Predicting Indexer Performance in a Distributed
Digital Library

Naomi Dushay James C. French Carl Lagoze

Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
Cornell University University of Virginia Cornell University

Ithaca, NY 14853-7501 Charlottesville, VA 22903 Ithaca, NY 14853-7501
naomi @cs.cornell.edu french@cs.virginia.edu lagoze @cs.cornell.edu
Abstract

Resource discovery in a distributed digital library poses many challenges, one of which is how to
choose search engines for query distribution, given a query and a set of search engines. This
paper focuses on search engine performance as a criterion for search engine selection and defines
two measurements of search engine performance: availability — will the search engine respond
within a time limit and response time — how quickly will the search engine respond, given that it
responds at all. We predicted both of these performance characteristics with a variety of
algorithms, all of which required little computation time and combined past performance data for
each search engine into a succinct record. We used operational data from the NCSTRL
distributed digital library to make and evaluate predictions, and we found that simple prediction
methods performed as well as more complex methods and that prediction accuracy was closely
related to data consistency.

1 Introduction

It has been said that the Internet, and the wide range of products and services made available
there, has created a culture of instant gratification among networked computer users. In
particular, Internet users expect swift and accurate responses to their search requests, but it can be
difficult to fulfill these expectations in the rapidly expanding World Wide Web. Virtually all
Web resource discovery tools are based on a centralized architecture, in which a central service
creates and deploys a master index, possibly replicated for localized network access. While the
utility of this architecture has been proven, there are inherent constraints to the centralized
approach, including scalability, lack of domain specificity and intellectual property restrictions
[14].

One approach offering promising solutions to these problems is distributed searching, in which
query processing is distributed among a set of decentralized search engines. Rights management
issues can be addressed via licensing agreements pertaining to specific search engines or sets of
documents. Individual search engines can cater to the unique needs of a collection or a user
community. Also, queries can be processed in parallel, reducing scalability issues.

A key question for distributed searching is: given a query and a set of search engines, which ones
should be selected? Selection can be based on information content of the search engines and
other factors including load, cost, licensing agreements, network latency and server reliability.
These selection criteria require sophisticated mechanisms to work properly and reliably. For
example, there may be tradeoffs between selection criteria, or search engines may have disparate
methods for determining whether or not to grant access privileges. Once the full set of useful

1

servers has been identified, we would like to select the most reliable and fastest of them to
process our query.

In this paper, we focus on search engine performance with respect to query distribution: in
particular, we tried to predict search engine performance. Accurate performance predictions
could be used to choose among search engines that index the same information, thereby reducing
the time a user waits for search results.

The paper is structured as follows. Section 2 describes the logical components of distributed
searching architecture and our approach to the query distribution problem. Section 3 describes
the algorithms used to make predictions of search engine performance. Section 4 presents the
efficacy of our predictions regarding whether or not a search engine will respond before a time
limit. Section 5 presents the efficacy of our predictions regarding how quickly a search engine
will respond, given that it responds before the time limit. Concluding remarks are presented in
section 6.

2 An Approach to Distributed Searching

We have been investigating distributed resource discovery issues in the broader context of
federated digital library architecture [17]. This architecture builds digital libraries from distinct
sets of individual services, each with defined functionality and the ability to communicate among
themselves and to each other using defined protocols. The advantages of this architecture include
scalability, easy extension of functionality, and its support of semi-autonomous management of
distributed services: participants retain autonomy over their components while using the common
protocol to communicate with other services in the digital library.

Three of the services in this model are: user interfaces, performing digital library functions
pertaining directly to user interaction; repositories, which store and access digital documents; and
indexers, which index information (metadata or full text) for digital documents and process
queries on that information.

The information indexed at a particular indexer may be a replica of that at other indexers, may be
completely disjoint, or it may overlap the information at other indexers in various ways. How a
federated digital library apportions information among indexers depends on a mixture of
administrative decisions, rights management issues and fault tolerance concerns. This creates a
need for a mechanism to select indexers for query distribution based on content (choosing
indexers that have information relevant to the query) as well as other factors such as cost or
performance (choosing among multiple indexers indexing the same information).

Other researchers have investigated a variety of issues relevant to distributed searching. For
example, the distributed database community has a long history of investigating the optimal
distribution of indexing information across LANs and controlled WANSs [4]. Research areas in
the digital library community include query translation [3], content summarization for query
routing [13] [2], content routing [9] [11], collection formation via sharing of metadata and index
information [18] and protocols for meta-searching and metadata collection [1] [12]. In addition
there have been a number of comparative studies of database selection algorithms [10] [8].

Our research focuses on the selection of indexers with respect to the performance of networks and
of the indexers themselves. In [7], we introduced the query mediator as a digital library service
which functions as an intermediary between user interfaces (Uls) and indexers. Specifically,
query mediators (QMs) are responsible for translating queries to indexer protocols, choosing

2

indexers for query processing, routing queries to those indexers, adaptively reacting to
operational conditions, and aggregating query results. If a QM performs well, it will rapidly
deliver complete search results to the UL. If a QM chooses indexers poorly, or makes poor
adaptations to operational conditions, then the digital library user could receive slow or
incomplete search results.

In [6], we found that on average QMs spend 44-54% of their time waiting for indexers to
respond. We would like to improve the QM mechanism for choosing among overlapped or
replicated indexers in order to reduce wait time for indexers, but determining which indexers fit
that description is difficult. Indexer reliability and processing speed depend on factors such as
indexer hardware characteristics, size of the indexes and current CPU load. In [7], we showed that
an indexer’s performance does not appear the same to a QM as it appears to the indexer itself.
From the perspective of a QM, or the QM-view, indexer performance depends on additional
factors that are hard to predict, such as network connectivity and network loads. If we could
accurately predict QM-view indexer performance, then we could improve the QM’s choice of
indexers, reducing QM wait time and thus, user wait time.

Our predictions focused on two key aspects of indexer performance from the QM-view:

® Availability: will the indexer respond within a time limit (such as a search timeout)? Whether
or not an indexer responds to a QM is dependent on whether the indexer is currently running
and on the network, how long the QM listens for a response, in addition to network
conditions, indexer CPU load, etc. If we could accurately predict QM-view indexer
availability, then QMs wouldn’t waste time waiting for responses from indexers that will
never respond.

® Response time: how quickly will the indexer respond, given that it responds at all? This is
the elapsed time between the moment the query is sent from the QM and the moment results
are received at the QM from the indexer. If we could accurately predict QM-view indexer
response time, then the QM could direct queries to the fastest indexers, and could choose
judicious search timeouts as well.

2.1 NCSTRL - a Distributed Digital Library Testbed

The distributed digital library on which we base our research is the Networked Computer Science
Technical Reference Library' (NCSTRL - pronounced “ancestral”). NCSTRL is an operational
digital library employing a distributed, component-based architecture. The NCSTRL collection is
globally distributed and made available through the Dienst [15] federated digital library
architecture. Dienst is an open architecture and protocol [5] for distributed digital libraries that
was developed as part of the DARPA-funded Computer Science Technical Reports Project’.
These characteristics — global distribution, open interface, and production availability — make
NCSTRL an ideal testbed for distributed digital library research (indeed, NCSTRL is one of the
collections in the DARPA-funded Distributed Integration Testbed’).

The NCSTRL collection consists of institutions, or publishing organizations, each of which (at a
minimum) provides a repository of digital documents and descriptive metadata [16] for those
documents. These institutions are a combination of Ph.D. granting computer science
departments, ePrint repositories, electronic journals, and research institutions. At the time of

"http://www.ncstrl.org
% http://www.cnri.reston.va.us/cstr.html
3 http://www.cnri.reston.va.us/integration-testbed.html

publication of this paper, there were over 100 NCSTRL repositories and approximately 50
NCSTRL indexers worldwide.

The Dienst architecture specifies the operational characteristics of semi-autonomous core digital
library services, as well as describing an open, extensible protocol for communicating among and
with these digital library services. Core services include repositories, indexers and user interface
gateways, as well as collection services which provide the mechanisms for federating these and
other services into a digital library. While not formally defined in Dienst as a separate digital
library service, the functionality of the QM is present in NCSTRL.

Each Dienst server, which implements and provides protocol access to a set of services, maintains
logs containing operational and statistics messages. We obtained QM-view indexer performance
data by analyzing Dienst logs from the following five NCSTRL servers for the period from
March 1, 1997 through April 30, 1997:

1. NCSTRL — the home page of NCSTRL, located at Cornell University.

2. CS-TR — the Cornell University Department of Computer Science Dienst server.
3. LITE — the Dienst server at the University of Virginia.

4. BERKELEY — the University of California at Berkeley Dienst server.

5. FORTH - the Institute of Computer Science, Foundation for Research and Technology —
Hellas (ICS-FORTH) Dienst server.

Full details of how the logs were analyzed can be found in [6].

3 Algorithms for Predicting Indexer Performance

As mentioned above, our goal is to improve the QM mechanism for choosing among overlapped
or replicated indexers. If we could accurately predict indexer performance from the QM-view,
then we could optimize the choice of indexers made by the QM, reducing QM wait time and thus,
user wait time. QM-view indexer predictions need to address the following questions:

1. Availability — will the indexer respond before the search timeout?
2. Response time —how quickly will the indexer respond, given that it responds at all?

Answering these predictive questions accurately would be easy if the indexer performance data
followed an observable pattern. Unfortunately, we were unable to discern clear overall patterns
for indexer availability or response time in our data. Since we couldn’t perceive patterns in the
data, we applied a variety of predictive methods to QM-view indexer data. All methods we used
combined past performance data for a given indexer at a particular QM into a succinct record and
required little QM processing time.

Two of the predictive methods we used averaged previous observations:

Running average. The prediction is the average of all previous observations. A running average
can also be limited the &k most recent observations; we refer to this as a window of size k. In this
paper, we are using the running average with the maximum window size: k is always as large as
possible.

Single last observation. The last observation is used as a prediction. This is equivalent to a
running average with a window size of one.

Our other predictive methods decayed old observations, as we believed that more recent data
would be a better predictor of indexer behavior than older data.

Low pass filter. The prediction is the average recent behavior of an indexer. Old observations are
decayed exponentially with the following formula:

Equation 1 - low pass filter formula

Va=(meV,)+ ((1-m)eX)
V, is the new value of the low pass filter (as well as the prediction)
V.1 1s the old value in the filter (before the most recent observation)
X is the most recent observation
m is a weighting parameter between 0 and 1

If m = 0, then the low pass filter is the same as the most recent observation — its predictions
would be the same as the single last observation method. If m = 1, then the filter never
changes — all predictions would be the initial filter value, assigned before the first
observation.

Ideally, we want to optimize m so that the low pass filter predictions are as accurate as possible.
We used m = 0.95 for our low pass filter, based on the work of Vingralek, Breitbart, Sayal and
Scheuermann in [19].

While a low pass filter weights recent data more heavily than older data, it has a flaw: the weight
on each observation decreases exponentially by the number of observations, rather than by the
time elapsed between observations. We addressed this problem with timed low pass filters.

3.1 The Timed Low Pass Filter

Since queries are not routed to indexers at regular intervals, we wanted a prediction formula that
weighted previous observations according to the freshness of the data: if the most recent
observation was very old, we wanted to lessen its weight, and if it was very recent, we wanted to
weight it heavily.

Like a low pass filter, a timed low pass filter gives an average of recent indexer behavior with old

observations decayed exponentially, except the weighting depends on the time elapsed between
filter updates. Timed low pass filters are updated via the following formula:

Equation 2 — timed low pass filter update formula

Va=(m” eV,) + ((1-m®) eX)
V, is the new value of the timed low pass filter (but not the prediction)

V.1, X, and m are as defined for Equation 1

D is the elapsed time since the last filter update.

Again, if m = 0, then the timed low pass filter is the same as the most recent observation. If
m = 1, then the value in the filter never changes.

As D increases, m” decreases. So as time passes, the old filter value contributes less to
the new filter value -- the filter memory decreases.

Note that Equation 2 is for updating the timed low pass filter, not for making predictions. That’s
because the prediction time is not the same as the filter update time. When a QM receives a
response from an indexer, it applies Equation 2 to update the value in the timed low pass filter.
However, when a QM is choosing among overlapped or replicated indexers, it applies one of the
formulas in Equation 3 to predict indexer performance using the timed low pass filter.

Equation 3 — timed low pass filter prediction formula

Method A: P=(m"eQ) + ((1-mP) eV)
or
Method B: P=(m"eV) + ((1-mP)*Q))
P is the prediction
V is the timed low pass filter value
Q is some predictive value, such as an initial prediction or the running average
m is a weighting parameter between 0 and 1 which we determine empirically.
D is the elapsed time since the timed low pass filter was last updated.

Our choice of m for the timed low pass filter was decided empirically and is illustrated in section
3.3 for our example.

Equation 3 has two prediction formulas, method A and method B, because we were unsure whether
the timed low pass filter value or some other value was a better approximation of the “most recent”
value when making a timed low pass filter prediction. That is, method Bis very similar to Equation
2: V in method B is analogous to V,.; in Equation 2 and Q in method B is analogous to X in
Equation 2, the “most recent” observation. Method A is the same as method B with Q and V
swapped — in method A, we view V as the “most recent” observation.

3.2 Making Predictions — an Example

As we indicated above, we are interested in predicting indexer behavior from the perspective of a
QM by using past QM-view indexer performance data; these predictions would inform QM
indexer choices when processing queries. Our approach is to simulate predictions for the indexer
performance data we gathered from NCSTRL logs in [6] in order to assess which predictive
methods are most effective.

Table 1 - Example of QM-view indexer response time data

obs time (in seconds elapsed since time 0) |13 17 19 28 39 45 49 51
obs value (indexer response time in seconds) | 3 6 7 11 5 7 3 5

Table 1 contains example indexer response times for a particular indexer from the view of a
particular QM. Note that we have the response times of indexers and when these response times
were recorded at the QM, but we must extrapolate the following information if we are going to
simulate predictions for the observed data:

Time of predictions. The QM needs to make predictions before it chooses indexers and sends
them queries, so predictions must occur not only before the observed data is recorded, but
before the query was sent to the indexer. In the case of the timed low pass filter predictions, the
time of the prediction affects the predicted value. We approximated the time of prediction as
follows:

Equation 4 - time of prediction

T,=T,-R-x
T, is the time of prediction (in seconds elapsed since time 0)
T, is the time of the observation (in seconds elapsed since time 0)
R is the indexer response time (in seconds)

X is some constant representing the overhead time for the QM to compute
predictions, choose indexers, and send the queries to the indexers (in seconds).

For example, for the first observation in Table 1, T, is 13 and R is 3. If we let x = 0.7, then
the time of prediction for the first observation is (13 —3 — 0.7), or 9.3.

Time of data structure updates. We assumed the QM updated data structures soon after it
recorded indexer performance data; we used a constant to represent the amount of time the
QM took between recording indexer performance and updating filters. For example, if the
constant was 0.5 seconds, then the data structures would have been updated at 13.5 seconds
to incorporate the first observation in Table 1, at 17.5 seconds to incorporate the second
observation, etc. The timing of data structure updates affects the values placed in the low pass
filter and the timed low pass filter.

Initial values for the data structures. We set the initial values of all data structures to the
mean of the data and in the case of the low pass filter and the timed low pass filter, set the time of
the initial filter updates to zero. The mean of the data is unknown at time zero, but since the
methods decay old information quickly, the initial value has little effect on any but the first
few predictions.

Initial prediction values. We used the mean of the data for the initial prediction for all
methods except the timed low pass filter predictions. Timed low pass filters compute an initial
prediction based on the time of the prediction, the value in the timed low pass filter, the value
of Q (for which we used the running average) and the value of m (which we set to 0.95 in this
example). The mean of the data is unknown at time zero, but all of our prediction methods
decay old information quickly enough so that the initial value has little effect on any but the
first few predictions.

7

©
L

observation values
(e.g. response time seconds)
[}
&
=

IS
.

===observed data

single last obs

running average

low pass filter

tipf value update

tipf prediction method A
tlpf prediction method B

)
Op % <o 0 +

0 10 20 30 40 50
elapsed time (seconds)

Figure 1 - data structure updates, predictions and observations as they occur in time

Figure 1 shows the observations in Table 1, updates of prediction data structures and timed low
pass filter (tipf) predictions as they occur in time. Recall that we used the running average for Q in
the tiof methods (Equation 3), and set m to 0.95. The single last observation, the running average, the
low pass filter and the tjpf are all initialized at time zero to the mean of the observed data, 5.9
seconds. All four of these are updated at the fime of data structure updates (see above), or just
after the observations are recorded. (In this example, we assumed filter updates occurred 0.5
seconds after observations were recorded.) For example, soon after the observation occurring at
time 28, the single last observation was updated to the observed value of 11 seconds, the running
average was updated to 6.6 seconds, the low pass filter was updated to 6.1 seconds and the timed low
pass filter was updated to 7.2 seconds.

The single last observation, the running average and the low pass filter methods all predict the next
observation based on whatever value is in them at prediction time. For example, in Figure 1, at
time 35 the single last observation predicts a response time of 11, the running average predicts a
response time of 6.6, and the low pass filter predicts a response time of 6.1. These predictions will
stay the same until these data structures are updated with the next prediction; in our example, the
prediction of these methods is the same at time 30 as it is at time 37.

In the case of the timed low pass filter predictions, the time of prediction is a factor in the predicted
value, and we approximated the prediction time according to Equation 4. For example, in Figure
1, at time 39, there is an observed value of 5, and we have set the prediction time constant X in
Equation 4 to 0.7 seconds. So the tipf predictions for the observation occurring at elapsed time 39
are prepared at time (39 — 5 — 0.7) or at elapsed time 33.3.

Note that the running average, low pass filter and timed low pass filter value all smooth the data over
time: the highest and lowest observed values are mitigated by these methods.

Since it’s hard to tell from Figure 1 which predictions are for which observed data points, we
aligned the predictions from all methods with the observed values they were attempting to predict
in Figure 2. For example, the single last observation method predicted a value of 7.0 for the
observation that occurred at time 28; the running average method predicted 5.5, the low pass filter
predicted 5.8, tipf method A predicted 5.4 and tipf method B predicted 5.0.

12

observation values
o<}
A

(e.g. response time seconds)
(o]

IN
.

+ =&==observed data +
+ single last obs prediction
running average prediction
low pass filter prediction
tlpf prediction method A
tlpf prediction method B

o> ¢ o

10 15 20 25 30 35 40 45 50 55
elapsed time (seconds)

Figure 2 - predictions aligned with observed values

3.3 Tuning the Timed Low Pass Filter

In the example in section 3.2, we used a value of 0.95 for m in the timed low pass filter updates
(Equation 2) and predictions (Equation 3). We would like to choose a value of m that makes the
tipf predictions as accurate as possible. We chose a constant for m empirically for our experiment,
rather than by solving Equation 2 and Equation 3 for m using data from [6].

First we predicted indexer behavior with various m values in the tipf equations, and then we
evaluated the accuracy of the generated predictions associated with each m value by comparing
predictions to observed data using mean square error (MSE). In the case of the example in
section 3.2, the m values and their corresponding MSE for tipf prediction methods A and B are
shown in Table 2.

Table 2 - MSE for tlpf prediction methods A and B for different m values for section 3.2 example

MSE for tlpf prediction

m value | method A method B
0 11.78 7.63

0.1 11.79 7.62

0.2 11.82 7.61

0.3 11.86 7.57

0.4 11.87 7.51

0.5 11.80 7.46

0.6 11.58 7.48

0.7 11.08 7.69

0.8 10.11 8.29

0.9 8.65 9.08

0.99 7.53 6.58
0.999 7.61 5.93
0.9999 7.63 5.87
0.99999 7.63 5.86
0.999999 7.63 5.86
1 7.63 5.86

We can see from Table 2 that in our example, m value 0.99 gives the lowest MSE for tipf prediction
method A, while m values 0.99999, 0.999999 and 1.0 all give the lowest MSE of 5.86 for tlpf
prediction method B. So the m value that minimizes the MSE for method A is not necessarily the m
value that minimizes MSE for method B.

In our example, we predicted behavior for one indexer. But QMs send queries to many indexers,
so m values must be chosen for each indexer to which the QM might send a query. In our
experiment, we computed the MSE for each m value shown in Table 2 for each indexer contacted
by the QM and picked the m value with the smallest MSE to use when comparing tjpf methods
with other predictive methods. When we combined all indexer predictions at a QM for the tpf
methods, we chose the best m value for each indexer: there is not one single m value for a QM,
but a separate m value for each indexer contacted by the QM.

It is important to note that our method of choosing m values allows for no cross training: m
values are optimized on the same data that we used to make and evaluate predictions.

4 Predictions of Indexer Availability

We’ve said before that QMs could reduce user wait time if they selected reliable indexers when
choosing among overlapped or replicated indexers for query distribution. We also stated that one
predictive question QMs need to address is:

Availability: will the indexer respond to this QM before the search timeout?

Availability data was recorded as a binary measurement: either the indexer responded before the
timeout (value 1) or it did not (value 0). When we applied our predictive algorithms to this data,
they produced a number between 0 and 1, which we then rounded in order to get a predictive
value. For example, an availability prediction of 0.3 meant we predicted the indexer would not
respond before the search timeout; a prediction of 0.7 meant we predicted the indexer would
respond before the timeout.

10

We predicted indexer availability using all methods delineated in section 3:

single last observation
running average

low pass filter (with m = 0.95, per [19])

AL Db =

timed low pass filter predictive method A
5. timed low pass filter predictive method B.

As in the example in section 3.2, for timed low pass filter methods A and B we used the running
average for Q in Equation 3 and we initialized data structures at elapsed time zero to the mean of
the observations. We approximated the overhead time for the QM to compute predictions (X in
Equation 4) as 2 seconds, and we assumed the data structure updates occurred in the same
moment (within one second) that the indexer performance data was recorded in the logs.

In addition to the five methods described in section 3, we also made predictions using:

6. the timed low pass filter value itself. Since we had this information available, we used it
as a predictive method, primarily to compare it with the low pass filter predictions and the
timed low pass filter predictive method results.

7. the mean of all the data. By ““all the data”, we mean all the observations we recorded.
Since the mean of all the data could not be known at prediction time, we viewed this
method as a sort of control or point of reference for our results.

In the remainder of this section, we examine our choice of m for tjpf methods (4, 5 and 6 above).
We then analyze the accuracy of the availability predictions for all seven methods, determining
which methods are superior. Last, we compare the prediction accuracy to the consistency of the
availability data itself.

4.1 Tuning the Timed Low Pass Filter

As noted in section 3.3, for the timed low pass filter algorithms, each QM must choose an m
value for each indexer to which queries could potentially be distributed. We chose m values
empirically: for each QM in our study, we ran all three of the tjpf algorithms (methods 4, 5 and 6
above) with 16 particular values for m for each of the indexers the QM contacted.

11

Table 3 - MSE of tlpf method B availability predictions for CS-TR QM by m value

m value A B C D E A = cs-tr.cs.cornell.edu:80
0] 0.01 0.40 0.12 0.40 0.31 B = cs.nyu.edu:80
0.1} 0.01 0.40 0.12 0.40 0.31 C = ncstrl.cc.vt.edu:8080
0.2 0.01 0.40 0.12 0.40 0.31 D = ncstrl.cc.vt.edu:8081
0.3] 0.01 040 0.12 040 0.31 E = www.cc.gatech.edu:81

0.4] 0.01 0.40 0.12 0.40 0.31

0.5] 0.01 0.39 0.12 0.40 0.31

0.6] 0.01 0.39 0.12 0.40 0.31

0.7] 0.01 0.39 0.12 0.40 0.31

0.8] 0.01 0.39 0.11 0.39 0.31

0.9] 0.01 0.39 0.11 0.40 0.30

0.99] 0.01 039 0.12 039 0.25
0.999] 0.02 0.41 0.15 0.40 0.14
0.9999] 0.01 0.56 0.12 0.46 0.17
0.99999] 0.99 0.61 0.88 0.56 0.32
0.999999] 0.99 0.61 0.88 0.39 0.32
1 0.99 0.61 0.88 0.39 0.68

Table 3 shows the MSE for tipf method B availability predictions for different m values for five
indexers contacted by the CS-TR QM. The MSE for the 16 different m values for these five
indexers illustrate some of the patterns we saw when choosing “best” m values for a given
indexer (for a particular tjpf algorithm for a particular QM). For example, indexer E’s MSE
distribution is unimodal, with the lowest MSE of 0.14 occurring at m value 0.999, while the
MSEs shown for indexers C and D are multimodal.

Given information like that in Table 3, we chose the “best” m value — the value, or one of the
values, producing the lowest MSE — for each tijpf method for each indexer contacted by a QM.
We used that “best” m value when comparing tjpf predictive methods against the other predictive
methods for each indexer contacted by each QM.

When we looked at the MSE for a tijpf method for “all indexers” contacted by a QM, we chose the
best m value for each indexer. In other words, the tiof method for ““all indexers” does not use one
single m value for the QM, but a separate m value for each indexer contacted by the QM in this
combined data.

4.2 Availability Prediction Results

Predictions are evaluated by comparing them to observations using mean square error (MSE).
Since both the availability data and the availability predictions had binary values of 0 and 1, the
error for any observation could be 0, 1, or —1. This means that the MSE is the same as the mean
of the absolute value of the error: a MSE of .10 implies that one out of ten predictions was
incorrect.

Table 4 shows the MSE for each of the availability predictive methods for QM CS-TR. For all but
two indexers contacted by the CS-TR QM, any predictive method has a MSE within 0.05 of any
other predictive method. For example, indexer cs.nyu.edu:80 has MSEs ranging from a low of
0.36 for the tipf value method to a high of 0.40 for the running average method. The two indexers
that have more widely varying MSE values across different predictive methods are
lite.ncstrl.org:3803, with MSE values ranging from 0.29 to 0.47, and www.cc.gatech.edu:81, with
MSE values ranging from 0.03 to 0.32. Since results are similar for all predictive methods, we

12

surmise that any pattern, or lack thereof, in the availability data affects all predictive methods
similarly. In fact, the single last observation method and the low pass filter method (with m = 0.95)
have identical MSE values for all indexers. Similarly, the mean of all data and the running average
MSE values are equal for all but three indexers (cs.nyu.edu:80, ncstrl.cc.vt.edu:8081, and
www.cs.utah.edu:80), for which the running average MSE is 0.01 greater than the mean of all data
MSE.

Table 4 — availability prediction MSE for QM CS-TR

mean of single running low pass timed low pass filter
indexer no.obs | alldata lastobs average filter tlpf value method A method B
cs-tr.cs.cornell.edu:80 14,868 0.01 0.01 0.01 0.01 0.01 0.01 0.01
¢s.nyu.edu:80 1,869] 0.39 0.37 0.40 0.37 0.36 0.37 0.39
dri.cornell.edu:80 14,172 0.00 0.01 0.00 0.01 0.01 0.00 0.00
ei.cs.vt.edu:8090 13,653 0.01 0.02 0.01 0.02 0.01 0.01 0.01
lite.ncstrl.org:3803 10,370 0.47 0.29 0.47 0.29 0.29 0.29 0.40
ncstrl.cc.vt.edu:8080 16,957 0.12 0.12 0.12 0.12 0.12 0.12 0.11
ncstrl.cc.vt.edu:8081 1,115 0.39 0.39 0.40 0.39 0.39 0.40 0.39
ncstrl.cc.vt.edu:8090 15,824 0.05 0.07 0.05 0.07 0.05 0.05 0.05
ncstrl.cs.cornell.edu:8090 13,057] 0.13 0.17 0.13 0.17 0.17 0.13 0.12
www.cc.gatech.edu:81 3,076 0.32 0.03 0.32 0.03 0.03 0.03 0.14
www.cs.dartmouth.edu:80 2,510] 0.13 0.15 0.13 0.15 0.13 0.13 0.13
www.cs.uiuc.edu:80 2,785 0.02 0.02 0.02 0.02 0.02 0.02 0.02
www.cs.umass.edu:80 13,993 0.11 0.15 0.11 0.15 0.15 0.11 0.11
www.cs.umd.edu:80 2,322 0.38 0.35 0.38 0.35 0.35 0.35 0.37
www.cs.utah.edu:80 910| 0.06 0.06 0.07 0.06 0.06 0.07 0.06
www.icase.edu:80 13,761 0.09 0.14 0.09 0.14 0.14 0.09 0.09
www.ics.forth.gr:7000 5,162 0.11 0.06 0.11 0.06 0.06 0.06 0.10
www.tc.cornell.edu:80 13,988 0.01 0.00 0.01 0.00 0.00 0.00 0.01
all indexers 160,392 0.10 0.10 0.10 0.10 0.09 0.08 0.09

The MSE of availability predictions for the other four QMs in our study are similar to those
presented in Table 4; we present the MSE for the combined data of all polled indexers for each of
the QMs in Table 5.

Table 5 — MSE for all availability predictions

mean of single running low pass timed low pass filter
QM no. obs | alldata lastobs average filter tlpf value method A method B
cs-ir 160,392 0.10 0.10 0.10 0.10 0.09 0.08 0.09
ncstrl 113,511 0.09 0.09 0.09 0.09 0.09 0.07 0.08
berkeley [69,483| 0.13 0.12 0.13 0.12 0.13 0.11 0.11
lite 6,363| 0.09 0.07 0.09 0.07 0.07 0.07 0.07
forth 743| 0.14 0.13 0.16 0.13 0.13 0.12 0.13

In Table 5, the MSE ranges narrowly, from 0.07 for a variety of prediction methods for the LITE
QM to 0.16 for the running average method for the FORTH QM. This reinforces our conclusion
from Table 4: all availability predictive methods have similar results. In Table 5, the MSE for
any method for a given QM is at most 0.04 different from the MSE for any other method for the
same QM. We do note that tipf methods A and B have a slightly lower MSE than any of the other
methods, but the single last observation method performs nearly as well and requires no
optimization of formula variables (such as m). Moreover, the single last observation method is
trivial to compute and has minimal start up costs.

13

Given that the vast majority of the predictions were for the CS-TR and NCSTRL QMs, which had
maximum MSE values of 0.10 and 0.09 respectively, we can say that approximately 90% of our
indexer availability predictions were accurate regardless of the predictive method used.

As another means of comparing the different predictive methods, we now examine Table 6,
showing the highest MSE for each predictive method for an individual indexer at each QM in our
study. Note that multiple indexers contacted by each QM may be represented in Table 6: the
indexer with the highest MSE for one predictive method may be different from the indexer with
the least accurate predictions for a different predictive method as viewed by the same QM.

Table 6 - maximum MSE for QM availability predictions for individual indexers

mean of single running low pass timed low pass filter
QM alldata lastobs average filter tlpf value method A method B
cs-tr 0.47 0.39 0.47 0.39 0.39 0.40 0.40
ncstrl 0.44 0.37 0.45 0.37 0.37 0.37 0.45
berkeley | 0.50 0.38 0.50 0.38 0.38 0.38 0.41
lite 0.49 0.28 0.50 0.28 0.29 0.29 0.31
forth 0.36 0.39 0.75 0.39 0.39 0.38 0.75

Table 6 shows that the single last observation method has the lowest maximum MSE values for
individual indexer predictions at all QMs except FORTH. Again, we see that the single /ast
observation method performs identically with the low pass filter method, and very similarly to
methods tipf value and tipf method A. Table 6 reinforces the notion that the single last observation
method performs as well as, and sometimes better than, more complex predictive methods such as
the low pass filter or timed low pass filter methods.

We now wish to compare availability prediction accuracy with the data consistency: if an indexer
consistently responds (or consistently doesn’t respond) to the QM before the search timeout, then
we would expect our predictions to be very accurate. Our measurement of data consistency is the
availability ratio: the number of times an indexer responded to the QM before the search timeout
divided by the number of times the QM attempted to contact the indexer.

14

Table 7 - single last observation availability prediction MSE compared with availability ratios for
indexers contacted by CS-TR QM (sorted by availability ratio)

single last
indexer no. obs | availability obs MSE
ncstrl.cc.vt.edu:8081 1,115 0.39 0.39
lite.ncstrl.org:3803 10,370 0.53 0.29
cs.nyu.edu:80 1,869 0.61 0.37
www.cs.umd.edu:80 2,322 0.62 0.35
www.cc.gatech.edu:81 3,076/ 0.68 0.03
ncstrl.cs.cornell.edu:8090 13,057 0.87 0.17
www.cs.dartmouth.edu:80 2,510 0.87 0.15
ncstrl.cc.vt.edu:8080 16,957 0.88 0.12
www.cs.umass.edu:80 13,993 0.89 0.15
www.ics.forth.gr:7000 5,162 0.89 0.06
www.icase.edu:80 13,761 0.91 0.14
www.cs.utah.edu:80 910 0.94 0.06
ncstrl.cc.vt.edu:8090 15,824 0.95 0.07
www.cs.uiuc.edu:80 2,785 0.98 0.02
cs-tr.cs.cornell.edu:80 14,868 0.99 0.01
ei.cs.vt.edu:8090 13,653 0.99 0.02
www.tc.cornell.edu:80 13,988 0.99 0.00
dri.cornell.edu:80 14,172 1.00 0.01
all indexers 160,392 0.89 0.10

Table 7 compares the availability ratio of indexers contacted by the CS-TR QM and the MSE of
the single last observation prediction method. We see that in general, as the availability ratio
increases, the MSE for the single last observation decreases. This meets our expectations of highly
accurate predictions when indexer behavior is highly consistent — when indexers have availability
ratios of 0.98, 0.99, or 1.00, the MSE is 0.02 or less.

Note that due to the nature of the availability measurements (1 if the indexer responded to the
QM before the search timeout, 0 if the indexer didn’t respond to the QM in time), the mean of the
availability data is the same as the availability ratio. If we were comparing the MSE for the mean
of all data predictive method with the availability ratio, we would expect a perfect inverse
relationship between availability and MSE (MSE = 1 — availability ratio) for all indexers
responding more than half the time. Likewise, we would expect a direct relationship (MSE =
availability ratio) for all indexers with an availability ratio of 0.50 or less. If we compare the
mean of all data MSE values in Table 4 with the availability ratios in Table 7, we can see that this
is true.

In Table 7 there are four indexers for which the MSE is significantly different than we would
expect: lite.ncstrl.org:3803, www.cc.gatech.edu:81, www.ics.forth.gr:7000, and www.icase.edu:80. The
first three indexers are instances in which the single last observation predictive method out-
performs the mean of all data predictive method, while the last instance is one in which the single
last observation method does worse than the mean of all data method.

The comparisons of single last observation MSE to availability ratios for the other four QMs in our
study are similar to those presented in Table 7. In Table 8 we compare the availability ratios for

the combined data of all polled indexers for each QM with the MSE for the single last observation

method.

15

Table 8 - single last observation availability prediction MSE and availability ratio of all indexers
(sorted by availability ratio)

single last
QM no obs | availability obs MSE
forth 743 0.64 0.13
berkeley | 69,483 0.79 0.12
ncstrl 113,511 0.88 0.09
cs-tr 160,392| 0.89 0.10
lite 6,363] 0.91 0.07
all QMs |350,492| 0.87 0.10

As in Table 7, in Table 8 we see that as the availability ratio increases, the MSE decreases. In
other words, as the availability becomes more consistent, the accuracy of our predictions
increases.

Table 8 also indicates that the availability ratio for all observations is 0.87: QMs received a
response from a polled indexer before the search timeout 87% of the time. We could also say that
the consistency of the data is high. (The consistency would be equally high if the availability
ratio for all observations was 0.13). This high consistency of the data is the largest factor for the
overall accuracy of 90% for our single last observation predictions for all indexers polled at all
QMs.

5 Predictions of Indexer Response Time

Our goal is to predict QM-view indexer behavior as accurately as possibly so the QM can choose
fast, reliable indexers for query distribution when presented with overlapped or replicated
indexers. Recall that QM-view indexer predictions not only need to address the availability
question (see section 4), but also the following question:

Response time: how quickly will the indexer respond to the QM, given that it responds
before the search timeout?

We made QM-view indexer response time predictions made with the same seven predictive
methods used to make availability predictions. As with the availability predictions, for timed low
pass filter methods A and B we used the running average for Q in Equation 3 and we initialized data
structures at elapsed time zero to the mean of the observations. We approximated the overhead
time for the QM to compute predictions (x in Equation 4) as 2 seconds, and we assumed the data
structure updates occurred in the same moment (within one second) that the indexer performance
data was recorded in the logs.

In this section, we explain how we chose m for tlpf methods (method A, method B, and filter value).
We then analyze the accuracy of the response time predictions for all seven methods, determining
which methods are most accurate. Last, we compare the prediction accuracy to the consistency of
the response time data itself.

5.1 Tuning the Timed Low Pass Filter

As demonstrated in section 4.1 for the availability predictions, the m values for the timed low

pass filter algorithms for response time predictions did not adhere to one pattern. Therefore, as

with the availability predictions, we chose the “best” m value out of the 16 we tried for each

indexer contacted by each QM for each tijpf method for response time predictions. We used that
16

“best” m value when comparing tipf predictive methods against the other predictive methods for
each indexer at each QM.

When we looked at the MSE for a tijpf method for “all indexers” contacted by a QM, we chose the
best m value for each indexer. In other words, the tiof method for ““all indexers” does not use one
single m value for the QM, but a separate m value for each indexer contacted by the QM in this
combined data.

5.2 Response Time Prediction Results

We evaluated our predictions by comparing them to observations using mean square error (MSE).

Table 9 shows the MSE for each of the response time predictive methods for QM CS-TR, and in
the rightmost column the difference between the highest MSE and the lowest MSE for any
method for each indexer.

Table 9 - response time prediction MSE for QM CS-TR

mean of single running low pass timed low pass filter range of
indexer no. obs | all data last obs average filter tlpf value method A method B| MSEs

cs-tr.cs.cornell.edu:80 14,748 1.7 1.3 1.7 1.5 1.3 1.4 1.6 0.4
cs.nyu.edu:80 1,135 12.6 21.9 12.5 20.5 12.6 12.5 12.5 9.5
dri.cornell.edu:80 14,119 1.9 3.4 22 3.3 1.9 22 1.9 1.5
ei.cs.vt.edu:8090 13,462 23 1.9 25 1.9 1.9 1.9 2.3 0.6
lite.ncstrl.org:3803 5,457 10.8 14.6 11.4 13.7 10.8 114 10.8 3.8
ncstrl.cc.vt.edu:8080 14,925 15.6 24.3 16.6 23.2 15.6 16.6 15.6 8.8
ncstrl.cc.vt.edu:8081 440 51.3 65.7 51.9 63.1 51.3 51.9 45.2 20.5
ncstrl.cc.vt.edu:8090 15,004 6.4 9.9 6.9 9.3 6.4 6.9 6.4 3.6
ncstrl.cs.cornell.edu:8090 | 11,397 9.7 7.9 10.1 7.4 71 7.7 8.3 3.0
www.cc.gatech.edu:81 2,097 5.8 8.6 5.8 8.1 5.8 5.8 5.7 29
www.cs.dartmouth.edu:80 2,185 6.4 9.4 6.6 8.8 6.4 6.6 6.4 3.0
WWW.cs.uiuc.edu:80 2,735 1.0 1.7 1.9 1.8 1.0 1.7 1.0 0.9
WWW.CS.umass.edu:80 12,474 10.0 13.8 9.7 12.9 10.0 9.7 9.5 4.3
www.cs.umd.edu:80 1,433 8.8 8.1 8.8 7.6 7.4 7.7 7.9 1.4
www.cs.utah.edu:80 852 1.3 2.6 1.3 2.2 1.3 1.3 1.3 1.3
www.icase.edu:80 12,473 4.5 8.2 5.4 7.8 4.5 5.4 4.5 3.7
www.ics.forth.gr:7000 4,598 7.3 10.0 71 9.4 7.3 71 7.0 3.0
www.tc.cornell.edu:80 13,893 1.4 1.3 1.7 1.4 1.3 1.3 1.4 0.4
all indexers 143,427 6.2 8.5 6.6 8.1 5.9 6.3 6.0 2.6

Table 9 has a minimum MSE value of 1.0 for the mean of all data, tlpf value and tjpof method B
methods for indexer www.cs.uiuc.edu:80 and a maximum MSE value of 65.7 for the single last
observation method for indexer ncstrl.cc.vt.edu:8081. Comparing different methods for a single
indexer, the range of the MSE values can be as narrow as 0.4 (cs-tr.cs.cornell.edu:80 and
www.tc.comell.edu:80) and as wide as 20.5 (ncstrl.cc.vt.edu:8081). So unlike the availability
predictions, the response time predictions are not similarly accurate for all predictive methods.

Recall that for the availability predictions, the single last observation method gave the same MSE as
the low pass filter method (with m = 0.95). For the response time predictions in Table 9, the single
last observation and the low pass filter methods have similar MSE values, but they aren’t exactly the
same. The running average and mean of all data MSEs resemble each other -- but recall that the
mean of all data was computed with the same data we are predicting against (i.e. there was no cross
training), while the running average method doesn’t require foreknowledge. When comparing the
single last observation and the running average methods, 12 of 18 responding indexers in Table 9 had
a lower MSE with the running average method.

17

For 13 out of the 18 indexers responding to QM CS-TR, tipf method B had the lowest MSE value,
either singly or tied with another predictive method’s MSE. The remaining 5 indexers
maximized prediction accuracy with the tlpf value method, and sometimes with the single last
observation method as well. In fact, when tjpof method B was not the most accurate method, then the
single last observation method outperformed the running average method; in cases where the running
average did better than single last observation, tiof method B was the most accurate.

Since m values of tjpf methods are not cross-trained, it is unsurprising that one of the tjpf methods
can match or beat the methods not benefiting from prescience. What is interesting is that for QM
CS-TR, the running average method is never more than 1.0 away from the most accurate method,
except in the cases of indexer ncstrl.cc.vt.edu:8081, where tipof method B is 6.1 lower than the next
most accurate method, and indexer nestrl.cs.cornell.edu:8090, where the single last observation
method is 7.9, the tlpf value method is 7.1 and the running average is 10.1. So for nearly all
indexers responding to QM CS-TR, the running average is within 1.0 of the best method even when
the range of the MSE values is as high as 8.8 (indexer ncstrl.cc.vt.edu:8080) or 9.5 (cs.nyu.edu:80),
but requires no prescience or complicated calculations of prediction algorithm variables.

The MSE of response time predictions for the four other QMs in our study are similar to those

presented in Table 9; we present the MSE for the combined data for all responding indexers for
each of the QMs in our study in Table 10.

Table 10 — MSE for all response time predictions

mean of single running low pass timed low pass filter range of
QM no. obs | all data last obs average filter tlpf value method A method B| MSEs
cs-tr 143,427 6.2 8.5 6.6 8.1 5.9 6.3 6.0 2.6
ncstrl 99,406 7.8 10.2 7.7 9.7 7.6 7.5 7.5 2.8
berkeley| 54,852 15.2 24.7 15.2 23.4 15.1 15.2 15.0 9.6
lite 5,811 9.9 14.8 9.9 14.0 9.9 9.8 9.2 5.6
forth 479 67.1 118.8 69.4 113.2 67.1 69.2 64.0 54.8

Table 10 shows that the CS-TR QM not only has the most accurate predictions in our study on
average, but that the different prediction methods are most consistent for the CS-TR QM — the
MSE values only range from 5.9 to 8.5 for this QM. The FORTH QM has the least accurate
response time predictions in our study, on average, and their accuracy varies widely depending on
the prediction method, from a MSE of 64.0 for tipf method B to 118.8 for the single last observation
method.

The most accurate method for predicting response times for the CS-TR QM, when examining the
MSE for all responding indexers combined, is the tipf value method. Tipf method B performs best
for the other four QMs (though tipf method A performs equally well as method B for the NCSTRL
QM), and for the CS-TR QM, the MSE for tipf method B is only 0.1 higher than that for the t/pf
value prediction method. However, the running average method, which is simpler to compute and
uses no foreknowledge, performs nearly as well. For four of the QMs (all but FORTH), the
minimum MSE value is within 0.7 of the MSE value for the running average. For two of these
QMs (NCSTRL and BERKELEY), the running average MSE is within 0.2 of the most accurate
method. Even for the FORTH QM, the MSE for the running average method, 69.4, is much closer
to the lowest MSE value of 64.0 than it is to the highest MSE value of 118.8. Moreover, since the
FORTH QM has far fewer observations than the other QMs, we can still assert that for all response
time predictions in our study, the running average method performs nearly as well as any of the tipf
methods or the mean of all data method.

18

If we take the root mean square (RMS), or the square root of the MSE, then we get a rough
approximation of the average error for a prediction. For the CS-TR QM, the running average
predictions on average are within SQRT (6.6) = 2.6 seconds of the response time observations.
For the BERKELEY QM, the running average predictions are generally within SQRT (15.2) =3.9
seconds of the response time observations. For the FORTH QM, the running average predictions on
average are within SQRT (69.4) = 8.4 seconds of the response time observations.

In order to further compare predictive methods and examine prediction accuracy, we now present
Table 11, which shows the highest MSE for each predictive method for an individual indexer at
each QM. Note that multiple indexers contacted by each QM may be represented in Table 11: the
indexer with the highest MSE for one predictive method may be different from the indexer with
the least accurate predictions for a different predictive method as viewed by the same QM.

Table 11 - maximum MSE for QM response time predictions for individual indexers

mean of single running low pass timed low pass filter
QM all data last obs average filter tlpf value method A method B
cs-tr 51.3 65.7 51.9 63.1 51.3 51.9 452
ncstrl 21.0 30.3 21.1 28.6 21.0 211 21.0
berkeley 38.5 57.4 38.0 54.4 38.5 37.9 37.8
lite 23.0 50.2 23.7 47.7 23.0 23.7 23.0
forth 95.2 169.1 97.1 161.1 95.2 96.9 88.5

In Table 11, tipf method B has the lowest maximum MSE values for individual indexer predictions
at all QMs, though the tipf value and mean of all data methods equal the tjof method B MSE value at
the NCSTRL and LITE QMs. For three QMs, the worst MSE value for an individual indexer using
the running average prediction method is very close to the worst MSE value using tjpf method B: for
NCSTRL, the running average MSE is only 0.1 greater than the tjpof method B MSE, for BERKELEY
it’s within 0.2 and for LITE it’s within 0.7. For the CS-TR QM, the maximum individual indexer
MSE for tipf method B is 45.2, while the least accurate predictions using the running average
method give a MSE of 51.9. This is a discrepancy of 6.7, while the discrepancy for the FORTH
QM is 8.6. While these discrepancies seem large, we need to remember that this is a
measurement looking at the average of the squared prediction error.

If we examine the RMS for these worst case running average predictions for individual indexers
represented in Table 11, then the running average method is within SQRT (97.1) = 9.9 seconds of
response times, on average, for the least accurate individual indexer predictions. If we ignore the
FORTH data, then that calculation drops to SQRT (51.9) = 7.2 seconds: running average predictions
are within roughly 7 seconds of response times, on average, for the least accurate individual
indexer predictions at the CS-TR QM. (Recall from Table 10 that overall, CS-TR QM predictions
are within 2.6 seconds of the observed response times.)

We will now compare response time prediction accuracy with data consistency; our measurement
of data consistency is the variance of the observed response times.

19

Table 12 - running average response time prediction MSE and RMS compared with mean response
times and variances for indexers responding to the CS-TR QM (sorted by variance)

mean running running

indexer no. obs | resptime variance avg MSE avg RMS RMS/mean
cs-tr.cs.cornell.edu:80 14,748 1.9 0.8 1.7 1.3 68%
www.tc.cornell.edu:80 13,893 1.7 1.0 1.7 1.3 76%
www.cs.uiuc.edu:80 2,735 3.0 1.0 1.9 1.4 46%
www.cs.utah.edu:80 852 0.3 1.3 1.3 1.2 384%
ei.cs.vt.edu:8090 13,462 1.8 1.6 2.5 1.6 87%
dri.cornell.edu:80 14,119 3.2 1.9 2.2 1.5 47%
www.icase.edu:80 12,473 2.0 4.5 5.4 2.3 116%
www.cc.gatech.edu:81 2,097 2.7 5.3 5.8 2.4 89%
ncstrl.cc.vt.edu:8090 15,004 4.2 6.3 6.9 2.6 63%
www.cs.dartmouth.edu:80 2,185 7.0 6.4 6.6 2.6 37%
www.ics.forth.gr:7000 4,598 5.5 7.1 7.1 2.7 48%
www.cs.umd.edu:80 1,433 10.9 8.0 8.8 3.0 27%
www.cs.umass.edu:80 12,474 4.7 9.4 9.7 3.1 66%
ncstrl.cs.cornell.edu:8090 11,397 4.4 9.5 10.1 3.2 72%
lite.ncstrl.org:3803 5,457 7.2 10.7 11.4 3.4 47%
cs.nyu.edu:80 1,135 2.8 11.9 12.5 3.5 126%
ncstrl.cc.vt.edu:8080 14,925 5.1 15.6 16.6 41 80%
ncstrl.cc.vt.edu:8081 440 13.3 51.3 51.9 7.2 54%
all indexers 143,427 3.6 6.3 6.6 2.6 71%

Table 12 compares the mean response times and variances for indexers responding to the CS-TR
QM and with the MSE and RMS of the running average prediction method. We see that in general,
as the variance for an indexer’s response times increases, the MSE for the running average
prediction method increases as well. There are exceptions to this: www.cs.utah.edu:80 has a
variance of 1.3 and an MSE of 1.3, while www.cs.uiuc.edu:80 has a variance of 1.0 and an MSE of
1.9; two other exceptions occur for indexers dri.cornell.edu:80 and www.cs.dartmouth.edu:80.

The root mean square (RMS) column in Table 12 indicates how much, on average, a running
average prediction differs from the corresponding actual response time. In the best case for the
CS-TR QM, running average predictions average a 1.2 second discrepancy from observations
(indexer www.cs.utah.edu:80), in the worst case the discrepancy is 7.2 seconds
(nestrl.cc.vt.edu:8081), and overall, the discrepancy averages 2.6 seconds.

When we say that running average response time predictions, on average, are within 2.6 seconds of
observed response times for the CS-TR QM, that sounds pretty good ... until we examine the
mean response time for all indexers responding to the QM: 3.6 seconds. So our running average
predictions, on average, are 71% off from the mean of all response times. The best results are for
indexer www.cs.umd.edu:80, where the running average RMS is 3.0 seconds and the mean response
time is 10.9 seconds: for this indexer, the RMS is only 27% of the mean. However, this is the
indexer with the second highest mean response time for the CS-TR QM. The indexer with the
lowest mean response time of 0.3 seconds, www.cs.utah.edu:80, has a running average RMS of 1.2
seconds, which is 384% of the mean — the highest percentage of any indexer.

Perhaps the most positive information from Table 12 is that the running average RMS is 4.1
seconds or lower for all indexers except ncstrl.cc.vt.edu:8081, which only had 440 of the 143,427
observations recorded by QM CS-TR. These RMS figures for predictive methods, combined with

20

the variance or standard deviation of indexer response times could inform the search timeout
values.

The comparisons of running average MSE to mean and variance of response time data for the other
four QMs in our study are similar to those presented in Table 12. In Table 13 we compare the
mean response times and variances for the combined data of all responding indexers for each QM
with the MSE for the running average method.

Table 13 - running average response time prediction MSE and RMS compared with mean response
time and variance of all responding indexers (sorted by variance)

mean running running
QM no. obs | resptime variance avg MSE avg RMS RMS/mean
cs-tr 143,427 3.6 6.2 6.6 2.6 71%
ncstrl 99,406 6.6 7.8 7.7 2.8 42%
lite 5,811 3.4 9.9 9.9 3.1 92%
berkeley| 54,852 6.8 15.2 15.2 3.9 57%
forth 479 10.0 67.2 69.4 8.3 83%
all QMs | 303,975 5.2 8.5 8.7 29 57%

In Table 13, as in Table 12, we see that as the variance increases, the MSE increases: as the
consistency of the data decreases, the accuracy of our predictions decreases. Almost half of the
response time predictions occur at QM CS-TR; nearly a third occur at NCSTRL: these QMs have
the lowest running average RMS, 2.6 seconds and 2.8 seconds, respectively. So nearly two thirds
of the response time predictions have a discrepancy of no more than 2.8 seconds, on average,
from observed response times. All response time predictions at all QMs are 2.9 seconds away
from the observed response times, on average.

The mean response time for all indexers responding to all QMs in our study is 5.2 seconds; the
RMS for the running average prediction method is 2.9 seconds. So our running average predictions
for all response time data are 57% off from the mean for all response time data. The QM with the
lowest ratio between running average RMS and mean response time is NCSTRL; the worst ratio
occurs at the LITE QM, with an RMS of 3.1 seconds and a mean response time of 3.4 seconds.

The variance for all the response time data in our study is 8.5 seconds; the standard deviation is
SQRT(8.5) = 2.9 seconds. This is nearly half of the mean response time of 5.2 seconds for all the
data in our study; therefore, on average, the response time data is not highly consistent, or tightly
clustered around the mean. This is the largest factor in the accuracy or lack thereof in our
response time predictions.

6 Conclusions

In this paper, we examined the accuracy of indexer performance predictions made from the query
mediator perspective. Such predictions could be used to inform a QM’s selection of indexers for
query distribution when optimizing for performance (choosing the fastest, most reliable indexer
among a set of overlapped or replicated indexers). By improving the QM choice of indexers, we
reduce the time a QM spends waiting for indexers to respond, and hence reduce the time a user
waits for search results from a distributed digital library. Response time predictions (and a
measurement of their accuracy) can also be used to inform search timeout choices at the QM:
judiciously chosen search timeouts could reduce QM wait time and thus, user wait time.

21

We investigated the accuracy of various algorithms when predicting indexer availability and
response times from the QM-view, and learned, unsurprisingly, that prediction accuracy is related
to data consistency. We also learned that the simple prediction algorithms we used performed as
well as our complex algorithms. The primary utility of our work is that it quantifies the accuracy
of different prediction methods as well as the consistency of observed data from an operational,
world-distributed digital library.

With respect to indexer availability from the QM-view, our combined data had an 87% response
rate. Approximately 90% of our indexer availability predictions were accurate regardless of the
predictive method used — this high accuracy is due to the high consistency of the data. One of the
simplest prediction methods, the single last observation method (in which the previous observation
is used as a prediction value), performed as well as or slightly better than other predictive
methods.

QM-view predictions of indexer response times were not similarly accurate for all predictive
methods. Timed low pass filter method B was the most accurate, but the simpler running average
method performed nearly as well. Timed low pass filter methods were not cross-trained, and hence
their results might be unduly accurate. The accuracy of response time predictions is closely
related to the standard deviation of the observed response times — again, we see a correlation
between data consistency and prediction accuracy.

On average, for all QMs in our study, the running average predictions differed from the observed
response times by 2.9 seconds, and 2.9 seconds is also the standard deviation of all observed
response times in our study. The poorest response time predictions for a particular indexer as
viewed by a particular QM are a more appropriate measurement for adjusting QM search
timeouts. Running average predictions differed by 9.9 seconds or less, on average, from the least
accurate predictions for individual indexers. Ignoring the small amount of data from the FORTH
QM, running average predictions differ by roughly 7 seconds from observed response times for the
least accurate predictions for individual indexers.

None of the prediction algorithms we used required on-going heavy computation from the QM or
more than minimal indexer performance monitoring by the QM. Our future work will involve
further explorations of how to improve the resource discovery process in distributed digital
libraries, including the application of QM-view indexer performance monitoring and predictions
to improve QM performance.

Acknowledgments

This work was supported by DARPA grant MDA 972-96-1-006 with the Corporation for
National Research Initiatives, DARPA contract N66001-97-C-8542, and NASA GSRP NGTS5-
50062. This paper does not necessarily represent the views of CNRI, DARPA, or NASA. The
authors are grateful to Robbert van Renesse, Elizabeth Slate and especially David Fielding for
their contributions, and to UC Berkeley and ICS-FORTH for the log data.

References

[1] "Information Retrieval (Z39.50): Application Service Definition and Protocol
Specification," ANSI/NISO, 1995.

22

(2]

(3]

(4]

[5]

[6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Callan, J. P., Z. Lu, et al., "Searching Distributed Collections with Inference Networks,"
presented at 18th International Conference on Research and Development in Information
Retrieval, Seattle, 1995.

Chang, C.-C. K. and H. Garcia-Molina, "Evaluating the Cost of Boolean Query Mapping,"
presented at ACM Digital Libraries 97, Philadelphia, 1997.

Chu, W, “Optimal File Allocation in Multiple Computer Systems,” IEEE Transactions on
Computers, October, 1969.

Davis, J. and C. Lagoze, "Dienst Protocol Version 5.0," 1997;
http://www.cs.cornell.edu/lagoze/dienst/protocol5.htm.

Dushay, N, J. C. French, et al., "A Characterization Study of NCSTRL Distributed
Searching," Cornell University Computer Science, Technical Report TR99-1725, January
1999.

Dushay, N, J. C. French, et al., "Using Query Mediators for Distributed Searching in
Federated Digital Libraries," to be presented at ACM Digital Libraries '99, Berkeley, CA,
1999.

French, J. C., A. L. Powell, et al., "Comparing the Performance of Database Selection
Algorithms," to be presented at ACM SIGIR Conference on Research and Development in
Information Retrieval, Berkeley, CA, 1999.

French, J. C., A. L. Powell, et al., "Efficient Searching in Distributed Digital Libraries,"
presented at ACM Digital Libraries '98, Pittsburgh, 1998.

French, J. C., A. L. Powell, et al., "Evaluating Database Selection Techniques: A Testbed
and Experiment," presented at ACM SIGIR Conference on Research and Development in
Information Retrieval, Melbourne, Australia, 1998.

French, J. C. and C. L. Viles, “Ensuring Retrieval Effectiveness in Distributed Digital
Libraries,” Journal of Visual Communication and Image Representation, 7 (1), pp. 61-73,
1996.

Gravano, L., C.-C. Chang, et al., "STARTS: Stanford Proposal for Internet Meta-
Searching," presented at ACM SIGMOD International Conference on the Management of
Data, 1997.

Gravano, L., H. Garcia-Molina, et al., "The Effectiveness of GIOSS for the Text-Database
Discovery Problem," presented at ACM SIGMOD International Conference on the
Management of Data, 1994.

Lagoze, C., "From Static to Dynamic Surrogates: Resource Discovery in the Digital Age,"
D-Lib Magazine, June 1997.

Lagoze, C., E. Shaw, et al., "Dienst Implementation Reference Manual," Cornell University
Computer Science, Technical Report TR95-1514, May 1995.

Lasher, R. and D. Cohen, "A Format for Bibliographic Records," Internet Engineering Task
Force, RFC 1807, June 1995.

23

[17] Leiner, B. M., "The NCSTRL Approach to Open Architecture for the Confederated Digital
Library," D-Lib Magazine, December 1998.

[18] Roszkowski, M. and C. Lukas, "A Distributed Architecture for Resource Discovery Using
Metadata," D-Lib Magazine, June 1998.

[19] Vingralek, R., Y. Breitbart, et al., "Web++: A System for Fast and Reliable Web Service,"
to be presented at the 15th International Conference on Data Engineering, Sydney,
Australia, 1999.

24

