [91] to model the dependence of these dynamics on different properties.

I treat these properties as latent, allowing the model itself to learn features which

are useful for physical prediction. I apply temporal recurrence [119] to allow the

model to reuse previous information both to refine estimates of these properties and

to model temporal variation in properties. Deep networks are an excellent choice

as a model for real-time MPC because they are easily and efficiently differentiable

with respect to their inputs using the same back-propagation algorithms used in

learning, and because network sizes can simply be adjusted to trade off between

prediction accuracy and computational speed.

My model, optimized for receding-horizon prediction, learns latent material

properties directly from data. My architecture uses multiplicative conditional

interactions and temporal recurrence to model both inter-material and time-

dependent intra-material variations. I also present a novel learning algorithm for

this recurrent network which avoids overfitting and the “exploding gradient” prob-

lem commonly seen when training recurrent networks [8]. Once learned, inference

for my model is extremely fast - when predicting to a time-horizon of 1s (100

samples) in the future, my model and its gradients can be evaluated at a rate of

1.2kHz.

In extensive experiments on my large-scale dataset comprising 1488 examples

of robotic cutting across 20 different material types, I demonstrate that my feature-

learning approach outperforms other state-of-the-art methods for physical predic-

tion. I also implement an online real-time model-predictive controller using my

model. In a series of over 450 real-world robotic trials, I show that my controller
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Figure 3.2: Food materials: Some of the 20 diverse food materials which make up my
material interaction dataset. These include tough vegetables like carrots and potatoes,
thick-skinned fruits like lemons and limes, and soft items like butter and bananas, all of
which require different techniques to cut properly.

gives extremely strong performance for robotic food-cutting, even compared to

methods tuned for specific material classes.

In summary, the contributions of this chapter are:

• I combine deep learning and model-predictive control in a DeepMPC con-

troller that uses learned task dynamics.

• I propose a novel deep architecture which is able to model dynamics condi-

tioned on learned latent properties and a multi-stage pre-training algorithm

that avoids common problems in training recurrent neural networks.

• I implement a real-time model predictive control system using my learned

dynamics model on a PR2 robot.

• I demonstrate that my model and controller give strong performance for the

difficult task of robotic food-cutting.

The remainder of this chapter is organized as follows: I present related work,

including an overview of model learning for control and related methods in deep
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learning in Section 3.2. I then introduce and define the food-cutting problem and

model predictive control in Section 3.3. I motivate and present my deep archi-

tecture for modeling complex, varying dynamics in Section 3.4, then present my

learning and inference algorithms for it in Section 3.5. I give other system details

in Section 3.6, then present my real-time MPC implementation on a PR2 robot

in Section 3.7. I present experiments and results for my approach for modeling

the complex dynamics involved in food-cutting in Section 3.8, and for real-world

robotic control on a PR2 robot in Section 3.9. Finally, I conclude and present

directions for future work in Section 3.10.

3.2 Related Work

3.2.1 Robotic Control

Reactive feedback controllers, where a control signal is generated based on error

from current state to some set-point, have been applied since the 19th century [9].

Stiffness control, where error in robot end-effector pose is used to determine end-

effector forces, remains a common technique for compliant, force-based activities

[16, 6, 42]. Such approaches are limited because they require a trajectory to be

given beforehand, making it difficult to adapt to different conditions.

Markov Decision Processes (MDPs) [114] are another popular approach to

robotic control. While these methods give a tractable, general approach to solving

many robotic problems such as autonomous helicopter flight [1], robotic soccer

[116] and many others, they are limited to problems with discrete, fully-observable

states. In my food-cutting problem and many other robotic problems, I are deal-
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ing with continuous states (physical positions), and some environmental properties

(e.g. material types) may not be directly observable. Partially-Observable MDPs

(POMDPs), which have been applied to such diverse problems as action antic-

ipation for table tennis [147], robotic grasping [53], navigation [40], avoid these

assumptions. However, they typically still make others, such as locally linear dy-

namics [18] or discrete action spaces [42]. In this work, both my states and actions

will be continous-valued, and I will directly model the fact that task dynamics

depend on some unobserved properties.

Feed-forward model-predictive control allows controls to adapt online by op-

timizing some cost function over predicted future states. These approaches have

gained increased attention as modern computing power makes it feasible to per-

form optimization in real time. Shim et al. [132] used MPC to control multiple

quad-rotors in simulation, while Howard et al. [51] performed intricate maneuvers

with real-world mobile robots. Erez et al. [38] used MPC for full-body control of

a humanoid robot. These approaches have been extended to many other tasks, in-

cluding underwater vehicle control [88], visual servoing [49], and even heart surgery

[33]. However, all these works assume the task dynamics model is fully specified.

3.2.2 Model Learning for Control

Model learning for robot control has also been a very active area, and I refer

the reader to a review of work in the area by Nguyen-Tuong and Peters [106].

While early works in model learning [2, 103] fit parameters of some hand-designed

task-specific model to data, such models can be difficult to design and may not

generalize well to new tasks. Thus, several recent works attempt to learn more

general dynamics models such as Gaussian mixture models [21, 66] and Gaussian
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processes [68]. Neural networks [22, 19] are another common choice for learning

general non-linear dynamics models. The highly parameterized nature of these

models allows them to fit a wide variety of data well, but also makes them very

susceptible to overfitting.

3.2.3 Policy Learning

Several recent approaches to control learning first learn a dynamics model, then

use this model to learn a policy which maps from system state to control inputs.

These works often iteratively use this policy to collect more data and re-learn

a new policy in an online learning approach. Levine et al. [82] use a Gaussian

mixture model (GMM) where linear models are fit to each cluster, while Deisen-

roth and Rasmussen [30] use a Gaussian process (GP.) Experimentally, both these

models gave less accurate predictions than mine for robotic food-cutting. The

GP also had very long inference times (roughly 106 times longer than mine) due

to the large amount of training data needed. For details, see Section 3.8. This

weak performance is because they use only temporally-local information, while

my model uses learned recurrent features to integrate long-term information and

model unobserved system properties such as materials.

These works focus on online policy search, while here I focus on modeling

and application to real-time MPC. My model could be used along with them in

a policy-learning approach, allowing them to model dynamics with environmen-

tal and temporal variations. However, my model is efficient enough to optimize

for predictive control at run-time. This avoids the possibility of learned policies

overfitting the training data and allows the cost function and its parameters to be

changed online. It also allows my model to be used with other algorithms which
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use its predictions directly.

3.2.4 Robotic Manipulation

Luo and Hauser [84] developed a system which adapts manipulation to unknown

system parameters, but requires a parameterized dynamics model. Koval et al. [70]

developed a new algorithm for planar contact manipulation which decomposes pre-

and post-contact policies. Maitin-Shepard et al. [86] developed a system for robotic

towel-folding. This system focused on the perception aspects of the problem, and

assumes uniformity and compliance in the material being manipulated.

Several recent works have applied robotic manipulation to kitchen operations.

Bollini et al. [16] developed a vision-based robotic system for preparing and baking

cookies, while Beetz et al. [6] developed a system for preparing pancakes. Gemici

and Saxena [42] presented a learning system for manipulating deformable objects

which infers a set of material properties, then uses these properties to map objects

to a latent set of haptic categories which are used to determine how to manipu-

late the object. However, their approach requires a predefined set of properties

(plasticity, brittleness, etc.), and chooses between a small set of discrete actions.

By contrast, my approach performs continuous-space real-time control, and uses

learned latent features to model material properties and other variations, avoiding

the need for hand-design. All three of these works also apply non-reactive stiffness

controllers.

69



S
aw

in
g
A
x
is

0 2 4 6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (s)

P
o

s
it
io

n
 (

m
)

Butter

0 2 4 6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (s)

P
o

s
it
io

n
 (

m
)

Lemon

0 2 4 6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (s)

P
o

s
it
io

n
 (

m
)

Lemon, Faster

V
er
ti
ca
l
A
x
is

0 2 4 6
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

P
o

s
it
io

n
 (

m
)

0 2 4 6
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

P
o

s
it
io

n
 (

m
)

0 2 4 6
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

P
o

s
it
io

n
 (

m
)

Figure 3.3: Variation in cutting dynamics: plots showing desired (green) and actual (blue) trajectories, along with error (red)
obtained using a stiffness controller while cutting butter (left) and a lemon at low (middle) and high (right) rates of vertical motion.
Butter resists the knife significantly less than the lemon. Even though only the vertical cutting rate is the only change between the
middle and right-hand plots, dynamics along the sawing axis also change significantly. Dynamics also vary with time for the lemon
as the knife cuts through the skin and into the flesh.
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3.3 Problem Definition and System

In this work, I focus on the task of cutting a wide range of food items. This

problem is a good testbed for my algorithms because of the variety of dynamics

involved in cutting different materials. Designing individual controllers for each

material would be very time-consuming, and hand-designing accurate dynamics

models for each would be nearly infeasible.

For the task of cutting, I define gripper axes as shown in Fig. 3.4, such that

the X axis points out of the point of the knife, Y axis normal to the blade, and

Z axis vertically. Here, I consider linear cutting, where the goal is to make a

cut of some given length along the Z axis. The control inputs to the system are

denoted as u(t) = (F
(t)
x , F

(t)
y , F

(t)
z ), where F

(t)
x represents the force, in Newtons,

applied along the end-effector X axis at time t. The physical state of the system is

x(t) = (P
(t)
x , P

(t)
y , P

(t)
z ) where P

(t)
x is the X coordinate of the end-effector’s position

at time t.

A simple approach to control for this problem might use a fixed-trajectory

stiffness controller, where control inputs are proportional to the difference between

the current state x(t) and some desired state x∗(t) taken from a given trajectory.

Fig. 3.3 shows some examples which demonstrate the difficulties inherent in

this approach. While some materials, such as the butter shown on the left, offer

very little resistance, allowing a stiffness controller to accurately follow a given

trajectory, others, such as the lemon shown in the remaining two plots, offer more

resistance, causing significant deviation from the desired trajectory. When cutting

a lemon, I can also see that the dynamics change with time, resisting the knife

more as it cuts through the skin, then less once it enters the flesh of the lemon.
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Figure 3.4: Gripper axes: PR2’s gripper with knife grasped, showing the axes used
in this chapter. The X (“sawing”) axis points along the blade of the knife, Y points
normal to the blade, and Z points vertically.

The dynamics of the sawing and vertical axes are also coupled - increasing the

rate of vertical motion increases error along the sawing axis, even though the

same controls are used for that axis. This coupled behavior presents additional

challenges for modeling and control, as these axes must be considered together.

In my approach, I fix the orientation of the end-effector, as well as the position

of the knife along its Y axis, using stiffness control to stabilize these. However,

even though my primary goal is to move the knife along its Z axis, as shown

in Fig. 3.3, the X and Z axes are strongly coupled for this problem. Thus, my

algorithm performs control along both the X and Z axes. This allows “sawing”

and “slicing” motions in which movement along the X axis is used to break static

friction along the Z axis and enable forward progress. A nonlinear function f

predicts future states:

x̂(t+1) = f(x(t), u(t+1)) (3.1)

This formula can then be applied recurrently to predict further into the future,

e.g. x̂(t+2) = f(x̂(t+1), u(t+2)). When performing recurrent prediction as such, an

accurate dynamics model is extremely important as errors will accumulate over
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multiple timesteps.

3.3.1 Model-Predictive Control: Background

In this work, I use a model-predictive controller to control the cutting hand. Such

controllers have been shown to work extremely well for a wide variety of tasks for

which hand-defined controllers are either difficult to define or simply cannot suffice

[51, 38, 88, 33]. Defining Xt:k as the system state from time t through time k, and

Ut:k similarly for system inputs, a model-predictive controller works by finding a set

of optimal inputs U∗
t+1:t+T which minimize some cost function C(X̂t+1:t+T , Ut+1:t+T )

over predicted state X̂ and control inputs U for some finite time horizon T :

U∗
t+1:t+T = arg max

Ut+1:t+T

C(X̂t+1:t+T , Ut+1:t+T ) (3.2)

This approach is powerful, as it allows the robot to leverage its knowledge

of task dynamics f(x, u) directly, predicting future interactions and proactively

avoiding mistakes rather than simply reacting to past observations. It is also

versatile, as I have the freedom to design C to define optimality for some task.

The chief difficulty lies in modeling the task dynamics f(x, u) in a way that is

both differentiable and quick to evaluate, to allow online optimization.

3.4 Modeling Time-Varying Non-Linear Dynamics with

Deep Networks

Hand-designing models for the entire range of potential interactions encountered in

complex tasks such as cutting food would be nearly impossible. My main challenge
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in this work is then to design a model capable of learning non-linear, time-varying

dynamics. This model must be able to respond to short-term changes, such as

breaking static friction, and must be able to identify and model variations caused

by varying materials and other properties. It must be differentiable with respect

to system inputs, and the system outputs and gradients must be fast to compute

to be useful for real-time control.

I choose to base my model on deep learning algorithms, a strong choice for

my problem for several reasons. They have been shown to be general non-linear

learners [7], but remain differentiable using efficent back-propagation algorithms.

When time is an issue, as in my case, network sizes can be scaled down to trade

accuracy for computational performance.

Although deep networks can learn any non-linear function, care must still be

taken to design a task-appropriate model. As shown in Fig. 3.7, a simple deep

network gives relatively weak performance for this problem. Thus, one major con-

tribution of this work is to design a novel deep architecture for modeling dynamics

which might vary both with the environment, material, etc., and with time while

acting. In this section, I describe my architecture, shown in Fig. 3.5 and motivate

my design decisions in the context of modeling such dynamics.

3.4.1 Deep Learning - Background

Before describing my new architecture for handling complex, varying dynamics, I

will first describe previous work which makes up some components of this archi-

tecture and algorithm.
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Unsupervised Feature Learning: Unsupervised feature learning is one of the

major strengths of modern deep learning approaches. Even for unlabled data, these

algorithms are capable of learning useful features which can be used to initialize

the network before supervised learning. Since they are generic to the type of data

used as input, they can be applied to learned features to learn multiple layers

of representation. Here, I will apply a variant of the sparse auto-encoder (SAE)

algorithm [46], which learns features which reconstruct the training data well while

activating sparsely (e.g. for a given case, only a few features should have high

values.) Initializing the network in this way helps to avoid overfitting by giving

supervised learning a better, more general starting point.

Back-propagation: During both supervised fine-tuning and some gradient-

based unsupervised learning algorithms such as SAE, I use back-propagation to

efficiently compute cost function gradients with respect to each parameter of the

network. This works by first performing forward inference in the network, then

computing the cost function and its gradient with respect to its inputs (from the

network.) We can then iteratively propagate this gradient through the network,

computing the gradient of the cost function with respect to each hidden unit and

weight.

A similar approach can be used to compute cost function gradients with respect

to system inputs during online MPC. Here, gradients with respect to network

parameters are irrelevant, so I propagate cost function gradients backwards through

each layer of hidden features until they reach the system inputs. This lets me

quickly and efficiently compute the gradient of some cost function over network

outputs with respect to system inputs, allowing me to perform real-time gradient-

based optimization for MPC.
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Conditional Features: When modeling dynamics which depend on the robot’s

environment, I want to be able to condition the current dynamic response on some

set of environmental properties. Factored conditional nodes [91, 143] are able to

model conditional structures such as this by learning weights from each set of

inputs to some hidden “factors.” Each factor then multiplies all inputs it recieves,

effectively scaling the contribution of each set of inputs based on features extracted

from the others. When modeling dynamics, this is useful as it allows different

dynamics to be activated or deactivated depending on environmental properties.

Such features have also been shown to be useful in detecting transformations, such

as shifts and rotations in natural images [91], a behavior which I will use when

modeling time-varying properties.

Temporal Recurrence: When modeling time-dependent behavior, it is useful

to re-use past information and features. Temporal recurrence [119] allows us to do

so by forming weights to a set of features from the same features for the previous

timestep, and, in turn, feeding these features forwards to the next. This allows

us to naturally re-use features and integrate long-term information, while still

allowing features to change over time. This is also memory-efficient, as the system

need only remember one additional set of features (the previous timestep’s) and

do not need to record all observed features.

However, recurrent models introduce additional difficulty during training, in

particular in cases such as recurrent dynamic prediction where the model out-

puts are also used recurrently. If the network is not initialized well, inaccurate

predictions will be fed forwards, causing increased inaccuracy in future timesteps,

leading to the “exploding gradient” problem when already-huge error gradients are

further scaled up during back-propagation [8]. Such gradients cause problems for
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Figure 3.5: Deep predictive model: Architecture of my recurrent conditional deep
predictive dynamics model. Transforming recurrent units (TRUs) on the left model
time-varying latent properties which affect system dynamics. On the right, conditional
multiplicative modulation is used again to condition future system responses on past
observed dynamics and latent features.

gradient-based learning algorithms and can often lead to overfitting the training

data. Thus, in this work, I present a new algorithm for training my recurrent

model for physical prediction which iteratively initializes portions of it to avoid

these issues.

3.4.2 DeepMPC Architecture

In order to properly model complex dynamics conditioned on environmental prop-

erties which might vary with time, I now define a new deep architecture. This

architecture retains the strengths of standard deep learning algorithms while giv-

ing superior predictive performance for complex tasks such as food cutting, as

shown in Section 3.8.
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Dynamic Response Features: When modeling physical dynamics, it is im-

portant to capture short-term input-output responses. Thus, rather than learning

features separately for system inputs u and outputs x, the basic input features

used in my model are a concatenation of both. It is also important to capture

high-order and delayed-response modes of interaction. Thus, rather than con-

sidering only a single timestep, I consider blocks thereof when computing these

features, so that for block b, with block size B, I have visible input features

v(b) = (Xb∗B:(b+1)∗B−1, Ub∗B:(b+1)∗B−1). For known timesteps, I use the observed

values of x, while for future timesteps, I use x̂ as predicted by my model. For more

details on my feature pre-processing, see Section 3.6.

Conditional Dynamic Responses: For tasks such as material cutting, local

dynamics might be conditioned on both time-invariant and time-varying proper-

ties. Thus, I must design a model which operates conditional on past information.

I do so by introducting factored conditional units [91], where features from some

number of inputs modulate multiplicatively and are then weighted to form network

outputs. Intuitively, this allows me to blend a set of models based on features ex-

tracted from past information. Since my model needs to incorporate both short-

and long-term information, I allow three sets of features to interact – the current

control inputs, the past block’s dynamic response, and latent features modeling

long-term observations, described below. Although the past block’s response is

also included when forming latent features, including it directly in this conditional

model frees my latent features from having to model such short-term dependencies.

I use c to denote the current timeblock, f to denote the immediate future one,

l for latent features, and o for outputs. Take Nv as the number of features v, Nx

as the number of states x, and Nu as the number of inputs u in a block, and Nl
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as the number of latent features l. With h[c](b) ∈ R
Noh as the hidden features from

the current timestep, formed using weights W [c] ∈ R
Nv×Noh (similar for f and l),

and W [o] ∈ R
Noh×Nx as the output weights, my predictive model is then:

h
[c](b)
j = σ

(

Nv
∑

i=1

W
[c]
i,j v

(b)
i

)

(3.3)

h
[f ](b)
j = σ

(

Nu
∑

i=1

W
[f ]
i,j u

(b+1)
i

)

(3.4)

h
[l](b)
j = σ

(

Nl
∑

i=1

W
[l]
i,jl

(b)
i

)

(3.5)

x̂
(b+1)
j =

Noh
∑

i=1

W
[o]
i,j h

[c](b)
i h

[f ](b)
i h

[l](b)
i (3.6)

Long-Term Recurrent Latent Features: Another major challenge in mod-

eling time-dependent dynamics is integrating long-term information while still al-

lowing for transitions in dynamics, such as moving from the skin to the flesh of a

lemon. To this end, I introduce transforming recurrent units (TRUs). To retain

state information from previous observations, my TRUs use temporal recurrence,

where each latent unit has weights to the previous timestep’s latent features. To

allow this state to transition based on locally observed transformations in dy-

namics, they use the paired-filter behavior of multiplicative interactions to detect

transitions in the dynamic response of the system and update the latent state ac-

cordingly. In previous work, multiplicative factored conditional units have been

shown to work well in modeling transformations in images [91] and physical states

[143], making them a good choice here. Each TRU thus takes input from the

previous TRU’s output and the short-term response features for the current and

previous time-blocks. With ll denoting recurrent weights, lc denoting current-step

for the latent features, lp previous-step, and lo output, and Nlh as the number of
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TRU hidden units, my latent feature model is then:

h
[lc](b)
j = σ

(

Nv
∑

i=1

W
[c]
i,j v

(b)
i

)

(3.7)

h
[lp](b)
j = σ

(

Nv
∑

i=1

W
[f ]
i,j v

(b−1)
i

)

(3.8)

l
(b)
j = σ

(

Nlh
∑

i=1

W
[lo]
i,j h

[lc](b)
i h

[lp](b)
i +

Nl
∑

k=1

W
[ll]
k,j l

(b−1)
k

)

(3.9)

Finally, Fig. 3.5 shows the full architecture of my deep predictive model, as

described above.

3.5 Learning and Inference

In this section, I define the learning and inference procedures for the model defined

above. The online inference approach is a direct result of my model. However, there

are many possible approaches to learning its parameters. Neural networks require

a huge number of parameters (weights) to be learned, making them particularly

susceptible to overfitting, and recurrent networks often suffer from instability in

future predictions, causing large gradients which make optimization difficult (the

“exploding gradient” problem [8]).

To avoid these issues, I define a new three-stage learning approach which pre-

trains the network weights before using them for recurrent modeling. Deep learning

methods are non-convex, and converge to only a local optimum, making my ap-

proach important in ensuring that a good optimum which does not overfit the

training data is reached.

Inference: During inference for MPC, we are currently at some time-block
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b with latent state l(b), known system state x(b) and control inputs u(b). Future

control inputs Ut+1:t+T are also given, and the goal is then to predict the future

system states X̂t+1:t+T up to time-horizon T , along with the gradients ∂X/∂U for

all pairs of x and u. These gradients will then be used by MPC to iteratively

optimize the control inputs u.

I perform this inference by applying my model recurrently to predict future

states up to time-horizon T , using predicted states x̂ and latent features l as inputs

to my predictive model for subsequent timesteps, e.g. when predicting x(b+2), I use

the known x(b) along with the predicted x̂(b+1) and l(b+1) as inputs.

My model’s outputs (x̂) are differentiable with respect to all its inputs, allowing

me to take gradients ∂X/∂U using an approach similar to the backpropagation-

through-time algorithm used to optimize model parameters during learning, as

shown in Algorithm 1. I can in turn use these gradients with any gradient-based

optimization algorithm to optimize Ut+1:t+T with respect to some differentiable

cost function C(X,U). No online optimization is necessary to perform inference

for my model. For details on my online optimization approach, see Section 3.7.

Learning: During learning, my objective is to use my training data to learn a

set of model parameters Θ = (W [f ],W [c],W [l],W [o],W [lp],W [lc],W [ll],W [lo]) which

minimize prediction error while avoiding overfitting.

A naive approach to learning might randomly initialize Θ, then optimize the

entire recurrent model for prediction error. However, random weights would likely

cause the model to make inaccurate predictions, which will in turn be fed forwards

to future timesteps. This could cause huge errors at time-horizon T , which will

in turn cause large gradients to be back-propagated, resulting in instability in the
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learning and overfitting to the training data. To remedy this, I propose a multi-

stage pre-training approach which first optimizes some subsets of the weights,

leading to much more accurate predictions and less instability when optimizing the

final recurrent network. I show in Fig. 3.7 that my learning algorithm significantly

outperforms random initialization.

Phase 1: Unsupervised Pre-Training: In order to obtain a good initial

set of features for l, I apply an unsupervised learning algorithm similar to the

sparse auto-encoder algorithm [46] to train the non-recurrent parameters of the

TRUs. This algorithm first projects from the TRU inputs up to l, then uses the

projected l to reconstruct these inputs. The TRU weights are optimized for a

combination of reconstruction error and sparsity in the outputs of l. Taking vm,k

as the visible features for the kth time-block of training case m, M as the number

of training cases, and Tm as the number of timesteps for case m, and g(l) as some

function penalizing latent feature activation to induce sparsity, my unsupervised

pre-training phase proceeds as:

Θ∗ = arg min
Θ

M
∑

m=1

Tm/B
∑

b=2

||v̂(m,b−1) − v(m,b−1)||22

+ ||v̂(m,b) − v(m,b)||22 + λ
K
∑

j=1

g(l
(b)
j ) (3.10)

h
[ll](b)
j =

Nl
∑

a=1

W
[ll]
j,a l

(b)
a (3.11)

v̂
(b−1)
i =

Nlh
∑

j=1

W
[lp]
i,j h

[ll](b)
j h

[lc](b)
j (3.12)

v̂
(t)
i =

Nlh
∑

j=1

W
[lp]
i,j h

[ll](b)
j h

[lp](b)
j (3.13)
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Phase 2: Short-term Prediction Training: While I could now use these

parameters as a starting point to optimize a fully recurrent multi-step prediction

system, I found that in practice, this lead to instability in the predicted values,

since inaccuracies in initial predictions might “blow up” and cause huge deviations

in future timesteps.

Instead, I include a second pre-training phase, where I train the model to pre-

dict a single timestep into the future. This allows the model to adjust from the

task of reconstruction to that of physical prediction, without risking the aforemen-

tioned instability. For this stage, I remove the recurrent weights from the TRUs,

effectively setting allW [ll] to zero and ignoring them for this phase of optimization.

Taking x(m,k) as the state for the kth time-block of training case m, M as the

number of training cases, and Bm as the number of timeblocks for case m, this

stage optimizes:

Θ∗ = arg min
Θ

M
∑

m=1

Bm−1
∑

b=2

||x̂(m,b+1) − x(m,b+1)||22 (3.14)

Phase 3: Warm-Latent Recurrent Training: Once Θ has been pre-trained

by these two phases, I use them to initialize a recurrent prediction system which

performs inference as described above. I then optimize this system to minimize the

sum-squared prediction error up to T timesteps in the future, using a variant of

the backpropagation-through-time algorithm commonly used for recurrent neural

networks [119].

When run online, my model will typically have some amount of past informa-

tion, as I allow a short period where I optimize forces while a stiffness controller

makes an initial inwards motion. Thus, simply initializing the latent state “cold”

from some intial state and immediately penalizing prediction error does not match
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well with the actual use of the network, and might in fact introduce overfitting

by forcing the model to rely more heavily on short-term information. Instead, I

train my model for a “warm” start. For some number of initial time-blocks Bw, I

propagate latent state l, but do not predict or penalize system state x̂, only doing

so after this warm-up phase. I still back-propagate errors from future timesteps

through the warm-up latent states as normal.

3.6 System Details

Learning System: I used the L-BFGS algorithm, shown to give strong results

for deep learning methods [77], to optimize my model during learning. While larger

network sizes gave slightly (∼10%) less error, I found that setting Nlh = 50, Nl

= 50, and Noh = 100 was a good tradeoff between accuracy and computational

performance. I found that block size B = 10, giving blocks of 0.1s, gave the best

performance. When implemented on the GPU in MATLAB, all phases of my

learning algorithm took roughly 30 minutes to optimize.

MPC Cost Function: In order to perform MPC, I need to define a cost function

C(X,U) for my task. For food cutting, I design a cost function with two main

components, with β defining the weighting between them:

C(X,U) = Ccut(X) + βCsaw(X) (3.15)

The first, Ccut, drives the controller to move the knife downwards. It penalizes

the height of the knife at each timestep, with an additional penalty at the final

timestep allowing a tradeoff between immediate and eventual downwards motion:

Ccut(X) =
t+T
∑

k=t

P (k)
z + γP (t+T )

z (3.16)
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The second term, Csaw, keeps the tip of the knife inside some reasonable “sawing

range” along the X axis, ensuring that it actually cuts through the food. Since

any valid position is acceptable, this term will be zero inside some margins from

this range, then become quadratic once it passes those margins. Taking P ∗
x as the

center point of the sawing range, ds as the range, and λ as the margin, I define

this term as:

Csaw(X) =
t+T
∑

k=t

(

max
{

0, |P (k)
x − P ∗

x | − ds + λ
})2

(3.17)

I also include terms performing first- and second-order smoothing and L2 reg-

ularization on the control forces.

Data Pre-Processing: In order to allow my learning algorithm to learn a

better model for my data, I perform light pre-processing. I represent position

features for each block relative to the last position in the previous block – e.g.

if the previous block ended with an X-position of 0.4 m and the current block

started with an X-position of 0.5 m, the first X-position feature for the current

block would be 0.1 m. This representation avoids overfitting to absolute positions,

while still representing relative motions and allowing me to easily reconstruct an

absolute-position trajectory. Since I want to capture absolute, not relative, input

forces, I do not offset them in this way.

The only whitening I perform on these features is to scale them so all features for

a particular channel (e.g. X-positions, Z-forces, etc.) have unit standard deviation.

I scale per-channel – applying the same scaling to all B features for a particular

channel – rather than per-feature in order to preserve relative values within a

channel. For similar reasons, I do not shift values e.g. to set the mean to zero as

is common in other whitening approaches.
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One advantage to my whitening approach is that it allows me to transfer this

scaling to the input-layer weights during inference. For example, if I applied a

scaling factor of 0.1 to X-position inputs during learning, I can simply scale the

weights to the X-position used during inference by 0.1 and use un-whitened X-

position values (still offset as above.) This saves computation time by avoiding

performing scaling on new input features.

3.7 Real-time Robotic DeepMPC System

Robotic Platform: For both data collection and online evaluation of my algo-

rithms, I used a PR2 robot. The PR2 has two 7-DoF manipulators with parallel-

plate grippers, and a reach of roughly 1m. For safety reasons, I limit the forces

applied by PR2’s arms to 30N along each axis, which was sufficient to cut every

material tested. PR2 natively runs the Robot Operating System (ROS) [118]. Its

arm controllers recieve robot state information in the form of joint angles and must

publish desired motor torques at a hard real-time rate of 1KHz.

Online Model-Predictive Control System: The main challenge in designing

a real-time model-predictive controller for this architecture lies in allowing predic-

tion and optimization to run continuously to ensure optimality of controls, while

providing the model with the most recent state information and performing control

at the required real-time rate. As shown in Fig. 3.6, I solve this by separating my

online system into two processes (ROS nodes), one performing continuous opti-

mization, and the other real-time control. These processes use a shared memory

space for high-rate inter-process communication. This approach is modular and

flexible - the optimization process is generic to the robot involved (given an appro-
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Figure 3.6: Online system: Block diagram of my DeepMPC system. Parameters
learned using my three-stage deep learning algorithm are loaded by the optimization
process, which then continually predicts future states and updates future controls based
on these predictions. The control process takes state information from the robot, trans-
mits it to the optimization process, and transmits controls optimized by that process to
the robot.

priate model), while the control process is robot-specific, but generic to the task at

hand. In fact, models for the optimization process do not even need to be learned

locally, but could be shared using an online platform [130].

The control process is designed to perform minimal computation so that it

can be called at a rate of 1KHz. It recieves robot state information in the form of

joint angles, and control information from the optimization process as end-effector

forces. It performs forward kinematics to determine end-effector pose, transmits it

to the optimization process, and uses it to determine restoring forces for axes not
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controlled by MPC. It translates the combination of these forces and those recieved

from MPC to a set of joint torques sent to the arm. All operations performed by

the control process are at most quadratic in terms of the number of degrees of

freedom of the arm, allowing each call to run in roughly 0.1 ms on PR2.

The optimization process runs as a continuous loop. When started, it loads

model parameters (network weights) from disk. Cost function parameters are

loaded from a ROS parameter server, allowing them to be changed online. The

optimization loop first uses past robot states (received from the control process)

and control inputs along with past latent state and the future forces being opti-

mized to predict future state using my model. It then uses this state to compute

the gradients of the MPC cost function and back-propagates these through my

model, yielding gradients with respect to the future forces. It optimizes these

forces using a variant of the AdaGrad algorithm [34], a form of gradient descent

in which gradient contributions are scaled by the L2 norm of past gradients, cho-

sen because it is efficient in terms of function evaluations while avoiding scaling

issues. This process is implemented using the Eigen matrix library [35], allowing

the optimization loop to run at a rate of over 1.2kHz.

3.8 Prediction Experiments

In order to evaluate my model learning approach as compared to other state-of-

the-art methods, I performed experiments evaluating prediction accuracy on my

extensive dataset of 1488 material cuts. In the next section, I will also evaluate

my algorithms on a real-world PR2 robot.

Dataset: Mymaterial interaction dataset contains 1488 examples of robotic food-
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cutting for 20 different materials (Fig. 3.2). I collected data from three different

settings. First, a fixed-parameter setting in which trajectories as shown in the

leftmost two columns of Fig. 3.3 were used with a stiffness controller. Second, for

8 of the 20 materials in question, data was collected while a human tuned a stiffness

controller to improve cutting rate. This data was not collected for all materials

to avoid giving the learning algorithm and controller near-optimal cases for all

materials. Third, a randomized setting where most parameters of the controller,

including cutting and sawing rate and stiffnesses, but excluding sawing range (still

fixed at 4cm) were randomized for each stroke of the knife. This helped to obtain

data spanning the entire range of possible interactions.

Setting: In order to test my model, I examine its predictive accuracy compared

to several other approaches. Each model was given 0.7s worth of past trajectory

information (forces and known poses) and 0.5s of future forces and then asked to

predict the future end-effector trajectory. For this experiment, I used 70% of my

data for training, 10% for validation, and 20% for testing, sampling to keep each

set class-balanced.

Baselines: For prediction, I include a linear state-space model, an ARMAX

model which also weights a range of past states, and a K-Nearest Neighbors (K-

NN) model (5-NN gave the best results) as baseline algorithms. I also include a

GMM-linear model [81], and a Gaussian process (GP) model [30], trained using

the GPML package [115]. Additionally, I compare to standard recurrent and non-

recurrent two-layer deep networks, and versions of my approach without recurrence

and without pre-training (randomly initializing weights, then training for recurrent

prediction).

Results: Fig. 3.7 shows performance for each model as mean L2 distance from
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Figure 3.7: Prediction error: Mean L2 distance (in mm) from predicted to ground-
truth trajectory from 0.01s to 0.5s in the future. While most models give similar per-
formance up to 0.1s, models with linear components give very weak long-term results.
Non-parametric methods give better results, but are hampered by expensive inference
which scales poorly. Recurrent deep networks give the best results, with my approach
outperforming all others after 0.1s, reducing error at 0.5s by 46% as compared to the
baseline recurrent network

predicted to ground truth trajectory vs. prediction time in the future. Temporally-

local (piecewise-) linear methods (linear SS, GMM-linear, and ARMAX) gave weak

performance for this problem, each yielding an average error of over 8mm at 0.5s.

This shows, as expected, that linear models are a poor fit for my highly non-linear

problem.

Instance-based learning methods – K-NN and Gaussian processes – gave better

performance, at an average of 4.25mm and 3.56mm, respectively. Both outper-

formed the baseline two-layer non-recurrent deep network, which gave 4.90mm

error. The GP gave the best performance of any temporally-local model, although

this came at the cost of extreme inference time, taking an average of 3361s (56

minutes) to predict 0.5s into the future, 1.18x106 times slower than my algorithm,

whose MATLAB implementation took only 3.1ms.

90



Table 3.1: Confidence at 0.5s: Mean L2 error and 95% confidence interval at pre-
diction time of 0.5s (all in mm)

Algorithm Mean
95% Conf.
Min. Max.

Linear SS 11.46 0.89 38.58
GMM-Linear 8.96 0.58 31.80
ARMAX 8.66 0.79 31.36
Simple Deep 4.90 0.52 18.31
5-NN 4.25 0.22 19.24
Mine, Non-Recur. 3.80 0.35 15.03
Gaussian Process 3.56 0.27 14.85
Recur. Deep 3.27 0.47 12.14
Mine, Rand. Init 2.78 0.33 10.41
Mine 1.78 0.16 7.55

The relatively unimpressive performance of a standard two-layer deep network

for this problem underscores the need for task-appropriate architectures and learn-

ing algorithms. Including conditional structures, as in the non-recurrent version

of my model and temporal recurrence reduced this error to 3.80mm and 3.27mm,

respectively. Even when randomly initialized, my model outperformed the base-

line recurrent network, giving only 2.78mm error, showing the importance of using

an appropriate architecture. Using my learning algorithm further reduced error

to 1.78mm, 36% less than the randomly-initialized version and 46% less than the

baseline recurrent model, demonstrating the need for careful pre-training.

For online model-predictive control, particularly when dealing with real-world

variety, worst-case performance is very important, since I need to ensure that

my model will perform well under any conditions. As shown in Table 3.1, my

approach also gave a tighter and lower 95% confidence interval of prediction error,

from 0.16-7.55mm at 0.5s, a width of 7.39mm, compared to the baseline recurrent

net’s interval of 0.47-12.14mm, a width of 11.67mm, and the GP’s interval of 0.27-
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14.85mm, a width of 14.58mm. In fact, my method was the only approach whose

entire 95% confidence interval lay under 1cm of error.

3.9 Robotic Experiments

To evaluate my algorithm’s performance for real-world robotic control, I performed

an extensive series of over 450 experiments on my PR2 robot using the system

described in Sec. 3.7.

Setting: In these experiments, the robot’s goal was to make a linear cut between

two given points. I selected a subset of 10 of the 20 materials in my dataset for

these experiments, aiming to span the range of variation in material properties.

I evaluated these experiments in terms of cutting rate, i.e. the vertical distance

traveled by the knife divided by time taken.

Baselines: For control, I validate my algorithm against several other control

methods with varying levels of class information. First, I compare to a class-

generic stiffness controller, using the same controller for all classes. This controller

was tuned to give a good (>90%) rate of success for all classes, meaning that it

is much slower than necessary for easy-to-cut classes such as tofu. I also validate

against controllers tuned separately for each of the test classes, using the same

criteria as above, showing the maximum cutting rate that can be expected from

fixed-trajectory stiffness control.

As a middleground, I compare to an algorithm similar to that of Gemici and

Saxena [42], where a set of class-specific material properties are mapped to learned

haptic categories. I found that learning five such categories assigned all data for
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Figure 3.8: Robotic experiment results: Mean cutting rates, with bars showing
normalized standard deviation, for ten diverse materials. Red bar uses the same con-
troller for all materials, blue bar uses the same for each cluster given by [42], purple uses
a tuned stiffness controller for each, and green is my online MPC method. My algorithm
consistently gives higher mean rates, making statistically significant improvements for
all materials except butter and tofu. Particularly significant improvements are seen for
tough, varying materials such as carrots and potatoes.

each class to exactly one cluster, and thus used the same controller for all classes

assigned to each cluster. In cases where this controller was the same as used for

the class-tuned case, I used the same results for both.

Results: Figure 3.8 shows the results of my series of over 450 robotic experiments.

For all materials except butter and tofu, a paired t-test showed that my DeepMPC

controller made a statistically significant improvement in cutting rate with 95%

confidence. This makes sense as butter and tofu are relatively soft and easy-to-

cut materials. However, for the four materials for which stiffness control gave the

weakest results – lemons, potatoes, carrots, and apples – my algorithm more than

tripled the mean cutting rate, from 1.5 cm/s to 5.1 cm/s.

One major advantage my approach has over the others tested is that it treats

material properties and classes as latent and continuous-valued, rather than su-

pervised and discrete. For intra-class variations which affect dynamics, such as
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Figure 3.9: Cutting food: Time-series of my PR2 robot using my DeepMPC controller
to cut several of the food items in my dataset. My algorithm is able to adapt its strategy
for different materials. Note in particular that it picks up the knife slightly, then chops
back down when cutting the carrot, and uses more “sawing” motion on tougher materials.
Video of these experiments is available at http://deepmpc.cs.cornell.edu

different varieties of apples or cheeses, different radii of carrots or potatoes, or

varying material temperature, even the class-specific stiffness controllers were typ-

ically limited by the hardest-to-cut variation. However, my approach’s latent ma-

terial properties allowed it to adapt to these, significantly increasing cutting rates.

This was particularly evident for carrots, whose thickness causes huge variations

in dynamics. While all approaches were tested on both thick and thin sections of

carrot, only mine was able to properly adapt, slicing easily through thin sections

and more carefully through thicker ones, increasing mean cutting rate from 0.4

cm/s to 4.7 cm/s. Similar results were observed for potatoes, increasing mean rate

from 3.1 cm/s to 6.8 cm/s.

Another advantage of my approach is its ability to respond to time-dependent

changes in dynamics, thanks to the time-varying nature of my latent features and

the online adaptation performed by MPC. Such changes occur to some degree as

the knife enters and becomes enclosed by most materials, particularly in irregular

shapes such as potatoes where the degree of enclosure varies throughout the cut.
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They are even more apparent in non-uniform materials, such as lemons, with vari-

ation between the skin and flesh, and apples, which are much denser and harder

to cut closer to the core. Again, stiffness control was limited by the toughest of

these dynamics, while my approach was able to adapt, typically performing more

sawing for more difficult regions, and quickly moving downwards for easier ones.

This allowed my controller to increase the mean cutting rate for lemons from 1.3

cm/s to 4.5 cm/s, and for apples from 1.4 cm/s to 4.6 cm/s.

Optimizing its trajectory online also enabled my DeepMPC controller to ex-

hibit a much more diverse range of behaviors. Most tuned stiffness controllers were

forced to make use of high-amplitude sawing to ensure continuous motion. How-

ever, my controller was able to use more aggressive cutting strategies, typically

executing smooth slicing motions until it found its progress impeded. It then used

a variety of techniques to break static friction and continue motion, including high-

amplitude sawing, low-amplitude “wiggle” motions, and reducing and re-applying

vertical pressure, even to the point of picking up the knife slightly in some cases.

The latter behavior, in particular, underscores the strength of predictive control,

as it trades off short-term losses for long-term gains. Stiffness controllers some-

times became stuck in tough materials such as thick potatoes and carrots and the

cores of apples, and remained so because downwards force grew as vertical error

increased. My controller, however, was able to detect and break such cases using

these techniques.

Some examples of the diverse behaviors of my DeepMPC controller can be seen

in Fig. 3.9 and in the video at http://deepmpc.cs.cornell.edu.
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3.9.1 Handling Variety

In addition to my main experiments, presented above, I performed a series of

additional experiments to test the adaptive abilities of my controller. For both

these experiments, I chose to use potatoes, as they represent a challenging, dense

material which responds in interesting ways to changes in temperature and tools

(as detailed below.)

Varying Temperature: While the temperature of a material is not detectable

by most robotic platforms (with some notable exceptions [11]), it can have a huge

effect on the cutting dynamics of that material. I performed a series of experiments

to validate the robustness of my algorithm to this variation. For these experiments,

I prepared several “cold” potatoes by placing them in a freezer for 30 minutes, and

several “warm” potatoes by microwaving them for five minutes. Both of these

operations significantly altered the texture of the potato.

I did not tune or alter any controllers to reflect these new cases. As a baseline,

I compare to the class-specific stiffness controller tuned for potatoes described

above. For my approach, I used the same learned controller as used in all other

robotic experiments, which has no experience with either warm or cold potatoes,

only room-temperature. These are the same controllers presented as the purple

and green bars, respectively, in Fig. 3.8, which gave cutting rates of 3.1 cm/s and

6.8 cm/s for room temperature potatoes.

The warm potatoes were much softer and easier to cut than at room temper-

ature. This allowed the stiffness controller to track its input trajectory almost

exactly, increasing cutting rate slightly to 3.5 cm/s. My approach, however, was

able to properly adapt to these new conditions, almost doubling its cutting rate
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Figure 3.10: Different tools: Different knives used to test my algorithm. From left
to right, the paring knife used to collect data and train the algorithm, a shorter, sharper
paring knife, a long kitchen knife, a wedge-shaped chef’s knife, and a serrated steak
knife. In all cases except the serrated knife, my algorithm, trained only with the paring
knife on the left, was able to maintain comparable cutting rates.

to 12.0 cm/s.

The cold potatoes were significantly more difficult to cut. In over half of my

trials with cold potatoes, the baseline controller became stuck, with downwards

progress halting after some point. For purposes of rate computation, I considered

the controller to still be cutting until it reached the end of its input trajectory,

leading to an average cutting rate of only 1.8 cm/s. My controller, once again,

was able to properly adapt to this new case. While its forward progress was

sometimes temporarily halted, it was able to perform motions to break out and

continue cutting, allowing it to achieve a rate of 3.4 cm/s, almost double that of

the baseline stiffness controller.

Varying Tools: I also tested my controller, learned using the paring knife shown

in Fig. 3.4, with a series of other knives, as shown in Fig. 3.10. These included a

97



much sharper and slightly shorter paring knife, a longer kitchen knife, a wedge-

shaped chef’s knife, and a serrated steak knife. My controller was able to adapt

to the first three knives, giving cutting rates similar to the results in Fig. 3.8.

The sharp paring knife increased the rate slightly, to 7.8 cm/s, while the long and

wedge knives both lead to slightly decreased rates of 5.5 and 5.6 cm/s, respectively.

This makes sense, as the sharp paring knife was very similar to the training knife,

only sharper, wheras the long and wedge-shaped knives were significantly different,

leading to different cutting dynamics, particularly in the case of the wedge-shaped

knife. It is notable that my algorithm experienced only a slight (roughly 17%)

decrease in performance for such a significant change in tools.

My algorithm, trained using a straight-edged paring knife, was not able to use

the serrated steak knife to cut a potato. This makes sense for two reasons:

First, a serrated knife is not, in general, a good tool for cutting dense vegetables

like potatoes. Typically, such knives are only used for meat, where the main mode

of cutting is splitting muscle fibers, or soft, skinned vegetables such as tomatoes,

where the serration helps to cut through the skin without smashing the vegetable,

which offers minimal resistance. For dense vegetables, a sharp, straight edge is

necessary to split the vegetable, and even a skilled human user would have a hard

time using a serrated knife.

Second, the dynamics of cutting using a serrated knife are very different –

while a straight-edged knife acts primarily by splitting the vegetable apart, a ser-

rated knife acts by “eroding” the food item with its serrations. Food will respond

very differently to the same motion executed by a serrated knife, so such a knife

requires a significantly different dynamics model and cutting strategy. In partic-

ular, straight downwards motions are ineffective, requiring instead more “sawing”
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and less downwards force to allow the serrations to act. Thus, experience with a

straight-edge knife should not be expected to transfer to a serrated one. However,

given new training data, my algorithm could also learn to use such a knife.

In both these experiments, my algorithm was able to successfully handle vari-

ations that it was not explicitly trained for. While varying temperature and tools

both significantly alter cutting dynamics, in all cases but the serrated knife, my

algorithm was able to adapt to these and maintain comparable cutting rates, even

improving them in some cases.

3.10 Conclusion

In this work, I presented DeepMPC, a novel approach to model-predictive control

for complex non-linear dynamics which might vary both with environment prop-

erties and with time while acting. Instead of hand-designing predictive dynamics

models, which is extremely difficult and time-consuming for such tasks, my ap-

proach uses a new deep architecture and learning algorithm to accurately model

even such complicated dynamics. In experiments on my large-scale dataset of 1488

material cuts over 20 diverse materials, I showed that my approach improves accu-

racy by 46% as compared to a standard recurrent deep network. In a series of over

450 real-world robotic experiments for the challenging problem of robotic food-

cutting, I showed that my algorithm produced significant improvements in cutting

rate for all but the easiest-to-cut materials, and over tripled average cutting rates

for the most difficult ones.

Here, I presented a system which displays adaptability while learning a good

latent representation for complex tasks. While food-cutting and many other ma-
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nipulation tasks lend themselves well to intuitive cost functions, for others I could

envision also learning the cost function used for MPC from data. In future work,

this system could also be extended to handle multimodal information, e.g. incor-

porating haptic, visual, audio, or other data to enhance manipulation. While it

would be extremely difficult to design features which properly integrate all this

information, deep learning allows me to learn these features directly from data,

and my system would allow me to integrate them into real-time model-predictive

control.
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Algorithm 1 Recurrent Prediction and Cost Gradients for MPC

Input:

Previous and current dynamic responses v(b−1), v(b)

Current latent state l(b)

Future control inputs Ut+1:t+T

Output:

Predicted future state X̂b+1:b+T

Cost function value C(X̂b+1:b+T , Ub+1:b+T )
Cost gradients ∂C(X̂b+1:b+T , Ub+1:b+T )/∂Ub+1:b+T

Define C(x̂(i), U) as the direct contribution of x̂(i) to C(X̂t+1:t+T , Ut+1:t+T ) (ig-
noring recurrent effects.)
Define C(U) as the direct contribution of U to the cost function (e.g. via smooth-
ing/regularization terms)

Forward prediction:

for k = 1:T
Compute l(b+k) from eq. (3.9)
Compute x̂(b+k) from eq. (3.6)

end

Compute C(X̂t+1:t+T , Ut+1:t+T )

Back-propagating gradients:

dXBack1 = 0; dXBack2 = 0; dUBack1 = 0; dUBack2 = 0; dLBack1 = 0;

for k = B:1
Compute current cost function gradient, back-prop to u
dXCur = ∂C(x̂(b+k), U)/∂x̂(b+k)

dXCur = dXCur + dXBack1;
∂C(X̂, U)/∂u(b+k) = dXCur * ∂x̂(b+k)/∂u(b+k)

+ ∂C(U)/∂u(b+k) + dUBack1

Back-propagate gradients to previous timesteps
dXBack1 = dXBack2 + dXCur * ∂x̂(b+k)/∂x̂(b+k−1)

+ dLBack1 * ∂l(b+k)/∂x̂(b+k−1)

dUBack1 = dUBack2 + dXCur * ∂x̂(b+k)/∂u(b+k−1)

+ dLBack1 * ∂l(b+k)/∂û(b+k−1)

dXBack2 = dXCur * ∂x̂(b+k)/∂x̂(b+k−2)

+ dLBack1 * ∂l(b+k)/∂x̂(b+k−2)

dUBack2 = dXCur * ∂x̂(b+k)/∂u(b+k−2)

+ dLBack1 * ∂l(b+k)/∂û(b+k−2)

dLBack1 = dLBack1 * ∂l(b+k)/∂l(b+k−1)

+ dXCur * ∂x̂(b+k)/∂l(b+k−1)

end
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CHAPTER 4

LOW-POWER PARALLEL ALGORITHMS FOR SINGLE IMAGE

BASED OBSTACLE AVOIDANCE IN AERIAL ROBOTS

4.1 Introduction

Perceiving obstacles is extremely important for an aerial robot in order to avoid

collisions. Methods based on stereo vision [101, 52] are fundamentally limited by

the finite baseline between the stereo pairs [97], and fail in textureless regions and

in presence of specular reflections [10]. Active range-finding devices (e.g., [150, 93])

are either designed for indoor low-light environments (e.g., the Kinect [3]), or are

too heavy for aerial applications. More importantly, they demand more onboard

power, which is at a premium for aerial vehicles.

In this work, I use a single monocular camera for obstacle perception. Recent

works [129, 94, 123, 127, 125, 5] have shown that it is possible to obtain depth

from a single monocular image. Multiple frames can also be used in combination

to determine depth, but this approach does not work well on an aerial robot due

to camera disturbances from robot motion and vibrations. Here, I present an

algorithm that takes a single image as input and classifies each region in the image

as obstacle or not. I will define an obstacle as an object which the robot could

not safely pass through. This approach is very attractive for aerial robots because

cameras are small and draw little power.

My second key contribution is to formulate a Markov Random Field classifica-

This work was originally presented as a conference paper at the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 2012. It is joint work with Mevlana
Gemici and Ashutosh Saxena.
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tion model and design fast inference algorithms for estimating obstacles in a new

low-power parallel hardware that implements a leaky integrate and fire neuron

architecture. One implementation of such hardware [92] consumes only 45 pico-

Joules per spike (see Section 4.3 for an overview). The combination of using a

camera (miniature cameras that consume extremely low power are available) and

this hardware could allow miniature aerial robots to successfully fly amidst obsta-

cles even in unknown environments. Inference in my MRF is solved using Belief

Propagation (BP). While performing belief propagation in a traditional computer

is expensive, my design allows the low-power hardware to do so natively. Each

logical clock cycle performs a full parallel update of BP. I obtain good obstacle

estimates once the BP network has converged (see Figure 4.1). I then use the

estimated obstacle map to select a evasive manuever for avoiding the obstacle.

In detail, I represent the energy function of the MRF over the neuron archi-

tecture, and use spikes to propagate beliefs during inference. My MRF uses the

logistic function to model the local dependence of visual features to the obsta-

cle label, where each spatial region of the image is represented using a different

set of neurons—this allows parallel computation. Furthermore, I use different pa-

rameters for different spatial regions of the image [83] for improved performance.

Finally, I induce sparsity in the parameters of the model to satisfy constraints on

the number of parameters allowed by my hardware.

I performed extensive experiments in a variety of environments, containing

obstacles such as trees, fences, and poles. In learning experiments, I obtained an

average precision and recall of 81.9% and 93.6% respectively. In 53 outdoor robotic

experiments, my algorithm was able to successfully perceive obstacles in every case,

and avoid them in 51 cases. The two failures were due to communication delays
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(a) Aerial Robot. (b) Single image from camera.

(c) Initial inferred obstacle map. (d) Inferred obstacle map.

Figure 4.1: Avoiding obstacles: I use low-power parallel hardware to compute an
obstacle map, given a single image from the camera onboard the aerial robot. I then use
these results to select an evasive maneuver.

and robot drift. Some of these experiments involved avoiding a series of obstacles

of multiple types.

4.2 Related Work

In aerial robotics, most works which perform obstacle avoidance either make strong

assumptions on precise knowledge of 3D location of obstacles [90], or use sensors

that are not onboard, such as GPS (together with known obstacle map). Other

work such as [48] focuses on mapping obstacles from overhead images. For a small

aerial robot to fly autonomously in a real environment full of obstacles, these

techniques do not directly apply.
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Navigation by labeling obstacles in images has been used for several ground

robots. For example, Ghosh and Mulligan [43] use a ground segmentation approach

for navigation, while Nabbe and Hebert [102] use ground-vertical segmentation for

extending the path planning horizon for ground robots. Work such as [67, 135]

employs learning algorithms to determine terrain traversability for ground vehicles.

Michels, Saxena and Ng [94] and Plagemann et. al. [111] attempt to determine

range directly from monocular images. However, these works use only a local

feature based classifier for navigating a ground vehicle. An aerial robot is typically

severely constrained by onboard power, and I present methods that allow even a

complex inference method such as BP to be efficiently computed in low-powered

hardware.

There are other works that consider single monocular image based obstacle

avoidance for aerial robots. McGee et. al. [89] use sky segmentation for detecting

obstacles, but apply only a local classifier. Soundararaj, Sujeeth and Saxena [137]

and Courbon et. al. [29] use vision techniques to navigate aerial robots, but are

limited to known indoor environments. Bills, Chen and Saxena [13] and Zingg et.

al [152] perform similar work to unknown environments, but still handle only a

few known types of indoor environment. On the other hand, I consider general

outdoor environments, employing learning algorithms which allow my approach

to be easily adapted to new obstacle types and integrate non-local information to

enhance classification.

Vision algorithms have implemented in neural architectures or embedded sys-

tems, such as [69, 4, 64]. Other works [99, 57] used spiking neurons for basic

obstacle detection and navigation. However, these approaches do not generalize to

real-world outdoor cases.
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4.3 Neuromorphic Hardware

My goal is to develop algorithms for obstacle mapping that can be implemented in

low-power parallel hardware. In particular, I use a neuromorphic hardware plat-

form that comprises a network of linear-leak integrate and fire (LLIF) artificial

neurons as in [92]. The LLIF neurons represent an extremely versatile high-level

primitive which couples memory and processing. More importantly, this architec-

ture uses extremely low power, as discussed below.

Each neuron integrates the weighted synaptic inputs from other neurons and

fires if the integrated value exceeds a preset threshold. More formally, each neuron

has some integer-valued internal potential Z and binary-valued spiking output S.

For ith neuron, S and Z update as:

Zi+
t = Zi

t +
∑

j∈N (i)

wijY
j
t − λi

Zi
t+1 = 1{Zi+

t < αi}Z
i+
t

Sit+1 = 1{Zi+
t ≥ αi} (4.1)

where N (i) are the neighbors of neuron i, wi,j indicates the synaptic weight from

neuron j to neuron i, α indicates neuron threshold, and λ is a constant decay.

1{...} is the indicator function, which takes the value one if its argument is true

and zero otherwise.

Since these are spiking neurons, one major restriction is that the inputs and

outputs be binary-valued. I address this by using representations where the spike

count over a particular time window is proportional to the value being represented.

Since each neuron can integrate over time, this is still a useful representation. The

expected spike rate given the input x is simply a ramp function with limits, as
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follows:

g(x, α) =































0 if x ≤ 0

x/α if 0 < x < αi

1 if x ≥ αi

(4.2)

Cardinality constraints in hardware. To allow for a more compact design

with lower power consumption, hardware such as that in [92] typically imposes

a constraint on the cardinality of the weights w. That is to say, each neuron’s

weights may take at most k unique nonzero values.

Power consumption in hardware. In a well-designed hardware platform such

as [92], power consumption will be proportional to the number of spikes and the

density of connections. In particular, the hardware in [92] takes only 45 pico-Joules

(pJ) per spike, and has very low quiescent power draw in their absence.

4.4 Obstacle Classification

The primary goal of my approach is to produce an obstacle map of sufficient quality

for obstacle avoidance. This is a challenging problem, as outdoor environments are

perceptually complex, with variations in obstacle appearance, lighting, background

appearance, and other factors. My model will define obstacles as objects which

project upwards from the ground and thus present a navigational challenge to

the robot. I will use the labels it produces to select an evasive maneuver for the

perceived obstacles.

My classification model is a Markov Random Field (MRF) model (e.g., see

[72]), where I use an Ising pairwise potential for modeling dependencies between
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neighboring image regions. More formally, an MRF is an undirected graph G =

(V , E), where I represent each labeled location in the image as a vertex V , and

edges E connecting neighboring image locations. Let Y i ∈ {−1,+1} represent the

binary labels indicating presence or absence of an obstacle at the ith location in

the image, and X i represent the input visual features at that location.

I model the joint conditional likelihood of the labels given the features as:

P (Y |X, θ) ∝ exp (−E(Y |X, θ)) (4.3)

where the E(Y |X, θ) is an energy function containing three terms:

E(Y |X, θ) = −
∑

i∈V

Y iA(X i, θ)−
∑

(i,j)∈E

wijY
iY j + β||θ||1 (4.4)

The first term uses a logistic model, with θ as its parameters, to model the de-

pendence of the label on the local visual features. More formally, I model the

association potential as A(X, θ) = 2 ∗ σ(XT θ)− 1, where σ(x) = 1/(1 + exp(−x))

is the sigmoid function. The second term prefers neighboring labels to be similar,

with w indicating the relative importance of the two terms. Finally, β controls

the strength of an L1 regularization term on the local feature weights, which helps

with the weight cardinality constraints in the hardware.

During learning, I will be given a set of labeled examples and my goal is to

find the optimum value of the parameters. During inference, the system is given

a new image and my goal is to find the optimal value of Y using the LLIF neuron

architecture.
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Figure 4.2: Classification improvements from MRF: Left: input images. Middle:
initial classification. Right: classification with full MRF model with belief propagation.
Initial classification results which would present problems for navigation, but are greatly
improved by integrating non-local information using my MRF.

4.4.1 Learning

I manually set parameters wij, and learn parameters θ by maximizing the pseudo-

conditional log-likelihood. The system is given M labeled ground-truth pairs as

{(Xm, Ym) : m = 1, . . . ,M}, and I learn θ∗ as:

θ∗ = argmin
θ

M
∑

m=1

E(Ym|Xm, θ) (4.5)

= argmin
θ

M
∑

m=1

(

−
∑

i∈V

Y i
mA(X

i
m, θ)

)

+ β||θ||1 (4.6)

Here, Y i
m indicates Y i from the mth training example, and X i

m is similar for input

features. This sub-problem is convex, and is equivalent to solving logistic regression

with an additional L1 penalty term. I vary the β parameter until the number of
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non-zero weights fits within what is allowed in the hardware.

4.4.2 Inference

The goal of inference is to find an optimal value for the label estimates Y , given

features X and parameters θ:

Y ∗ = arg max
Y

P (Y |X, θ) (4.7)

My inference algorithm is based on loopy belief propagation [109, 100]. In order

to derive the update rule for node i, I assume that the values of the other nodes

are known and compute the messages as follows:

ψ(X i) = σ(θTX i) (4.8)

µi(X
i) = ψ(X i)

∏

(i,j)∈E

µj(X
j)wij (4.9)

P (Y i = 1|X) = µi(X
i) (4.10)

My goal is to perform obstacle avoidance in new environments, and the product

above may give zero probability of being an obstacle if any of terms is zero. This

is not preferable, and I need to account for such cases. Following ideas of additive

smoothing in statistics [145], I include an additive smoothing term in ψ and µ.

This is a small constant factor ǫ added to each function. Denote the versions of

these functions with additive smoothing as ψs and µs.

If I consider these update equations in log-space, they become sum of weighted

terms, and thereby can be implemented in neuromorphic hardware (Eqn. 4.1). In

such a case, the additive smoothing term becomes a constant lower bound on the
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log probability terms. Thus, in log-space, I have:

logψs(X
i) = max(log ǫ, log σ(θTX i)) (4.11)

log µs,i(X
i) = max

(

log ǫ, logψs(X
i)

+
∑

(i,j)∈E

wij log µs,j(X
j)
)

(4.12)

To implement this in hardware, I will use one neuron each to represent ψs(X
i)

and µs,i(X
i) for each node. Each ψ unit will take input in spike-rate from local

features, weighted as θ. Each µ unit will take input from the corresponding ψ unit

and neighboring µ units, weighted as w.

The log-sigmoid ψs term can be approximated as a linear function which sat-

urates at 0. With the lower bound from the additive smoothing function, this

becomes a scaled and shifted version of Eqn. 4.2. I will refer to the version of

g(x, α) adjusted to fit the log-sigmoid function as gψ(x). log µs,i(X
i) is also well

approximated by a thresholded linear function, and can thus also be modeled by

g(x, α), as gµ(x). In both cases, α is fixed to some value which gives the best fit.

The equations for my system are then:

logψs(X
i) = gψ(θ

TX i)− logZψ (4.13)

log µs,i(X
i) = gµ(wiiψs(X

i) +
∑

(i,j)∈E

wijµs,j(X
j))− logZµ (4.14)

Where the Z’s are two separate constants, necessary to include here to preserve

exact equality, but unnecessary to implement in hardware since relative values

are preserved. Except for the error introduced by approximating the log-sigmoid

function with gψ(x) and discretization, this is exactly Eqn. 4.12. To infer optimal

values for Y , I can simply threshold the gµ terms once the network has converged.
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4.4.3 Visual Features

My basic features are a standard set of texture filter responses, similar to those in

[87]. They consist of oriented edge filters (in my case, Gabor filters) and center-

surround filters (difference-of-Gaussian filters) as shown in Figure 4.3. I also in-

clude color information in the form of patch-averaged RGB values in my feature set.

In addition to raw filter responses, I include the absolute value of these responses

and the maximum and average of this absolute value over a local area.

I found it difficult to design features which fit the hardware constraints of [92],

so the features given here do not. They do, however, rely only on simple local

computations, and thus are amenable to efficient implementation in circuitry or

parallel hardware. Only features given nonzero weights by some classifier would

need to be implemented in this hardware, significantly reducing complexity.

Figure 4.3: Filter set: My filter set, which includes two scales of Gabor filters at six
orientations and two scales of difference-of-Gaussian filters.

4.4.4 Spatially-varying models and multiple models

Often the statistics of the dependence of the obstacles on the visual features varies

with their location in the image [83]. For example, while leaves on the trees are

typically obstacles, they are not if they fall on the ground in the Fall season. Thus
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my parameters θ should be different for different rows in the image. In order to do

so, I divide the image vertically into three equally sized areas. This is equivalent

to considering a separate θi for each i ∈ V , and tying weights within regions. By

dividing the classification as such, each region can have a different feature set.

Tying the parameters of these different models helps to avoid over-fitting. Since

my neuron architecture is distributed for different spatial regions in the image,

each neuron gets the appropriate synaptic weights depending on which region in

the image it is representing.

To detect multiple visually different obstacle classes, I train a model for each

class and use the combined output of these models. In order to exercise maximum

caution, I combine outputs using the logical OR of the results, ie if any classifier

classifies a region as obstacle, it is considered to be an obstacle for purposes of

navigation.

Since my algorithms run natively in parallel hardware, neither of these changes

require a change to the architecture or cause an increase in runtime.

4.4.5 Tuning for Power Consumption

One major strength of the hardware described in [92] is that its power consump-

tion can be estimated a priori from simulation with high accuracy. This is be-

cause power consumption in this hardware is determined largely by two factors:

a) connection density and b) spike count. While a) is fixed for a particular local

connection pattern, b) can change drastically depending on the relative weight be-

tween local classifier estimates and neighboring labels, as well as neuron threshold

and decay. In particular, faster convergence of the MRF model in terms of hard-
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ware timesteps can significantly reduce power consumption, as the model can be

terminated earlier and thus generates fewer spikes. Therefore, in practice, I tune

my models for a tradeoff between power and accuracy, aiming to produce results

which produce fewer spikes while still yielding results which would be useful for

obstacle avoidance.

In practice, I obtained good performance in terms of both accuracy and per-

formance for the following parameter settings for each neuron:

• wii: set slightly below α (firing threshold).

• wij: set to a small local connectivity pattern (4- or 8-way), with uniform

weights set to 10-20% of α.

• λ (decay): set to 5-10% of α.

4.5 Obstacle Avoidance Manuevers

The goal of my obstacle avoidance algorithm is to avoid obstacles in near to mid-

range (e.g., about 2m to 10m). My motion selection algorithm uses a library of

paired motions and visual-space masks. If less than some threshold’s worth of

pixels within a masked area are labeled as obstacles, the corresponding motion is

considered to be safe. The effects of sweeping this threshold are shown in Fig-

ure 4.6. A fixed preference order is used to select motions in cases where more

than one is found to be safe.

For vertical obstacles such as trees and poles, the motions, in order of pref-

erence, were diagonal-left, diagonal-right, and forwards. For horizontal obstacles

such as fences, the motions were forwards or upwards.
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Figure 4.4: BP in action: Time series of belief propagation in action. Left: original image and baseline classification result. Top:
internal node potential. Middle: spike locations. Bottom: spike counts. Time proceeds from left to right. Best viewed in color.
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Table 4.1: Obstacle classification results: Classifier precision and recall, in percent, for four obstacle classes, and average across
classes. Results presented for baseline local classifier and MRF model, with and without spatially varying model, and varying weight
cardinalities.

Algorithm Card.
Trees Buildings Fences Poles Average

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
Chance - 50.7 52.0 70.1 65.3 28.9 21.5 5.4 4.4 29.3 26.4

Local association term only, no spatial-varying model

110 80.0 81.5 83.6 91.0 61.5 92.6 56.6 94.7 71.8 88.2
8 78.6 77.2 86.9 89.4 68.3 90.0 62.2 92.6 74.8 86.0
5 77.4 75.4 90.3 73.2 67.6 90.1 47.9 95.6 70.8 86.2
3 77.2 75.3 88.7 78.2 66.8 90.7 47.7 95.4 69.7 86.4

Local association term only, spatial-varying model

110 75.9 85.5 91.2 86.1 80.3 92.1 54.0 86.7 75.4 87.6
8 74.1 84.0 91.7 85.3 78.2 93.0 59.8 86.6 75.9 87.2
5 72.8 81.3 91.0 85.6 77.4 93.2 56.3 86.8 74.4 85.6
3 70.5 77.9 90.7 79.9 66.6 93.4 57.0 86.8 71.2 84.5

Full MRF, no spatialy varying model

110 79.8 94.8 89.0 94.2 82.1 87.4 80.8 91.7 82.2 92.3
8 76.3 91.9 84.8 95.0 89.2 85.3 82.1 90.7 83.5 91.1
5 76.0 92.0 90.3 89.6 84.1 87.9 80.6 90.2 81.7 91.5
3 71.5 88.1 87.1 90.0 90.2 89.2 81.8 89.9 82.2 90.7

Full MRF, spatialy varying model

110 81.9 94.0 87.7 96.3 95.0 94.0 63.1 90.1 81.9 93.6
8 78.9 92.7 87.6 96.2 92.2 93.9 65.3 89.1 81.0 93.0
5 79.3 92.0 87.2 95.6 91.1 93.6 65.7 89.6 80.8 92.8
3 74.4 90.1 86.9 95.8 90.3 92.5 64.2 88.5 79.0 91.7
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Figure 4.5: Visual results: Figure showing the results of my algorithm for a variety of obstacles. Top: Input image. Bottom:
Inferred obstacle labels.
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4.6 Experiments and Results

4.6.1 Offline Learning Experiments

Dataset. My dataset includes 120 images taken from various locations around

the Cornell University campus using the onboard camera of my aerial robot. The

environments include four types of obstacles: trees, buildings, light poles, and

fences. The dataset includes 63 images of trees, 45 of buildings, 10 of poles and 10

of fences. I used 80% of the images for training and 20% for testing.

Belief Propagation. During inference, my BP system exhibits distinct phases

of operation as seen in Figure 4.4. First, there is a warm-up phase where nodes

with high values of classifier output build up energy. Eventually, some of these

nodes’ local potential exceeds their thresholds and they fire, spreading energy to

neighboring nodes which may also fire in response. Spikes begin to propagate across

the network, which finally reaches a steady state from which inferred classification

labels are determined.

Results. Table 4.1 shows the performance of my algorithm. I present compar-

isons with different models. First, I consider a model with only the association

term, i.e., equivalent to a local logistic classifier. Second, I also compare the effects

of training several spatially varying models. I compare the effects of reducing the

cardinality of local classifier weights as well. Similar baseline results were observed

using SVM.

My results show that the spiking neuron based BP system has proven very

effective in producing cleaner, more usable results for obstacle avoidance, as com-
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pared to baseline results using the local logistic term only. Since my feature set

contains edge and center-surround filter responses, local classifier estimates are

generally stronger at obstacle edges. BP propagates these inwards, allowing the

entire obstacle to be classified, causing increases in recall of as much as 17%. This

propagation behavior can sometimes smooth edges of perceived obstacles slightly,

as seen in many cases in Figure 4.5, causing a slight decrease in precision offset by

gains elsewhere.

Most clear areas contain no strong local values and thus do not generate an

initial spike, while true positive regions almost always do. This allows the system

to avoid some false positive cases present in the baseline results. For obstacle

avoidance purposes, recall is much more important than precision, and errors near

an obstacle are less important than false positives in otherwise clear areas.

In order to evaluate the performance of my algorithm for obstacle avoidance

purposes, I discretized the lower region of each test image into a 3x5 grid of cells,

and considered a cell to be ground-truth occupied if it contained at least 10%

ground-truth obstacles. I produced the curve shown in Figure 4.6 by sweeping

thresholds for occupancy ratios. My algorithm outperforms the baseline in all

cases. The most significant improvement is for high values of recall, which are

necessary for safe obstacle avoidance. Results presented are for trees, results for

other classes were similar.

Weight Cardinality Limitations. Reducing the number of features available to

the classifier decreases performance on average, producing particularly significant

decreases for varied obstacles such as trees. However, with BP, the results are

generally comparable for all weight cardinalities. This demonstrates that BP is

able to resolve the errors produced by restricting weight cardinality, making it an
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Figure 4.6: Precision-recall curve: Precision vs. recall for cell-based error metric,
demonstrating improvements over baseline results for navigation purposes.

ideal choice as an inference algorithm in neuromorphic hardware which imposes

that constraint.

Spatially-varying models. Baseline results were improved by spatially-varying

models in most cases, and full MRF results were improved in all cases except poles.

This suggests that spatially varying models are useful in most cases, but might be

foregone for obstacles with spatially consistent visual appearance such as poles.

Performance in different environments. Since my algorithm uses super-

vised learning to learn local classifier weights, it is easily adapted to new obstacle

classes. The four classes presented here are very visually different, yet my model

is able to detect obstacles effectively in each. My model was also able to han-

dle variations in lighting and obstacle appearance (such as leaves falling off the

trees). Figure 4.7 shows an example of a tree trunk classifier using my algorithm

performing effectively under a variation in lighting conditions.
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Figure 4.7: Varying lighting: Classification results for a tree trunk classifier using my
algorithm, on the same tree under very different lighting conditions.

Table 4.2: Robotic experiment results: Error rates presented for classification, mo-
tion execution, and overall successful avoidance

Type Obstacles Tests
Success Rate

Class. Motion Overall

Trees 3 20 100.0% 95.0% 95.0%
Fences 3 25 100.0% 100.0% 100.0%
Poles 2 8 100.0% 87.5% 87.5%

Total 8 53 100.0% 96.2% 96.2%

4.6.2 Robotic Experiments in Real Environments

I performed obstacle avoidance experiments on my aerial robot platform, an Air-

Robot with a single onboard camera and an onboard IMU for stabilization.1 Since

the hardware described in [92] is still in production, processing was done using an

1Because of funding agency’s restrictions, I am not allowed to disclose more detailed specifi-
cations of my system.
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Figure 4.8: Avoiding obstacles in series: My aerial robot avoiding a fence and a pole
in sequence. Left: Overhead map of area, red indicates obstacles avoided, blue robot
path. Robot started at the blue dot, behind and below the level of the fence, moved
upwards to a safe altitude, and proceeded over the fence and through the clear area. It
then stopped at the pole, detected it as an obstacle, moved diagonally to the right to
avoid it, and then forwards again through the following clear area.

offboard laptop computer running a MATLAB simulation of the hardware. Due

to transmission latency and a lack of the necessary parallelism, this limited me to

classifying a single image at a time, then taking a large step with the robot.

For each experiment, the robot was driven to a hovering position roughly 2-

10 meters from the obstacle. Using the robot’s IMU, I determined when it was

in a stable, level pose, then captured an image from its onboard camera. This

image was transmitted to the laptop, which performed the classification described

in Section 4.4, using a classifier trained for the appropriate obstacle class. I then

used the algorithm described in Section 4.5 to select an appropriate avoidance

maneuver. The robot then executed a predetermined, fixed motion plan based on

the maneuver chosen.

In Table 4.2, I report three types of success-rates: “classification”: when the

obstacle classification was correct, “motion”: when the computed obstacle avoid-

ance maneuver was correct, and “overall”: when the robot successfully executed

the maneuver avoiding the obstacle.
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Figure 4.9: Avoiding obstacles: AirRobot avoiding obstacles based on my classifica-
tion results (robot circled in red in cases where it’s difficult to see)

In all the experiments in Table 4.2, classification results from my model were

of sufficient accuracy to allow the controller described in Section 4.5 to properly

select a safe motion. My model identified both foreground obstacles and clear areas

consistently in these experiments.

As seen in Figure 4.9, my algorithm worked even in environments with visually

cluttered backgrounds such as buildings and background trees. While these back-

grounds did cause some false positives, as seen in some cases in Figure 4.5, these

were only in the top region of the image, which was not considered by the con-

troller. Since my algorithm works at visual range, it was able to perceive obstacles

from long distances, allowing the robot to make large, predetermined motions to

avoid them.
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Some obstacles encountered were semi-transparent, such as the fence in the

bottom row of Figure 4.9. Even though the visual appearance of the fence varied

depending on viewing angle and background, and the fence exhibited specular

reflections in some places, my algorithm was able to produce an extremely clean

labeling of the fence as seen in Figure 4.5.

I also performed an experiment where the robot avoided multiple classes of

obstacles in sequence. The classification models for fences and poles were run in

parallel, and only motions determined to be safe by both were considered. The

robot was re-oriented to its goal travel direction after each motion. The robot was

able to travel roughly 25 meters while avoiding obstacles, as shown in Figure 4.8.

This approach was able to produce good results because the models were able

to correctly report a lack of foreground obstacles when there were none, allowing

only the classifiers for which foreground obstacles were present to dictate maneuver

selection.

Video showing my robot avoiding obstacles using my algorithm is available at:

http://mav.cs.cornell.edu

4.7 Conclusions

I presented a learning algorithm that takes as input a single image and outputs an

obstacle map. My algorithm uses a Markov Random Field to model the mapping

from visual features to obstacles and the relations between neighboring regions in

the image. I use parallel neuromorphic hardware for performing inference in the

model. This hardware is well-suited for aerial robots because of its extremely low

power requirements. My MRF model also considers the cardinality constraints of
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the synaptic weights, and tries to minimize the power requirements for inference

by minimizing the number of spikes. In upcoming hardware, my algorithms would

allow several frames per second to be processed, while consuming less than 1 W of

power.

I evaluated my algorithms in both learning experiments and robotic experi-

ments. In learning experiments, my MRF model made significant improvements

in classifier accuracy both quantitatively and qualitatively for the purpose of obsta-

cle avoidance. In robotic experiments, my algorithm was able to correctly identify

the locations of forgeround obstacles in all tests, allowing the robot to select an

evasive maneuver to avoid them. Some of these tests involved multiple obstacles

of different classes in sequence, demonstrating that inference results from multiple

models can be effectively combined.
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CHAPTER 5

CONCLUSION

Here, I presented several works which apply deep learning algorithms and neural

networks to robotics problems. These works showed that by identifying hard-to-

model nonlinearities and designing deep networks and learning algorithms to model

them, we can enable robotic systems to learn to solve a wide range of problems from

data. I showed that these networks can model even abstract nonlinearities such

as mapping RGB-D image data to graspability in Chapter 2, and complex time-

varying nonlinearities like food-cutting dynamics in Chapter 3. These algorithms

were able to improve prediction accuracy in both cases, giving more accurate results

than even learning approaches with hand-engineered features.

In my work on aerial robot obstacle avoidance in Chapter 4, I showed the

promise of up-and-coming neural hardware, which lends itself well to implementing

deep learning algorithms. Such hardware would allow these algorithms to operate

completely in parallel, allowing us to run hundreds of thousands of neurons at

a time while maintaining an update rate fast enough to be useful for real-time

robotic applications.

In all these works, I applied these algorithms to real-world robotic systems.

I developed three different end-to-end systems which were able to autonomously

solve their given tasks. While these systems still required significant engineering

efforts to develop, using learning algorithms allowed me to avoid having to model

such complex nonlinearities by hand. This shows that these deep learning algo-

rithms are not only capable of producing impressive offline results, but are capable

of producing strong results in online, real-world robotic systems.
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While these works present a strong starting point for the incorporation of deep

networks into real-world robotics, they also expose several exciting directions for

future work. One area which has not been explored here, but could be hugely

helpful in deploying new real-world systems is the incorporation of online learning

and “exploration” type behavior. Iteratively learning and re-applying controllers

allows for less manual data collection and more refinement of learned models.

Incorporating uncertainty into these models is another exciting direction which

has several benefits. First, this would allow a system like that in Chapter 3 to natu-

rally perform information-collecting operations, for example to refine its knowledge

of the material being cut. This would also aid online learning, as the model would

then have knowledge of portions of its input state space for which it has high

uncertainty, and could focus data collection in those regions.

While the system presented in Chapter 3 showed very strong performance for

the challenging food-cutting task, another exciting direction for future work would

be to extend this system to new tasks, especially those integrating multimodal

data such as visual and tactile information. An architecture like that presented in

Chapter 2 could allow such a system to deal more robustly with multimodal data.

While food cutting and many other tasks lend themselves well to hand-

designing an intuitive cost function for predictive control, some others might not.

For such tasks, the system presented in Chapter 3 could be extended to learn the

cost function for the task at hand as well, in a manner similar to contemporary

work on learning cost functions from weak reinforcement. Deep learning could

allow such a system to learn even cost functions which are too abstract or difficult

for human engineers to design.
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The hardware discussed in Chapter 4 demonstrates a final, very exciting, di-

rection for future work. Since the algorithms presented in Chapters 2 and 3 use

neurons as the core of their inference algorithms, the systems could potentially be

implemented using such hardware. However, several challenges remain in doing

so. First, the learning algorithms for these approaches must be adapted to learn

networks which reflect the hardware constraints discussed in Chapter 4. Second,

the portions of these algorithms not directly implemented by deep networks (e.g.

search, optimization, cost function computation, etc.) would also need to be im-

plemented using hardware neurons, which might require significant engineering

effort.

The combination of these future directions shows the potential of this approach

to solve many of the current challenges of robotics. Such a system would be capable

of performing online learning for even complex tasks involving multimodal data

such as visual feedback, given only weak reinforcement signals which could easily be

produced by human users. It would avoid the need for hand-engineering controllers

or features, while allowing the system to continuously refine its own controllers and

models. Implementation in neural hardware would allow such a system to perform

inference extremely quickly, even in parallel with other systems, while consuming

minimal power, allowing high-performance predictive control even on miniature

aerial or ground vehicles with limited battery supply.
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[98] A. Morales, P. J. Sanz, and Àngel P. del Pobil. Vision-based computation of

three-finger grasps on unknown planar objects. In IROS, 2002.

[99] R. Mudra, R. Hahnloser, and R. J. Douglas. Neuromorphic active vision

used in simple navigation behavior for a robot. In Proc. 7th Int. Conf. On

Microelectronics for Neural Networks, pages 7–9, 1999.

[100] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for

approximate inference: An empirical study. In UAI, 1999.

[101] I. Na, S. H. Han, and H. Jeong. Stereo-based road obstacle detection and

tracking. In ICACT, 2011.

[102] B. Nabbe and M. Hebert. Extending the path-planning horizon. volume 26,

pages 997–1024, 2007.

[103] K. S. Narendra and A. M. Annaswamy. Stable Adaptive Systems. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1989. ISBN 0-13-839994-8.

[104] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal

deep learning. In ICML, 2011.

[105] V. Nguyen. Constructing stable force-closure grasps. In ACM Fall joint

computer conf, 1986.

[106] D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey.

Cognitive Processing, 12(4), 2011.

[107] M. Osadchy, Y. LeCun, and M. Miller. Synergistic face detection and pose

estimation with energy-based models. JMLR, 8:1197–1215, 2007.

139



[108] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, and D. Burschka. Rigid 3d

geometry matching for grasping of known objects in cluttered scenes. IJRR,

31(4):538–553, Apr. 2012.

[109] J. Pearl. Fusion, propagation, and structuring in belief networks. Artif.

Intell., 29(3):241–288, 1986.

[110] J. H. Piater. Learning visual features to predict hand orientations. In ICML,

2002.

[111] C. Plagemann, F. Endres, J. M. Hess, C. Stachniss, and W. Burgard. Monoc-

ular range sensing: A non-parametric learning approach. In ICRA, 2008.

[112] F. T. Pokorny, K. Hang, and D. Kragic. Grasp moduli spaces. In RSS, 2013.

[113] J. Ponce, D. Stam, and B. Faverjon. On computing two-finger force-closure

grasps of curved 2D objects. IJRR, 12(3):263, 1993.

[114] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley-Interscience, 1994.

[115] C. E. Rasmussen and H. Nickisch. GPML Matlab Code version 3.5. http:

//www.gaussianprocess.org/gpml/code/matlab/doc/.

[116] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. Reinforcement learning

for robot soccer. Autonomous Robots, 27(1):55–73, 2009.

[117] A. Rodriguez, M. Mason, and S. Ferry. From caging to grasping. In RSS,

2011.

[118] ROS: Robot Operating System. http://www.ros.org.

140

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.ros.org


[119] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep-

resentations by error propagation. In Parallel Distributed Processing: Ex-

plorations in the Microstructure of Cognition, pages 318–362. MIT Press,

1986.

[120] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (FPFH)

for 3D registration. In ICRA, 2009.

[121] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D recognition and

pose using the viewpoint feature histogram. In IROS, 2010.

[122] A. Sahbani, S. El-Khoury, and P. Bidaud. An overview of 3d object grasp

synthesis algorithms. Robot. Auton. Syst., 60(3):326–336, Mar. 2012.

[123] A. Saxena, S. Chung, and A. Ng. Learning depth from single monocular

images. In NIPS, 2005.

[124] A. Saxena, J. Driemeyer, J. Kearns, and A. Ng. Robotic grasping of novel

objects. In NIPS, 2006.

[125] A. Saxena, S. Chung, and A. Ng. 3-d depth reconstruction from a single still

image. IJCV, 76(1):53–69, 2008.

[126] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel objects

using vision. IJRR, 27(2):157–173, 2008.

[127] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Depth perception from a single

still image. In AAAI, 2008.

[128] A. Saxena, L. L. S. Wong, and A. Y. Ng. Learning grasp strategies with

partial shape information. In AAAI, 2008.

141



[129] A. Saxena, M. Sun, and A. Ng. Make3d: Learning 3d scene structure from

a single still image. PAMI, 2009.

[130] A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S. Koppula. Robo

brain: Large-scale knowledge engine for robots. Tech Report, Aug 2014.

[131] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian de-

tection with unsupervised multi-stage feature learning. In CVPR. 2013.

[132] D. Shim, H. Kim, and S. Sastry. Decentralized reflective model predictive

control of multiple flying robots in dynamic environment. In Conference on

Decision and Control, 2003.

[133] K. B. Shimoga. Robot grasp synthesis algorithms: A survey. IJRR, 15(3):

230–266, June 1996.

[134] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng. Convolutional-

recursive deep learning for 3D object classification. In NIPS, 2012.

[135] B. Sofman, E. L. Ratliff, J. A. D. Bagnell, J. Cole, N. Vandapel, and A. T.

Stentz. Improving robot navigation through self-supervised online learning.

Journal of Field Robotics, 23(12), 2006.

[136] K. Sohn, D. Y. Jung, H. Lee, and A. Hero III. Efficient learning of sparse,

distributed, convolutional feature representations for object recognition. In

ICCV, 2011.

[137] S. P. Soundararaj, A. K. Sujeeth, and A. Saxena. Autonomous indoor heli-

copter flight using a single onboard camera. In IROS, 2009.

[138] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltz-

mann machines. In NIPS, 2012.

142



[139] J. Sung, S. H. Jin, and A. Saxena. Robobarista: Object part-based transfer of

manipulation trajectories from crowd-sourcing in 3d pointclouds. In Cornell

Tech Report, 2015.

[140] J. Sung, S. H. Jin, and A. Saxena. Robobarista: Object part based trans-

fer of manipulation trajectories from crowd-sourcing in 3d pointclouds. In

International Symposium on Robotics Research (ISRR), 2015.

[141] I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent

neural networks. In ICML, 2011.

[142] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object

detection. In NIPS. 2013.

[143] G. W. Taylor and G. E. Hinton. Factored conditional restricted boltzmann

machines for modeling motion style. In ICML, 2009.

[144] C. Teuliere and E. Marchand. Direct 3d servoing using dense depth maps.

In IROS, 2012.

[145] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

[146] P. Viola and M. Jones. Rapid object detection using a boosted cascade of

simple features. In CVPR, 2001.

[147] Z. Wang, A. Boularias, K. Muelling, B. Schoelkopf, and J. Peters. Anticipa-

tory action selection for human-robot table tennis. accepted.

[148] J. Weisz and P. K. Allen. Pose error robust grasping from contact wrench

space metrics. In ICRA, 2012.

[149] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald. Robust

real-time visual odometry for dense RGB-D mapping. In ICRA, 2013.

143
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