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Optical trapping is a powerful single molecule technique used to study dynamic 

biomolecular events, especially those involving DNA and DNA-binding proteins.  The 

optical trap has the capability to stretch, twist, or unzip single DNA molecules, usually 

along a single dimension.  Access to more dimensions of a single molecule system 

will be an essential feature in next generation single molecule tools to study more 

complex bimolecular systems, such as transcription and replication machinery, that 

stretch, twist, and unwind multiple strands of DNA.  To this end, two new techniques 

for single molecule optical trapping are presented.  First, a passive torque wrench is 

developed to increase the versatility and flexibility of the angular optical trapping 

technique by passively clamping the toque while simultaneously monitoring the 

angular orientation of the trapped particle.  Second, a novel optical trapping assay is 

presented that allows simultaneous DNA stretching, twisting, unzipping, and 

fluorescence of a three-branch DNA construct, the DNA Y structure.
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CHAPTER 1 

OPTICAL TRAPPING AS A SINGLE MOLECULE TECHNIQUE 

  



2 

Introduction 

 

Single molecule biophysics has greatly expanded our knowledge about the way in 

which proteins and DNA interact and function (Greenleaf et al. 2007; Moffitt et al. 

2008; Forth et al. 2013).  Studying single molecules in biology is necessary to measure 

fast asynchronous behaviors of proteins.  Standard biochemical methods provide a 

vast foundation for understanding protein function; however, biochemical methods 

cannot provide manipulation to probe directly how forces and torques limit or alter the 

behavior of proteins.  Furthermore, biochemical methods always measure and 

ensemble average of many proteins often undergoing many rounds of reactions.  

Therefore we use single molecule methods to distinguish the mechanical properties of 

single proteins undergoing single reaction cycles to understand and quantify their 

reaction pathways. 

 

The Wang lab has pioneered new techniques in single molecule biophysics.  Our lab 

focuses on the use of optical trapping and a DNA centric assay to measure the actions 

of single proteins interacting with DNA (Yin et al. 1995; Wang et al. 1997; Wang et 

al. 1998).  The optical trap exerts forces and extends single DNA tethers via a trapped 

handle particle to detect the interaction of proteins with nanometer and piconewton 

precision.  We have developed DNA unzipping as a method to probe the precise 

location and strength of interactions of proteins with DNA (Koch et al. 2002).  We 

pioneered the angular optical trap which allowed for the application of twist and 

torque to the DNA (La Porta and Wang 2004).  In this dissertation I will describe my 
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contributions to the development of novel single molecule optical trapping techniques.  

Specifically, a method for a passive torque wrench with the angular optical trap and a 

new assay which allows for a combination DNA stretching, twisting, and unzipping.  

This chapter will introduce the methods of stretching, twisting, and unzipping DNA 

used in single molecule optical trapping and motivate the need for more advanced 

techniques. 

 

Manipulation of single molecules 

 

Single molecule techniques observe and/or manipulate one molecule at a time.  

Optical tweezers achieve this feat by attaching a biological molecule to a handle 

particle such as a microsphere.  The DNA centric assay involves attaching a single 

DNA molecule between the surface and the handle particle.  To make measurements 

on a biological system, the handle particle is manipulated by the optical trap. 

 

Stretching 

 

This first and simplest single molecule assay is DNA stretching (figure 1a).  The 

measured quantities are the end to end distance of the DNA and the total force on the 

tethered DNA.  A surprising amount of information can be determined by such a 

simple assay. 

The first task in using a DNA centric assay to study single molecule biology is to 

understand the behavior of dsDNA and ssDNA under force.  Single molecule optical 
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tweezers experiments stretch DNA measure the force extension curves (Smith et al. 

1996; Wang et al. 1997).  These studies can be compared to theoretical work that 

applies statistical mechanics to describe DNA.  Single stranded DNA is well described 

by a simple freely jointed chain polymer model (Smith et al. 1996); however, under 

low force the bases of the ssDNA can interact with each other forming secondary 

structure.  The structural properties of double stranded DNA are well described by a 

worm like chain model.  Experimental results have been well fit by several 

approximate solutions for the force extension relationship for low force where entropy 

dominates, for higher forces where enthalpy dominates, and more complete theories 

that combine both low and high force (Wang et al. 1997) or include contributions from 

the DNA’s helical structure (Sheinin and Wang 2009).  These measurements and the 

accompanying theoretical models are essential for interpreting single molecule 

measurements of protein-DNA interactions in the DNA centric assay. 

 

Protein complexes bound to DNA can be detected by the stretching assay since they 

change the physical properties of the DNA.  Protein complexes that bind DNA can be 

disrupted by force.  This disruption is detected by the release of DNA from the protein 

surface or protein complex (figure 1b).  Such disruption assays have been used to 

study the stability of the nucleosome arrays as well as single nucleosomes (Brower-

Toland et al. 2002; Brower-Toland and Wang 2004).  The stability of the protein-DNA 

complex can be estimated from the measured disruption force; however, 

discrimination of multiple proteins on a single tether is difficult. 
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DNA stretching is also useful for understanding the formation of protein filaments 

where many proteins bind to the DNA tether.  Tension applied to the DNA tether 

alters the binding affinity of proteins.  This rate of assembly or disassembly of protein 

filaments under force can be exploited to determine their molecular mechanism.  A 

single molecule stretching study of RAD51, a key player in the initiation of 

homologous recombination, was able to determine that the filament disassembled one 

monomer at a time and that the filament must unravel from its ends (van Mameren et 

al. 2009).  Another study revealed the mechanism of RecA, another protein 

responsible for initiating homologous recombination during DNA break repair, did not 

function under tension which implied that the 3D conformational dynamics of DNA is 

essential for the protein function (Forget and Kowalczykowski 2012).  Thus, through 

modifying the DNA landscape by applying force a great deal can be learned about the 

mechanism of protein-DNA interactions. 
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Figure 1. DNA centric single molecule measurement configurations.  (a)  A single 

DNA molecule is attached to a microscope cover glass at one end and a plastic 

microsphere at the other.  By controlling the position of the microsphere and applied 

optical force, the end to end length (extension) and the force on the DNA is measured 

and manipulated.  (b)  Stretching the DNA tether can disrupt DNA-protein 

interactions.  The force at which the disruption occurs as well as the accompanying 

change in DNA extension characterizes the interaction.  (c) Proteins which actively 

create loops of DNA can be measured with the stretching assay because they change 

the amount of extended DNA.  The processivity and frequency of events can be 

determined under varying forces.  (d)  Using a processive motor protein as the linkage 

of one end of the DNA tether, the velocity, step size, and processivity of molecular 

motors can be quantitatively determined as a function of resisting or assisting force.  
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Stretching DNA can also detect the dynamics of single proteins which alter the end to 

end length of DNA (figure 1c).  Chromatin remodelers form loops of DNA between 

DNA binding domain and a translocation motor domain.  Stretching assays have found 

that chromatin remodelers such as SWI/SNF and RSC are processive motors.  They 

reel in large loops of DNA which are subsequently released in a sudden event.  The 

stretching assay is ideal for measuring such looping activity, however, stretching alone 

cannot identify where the protein is located on the tether and it is challenging to be 

certain there is only a single protein acting on the DNA. 

 

A variation of the stretching technique allows for the tracking of protein motors that 

move processively along DNA.  Instead of the DNA strand being directly anchored, 

this assay holds the processive motor protein that is bound to the DNA tether (figure 

1d).  As the motor translocates on the DNA, it reels in the DNA strand.  This type of 

assay measures the dynamics of a single protein that translocates along DNA such as 

the powerful molecular motor RNA polymerase (Yin et al. 1995; Wang et al. 1998).  

Such studies provide a wealth of knowledge about the processivity, maximum force 

generation, and even the kinetics of molecular motors (Bai et al. 2004; Shundrovsky et 

al. 2004).  This technique requires the protein to be modified and attached directly to a 

surface which could alter its function.  Additionally, all the proteins will begin to 

move at the same time so that only one or at best a few molecules can be observed in 

each sample chamber. 
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The next generation of stretching techniques is incorporating more complex DNA 

templates and measurement dimensions.  One interesting new method used multiple 

traps to detect the location of bound proteins on one strand of DNA held with between 

two traps with another strand of DNA held between another set of traps (Noom et al. 

2007).  This new assay used a tightly stretched DNA strand as a sensor, like a violin 

string being plucked.  Using a similar method, the strength of interaction between two 

strands of DNA bridged by H-NS protein was quantified (Dame et al. 2006).  By using 

multiple optical traps, these studies manipulate multiple degrees of freedom and 

multiple DNA tethers to observe more complex biological systems. 

 

Twising 

 

The double helical nature of the DNA structure makes it so twist cannot be resolved 

when the DNA ends are torsionally constrained.  Twisting leads to build up of torque 

in the DNA, like a torsional spring.  This makes the twist and torque relevant to 

proteins that bind, constrain, or translocate along DNA (Koster et al. 2010; Forth et al. 

2013). 

 

To twist biomolecules, the optical trap must be enhanced to allow the rotation of the 

trapped particle.  The polarized Gaussian trapping laser is capable of orienting and 

rotating an optically anisotropic particle (Friese et al. 1998).  Our lab has pioneered 

the angular optical trap (AOT) to investigate rotational motions of biological 

molecules (La Porta and Wang 2004; Deufel et al. 2007).  To achieve this, the 
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convention optical trap must be enhanced to include an anisotropic trapping particle, 

control of the input laser polarization, and direct detection of the torque applied by the 

trap (figure 2). 

 

The trapping particle is optically birefringent nanofabricated quartz cylinder (figure 

2a) (Deufel et al. 2007).  The geometry of the cylinder orients it vertically with the 

long axis parallel to the trapping beam.  The cylinder is functionalized only on its 

bottom so that biological molecules will be attached in a way that naturally allows 

rotation.  The positive optical birefringence of quartz allows the cylinder to be aligned 

with the electric field of the linearly polarized trapping laser such that it can be rotated 

by rotation of the polarization.  Thus the trapping particle is confined in all degrees of 

freedom and specifically functionalized for attachment to biomolecules. 

 

The polarization of the trapping laser must be rapidly, flexibly, and accurately 

controlled.  This is achieved by an interferometer in which the phase of the beam in 

each arm is modulated by an acousto-optic modulator (La Porta and Wang 2004).  The 

beams are recombined and sent through a quarter wave plate in such a way that the 

phase difference is mapped into a rotation of the polarization.  In this was the 

polarization direction of the trap can be modulated at ~100 kHz rates with ~urad 

resolution.  This provides the level of polarization control needed to rotate the 

cylinder, actively feedback on the polarization to maintain a constant torque, or 

rapidly rotate the polarization in a passive torque clamp (see chapter 2). 
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Last, the torque exerted on the cylinder is directly measured by the forward scattered 

trapping beam (figure 2b) (Bishop et al. 2003; La Porta and Wang 2004).  The 

cylinder will align its more polarizable axis with the trap’s linear polarization to 

minimize the energy of the system.  If the cylinder is not aligned in this way, there will 

be a restoring torque due to the misalignment of the induced dipole and the electric 

field.  Such a torque will change the net angular momentum of the scattered trapping 

beam.  By measuring the intensity of the right and left hand circular polarization 

outgoing beam, the optical torque exerted on the cylinder is measured directly. 

 

In addition to stretching, DNA can be twisted and one can explore the rich phase 

behavior of DNA under twist and torque.  Although the canonical B-form DNA 

structure is the most prevalent in nature, other structural forms are known to have an 

important role in biological processes.  Having the capability to exert twist and 

measure torque allows unambiguous characterization of the various phase transitions 

of DNA.  Winding of the DNA under a constant force, the extension and torque of the 

DNA is measured to give clear indication of the beginning and end of phase 

transitions.  Using this technique, the angular optical trap has been able to map out the 

boundaries between several DNA phases as well as the physical properties which 

characterize these states (Forth et al. 2008; Daniels et al. 2009; Sheinin and Wang 

2009; Sheinin et al. 2011). 

 

Twist and torque not only affect the state of the DNA molecule, but also how proteins 

interact with DNA.  Our lab has used an angular optical trap to demonstrate the 
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influence that torque has on DNA-protein interactions.  Nucleosome stability is altered 

under torque and there is a loss of histones when a nucleosome is disrupted by 

stretching under torque (Sheinin et al. 2013).  The powerful molecular motor RNA 

polymerase can generate a torque large enough to melt DNA and alter the nucleosome 

structure (Ma et al. 2013).  In these experiments, the angle of the handle particle is 

controlled while the torque is measured.  In contrast, a passive torque clamp imposes a 

constant torque on the handle particle without active feedback while the angle of the 

handle is measured (chapter 2) (Inman et al. 2010).  Having full control of either twist 

or torque during an experiment will be vital to fully characterizing how proteins move 

on and interact with DNA. 
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Figure 2. Twisting DNA with and angular optical trap. (a) Cartoon depicting the 

configuration of the angular optical trap.  A single DNA tether is torsionally 

constrained to a microscope coverslip via multiple attachment points.  The other end is 

also torsionally constrained to a quartz cylinder held in an optical trap.  The tether 

should only be stretched along the z-axis such that the cylinder axis remains aligned 

with laser beam propagation.  (b) The particle is angularly trapped by linearly 

polarized light.  Deviations from this trapping minimum result in an optical torque due 

to a misalignment of the electric field and the induced polarization of the birefringent 
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quartz nanofabricated cylinder.  The optical torque exerted on the cylinder can be 

directly determined by the change in angular momentum of the laser beam.  
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Unzipping 

 

Stretching and twisting will tend to destabilize the base-pairing interactions that hold 

the two strands of DNA together.  By pulling on the two strands of DNA, the dsDNA 

can be mechanically unwound (unzipped) into two ssDNA molecules (figure 3a) 

(Bockelmann et al. 1997; Essevaz-Roulet et al. 1997).  As a DNA molecule is 

unzipped, proteins bound to the DNA are disrupted and their presence can be detected 

by the unzipping fork.  This results in a unique method for scanning a DNA template 

to detect the location and the strength of interaction of proteins (Koch et al. 2002; 

Koch and Wang 2003). 

 

In the absence of any binding proteins, the force required to unzip DNA varies about a 

mean force.  Due to the non-uniform base pairing and base stacking interactions, the 

force required to unzip DNA is modulated by the underlying DNA sequence.  It takes 

more force to disrupt the stronger G-C base pair than the weaker A-T base pair and the 

additional stacking interactions between neighboring base-pairs also contribute to 

variations.  Using the nearest neighbor model for base pairing and stacking 

interactions from thermodynamic studies, the unzipping force can be predicted 

reasonably well using a simple statistical mechanical model (Bockelmann et al. 1998).  

Alternatively, the measured force can be used to fit the parameters of the nearest 

neighbor model (Huguet et al. 2010).  In this way, unzipping protein free DNA 

provides the force baseline for detecting protein-DNA interactions.  Additionally, as 

the DNA is unzipped the force and extension of the tether, together with the 
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theoretical models of dsDNA and ssDNA, are used to calculate the number of base 

pairs which have been separated.  Taken together, the force and number of base pairs 

unzipped provide information about the strength and location of interactions.  

 

Unzipping DNA through a bound protein can provide detailed information about 

strengths and locations of individual protein-DNA interactions because these 

interactions tend to stabilize the DNA duplex.  When the fork encounters such 

stabilized DNA, more force will be required to disrupt the DNA and/or DNA protein 

interactions.  This force rise can accurately and precisely measure the locations of a 

bound proteins on DNA (Koch et al. 2002; Koch and Wang 2003; Shundrovsky et al. 

2006).  Moreover, analysis of the force peaks by dynamic force spectroscopy 

determine the strengths of multiple interactions within a protein-DNA complex.  This 

technique has been used to map out the detailed interactions of DNA with a 

nucleosome and analyze the strengths of those interactions (Hall et al. 2009; Forties et 

al. 2011).  Importantly, this technique is sensitive enough to detect changes in the 

affinity histone variants (Dechassa et al. 2011).  Thus, the unzipping technique 

provides a powerful and precise way to map out protein-DNA interactions. 
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Figure 3.  Unzipping of DNA to detect the location and strength of interactions of 

bound proteins. (a)  DNA is mechanically separated from dsDNA into two strands of 

ssDNA (unzipped) by applying force to opposite strands of a dsDNA molecule.  Using 

theoretical models of dsDNA and ssDNA the force and extension of the extended 

DNA is used to calculate the number of basepairs unzipped j.  (b) Bound proteins 

stabilize the unzipping fork and result in an increase in the force at the location jprotein.  

The force required to disrupt the protein-DNA complex characterizes the strength of 

protein-DNA interaction. (c) Unzipping DNA resembles a replication fork and is a 

powerful technique for studying proteins that work on forked DNA such as replicative 

helicases.  A force applied to the extended DNA assists the helicase as it unwinds 

DNA. 
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As DNA is unzipped, long segments of single strand DNA (ssDNA) are generated.  

This provides a ssDNA template to study the many proteins which bind to and 

translocate on ssDNA during DNA replication, recombination, and repair.  Proteins 

which work at the fork such as replicative helicases and polymerases can be tracked 

with this assay (figure 3c).  The ability to track and apply an assisting force to the 

opening of dsDNA by the t7 helicase has led to important discoveries of non-

processive motion such as slippage which can only be observed at the single molecule 

level (Johnson et al. 2007; Sun et al. 2011).  While the unzipping of DNA can provide 

a long ssDNA template under force, a drawback of this technique is that the DNA will 

spontaneously reanneal if the force is lowered. 

 

DNA unzipping is a versatile single molecule technique to locate, probe interaction 

strength, and track proteins on DNA.  However, current techniques to unzip DNA 

cannot manipulate the DNA downstream of the unzipping fork since it is not 

constrained (figure 3a).  This precludes the use of stretching and twisting techniques 

on the unzipping DNA template. 

 

Combination of multiple techniques 

 

While each of the three single molecule techniques have many strengths on their own, 

combining them together would open new possibilities and be capable of discerning 

more clearly the outcomes of biological events.  Stretching and twisting are already 

achieved simultaneously by the angular optical trap (Deufel et al. 2007; Forth et al. 
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2008).  However, combining all three methods together simultaneously or sequentially 

has not been possible.  Unzipping DNA simultaneously with stretching or twisting 

will allow experiments to explore how DNA protein interactions are perturbed by 

force and torque.  By combining the techniques sequentially on same DNA tether, first 

a DNA stretching or twisting experiment measures the dynamics of protein events, 

such as those described above, and then the DNA is unzipped to take a snapshot of the 

proteins on the DNA, mapping out the detailed location and strengths of protein 

interactions. 

 

Also, new single molecule manipulation techniques should be compatible with 

fluorescence.  The combination of optical trapping and fluorescence has been 

successful in resolving important biological questions by collecting more information 

about what is present on the DNA.  While fluorescence does not increase the degrees 

of manipulation of the system, new degrees of observation are only limited by the 

number of colors that can be observed simultaneously.  To be compatible with 

fluorescence, the template DNA should be extended in the imaging plane of the 

microscope.  In this way, stretching techniques are already compatible with 

fluorescence (Wang et al. 1997), however, twisting and unzipping DNA are not.  The 

angular optical trap must stretch the tether along the axis of the trapping laser such that 

the DNA is perpendicular to the trapping plane (Deufel and Wang 2006; Deufel et al. 

2007); and during unzipping the DNA template which is to be unzipped is not 

extended at all (Koch et al. 2002). 
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Dissertation Outline 

 

This dissertation focuses on the development of new techniques in single molecule 

optical trapping.  Access to more dimensions of a single molecule system will be an 

essential feature in next generation single molecule tools to aid in unraveling the 

mechanisms of in vitro biological systems of ever increasing complexity as we work 

towards duplicating in vivo processes.  To this end, the Wang lab continues to develop 

novel single molecule tools.  This dissertation is a collection of two novel single 

molecule techniques: the first is a passive optical torque wrench and the second is the 

DNA Y structure. 

 

The passive optical torque wrench is an extension of the angular optical trap 

developed in the Wang lab to twist and torque biomolecules.  The angular optical trap 

is particularly well suited to confine a trapped particle’s angular orientation and 

simultaneously measure the optical torque required to do so (La Porta and Wang 

2004).  The conjugate of this process is more difficult to achieve.  In principle it is 

possible to feedback on the torque signal of the angular optical trap in an active torque 

clamp (La Porta and Wang 2004); however, this is impractical for biological systems 

which stall before producing torques disguisable from the noise, on the order of tens of 

pN*nm of torque (Ma et al. 2013).  Chapter 2 describes and demonstrates a method for 

generating a passive torque wrench with an optical trap.  This extension to the 

standard angular optical trap exerts a constant torque on the trapped particle while 
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simultaneously measuring the angular orientation of the particle.  A distinct advantage 

of this method is that the instrument can be rapidly switched between the two modes 

of trapping.  To demonstrate this technique, a DNA tether is over twisted in the 

angular trap mode and then allowed to unwind in the passive torque wrench mode. 

 

Chapter 3 describes a new single molecule technique that combines DNA stretching, 

twisting, and unzipping.  The DNA Y structure is a three way junction of DNA which 

is constrained at each of its three ends by dual optical traps and the surface of the 

microscope slide.  By pulling on all three strands of DNA the forces and extensions of 

each strand can be determined simultaneously.  Furthermore, twist can be introduced 

by winding the DNA with the optical traps.  Finally, one segment of the Y structure 

can be unzipped while concurrently being stretched and twisted.  This assay is also 

shown to be compatible with fluorescence microscopy which further increases its 

versatility.  This new single molecule technique synergistically combines the strengths 

of existing assays to be applied concurrently or sequentially to biological molecules. 
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CHAPTER 2 

PASSIVE TORQUE WRENCH AND ANGULAR POSITION DETECTION USING A 

SINGLE BEAM OPTICAL TRAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted from Optical Letters, Volume 35, Issue 17, pp. 2949-2951.  Inman, J., Forth, 

S., and Wang. M.D.  Passive torque wrench and angular position detection using a 

single-beam optical trap.   
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Introduction 

 

The recent advent of angular optical trapping techniques has allowed for rotational 

control and direct torque measurement on biological substrates. Here we present a novel 

method that increases the versatility and flexibility of these techniques. We demonstrate 

that a single beam with a rapidly rotating linear polarization can be utilized to apply a 

constant controllable torque to a trapped particle without active feedback while 

simultaneously measuring the particle’s angular position. In addition, this device can 

rapidly switch between a torque wrench and an angular trap. These features should make 

possible torsional measurements across a wide range of biological systems. 

 

Optical trapping has proven to be an invaluable tool in the study of biophysical systems. 

The ability to measure the forces and displacements of nucleic acids, proteins, and 

molecular motors has allowed for further insight into the mechanistic functions of these 

important biological molecules (Wang et al. 1998; Bustamante et al. 2003). Recent 

advances in optical trapping techniques have led to methods by which rotational 

orientation and torque can also be manipulated and measured via the coupling of the 

polarization state of light to an optically or spatially anisotropic particle (Friese et al. 

1998; Paterson et al. 2001; Galajda and Ormos 2003; La Porta and Wang 2004). We have 

previously developed such an angular optical trap and used it to measure the torsional 

properties of DNA (La Porta and Wang 2004; Deufel et al. 2007; Forth et al. 2008; 

Sheinin and Wang 2009).  
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In this work, we demonstrate a method to enhance the versatility of an angular optical 

trap. A constant optical torque may be exerted on a trapped particle without the need for 

active feedback or additional laser/optics to monitor the trapped particle’s angular 

position using a single beam with a rapidly rotating linear polarization. This method is 

particularly well suited to exert torques relevant to single molecule biology experiments, 

ranging from near zero to several tens of pN nm. Such an instrument can be rapidly 

switched to a standard angular trapping mode.  In comparison with previous work, this 

approach is unique in several aspects. The current torque wrench has little torque noise; 

whereas the optical torque wrench we developed earlier requires active feedback for 

torque stabilization (La Porta and Wang 2004) and thus the noise from Brownian motion 

can dominate for small torque values. Another study exerted torque using a similar 

method but requires the use of an additional laser/optics for the detection of the trapped 

particle’s angular position. (Funk et al. 2009). A single circularly polarized beam can also 

provide a constant torque (Wood et al. 2008), but the magnitude of the torque is not 

controllable independently of the power of the trapping beam. In contrast, the current 

method provides a tunable constant torque without the need to change the laser power. 

 

Method of passive torque wrench 

 

The passive torque wrench is achieved by spinning the input linear polarization so rapidly 

that the particle cannot keep up with it. At this limit, the angular stiffness of the trapping 

beam approaches zero and it exerts an effectively constant torque on the particle in the 

direction of polarization rotation. The implementation of this method is outlined in Fig. 
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1(a). To understand this, consider a particle inside a trap with its polarization rotating at 

angular frequency f 2 . The equation of motion of the particle is: 

   


  t
dt

d
2sin0 , (1) 

where   is the rotational viscous damping coefficient and 0  is the maximum optical 

torque. This describes a damped-forced oscillator at low Reynold’s number, where the 

viscous drag torque balances the optical torque. A similar description also characterizes 

optically torqued nanorods and magnetic particles (Bonin et al. 2002; McNaughton et al. 

2007). Below a critical frequency 



 0

criticalcritical 2  f , the particle tracks the 

polarization rotation with a torque-dependent angular offset, resulting in a linear increase 

in the optical torque (La Porta and Wang 2004). However, above the critical frequency, 

the particle can no longer fully track the polarization and instead wobbles periodically in 

response to the polarization rotation. When critical  , although the trap exerts a full 

amplitude oscillating torque on the particle, the resulting wobble amplitude of the particle 

becomes diminishingly small as the particle simply can not respond faster than its corner 

frequency in a stationary angular trap ( criticalcorner 2  ). At this limit, the polarization 

effectively scans a quasi-stationary particle, and only a minute biased optical torque is 

exerted on the particle averaged over a cycle of the scan. In general, the mean torque   

may be obtained from Eq. (1) (Strogatz 1994):   if critical  and 

 2

0

2 )/(    if critical  . 
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Detection of the angular position 

 

First, we demonstrate the use of a lock-in method for detection of the angular position   

of the trapped particle. In general,   can be determined from the input polarization angle 

and the torque signal (La Porta and Wang 2004), since the optical torque is 

      tt 2sin0 , where   may be time-varying. In the limit of critical  ,   

varies slowly compared to   and its detection can be facilitated by a lock-in method. The 

reference signal is the intensity of the input beam polarized along the x-axis fixed in the 

lab frame        22cos1cos 0

2

0 tItItIx    and the input signal is  t . Thus   can 

be determined by the phase delay or time delay t  output of the lock-in amplifier: 

4
  t  (Fig. 1(b)). In order to verify the lock-in method, we applied it to an 

irregularly shaped, micron-sized quartz particle so that the particle’s angular position 

could be simultaneously recorded via video-tracking. As shown in Fig. 1(c), the two 

methods agree to within the resolution of the video tracking method, and the particle 

underwent a slightly biased rotational diffusion. In practice, for ease of use, calibration, 

and reproducibility, the trapping particles are nanofabricated quartz cylinders which are 

uniform in size (~ 0.5 m in diameter and ~ 1 m in height), shape, and optical 

properties, and are functionalized on the bottom surface for specific attachment to 

biomolecules if desired (Deufel et al. 2007). 
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Figure 1: Method of constant optical torque generation and angular position detection. 

(a) Simplified schematic of the passive optical torque wrench. The optical setup is similar 

to what has been previously described (La Porta and Wang 2004) but with the important 

addition of a lock-in amplifier. (b) The lock-in amplifier uses  tI x  as reference signal 

and the torque detector signal  t  as the input signal. The phase difference between 

these two signals provides the angular position   of the cylinder. (c) Comparison of 

detected angular position of a quartz dust particle as simultaneously determined by the 

lock-in method (red line) and video tracking method (blue points). For both (b) and (c), 

criticalf  = 9 Hz and f  = 1 kHz. 
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Demonstration of the passive torque wrench 

 

Second, we demonstrate the use of this device as a passive torque wrench, with particular 

emphasis on the cases where critical  . Fig. 2(a) shows examples of the angular 

position of a single cylinder, tracked with the lock-in method, at different polarization 

rotation rates. Under a positive (negative) polarization rotation rate the cylinder 

underwent a small net positive (negative) rotation. This cylinder rotation rate (and thus 

the torque) decreased with an increase in the polarization rotation rate. At a given 

polarization rotation rate, the cylinder rotated smoothly, indicating a constant optical 

torque was exerted on the cylinder. The optical torque was directly measured by the 

torque detector (bottom panel of Fig. 2(a)) and was found to be consistent with the 

corresponding viscous torque calculated based on the cylinder rotation rate (top panel of 

Fig. 2(a)). Fig. 2(b) shows the mean torque on a single cylinder measured under a wide 

range of polarization rotation rates and laser powers. As expected, as   was increased 

from zero, torque increased linearly as per the well-known Stokes’ drag relation until 

critical  , beyond which the torque decreases as expected. In addition, the torque 

magnitude scales with the trapping laser power. Therefore, to dial in a desired torque, 

either the polarization rotation rate or the laser power can be changed. 
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Figure 2: Demonstration of the passive torque wrench mode. (a) Single traces of cylinder 

angular position versus time for various polarization rotation rates and the corresponding 

measured torque. criticalf  = 13 Hz. (b) Direct measurement of the torque versus 

polarization rotation rate for various laser powers on a quartz cylinder. Solid lines are 

global fits to the expected mean torque. 
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Rapid and smooth transition between traditional and passive torque wrench modes 

 

Third, we show that this device can be switched rapidly between two useful operating 

modes. When critical  , the cylinder is angularly trapped and tracks the rotation of the 

polarization. This mode should be used when a specific extent of cylinder rotation is 

desired. When critical  , the trap acts as a torque wrench. A constant torque is exerted 

on the cylinder while the angle of the cylinder is allowed to vary. We demonstrate this 

capability in Fig. 3 by subjecting a cylinder to an angular trapping mode by slow (+) 

polarization rotation, switching to a passive torque wrench mode by rapid (+) polarization 

rotation , and then switching back to an angular trapping model by slow () polarization 

rotation. As shown, the cylinder underwent a constant rotation, followed by diffusive 

Brownian motion under a near zero torque condition, and then underwent a reverse 

rotation. 
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Figure 3: Demonstration of rapid switching between an angular trapping mode and a 

torque wrench mode. criticalf  = 9 Hz. Polarization rate was set to +5 Hz at t = 0 (angular 

trapping mode), 1 kHz at t = 1 s (torque wrench mode), and 5 Hz at t = 6 s (angular 

trapping mode). 
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DNA unwinding with the passive torque wrench 

 

Finally, we combine these features to observe DNA under torsion.  A torsionally 

constrained DNA tether is formed by attaching a dsDNA to the microscope coverslip at 

one end and a quartz cylinder at the other (Fig 4(a)).  The tether is over-twisted by 

rotating the cylinder by 15 turns in angular trapping mode under a constant force of 0.5 

pN.  Under this force and torque the DNA buckles to form plectonemes which can be 

detected by a decrease in the measured DNA extension (Forth et al. 2008; Daniels et al. 

2009).  The torsional stress in the DNA is released by entering the torque wrench mode 

set to near zero torque.  Fig 4(b) shows the release of torsional stress in the DNA.  As 

plectonemes are lost from the tether, the DNA extension increases until all plectonemes 

are lost and the tether extension plateaus at the expected number of basepairs (top panel 

of Fig 4(b)).  The cylinder angle shows the full release of twist introduced to the tether 

(bottom panel of Fig 5(b)).   
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Figure 4: Torsional relaxation of DNA tether. (a) A schematic of the experimental setup 

with a torsionally contrained DNA tether.  The DNA tether is initially over twisted using 

the angular trap mode.  Then, the tether is allowed to freely rotate in passive torque 

wrench mode.  (b)  The extension DNA tether and angle of the cylinder is monitored in 

real time as the torsional stress in the DNA is relaxed.  The force is held fixed at 0.5 pN.
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Conclusion 

 

In conclusion, we have presented a method for generating constant torque and monitoring 

a trapped particle’s angular position within a single beam optical trap without the need to 

actively feedback on the torque signal. The passive torque wrench described here 

effectively reduces the angular trap stiffness to near zero, and thus the magnitude of the 

measured torque fluctuations are significantly reduced, and the torque provided by the 

trap can be much more precisely controlled. This trapping setup also allows for rapid 

switching between an angular trapping mode and a torque wrench mode without the need 

for additional beam paths or optics, reducing the possibility of systematic errors or 

crosstalk often found in multiple beam instruments. Such a device makes possible a 

number of interesting studies of biologically important systems, such as monitoring the 

rotational motion of a molecular motor as it works against a constant external torsional 

load, or measuring the relaxation kinetics of a mechanically torqued biomolecule. 
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Introduction 

 

Optical trapping is a powerful single molecule technique used to study dynamic 

biomolecular events, especially those involving DNA and DNA-binding proteins.  

Current implementations usually involve only one of stretching, unzipping, or twisting 

DNA along one dimension.  The study of more complex DNA-based systems requires 

a multi-dimensional technique that combines these manipulations in a single 

experiment.  Here, we report a novel optical trapping assay based on a three-branch 

DNA construct, termed a “Y structure”.  This multi-dimensional assay allows precise, 

real-time tracking of multiple configurational changes.  When the Y structure DNA is 

unzipped under both force and torque, the force and extension of all three branches 

can be determined simultaneously.  The Y structure also provides a simple method to 

generate and study ssDNA.  Moreover, the assay is readily compatible with 

fluorescence, as demonstrated by unzipping through a fluorescently labeled, paused 

transcription complex.  This combination allowed both a detailed mapping of the RNA 

polymerase’s interactions with DNA and visualization of its location before and after 

mechanical disruption.   

 

Single molecule optical trapping techniques have enabled significant advancement in 

the understanding of a wide variety of biomolecular systems, especially those 

involving DNA and associated binding proteins.  DNA-based systems have been 

manipulated and measured using three complementary implementations of optical 

trapping: stretching, unzipping, or twisting DNA.  Stretching DNA with a bound 
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protein has yielded valuable information about dynamic protein-DNA interactions, 

such as nucleosome binding(Cui and Bustamante 2000; Bennink et al. 2001; Brower-

Toland et al. 2002; Brower-Toland et al. 2005; Gemmen et al. 2005; Mihardja et al. 

2006) and Rad51(van Mameren et al. 2009) or RecA(Forget and Kowalczykowski 

2012) filament formation, and also allowed for tracking of DNA-based motor proteins 

such as RNA and DNA polymerases(Yin et al. 1995; Wang et al. 1998; Wuite et al. 

2000; Smith et al. 2001; Adelman et al. 2004).  A variation of the stretching method 

employing multiple traps has allowed bound proteins to be located(Dame et al. 2006; 

Noom et al. 2007).  Unzipping DNA through a bound protein can provide detailed 

information about the strengths and locations of individual protein-DNA 

interactions(Koch et al. 2002; Koch and Wang 2003), and has been used to map the 

nucleosome structure at high resolution(Hall et al. 2009) and study nucleosome 

disruption by RNA polymerase(Jin et al. 2010).  Unzipping DNA has also allowed 

helicase unwinding motion to be monitored(Dumont et al. 2006; Johnson et al. 2007; 

Sun et al. 2011).  Twisting DNA has revealed that RNA polymerase can generate 

torques sufficient to melt DNA(Ma et al. 2013) and alter nucleosome structure(Sheinin 

et al. 2013).   

 

While each of these techniques provides unique insights into biomolecular systems, 

they have only been combined in a limited fashion, with dynamic measurements made 

along one dimension.  Complex biomolecular systems, such as transcription and 

replication machineries, involve processes that simultaneously stretch, unwind, and 

twist multiple strands of nucleic acids.  Therefore the next generation of optical 
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trapping techniques will need to extend measurements to multiple dimensions to allow 

tracking of different configurational changes which occur simultaneously within 

molecular complexes.   

 

New optical trapping assays should also be enhanced with fluorescence imaging to 

visualize molecular events on DNA.  Previous studies have combined optical trapping 

with fluorescence(Ishijima et al. 1998; Lang et al. 2003; Dijk et al. 2004; Lang et al. 

2004; Galletto et al. 2006; Hohng et al. 2007; Comstock et al. 2011; Heller et al. 

2013), but force measurements were made along one dimension and fluorescence 

visualization of binding events was limited to a resolution of approximately a few 

hundred base pairs along long stretches of DNA.  Future assays should extend 

fluorescence visualization of proteins to multi-dimensional DNA configurations, and 

could use fluorescence to establish a low resolution, ‘big picture’ map of protein 

locations while exploiting high-resolution optical trapping techniques to home in on 

their precise locations. 

 

We present a novel multi-dimensional assay that allows simultaneous stretching, 

twisting, and unzipping of DNA.  This assay, termed the “Y-structure”, utilizes a dual-

beam optical trap to hold a three-branch DNA construct.  The forces and extensions of 

all three DNA branches are simultaneously measured, eliminating the constraint of a 

single axis of tension and allowing multiple configurational changes within a 

biomolecular system to be resolved independently.  This assay also enables a simple 

way to generate and study ssDNA.   The Y structure assay can be readily combined 
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with fluorescence to visualize binding events in all three DNA branches while DNA 

unzipping provides near base-pair resolution mapping of both the location of a bound 

complex and multiple, detailed interactions within a single complex.  Thus this new 

technique provides a versatile, multi-dimensional platform for the study of complex 

biomolecular systems. 

 

The Y structure 

 

The Y structure is a three-way DNA junction which resembles a replication fork (Fig. 

1).  It is composed of three main branches: two DNA arms which are initially fully 

double stranded, and a dsDNA trunk.  The end of the trunk is attached to a microscope 

coverslip, while the end of one arm is attached to a microsphere held in an optical trap 

(Trap 1), and the end of the other arm to a second microsphere held in a second, 

separate trap (Trap 2).   Each microsphere can be manipulated separately by its trap 

and its three-dimensional (3D) force and position are detected.   The coverslip is 

mounted onto an x-y-z piezo stage.  This configuration allows for full 3D manipulation 

of the Y structure and measurements of force and extension in each branch.   
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Figure 1.  The Y structure experimental configuration.  The initial Y structure 

consisted of two dsDNA arms which were joined to a dsDNA trunk:  one arm was 

attached to an optically trapped microsphere via a streptavidin/biotin connection; the 

second arm to a second optically trapped microsphere via a digoxigenin/anti-

digoxigenin connection; the trunk to a microscope coverslip via a fluorescein/anti-

fluorescein connection.  This version of the Y-structure contained a single anchoring 

point of the trunk via one of its two DNA strands and thus permitted the trunk end to 

swivel around the anchoring point without any torsional constraint.  
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Y structure construction 

 

The Y structure DNA was constructed from three distinct dsDNA segments: two arms 

and the trunk (Fig. 2).  The arms were made by restriction enzyme cuts from plasmid 

pMDW38 (sequence available upon request) for symmetric arms or from plasmid 

pRL574(Schafer et al. 1991) for asymmetric arms.  A single restriction cut (XhoI or 

SphI) in this plasmid created an overhang that was subsequently filled in with either 

dig-dUTP or bio-dATP by Klenow polymerase (NEB) to provide specific attachment 

to anti-digoxigenin or streptavidin coated microspheres respectively.  A second 

restriction cut (BstXI or BstEII) created an overhang for ligation to an annealed trunk 

adapter oligos to generate a long (>30 bp) overhang on each arm.  The two trunk 

adaptor oligos from the two arms were complementary to each other and were 

subsequently annealed to form Y arms with a short trunk (~30 bp).  The annealed 

adaptor oligos were designed to create an overhang for ligation to the full length trunk.  

Such a design is modular so that the trunk is interchangeable.  Trunk DNA was made 

via PCR with a primer containing a 5’ fluorescein for subsequent anchoring to an anti-

fluorescein surface and then cut with a restriction enzyme (AlwNI) to provide the 

proper overhang for ligation to the Y arms.   

 

The torsionally constrained trunk was made by ligation to a torsion adapter at the end 

of the Y trunk (sequence available upon request).  The torsional adapter was ~500 bp 

made via PCR with a 1:5 mixture of dTTP:fluorescein-dUTP to provide multiple 

attachment points in both strands. 
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For the RNAP fluorescence experiments, an ‘asymmetric’ Y structure was made with 

two arms having different lengths in order to determine to which strand RNAP 

remained bound after unzipping.  This was accomplished by cutting the arms out of 

the plasmid pRL574 with restriction enzymes to create a longer DNA (dig arm with 

SalI and BstEII; bio arm with SapI and BstXI).  For the co-directional collision 

template, the trunk contained a T7A1 promoter with a transcription start site located at 

1065 bp from the Y-junction.  For the head-on collision template, the transcription 

start site was located at 1108 bp from the Y-junction. 
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Figure 2.  Construction of the Y structure.  (1) Arm 1 DNA was cut from plasmid 

pMDW38 (sequence available upon request) and its 5’ end was labeled with 

digoxigenin with a Klenow reaction.  (2) Upper 1 (5'-/phos/GCA GTA CCG AGC 

TCA TCC AAT TCT ACA TGC CGC)and lower 1 (5'-/phos/GCC TTG CAC GTG 

ATT ACG AGA TAT CGA TGA TTG CG GCG GCA TGT AGA ATT GGA TGA GCT 

CGG TAC TGC ATC G) were annealed to form adapter 1.  (3) Adapter 1 was ligated 

to arm 1 and the product was gel purified to remove un-ligated adapters.  (4) Steps 1-3 

were repeated for arm 2: upper 1 (5'-CGT TAC GTC ATT CTA TAC ACT GTA CAG) 

and lower 2 (5'-/phos/GTAAC CTG TAC AGT GTA TAG AAT GAC GTA ACG CGC 

AAT CAT CGA TAT CTC GTA ATC ACG TGC AAG GC CTA).  (5) Arm 1 and arm 2 

were annealed via lower 1 and lower 2.  (6) Trunk DNA was prepared by PCR from 

pMDW2 (sequence available upon request) using a 5’ fluorescein tag on one of the 

primers. (7) Arms were ligated to trunk DNA.  
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Instrument design  

 

The dual optical trapping setup was a built upon a Nikon TE200 microscope with 

fluorescence and bright field microscopy capabilities (Fig. 3).  The dual trap was 

created from a single laser source (Spectra Physics J20, 5 W) that was split into two 

beams by a polarizing beam splitting cube (PBSC) into orthogonal linear 

polarizations.  One of the polarized beams was steered by a mirror mounted on a tip-

tilt piezo (MCL Nano-MTA)(Moffitt et al. 2006).  Although the two beams were 

orthogonally polarized, some interference between the two beams still existed due to 

the use of a high NA objective, leading to some cross talk between the two 

traps(Mangeol and Bockelmann 2008).  To minimize this, we inserted optical 

windows in one of the two beams so that the path length difference between the beams 

was set to longer than the coherence length of the laser (3 mm).  The two beams were 

recombined with another PBSC before entering a custom-built ‘trapping port’ which 

reflected the beams into the microscope objective with a dichroic mirror.  The traps 

were formed at the focus of a water immersion objection (Nikon MRD07602).  The 

two beams were collected by the condenser and split by a PBSC.  Each polarized 

beam was detected by a quadrant photodiode (Pacific Silicon Sensor QP50-6SD2) by 

back focal-plane interferometry to provide positions and forces along x and y (lateral), 

and z (axial) directions for each microsphere in its trap.  The flow cell was mounted on 

a 3D piezo stage (MCL Nano-LPQ) to allow movement of the coverglass surface 

relative to the traps. 
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Figure 3.   A dual optical trap setup with bright field and fluorescence illumination.  A 

1064-nm Gaussian trapping beam is coupled to a polarization maintaining single mode 

fiber (not shown).  After collimation, the beam is sent through a half-wave plate and 

beam splitter that controls the input power and ensures that the beam is linearly 

polarized.  A second half-wave plate rotates the polarization and this partitions the 

power in the dual trap.  The beam is re-collimated to ~ 5 mm by an expansion 

telescope and elevated to the proper height by a periscope.  To form the dual trap, the 

single Gaussian laser beam is split into two orthogonally polarized beams by a 

polarizing beam splitting cube (PBSC) in the ‘Beam Splitting Box’.  One beam is 

reflected off of a mirror that is mounted on a tip/tilt piezo.  This mirror is mapped to 

the back focal plane of the objective such that it controls Trap 1’s position while Trap 

2 remains fixed.  The two beams are recombined by a second PBSC and expanded to ~ 

10 mm by the mapping telescope.  They are introduced into a Nikon TE200 

microscope’s imaging path and later to the trapping plane by a dichroic mirror.  Upon 

exiting the condenser, the laser beams are reflected by a second dichroic mirror and 

again split by a PBSC.  Each beam is detected by a quadrant photodiode (QPD).  

Bright field illumination is accomplished by 625-nm LED light introduced through the 

condenser lens.  This light passes through the laser dichroic and the fluorescence cube 

set and is imaged by a cooled CCD.   Fluorescence illumination is produced by a 

mercury arc lamp.   The light is filtered and introduced into the illumination path by a 

fluorescence filter set optimized for quantum dots (excitation 350-450 nm, emission 

625 nm).  
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Epi fluorescence was excited by a mercury arc lamp.  The fluorescent cube set was 

designed for quantum dots with emission at 625 nm (Chroma 32214).  Bright field 

illumination was accomplished with a red LED (625 nm, Thorlabs M625L2 and 

LEDD1B) which was transmitted by the 625 nm emission filter of the cube set.  This 

allowed both the bright field and fluorescence images to be collected by the same 

cooled CCD (Hamamatsu ORCA-ER).  To interlace the bright field and fluorescence 

images, the camera controller triggered the LED to turn on and off using a custom-

built LED controller.   

 

Data collection and analysis 

 

During an experiment, Y-structures were identified as two microspheres in close 

proximity undergoing constrained Brownian motion.  Custom software (LabVIEW 

2010) was then used to automate several routines.  First, prior to trapping a Y-

structure, without microspheres in the trap, baseline data were recorded as the steered 

trap was scanned across the xy (lateral) plane.  These baseline data were used to make 

corrections to experimental data.  Second, the Y-structure anchoring point to the 

surface was centered between the two trapped microspheres by stretching the tether 

with the piezo stage using an algorithm similar to that previously described(Wang et 

al. 1997).  Third, the height of the traps above the coverslip surface was determined by 

moving the coverslip towards the trapped microspheres and detecting the z piezo 

position when the microspheres came into contact with the surface(Deufel and Wang 

2006).  Fourth, the Y-structure was then stretched and unzipped by moving both the 
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steered trap and the piezo stage.  A constant force on the trunk during unzipping 

experiments was maintained by feedback on the piezo stage.  The laser power was also 

modulated to limit the displacement of a trapped microsphere from its trap center. 

 

The 3D location for the junction of the Y-structure was determined as the intersection 

of the lines of force from the microspheres’ positions.  Thus the extensions of the three 

branches of the Y-structure were determined from the positions of the microspheres, 

the Y-structure anchoring point, and the Y-structure junction location.  The forces on 

the arms were measured directly and the force on the trunk was determined by 

requiring the net force at the junction to be zero.  Force and extension data for each 

arm were used for conversion to number of base pairs unzipped(Koch et al. 2002)  

 

During an experiment, the 3D locations and force vectors of the two trapped 

microspheres as well as the position of the coverslip surface were measured in real 

time.  To fully characterize the Y structure, the force and extension of each segment of 

the Y structure as well as the Y structure geometry were calculated from the raw data 

collected by our dual trap instrument.  Below is a description of this calculation. 

 

Below we refer to the coordinate system defined in Fig. 4.  (1) The 3D location of the 

Y junction was determined.  The xy location of the Y junction was located as the 

intersection of the lines of xy forces from the microspheres’ positions (Fig. 4a).  The z 

coordinate of the junction was determined by the geometry defined by the height of 

the microspheres above the surface and the y position of the junction (Fig. 4b).  (2) 
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Once the position of the junction was known, the extension of each branch of the Y 

structure was determined as the distance between its two endpoints.  (3) Finally, the 

force vectors on the arms were directly measured by the optical trap.  The force on the 

trunk was determined by requiring that the net force at the junction to be zero (Fig. 

4c).  Thus, the force vector on the trunk was simply the opposite of the vector sum of 

the optical forces on the trapped microspheres. 

 

The number of base pairs unzipped was calculated from the force and extension 

measurements described above.  First, the force and extension of each branch of the Y 

structure were measured under lower forces (< 15 pN) prior to unzipping.  These were 

taken as initial characterization of the Y structure.  As the Y structure was unzipped, 

the extension in each arm at a given force increased beyond what could be accounted 

for by dsDNA alone.  The additional extension was attributed to ssDNA.  We used the 

modified freely-jointed-chain model of ssDNA(Smith et al. 1996; Wang et al. 1997) to 

calculate the number of base pairs of ssDNA in each arm.  The ssDNA in the arms was 

a measure of the number of base pairs unzipped.   
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Figure 4.  Calculation of Y structure forces and extensions.   

(a) The projection of the Y structure onto the xy plane.  The xy position of the Y 

junction is determined by the force and location of the trapped beads.   

(b) The z location of the junction is determined by geometry.   

(c) The forces are required to sum to zero at the junction. 
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To achieve near base pair resolution, the resulting force versus number of base pairs 

unzipped curve was aligned to the corresponding theoretical curve discussed in the 

next section using a cross-correlation method we previously developed(Shundrovsky 

et al. 2006; Hall et al. 2009; Li and Wang 2012)  To account for minor instrumental 

drift, trapping-bead size variations, and DNA linker variations, the alignment allowed 

for a small additive shift (~ 20 bp) and a multiplicative linear stretch (~ 3%). 

 

During fluorescence experiments, interlaced images of bright field and fluorescence 

were acquired by the CCD at 31.4 frames per second.  To create an overlaid image a 

pair of bright field and fluorescence images were pseudo-colored and combined.  To 

overlay the Y-structure configuration to indicate the three DNA segments, the 3D Y-

structure configuration as determined from the optical trapping data was projected 

onto the xy plane and displayed as three white lines for the three DNA segments.  The 

locations of the two microspheres were used as a reference to align the Y-structure to 

the images. 

 

Unzipping under tension 

 

Stretching DNA with a bound protein yields valuable information about protein-DNA 

interaction kinetics, while unzipping DNA provides detailed information about the 

locations and strengths of interactions.  The Y structure makes it possible to combine 

DNA stretching and unzipping.   
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Here, we demonstrate DNA unzipping while maintaining a constant tension on the 

DNA trunk.  Unzipping was achieved by two divergent forces, one from each arm, 

acting symmetrically about the trunk (Fig. 5a).  The total force on the trunk was 

feedback controlled to maintain a constant value via modulation of Trap 1 and piezo 

stage positions.  As Trap 1 was moved away from Trap 2, each of the two arms, which 

began as dsDNA, acquired ssDNA from the trunk as the trunk was unzipped, similar 

to 1D unzipping(Bockelmann et al. 1997) except that the DNA trunk was under 

tension. 

 

Fig. 5b is an example of data acquired during the symmetric unzipping of a Y 

structure.  As the Y structure was mechanically unzipped, the magnitudes of forces on 

both arms varied in an essentially identical fashion with the progression of unzipping, 

while the force on the trunk remained at the set point of 10 pN.  The trunk extension 

decreased with time with concurrent extension increases in both arms.  The angles 

between the arms and the trunk also varied with the progression of unzipping in an 

essentially identical fashion, further indicating that forces from the two arms were kept 

nearly symmetric.   



63 
 

 

 

 

 

 

Figure 5. Measurements of forces and extension while unzipping the Y structure 

(a) Y structure geometry and force balance.  The trunk dsDNA was mechanically 

unzipped by pulling on the arms with the two optical traps.  The force vector on 

each arm was independently measured and thus the force on the trunk was 

determined by force balance at the junction.  The 3D position of each trapped 

microsphere and the trunk anchoring point were also measured. 

(b) An example data trace from symmetric unzipping of the trunk of a Y structure 

under a constant force on the trunk.  The force and extension of each branch of the 

Y-structure as well as the angles of the Y-structure were measured as functions of 

time.   
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In order to understand these mechanical measurements, we extended a previous 

statistical mechanical model for 1D unzipping(Bockelmann et al. 1998) to the 2D 

unzipping configuration of the Y-structure (see Theoretical models of Y structure 

unzipping).  This generalization takes into account the total free energy of the Y 

structure:  the sequence-dependent DNA base pairing energy in the trunk 

dsDNA(Huguet et al. 2010), and the elastic free energies in both arms and 

trunk(Marko and Siggia 1995; Smith et al. 1996; Wang et al. 1997).  The resulting 

partition function allows the calculation of the equilibrium forces in both arms and the 

equilibrium fork junction position.   

 

The measured force along the arms versus number of base pairs unzipped agrees well 

with theory (Fig. 6a).  This theory indicates that the force variation is solely a result of 

DNA sequence variations in the trunk, as would also be the case for 1D unzipping.  

Both measurements and theory show that the unzipping force profile, when the trunk 

is under tension, is similar to that when the trunk is under no tension, except for an 

overall increase in force.   

 

To better characterize this force increase, we determined the force in the arms as a 

function of the force in the trunk (Fig. 6b).  The force in the arms increased rather 

linearly with the force in the trunk.  Even the force component perpendicular to the 

trunk is greater than that of the corresponding 1D unzipping force under the conditions 

we explored (Fig. 6c,d).  The increased force indicates that the trunk of the Y structure 

is less destabilized than in the 1D unzipping case.  
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Figure 6.  Unzipping a Y structure under different trunk forces.   

(a) Force along arms versus number of base pairs unzipped under no trunk force 

(black) and 10 pN trunk force (red).  Since the measured forces along the two arms 

were nearly identical, their mean force was used to make these plots.  Theoretical 

predictions are shown for comparison.  

(b) Mean force along arms versus force along trunk (black).  For each trunk force, 

force along arms was averaged over the first 1500 bp unzipped.  Theoretical 

prediction is shown in red. 

(c) Component of force along arms perpendicular to the trunk versus number of base 

pairs unzipped under no trunk force (black) and 10 pN trunk force (red).  

Theoretical predictions are shown for comparison. 

(d) Component of mean force along arms perpendicular to the trunk versus force along 

trunk (black).  For each trunk force, component of the force along arms 

perpendicular to the trunk was averaged over the first 1500 bp unzipped.  

Theoretical prediction is shown in red.  
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Generation and manipulation of long ssDNA 

 

ssDNA is an important substrate, or intermediate, during replication, DNA repair and 

recombination, where long stretches of thousands of base pairs of ssDNA are operated 

on by a variety of proteins.  It has been experimentally challenging to generate and 

manipulate long ssDNA of arbitrary sequence using an optical trap.  Previous methods 

relying on DNA stretching require the application of high force (~ 65 pN) and/or 

chemical reagents(Smith et al. 1996; Hegner et al. 1999; Candelli et al. 2013) or the 

use of enzymatic reactions(Ibarra et al. 2009) to facilitate strand separation.  Methods 

using DNA unzipping do not subject a DNA molecule to excessive forces but yield 

ssDNA of complementary sequences that anneal upon force reduction(Bockelmann et 

al. 1997; Koch et al. 2002). 

 

Here, we demonstrate the use of the Y structure, first to generate ssDNA of many kilo-

base pairs of arbitrary sequence, and then to manipulate it from low to high forces.  In 

order to generate ssDNA, we used a Y-structure version with only one strand of its 

trunk end attached to the microscope coverslip (Fig. 5a).   The dsDNA trunk was then 

unzipped to completion using a method similar to that described in Fig. 5 and Fig. 6.  

Once the trunk was fully unzipped, one strand of the trunk remained attached to the 

coverslip and was composed of one dsDNA arm and the ssDNA of the trunk of the 

original Y structure (Fig. 7a).  The other strand, and its associated arm, retracted to 

their trapped microsphere which was subsequently released into solution.  The 

remaining tether was then stretched with one of the traps and its force-extension curve 
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was measured.  After removing the contribution to the force-extension from the 

dsDNA arm(Wang et al. 1997), the force-extension curve of the ssDNA was obtained 

(Fig. 7b).   The force-extension of ssDNA was well characterized by a modified 

freely-jointed chain model(Smith et al. 1996) at forces > 10 pN, yielding fit 

parameters in good agreement with those previously established(Smith et al. 1996; 

Koch et al. 2002).  Below this force, the relation showed less well defined features, as 

a result of the formation of secondary structures in the ssDNA at low forces(Dessinges 

et al. 2002; Johnson et al. 2007). 
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Figure 7.  Generating and stretching long ssDNA tethers. 

(a) Cartoons depicting the steps to generate a long ssDNA tether.  The initial Y 

structure contained a trunk with only one strand of the trunk end attached to the 

coverslip surface.  The Y structure was then fully unzipped to release the other 

trunk strand from the surface.  The remaining tether was composed of a dsDNA 

segment that had been one of the original arms and a newly generated long stretch 

of ssDNA that had been part of the original trunk dsDNA.  This tether was 

subsequently stretched to obtain a force-extension curve of the composite dsDNA 

and ssDNA.   

(b) Force versus extension of ssDNA.  The force-extension curve of the ssDNA was 

obtained after removing the contribution of the dsDNA from the measured force-

extension of the composite DNA.  The resulting ssDNA force-extension (black) 

was fit to a modified freely-jointed chain model (solid red) at forces > 10 pN, 

yielding a persistence length of 0.765 nm, a stretch modulus of 470 pN, and a 

contour length of 2055 nm.  Below 10 pN, an extrapolation of the fit is shown. 
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Torsion generation 

 

Due to the helical nature of dsDNA, motor proteins that translocate along DNA will 

necessarily have to rotate relative to the DNA.  Hindrance of relative rotation by 

cellular constraints and viscous drag leads to torsion build-up that in turn regulates 

these processes(Koster et al. 2010; Forth et al. 2013).  Thus torsion in DNA plays an 

important role in biological processes that take place on DNA and has been 

demonstrated to significantly alter activities of bound proteins(Ma et al. 2013).  The Y 

structure provides a natural way to create and control torsion in the trunk DNA.   

 

In order to demonstrate this feature, we torsionally anchored the end of the trunk to the 

surface of a coverslip via multiple attachment points (Methods) (Fig. 8a).  This 

enabled the introduction of twist to the trunk DNA by unzipping the DNA.  During the 

unzipping of the Y structure, the fork end of the trunk is expected to rotate, converting 

twist released from base pairing to additional twist in the trunk.  This buildup in twist 

energy should make it progressively more difficult to unzip the trunk.   

 

Fig. 8b shows measurements from unzipping a torsionally constrained trunk which 

was held under 4 pN of tension, sufficient force to prevent buckling of the trunk DNA 

in our experiment.  As expected, unzipping force indeed increased rapidly, even upon 

a small amount of unzipping.  The force increase was linear, with respect to the 

number of base pairs unzipped, and was modulated by variations due to DNA 
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sequence.  In comparison, when the trunk was not under torsion, the unzipping force 

remained essentially constant, aside from the sequence-dependent variations.   

 

To better understand these measurements, we further extended the theoretical model to 

consider the unzipping of the Y structure under torsion in addition to tension (Fig. 8b, 

Theoretical models of Y structure unzipping).  The theory correctly predicts the 

force increase and the sequence-dependent force variations.  It also provides a simple 

explanation for the linearity in the force increase, which results from the torsional 

energy’s quadratic dependence on the twist of the trunk(Marko 2007). 

 

Even without DNA unzipping, the Y structure provides a flexible way of generating 

twist in the trunk.  For example, twist may be added to the trunk DNA by rotation of 

the two dsDNA arms about the trunk attachment point.  
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Figure 8.  Unzipping a Y structure under torsion.   

(a) The trunk of the Y structure was torsionally constrained to the microscope 

coverslip via multiple fluorescein/anti-fluorescein connections at both DNA 

strands of the trunk end.  This Y structure version prevented the trunk end from 

swiveling around the anchoring points.   

 (b) Force along arms versus number of base pairs unzipped of either a torsionally 

constrained or unconstrained trunk, both under 8 pN trunk force.  Theoretical 

predictions are shown for comparison.   
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Theoretical models of Y structure unzipping 

 

We have extended a previous theoretical model of 1D DNA unzipping using 

equilibrium statistical mechanics methods(Bockelmann et al. 1997; Bockelmann et al. 

2002; Huguet et al. 2010; Gross et al. 2011) to model 2D DNA unzipping of a Y 

structure.  

 

For this section, to simplify notation, we consider a symmetric Y structure initially 

consisting of two arms, each of  𝑛arm base pairs of dsDNA, and a trunk of 𝑛tr base 

pairs of dsDNA (Fig.9).   As the trunk is unzipped by 𝑛 base pairs, 𝑛 nucleotides of 

ssDNA are added to each arm while the trunk reduces to  (𝑛tr − 𝑛) base pairs of 

dsDNA.  For simplicity, we assume that the trunk is unzipped by two arm forces 

symmetric about the trunk, and the Y structure lies in the 𝑥𝑧 plane with the trunk end 

at (0,0),  arm 1 end at (−𝑥a, 𝑧a), and arm 2 end at (+𝑥a, 𝑧a).  The junction location 

and forces in each branch are determined by requiring the net force at the junction to 

be zero, using the measured force-extension relations. 
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Figure 9.  Geometry of the Y structure for theoretical modeling.  The Y structure is 

confined to the xz plane and is symmetric about the trunk.  The extension of each 

segment of DNA is indicated: lt for the dsDNA trunk, lss for ssDNA in each arm, and 

lds for dsDNA in each arm. 
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The force-extension relation per nucleotide of ssDNA(Smith et al. 1996) is:   

𝑠ss

𝐿0_ss
= [coth (

2𝑓ss𝐿p_ss

𝑘B𝑇
) −

𝑘B𝑇

2𝑓ss𝐿p_ss
] (1 +

𝑓ss

𝐾0_ss
), (1) 

where 𝑓ss is the force, 𝑠ss the extension per nucleotide, 𝐿0_ss the contour length per 

nucleotide of ssDNA, 𝐿p_ss the persistence length of ssDNA, 𝐾0_ss the stretch modulus 

of ssDNA, and 𝑘B𝑇 the thermal energy.  Using the Y structure as described in the main 

text (Fig. 3b), we measured 𝐿0_ss, 𝐿p_ss, 𝐾0_ss, and 𝑘B𝑇 to be 0.55 nm, 0.79 nm, 470 

pN, and 4.11 pNnm respectively under our experimental conditions ( Fig. 10).   

  

The force-extension per base pair of dsDNA(Wang et al. 1997) is:   

𝑓ds = 
𝑘B𝑇

𝐿p_ds
[

1

4(1−𝑠ds /𝐿0_ds+𝑓ds/𝐾0_ds)
−

1

4
+

𝑠ds 

𝐿0_ds
−

𝑓ds

𝐾0_ds
], (2) 

where 𝑓ds is the force, 𝑠 the extension per base pair, 𝐿0_ds the contour length per base 

pair of dsDNA, 𝐿p_ds the persistence length of dsDNA, and 𝐾0_ds the stretch modulus 

of dsDNA.  We used previously measured values of 𝐿0_ds, 𝐿p_ds, and 𝐾0_ds of 0.34 nm, 

43 nm, and 1200 pN respectively(Wang et al. 1997) (Fig. 10).  
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Figure 10.  Force-extension curves of ssDNA and dsDNA.  Shown are extensions per 

nucleotide of ssDNA (red) and per base pair of dsDNA (blue) as determined by 

measured DNA elasticity parameters.  See Eqs. (1) and (2). 
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Once 𝑥a, 𝑧a, and 𝑛 are specified and the ssDNA and dsDNA elastic properties are 

determined, the junction location is determined based on force balance, yielding the 

trunk extension 𝑙t, ssDNA extension in each arm 𝑙ss, and dsDNA extension in each 

arm 𝑙ds, as well as forces in each branch (Fig. 9).  Thus the state of the Y structure is 

fully defined by the positions of the three end points of the Y structure and the number 

of base pairs unzipped, i.e.,  𝑥a, 𝑧a, and 𝑛.  Below we consider unzipping under four 

different scenarios. 

 

The Y structure under constant end positions 

 

Consider a scenario where the trunk DNA of the Y structure is unzipped such that the 

ends of the arms are at specified positions (i.e., 𝑥a and 𝑧a are given and held fixed).  

Under thermal agitation, the fork junction may still fluctuate over multiple states, each 

with a different number of base pairs (𝑛) unzipped.  We wish to find the equilibrium 

fork junction position and the equilibrium forces in the three branches.  Our general 

strategy is to determine the free energies at all possible states, use these energies to 

define the partition function of the system, and then use the partition function to 

determine the equilibrium value (mean value) of any parameter of interest.    

 

The free energy of the Y structure at a given state consists of two distinct components:

  

 𝐺(𝑛; 𝑥a, 𝑧a) = 𝐺𝐷𝑁𝐴(𝑛) + 𝐺stretch(𝑛; 𝑥a, 𝑧a) .   (3) 
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The first term 𝐺𝐷𝑁𝐴(𝑛) is free energy increase due to the loss of base pairing of the 

first 𝑛 base pairs unzipped, and can be determined using the nearest-neighbor model 

with corrections that take into account the temperature and salt conditions used in the 

experiments(Huguet et al. 2010).  The second term 𝐺stretch(𝑛; 𝑥a, 𝑧a) is the work to 

stretch each branch of the Y structure to the specified state: 

𝐺stretch(𝑛; 𝑥a, 𝑧a) = 2𝐺ds,arm(𝑛arm, 𝑙ds) + 2𝐺ss,arm(𝑛, 𝑙ss) + 𝐺ds,trunk(𝑛tr −

𝑛, 𝑙t) , 

  (4) 

For ssDNA of 𝑛 nucleotides to stretch to extension 𝑙 (Fig. 11), the free energy is 

𝐺ss(𝑛, 𝑙) = 𝑛 ∫ 𝑓ss(𝑠ss )𝑑𝑠ss 
𝑙/𝑛

0
. (5) 

For dsDNA of 𝑛 base pairs to stretch to extension 𝑙 (Fig. 11), the free energy is 

𝐺ds(𝑛, 𝑙) = 𝑛 ∫ 𝑓ds(𝑠ds )𝑑𝑠ds
𝑙/𝑛

0
. (6) 
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Figure 11.  Energies to stretch ssDNA and dsDNA.  Shown are the energies needed to 

stretch one nucleotide of ssDNA (red) and one base pair of dsDNA (blue) to specified 

extension and force. 
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Given 𝑥a and 𝑧a, we numerically calculate the extensions of all DNA segments for 

each possible value of 𝑛 using the “fsolve” routine of the SciPy package of Python.  

The results of this calculation are then used to calculate 𝐺(𝑛; 𝑥a, 𝑧a), which yields the 

partition function.  The average number of base pairs unzipped 〈𝑛〉 and the average 

force 〈𝐹𝑖〉 (𝑖 = 1 to 3, one for each branch) are determined from the partition function:  

〈𝑛〉 =
∑ 𝑛 𝑒𝑥𝑝(−𝐺(𝑛;𝑥a,𝑧a) 𝑘B𝑇⁄ )𝑛

∑ 𝑒𝑥𝑝(−𝐺(𝑛;𝑥a,𝑧a) 𝑘B𝑇⁄ )𝑛
 (7) 

〈𝐹𝑖⃗⃗ 〉 =
∑ 𝐹𝑖⃗⃗  ⃗ 𝑒𝑥𝑝(−𝐺(𝑛;𝑥a,𝑧a) 𝑘B𝑇⁄ )𝑛

∑ 𝑒𝑥𝑝(−𝐺(𝑛;𝑥a,𝑧a) 𝑘B𝑇⁄ )𝑛
 (8) 

 

Fig. 12 shows some results of these calculations.  At a small value of (𝑧a − 𝑙t), the 

mean unzipping force along arms is comparable to the corresponding 1D unzipping 

force which fluctuates around ~ 15 pN.  The force along arms and the trunk force 

increase with a more extended Y structure in 𝑧 and/or more base pairs unzipped. 
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Figure 12.  Forces under constant end positions of the Y structure.  Results are shown 

for several values of 𝑧a positions.   

(a) Force along arms versus 𝑥a. 

(b) 𝑧 component of arms’ mean force versus  𝑥a. 

(c) 𝑥 component of arms’ mean force versus  𝑥a. 

(d) Number (#) of base pairs unzipped versus  𝑥a. 
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The Y structure under constant trunk force 

 

Next we consider a scenario where the trunk DNA of the Y structure is unzipped under 

a constant trunk force (𝐹tr = 2𝐹a,𝑧) such that the 𝑥 coordinates of the ends of the arms 

are specified (i.e., 𝐹tr and 𝑥a are given and held fixed).  To calculate arm force in this 

situation, the free energy must be a function of 𝑥a and 𝐹tr instead of 𝑥a and 𝑧a.  We 

refer to this free energy as 𝐺1(𝑛; 𝑥a, 𝐹tr) which relates to 𝐺(𝑛; 𝑥a, 𝑧a) via the Legendre 

transform by subtracting the product of the conjugate variables 𝑧a and 𝐹tr: 

𝐺1(𝑛; 𝑥a, 𝐹tr) =  𝐺(𝑛; 𝑥a, 𝑧a) − 𝑧a𝐹tr. (9) 

Since  

 
𝜕𝐺(𝑛;𝑥a,𝑧a)

𝜕𝑦a
= 𝐹tr, (10) 

Eq. (10) allows Eq. (9) to be expressed solely in terms of 𝑛, 𝑥a, and 𝐹tr.   Eq. (9) 

indicates that the free energy 𝐺1(𝑛; 𝑥a, 𝐹tr) lowers with an increase in the trunk force. 

 

Once 𝐺1(𝑛; 𝑥a, 𝐹tr) is determined, the arm force and the number of base pairs 

unzipped can be found using a partition function of the form in Eqs. (7) and (8) by 

replacing 𝐺(𝑛; 𝑥a, 𝑧a) with 𝐺1(𝑛; 𝑥a, 𝐹tr).  Fig. 13 shows some results of these 

calculations.  As with the scenario where the ends of the Y structure are held at fixed 

positions, this scenario also shows that at low trunk force, the arm force is comparable 

to the 1D unzipping force.  As the trunk force increases, the arm force also increases.   
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Figure 13.  Arm forces under a constant trunk force of the Y structure.  Results are 

shown for several values of the trunk forces.   

(a) Force along arms versus 𝑥a. 

(b) 𝑧 component of arms’ mean force versus  𝑥a. 

(c) 𝑥 component of arms’ mean force versus  𝑥a. 

(d) Number (#) of base pairs unzipped versus  𝑥a. 
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The Y structure under torsional constraint 

 

We now consider a scenario where the trunk end is torsionally constrained and the 

trunk DNA is unzipped under a constant trunk force (𝐹tr = 2𝐹a,𝑧) such that the 𝑥 

coordinates of the ends of the arms are specified (i.e., 𝐹tr and 𝑥a are given and held 

fixed).  As the trunk DNA is unzipped, the linking number in the trunk remains 

constant while the trunk shortens, resulting in overtwisting of the trunk.  Continued 

torque buildup will eventually lead to a phase transition to plectonemic DNA or P-

DNA(Deufel et al. 2007; Forth et al. 2008; Daniels et al. 2009; Sheinin and Wang 

2009; Forth et al. 2013).  We will limit our discussion to consider only the B-DNA 

regime prior to any phase transition. 

 

To calculate the arm force, the free energy outlined in the previous section needs to be 

modified to take into account the torsional energy in the trunk.  Torsional energy may 

be expressed in terms of the degree of supercoiling, 𝜎, defined as the number of turns 

introduced into the DNA per natural number of turns in the DNA.  Under moderate 

forces and small degrees of supercoiling, the twist energy depends on 𝜎 quadratically 

and is also a function of the force (𝐹) in the DNA(Marko 2007; Sheinin and Wang 

2009):  

𝐺twist(𝐹, 𝜎, 𝐿0) = +
𝐿0𝑐𝑠

2
𝜎2, (11) 

with  

𝑐𝑠 = 𝑘B𝑇𝐶𝜔0
2 [1 −

𝐶

4𝐿p_ds
(

𝑘B𝑇

𝐿p_ds𝐹
)
1/2

], (12) 
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where 𝜔0 = 2𝜋/(3.6 nm) is the conversion between natural angle of rotation and 

contour length, 𝐶 = 100 nm the intrinsic twist persistence length(Sheinin and Wang 

2009), and 𝐿0 contour length of the dsDNA.  This expression is valid until the onset of 

a phase transition from B-DNA to another phase.  The force dependence of 𝑐𝑠 also 

implies that twist influences DNA extension.  The force-extension relation of the 

dsDNA shown in Eq. (2) needs to be slightly revised(Marko 2007; Sheinin and Wang 

2009) to consider contribution from twist. 

 

For the torsionally constrained trunk in the Y structure, 𝜎 and 𝐿0 are directly coupled 

via the number of base pairs unzipped 𝑛:  𝜎 =  
𝑛

𝑛tr−𝑛
, and 𝐿0 = (𝑛tr − 𝑛)𝐿0_ds.  

Therefore, 

𝐺twist(𝐹tr, 𝜎, 𝐿0) = 𝐺twist(𝐹tr, 𝑛). (13) 

  

The free energy of the Y structure after taking into consideration the torsion in the 

trunk is: 

𝐺2(𝑛; 𝑥a, 𝐹tr) = 𝐺1(𝑛; 𝑥a, 𝐹tr) + 𝐺twist(𝐹tr, 𝑛). (14) 

This additional torsional energy term is very significant as it predicts a steep increase 

in torsional energy even when a small number of base pairs are unzipped.  In addition, 

to remain in the region of B-DNA, 𝜎 must be small (< 0.04 at 2 pN of trunk force) 

after which the existence of plectonemes must be considered(Forth et al. 2008).  This 

puts a limit on the number of base pairs that can be unzipped before plectonemes 

begin to form in the trunk DNA.  For a 4 kb trunk, this is only about ~ 160 bp. 
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Once 𝐺2(𝑛; 𝑥a, 𝐹tr) is determined, the arm force and the number of base pairs 

unzipped can be found using a partition function of the form in Eqs. (7) and (8) by 

replacing 𝐺(𝑛; 𝑥a, 𝑧a) with 𝐺2(𝑛; 𝑥a, 𝐹tr).  As shown in Fig. 14, the force required to 

unzip torsionally constrained trunk DNA significantly differs from that for unzipping 

torsionally relaxed trunk DNA (Fig. 13).  The steep force rise is a strong signature of 

torsional constraint and is readily identifiable in single molecule experiments. 
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Figure 14.  Arm forces under a torsionally constrained trunk of the Y structure.  

Results are shown for several values of the trunk forces.   

(a) Force along arms versus 𝑥a. 

(b) Number (#) of base pairs unzipped versus  𝑥a. 
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The Y structure under constant forces 

 

To gain an intuitive understanding of the unzipping force for the Y structure, we 

consider unzipping of a homopolymeric Y structure under constant forces in all three 

branches.  For simplicity, we consider a symmetric Y structure initially consisting of 

no dsDNA arms (i.e., 𝑛arm = 0) and a trunk of 𝑛tr base pairs of dsDNA (Fig. 15).  

The force in each arm is held constant with a magnitude 𝐹 at an angle 𝜃 with respect 

to the 𝑧 axis.  The trunk force is thus also held constant with a magnitude 𝐹tr =

2𝐹 cos 𝜃.  For a homopolymeric DNA trunk, each base has the same magnitude of 

base pairing energy (𝐸bp).  The free energy of the system is thus composed of the free 

energy increase due to the loss of base pairing of the first 𝑛 base pairs unzipped and 

the DNA stretching energy in all three branches under constant forces:   

𝐺3(𝑛; 𝐹, 𝜃) = 𝑛 𝐸bp − 2𝑛 ∫ 𝑠ss(𝐹
′)𝑑𝐹′𝐹

0
 − (𝑛tr − 𝑛) (∫ 𝑠ds(𝐹′)𝑑𝐹′

2𝐹 cos𝜃

0
).   

 (15) 

We will eliminate the term that does not depend on 𝑛 because this term does not 

contribute to partitioning of the states: 

∆𝐺3(𝑛; 𝐹, 𝜃) = 𝑛 𝐸bp − 2𝑛 ∫ 𝑠ss(𝐹
′)𝑑𝐹′

𝐹

0

+ 𝑛 ∫ 𝑠ds(𝐹
′)𝑑𝐹′

2𝐹 cos𝜃

0

 

=  𝑛 [𝐸bp − 2∫ 𝑠ss(𝐹
′)𝑑𝐹′𝐹

0
+ ∫ 𝑠ds(𝐹

′)𝑑𝐹′2𝐹 cos𝜃

0
].    (16) 
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Figure 15.  Geometry of the Y structure under constant forces in all three branches.   

The Y structure is confined to the xz plane and is symmetric about the trunk.  Each 

arm consists of ssDNA held at a constant force of magnitude 𝐹 at angle 𝜃 with respect 

to the trunk.   
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Therefore, the presence of a trunk force term (the last term) which has the same sign 

as the base-pairing energy indicates stabilization of the trunk relative to the 1D 

unzipping case.   

 

When 𝜃 =
𝜋

2
, this corresponds to 1D unzipping which has been shown to have a 

critical transition from DNA being fully base paired to fully unzipped as force in 

increased above a critical value(Lubensky and Nelson 2002; Danilowicz et al. 2003).  

Therefore, we expect a similar transition to occur for unzipping of the Y structure.  

Indeed, since ∆𝐺3(𝑛; 𝐹, 𝜃) is proportional to 𝑛, the minimum free energy state 

corresponds to either 𝑛 = 0 (trunk DNA remains fully double stranded) when 𝐹 < 𝐹c 

or 𝑛 = 𝑛tr (trunk is fully unzipped) when 𝐹 > 𝐹c.  At the critical force 𝐹 = 𝐹c, 

∆𝐺3(𝑛; 𝐹, 𝜃) is independent of 𝑛 and thus the fork fluctuates between these extremes.  

As shown in Fig. 16, the calculation is valid for trunk forces < 65 pN, at which the 

trunk undergoes a B-S transition(King et al. 2013; Zhang et al. 2013).  As 𝜃 increases 

towards 𝜃 =
𝜋

2
 (1D unzipping limit), 𝐹c decreases while its z component 𝐹c,𝑧 decreases 

more steeply.  Consequently, 𝐹c increases with an increase in 𝐹c,tr(= 2𝐹c,𝑧).  𝐹c,𝑥, the x 

component 𝐹c, is greater than the 1D unzipping force over the valid range of the 

theory. 

 

We will specifically evaluate how 𝐹c and 𝐹c,𝑥 vary with 𝜃 as 𝜃 decrease from 𝜃 = 𝜋/2 

(1D unzipping).  The first derivative of 𝐹c(𝜃) with respect to 𝜃 is:  
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𝑑𝐹c

𝑑𝜃
=

𝜕∆𝐺3

𝜕𝜃

𝜕∆𝐺3

𝜕𝐹c
⁄ =

2𝐹c sin𝜃𝑠ds(2𝐹c cos𝜃)

−2𝑠ss(𝐹c)+2 cos𝜃𝑠ds(2𝐹c cos𝜃)
. (17) 

This gives 
𝑑𝐹c

𝑑𝜃
|
𝜃=𝜋/2

= 0.  The second derivative of 𝐹c(𝜃) with respect to 𝜃 at 𝜃 =

𝜋

2
 is: 

𝑑2𝐹c

𝑑𝜃2 |
𝜃=𝜋/2

=
2𝐹c

2

𝑠ss(𝐹c)

𝑑𝑠ds

𝑑𝐹
|
𝐹=0

> 0. (18) 

Since 
𝑑2𝐹c

𝑑𝜃2 |
𝜃=𝜋/2

 is always positive, 𝐹c must increase as force is applied to the trunk.  

Next we examine the 𝑥 component of the force 𝐹c,𝑥. 

𝑑𝐹c,𝑥

𝑑𝜃
|
𝜃=𝜋/2

= 0  (19) 

𝑑2𝐹c,𝑥

𝑑𝜃2 |
𝜃=𝜋/2

=
𝑑2𝐹c

𝑑𝜃2 |
𝜃=𝜋/2

− 𝐹c = 
2𝐹c

2

𝑠ss(𝐹c)

𝑑𝑠ds

𝑑𝐹
|
𝐹=0

− 𝐹c  (20) 

Since  
𝑑𝐹

𝑑𝑠ds
|
𝐹=0

<
2𝐹c

𝑠𝑠𝑠(𝐹c)
 because dsDNA has a low stiffness under a small force, 

𝑑2𝐹c,𝑥

𝑑𝜃2 |
𝜃=𝜋/2

> 0.   

Therefore, 𝐹c,𝑥 will also increase as the trunk is extended.   
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Figure 16.  Critical force of the Y structure under constant force.  For this calculation, 

the homopolymeric DNA trunk is assumed to a base pairing energy 𝐸bp = 2.4 𝑘B𝑇.  

(Top panel) The critical force, at which the Y structure unzips, is plotted as a function 

of the angle of the applied force.  𝜃 = 𝜋/2 corresponds to 1D unzipping where there is 

no force on the trunk.  As trunk force increases above 65 pN, trunk DNA is expected 

to undergo a B-S phase transition (shaded region) which our theory does not consider.  

(Bottom panel) The critical force is plotted as a function of the force along the trunk 

for a more direct comparison with our experimental results.  
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Y structure in conjunction with fluorescence 

 

While unzipping is able to accurately locate a protein already bound to dsDNA, it 

cannot provide real-time information on protein binding, nor the location of a protein 

on ssDNA.  Fluorescence visualization thus complements unzipping.  We have 

integrated Y structure manipulation with fluorescence in order to combine the high 

resolution mapping by unzipping with direct visualization by fluorescence. 

 

In order to demonstrate this integration, we first formed a paused transcription 

elongation complex (TEC) on the DNA trunk and then labelled the RNA polymerase 

(RNAP) with a quantum dot (Fig. 17a).  TEC was formed on the trunk DNA following 

a protocol similar to that previously established(Schafer et al. 1991; Yin et al. 1995).  

Briefly, the 3.7 kbp trunk DNA (10 nM) was incubated with E. coli RNA polymerase 

(100 nM) for 30 minutes at 37
 
C in the transcription buffer (25 mM Tris-Cl pH 8.0, 

100 mM KCl, 4 mM MgCl2, 1 mM DTT, 0.4 mg/mL BSA, 7.5% glycerol, 50 μM 

ATP/GTP/CTP, 100 μM ApU, 1U/L SUPERase-In).  The resulting trunk contained a 

transcription elongation complex paused at +20 bp from the promoter.  The trunk 

DNA was then ligated to the short Y-arm. 

 

The RNAP was fluorescently labeled with quantum dots using standard antibody 

labeling techniques which has been demonstrated not to interfere with protein-DNA 

binding(Wang et al. 2008).  Briefly, single molecule Y-structure tethers were formed 

in a microscope flow cell.  Purified HA-tagged RNAP(Bai et al. 2007; Jin et al. 2010) 
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as labeled with primary antibody to HA expressed in mouse (Covance).  Excess 

antibodies were washed out of the chamber PBS.  Quantum dots coated with 

secondary antibodies (Invitrogen A-10195) were flowed in to bind to the primary 

antibodies.  Excess quantum dots were washed out of the chamber PBS. 

 

We then unzipped through the TEC, while simultaneously acquiring optical trapping 

data, bright field images, and fluorescence images in real time (Fig. 17b).  The 

trapping data permitted the determination of the exact geometry of the Y structure 

DNA, eliminating the need to directly visualize the Y structure.  The bright field 

images showed the locations of the two trapped microspheres and fluorescence images 

showed the locations of the RNAP.  Correlation of the fluorescence images with the 

unzipping data shows that the TEC was located at the junction when the force rise was 

detected (Fig 17c). 
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Figure 17.  Simultaneous stretching, unzipping, and fluorescence.   

(a) A cartoon illustrating the experimental configuration.  The Y structure contained 

two arms of different lengths in order to facilitate differentiation of the two arms, 

and a trunk with a paused transcription elongation complex (TEC) formed with an 

HA-tagged E. coli RNAP.   The RNAP was subsequently labelled by anti-HA, 

which was then labeled by secondary-antibody coated quantum dots.   The trunk 

containing the RNAP was subsequently unzipped under X pN of force along the 

trunk. 

(b) Snapshots of images during unzipping through a trunk containing an RNAP in 

head-on collision with unzipping.  Fluorescence images (red) showed the locations 

of RNAP and bright field images (green) showed the locations of the two trapped 

microspheres.  Optical trapping measurements provided the lengths and geometry 

of the three branches in the Y structure (white lines).   

(c) Measured force along arms versus number of base pairs unzipped for the example 

shown in (b).  The red dashed line indicates the expected active site location of the 

TEC.  Arrows correlate the time points for images shown in (b).  At time point 2, 

the TEC was disrupted. 

(d) Histograms showing RNAP fates upon unzipping.  The locations of RNAP after 

either co-directional or head-on collisions with unzipping were determined by 

making multiple measurements such as those shown in (b) and (c).   
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Interestingly, fluorescence visualization of the RNAP revealed that, after the DNA was 

unzipped through the TEC, the RNAP almost exclusively remained bound to the 

template strand of the DNA (Methods).  This occurred regardless of whether the 

unzipping fork collided with RNAP co-directionally (in the same direction as 

transcription) or head-on (in the opposite direction to transcription) (Fig. 17d).  This 

finding has significant implications for replication-transcription collision (see 

Discussion below). 

 

We also show that unzipping provides accurate measurements of the detailed 

interaction of RNAP with the trunk.  When the unzipping fork encountered the RNAP 

paused at 20 nt after the transcription start site (+20 site), we found that RNAP 

significantly altered the unzipping force, compared to that of naked DNA (Fig. 18).  

For a co-directional collision, a force reduction appeared 24 ± 8 nt (mean ± SD) 

upstream of the +20 site, which we interpret as the fork beginning to interact with the 

transcription bubble (See below).  This was followed by a dramatic increase in 

unzipping force at the +20 site (± 4 nt), which we interpret as the fork encountering 

the downstream dsDNA that was tightly clamped by the RNAP.  These findings from 

the Y-structure are consistent with our previous findings using 1D unzipping(Jin et al. 

2010).  For a head-on collision, a dramatic force rise occurred at 14 ± 3 bp 

downstream of the +20 site, which we interpret as the fork encountering the far 

downstream dsDNA that was tightly clamped by the RNAP.  These measurements 

compare well with TEC structure determination from previous biochemical 

studies(Lee and Landick 1992; Zaychikov et al. 1995).  It is worth noting that a paused 
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TEC at this +20 site is known to backtrack(Jin et al. 2010) and should contribute to the 

measured heterogeneity in the TEC population.  Thus, in addition to locating the TEC 

to near base pair accuracy, these measurements mapped out detailed interactions and 

their strengths within the TEC.  
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Figure 18. Mapping the structure of the transcription elongation complex (TEC). 

(a) Unzipping DNA through a TEC from either co-directional collision (top panel) or 

head-on collision (bottom panel) directions.  The TEC was paused at +20 bp from 

the start site and the trunk was held at 4 pN of force.  The theoretical predictions of 

the unzipping force of naked DNA are also shown for comparison (grey).  Three 

characteristic locations are highlighted.  In the co-directional unzipping direction, 

the onset of the force drop indicates the presence of the transcription bubble, and 

the subsequent force rise corresponds to the end of the transcription bubble and the 

beginning of the dsDNA clamped by RNAP.  In the head-on unzipping direction, a 

force rise corresponds to the onset of the RNAP interaction with the downstream 

dsDNA. 

(b) A cartoon of the TEC indicating the locations of the three detectable features 

discussed above. 

(c) An RNAP-DNA interaction map of the TEC.  Three histograms were obtained by 

pooling a number of measurements such as those shown in (a).  They show the 

locations for the onset of the force drop (red) and the force rise peak (black) in the 

co-directional unzipping direction, and the force rise peak (green) in the head-on 

unzipping direction relative to the transcription start site (+1 bp corresponds to the 

transcription start site).  The mean position of each histogram is indicated by a 

dashed line.  The distance between the red and black dashed lines is ~ 25 bp which 

is an overestimate of the actual transcription bubble size.  The distance between 

the green and black lines is ~ 14 bp and provides the length of the downstream 

dsDNA region tightly clamped by RNAP. 
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We found that when DNA containing a TEC was unzipped co-directionally with the 

direction of transcription, a force drop occurred a few base pairs before the expected 

location of the edge of the transcription bubble.  We interpret this as a result of thermal 

fluctuations of the unzipping fork.  As DNA is unzipped, the unzipping fork is 

expected to fluctuate among multiple energy states, at rates much faster than the 

unzipping speed.  Therefore, the measured fork position represents the mean value for 

the fork position(Bockelmann et al. 1997; Bockelmann et al. 1998).  The extent of 

fluctuations is DNA sequence-dependent but is of the order of 5-10 base pairs (Fig. 

19).  As the fork approaches a DNA bubble, the fork’s excursions away from the mean 

may encounter the DNA bubble.  At this point, the fork will immediately open the 

entire bubble and become trapped in the much lower energy open state.  Thus, the 

location of the start of a bubble will always be detected closer to the unzipping fork 

than the bubble’s actual edge.  The extent of the shift will be related to the local DNA 

sequence, the temperature, and the rate of unzipping.  By contrast, the location of the 

end of the bubble can be determined with much more certainty.  Therefore, when the 

region of force drop is used to determine the bubble size, the size is always over-

estimated.   

 

Therefore, the combination of unzipping with fluorescence allowed us to 1) visualize 

RNAP presence on the trunk prior to unzipping, 2) accurately determine its location 

and its TEC structure on the trunk upon unzipping, and, 3) visualize its presence on 

the ssDNA after unzipping. 
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Figure 19.  Fluctuations of the unzipping fork in the presence of a transcription 

bubble.  (upper) Measured unzipping force in the presence of a paused transcription 

elongation complex (TEC) (black) compared with the calculated unzipping force in 

the absence of a TEC (grey).  (lower) Calculated fork fluctuations (standard deviation 

of the number of base pairs unzipped) near the paused TEC.  All calculations were 

performed for a constant trunk force of 4 pN. 
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Discussion 

 

Previous single molecule studies have been restricted to measuring physical quantities 

along one dimension, limiting the examination of complex biomolecular systems.  Our 

novel Y structure assay measures forces and extensions on DNA in two dimensions, 

can impose torsional constraint on DNA, and is compatible with fluorescence. 

 

Although the focus of this report is on methodology development, a number of results 

already have important implications for processes that take place on DNA.  We found 

that the unzipping force increased when tension was present in the dsDNA trunk and a 

much more dramatic increase occurred when the trunk was torsionally constrained.  In 

vivo, DNA is expected to be under some tension and torsion generated by motor 

proteins and topological or geometrical constraints.  Thus, processes which must 

enzymatically unwind (or unzip) DNA, such as replication and possibly transcription, 

will encounter increased resistance to translocation over what would be expected with 

relaxed DNA.  In particular, even moderate torsional constraint could create a 

substantial barrier for unwinding DNA.  Thus, this new assay provides a method to 

study the interplay of DNA mechanical properties and the interactions of proteins and 

DNA. 

 

Another important aspect of this single molecule assay is its ability to determine the 

locations of proteins after they dissociate from the template.  We found that when the 

unzipping fork disrupted the TEC, RNAP primarily remained on the template strand 
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for both co-directional and head-on collisions.  Our experimental approach is 

reminiscent of replication and transcription collisions where a replisome encounters 

transcription machinery(Pomerantz and O'Donnell 2010).  Indeed, our findings 

coincide with previous studies which suggest that RNAP stays associated with the 

template DNA and remains active after the passage of a replication fork during co-

directional and head-on collisions of replication and transcription.  The Y structure is 

ideally suited to investigate these collisions. 

 

Although we demonstrate the Y structure assay with three branches composed of 

DNA, each branch may be composed of any combination of single stranded or double 

stranded DNA or RNA.  The three-way junction can also be extended to multiple 

junctions, each of which may be directly measured in 3D. 

 

The addition of new measurement axes allows for a plethora of interesting 

experimental possibilities.  The Y structure assay allows a new generation of single 

molecule studies focused on characterizing interactions of multiple proteins during 

complex processes such as transcription and replication.  The ability to combine 

stretching, twisting, unzipping and fluorescent imaging in a single assay provides a 

versatile system for measuring the complex geometries and protein interactions during 

these processes.  
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