
  

 

CRYSTALLOGRAPHIC STUDIES ON ENZYMES INVOLVED IN VITAMIN B1 

BIOSYNTHESIS AND THE DEGRADATION OF VITAMIN B6 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

Kathryn M. McCulloch 

May 2010



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2010 Kathryn M. McCulloch



 

 

CRYSTALLOGRAPHIC STUDIES ON ENZYMES INVOLVED IN VITAMIN B1 

BIOSYNTHESIS AND THE DEGRADATION OF VITAMIN B6 

 

Kathryn M. McCulloch, Ph. D. 

Cornell University 2010 

 

Macromolecular crystallography allows for the structures of biologically interesting 

molecules to be determined to atomic resolutions.  The enzymes involved in metabolic 

pathways often catalyze interesting and novel chemical reactions, and understanding 

the structure of these enzymes can offer insight into the function and mechanism of 

the enzyme.  In the thiamin biosynthetic pathway, the two moieties of thiamin are 

biosynthesized separately and then stitched together by thiamin phosphate synthase.  

Recent work has shown that one of the heterocyclic moieties is carboxylated; the 

crystal structure and kinetic characterization of Bacillus subtilis thiamin phosphate 

synthase with carboxylated thiazole phosphate and the pyrimidine moiety demonstrate 

the activity of this enzyme with this substrate.  Additionally, thiamin phosphate 

synthase is an ideal drug target in some pathogens as thiamin is an essential cofactor 

and humans do not have this enzyme.  The crystal structure of thiamin phosphate 

synthase from Mycobacterium tuberculosis was determined and used for identifying 

potential drug compounds.  The final step in thiamin biosynthesis is the 

phosphorylation of thiamin phosphate to produce the biologically active thiamin 

pyrophosphate and the crystal structure of Aquifex aeolicus thiamin monophosphate 

kinase has shown that this reaction proceeds via an in-line phosphate transfer. 

 While much work has been devoted to the study of the biosynthesis of 

cofactors, the degradation pathways can also contain interesting chemistry.  The 



 

degradation of PLP occurs over seven steps in Mesorhizobium loti MAFF303099 and 

the final three steps have been structurally characterized.  2-Methryl-3-

hydroxypyridine-4,5-dicarboxylate decarboxylase shows significant similarity to class 

II aldolases and uses a retro-Aldol type reaction to catalyze its decarboxylation 

reaction.  The following enzyme, 2-methyl-3-hydroxypyridine-5-carboxylic acid 

oxygenase, catalyzes an oxidative ring opening and incorporates two atoms of oxygen 

to produce E-2-(acetamidomethylene)succinate.  The structure of this enzyme 

demonstrates its similarity to flavin monooxygenases and offers clues to catalytically 

important residues.  The final enzyme, E-2-(acetamidomethylene)succinate hydrolase, 

is an α/β hydrolase and catalyzes the production of succinic semialdehyde, ammonia, 

acetate, and carbon dioxide using a modified catalytic triad consisting of a serine, 

histidine, and aspartic acid. 
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CHAPTER 1 

INTRODUCTION 

Section 1.1. Structural Biology 

 Gaining an understanding of the structural basis of molecular processes is the 

ultimate goal of structural biology.  Several methods have evolved allowing the 

structures of biological molecules to varying resolutions and include electron 

microscopy, NMR, small angle X-ray scattering, and X-ray crystallography (1, 2).  

Electron microscopy can offer a composite view of many molecules that could be in 

differing conformations and NMR provides a means of looking at dynamic structures 

(1).  Small angle X-ray scattering can offer a view of the molecular envelope (3).  Of 

these techniques, X-ray crystallography is among the most powerful.  The resolution 

available by macromolecular crystallography can extend beyond 1 Å and allow for 

detailed analysis of a static structure. 

 X-ray crystallographic studies of enzymes, proteins capable of catalyzing a 

reaction, have proven very useful for advancing mechanistic enzymology.  Often, it is 

possible to trap ligands in a crystal structure, through either cocrystallization or 

soaking experiments, and this can allow for reaction coordinates to be mapped out.  

The three dimensional coordinates for nearly every (non-hydrogen) atom at atomic 

resolution can allow for the identification of key catalytic residues, the proposal for 

mechanistic action, and the design of additional experiments to provide further 

evidence of means of action.  The 2009 Nobel Prize in Chemistry was awarded to 

three scientists for the determination of the crystal structure of the ribosome, which is 

responsible for catalyzing the formation of the peptide bonds found in proteins in the 

specific order as encoded by the mRNA (4).  Knowledge of the structure of the 

ribosome is leading to the development of novel antibiotics (5).  X-ray crystallography 

is complemented well with mutagenesis studies, kinetic characterization, labeling 
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studies, circular dichroism, gel filtration, and other techniques to provide a complete 

picture of how an enzyme functions.  

Section 1.2. Importance of Cofactors 

 Cofactors are small molecules that can assist an enzyme in catalyzing 

chemistry that would ordinarily be beyond the scope of chemistry available through 

amino acid side chains alone.  Cofactors may be inorganic, such as metal ions (Fe2+, 

Mg2+, Mn2+), small organic molecules (thiamin pyrophosphate, pyridoxal 5′-

phosphate, flavin), or a combination of the two (heme).  Many of the organic cofactors 

are known as vitamins, and humans must obtain vitamins through the diet, as they are 

unable to biosynthesize these small molecules.  Vitamins are typically biosynthesized 

by bacteria, fungi, and plants, although to ensure adequate vitamin levels, many foods 

are now fortified with vitamins, such as cereals and breads.   

 The B vitamins are a group of eight water soluble vitamins that play important 

cellular roles and include thiamin, niacin, riboflavin, pantothenate, pyridoxine, biotin, 

folate, and cobalamin.  Vitamin B1, thiamin, acts to stabilize carbocation intermediates 

and is often involved in decarboxylation reactions of α-keto acids and is important in 

carbohydrate metabolism.  Deficiency of vitamin B1 can lead to beri-beri and in 

alcoholics, Wernicke-Korsakoff syndrome (6).  Another B vitamin, vitamin B6, is very 

important for cellular function.  The Enzyme Commission has estimated that up to 4% 

of all enzymatic activities are dependent on the active form of vitamin B6, PLP.  PLP 

is typically covalently bound to the enzyme through a Schiff’s base at an active site 

lysine residue and is involved in amino acid metabolism, gluconeogenesis, and lipid 

metabolism.  Deficiency in vitamin B6 can lead to anemia, as the generation of heme is 

PLP dependent, and also cause skin lesions similar to those seen with niacin 

deficiency (7).  In addition to the critical roles these B vitamins play within the cell, 

the metabolic pathways of cofactors often contain novel and exciting chemistry (8).   
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Section 1.3. Vitamin B1 Biosynthesis 

 The mechanistic role of vitamin B1 in the stabilization of carbanion 

intermediates was determined in the 1950’s (9, 10).  However, the biosynthesis of 

thiamin has gained more attention over the last twenty years.  The pathway found in 

bacteria is fairly well understood and studies continue as the novel and interesting 

chemical reactions are probed further (6).  Figure 1.1 shows the biosynthetic pathway 

for the active form of vitamin B1, thiamin pyrophosphate, as found in Bacillus subtilis.  

The two heterocyclic moieties are biosynthesized separately, and then joined together 

by thiamin phosphate synthase.  Briefly, the pyrimidine moiety, 4-amino-2-methyl-5-

(hydroxymethyl)-pyrimidine phosphate (HMP-P), is formed by a radical SAM 

dependent rearrangement of 5-aminoimidazole ribotide by ThiC and then 

phosphorylated by ThiD to form HMP-PP (11, 12).  The thiazole moiety, 4-methyl-5-

(β-hydroxyethyl)thiazole phosphate (ThzP), is formed from deoxy-D-xylulose 

phosphate, glycine, and a sulfur source by seven enzymes (6).  After coupling, the 

final reaction is the phosphorylation of thiamin phosphate to produce thiamin 

pyrophosphate, the active form of vitamin B1 within the cell. 

 Recent advances in the reconstitution of the thiazole moiety in B. subtilis have 

allowed direct characterization of the product of the ThiG-ThiS catalyzed reaction 

(13).  The characterized product did not co-migrate with the known standard of 

thiazole phosphate when analyzed by HPLC and was identified as the carboxylated 

thiazole phosphate.  This molecule is then aromatized by TenI to form carboxylated 

thiazole phosphate (6).  Chapter Two reports on the kinetic characterization of B. 

subtilis thiamin phosphate synthase using carboxylated thiamin phosphate and 

presents the structural complex of thiamin phosphate synthase with the carboxylated 

thiazole phosphate and a trifluorinated HMP-PP analogue.  The active site contains 

three distinct species, representing an enzyme-intermediate complex containing the 
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Figure 1.1.  Thiamin biosynthesis in B. subtilis.  This figure is modified from (3). 

dissociated pyrophosphate, the pyrimidine iminemethide, and the carboxylated 

thiazole phosphate.  This structure, in conjunction with the kinetic data, demonstrates 

that the carboxylated thiazole phosphate binds to thiamin phosphate synthase and is 

catalytically active.   

 Chapter Three reports the structure of thiamin phosphate synthase from 

Mycobacterium tuberculosis.  As tuberculosis continues to be a global threat and 

continues to develop resistance to current drug therapies, new targets must be pursued 

and new drug treatments developed.  Because humans do not synthesize thiamin but 

instead obtain it through diet, the thiamin biosynthetic pathway is a potential target, 

and thiamin phosphate synthase has no orthologue in humans.  This chapter reports the 

crystal structure of M. tuberculosis thiamin phosphate synthase.  This enzyme is very 

similar to thiamin phosphate synthase from other organisms and is an (β/α)8 barrel 

fold enzyme where the active site is found at the C-terminal end of the β-barrel.  Two 
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loop regions that form interactions with the active site are disordered and the active 

site is exposed to solvent in this structure.  The M. tuberculosis thiamin phosphate 

synthase structure was then used for simulated docking studies and the initial results of 

this virtual drug screening to identify potential inhibitors of this enzyme are being 

characterized.   

 The final enzymatic step in biosynthesizing the active form of thiamin is the 

phosphorylation of thiamin monophosphate to form thiamin pyrophosphate using 

ATP.  ThiL is a member of a small ATP-binding superfamily known as the PurM 

ATP-binding superfamily (14).  Chapter Four reports several structures of complexes 

of this enzyme, ThiL, from Aquifex aeolicus with various substrates and products (15).  

The four complexes determined were AaThiL with ATP, AaThiL with AMP-PCP (a 

non-hydrolyzable ATP analogue), AaThiL with AMP-PCP and thiamin phosphate, 

and AaThiL with ADP and thiamin pyrophosphate.  These four structures allowed for 

the reaction to be carefully scrutinized and the phosphate transfer was shown to occur 

via a direct, in-line transfer from ATP to thiamin phosphate. 

Section 1.4. Vitamin B6 Catabolism 

 The biosynthesis of cofactors has been fairly well studied; in contrast, the 

degradation and catabolism of these small molecules is not well characterized.  

However, the identification of several Pseudomonas species capable of growing solely 

on various vitamin B6 vitamers indicated that some organisms are able to break down 

this essential cofactor for use as a source of both carbon and nitrogen (16, 17).  Two 

pathways for the degradation of vitamin B6 were characterized and although the 

intermediates were isolated and identified, and the enzymatic activities could be tied to 

specific enzymes, the lack of genomic information meant that the genes responsible 

went unknown (16, 18-26).   
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 More recently, the genome for Mesorhizobium loti MAFF303099, a symbiotic 

bacterium found on the roots of legumes, became available (27).  The gene for 4-

pyridoxine oxidase was found in this bacteria and the gene product was shown to 

catalyze the first step in vitamin B6 degradation (28).  Since that time, the genes 

responsible for each of the seven enzymatic steps for the conversion of pyridoxal 5′-

phosphate to succinic semialdehyde, ammonia, acetate, and carbon dioxide have been 

identified and the gene products characterized (28-36).  The degradation pathway of 

PLP is shown in Figure 1.2.  Several of these enzymes are responsible for very 

interesting chemical conversions, such as an oxidative ring opening of an aromatic 

ring without the use of a non-heme iron cofactor (2-methyl-3-hydroxypyridine-5-

carboxylic acid oxygenase) and the decarboxylation of an aromatic ring without the 

use of an organic cofactor (2-methyl-3-hydroxypyridine-4,5-dicarboxylate 

decarboxylase).   

 Chapter Five reports the gene identification of 2-methyl-3-hydroxypyridine-

4,5-dicarboxylate decarboxylase (HMPDdc) and the kinetic and structural 

characterization of this enzyme from M. loti (33).  Initial sequence analysis showed 

this gene product has significant similarity to class II aldolases and the gene was 

initially assigned as a putative aldolase.  The gene product was characterized by HPLC 

analysis and catalytically converted 2-methyl-3-hydroxypyridine-4,5-dicarboxylate to 

2-methyl-3-hydroxypyridine-5-carboxylate as determined by NMR characterization.  

HMPDdc was structurally characterized and shown to be a tetramer with the active 

site located at the interface between two protomers.  A manganese ion was found 

coordinated to three histidine residues in the active site and comparison of this 

structure to those found in the Protein Data Bank revealed strong similarity to the class 

II aldolases.  A mechanism has been proposed for the decarboxylation reaction that is 

similar to the reaction of the class II aldolases. 
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Figure 1.2.  The Vitamin B6 degradative pathway as found in M. loti 
MAFF303099. 

 Chapter Six reports two crystal structures of 2-methyl-3-hydroxypyridine-5-

carboxylic acid oxygenase (MHPCO) with FAD or FAD and MHPC bound (37).  

MHPCO is unique in that after the flavin-dependent hydroxylation of MHPC, a second 

atom of oxygen (from water) and produces a ring-opened product, E-2-

(acetamidomethylene)succinate without utilizing a non-heme iron cofactor.  Although 

significant effort has been put forth to probe the mechanism of MHPCO, the exact 

means for the incorporation of the second oxygen atom remained unclear (24, 25, 38-
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43).  The crystal structure confirmed that MHPCO is a member of the flavin 

monooxygenase superfamily and the ternary complex with FAD and MHPC provided 

additional insight.  MHPC binds in a very large active site pocket and forms primarily 

water-mediated interactions with the protein, raising additional questions about how 

MHCPO imparts specificity.  However, the position of MHPC in the active site 

allowed for the identification of several potentially important residues in the active site 

that could help stabilize or activate MHPC during the addition of the second oxygen 

atom. 

 The final enzyme in the vitamin B6 degradative pathway is E-2-

(acetamidomethylene)succinate hydrolase (E-2AMS hydrolase) to produce succinic 

semialdehyde, ammonia, acetate, and carbon dioxide, and its structure is reported in 

Chapter Seven (44).  E-2AMS hydrolase is an α/β hydrolase and utilizes a 

serine/histidine/aspartic acid catalytic triad.  This catalytic triad is common in α/β 

hydrolases, although in E-2AMS hydrolase, the structural orientation of the aspartic 

acid is not in the conserved position.  The importance of the serine and aspartic acid 

were confirmed through mutagenesis; the enzyme was inactive when these residues 

were mutated.  Although attempts at obtaining a complex with E-2AMS were 

unsuccessful, manual positioning of the substrate in the active site identified several 

additional residues that could be involved in the coordination of E-2AMS for proper 

catalysis. 
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CHAPTER 2 

CRYSTAL STRUCTURE AND KINETIC CHARACTERIZATION OF BACILLUS 

SUBTILIS THIAMIN PHOSPHATE SYNTHASE WITH A CARBOXYLATED 

THIAZOLE PHOSPHATE  

Section 2.1. Introduction 

 Thiamin pyrophosphate (TPP), the active form of vitamin B1 in the cell, is an 

essential cofactor used in the stabilization of carbanion intermediates (1).  While 

humans are unable to biosynthesize vitamin B1 and must obtain it through diet, many 

microorganisms have developed means to produce TPP (2).  While both eukaryotic 

and prokaryotic organisms are known to form TPP, the pathways for its production are 

different.  The eukaryotic pathway, found in plants and fungi, utilizes a single enzyme 

to form the thiazole moiety from glycine and nicotinamide dinucleotide and two 

enzymes to generate the pyrimidine portion of TPP (3-5).  The well-studied bacterial 

pathway relies on two enzymes to form 4-amino-2-methyl-5-

(hydroxymethyl)pyrimidine pyrophosphate (HMP-PP) and 4-methyl-5-

(hydroxyethyl)thiazole phosphate (ThzP) is formed using up to six enzymes from 

deoxy-D-xylulose, a sulfur source, and either glycine or tyrosine (6, 7).  Both the 

prokaryotic and eukaryotic pathways, however, after forming the two heterocycles of 

TPP separately, then couple the pyrimidine and thiazole moieties together to form 

thiamin monophosphate (8-10).  This coupling reaction in prokaryotes is catalyzed by 

thiamin phosphate synthase (TP synthase) and releases pyrophosphate (PPi) and 

thiamin monophosphate.   

 BsTP synthase has been very well studied.  Previous work using positional 

isotope exchange studies has demonstrated that TP synthase first forms a carbocation 

intermediate on the methyl group at C5 of the pyrimidine ring after release of PPi in a 

magnesium dependent reaction shown in Figure 2.1 (11).  Additionally, the rate of 
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Figure 2.1.  Reaction catalyzed by TP synthase. 

formation for the pyrimidine carbocation has been determined using transient steady 

state kinetics and the possibility of an associative SN2 mechanism has been ruled out 

(12).  The crystal structure of TP synthase in complex with thiamin monophosphate 

and PPi allowed the active site to be mapped (8).  Ser130 was identified as a 

potentially important residue for activating PPi as a leaving group while bonded to the 

pyrimidine moiety and mutagenesis of Ser130 to alanine resulted in an inactive 

enzyme.  Subsequent structural work on the S130A mutant and the trifluoromethyl-

substituted substrate analogue 4-amino-2-(trifluoromethyl)-5-

(hydroxymethyl)pyrimidine pyrophosphate (CF3HMP-PP), which is a poor substrate 

for TP synthase due to the electron withdrawing properties of the trifluoromethyl 

group, allowed intermediates to be trapped crystallographically (13).  Two 

intermediate complexes show three discrete species in the active site: ThzP, CF3HMP, 

and PPi.  These structures support the dissociative mechanism for TP synthase and 

allowed the reaction pathway to be mapped.   

 Recent work on the THI4p from the eukaryotic thiamin biosynthetic pathway 

has shown that a carboxylated thiazole tautomer intermediate is formed (14).  
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Advances in the reconstitution of TP synthase activity has also allowed for direct 

characterization of the product of BsTP synthase (15).  This work has shown that ThzP 

is not the product of TP synthase, but that a similar thiazole tautomer intermediate to 

that seen in the eukaryotic system leads to the carboxylated thiazole moiety 2-

carboxy-4-methyl-5-(hydroxyethyl)thiazole phosphate (CO2-ThzP).  CO2-ThzP has 

now been shown to be a substrate for TP synthase and crystallization experiments in 

which CO2-ThzP and CF3HMP-PP were soaked into TP synthase crystals produce an 

intermediate complex in which PPi has dissociated from the pyrimidine moiety and the 

carboxylate group is still covalently bonded to the thiazole moiety. 

Section 2.2. Materials and Methods 

 Protein Overexpression and Purification.  The molecular cloning, protein 

overexpression, and protein purification has been previously described for TP synthase 

(8, 10).  Briefly, the plasmid pYZC6927 was transformed into the E. coli cell strain 

SG13009 (Qiagen) and grown in 5 mL LB supplemented with 50 mg/L kanamycin 

and 150 mg/L ampicillin overnight.  This starter culture was used to inoculate 1 L 

cultures of LB with the same antibiotic supplements to an OD600 of 0.8 at 37 °C with 

shaking.  Overexpression of TP synthase was induced with 1.5 mM isopropyl β-D-

thiogalactopyranoside (IPTG) and cells were allowed to continue shaking at 37 °C for 

six hours.  Cells were harvested by centrifugation at 6,000 g at 4 °C and then stored at 

-20 °C until purification. 

 Pelleted cells from 2 L of culture were resuspended in sonication buffer (50 

mM NaH2PO4, 300 mM NaCl, pH 7.8) and lysed by sonication.  The lysate was then 

centrifuged at 40,000 g for one hour at 4 °C.  The supernatant was passed two times 

over a 2 mL Ni-NTA column (Qiagen) pre-equilibrated with sonication buffer.  The 

column was then washed with 75 mL of sonication buffer and 40 mL of wash buffer 

(50 mM NaH2PO4, 300 mM NaCl, 10% glycerol, 5 mM imidazole, pH 6.0). TP 
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synthase was eluted from the column using 10 mL of wash buffer containing 80 mM 

imidazole.  TP synthase was judged to be 95% pure by SDS-PAGE analysis (results 

not shown) and dialyzed into 50 mM Tris (pH 7.5) 1 mM dithiothreitol (DTT).  The 

sample was concentrated to 20 mg/mL as measured by Bradford assay and stored at -

80 °C until use in crystallization trials (16).   

 The overexpression and purifications of recombinant thiaminase I and the 

thiamin binding protein (TbpA) were performed according to the methods described 

elsewhere (17, 18).   

 NMR Characterization of TP Synthase Reaction.  The reaction catalyzed by TP 

synthase was monitored using 600 MHz 1H-NMR over 80 minutes.  A concentration 

of 50 μM TP synthase was added to start the reaction in which 3 mM HMP-PP and 3 

mM ThzP was present in a buffer composed of 25 mM sodium phosphate (pH 7.5), 50 

mM NaCl, 16 mM MgCl2, and 70% D2O.  Scans were taken every 90 seconds.   

 Steady State Kinetic Parameters of TP Synthase. In order to measure the steady 

state kinetic parameters of HMP-PP, a coupled enzyme assay was used based upon a 

previously published method employing thiaminase I and its highly chromophoric 

substrate 4-nitrothiophenolate (17).  The conditions for the assay were as follows: 100 

nM TP synthase, variable HMP-PP, 1 mM ThzP, 1 μM Thiaminase I, 80 μM 4-

nitrothiophenolate, 2 mM TCEP (tris(2-carboxyethyl)phosphine), 50 mM Tris-Cl pH 

7.6 at room temperature, 100 mM NaCl, and 8 mM MgCl2.  The reactions were started 

by the addition of HMP-PP and monitored for up to 5 minutes at room temperature in 

a UV/vis spectrophotometer set measure absorbance at 411 nm.  The time dependent 

decrease in the concentration of 4-nitrothiophenolate was used to quantify the rate of 

synthesis of thiamin phosphate. 

 Measurement of Steady State Kinetic Parameters Using Fluorescently Labeled 

TbpA. The kinetic parameters for the thiazole substrates were estimated using a newly 
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developed fluorescently labeled mutant E. coli thiamin binding protein (TbpA).  The 

N-[2-(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide (MDCC)-

labeled TbpA is analogous to the inorganic phosphate probe developed by Webb and 

coworkers (19).  An approximate 50% reduction in florescence occurs upon addition 

of thiamin phosphate to the labeled protein and the dissociation constant (Kd) was 

found to be 202 ± 1 nM at a concentration of 436 ± 3 nM MDCC-labeled TbpA.  The 

Kd for thiamin depends on the TbpA concentration, possibly due to dimer formation as 

was speculated based upon the crystal structure where dimer formation may block the 

ligand binding site (18).  A full description of the engineered thiamin probe mentioned 

here will be published separately, but briefly, the assay conditions used to measure TP 

synthase kinetics were as follows: 4 nM TP synthase, variable ThzP or CO2-ThzP, 50 

μM HMP-PP, 500 nM MDCC-labeled TbpA, 50 mM Tris-Cl pH 7.6 at room 

temperature, 100 mM NaCl, 2 mM TCEP, and 8 mM MgCl2. The reaction was started 

with the addition of TP synthase and monitored at room temperature in a 96-well plate 

(Greiner plate model 655801) purchased from Omega Scientific (Tarzana, CA, USA) 

in a Synergy HT Multi-Detection Microplate Reader (BioTek Instruments, Winooski, 

VT, USA) exciting at a wavelength of 425 nm and recording emission at a wavelength 

of 462 nm. The reactions were monitored for up to 25 minutes and the fluorescence 

data were fit by linear regression.  

 Synthesis and Kinetic Characterization of Thiazolium-2-Carboxylate as a 

Model Compound.  3-Ethyl-4,5-dimethylthiazole-2-carboxylate (CO2-EtThz) can be 

used as a model compound for carboxylated thiamin phosphate as this compound 

contains a positive charge on the nitrogen atom of the thiazole ring adjacent to the 

carboxylate group at C2.  4,5-Dimethylthiazole-2-carboxylate was synthesized using a 

previously reported method (20).  This thiazole moiety was then used to prepare 2′-

nitrobenzyl-4,5-dimethylthiazole-2-carboxylate (NDMT) (1.0 g) by addition of K2CO3 
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(in water and acetonitrile) and 1-(bromomethyl)-2-nitrobenzene.  The reaction mixture 

was stirred overnight at room temperature.  100 mL of water was added and the 

aqueous layer washed three times with 50 mL of dichloromethane (DCM).  The 

combined organic extracts were dried over magnesium sulfate and evaporated under 

reduced pressure and purified by column chromatography on silica gel using a 70:30 

mixture of hexanes and ethyl acetate as eluent.  Yield: 0.998 g (54%); 1H-NMR 

(CDCl3) δ: 2.44 (3H, s), 2.45 (3H, s), 7.49 (1H, t), 7.66 (2H, m), 8.15 (1H, d).  2′-

Nitrobenzyl-3-ethyl-4,5-dimethylthiazole-2-carboxylate (NEDMT) was derived from 

NDMT using a procedure based upon similar chemistry (20, 21).  To a solution of 

NDMT (200 mg, 0.7 mmol) dissolved in dichloromethane (1 mL), Et3O BF4 (700 μL, 

0.7 mmol, 1 M solution in DCM) was added and allowed to stir overnight at room 

temperature in darkness.  The salt was precipitated through the addition of Et2O (5 

mL) and filtered.  The salt was purified by redissolving in DCM (2 mL) and re-

precipitated in Et2O (5 mL) to give a quantitative yield of NEDMT (270 mg, 97%); 
1H-NMR (CDCl3) δ: 1.51 (3H, t), 2.59 (3H, s), 2.62 (3H, s), 4.87 (2H, q), 5.85 (2H, s), 

7.57 (1H, t), 7.76 (2H, m), 8.15 (1H, d). 

 The o-nitrobenzyl group can be removed through photorelease to generate 

CO2-EtThz and the decarboxylation of CO2-EtThz can be kinetically characterized 

using 1H-NMR spectroscopy (22).  To an NMR tube (10 mM, 0.5 mL), NEDMT was 

prepared using 45 mM phosphate buffer (H2O:D2O 90:10) at pH 7.0.  The NMR tube 

was stored in a larger glass tube to hold the temperature steady at 25 °C and to 

eliminate light with a wavelength above 300 nm.  The sample was then exposed to UV 

light with a wavelength longer than 300 nm for 20 minutes and then returned to 

darkness, in which the NMR spectra were taken periodically.   

 Crystallization of TP Synthase Complex.  TP synthase was crystallized using 

slight modifications to the methods previously described (8, 13).  Crystals were grown 
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using the hanging drop vapor diffusion method over six months at 4 °C with a 

reservoir solution of 50 mM Tris buffer (pH 7.7), 75 mM MgCl2, 26% PEG 4000, and 

1 mM DTT.  Drops consisted of 3 μl protein solution mixed with 3 μl reservoir 

solution. Crystals belong to the space group P42212 with a = 96.0 Å and c = 59.3 Å 

with a Matthew’s coefficient of 2.74 Å3/Da and 55% solvent with one molecule in the 

asymmetric unit (23).  A single TP synthase crystal was allowed to soak for 30 

minutes in the crystallization solution supplemented with 10 mM CO2-ThzP and 10 

mM CF3HMP-PP.  The crystal was quickly transferred to a cryoprotectant of the soak 

solution with 10% glycerol before being flash frozen by plunging the crystal into 

liquid nitrogen.   

 X-Ray Data Collection and Processing.  A single wavelength dataset was 

collected at 0.97920 Å at 100 K on the NE-CAT beamline 24-ID-C at the Advanced 

Photon Source.  An oscillation range of 1° was used over 75 frames with 1 second 

exposure on a Quantum315 detector (Area Detector Systems Corp.).  A single native 

crystal diffracted to 1.95 Å.  The data were indexed, integrated, and scaled using the 

HKL2000 suite of programs (24).  The data collection statistics are given in Table 2.1.   

 Structure Determination, Model Building, and Refinement.  The monomeric 

coordinates of B. subtilis TP synthase (PDB ID: 1G4T) with all water and ligand 

atoms removed was used as a search model for molecular replacement in CNS (25).  

Rounds of refinement in CNS consisted of rigid body refinement, simulated 

temperature annealing, restrained individual B-factor refinement, and minimization 

refinement, followed by manual model adjustment in COOT (25, 26).  Water 

molecules were added during later rounds of refinement using CNS and ligands were 

then manually placed in COOT (27). The structure geometry was verified using 

PROCHECK; one residue (Asp93) was found in the disallowed region, although the 
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density for this residue is clear (28).  The refinement statistics for the final model are 

given in Table 2.2.  PyMOL and ChemDraw were used to generate figures (29). 
 
Table 2.1.  Summary of Data Collection Statistics 
 BsTPS CO2-ThzP 
Source APS 24-ID-C 
Resolution (Å) 1.95 
Energy (eV) 12662 
Space Group P42212 
a (Å) 96.0 
b (Å) 96.0 
c (Å) 59.3 
Matthew’s Coef. 2.7 
     % solvent 55 
     Mol/a.s.u. 1 
Measured Reflections 69987 
Unique reflections 20400 (2006) a 
Average I/σ 17.3 (4.3) 
Redundancy 3.4 (3.4) 
Completeness (%) 98.3 (99.6) 
Rsymb (%) 6.2 (33.0) 
aValues in parentheses are for the highest resolution shell.  
bRsym = ΣΣi|Ii - 〈I〉|/Σ〈I〉, where 〈I〉 is the mean intensity of 
the N reflections with intensities Ii and common indices 
h,k,l. 

 Analytical Ultracentrifugation.  Sedimentation velocity analytical 

ultracentrifugation was performed to determine the oligomeric state of TP synthase in 

solution using a ProteomeLab XL-1 protein characterization system (Beckman 

Coulter).  Samples were buffer exchanged to 35 mM Tris, 150 mM NaCl, and 2 μM β-

mercaptoethanol (pH 7.5) and then diluted to Abs280 of 0.35 to 1.2 prior to 

centrifugation.  SEDNTERP was used to calculate the partial specific volume of TP 

synthase and the buffer density and viscosity while the program SEDFIT was used to 

analyze the data (30, 31). 

Section 2.3. Results 

 NMR Characterization of TP Synthase with CO2-ThzP and HMP-PP.  The 

formation of TPP was monitored over time using 600 MHz 1H-NMR and observing 
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the disappearance and emergence of proton peaks within the spectra, shown in Figure 

2.2.  The control reaction (Figure 2.2A), utilizing HMP-PP and ThzP as substrates, 

illustrates the shift of the proton on C5 of HMP-PP upfield in the product TP.  The 

proton at C2 of ThzP is shifted downfield in TP.  Figures 2.2B and 2.2C each 

demonstrate TP synthase will utilize CO2-ThzP in the formation of TP, as indicated by 

the appearance of the protons at 7.96 ppm and 9.26 ppm and the disappearance of the 

proton at C5 of HMP-PP.  Performing this reaction in 22% D2O with HMP-PP and 

CO2-ThzP showed the gradual appearance and disappearance of the proton at C2 of 

the thiazole moiety (Figure 2.2C) in addition to the proton shifts seen in Figure 2.2B. 
 
Table 2.2.  Summary of Data Refinement Statistics 
 BsTPS CO2-ThzP 
Resolution (Å) 50.00 – 1.95 
No. of protein atoms 1635 
No. of ligand atoms 37 
No. of water atoms 212 
Reflections in working set 18991 
Reflections in test set 970 
R factora (%) 19.8 
Rfree

b (%) 23.2 
Rmsd from ideal 
   Bonds (Å) 
   Angles (º) 

 
0.0052 
1.2 

Average B-factor (Å3) 28.9 
Ramachandran Plot 
   Most favored (%) 
   Additionally allowed (%) 
   Generously allowed (%) 
   Disallowed (%) 

 
91.0 
7.9 
0.5 
0.5 

aR factor = Σhkl||Fobs| - k|Fcal||/Σhkl |Fobs| where Fobs and Fcal are observed and calculated 
structure factors, respectively.  bFor Rfree, the sum is extended over a subset of 
reflections (5%) excluded from all stages of refinement.  

 Steady State Kinetic Characterization of TP Synthase with HMP-PP and CO2-

ThzP.  A coupled enzyme assay was used to determine the steady state kinetic 

parameters of HMP-PP at a saturating concentration of ThzP by plotting the rate of 

production of TP (Figure 2.3A).  This previously described assay monitored the 
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Figure 2.2.  600 MHz 1H-NMR of the TP synthase catalyzed formation of TP using 
ThzP or CO2-ThzP as substrates.  (A)  Control reaction showing the formation of TP 
monitored as a function of time (~0-80 min, with the longest time in back).  The 
appearance of the peak corresponding to the C2 proton of TP (proton a) appears to 
be substoichiometric to the aromatic proton d due to its exchange with deuterium in 
the buffer composed of 70% D2O.  (B)  An identical reaction was performed as in 
the control, except that ThzP was substituted with CO2-ThzP.  Again TP appeared, 
albeit at a slightly reduced steady state rate.  (C)  An identical reaction as to that 
described in B was performed except that the amount of D2O was reduced to 22% to 
more clearly inspect the formation of a peak corresponding to the C2 proton of ThzP.

absorbance at 411 nm and coupled the activity of TP synthase to thiaminase I and 4-

nitrothiophenolate (17).  The data were fit to the Michaelis-Menton equation and 

defined a kcat of 0.021 ± 0.002 s-1 and a Km of 3.5 ± 1.4 μM for HMP-PP.  The steady 

state parameters of ThzP and CO2-ThzP were determined by plotting the rate of TP 

formation as a function of substrate concentration under saturating HMP-PP 

conditions (Figure 2.3B).   Due to the relatively tight binding of the ThzP substrates to 

TP synthase, a fluorescent assay based upon a fluorescently tagged mutant E. coli 
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Figure 2.3.  Steady state kinetics of TP formation using HMP-PP, ThzP, and CO2-
ThzP as substrates.  (A)  Plot of the rate of TP production as a function of HMP-
PP concentration (at saturating ThzP concentration) using a coupled assay 
employing thiaminase I and a chromophoric co-substrate, 4-nitrothiophenolate.  A 
fit of the data to the Michaelis-Menten equation defined a kcat of 0.021 ± 0.002 s-1 
and a Km of 3.5 ± 1.4 μM for HMP-PP.  (B)  The rate of formation of thiamin-P is 
plotted as a function of either Thz-P or carboxy-Thz-P using a fluorescent assay 
based upon the use of a fluorescently labeled mutant E. coli TbpA.  The data were 
fit using the Michaelis-Menten equation to extract a kcat of 490 ± 60 RFU/min-1 
(~0.021 s-1) and a Km of 165 ± 65 nM for ThzP and a kcat of 330 ± 30 RFU/min-1 
(~0.014 s-1) and a Km of 140 ± 40 nM for CO2-ThzP. 

TbpA was used.  The fluorescence of TbpA decreases by roughly 50% upon the 

binding of TP.  The data were again fit to the Michaelis-Menton equation.  The kcat 

and Km for ThzP are 490 ± 60 RFU/min-1 (~0.021 s-1) and 165 ± 65 nM, respectively.  

A kcat of 330 ± 30 RFU/min-1 (~0.014 s-1) and a Km of 140 ± 40 nM were calculated 

for CO2-ThzP.   

 Kinetic Characterization of the Non-enzymatic Decarboxylation of CO2-EtThz.  

NEDMT was prepared using modified synthetic protocols as a precursor to CO2-EtThz 

with a protecting group on the carboxylate group that is removable through exposure 

to UV light with a wavelength longer than 300 nm as shown in Figure 2.4 (20, 21).  
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The rate of decarboxylation of CO2-EtThz to form EtThz can then be determined by 

monitoring the peak shift corresponding to the protons on the ethyl group at the 3 

position of the thiazole ring (Figure 2.5).  The rate of decarboxylation was determined 

using a first order equation and the relative areas beneath the peaks at 1.40 ppm and 

1.51 ppm, and k was found to be 4.6 × 10-6 s-1.  The half-life for CO2-EtThz is 41.5 

hours.   

Figure 2.4.  Photolytic deprotection of CO2-EtThz and non-enzymatic 
decarboxylation to form EtThz. 

 Overall Structure of TP Synthase Complex.  The structure of TP synthase with 

CF3-HMP-PP and CO2-ThzP bound was determined to 1.95 Å using the structure of 

BsTP synthase (PDB ID: 1G4T) as the search model for molecular replacement.  TP 

synthase crystallized in the space group P42212 with a = 96.0 Å and c = 59.3 Å and a 

corresponding Matthew’s coefficient of 2.74 Å3/Da for one molecule in the 

asymmetric unit (23).  The final BsTP synthase model consists of one polypeptide 

chain with 219 residues, 212 water molecules, and one molecule each of CO2-ThzP, 

CF3HMP, and PPi.  The N-terminal 14 residues and the C-terminal two residues are 

disordered and are not included in the model.  TP synthase is an (β/α)8 barrel with an 

additional α-helix covering the N-terminal end of the β-barrel and the active site is 

located at the C-terminal end of the β-barrel (Figure 2.6).  Analysis of crystal packing 

suggests BsTP synthase adopts a monomeric assembly and was confirmed by 

analytical ultracentrifugation, as seen in Figure 2.7 (32).   
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Figure 2.5.  1H-NMR spectra of the deprotection and decarboxylation of CO2-EtThz.  
C2-Proton of the thiazolium ring produces a peak at 9.6 ppm.  (A) NEDMT before 
photolysis.  (B) NEDMT after photolysis.  (C) Decarboxylation of NEDMT after 
photolysis. 

Figure 2.6.  Ribbon diagram of the monomeric TP synthase structure with ligands 
shown in ball and stick representation.  The secondary structural elements are 
labeled, with α-helices shown in blue and the β-strands colored green. 



 Binding of Substrate in TP Synthase.  The active site of TP synthase is located 

at the C-terminal end of the β-barrel and several loop regions contribute to interactions 

between TP synthase and the ligands.  These loop regions, particularly the loop 

connecting β6 to α6, close over the active site and largely shield the active site from 

solvent.  The TP synthase crystal was soaked for thirty minutes with 10 mM 

CF3HMP-PP and 10 mM CO2-ThzP.  The resulting density is clear for CF3HMP, CO2-

ThzP, and PPi (Figure 2.8A).  CF3HMP forms π-stacking interactions with His107 and 

binds in a mostly hydrophobic environment, surrounded by Ile31, Ile186, Val184, 

Tyr29, Tyr147, and Ser206.  Gln37, from β2, forms two hydrogen bonds of 3.1 and 

3.3 Å with the N3 and N4 atoms of the pyrimidine ring, shown in Figure 2.8B.  The 

density of the PPi group is discrete and separate from that of the CF3HMP moiety.  

The negative charge of PPi is stabilized through interactions with Arg59, Lys61, and 

Lys159.  Additionally, a magnesium ion interacts with both phosphate groups and is 

Figure 2.7.  Analytical ultracentrifugation results showing the major species in 
solution is a monomer. 
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coordinated by Asp93 and Asp112.  Asn92 is oriented towards one phosphate group, 

and the other phosphate group can interact with His132 and the amide nitrogen atom 

of the backbone at Gln110 via two water molecules (Figure 2.8).  CO2-ThzP binds 

roughly 90° rotated from CF3HMP.  The thiazole ring of CO2-ThzP stacks between 

Lys159 and Ile136 and the carboxylate group at the C2 atom forms a strong water-

mediated hydrogen bond to His132.  The carboxylate group also forms two additional 

hydrogen bonds with water molecules in the active site.  The phosphate tail of CO2-

ThzP is well coordinated, interacting with Thr156, Thr158, Ser209, and the amide 

nitrogen atom of the protein backbone at Gly188 (Figure 2.8B).  The oxygen atoms of 

the phosphate group of CO2-ThzP also form hydrogen bonds with three water 

molecules.  One of these water molecules is positioned by the carbonyl oxygen atom 

of the main chain at Ser206 and amide nitrogen atoms at Gly187 and Ile189; the 

second water molecule coordinated to the phosphate group forms hydrogen bonds with 

the backbone carbonyl oxygen atom of Ile189 and the backbone amide nitrogen atom 

of Ala210. 

Section 2.4. Discussion 

 CO2-ThzP As A Substrate for TP Synthase.  Monitoring the 1H-NMR time 

course of TP synthase with HMP-PP and either ThzP or CO2-ThzP shows that both 

thiazole moieties lead to the production of thiamin phosphate.  The control 

experiment, using HMP-PP and ThzP, demonstrated the slight shift of the proton at C5 

of the pyrimidine ring and the dramatic relocation of the C2 proton peak of the 

thiazole moiety upon the formation of the carbon-nitrogen bond to generate thiamin 

phosphate over 80 minutes.  The experiment was then repeated using CO2-ThzP and 

HMP-PP in 70% D2O and proton peaks a and d grew in, demonstrating that the 

product of TP synthase when incubated with CO2-ThzP is thiamin phosphate, not 

CO2-thiamin phosphate.  Complete conversion to thiamin phosphate on this time scale  
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Figure 2.8.  Stereoview diagrams of the TP synthase active site with ligands bound.  
Three species are observed in the active site.  Residues and ligands are shown in ball 
and stick representation and colored according to atom type.  Red nonbonded spheres 
are water molecules.  (A)  Ligand orientation with composite omit electron density 
shown as a blue mesh at a contour level of 2.0 σ.  (B)  Substrate binding interactions 
with TP synthase.  Substrate carbon atoms are colored salmon, while carbon atoms 
belonging to TP synthase are shown in green. 

suggests the decarboxylation of CO2-thiamin phosphate occurs quickly.  A slight 

increase of the proton at C2 of the thiazole moiety (proton peak b), which then 

disappeared, was surprising and to verify that this was not an artifact, the reaction was 

repeated at a lower percentage of D2O to enhance the deuterium-proton exchange.  

This effect was increased when 20% D2O was used and suggests that after CO2-
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thiamin phosphate is formed in the active site of TP synthase, a fraction of this species 

reacts in the reverse reaction with PPi and ThzP is then dissociated from the active 

site.  No accumulation of ThzP has been observed when TP synthase is incubated with 

only CO2-ThzP, or when TP synthase is incubated with both CO2-ThzP and CF3HMP-

PP, indicating that the formation of CO2-thiamin phosphate must occur before the 

detection of ThzP is possible.   

 Kinetic Characterization of TP Synthase With CO2-ThzP.  Previous 

characterization of the steady state kinetic parameters for TP synthase relied upon a 

well characterized indirect assay that converts thiamin phosphate via oxidation to 

thiochrome phosphate, a highly fluorescent molecule (11, 15, 33).  The steady state 

kinetic parameters for HMP-PP reported here were determined using a coupled assay 

with thiaminase I and the results agreed fairly well with those determined for HMP-PP 

previously using the linear portion of burst kinetics, demonstrating that the coupled 

assay is fairly accurate for determination of kcat (12, 17).  TP synthase binds the 

thiazole moiety fairly well, so the steady state kinetic parameters for CO2-ThzP and 

ThzP were determined using a fluorescently tagged mutant of E. coli thiamin binding 

protein (TbpA) (Hanes, J.W., Begley, T.P., unpublished work).  The kcat is similar for 

both thiazole moieties, but not identical.  The kcat for CO2-ThzP is slightly lower 

(~67% that of ThzP), but the kcat/Km are very close in value, ~0.1 μM-1s-1 for CO2-

ThzP and ~0.13 μM-1s-1 for ThzP.  This data indicates that these two molecules are 

approximately equally good substrates for TP synthase. 

 Non-enzymatic Decarboxylation of CO2-EtThz.  The non-enzymatic 

decarboxylation of CO2-EtThz can be directly characterized through the removal of a 

photolyzable protecting group on the carboxylate group and monitored using 1H-NMR 

(Figure 2.5).  The ethyl group on the nitrogen atom of the thiazole ring generates a 

positive charge on the nitrogen atom and allows for formation of the ylide after 
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decarboxylation and is thus a fair model for CO2-thiamin phosphate, which also has a 

positive charge on the thiazole nitrogen atom.  Removal of the photoprotecting group 

o-nitrobenzyl is rapid upon exposure to UV light with a wavelength greater than 300 

nm, followed by the slow decarboxylation of CO2-EtThz, as indicated by the 41.5 hour 

half-life of this species.  The inability to detect CO2-thiamin phosphate and the 

relatively quick complete conversion of CO2-ThzP and HMP-PP to thiamin phosphate 

within 80 minutes suggest that the decarboxylation of the product of TP synthase must 

be enzyme-catalyzed.   

 Oligomeric Assembly of BsTP Synthase.  The TP synthase complex with CO2-

ThzP, CF3HMP, and PPi crystallized in the space group P42212 with unit cell 

parameters a = 96 Å and c = 59 Å and one molecule in the asymmetric unit.  The 

previous structures of BsTP synthase crystallized in a different space group, P43212, 

with unit cell parameters a = 76 Å and c = 139 Å with two molecules in the 

asymmetric unit (8, 13).  The dimer reported previously orients α2 running antiparallel 

to α2 of the second chain and forms additional interactions between the N-terminal 

residues and the N-terminus of α2.  Several water molecules also mediate the dimer 

interactions (8).  The β-barrels of the two protomers face in opposite directions so that 

the active sites are on opposing sides of the dimer.  Other structurally characterized 

thiamin binding proteins belonging to the (β/α)8 barrel family, including TP synthase 

(PDB ID: 1XI3) and TenI, form dimers in which the β-barrels run parallel to each 

other and consequently have the active sites on the same face of the dimer (34, 35).  

Additionally, the structure of a putative TP synthase from Bacteroides thetaiotamicron 

is a monomer (PDB ID: 3CEU).  The structure reported here of BsTP synthase is also 

a monomer and the oligomeric state in solution was confirmed using analytical 

ultracentrifugation with an apparent molecular weight of 29 kDa (Figure 2.7).  The 

various oligomeric states observed for TP synthase and TenI proteins indicate that 
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while the tertiary structure of these enzymes is well conserved, the oligomeric 

assembly is not an important feature for function. 

 Comparison of CO2-ThzP and ThzP Binding in TP Synthase.  The crystal 

structure of TP synthase with CO2-ThzP, CF3HMP, and PPi allows for comparisons to 

the structures available of TP synthase with ThzP and the reaction pathway mapped 

out previously (13).  The current structure most closely resembles the intermediate 

complex obtained by soaking overnight TP synthase S130A crystals with CF3HMP-PP 

and ThzP.  While the CF3HMP-PP and CO2-ThzP soak was only 30 minutes, the use 

of wild type TP synthase resulted in a similar intermediate, the pyrimidine 

iminemethide, being trapped.  Nearly all the protein side chains of active site residues 

are found in the same conformations; the most variability is seen in the loop 

connecting β6 to α6 and the shift in loop conformation is less than 1.5 Å.  A 

comparison of the current structure with the product complex of TP synthase with 

thiamin phosphate bound (PDB ID: 1G4S) shows that the thiazole moiety has moved 

roughly 0.75 Å further from the pyrimidine moiety, and the pyrimidine moiety is tilted 

at approximately 15° with respect to the pyrimidine ring of thiamin phosphate (13).  

The pyrimidine moiety has been shifted less than 1 Å closer to CO2-ThzP when 

compared with the substrate complex (PDB ID: 1G69) but this could be due to the 

trifluoromethyl substitution as the ternary complex of CF3HMP, ThzP, and PPi has the 

pyrimidine moiety positioned in the same manner (PDB ID: 1G6C).   

 Comparison of BsTP Synthase Active Site to TenI Active Site.  Recent work has 

shown that the true product of the ThiS-ThiG thiazole synthase reaction is not ThzP, 

but a tautomer of CO2-ThzP (15).  TenI, a highly homologous protein to TP synthase, 

was originally thought to catalyze the formation of thiamin phosphate but structural 

characterization of TenI showed that the presence of a bulky residue in the active site 

precluded binding of the pyrimidine moiety (8, 34, 36).  TenI has now been shown to 
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catalyze the aromatization of the thiazole tautomer by deprotonation at the C2 of the 

thiazole ring by an active site histidine residue (A. Hazra, A. Chatterjee, T.P. Begley, 

unpublished work).  The comparison of TenI to TP synthase showed that HMP-PP 

binding would lead to significant steric clashes with Leu119 (34).  Additionally, the 

magnesium binding site was not conserved, so the pyrophosphate group would not be 

stabilized after dissociation from HMP.  ThzP was modeled in the active site of TenI 

and the model suggested TenI would be capable of binding the thiazole portion of 

thiamin phosphate.  Figure 2.9 compares the structures of TP synthase with TenI 

through the superposition of TenI upon TP synthase.  While the pyrimidine moiety 

does form steric clashes, CO2-ThzP superimposes well into the active site of TenI and 

the phosphate group of the thiazole moiety is marked by a sulfate group in the TenI 

structure.  The loop region connecting β6 to α6 is disordered in TenI and would be 

expected to become ordered upon substrate binding.  Several residues involved in the 

coordination of the thiazole moiety are conserved (Figure 2.9).  The thiazole ring is 

stacked against an isoleucine residue and the phosphate tail of the thiazole moiety is 

coordinated by a backbone amide nitrogen atom 2.8 Å away and the side chain of 

Ser209.  His132 is oriented toward the carboxylate group on CO2-ThzP, although the 

distance (3.9 Å) is too long to be a hydrogen bond.  Another positively charged 

Figure 2.9.  Stereoview diagram of a superposition of CO2-ThzP from TP synthase 
with TenI from B. subtilis.  TP synthase is shown with green carbon atoms, while 
carbon atoms from TenI are colored gray.  Water molecules and secondary 
structural elements have been omitted for clarity and CO2-ThzP from the TP 
synthase structure is shown in salmon. 
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residue common to both TP synthase and TenI is Arg59, found near the methyl group 

at C4.  The putative catalytic residue of TenI, His122, is not conserved in TP synthase 

(Pro152).   

 The disordered loop of TenI could contain additional residues important for 

stabilization or aromatization of the thiazole tautomer.  A sequence alignment of five 

TenI and TP synthase proteins was prepared to identify potentially important residues 

for either the decarboxylation reaction or the aromatization reaction and is shown in 

Figure 2.10 (37-39).  Several of the strictly conserved residues are found at the C-

terminal end of β-strands, corresponding to residues in or near the active site.  Arg59, 

Ser209, and several glycines are all conserved.  Interestingly, Ser130, a key residue for 

the dissociation of PPi in the TP synthase reaction, is also absolutely conserved.  

His122 of TenI, which could potentially be required for aromatization, is conserved 

only among other TenI proteins and is often a proline residue in TP synthase.  Lys159, 

a potentially important residue for the decarboxylation of CO2-ThzP, is found on the 

loop between β7 and α7.  When a thiazole moiety is bound in the active site, this loop 

is ordered in TP synthase and Lys159 adopts an extended conformation over the 

thiazole ring with the amino terminus directly above the carboxylate group (Figure 

2.8B).  However, this residue is also conserved among TenI proteins. 

 Mechanistic Implications.  Previous work has demonstrated that the rate 

limiting step of this reaction is the dissociation of product from the active site of TP 

synthase and that the coupling proceeds through a dissociative mechanism that 

produces a pyrimidine carbocation (11, 12).  Steady state kinetic characterization of 

TP synthase has revealed that ThzP and CO2-ThzP are roughly equivalent substrates.  

The decarboxylation of CO2-ThzP appears to occur after the coupling of the thiazole 

moiety to the pyrimidine moiety, as this is the only way for a small amount of ThzP to 

be transiently detected by the NMR monitoring.  Additionally, the rapid formation of 
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Figure 2.10.  Sequence alignment of various TP synthases and TenI proteins.  
Secondary structural elements for TP synthase are shown above the alignment and 
structural elements from TenI are shown below the alignment.  Absolutely conserved 
residues are highlighted in red while less strictly conserved residues are colored red. 

thiamin phosphate indicates that either CO2-thiamin phosphate is unstable and 

spontaneously decarboxylates nonenzymatically or TP synthase enhances the 

decarboxylation reaction.  Characterization of the model compound CO2-EtThz, 

however, demonstrates that this compound is very stable, with a half-life of more than 

a day and a half.  CO2-thiamin phosphate, which also contains a positively charged 

nitrogen atom in the thiazole ring, therefore most likely undergoes an enzyme-

catalyzed decarboxylation.  Ser130 is too far from the carboxylate group to participate 
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(5.0 Å) and His132 is nearly 4 Å, making this an unlikely residue for the catalysis.  

Lys159, with the amide group in close proximity of the carboxylate group of CO2-

ThzP, could be involved in this reaction.  However, the presence of Lys159 in the 

TenI proteins, which do not catalyze the decarboxylation of the thiazole tautomer, 

could indicate that Lys159 provides a hydrogen bond only to the carboxylate group to 

stabilize negative charge.  Alternatively, the lack of positive charge on the nitrogen 

atom of the thiazole ring in CO2-ThzP, the product of TenI, could preclude 

decarboxylation with no means for stabilization of the decarboxylated product.  Future 

studies probing the role of this absolutely conserved lysine residue will provide more 

information on the mechanism of the decarboxylation of CO2-thiamin phosphate.
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CHAPTER 3 

CRYSTAL STRUCTURE AND IDENTIFICATION OF POTENTIAL INHIBITOR 

COMPOUNDS FOR MYCOBACTERIUM TUBERCULOSIS THIAMIN 

PHOSPHATE SYNTHASE 

Section 3.1. Introduction 

 Mycobacterium tuberculosis presents a significant threat to human health (1).  

M. tuberculosis is an opportunistic disease which has also recently begun to develop 

worrying resistance to the drug therapies that are currently available (2).  M. 

tuberculosis requires a long course of six months of antibiotic treatment, which can 

lead to patients stopping treatment early before the infection has been completed (1).  

The drugs available have been on the market for up to half a century with no new 

treatments released.  Several of these available drugs, such as isoniazid and 

pyrazinamide, two first line drugs, target cell wall biosynthesis or membrane energy 

metabolism (3).  In extreme drug resistant M. tuberculosis, it is common for mutations 

to render these treatments inaffective (3).  The development of new drugs targeting 

different pathways within M. tuberculosis would expand the arsenal of treatment 

options. 

 Thiamin biosynthesis in M. tuberculosis presents an ideal pathway for 

inhibiting the growth of the bacterium.  Thiamin pyrophosphate, the biologically 

active form of vitamin B1, consists of two heterocyclic moieties, a pyrimidine and a 

thiazole ring.  Thiamin pyrophosphate is required by all cells for the stabilization of 

carbanion intermediates and plays an important role in carbohydrate metabolism (4).  

Thiamin biosynthesis is an attractive target because humans do not biosynthesize 

thiamin but instead obtain the essential vitamin through diet, making the enzymes of 

this pathway less likely than other critical metabolic pathways to inadvertently harm 

the patient.  The de novo thiamin biosynthetic pathway in bacteria biosynthesizes the 
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two moieties separately and then couples them together in the penultimate step to form 

thiamin phosphate (5).  4-amino-2-methyl-5-(hydroxymethyl)-pyrimidine 

pyrophosphate (HMP-PP) is formed by two enzymes from 5-aminoimidazole ribotide 

and 4-methyl-5-(hydroxyethyl)thiazole phosphate (ThzP) is formed by seven enzymes 

from a sulfur source, glycine (or tyrosine), and deoxy-D-xylulose 5-phosphate (5).  

While this biosynthetic pathway is fairly well studied and understood, recent work has 

confirmed that some bacteria, such as Bacillus subtilis, can salvage thiamin and 

degraded forms of thiamin from the environment (6, 7).  Implicated genes for thiamin 

salvage encode for an ABC transporter and are known as ThiX-ThiY-ThiZ or YkoE-

YkoD-YkoC (8).  Examination of the genome of M. tuberculosis shows that this 

bacterium does not contain any of the genes responsible for thiamin salvage, 

indicating that M. tuberculosis is reliant up on the de novo biosynthetic pathway to 

generate its thiamin (8). 

 Thiamin phosphate synthase (TPS) catalyzes the coupling of HMP-PP with 

ThzP in a magnesium dependent reaction to produce thiamin phosphate and 

pyrophosphate (PPi), shown in Figure 3.1 (9).  Bacillus subtilis TPS has been 

extensively studied and is mechanistically well understood (10-13).  BsTPS has been 

shown to catalyze a dissociative reaction, releasing PPi and generating a carbocation 

on the methyl group at C2 on pyrimidine moiety which can then react with Thz to 

form thiamin phosphate.  The rate of carbocation formation has been determined, as 

have several crystal structures of BsTPS with different intermediates mapping the 

reaction pathway (11, 12).  The work presented here describes the crystal structure of 

MtTPS, the results of a virtual drug screening to identify potential inhibitors, and the 

effectiveness of these compounds based on a novel in vivo assay. 

Section 3.2. Materials and Methods 

 Materials.  The NCI Diversity Set compounds were obtained from the NCI.   
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Figure 3.1.  Reaction catalyzed by TPS. 

 Cloning of MtTPS.  Standard methods were used for DNA manipulations (14, 

15).  Plasmid DNA was purified with the Qiagen Miniprep kit and DNA fragments 

were purified from agarose gel with the Nucleospin Purification kit (Macherey-Nagel).  

E. coli strain MachI (Invitrogen) was used as a recipient for transformations during 

plasmid construction and for plasmid propagation.  Phusion DNA polymerase (New 

England Biolabs) was used for PCR following the manufacturer’s recommendations.  

The M. tuberculosis thiE gene was amplified from genomic DNA by PCR with the 

following primer pair:  5’-TAG CAT ATG CAC GAA TCC CGT CTG GCA TCG G-

3’ and 5’-CTA CTC GAG TTA GTT CGC TGC TGT AAG CGC C-3’.   The PCR 

product was verified by sequencing and then subcloned into the plasmid pET-28nTEV 

using the NdeI/XhoI cut sites.  The overexpression vector pET-28nTEV is based on 

the pET-system from Novagen and encodes for kanamycin resistance and an N-

terminal 6xHis tag cleavable by TEV protease and is under the control of the T7lac 

promoter.  Again, clones were screened by restriction digest.  A correct clone was 

named pMtThiE.28nTEV.   
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 Overexpression and Purification of MtTPS.  The plasmid MtThiE.28nTEV 

was transformed into the E. coli B834(DE3) cell line for overexpression.  Overnight 

cultures were grown in 5 mL LB supplemented with 50 mg/L kanamycin at 37°C with 

shaking and used for the inoculation of 1 L cultures of LB containing 50 mg/L 

kanamycin.  The large cultures were grown at 37°C to an OD600 of 0.7, when the 

temperature was lowered to 15.5°C.  Once the cultures were cooled, overexpression of 

MtTPS was induced by the addition of 0.5 mM isopropyl β-D-thiogalactopyranoside 

and allowed to shake overnight.  Cells were harvested the next morning by 

centrifugation at 4°C at 6000×g for 15 minutes and the supernatant discarded.  The 

cell pellet resulting from 4 L of culture was stored at -20° until purification.   

 To purify MtTPS, the cell pellet was thawed and resuspended in purification 

buffer (50 mM NaH2PO4, 300 mM NaCl, 10% (v/v) glycerol, pH 8.0) containing 10 

mM imidazole.  The cells were then lysed by three cycles of sonication.  All steps 

after lysis were carried out at 4°C.  After lysis the cell lysate was clarified by 

centrifugation for 1 hour at 40000×g and the pelleted debris discarded.  The 

supernatant was twice passed over a 2 mL Ni-NTA column (Qiagen) pre-equilibrated 

with purification buffer containing 10 mM imidazole.  The column was then washed 

with 60 mL of this buffer, followed by washing with 40 mL purification buffer 

containing 20 mM imidazole to remove any contaminants binding nonspecifically to 

the column.  MtTPS was eluted from the column using 8 mL of purification buffer 

spiked with 250 mM imidazole.  The sample was judged to be ~70% pure by SDS-

PAGE analysis (results not shown).  Further purification was carried out using size 

exclusion chromatography (HiLoad 26/60 Superdex 200 pg, GE Healthcare) to 

increase purity to ~85% as determined by SDS-PAGE.  The storage buffer for MtTPS 

was 20 mM Tris (pH 8.0), 50 mM NaCl, 3% glycerol.  MtTPS was concentrated to ~9 

mg/mL as determined by Bradford assay and stored at -80°C until used for 
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crystallization experiments (16).  The overall yield of pure protein was low at only 2 

mg/L of culture. 

 Crystallization of MtTPS.  Initial crystallization leads were determined using 

the hanging drop vapor diffusion method at room temperature temperature by mixing 

an equal volume of reservoir solution with protein sample (1 μL of each) over 450 μL 

reservoir solution using commercially available sparse matrix screens (Emerald 

BioSystems).  After three months an initial hit was found.  Optimized crystal rods 

grew to 150 μm long and 30 μm thick in 1.6 M NaH2PO4, 0.4 M K2HPO4, and 100 

mM phosphate-citrate buffer (pH 4.4) over three weeks.  MtTPS crystals formed in the 

space group C2221 with a = 84.5 Å, b = 90.9 Å, and c = 124.8 Å.  Two molecules are 

located in the asymmetric unit, corresponding to a Matthew’s coefficient of 2.54 and 

51% solvent (17).  Crystals were prepared for data collection by transferring briefly to 

a cryoprotectant consisting of the crystallization solution supplemented with 16% 

glycerol, followed by flash freezing through plunging the crystal in liquid nitrogen.  

 X-Ray Data Collection and Processing.  A dataset for MtTPS was collected at 

the Advanced Photon Source at Argonne National Laboratory on the NE-CAT 24-ID-

X beamline.  The oscillation method was used, collecting 100° of data with a rotation 

range of 1° for each frame.  The MtTPS crystal was exposed for 1 second per frame 

and diffraction was recorded using a Quantum315 detector (Area Detector Systems 

Corp.).  The dataset diffracted to 2.32 Å resolution and the data were indexed, 

integrated, and scaled using the HKL2000 suite of programs (18).  The data collection 

statistics are presented in Table 3.1.   

 Structure Determination, Model Building, and Refinement.  The structure of 

MtTPS was determined using molecular replacement.  Thiamin phosphate synthase 

from Pyrococcus furiosus (PDB ID: 1XI3) with all ligands and water molecules 

removed, was chosen as the search model (19).  The search model was then prepared 
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using CHAINSAW in the CCP4 suite of programs to generate a search model as 

similar as possible to MtTPS (20, 21).  The rotation and translation search functions 

were carried out using MOLREP and a solution was found (22).  The molecular 

replacement solution was then manually rebuilt in COOT, followed by rounds of 

refinement in CNS (23, 24).  In later stages of refinement water molecules were added 

to the model.  The final model contains 427 protein residues, 118 water molecules, and 

2 phosphate ions with one residue on each chain, Asp82, adopting a disallowed 

conformation, although the density is clear (25).  The final data refinement statistics 

are presented in Table 3.2.  Figures were prepared using ChemDraw and Pymol (26).   
 
Table 3.1.  Summary of Data Collection Statistics 
Source APS 24-ID-C 
Resolution (Å) 2.32 
Energy (eV) 12662 
Space Group C2221 
a (Å) 84.5 
b (Å) 90.9 
c (Å) 124.8 
Matthew’s Coef. 2.5 
     % solvent 51 
     Mol/a.s.u. 2 
Measured Reflections 60007 
Unique reflections 16709 (1119) a 
Average I/σ 14.7 (4.4) 
Redundancy 3.6 (2.8) 
Completeness (%) 83.1 (56.5) 
Rsymb (%) 7.6 (17.4) 
aValues in parentheses are for the highest resolution shell.  bRsym = ΣΣi|Ii - 〈I〉|/Σ〈I〉, 
where 〈I〉 is the mean intensity of the N reflections with intensities Ii and common 
indicies h,k,l. 

 Virtual Drug Screening.  The MtTPS structure was used to screen the National 

Cancer Institute’s (NCI) diversity set of potential inhibitor compounds.  The 

Schrödinger program Maestro was used to manipulate the 2.3 Å structure of MtTPS 

during screening.  The small molecules were then docked in silico using the GLIDE 

program.  The docking scores for the top hits from the NCI diversity set are presented 
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in Table 3.3.  The more negative scores indicate a more negative binding free energy 

between the enzyme and the small molecule.   
 
Table 3.2.  Summary of Data Refinement Statistics 
Resolution (Å) 50.00 – 2.32 
No. of protein atoms 427 
No. of ligand atoms 10 
No. of water atoms 118 
Reflections in working set 18498 
Reflections in test set 912 
R factora (%) 22.1 
Rfree

b (%) 25.9 
Rmsd from ideal 
   Bonds (Å) 
   Angles (º) 

 
0.0058 
1.2 

Average B-factor (Å3) 31.4 
Ramachandran Plot 
   Most favored (%) 
   Additionally allowed (%) 
   Generously allowed (%) 
   Disallowed (%) 

 
92.6 
6.0 
0.9 
0.6 

aR factor = Σhkl||Fobs| - k|Fcal||/Σhkl |Fobs| where Fobs and Fcal are observed and calculated 
structure factors, respectively.  bFor Rfree, the sum is extended over a subset of 
reflections (5%) excluded from all stages of refinement. 

 In Vivo Thiamin Riboswitch Inhibition Assay.  The gene for β-galactosidase 

was inserted into the ThiC gene of B. subtilis, which is under the control of the 

thiamin riboswitch.  The cells are supplied low levels of thiamin for survival.  Cells 

grown in the presence of thiamin and 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal) are white, but when given a lower amount of thiamin or 

thiamin antimetabolites the cells turn blue.  Successful inhibition of TPS by the 

molecules identified in the in silico screen will turn the cells blue.    

Section 3.3. Results 

 Overall Structure of MtTPS.  The final model of MtTPS contains two 

protomers in the asymmetric unit.  Each chain consists of residues 0-148, 154-166, 

and 170-221.  The loop regions at both the N and C termini of α6 are disordered.  The 
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final model also has 115 water molecules two phosphate ions.  MtTPS monomer 

adopts the (β/α)8 barrel fold as seen in other TPS structures (Figure 3.2).  One residue 

from the histidine purification tag is visible, His0, and extends away from the core of 

MtTPS into the solvent region.  An N-terminal α-helix (α0) blocks the bottom of the 

β-barrel.  MtTPS also contains two additional insertions to the (β/α)8 fold.  The 

monomer has an average surface area of 9800 Å2 and is approximately 45 Å wide, 45 

Å long, and 35 Å tall.  The β-strands of the (β/α)8 barrel are rotated 45° in respect to 

the axis of the β-barrel.  The core of the β-barrel has a ring of aromatic residues, 

Figure 3.2.  Monomeric structure of MtTPS.  (A)  Stereoview diagram of MtTPS 
depicted in cartoon representation.  The secondary structural elements are labeled α-
helices are colored blue, β-strands colored green, and loop regions shown in yellow.  
The phosphate ion is shown in ball and stick representation and colored according to 
atom type.  (B)  Topology diagram of MtTPS using the same color scheme as 
described for A. 
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Tyr12, Tyr137, and Phe174 and the N-terminal end of the β-barrel is composed of 

hydrophobic residues: Leu6, Ala9, Ile38, Val60, Leu77, Val94, and Leu116.   

 Oligomeric Assembly of MtTPS.  MtTPS crystallizes with two chains in the 

asymmetric unit where the chains are related by a noncrystallographic twofold axis 

(Figure 3.3A).  The C-terminal end of α1, α2, and the following loops from one  

protomer interacts with α0 from the second protomer, and the α8 helices run 

antiparallel to each other.  The association between the two chains is weak with eleven 

water molecules found at the interface and no hydrogen bonds or hydrophobic patches 

packing together.  The symmetry-related molecules, however, show that MtTPS is a 

dimer with the A chain forming a dimer with a symmetry-related A protomer and the 

same occurring with the B chain (Figure 3.3B).  The (β/α)8 barrels of the dimer run 

roughly parallel to each other so that the C-terminal ends of the barrels lie on the same 

Figure 3.3.  Packing Interactions of MtTPS.  (A)  Packing of monomer A and 
monomer B in the asymmetric unit.  Secondary structural elements of the A chain are 
colored according to the scheme described in Figure 3.2.  (B)  Cartoon representation 
of the dimeric assembly of MtTPS chain A using the symmetry related chain to 
complete the dimer.  The phosphate group is shown in ball and stick representation. 
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face of the dimer.  The A2 dimer buries a total of 2440 Å2 of surface area at the dimer 

interface and the B2 dimer buries 2390 Å2 total surface area (27).  Interactions between 

the protomers occur primarily in loops 2, 3, and 4.  Additionally, α3 and α4 pack 

approximately perpendicularly against α3* and α4* (where * indicates the second 

chain) and the N-terminus of α2 interacts with loop 2.  The short α2a runs antiparallel 

to α2a*.  Two salt bridges are found at the dimer interface between Arg83 and Asp82*, 

and Asp82 and Arg83*.  Two symmetry-related hydrophobic patches are also found at 

the dimer interface.  This area packs Ile86, Leu61, Ala57, and Ala89 together with 

Leu102*, Val106*, and Ile 110*.   

 MtTPS Phosphate Binding Site.  The putative active site of MtTPS is located at 

the C-terminal end of the (β/α)8 barrel and is marked by the presence of a phosphate 

ion from the crystallization conditions.  In contrast to other residues of the β-barrel, 

residues at the C-terminal end of the β-barrel many charged amino acid residues 

occupy the active site.  The phosphate ion is bound in a highly solvent accessible 

position adjacent to loops 2 and 4 and forms interactions with residues from β4, β3, 

and β5, along with two water molecules (Figure 3.4).  The environment around the 

phosphate ion is positively charged and stabilizes the negative charge of the phosphate 

group.  The phosphate is coordinated directly with His122 and the amide nitrogen 

atom of the protein backbone at Gln99.  The backbone amide nitrogen atom of Arg100 

is also oriented toward the phosphate binding pocket, although the distance is too great 

to interact directly with the phosphate group.  Two arginine residues, Arg42 and 

Arg100, are each pointed toward the phosphate group and one nitrogen atom of the 

guanidinium side chain from Arg100 forms a water-mediated interaction with the 

phosphate group.  A water molecule is hydrogen bonded to an oxygen atom of the 

phosphate group and is also positioned near Arg42 and Asn81, although the distances 

are long, 3.3 Å to Asn81 and 3.4 Å to Arg42. 
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Figure 3.4.  Stereoview diagram of MtTPS phosphate binding site shown in ball 
and stick representation.  Atoms are colored depending on type.  Nonbonded red 
spheres represent water molecules.  Hydrogen bonds are shown with dashed lines. 

 Identification of Potential TPS Inhibitor Compounds.  The 2.3 Å structure of 

MtTPS was used for the in silico screening of the NCI diversity set of compounds and 

then simulated docking was performed to determine the theoretical free energy of 

binding.  The top compounds are presented in Table 3.3.  The program GLIDE 

provides different scoring algorithms, and the scoring results from the free binding 

energy are provided in Table 3.3.  Also provided is the amount of relative β-

galactosidase activity compared to cells exposed to no inhibitor compounds and the 

proposed antibiotic type for each of the effective compounds.  Figure 3.5 presents the 

structures for the three most active compounds.   

 In Vivo Thiamin Riboswitch Assay Activity.  B. subtilis cells with the thiC gene 

interrupted with the gene for β-galactosidase are sensitive to the demands of the cell 

for increased thiamin production.  Treatment of these cells with inhibitors of MtTPS 

indirectly reduces the concentration of thiamin available to the cell and the cells then 

turn blue when supplied with X-gal when the riboswitch attempts to upregulate 

thiamin through thiC and instead upregulates the β-galactosidase gene product.  The  
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Table 3.3. In silico NCI Diversity Set screening and in vivo screening results 
Rank NCS Title CAS Dock Score β-Gal 

Activity 
Antibiotic Type 

1 19803 17912-87-7 -9.4798 ++ CF3HMP type 
2 408734  -8.9731 ±  
3 60423 6940-93-8 -8.5456 n/a  
4 42014 6308-29-8 -8.4926 ±  
5 114436  -8.4356 ±  
6 16722 5463-22-9 -8.2503 ±  
7 159686 13898-58-3 -8.1733 ±  
8 25368  -7.9443 ±  
9 30930  -7.6710 ±  
10 227383 69746-62-9 -7.6315 ±  
11 16736 530-07-4 -7.5299 ±  
12 279895  -7.4347 ±  
13 78623 64567-62-0 -7.2554 ±  
14 93945 40367-32-6 -7.2508 ±  
15 60239 6627-85-6 -7.1149 ±  
16 107022 568-80-9 -6.9718 +++ CF3HMP type 
17 78999 64679-65-8 -6.9625 ±  
18 51683 6943-27-7 -6.9553 ±  
19 39938  -6.9049 ±  
20 319471  -6.8223 + CF3HMP type 
21 122819 29767-20-2 -6.6852 ±  
22 36586 446-72-0 -6.5941 ±  
23 362639 72177-30-1 -6.4667 ±  
24 142277  -6.4546 ±  
25 111847 894-93-9 -6.3576 (+) Typical 

antibiotic type? 

55 



Figure 3.5.  Chemical structures of identified compounds showing MtTPS inhibition. 
(A) Myricitrin (NSC compound 19803). (B) NSC compound 319471. (C) Galloflavin 
(NSC compound 107022). 

top 25 hits from the in silico docking study were screened for increased β-

galactosidase activity through monitoring the cell color and ranked.  These results are 

presented in Table 3.3.  Three compounds, NSC 107022, NSC19803, and NSC 

319471, turned the B. subtilis cells blue and thus showed increased β-galactosidase 

activity.  The chemical structures of these molecules are shown in Figure 3.5.   

Section 3.4. Discussion 

 Comparison of MtTPS to Other TP Synthases.  MtTPS adopts the (β/α)8 barrel 

fold seen among the other structurally characterized TPS proteins.  The sequence 

identity between MtTPS and the other TPS proteins is low, ranging from 36% 

identical for Pyrococcus furiosis TPS (PDB ID: 1XI3) to 18% identical when 

compared to TPS from Bacteroides thetaiotamicron (PDB ID: 3CEU).  To determine 

how structurally similar these proteins are, a DALI search was performed using the 

MtTPS structure and a representative selection of enzymes is shown in Table 3.4 (28).   

As expected several TPS were identified, as well as BsTenI, which has been compared 

to BsTPS previously (12, 29).   

 MtTPS was then compared specifically to other TPS proteins.  The monomeric 

structures superimpose well, with RMSD values below 2.5 Å (Table 3.4).  The 

differences between BsTPS with thiamin phosphate bound and the unliganded MtTPS 
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are slight (10).  The α0 helix at the N-terminal end of the β-barrel is rotated 

approximately 60° with respect to α0 in BsTPS and completely blocks the entrance to 

the β-barrel from the N-terminal face of the enzyme.  BsTPS has an inserted α-helix 

between β8 and α8; the same inserted α-helix is present in MtTPS.  However, MtTPS 

has an additional α-helix inserted after β2 and before α2 (Figure 3.2).  The helix α2a 

appears to contribute to the formation of the dimer.  The presence of α2a in MtTPS 

has also forced the loop connecting β1 to α1 to adopt a more open conformation away 

from the active site.  The corresponding region in BsTPS is found closer to the active 

site and also forms contacts with α8a. 

 Another difference between BsTPS and MtTPS is the oligomeric assembly of 

the molecules.  BsTPS has previously been identified as a dimer based on the crystal 

structure, but the assignment was not definite as the interactions were weak and fairly 

nonspecific.  The BsTPS dimer has been described as adopting a trans conformation 

with the active sites on opposite sides of the dimer (10, 12).  In contrast to BsTPS, 

BsTenI and PfTPS form a much tighter dimer with hydrophobic patches on the surface 

of the protein packing together.  BsTenI and PfTPS are both cis dimers where the 

(β/α)8 barrels run roughly parallel to each other and the active sites lie on the same 

face of the dimer.  The asymmetric unit of MtTPS does not contain either of these 

dimers (Figure 3.3A), but instead contains two half-dimers where the cis dimer is 

Table 3.4.  Enzymes Identified as Structurally Similar Through DALI 
Protein  PDB ID Z Score RMSD % 

Identical 
# aligned 
residues 

PfTPS 1XI3 28.7 1.7 36 195 
BsTPS 1G69 26.6 2.2 28 206 
BsTenI 1YAD 22.6 2.0 28 184 
Tryptophan synthase 1UJP 18.1 2.8 18 194 
Hexulose 6-
Phosphate synthase 

3F4W 18.1 2.6 17 211 

Triosephosphate 
isomerase 

1W0M 17.2 2.7 17 181 
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formed using each chain’s symmetry-related molecule to produce two slightly 

different copies of the cis dimer.   

 Active Site Comparison.  The structure of BsTPS with thiamin phosphate 

bound (PDB ID: 2TPS) was compared with BsTPS to closely examine the putative 

active site of MtTPS (10).  The structural alignment reveals that most of the active site 

residues are strictly conserved with very little variation (Figure 3.6).  The residues 

surrounding the pyrimidine moiety, Ser120, His122, Tyr137, Tyr12, Gln40, and 

Asn81 are conserved between the two structures and adopt the same conformations, 

even in the absence of ligand in MtTPS.  The amino acids forming interactions with 

the thiazole moiety are also mostly conserved, but the conformations seen in MtTPS 

are slightly different than those seen in BsTPS (Figure 3.6).  Two arginine residues of 

MtTPS form clashing interactions with the phosphate groups of the BsTPS structure.  

Arg42 is in a slightly more extended conformation than Arg59 of BsTPS and is thus 

too close to two oxygen atoms of PPi.  This residue could easily adopt a slightly 

different orientation, however, and instead of clashing with PPi, contribute stabilizing 

interactions.  The second arginine residue, Arg199, is not conserved between MtTPS 

and BsTPS, where a serine residue occupies this position.  Reorientation of Arg199 

would allow this residue to offer a positively charged residue to favorably interact 

Figure 3.6.  Stereoview diagram of MtTPS superimposed with BsTPS with thiamin 
phosphate bound.  The carbon atoms of MtTPS are colored green while the carbon 
atoms from BsTPS are shown in grey.  The carbon atoms of thiamin phosphate are 
salmon colored.  Water molecules have been excluded for clarity. 
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with the negatively charged phosphate tail of the thiazole moiety.  One striking 

difference is that the presence of the thiazole moiety in the active site has triggered the 

loop connecting β6 to α6 to become ordered in the BsTPS structure and Lys159 

adopts an extended conformation over the thiazole ring.  While this region is 

disordered in MtTPS, the loop between β6 and α6 is mostly conserved and Lys159 

from BsTPS corresponds to Lys149 in MtTPS.  Additionally, this lysine residue is 

absolutely conserved among all TPS and TenI proteins.    

 An interesting feature of the MtTPS active site when compared to the structure 

of BsTPS is the presence of two active site cysteine residues, Cys14 and Cys139, seen 

in Figure 3.6.  Cys14 replaces the large-sized, hydrophobic Ile31 in BsTPS.  The 

second cysteine residue superimposes upon Gly149 of BsTPS.  The residue at this 

position is one of the primary means for distinguishing TPS from TenI; TenI proteins 

have a bulky hydrophobic residue at this position, often a leucine residue.  This bulk 

prevents HMP-PP from fitting in the active site and TenI can instead only bind to 

thiazole moieties.  TPS molecules most commonly have much smaller residues at this 

position, such as the glycine residue observed in both BsTPS and PfTPS.  The smaller 

side chain allows HMP-PP to bind deeply in the active site without forming any steric 

clashes between the methyl group at C4 of the pyrimidine with the protein.  The 

superposition shown in Figure 3.6 illustrates that the sulfur of cysteine is very close to 

HMP-PP (2.2 Å to the methyl carbon at C4).  This close proximity may indicate that 

Cys139 adopts a different conformation upon HMP-PP binding or that HMP-PP binds 

slightly less deeply within the active site. 

 Inhibition of MtTPS.  The virtual library screening of the relatively small NCI 

Diversity set of compounds identified the top 50 inhibitors based on the free binding 

energy and the scoring algorithm used by the software program GLIDE (Table 3.3).  

To further characterize these compounds, a novel assay capable of indicating thiamin 
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depletion was developed.  The gene for β-galactosidase was inserted into the thiC 

gene of B. subtilis, which is under the direct control of the thiamin riboswitch.  As the 

thiC gene has been interrupted, the cells are now unable to biosynthesize HMP-PP, so 

a low level of thiamin must be supplied for the cells to survive.  When the cells are 

provided with X-gal and sufficient thiamin, the riboswitch does not upregulate the 

expression of β-galactosidase and the colonies remain white.  However, when the cells 

are deprived of enough thiamin, or when thiamin antimetabolites are present along 

with X-gal, the riboswitch upregulates the production of β-galactosidase and the 

colonies become blue. 

 The top 25 virtual library hits were assayed by this new technique and three 

compounds resulted in an upregulation of β-galactosidase (Table 3.3 and Figure 3.5) 

and therefore were inhibiting the production of thiamin phosphate and ideally causing 

this inhibition by binding to MtTPS.    Two of the small molecules, NSC 107022 and 

myricitrin, are highly hydroxylated and could potentially form many hydrogen bonds 

with MtTPS.  Myricitrin, shown in Figure 3.5A, also had the lowest free binding 

energy in the in silico study (Table 3.3).  The third compound, NSC 319471 (Figure 

3.5B), has several structural characteristics in common with thiamin phosphate.  Both 

compounds contain an aromatic ring with a hydrophobic substituent para to the bridge 

to the second heterocycle.  The adjoining rings are each five-member rings containing 

one nitrogen atom and one sulfur atom, although the positions are not conserved.  

NSC319471 could be acting as a substrate mimic, as could myricitrin.  Structural 

studies will be conducted to confirm the mode of binding for these compounds and the 

Kd values will be determined as well.
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CHAPTER 4 

STRUCTURAL STUDIES OF THIAMIN MONOPHOSPHATE KINASE IN 

COMPLEX WITH SUBSTRATES AND PRODUCTS1 

Section 4.1. Introduction 

 Thiamin, also known as vitamin B1, is required by all living organisms and is 

an essential vitamin in the human diet.  The active form of thiamin, thiamin 

pyrophosphate (TPP), stabilizes acyl carbanion intermediates and plays important 

roles in carbohydrate metabolism and in the pentose phosphate pathway (1).  Often, 

the reactions catalyzed by thiamin pyrophosphate involve decarboxylation reactions of 

α-keto acid.  In these reactions, the thiamin ylide adds to the ketone. Loss of carbon 

dioxide from the resulting adduct gives the thiamin-stabilized acyl carbanion, which 

can then be protonated by an active site acid. Release of the cofactor generates the 

aldehyde product. (2). 

 The biosynthesis of thiamin pyrophosphate in prokaryotic systems has been 

studied both structurally and mechanistically (1, 3).  The thiazole and pyrimidine 

moieties are biosynthesized separately.  Six enzymes act upon deoxy-D-xylulose 5-

phosphate, glycine, and cysteine to form the thiazole moiety.  The pyrimidine 

pyrophosphate is formed by a rearrangement of 5-aminoimidazole ribonucleotide 

catalyzed by ThiC, followed by phosphorylation by HMP-P kinase.  The thiazole and 

pyrimidine moieties are then joined together to form thiamin monophosphate (TMP) 

in a reaction catalyzed by thiamin phosphate synthase.  Thiamin monophosphate 

kinase (ThiL) is the final enzyme in the thiamin biosynthetic pathway and is 

responsible for the phosphorylation of TMP to form TPP (Figure 4.1), the biologically 

relevant form of the cofactor (4). 

                                                 
1 Reproduced with permission from McCulloch, K.M., Kinsland, C., Begley, T.P., and Ealick, S.E. 
(2008) Biochemistry 47: 3810-3821.  Copyright 2008 American Chemical Society 
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SS OPP

 In addition to ThiL′s role in thiamin biosynthesis, ThiL has been postulated to 

be a member of the PurM ATP binding superfamily (5).  To date, only five proteins 

have been identified as members of this superfamily: aminoimidazole ribonucleotide 

synthetase (PurM), formylglycinamide ribonucleotide amidotransferase (PurL), 

selenophosphate synthetase (SelD), the NiFe hydrogenase maturation protein HypE, 

and ThiL (5).  Interestingly, PurL and PurM catalyze sequential reactions in the purine 

biosynthetic pathway and the product of the reaction catalyzed by PurM is 5-

aminoimidazole ribonucleotide, the small molecule transformed into the pyridine 

moiety of thiamin pyrophosphate.  With the exception of ThiL these enzymes are 

believed to proceed via a phosphoimidate intermediate (6). It is unclear why ThiL 

belongs to this superfamily because the TMP phosphorylation reaction is more likely 

to proceed by an inline phosphate transfer in which a phosphorylated enzyme 

intermediate would be unnecessary. 

 The structure of Aquifex aeolicus ThiL (AaThiL) was previously determined 

by the New York Structural Genomics Group (PDB ID: 1VQV) but no substrate or 

product complexes were available.  We initiated additional structural studies to 

investigate the place of ThiL within the PurM ATP binding superfamily.  AaThiL was 

co-crystallized with β,γ-methylene adenosine 5′-triphosphate (AMP-PCP) as a binary 

complex and these crystals were then soaked with TMP to yield the ternary complex 

AMP-PCP/TMP.  Additionally, AaThiL was co-crystallized with the reaction 

products, TPP and adenosine 5′-diphosphate (ADP) to form the ADP/TPP complex.  

N

N
NH2

N

OP
ThiL+ N

N
NH2

N
+

ADPATP

Figure 4.1. Reaction catalyzed by ThiL. 
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These structures allow for comparison to the structures of the other members of the 

PurM ATP binding superfamily, especially at the active sites.  Examination of the 

active site of ThiL, with substrates and products bound, has eliminated the possibility 

of a phosphoimidate intermediate on ThiL and strongly supports a direct, inline 

transfer of the γ-phosphate of ATP to TMP. 

Section 4.2. Materials and Methods 

Gene Synthesis.  Primers for gene synthesis of Aquifex aeolicus thiL were 

designed using the GeMS website (7) (http://software.kosan.com/GeMS/).  Gene 

synthesis was carried out using the method described by Kodumal (8, 9).  The 5′ 

synthon was cloned into pSTBlue1 (Novagen) and the 3′ synthon was cloned into 

pCR4-Blunt (Invitrogen).  After sequencing, the two synthons were merged by Single 

Overlap Extension PCR.  The resulting PCR fragment was cloned into pENTR-TEV-

D-TOPO (Invitrogen).  Sequencing revealed a missing base in the overlap region.  

This was repaired by site-directed mutagenesis using KOD DNA polymerase (New 

England Biolabs) and a standard PCR protocol.  The following primer and its reverse 

complement were used: 5′-GTT AAA CGC GCG TGT GAA TTC TAC AAG TGC 

GAA GTG GTC GG-3′.  Parental DNA was digested with DpnI prior to 

transformation.  Clones were screened for the introduction of an EcoRI site and 

verified by sequencing.  A clone with the correct sequence was named pAaThiL.ET 

and used as the entry vector in an LR reaction using the Gateway system (Invitrogen) 

with a destination vector based on the Novagen pET system.  The destination vector 

encodes an N-terminal 6xHis tag and the pENTR-TEV-D-TOPO encodes for a TEV 

protease site between the fusion tag and the AaThiL gene.  A correct clone was named 

pAaThiL.XF1 and used for protein production.  

Protein Overexpression.  pAaThiL.XF1 was transformed into the B*R2 

Escherichia coli cell line.  Cells were grown in LB media at 37 ºC with shaking (200 
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rpm) to an O.D.600 of 0.6.  Overexpression of ThiL was induced by 1 mM isopropyl-β-

D-thiogalactopyranoside and cells were incubated at 37 ºC for three hours.  Cells were 

harvested by centrifugation, resuspended in lysis buffer (300 mM NaCl, 50 mM 

Na2HP04, and 5 mM imidazole, pH 8.0) and lysed by sonication.  The crude lysate was 

then centrifuged at 40000 g for 25 minutes at 4 ºC.  The cleared lysate was applied to a 

Ni-NTA column (Qiagen) and washed with the above buffer for 75 X the column 

volume.  The column was then washed with wash buffer (300 mM NaCl, 50 mM 

Na2HP04, and 30 mM imidazole, pH 8.0) to remove any nonspecific binding proteins 

for roughly 20 column volumes.  AaThiL was then eluted from the column using 

elution buffer (300 mM NaCl, 50 mM Na2HP04, and 250 mM imidazole, pH 8.0) in 

five column volumes.  Protein was buffer exchanged into 10 mM Tris and 20 mM 

NaCl, pH 7.7 by overnight dialysis and was then concentrated using an Amicon Ultra 

centrifugal filter with a molecular weight cutoff of 10 kDa until a concentration of 13 

mg/mL was reached as determined by the Bradford assay (10).  Protein purity was 

verified by SDS-PAGE to be 95% pure (results not shown). 

Protein Crystallization, Data Collection, and Structure Determination.  

Crystallization experiments were conducted using the hanging drop vapor diffusion 

method at 22 ºC by combining equal volumes of protein and reservoir solution.  Initial 

conditions were found using sparse matrix screens Crystal Screen 1 and 2 (Hampton 

Research) and Wizard Screen 1 and 2 (Emerald Biosystems).  To obtain binary 

complexes, AaThiL was incubated with 4 mM AMP-PCP or ATP and 4 mM MgCl2 

on ice for one hour prior to crystallization experiments.  Optimized conditions for the 

AaThiL binary complexes were 100 mM HEPES pH 7.4, 6-11% isopropyl alcohol, 

200 mM (NH4)2SO4, and 4-6 % 2-methyl-2,4-pentanediol (MPD).  100 mM CaCl2 

was used as an additive in a 1:9 ratio with the reservoir solution described above.  

Crystals reached their maximum size of 200 x 100 x 100 μm3 within three days.  
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Cryoprotection of these crystals was done by increasing the MPD concentration to 

15% and adding 2% ethylene glycol to the crystallization conditions.  To form a 

ternary substrate complex, TMP was soaked into the cocrystallized AaThiL and AMP-

PCP crystals by transferring the crystals to a solution containing the mother liquor and 

20 mM TMP and allowing the crystals to soak for 5 minutes before freezing.  To 

obtain AaThiL ADP/TPP crystals, AaThiL was incubated on ice with 4 mM ADP, 4 

mM TPP and 4 mM MgCl2.  Optimized conditions for the product complex were 100 

mM imidazole pH 8.0, 7-10% PEG 8000, and 100 to 250 mM Ca(C2H3O2)2.  These 

crystals reached their maximum size of 200 x 80 x 80 μm3 within one week and were 

cryoprotected using 15% ethylene glycol in addition to the crystallization conditions.   

Datasets were collected for AaThiL with AMP-PCP, AMP-PCP/TMP, and 

ADP/TPP at the Advanced Photon Source 24-ID-C beamline using a Quantum315 

detector (Area Detector Systems Corp) at the wavelength 0.9795 Å.  The dataset for 

AaThiL complexed with ATP was collected at the A1 station at the Cornell High 

Energy Synchrotron Source (CHESS) using Quantum210 detector (Area Detector 

Systems Corp) and a wavelength of 0.9771 Å.  All datasets were collected using an 

oscillation range of 0.5° to resolve the diffraction patterns.  Crystals were indexed in 

the P212121 space group with cell dimensions a = 61.2 Å, b = 67.1 Å, and c = 203.5 Å 

for the binary complexes, giving a Matthews coefficient of 2.82 and a solvent content 

of 56%. The binary structure with AMP-PCP bound was determined to 2.20 Å 

resolution and the structure with ATP bound was determined to 1.98 Å resolution.  

Cell dimensions were a = 60.8 Å, b = 66.8 Å, and c = 197.0 Å for the ternary 

complexes containing either TMP or TPP with a smaller Matthews coefficient of 2.67 

and 54% solvent (11).  The substrate analogue ternary complex, AMP-PCP/TMP, was 

solved to 2.60 Å resolution and the product ternary complex ADP/TPP was 
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determined to 1.48 Å resolution.  The data collection and refinement statistics are 

given in Tables 4.1 and 4.2.  
 
Table 4.1.  Summary of Data Collection Statistics 

 AaThiL ATP AaThiL 
AMP-PCP 

AaThiL AMP-
PCP/TMP 

AaThiL 
ADP/TPP 

Beamline APS 24 ID-C APS 24 ID-C APS 24 ID-C APS 24 ID-C 
Resolution (Å) 2.30 2.20 2.60 1.48 
Wavelength (Å) 0.9795 0.9795 0.9795 0.9795 

Space Group P212121 P212121 P212121 P212121 
a (Å) 61.3 61.2 60.8 60.6 
b (Å) 67.1 67.1 66.8 66.2 
c (Å) 200.7 203.5 196.9 197.0 

Reflections 226383 309648 71312 412005 
Unique reflections 34823 (1980) 43410 (4269) 23068 (2062) 118539 

(11700) 
Average I/σ 31.5 (1.9) 31.6 (6.0) 23.9 (6.1) 20.3 (3.4) 
Redundancy 6.5 (3.6) 7.1 (6.6) 3.2 (3.2) 3.6 (2.5) 

Completeness (%) 92.4 (53.4) 99.8 (99.9) 90.0 (82.6) 89.1 (88.9) 
Rsym (%) 5.2 (36.5) 5.1 (32.5) 3.8 (14.3) 6.6 (28.6) 

Rsym
 = ΣΣi|Ii - <I>|/Σ<I>, where <I> is the mean intensity of the N reflections with 

intensities Ii and common indices h,k,l. 

 Data were indexed, integrated, and scaled using the HKL2000 suite of 

programs (12).  Structures were solved using molecular replacement with thiamin 

monophosphate kinase structure (PDB ID: 1VQV) as the search model (13).  Ligands 

and missing residues were manually added using COOT (14).  Structures were then 

refined using rigid body, simulated annealing, B factor refinement and minimization 

with CNS (15).  Figures were generated using ChemDraw and PYMOL (16). 

Section 4.3. Results 

 Structure of the AaThiL Protomer.  The ternary complex models of AaThiL 

contain all 306 possible residues, as well as two to six residues of the His tag.  

However, the binary complexes lacking TMP or TPP have no density for the final six 

to eleven C-terminal residues and they are not included in the model.  The AaThiL 

protomer is composed of two domains, A and B, as seen in Figure 4.2A.  The A  
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Table 4.2.  Summary of Data Refinement Statistics 

 ThiL ATP ThiL AMP-
PCP 

ThiL AMP-
PCP/TMP 

ThiL 
ADP/TPP 

Resolution (Å) 50.00 – 
1.98 

50.00 – 
2.20 

50.00 – 
2.60 50.00 – 1.48 

# of protein atoms 4778 4750 4881 4906 
# of ligand atoms 62 62 116 116 
# of water atoms 101 90 14 547 
Reflections in working set 32928 38005 19849 102350 
Reflections in test set 2053 4312 2260 11388 
R factora (%) 22.21 21.7 21.3 20.1 
Rfreeb (%) 24.84 25.7 27.1 21.9 
Rmsd from ideals 
   Bonds (Å) 
   Angles (º) 

 
0.006 
1.3 

 
0.006 
1.3 

 
0.007 
1.4 

 
0.004 
1.2 

Avg B factor (Å2) 50.9 45.5 56.1 23.9 
Ramachandran Plot 
   Most favored (%) 
   Additionally allowed (%) 
   Generously allowed (%) 
   Disallowed (%) 

 
91.2 
8.4 
0.4 
0.0 

 
92.2 
7.4 
0.4 
0.0 

 
87.8 
11.2 
0.4 
0.6 

 
93.7 
5.6 
0.7 
0.0 

aR factor = Σhkl||Fobs|-k|Fcal||/Σhkl|Fobs|, where Fobs and Fcal are observed and calculated 
structure factors, respectively.  
b For Rfree the sum is extended over a subset of reflections (10%) excluded from all 
stages of refinement. 

domain consists of the first 140 residues and adopts an α/β fold.  The mixed β-sheet 

has a strand order of β1↑β2↓β5↑β3↓β4↓, shown in Figure 4.2B.  The β-strands are 

unusually long, with β2 and β3 each having eleven residues, β5 ten residues, and β9 

nine residues.  The fifth strand, β1, is shorter with only five residues.  The β-sheet is 

flanked on one side by four α-helices.  Two of the α-helices, α3 and α4, are also 

longer than average, each with eighteen residues.  The B domain, consisting of the C-

terminal 160 residues, has an α/β fold as well.  The mixed β-sheet has a strand order 

of β7↓β9↑β6↓β10↑β8↓β11↓.  The β-strands are much shorter than the β-strands 

found in the A domain.  The longest β-strand, β10, has eight residues, and the two 

shortest strands, β8 and β11, each have four residues.  β10 has a sharp twist, seen in 

Figure 4.2A, that results in a bend in the β-sheet.  The β-sheet is flanked on both sides 
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Figure 4.2.  Overall structure of AaThiL.  (A)  Ribbon diagram of the monomer of 
AaThiL.  The A domain is shown in red and the B domain is shown in green.  All 
figures were generated using PyMol (16).  (B)  Topology diagram of AaThiL.  The A 
domain and the B domain are shown separately.  (C)  Ribbon diagram of the dimer of 
AaThiL.  The A domain is colored in red and the B domain has been colored green in 
one monomer, and to emphasize domain interactions, the A and B domains of the 
second monomer are shown in muted tones.  The products, TPP and ADP, are shown 
as stick representations.  A 90° rotation provides both a side view of the dimer as well 
as the view down the β-barrel. 

by α-helices.  Five α-helices, α5, α6, α8, α9, and α10, are found on one side of the β-
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sheet, while α7 is the only α-helix on the other side of the β-sheet.  The A domain and 

B domain are linked by a short connective loop between β5 and β6.   

 Structure of the AaThiL Dimer.  The unit cell contains one dimer per 

asymmetric unit (Figure 4.2C).  The surface area of the dimer is approximately 25500 

Å2, with 6300 Å2 buried at the interface between protomers (17).  The primary 

interaction between protomers occurs in the A domain in which the twofold related β-

sheets come together to form an eight stranded β-barrel.  The short β1 strand stacks on 

top of β4 to form one long strand that is of a length comparable to the other β-strands 

in the β-barrel.  This β-barrel is flanked by α-helices from the A domains.  α2 of one 

protomer and α4 of the second protomer run parallel to each other and hydrophobic 

residues along each α-helix interact with the opposite α-helix.  A noncrystallographic 

twofold axis runs through the β-barrel.  The interface between protomers is stabilized 

primarily through hydrophobic interactions and the packing of β-strands against each 

other.  A disulfide bond forms between Cys34 and Cys34*, where ″*″ indicates the 

twofold related protomer.  Ten hydrogen bonds form between protomers.  The 

carboxylate group of Glu20 forms a hydrogen bond to the amine of Lys105*, the 

amide group Asn46 is hydrogen bonded to both the hydroxyl group of Ser121 and the 

oxygen atom of the amide group of the side chain of Asn87, and the carboxylate of 

Asp91 is hydrogen bonded to the amine of Lys4.  The hydroxyl group of Tyr33 is 

hydrogen bonded to the carboxylate group of Glu135, and the amine of Lys125 forms 

a hydrogen bond to the carboxylate of Glu124.  In addition to these hydrogen bonds, 

four hydrogen bonds are formed between the backbone atoms of the two protomers.  

The carbonyl oxygen atoms of Met1, Asp91, Leu92, and Glu90 form hydrogen bonds 

to the nitrogen atoms of the amide bonds in Val94, Arg2, Leu3, and Lys4, 

respectively.  The ends of the β-strands are composed of mostly hydrophilic residues 

that are solvent exposed.  Additionally, several highly conserved aspartate residues 
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that contribute to the formation of the active site are found within the β-barrel facing 

away from the β-barrel core. 

 ATP Binding Site.  The AaThiL dimer has two equivalent active sites, located 

mostly within a single protomer but with some interactions from the opposite 

protomer.  The active site is located in a cleft between the A and B domains and also 

involves β-strands β3 and β4 of the A domain of the twofold related protomer.  The 

interactions between the residues of the active site and ATP are shown in Figure 4.3A 

and Figure 4.4.  ATP binds deeply within the active site cleft and has no exposure to 

the solvent.  The adenine base of ATP binds in a highly hydrophobic pocket, rich with 

highly conserved isoleucine and valine residues, formed on one side by the β4 strand 

Figure 4.3.  Schematic diagrams for the active sites of the substrate and product 
complexes. Interactions between ligand and residues, ions, and water molecules are 
shown with dashed lines.  (A)   Binding of AMP-PCP within the active site of 
AaThiL.  (B)  Binding of ADP within the active site of AaThiL.  (C)  Binding of 
TMP within the active site of AaThiL.  (D)  Binding of TPP within the active site of 
AaThiL. 
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from the opposing protomer.  The hydroxyl group of Tyr101* forms hydrogen bonds 

to N6 and N1 of the adenine base.  The amino group of the adenine base is also 

hydrogen bonded to the backbone carbonyl group of Asn119*.  The hydroxyl groups 

of the ribose sugar form hydrogen bonds to three ordered water molecules that are 

involved in water-mediated hydrogen bonding to the protein backbone at Gly25, 

Asp26, Asp27, Thr28, and Ala29; these residues form a turn between strands β1 and 

β2.  The phosphate tail in both binary complex structures is precisely positioned by the 

presence of three magnesium ions.  These magnesium ions are coordinated to several 

strictly conserved aspartate residues, Asp27, Asp43, Asp71, and Asp207.  Mg1 is 

coordinated to both the α-phosphate and β-phosphate groups of AMP-PCP or ATP 

and is also coordinated by the carboxylate group of Asp43, the carbonyl groups of the 

backbone at Thr42, Asn119*, and two water molecules.  Mg2 coordinates the β-

phosphate and γ-phosphate groups and is positioned by Asp43, Asp71, and one water 

molecule.  The third magnesium ion is coordinated to the same phosphate groups as 

Mg2 and is held in position by Asp27, Asp71, Asp207, and one water molecule.  The 

β-phosphate group is also hydrogen bonded to Arg142, the only positively charged 

residue located within the active site.  In the AMP-PCP/TMP complex, Mg1 moves 

2.9 Å to coordinate to both ligands while maintaining its coordination to the protein.  

The other magnesium ions remain coordinated to the same residues and phosphate 

groups as observed in the binary complexes.  In addition to the three magnesium ions 

seen in the binary complexes, a fourth magnesium ion is found coordinated to the 

oxygen atom of the β-phosphate group, which is not coordinated to any of the other 

magnesium ions.  Mg4 is also coordinated to Thr41, Asp71, the carbonyl group of 

Asp27, and three water molecules.  A fifth magnesium ion, Mg5, is found coordinated 

to the α-phosphate and β-phosphate groups of TPP, as well as three water molecules 

and Asp210. 
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Figure 4.4.  Stereoview diagram of the active site of the AaThiL ternary 
complexes.  (A)  Stereoview of the active site in the AMP-PCP and TMP structure. 
The 1FO-FC map is contoured at 2.5 σ and is shown in blue.  (B)  Stereoview of 
the active site in the ADP and TPP structure.  The magnesium ions, shown as 
green spheres, have moved to adjust to the shift of the transferred phosphate group. 
The 1FO-FC map is again contoured at 2.5 σ and shown in blue.

 The conversion of ATP to ADP results in movement of the magnesium ions.  

Mg1 remains coordinated to the α-phosphate and β-phosphate groups but loses its 

coordination to Thr42 and is instead bound by only the two water molecules, Asp43, 

and Asn119*.  Mg2 coordinates to the same oxygen atom as Mg1 as well as Asp71, 

Asp43, and two water molecules.  Asp27, Asp71, Asp207, a water molecule and the β-

phosphate group of ADP are coordinated to Mg3.   

 Thiamin Binding Site.  ATP binds deeply within the active site and in both 

binary complexes the C-terminal end (six to ten residues) is disordered.  Binding of 

TMP leads to ordering of the C-terminus.  In the structure with AMP-PCP, the 
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electron density of the A chain can be seen through Pro300 and for the B chain 

through Lys297.  Ordering of the C-terminus in the ternary complex results in a lid 

forming over the active site, shielding the substrates from the solvent.  Additionally, 

the ordering of the C-terminus causes the c axis of the unit cell to shorten by 

approximately 6 Å (203 Å to 197 Å). 

Several residues of the lid interact directly with TMP.  Trp303 stabilizes the 

thiazole ring through π stacking and this residue, while not strictly conserved, is 

always an aromatic residue, as seen in the sequence alignment (Figure 4.5).  Strictly 

conserved His305 is coordinated to an oxygen atom of the α-phosphate group of TMP, 

one of the few interactions between a positively charged residue and the phosphate 

tail.  The pyrimidine portion of TMP is partially exposed to the solvent and with few 

interactions between the pyrimidine ring and the active site residues.  The amino 

group of the pyrimidine ring forms a hydrogen bond to Glu260, which is conserved 

among ThiL’s.  N3 of the pyrimidine ring is hydrogen bonded to an ordered water 

molecule, which provides water-mediated hydrogen bonding to the backbone carbonyl 

oxygen atom of His50 and the hydroxyl group of Tyr55.  The phosphate group of 

TMP is positioned by a magnesium ion.  Mg1 is coordinated to the phosphate group as 

well as two phosphate groups of AMP-PCP, Asp43, and Asn119*.   

 Conversion of TMP to TPP results in some movement of the magnesium ions.  

These interactions are shown in Figures 4.3B and 4.4.  The γ-phosphate group of ATP 

moves approximately 2.3 Å to form the products ADP and TPP.  Three magnesium 

ions, Mg1, Mg2 and Mg5, and Ser209 coordinate the β-phosphate group of TPP.  Mg1 

is also coordinated to Asn119* and Asp43, Mg2 is positioned between the β-

phosphate group of TPP and the β-phosphate group of ADP, and Mg5 interacts with 

both the α-phosphate and β-phosphate groups of TPP.  Attempts to prepare a binary 
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complex with TMP were unsuccessful suggesting that ATP binding precedes TMP 

binding. 

Figure 4.5.  Sequence alignment of randomly selected ThiL proteins.  Strictly 
conserved residues are blocked in red, while less conserved residues are in red font.  
Secondary structure from AaThiL is shown above the alignment.  Alignments were 
performed using ClustalW (34) and ESPript (35). 
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Section 4.4. Discussion 

 Conformational Changes in ThiL upon Substrate Binding.  The lack of 

substrate or product bound to ThiL in the deposited structure (PDB ID: 1VQV) 

presented several questions about the enzyme's mechanism of action.  Our results 

showed that upon binding ATP or AMP-PCP in the binary complexes, several 

disordered regions in the unliganded structure become ordered, although the C 

terminus remains disordered.  Residues 7-9, 25, 32, 33, 289, and 301-306 from the A 

chain and residues 25, 33-36, and 301-306 from the B chain are disordered in 

unliganded AaThiL.  Gly7, Glu8, and Phe9 make up a loop between α1 and α2.  

Binding of ATP appears to order this loop and the side chain of Glu8 points into the 

active site.  The loop near the ATP molecule between α2 and β1, composed of 

residues 20-28, lacks density for Gly25 and the conformation of this loop changes 

upon binding of ATP.  The unliganded AaThiL structure includes two phosphate ions 

bound to each protomer; however, these phosphate groups are located on the surface 

of the protein and do not correspond to phosphate group locations in the AaThiL 

active site. 

Binding of TMP results in some additional changes in the structure of AaThiL.  

The rmsd is 0.6 Å between the AMP-PCP and AMP-PCP/TMP structures.  The most 

noticeable and important structural change is the ordering of the C-terminal residues 

upon the binding of TMP.  The last five residues are mostly conserved among ThiL’s, 

as seen in Figure 4.5.  Trp303 is consistently an aromatic residue and stabilizes the 

bound thiamin group by providing π stacking with the thiazole ring.  His305 is 

strongly conserved, as is Phe306.  His305 directly interacts with the α-phosphate 

group of TMP, providing stabilization.  Phe306 fits neatly into a pocket of the 

hydrophobic residues Leu3, Leu11, Leu88, Val97, and Ile120.  This pocket shows no 

movement or conformational changes of residues resulting from TMP binding.  
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Within the active site, two additional magnesium ions, Mg4 and Mg5, are bound in the 

ternary substrate complex.  These magnesium ions play a key role in positioning the 

phosphate group of TMP.  The highly conserved aspartate residues, Asp27, Asp43, 

Asp71, and Asp207, retain the side chain conformations seen in the binary complexes 

upon the binding of TMP.   

Little change occurs with the conversion of substrates to products, with an 

rmsd between these two structures of 0.4 Å.  The γ-phosphate group moves 2.4 Å 

toward TMP to become the β-phosphate group of TPP, and in turn Mg1 moves 2.5 Å 

to maintain its coordination to this phosphate group and help stabilize the transition 

state.  The β-phosphate and α-phosphate groups of ADP and ATP do not move and 

the α-phosphate of TMP and TPP also remains in place.  The side chains of all active 

site residues, including the residues of the C-terminal tail, are in the same 

conformation in the substrate complex and the product complex.   

Comparison of ThiL to Other Proteins.  The structure determination of E. coli 

PurM (EcPurM) revealed that this enzyme adopted a novel fold that binds ATP (5).  

BLAST searching using this enzyme identified four other enzymes, PurL, SelD, 

HypE, and ThiL as likely members of this ATP binding superfamily.  These five 

enzymes each contain a short signature amino acid sequence, Dx4GA/GxP, which 

characterizes members of the superfamily.  Thus far, no other sequence motif has been 

identified for this superfamily. 

Structures have been determined for every member of the superfamily except 

SelD.  There are two forms of PurL, designated large and small.  The structure of 

Salmonella typhimurium PurL (StPurL) (6) represents the large PurL’s, which are 

found in eukaryotes and Gram negative bacteria.  StPurL is 140 kDa in mass and is a 

multifunctional enzyme in which the formylglycinamide ribonucleotide synthetase 

domain shows twofold pseudosymmetry and adopts the fold of a PurM dimer.  Small 
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PurL's are found in Gram positive bacteria and are represented by the structure of 

Thermatoga maritima PurL (TmPurL) (18).  TmPurL is 80 kDa in mass and 

corresponds to the formylglycinamide ribonucleotide synthetase domain of large PurL.  

TmPurL and other small PurL’s require two additional enzymes, PurS and PurQ, to be 

active.  Recently the structure of Thermococcus kodakaraensis KOD1 HypE 

(TkHypE), involved in the maturation of NiFe hydrogenase, was determined (19).  

Like ThiL and PurM, HypE is a homodimer in the crystal structure.   

A DALI search was performed using AaThiL as the search structure, and the 

results are summarized in Table 4.3 (20).  The most structurally similar proteins to 

ThiL are as expected the other members of the PurM ATP binding superfamily.  The 

top DALI score corresponded to HypE.  HypE requires carbamoylation at a conserved 

cysteine residue at the C-terminus; however, this modification was not present in the 

crystal structure (19).  An ATP-dependent dehydration transfers the resulting cyanide 

ligand to a HypCD complex.  Although TkHypE forms a dimer crystallographically, 

the biologically active form is uncertain because E. coli HypE has also been reported 

as a monomer (21). 
 

Table 4.3. Summary of DALI search results. 

Protein PDB ID Z Score RMSD 
# aligned 
residues 

ThiL 1yaw 42.2 1.1 287 
TkHypE 2z1f 28.2 2.6 263 

TmPurL (AMPPCP/FGAR) 2hs4 19.6 3.1 249 
EcPurM 1cli 19.6 3.1 242 
StPurL 1t3t 14.2 3.0 240 

TmPurL 1vk3 13.3 3.5 210 
YjgF 1qu9 8.4 2.4 94 
YjgH 1pf5 6.6 2.9 91 
YjgF 2ewc 5.4 3.2 92 

 AaThiL and TkHypE were structurally aligned using the DaliLite Pairwise 

comparison (22).  The Z score for these two structures was 28.2 and the rmsd was 2.6 
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Å, reflecting the similarity of these two structures (Figure 4.6A).  No density for ATP 

is observed in the HypE structure; however, the C-terminal tail shows different 

conformations depending on whether or not ATP was added during crystallization.  

Inclusion of ATP in the crystallization conditions resulted in an inward conformation 

where the C-terminal tail folded back into the active site, suggestive that after 

carbamoylation at Cys338 the C-terminal end could enter the active site for 

dehydration.  The position of Cys338 corresponds to the thiazole ring in the AaThiL 

structures.  For both AaThiL and TkHypE the C-terminal tail appears to form a lid 

over the active site when both substrates are present. 

The superpositions of EcPurM and TmPurL upon AaThiL are shown in 

Figures 4.6B and 4.6C, respectively.  In both superpositions, the A domains are more 

structurally conserved than the B domains.  The rmsd for the entire EcPurM structure 

when compared to AaThiL is 3.2 Å and drops to 2.1 Å when only the A domains are 

compared.  The TmPurL structure has an overall rmsd of 3.2 Å, and the rmsd of the A 

domain is 2.0 Å.  Comparisons of the B domains yield rmsd values similar to that of 

the overall structure, 3.1 Å for EcPurM and 3.0 Å for TmPurL.  The higher degree of 

similarity in the A domains for the members of the PurM ATP binding superfamily is 

not surprising as the A domains are responsible for forming the dimer interface and 

the binding of ATP occurs almost entirely within the A domain.  The B domain 

interacts with the second substrate and is expected to show greater variation because 

each enzyme has evolved to catalyze a different chemical reaction.   

Despite this strong structural similarity, the sequence identity is low between 

AaThiL and other PurM superfamily members, ranging from 20% identity with 

TkHypE to 13% identity with StPurL.  The only conserved sequence based on 

multiple sequence alignments is the signature sequence motif of Dx4GA/GxP.  To 

identify any other conserved sequence motifs, a structural alignment was carried out 
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Figure 4.6.  Comparison of AaThiL to other members of the PurM ATP binding 
superfamily.  (A)  Ribbon diagram of TkHypE superimposed on AaThiL.  TkHypE 
is colored in red and AaThiL is green.  (B)  Ribbon diagram of EcPurM 
superimposed on AaThiL.  EcPurM is colored in yellow and AaThiL is colored in 
green.  (C)  Ribbon diagram of TmPurL superimposed on AaThiL.  TmPurL is 
colored in blue and AaThiL is colored in green. 

using the program VAST (23).  As seen in Figure 4.7, the signature sequence motif is 

structurally conserved, as well as five glycine residues, but no other residue is 

conserved within the superfamily.  The aspartate residue from the signature motif is 

responsible for coordinating a magnesium ion in the active sites of TmPurL and 

AaThiL and by inference, the active sites of StPurL, EcPurM and HypE for which no  
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Figure 4.7.  Structural sequence alignment of all available structures of the PurM ATP 
binding superfamily.  The conserved residues are shown blocked in red, while less 
conserved residues are in red font.  The only conserved residues are the signature 
sequence for the superfamily and glycine residues important for folding.  The 
structural alignment was done using VAST. 
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complex structure are available.  This magnesium ion coordinates the β-phosphate and 

γ-phosphate groups of ATP.  The conserved glycine residues are found at the ends of 

β-strands or α-helices and most likely play structural roles within the PurM ATP 

binding superfamily.   

 Also identified through the DALI search with Z scores ranging from 8.4 to 5.4 

and rmsd values between 2.4 Å and 3.1 Å for 90 to 95 residues aligned were a series 

of proteins belonging to the YjgF family.  The function of the YjgF family of proteins 

is largely unassigned, although one family member, YabJ, has been implicated in the 

regulation of purines (24).  The YjgF family of proteins (PDB ID:  1QU9) adopt a fold 

that is similar to that of chorismate mutase with a six-stranded mixed β-sheet 

β1↑β2↓β3↑β6↓β4↑β5↑ flanked on one side by two α-helices (25).  Like the β-

strands of the A domain of the PurM superfamily, these β-strands are unusually long 

and contain eight to ten residues.  ThiL has a strand order of β1↑β2↓β5↑β3↓β4↓  and 

in the DALI alignment strands β1, β2, β5, β3 and β4 of AaThiL superimpose on 

strands β2, β3, β6, β4 and β5, respectively, of YjgF.  YjgF is a trimer and forms a 12-

stranded central β-barrel that is reminiscent of the eight-stranded central β-barrel of 

the AaThiL dimer.  Clefts that are postulated to be the active site are formed between 

the subunits of the YjgF trimer.  After the DALI alignment the cleft of YjgF 

superimposes on the active site of ThiL (Figure 4.8B).  Examination of the YjgF cleft 

and the active site of ThiL failed to reveal the conserved aspartate residue from the 

signature motif.  Therefore, the shared structural motif is unlikely to bind ATP in the 

YjgF family.     

Active Site Comparison.  While structures of EcPurM, StPurL, and TkHypE 

have nothing bound, the structures of both AaThiL and TmPurL have been determined 

with substrates or products bound to the active site (18).  The superposition of the 

AaThiL and TmPurL active sites is shown in Figure 4.9.  The two AMP-PCP 
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Figure 4.8.  Comparison of the YjgF gene product from E. coli and AaThiL.  (A)  The 
structure of the trimer of YjgF.  (B)  Stereoview diagram of the superpositioning of 
the YjgF trimer on the monomer of AaThiL.  AaThiL is colored in green, while the 
monomers of YjgF are colored in yellow, blue, and red. 

molecules bind similarly although the ribose moiety is slightly rotated in TmPurL.  

This results in a slight shift in the phosphate tail placing the γ-phosphate groups 2.3 Å 

apart.  Overall, the secondary structural elements surrounding AMP-PCP superimpose 

well.  Two magnesium ions, Mg1 and Mg2, are present in the active sites of both 

structures and precisely position ATP for phosphate transfer.  A third magnesium ion 

in the AaThiL structure, Mg3, has no structural equivalent in the TmPurL structure 

and coordinates the α-phosphate and β-phosphate groups of AMP-PCP.  In other 

ATP-dependent enzymes this role of positioning the phosphate tail is often played by 

positively charged residues, which are lacking in the PurM ATP binding superfamily.   
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Figure 4.9.  Superposition of the active sites of AaThiL and TmPurL.  The ThiL 
structure is shown in green and the PurL structure is shown in blue. 

The TMP and formylglycinamide ribonucleotide (FGAR) binding sites are in 

similar locations but show fewer similarities than the ATP binding sites.  Both 

substrates have a phosphate group; however, the phosphate group plays a different role 

in the two enzymes.  The phosphate group of TMP is directly involved in the reaction 

as the acceptor of the γ-phosphate group of ATP.  The TMP phosphate group is 

pointed into the active site and is aligned with the γ-phosphate group of AMP-PCP.  

The transfer is facilitated by Mg1 and Mg2 in AaThiL.  In contrast, the phosphate 

group of FGAR is not directly involved in the reaction catalyzed by PurL; rather it is 

the carbonyl group of FGAR that is phosphorylated.  The oxygen atom of the carbonyl 

group of FGAR is 2.1 Å from the oxygen atom of the phosphate group of TMP and no 

magnesium ions are located near FGAR in the TmPurL structure.  Each structure has 

two conserved histidine residues that form hydrogen bonds to TMP or FGAR; no 

other positively charged residues hydrogen bond to TMP, and FGAR has only one 

additional hydrogen bond to a positively charged residue.   

Comparison to Proteins Binding Thiamin.  TPP in cells usually acts as a 

cofactor where it participates in a variety of enzymatic reactions.  TPP dependent 

enzymes require either a magnesium ion or calcium ion and the TPP cofactors exist in 

similar conformations when bound to TPP-dependent enzymes (26).  For example, in 
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yeast pyruvate decarboxylase (PDB ID: 1PYD) (27) and yeast transketolase (PDB ID: 

1AY0) (28),  N4 is positioned to deprotonate C2 of the thiazole ring.  In contrast, TPP 

when not serving as a cofactor, as well as thiamin and TMP, are usually found in 

different conformations when bound to proteins.  For example, in thiamin phosphate 

synthase (PDB ID: 1G4S), TMP is bound such that N4 is pointed away from C2 (29).  

In this conformation, N4 is unable to deprotonate C2, preventing the carbanion from 

forming (26).  In AaThiL the pyrimidine ring of TPP is rotated such that N4 is pointed 

toward C2 of the thiazole ring; however, the conformation TPP adopts in ThiL is 

different from both described above.  While N4 is pointed toward C2, the pyrimidine 

ring is rotated about 100° compared to TPP as a cofactor, which may prevent TPP 

activation in the ThiL binding site. 

 Mechanistic Implications.  The presence of a phosphoimidate intermediate 

(Figure 4.10) was proposed as a common theme among the members of the PurM 

superfamily (6).  Positional isotope exchange studies performed on SelD suggest a 

phosphorylated enzyme intermediate, although the phosphorylated residue has not 

been definitively identified (30, 31).  Studies on PurL in which the amide carbonyl 

oxygen atom from FGAR is labeled with O18 show that this oxygen atom is found in 

the inorganic phosphate product, also supporting a phosphoimidate intermediate (32).  

These observations suggest that ThiL might transfer the phosphate to TMP indirectly 

through a phosphoenzyme intermediate rather than a directly through an inline 

mechanism (33).  Inspection of the AaThiL complexes revealed no candidate (e.g., 

backbone amide or amino acid side chain) with suitable geometry for formation of a 

phosphoenzyme intermediate.  The binary complexes showed that Ser209 is possibly 

positioned for phosphorylation; however, the ternary complexes with AMP-PCP/TMP 

or ADP/TPP showed that Ser209 is better positioned to provide a hydrogen bond to 

the γ-phosphate of ATP or the β-phosphate of TPP, and is poorly positioned to take 
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CHAPTER 5 

GENE IDENTIFICATION AND STRUCTURAL CHARACTERIZATION OF THE 

PYRIDOXAL 5′-PHOSPHATE DEGRADATIVE PROTEIN 3-HYDROXY-2-

METHYLPYRIDINE-4,5-DICARBOXYLATE DECARBOXYLASE FROM 

MESORHIZOBIUM LOTI MAFF3030991 

Section 5.1. Introduction 

In contrast to our understanding of cofactor biosynthetic pathways, very little 

is known about cofactor catabolism. Cofactor catabolism is likely to be rare because 

cofactors are trace metabolites and therefore not good food sources for bacteria. 

Pyridoxine, 1 (vitamin B6) catabolism is the best understood cofactor catabolic 

pathway and a small number of bacteria that can grow on vitamin B6 as the sole source 

of carbon and nitrogen have been identified (1). Two catabolic pathways have been 

proposed (2). In the first pathway of Figure 5.1, (pathway A), found in Pseudomonas 

sp. MA-1, vitamin B6 is degraded in eight steps to form succinic semialdehyde, 9, 

while in the second pathway  (pathway B) observed in Pseudomonas IA and in 

Arthrobacter Cr-7, vitamin B6 is catabolized in seven steps to 2-(hydroxymethyl)-4-

oxobutanoate, 14. A related catabolic pathway in Mesorhizobium loti MAFF303099 

which is very similar to the degradative pathway A has recently been discovered. 3-

hydroxy-2-methylpyridine-5-carboxylate, 7 is an intermediate in this catabolic 

pathway. The gene coding for the enzyme producing this metabolite has not 

previously been discovered and is the subject of this paper. 

 Previously, the genes encoding pyridoxine-4-oxidase (mlr6785), 4-

pyridoxolactonase (mlr6805), pyridoxal-4-dehydrogenase (mlr6807) and the 2-methyl-

3-hydroxypyridine-5-carboxylic acid oxygenase (mlr6788) were identified in  
  

                                                 
1 Reproduced with permission from Mukherjee, T., McCulloch, K.M., Ealick, S.E., and Begley, T.P. 
(2007) Biochemistry 46: 13606-13615.  Copyright 2007 American Chemical Society 
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Figure 5.1.  The vitamin B6 catabolic pathways. The pathway A is observed in 
Pseudomonas sp. MA-1 (3) while the pathway B is observed in Pseudomonas IA and 
in Arthrobacter Cr-7. A minor variation of pathway A is seen in Mesorhizobium loti 
MAFF303099 where the formation of 5 is not seen. The reaction shown in the box is 
catalyzed by HMPDdc. The bottom figure shows the gene organization in M. loti. The 
genes that have been identified to participate in PLP degradation are identified in 
catabolic pathway A.
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Mesorhizobium loti MAFF303099 (4-7). Recently we have reported the identification 

of a fifth gene (mlr6793), encoding 4-pyridoxic acid dehydrogenase (8). These genes 

are not part of an operon, but are all close to each other on the M. loti chromosome 

(Figure 5.1). This suggested that other PLP catabolic genes might also be found in this 

region. In particular, we felt that the mlr6791gene, annotated as ribulose-5-phosphate 

4-epimerase (9), was a likely candidate for  the decarboxylase gene because the 

epimerase and the decarboxylase catalyzed reactions both proceed via enzyme 

stabilized enolate intermediates. In this paper, we report the cloning and 

overexpression of mlr6791, demonstrate that the purified gene product catalyzes the 

decarboxylation of 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6 and describe the 

structure of this enzyme. While the decarboxylation of hydroxy-substituted benzene 

rings is a common motif in biosynthesis, the mechanism of this reaction is still poorly 

characterized. The structural studies described here suggest that catalysis of such 

decarboxylations proceeds by an aldolase-like mechanism. 

Section 5.2. Experimental Procedures 

Materials. A dehydrated form of Luria-Bertani (LB) broth was purchased from 

EMB Chemicals, (Gibbstown, NJ). Ampicillin and isopropyl-β-D-

thiogalactopyranoside (IPTG) were obtained from Lab Scientific Inc. (Livingston, 

N.J.). 4-pyridoxic acid, NAD, TRIS hydrochloride, DTT and M9 minimal salts were 

from Sigma (St. Louis, MO.). Triethylamine was from Fisher (Fairlawn, NJ). 

Trifluoroacetic acid (TFA), methanol (HPLC grade), sodium chloride, imidazole, 2-

mercaptoethanol and L-(+)-selenomethionine were from Acros Organics (Morris 

Plains, NJ). Sodium dihydrogen phosphate monohydrate, calcium chloride, ferrous 

sulfate heptahydrate, manganese chloride and magnesium sulfate were from 

Mallinckrodt Baker Inc. (Phillipsburg, NJ). Deuterium oxide (D2O) was purchased 

from Cambridge Isotope Laboratories Inc. (Andover, MA). Microcon YM-10 
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centrifugal filter devices (10,000 MWCO) and the Amicon Ultra centrifugal filter 

device (10,000 MWCO) were obtained from Millipore (Billerica, MA). The Supelcosil 

LC-18-T column for HPLC was from Supelco, (Bellefonte, PA). MEM vitamin 

solution, E. coli strain MachI and the Gateway system were from Invitrogen 

(Carlsbad, CA). Nucleospin Purification kit, Phusion DNA polymerase, E. coli 

BL21(DE3) and the Ni-NTA superflow resin were obtained from Macherey-Nagel 

(Easton, PA), New England Biolabs (Ipswich, MA), Novagen (San Diego, CA) and 

Qiagen (Valencia, CA) respectively. 

Molecular Cloning. Standard methods were used for DNA manipulations (10), 

(11). Plasmid DNA was purified with the Qiagen Miniprep kit and DNA fragments 

were purified from agarose gel with the Nucleospin Purification kit. Escherichia coli 

strain Mach1 was used as a recipient for transformations during plasmid construction 

and for plasmid propagation. Phusion DNA polymerase was used for PCR following 

the manufacturer’s recommendations. The pENTR-TEV-D-TOPO and the Gateway 

system were used following the manufacturer’s instructions with slight modifications.  

Cloning of M. loti mlr6791. The M. loti mlr6791 gene was amplified from 

genomic DNA by PCR with the following primer pair: 5’-CAC CAT GCG TCG GAA 

GGT CTT CGA AGA G-3’ AND 5’-TCA GGC GAG GCC TGC TTG CCT GAG G-

3’. The PCR product was purified and used in a topoisomerase mediated reaction with 

pENTR-TEV-D-TOPO essentially following the manufacturer’s instructions. Clones 

were screened by PCR and verified by sequencing. In initial sequencing, no clones 

were found with a completely correct sequence.  One clone was subjected to standard 

site-directed mutagenesis with the following complementary primer pair: 5'-GGA 

TAC GTT CGG GCA CAT ATC TGC CCG TGA CCC CGA G-3' and 5'-CTC GGG 

GTC ACG GGC ACA TAT GTG CCC GAA CGT ATC C-3'.  Colonies from the 

mutagenesis were screened with the M13-reverse primer and the mutant specific 
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primer 5'-GAT ACG TTC GGG CAC ATA TC-3'.  PCR positive clones were 

sequenced and a correct clone was used in an LR recombination reaction with the 

plasmid pDESTF1, which is a Gateway adapted vector based on the pET-system. The 

plasmid pDESTF1 encodes an N-terminal 6xHis tag and is under the control of the 

T7/lac /promoter. Clones were screened by restriction digestion. A correct clone was 

named pMl5335.XF1. 

Overexpression and Purification.  The plasmid pMl5335.XF1 was used to 

transform E. coli BL21(DE3). The cells were grown in 1L LB medium, containing 

100 μg/mL of ampicillin, at 37 °C with agitation until the culture reached an OD590 of 

0.6, at which point overexpression was induced by adding IPTG to a final 

concentration of 0.5 mM, the temperature was lowered to 15 °C and the cells were 

allowed to grow for a further 12 h before being harvested. The yield of the purified 

protein was 20 mg/L. 

 For selenomethionine (SelMet) protein, the plasmid pMl5335.XF1 was 

transformed into E. coli B834(DE3) cells, a strain auxotrophic for methionine.  Cells 

were grown at 37 °C with shaking in minimal M9 media which was supplemented 

with 20 mg/L of all amino acids except methionine, 1X MEM vitamin mix, 0.4% 

glucose, 50 mg/L L-selenomethionine, 2 mM MgSO4, 0.1 mM CaCl2, 25 mg/L FeSO4, 

and 100 mg/L ampicillin.  When cells reached an O.D.600 of 0.6, the temperature was 

lowered to 15 °C and protein overexpression was induced with 0.5 mM IPTG.  Cells 

were harvested after 18 h by centrifugation at 8500 g for 15 min.  Cells were lysed by 

sonication and the cell lysate was cleared by centrifugation at 40000 g for 45 min at 4 

°C.  SelMet-HMPDdc was purified using a Ni-NTA affinity chromatography column.  

The sample was loaded in buffer A spiked with 10 mM imidazole, which contains 50 

mM NaH2PO4, 300 mM NaCl, and 3 mM β-mercaptoethanol to prevent oxidation of 

the selenomethionine.  The column was then washed with 10 column volumes of 
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buffer A with 30 mM imidazole and the sample was eluted from the column with 

buffer A containing 250 mM imidazole.  Protein was buffer exchanged into 10 mM 

Tris-HCl pH 7.7, 20 mM NaCl, and 1 mM DTT using an Econo-Pac 10 DG desalting 

column (BioRad).  SelMet-HMPDdc was judged to be greater than 95% pure by SDS-

PAGE gel analysis (results not shown).  The yield of SelMet-HMPDdc was 

comparable to native protein at 20 mg per L.  The protein sample was concentrated to 

10 mg/mL as determined by Bradford assay using bovine serum albumin as a standard 

(11).   

HPLC analysis.  HPLC analysis of the enzymatic reaction mixture was 

performed on a Hewlett-Packard 1100 instrument using a Supelcosil LC-18-T (15 cm 

X 4.6 mm, 3.0 μM) column. Solution A contained water, solution B contained 100 

mM sodium phosphate buffer at pH 6.6 and solution C contained methanol. The 

following linear gradient was used: 0% to 10% solution A and 100% to 90% solution 

B for 0 to 5 min, 10% to 48% solution A, 90% to 40% of solution B and 0% to 12% of 

solution C from 5-12 min, 48% to 50% solution A, 40% to 30% of solution B and 

12% to 20% of solution C in 12-14 min, 50% to 30% solution A, 30% to 10% of 

solution B and 20% to 60% of solution C in 14-18 min, 30% to 0% solution A, 10% to 

100% of solution B and 60% to 0% of solution C in 18-20 min and 0% of solution A, 

100% of solution B and 0% of solution C in 20-25 minutes. The flow rate was 1 

mL/min and the absorbance was measured at 254 nm (characteristic for NAD, 3-

hydroxy-2-methylpyridine-5-carboxylate 7) and 320 nm (characteristic of 4-pyridoxic 

acid 4, 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6 and  3-hydroxy-2-

methylpyridine-5-carboxylate,7). Under these conditions the following compounds 

were readily separated (retention time in parenthesis): 4-pyridoxic acid, 4, (17.8 min), 

3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6 (2.8 min), 3-hydroxy-2-

methylpyridine-5-carboxylate 7 (5.5 min) and NAD (12.9 min).  
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Enzymatic synthesis of the substrate. 3-hydroxy-2-methylpyridine-4,5-

dicarboxylate 6 was enzymatically synthesized from 4-pyridoxic acid, 4. The 5 mL 

enzymatic reaction mixture containing 12 mM NAD, 6 mM 4- pyridoxic acid, 4 and 

100 μM freshly purified 4-pyridoxic acid dehydrogenase (8) in 100 mM sodium 

phosphate buffer at pH 8.0 was incubated overnight at room temperature. It was 

subsequently concentrated by lyophilizing and redissolving in a minimum volume of 

water. It was then filtered through YM-10 Microcon centrifugal filter at 14,000 g for 

30 min to remove the protein and the filtrate was purified by HPLC. 100 mM 

ammonium acetate, pH 6.6, was used instead of 100 mM sodium phosphate buffer at 

pH 6.6 as solution B, to facilitate removal of the buffer salts from the isolated 

3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6 during lyophilization. Compound 6 

is a stable white solid. 1H NMR (300 MHz, D2O) δ 2.69 (s, 3H, CH3) and 8.42 (s, 1H, 

C6-H).  

Reaction time course. A time course was determined with a reaction mixture (1 

mL) containing 1.58 mM 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6, 2 μM pure 

enzyme and 10 μM MnCl2 in 100 mM Tris HCl at pH 8.0 containing 100 mM NaCl 

and 2 mM DTT. At various time points, 100 μL of the reaction mixture was quenched 

by addition to 100 μL of 10% TFA. This mixture was filtered through Microcon YM-

10 and 100 μL of the filtrate was analyzed by HPLC (Figure 5.2A). 

Product purification and characterization. A reaction mixture (10.0 ml) 

containing 12 mM NAD, 6 mM 4-pyridoxic acid, 4, 100 μM 4-pyridoxic acid 

dehydrogenase, 100 μM of HMPDdc and 1mM MnCl2 in 100 mM Tris HCl at pH 8.0 

containing 100 mM NaCl and 2 mM DTT was incubated overnight at room 

temperature. It was then filtered through an YM-10 Microcon centrifugal filter at 

14,000 g for 30 min. The desired enzymatic product (retention time 5.5 min) was 

purified by HPLC over multiple injections. Methanol was removed by rotary  
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Figure 5.2. (A) HPLC trace showing the disappearance of 3-hydroxy-2-
methylpyridine-4,5-dicarboxylate 6 (retention time of 2.8 minutes) and the appearance 
of 3-hydroxy-2-methylpyridine-5-carboxylate 7 (retention time of 5.5 min). (B) UV 
visible spectra of the enzymatic reaction mixture (500 �L) containing 1.58 mM of 
3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6, 4 �M MnCl2 and 780 nM of the 
HMPDdc in 100 mM Tris HCl at pH 8.0 containing 100 mM NaCl and 2 mM DTT 
were taken at 1 minute intervals over 20 minutes. (C) The steady state kinetic 
parameters for HMPDdc were determined by monitoring the absorbance at 265 nm 
over time.  
 

evaporation; TFA and water were removed under high vacuum overnight. The 

resulting white powder was characterized by NMR and ESI-MS. 1H NMR (300 MHz, 

D2O) δ 2.46 (s, 3H, CH3), 7.68 (s, 1H, C4-H) and 8.12 (s, 1H, C6-H). ESI-MS 

(Esquire-LC_00146 instrument, Bruker, Negative ion mode) m/z = 152, (mono 

anionic 3-hydroxy-2-methylpyridine-5-carboxylate 7). Fragmentation analysis resulted 

in the formation of a species with m/z = 108 (M-44, decarboxylation of 7).  

Steady state kinetic parameters. The steady state kinetic parameters for 

HMPDdc were determined by monitoring the change in absorbance at 265 nm over 

time. To a reaction mixture (500 μL) containing 1 μM enzyme and 5 μM MnCl2, 

varying concentrations of 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6 were 
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added. The rate of formation of 3-hydroxy-2-methylpyridine-5-carboxylate 7 was 

monitored over 3 min at 265 nm for each concentration of the substrate. The KM and 

kcat for the enzyme were determined by fitting the rate of product formation as a 

function of substrate concentration using non-linear regression to the Michaelis-

Menten equation using Grafit 5.0.11 (Erithacus Software Ltd., Surray, UK). All 

solutions were made in 100 mM Tris HCl at pH 8.0 containing 100 mM NaCl and 2 

mM DTT. 

Protein Crystallization.  The hanging drop vapor diffusion method was used 

with 1 μL of SelMet protein solution and 1 μL of reservoir solution at 22 °C.  Sparse 

matrix screens were used to determine initial hits (Crystal Screen and Crystal Screen 

2, Hampton Research).  Optimized crystallization conditions consisted of 6-9% 

polyethylene glycol 8000 and 100 mM Tris buffer with a pH ranging from 7.0 to 7.5.  

Crystals grew in a conical shape to a size of approximately 0.3 mm x 0.1 mm in 

roughly one week and were cryoprotected by a quick transfer into crystallization 

conditions with an additional 17% glycerol.  SelMet-HMPDdc crystals were then flash 

frozen by plunging in liquid nitrogen and stored frozen until data collection.  Crystals 

belong to the space group I4 with unit cell parameters a = 72.0 Å and c = 90.4 Å.  The 

unit cell contains one monomer per asymmetric unit with a solvent content of 45% and 

a Matthews coefficient of 2.24 Å3/Da (12).   

X-Ray Data Collection and Processing.  A single wavelength anomalous 

diffraction dataset was collected on a SelMet-HMPDdc crystal at the NE-CAT 24-ID-

C beamline at the Advanced Photon Source using a Quantum315 detector (Area 

Detector Systems Corp).  The dataset was collected at the maximum f″ for selenium as 

determined using a fluorescence scan of the SelMet-HMPDdc crystal.  The crystal 

diffracted to 1.9 Å resolution and data was collected over 360° using a 1° oscillation 
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range.  The HKL2000 suite of programs was used to index, integrate, and scale the 

data (13).  The data collection statistics are given in Table 5.1.   
 
Table 5.1.  Summary of Data Collection Statistics 
 SelMet HMPDdc 
Beamline APS NE-CAT 24-IDC 
Resolution (Å) 1.90 
Wavelength (Å) 0.97918 
Space Group I4 
a (Å) 72.0 
c (Å) 90.4 
Reflections 133301 
Unique reflections 34563 (2646) 
Average I/σ 27.0 (4.0) 
Redundancy 3.9 (2.0) 
Completeness (%) 96.9 (75.1) 
Rsym (%) 5.6 (14.8) 
Rsym

 = ΣΣi⎟ Ii−<Ι>⏐/Σ<Ι>, where <I> is the mean intensity of the N reflections with 
intensities Ii and common indices h,k,l. 

Structure Determination, Model Building, and Refinement.  The computer 

program hkl2map was used to determine the positions of the Se atoms using data cut 

off at 2.2 Å resolution to maximize the anomalous signal (14).  Three of the possible 

five selenium atoms were located.  The program autoSHARP was used for refinement 

of the heavy atom positions, phasing, calculation of residual maps, density 

modification, and automated model building (15).  Automated model building built 

222 of 234 residues with the correct side chain.  Examination of the density modified 

maps allowed the manual building of residues 139-141, 209-216, and 234 using 

COOT (16).  Refinement of the HMPDdc model was then performed using CNS (17).  

A metal binding site was identified and modeled as a manganese ion, based on the 

magnitude of the electron density, coordination geometry, and the results of an 

EXAFS scan performed (results not shown).  Water molecules were added as 

refinement continued also using CNS.  The data refinement statistics are given in 

Table 5.2.  The HMPDdc structure was verified using PROCHECK and no residues 
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were located in disallowed regions of the Ramachandran plot (18).  Figures were 

generated using Pymol (19). 
 
Table 5.2.  Summary of Data Refinement Statistics 
 SelMet HMPDdc 
Resolution (Å) 50.00 – 1.90 
# of protein atoms 1852 
# of metal atoms 1 
# of water atoms 205 
Reflections in working set 16904 
Reflections in test set 906 
R factora (%) 19.6 
Rfreeb (%) 24.1 
Rmsd from ideals 
    Bonds (Å) 
    Angles (º) 

 
0.0058 
1.1 

Avg B factor (Å2) 30.3 
Ramachandran Plot 
    Most favored (%) 
    Additionally allowed (%) 
    Generously allowed (%) 
    Disallowed (%) 

 
88.8 
10.7 
0.5 
0.0 

aR factor = ∑hkl⏐⏐Fobs ⏐− k⏐Fcal⏐⏐/ ∑hkl⏐Fobs⏐ where Fobs and Fcal are observed and 
calculated structure factors, respectively.  
b For Rfree the sum is extended over a subset of reflections (10%) excluded from all 
stages of refinement. 

Section 5.3. Results 

Product purification and characterization. The product of the enzymatic 

reaction, was purified as a stable white powder. It was identified as 3-hydroxy-2-

methylpyridine-5-carboxylate 7 by NMR and ESI-MS analysis. The presence of a 

singlet at 7.68 ppm in the aromatic region, corresponding to the C-4 hydrogen of 7, 

indicated a clean conversion of substrate 6 to product 7. The time course for the 

HMPDdc catalyzed decarboxylation of 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 

6 to 3-hydroxy-2-methylpyridine-5-carboxylate 7, as analyzed by HPLC is shown in 

Figure 5.2A.  
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Steady state kinetic parameters. UV visible spectra of the enzymatic reaction 

mixture (500 μL), containing 1.58 mM of 3-hydroxy-2-methylpyridine-4,5-

dicarboxylate 6, 4 μM MnCl2 and 780 nM of the HMPDdc in 100 mM Tris HCl at pH 

8.0 containing 100 mM NaCl and 2 mM DTT, taken at various time points, Figure 

5.2B, showed an increase in absorbance at 265 nm. Both 3-hydroxy-2-methylpyridine-

4,5-dicarboxylate 6 and 3-hydroxy-2-methylpyridine-5-carboxylate 7 absorb at this 

wavelength. The extinction coefficients of 3-hydroxy-2-methylpyridine-4,5-

dicarboxylate 6 and 3-hydroxy-2-methylpyridine-5-carboxylate 7 at 265 nm in 100 

mM Tris HCl at pH 8.0 containing 100 mM NaCl and 2 mM DTT were determined to 

be 1017 M-1cm-1 and 3623 M-1cm-1 respectively.  The rate of product formation was 

determined using the difference in molar extinction coefficients (ΔA265 = 2615 M-1cm-

1). Steady state kinetic parameters were obtained from the concentration dependence 

of the rate of formation of 3-hydroxy-2-methylpyridine-5-carboxylate 7 at constant 

concentration of HMPDdc under saturating concentration of MnCl2. The enzymatic 

reaction exhibited Michealis Menten kinetics with  KM and kcat of 366 μM and 0.6 s-1 

respectively. The kcat/KM for HMPDdc was determined to be 1530 M-1s-1 (Figure 

5.2C). 

Monomeric Structure of HMPDdc.  The structure of HMPDdc was determined 

at 1.9 Å resolution using SAD phasing.  All 234 residues of the protein and 3 residues 

from the 6X N-terminal His tag were modeled into the final structure of the monomer, 

as well as 205 water molecules and a manganese ion.  The monomer is composed of a 

single domain with an α/β/α fold (Figure 5.3).  The central 7 stranded mixed β-sheet 

is mostly antiparallel with a strand order of β5↑β6↑β7↓β4↑β1↓β2↑β3↓ where only 

β5 and β6 run parallel to each other as seen in Figure 5.3B.  The β-sheet forms a half-

barrel, with four α-helices flanking one side of the β-sheet and two α-helices flanking 
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Figure 5.3.  Monomeric structure of MlHMPDdc.  (A)  Ribbon diagram of 
HMPDdc at two orientations 90° rotated from each other.  The secondary structure 
is labeled and α-helices are colored in blue, β-strands are colored in green, and 
loop regions are yellow.  The manganese ion is shown as a non-bonded red sphere.  
(B)  Topology diagram of HMPDdc. 

the opposite side.  Three of the α-helices, α1, α4 and α6, are unusually long with 19, 

24 and 18 amino acids, respectively.  There are also three 310 helices.   

Tetrameric Structure of HMPDdc.  The quaternary structure of HMPDdc is a 

tetramer formed by using the fourfold crystallographic axis of the space group I4 and 
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is shown in Figure 5.4.  The tetramer is roughly 65 Å wide, 45 Å tall and 80 Å across 

the diagonal.  A channel with a diameter of 10 Å runs through the tetramer.  α-Helices 

α1, α4, and α6 face the channel and it is composed mostly of hydrophilic side chains 

and backbone carbonyl groups.  The opening is much wider on the top, near the N and 

C termini, and nearly closed on the bottom by the last turn of α4 and the side chain of 

Lys194.  The subunit interface is formed by interactions between the C-terminal end 

of one HMPDdc subunit (α4, α5, α6, and the connecting loops) and the loops between 

β2 and β3, β6 and β7, and the loop between the third 310 helix and α3 from a 

neighboring subunit.  The first 310 helix also contributes to the interface between 

subunits. 

Approximately 3000 Å2 of surface area is buried at the interface between 

subunits (20).  The residues lining the subunit interface are mostly hydrophobic, 

including a patch rich in aromatic residues, including Phe25, Phe177, Phe180, and 

Tyr181.  There are two sets of salt bridges at the interface, one between Arg128 and 

Glu205 and the second between Arg162 and Glu126.  The arginine residues are found 

close to each other and there also appears to be some stacking between these side 

chains.  The interface is also stabilized by five hydrogen bonds: Asp23 and Thr24 both 

Figure 5.4.  Stereoview diagram of the tetrameric structure of HMPDdc.  The 
tetramer has been color coded by subunit.  The manganese ion is shown in magenta. 
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hydrogen bonding to Tyr181, Ser48 to His223, and Asp105 to Asn197.  Three 

backbone carbonyl groups form hydrogen bonds: the carbonyl group from Ile195 to 

the side chain of Thr106, the carbonyl group of Asp133 to the hydroxyl group of 

Ser202, and the carbonyl oxygen atom of Glu134 to the oxygen of the Thr208 side 

chain.    

Metal Binding Site.  A cleft 13 Å long, 8 Å wide, and 10 Å deep forms near the 

hydrophobic patch at the interface between two subunits and is shown in Figure 5.5.  

The cleft is found in the middle of the tetramer and lies closer to the external solvent 

than to the channel that runs through the tetramer.  This cleft contains six histidine 

residues in close proximity to each other:  His27, His92, His94, His163, and His177 

from one subunit and His113* from the neighboring subunit.   

Figure 5.5.  Stereoview diagram of the metal binding site.  Composite omit density 
is shown around the manganese ion at a contour level of 1.0 σ and is shown in blue. 
The manganese ion is magenta.  Residues shown in green are from one subunit and 
the residues shown in yellow are from the neighboring subunit. 

 In addition to the histidine residues, a large unexpected peak in the electron 

density was found in this cleft and was modeled as a manganese ion.  No metal was 

added during purification, and treatment of the protein sample with EDTA was 

unsuccessful in removing the metal, showing that the metal is tightly bound in 

MlHMPDdc.  An EXAFS scan identified the metal as a manganese ion.  The metal has 

a tetrahedral coordination to His92, His94, His163, and Glu73 (Figure 5.5).  The 
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bonding distance between the manganese ion and His92 is 2.2 Å, while the distances 

to the other residues coordinated to the metal are longer than expected with a distance 

of 2.7 Å for His94, His163 and Glu73.  Adjacent to the bound metal is a pocket 8 Å 

long and 7 Å wide, which could potentially accommodate 3-hydroxy-2-

methylpyridine-4,5-dicarboxylate 6 .  Hydrophobic residues that protrude into and line 

the cleft include Phe25, Phe28, and Tyr71 and hydrophilic residues in the pocket 

include His113*, Gln216*, and Arg219*. 

Section 5.4. Discussion 

Characterization of the mlr6791gene. The mlr6791 gene product was shown to 

catalyze the decarboxylation of 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 6 to 3-

hydroxy-2-methylpyridine-5-carboxylate 7. The product was purified by HPLC and 

characterized by NMR and ESI-MS. 

Comparison of HMPDdc to Other Proteins.  An iterative BLAST (21) search 

using the non-redundant protein sequence database revealed a large cluster of proteins 

with sequence identities to HMPDdc ranging from 20 to 40%.  Most of these proteins 

are annotated as class II aldolases/adducins or hypothetical proteins.  Alignment of the 

top hits identified five strictly conserved residues and several highly conserved 

residues, as shown in Supplemental Figure 5.1 (22-23).  Pro47 is strictly conserved 

and is found at the interface between monomers as the first residue of a 310 helix in 

HMPDdc.  Two of the residues coordinating to the manganese ion, Glu73 and His94, 

are also absolutely conserved.  The two other histidine residues, His92 and His163, are 

mostly conserved among the proteins, with His92 being replaced by an arginine and 

His163 being replaced by asparagine in a class II aldolase from Nocardioides sp. 

JS614.  His77 is strictly conserved, and is one of the six histidine residues found near 

the putative active site cleft at the interface.  The final conserved residue, Gly164, is 
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adjacent to His163, which coordinates to the manganese ion and is the first residue of 

a β-strand.   

A BLAST search was then conducted on a class II aldolase/adducin-like 

protein from Burkholderia sp. 383, which had the highest sequence similarity to 

MlHMPDdc in the initial BLAST search.  Most of the sequences with significant 

alignments were the same class II aldolases/adducins and hypothetical proteins 

identified using HMPDdc as a search subject; however, at a lower similarity level 

several 3,4-dihydroxyphthalate 2-decarboxylase (DHPdc) sequences were identified.  

DHPdc is found in the phthalate catabolism pathway of gram-positive bacteria and 

catalyzes a decarboxylation reaction of an aromatic ring very similar to the reaction 

catalyzed by HMPDdc (24-25).  Alignment of these DHPdc sequences with the 

sequence of HMPDdc and the nearest class II aldolase identified several residues that 

are conserved (23).  The sequence alignment prepared using ESPript (22) is shown in 

Supplemental Figure 5.2.  All metal coordinating residues are conserved and His77 

and His27, two histidine residues found near the cleft between subunits, are also 

conserved.  The aromatic residues near the active site, Phe25, Tyr71, His113, and 

Phe138, are not conserved in DHPdc but are replaced by hydrophobic residues.  

Gln216 in HMPDdc is found to be an asparagine residue in DHPdc and Arg219 is 

replaced by a threonine residue.   

The MlHMPDdc monomer was submitted to DALI to identify structurally 

related proteins (26).  Five proteins were identified as being structurally similar to 

HMPDdc with Z-score greater than 10; all other proteins have Z scores less than 4.  

Top hits included two L-fuculose 1-phosphate aldolases, one L-ribulose 5-phosphate 

epimerase, a rhamnulose 1-phosphate aldolase, and the C terminal fragment of 

phosphomethylpyrimidine kinase from Pyrococcus furiosus (27-29).  The aldolases 

and epimerase belong to the superfamily of AraD-like proteins and class II aldolases.  
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L-Fuculose 1-phosphate aldolase from E. coli showed the highest structural similarity 

with a Z score of 24.4 and an r.m.s.d. of 2.4 Å for 205 of a possible 210 residues.  The 

sequence identity between HMPDdc and the aldolase is about 20%.  The Z score for 

E. coli L-ribulose 5-phosphate epimerase was 22.5 with an r.m.s.d. of 2.4 Å for 207 of 

223 residues.   

The structures of the L-fuculose 1-phosphate aldolases, L-ribulose 5-phosphate 

epimerase, and the rhamnulose 1-phosphate aldolase superimpose well on the structure 

of HMPDdc, as seen in Figure 5.6.  The topology of the long β-sheet is conserved for 

each of the aldolases and HMPDdc; however, HMPDdc has a C-terminal α-helix not 

observed in the other structures.  Rhamnulose 1-phosphate aldolase is the least similar 

to HMPDdc and has two extra β-strands and four extra α-helices.  All of the enzymes 

shown in Figure 5.6 adopt a tetrameric oligomeric state.   

Figure 5.6. Stereoview diagram of the superposition of the top four DALI hits on 
HMPDdc.  HMPDdc is shown in red, 1-ribulose-5-phosphate-4-epimerase is shown 
is blue, rhamnulose-1-phosphate aldolase is in cyan, 1-fuculose-1-phosphate aldolase 
from E. coli is green, and 1-fuculose-1-phosphate aldolase from B. thetaiotaomicron 
is colored yellow. 

Despite the strong structural similarity between HMPDdc and the class II 

aldolase family, there is low sequence conservation and apart from the coordination of 

the metal ion few of the putative active site residues are conserved.  The class II 

aldolase superfamily members each bind a zinc ion in the active site, while HMPDdc 

has a manganese ion bound.  L-fuculose 1-phosphate aldolase from Bacterosides 
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thetaiotaomicron has the highest sequence identity at 20% and the sequence identity 

between HMPDdc and rhamnulose 1-phosphate aldolase from E. coli is only 15%.  

The zinc ion is found in the same cleft and coordinated by three conserved histidine 

residues.  The fourth residue coordinated to the metal ion is a glutamate residue in 

HMPDdc and the three aldolases, and an aspartate residue in the epimerase.  Several 

glycine and proline residues are conserved, most likely playing roles in positioning 

structural elements.  His77 is conserved, as is Ser29, which is hydrogen bonded to His 

77.  Arg31, Arg84, Pro85, and Asp86 are all structurally conserved and are found in 

turns directly exposed to solvent.  Glu183 is conserved and is found within α4 and 

faces the channel that runs through the tetramer.   

Active Site Comparison.  The structure of L-fuculose 1-phosphate aldolase 

from E. coli with an inhibitor bound (PDB ID: 4FUA) was used to compare the active 

sites of the class II aldolase and HMPDdc (Figure 5.7) (27).  The zinc ion is located 

closer to the coordinating residues in the aldolase structure, only 2.0 Å from His94 and 

His 155 and 2.1 Å from His 92.  The corresponding distances in HMPDdc to the 

manganese ion are 2.7 Å for His 94 and His163 and 2.2 Å for His92.  With the 

inhibitor phosphoglycolohydroxamate bound Glu73 has been pushed out of position 

Figure 5.7.  Stereoview diagram of the active sites of HMPDdc and 1-fuculose1-
phosphate aldolase.  HMPDdc is colored in green and 1-fuculose1-phosphate 
aldolase is colored in pink. The phosphoglycolohydroxamate ligand is abbreviated 
as PGH. 
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for coordination to the zinc ion, suggesting the same could occur upon binding of 3-

hydroxy-2-methylpyridine-4,5-dicarboxylate 6 .  His113* is replaced by Tyr113*, 

which points toward the zinc ion.  The adjacent residue, Met114*, is found in both 

structures.  His27 is replaced by Asn29.  Phe138 is conserved, although adopting a 

different side chain orientation.  Gly28 still composes the floor of the binding pocket 

and the pocket is roughly the same size in both structures.  No other residues are 

conserved within the binding pocket, unsurprising given that the substrates are very 

different. 

Structural Implications for Mechanism. Enzyme-catalyzed decarboxylations 

constitute a well-studied family of reactions and the role of pyridoxal phosphate, the 

pyruvoyl cofactor, imine formation with lysine and metal ions in the catalysis of these 

reactions is now well established. The general rule for the catalysis of such 

decarboxylations is that the enzyme provides a mechanism for the stabilization of an 

enolate intermediate by charge delocalization such as shown in Figure 5.8A (30). The 

decarboxylation of orotidine monophopshate that occurs during pyrimidine 

biosynthesis is a well-known exception  (31). The decarboxylation of hydroxy-

substituted benzene rings is a common motif in polyketide biosynthesis. It is generally 

assumed that this reaction proceeds by initial tautomerization of the phenol, followed 

by decarboxylation of the resulting keto-acid. However, this proposal has not been 

experimentally validated and only one structure of a hydroxybenzoic acid 

decarboxylase has been reported (PDB ID: 2DVX). 

The Protein Data Bank contains three zinc-dependent decarboxylases: 2,6-

dihydroxybenzoate decarboxylase (PDB ID: 2DVX), α-amino-β-carboxymuconate-ε-

semialdehyde decarboxylase (PDB ID: 2HBV) and a protein of unknown function 

similar to α-acetolactate decarboxylase (PDB ID: 1XV2) (32); however, none of these 

are structurally similar to HMPDdc.  In contrast several members of the class II 
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Figure 5.8. (A) The retroaldol condensation reaction catalyzed by fuculose aldolase. 
(B) The proposed mechanism for the decarboxylation of 3-hydroxy-2-
methylpyridine-4,5-dicarboxylate 6. 

aldolase/adducin family were revealed by a DALI search.  The structural similarity 

between fuculose aldolase and HMPDdc suggests that the two reactions share 

common mechanistic features (33).  For the aldolase catalyzed reaction, Tyr113 

initiates the retroaldol reaction by alcohol deprotonation, Figure 5.8A. The resulting 

enolate is stabilized by the active site zinc ion. Protonation of this enolate by Glu73 
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followed by product release completes the reaction. In the resting state of the enzyme, 

Glu73 is coordinated to the zinc ion and is released from the metal upon substrate 

binding. Based on this proposal, we suggest an analogous mechanism for HMPDdc. In 

this mechanism, binding of the substrate displaces Glu73 from the manganese ion 

replacing it with the substrate hydroxyl. Glu73 then provides the proton for the keto-

enol tautomerization to give 23 (Figure 5.8B). The decarboxylation reaction is 

analogous to the retroaldol reaction except that is does not need a base as the 

carboxylate is likely to be deprotonated under the reaction conditions. Displacement of 

the product from the manganese ion by Glu73 followed by product dissociation 

completes the reaction. The testing of this mechanistic proposal is in progress and will 

require additional structural and mechanistic studies. 
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APPENDIX 

Supplemental Figure 5.1.  Sequence alignment of proteins identified through 
BLAST to be similar to MlHMPDdc.  Strictly conserved residues are highlighted 
in read while less strictly conserved residues are shown in red font.  The 
secondary structure for HMPDdc is shown above the alignment. 
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Supplemental Figure 5.2.  Sequence alignment of decarboxylase proteins identified 
through BLAST with HMPDdc and the aldolase submitted to BLAST.  Strictly 
conserved residues are highlighted in red and less strictly conserved residues are 
shown in red font.  The secondary structure of HMPDdc is shown above the 
alignment.
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CHAPTER 6 

STRUCTURE OF THE PLP DEGRADATIVE ENZYME 2-METHYL-3-

HYDROXYPYRIDINE-5-CARBOXYLIC ACID OXYGENASE FROM 

MESORHIZOBIUM LOTI MAFF303099 AND ITS MECHANISTIC 

IMPLICATIONS1 

Section 6.1. Introduction 

 Two pathways for the degradation of pyridoxal-phosphate vitamers (vitamin 

B6), have been identified in soil microbes able to grow on vitamin B6 as the sole 

source of carbon and nitrogen (1).  The first pathway, which converts vitamin B6 to 

succinic semialdehyde, occurs in Pseudomonas sp. MA-1 (Figure 6.1), while the 

second pathway has been identified in Pseudomonas IA and Arthrobacter Cr-7 and 

converts pyridoxine to 2-(hydroxymethyl)-4-oxobutanoate.  The enzymes and 

intermediates for both pathways have been characterized (2-4). However, the 

corresponding genes remained unidentified until the recent discovery that the first 

pathway is also present in the symbiotic bacterium Mesorhizobium loti MAFF303099 

(5).  All the M. loti PLP catabolic genes have now been identified and the 

corresponding catabolic reactions have been characterized (6-12).  One of the later 

enzymes on this pathway, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase 

(MHPCO), catalyzes a particularly interesting reaction in which 2-methyl-3-

hydroxypyridine-5-carboxylic acid (MHPC) undergoes an oxidative ring opening to 

generate E-2-acetamidomethylene succinate, the first acyclic intermediate on the 

pathway (7 to 8 in Figure 6.1).  

 MHPCO (E.C. 1.14.12.4) has been classified as a flavin-dependent 

monooxygenase based on its sequence and biochemical similarity to other enzymes in 

                                                 
1 Reproduced with permission from McCulloch, K.M., Mukherjee, T., Begley, T.P., and Ealick, S.E. 
(2009) Biochemistry 48: 4139-4149.  Copyright 2009 American Chemical Society 
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this family, which includes the well-characterized p-hydroxybenzoate hydroxylase 

(PHBH) (13, 14).  This class of enzymes utilize FAD and molecular oxygen to form a 

C(4a)-hydroperoxy-FAD intermediate which then donates one oxygen atom to the 

substrate (15).  The second reaction catalyzed by MHPCO, the pyridine ring-opening 

reaction, is an unusual reaction for an enzyme of the monooxygenase family because 

most oxidative ring-opening reactions of aromatic compounds are catalyzed by iron-

dependent dioxygenases.  MHPCO was confirmed as a flavin-dependent 

monooxygenase, incorporating one oxygen atom from molecular oxygen and one 

oxygen atom from water to produce E-2-(acetamidomethylene)succinate (E-2AMS) 

the ring-opened product (16).  Previous work has shown the Pseudomonas MA-1 

MHPCO to crystallize and diffract to reasonable resolution, although the structure was 

not reported (17).  We have determined the 2.1 Å resolution crystal structures of M. 

loti MHPCO and its complex with MHPC.  These structures confirm the relationship 

of MHPCO to other members of the flavin monooxygenase family and provide insight 

into the catalytic mechanism. 

Figure 6.1.  The vitamin B6 degradative pathway found in M. loti.  The genes are 
named as using the RhizoBase numbering system.  1, pyridoxine; 2, pyridoxal; 3, 4-
pyridoxolactone; 4, 4-pyridoxic acid; 5, 5-formyl-2-methyl-3-hydroxypyridine-4-
carboxylate; 6, 2-methyl-3-hydroxypyridine-4,5-dicarboxylate; 7, 2-methyl-3-
hydroxypyridine-5-carboxylate; 8, 2-(acetamidomethylene)succinate; 9, succinic 
semialdehyde 
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Section 6.2. Materials and Methods 

 Materials.  M9 minimal salts and CaCl2 were purchased from Sigma (St. 

Louis, MO).  Ni-NTA resin came from Qiagen (Valencia, CA) and Acros Chemicals 

(Morris Plains, NJ) supplied the imidazole and L-selenomethionine.  Dextrose, FeSO4, 

MgSO4, NaCl, Tris buffer, β-mercaptoethanol, chloramphenicol, ampicillin, and all 

natural amino acids were purchased from Fisher Scientific (Fairlawn, NJ).  100X 

MEM vitamin mix were from Invitrogen (Carlsbad, CA), as was the Gateway system 

used for DNA manipulations.   

Cloning of M. loti MHPCO.  Standard methods were used for DNA 

manipulations (18, 19).  The M. loti MHPCO gene was amplified from genomic DNA 

(purified from ATCC strain # 700743) by PCR with the following primer pair:  5’-

CAC CAT GGC CAA TGT AAA CAA AAC TCC-3’ and 5’-CTA CTG CGG CCA 

CGA GTA GAC ACG GCG CAG C-3’. The PCR product was purified and used in a 

topoisomerase-mediated reaction with pENTR-TEV-D-TOPO (Invitrogen) following 

the manufacturer’s instructions.  Clones were screened by PCR and verified by 

sequencing.  A correct clone was used in an LR recombination reaction with the 

plasmid pDESTF1, a Gateway-adapted vector based on the pET-system from Novagen 

that encodes an N-terminal 6xHis tag under the control of the T7lac promoter.  Clones 

were again screened by restriction digestion.  A correct clone was named 

pMl5332.XF1. 

 Overexpression and Purification of Selenomethionyl (SeMet) MHPCO.  E. coli 

B834(DE3) was transformed first using the chaperone-encoding plasmid pGro7 

(Takara Bio Inc.) and then using pMl5332.XF1.  Cells were grown with shaking at 37 

°C in minimal media supplemented with 20 mg/L of all amino acids except 

methionine, 50 mg/L L-selenomethionine, 1X MEM vitamin mix, 0.4% glucose, 2 mM 

MgSO4, 0.1 mM CaCl2, 25 mg/L FeSO4, 35 mg/L chloramphenicol, and 100 mg/L 
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ampicillin.  Chaperone proteins GroES and GroEL were induced at cell culture 

inoculation by addition of 2.5 g/L L-arabinose.  When cells reached an OD600 of 0.7 

the temperature was lowered to 15 °C and overexpression of MHPCO was induced 

with 0.5 mM isopropyl β-D-thiogalactopyranoside.  After overnight growth, cells were 

pelleted by centrifugation at 4 °C for 15 min at 6,000 g and then stored at -20 °C until 

purification.  Cells were lysed by sonication and the cell lysate was cleared by 

centrifugation at 40,000 g for 45 min at 4 °C.  SeMet MHPCO was purified from the 

clarified cell lysate by nickel affinity chromatography.  The clarified lysate was twice 

passed over the column equilibrated with Buffer A (50 mM NaH2PO4 pH 8.0, 300 mM 

NaCl, and 3 mM β-mercaptoethanol (β-ME)) and 10 mM imidazole and the column 

was washed with this buffer for 20 column volumes.  The column was then washed 

with Buffer A containing 35 mM imidazole for 15 column volumes.  Buffer A and 250 

mM imidazole were used to elute SeMet MHPCO from the nickel column and the 

protein was 80% pure by SDS-PAGE analysis (results not shown).  Size exclusion 

chromatography (HiLoad 26/60 Superdex 200 pg, GE Healthcare) was used to further 

purify SeMet MHPCO to >95% homogeneity.  One liter of culture produced 0.5 mg 

pure SeMet MHPCO.  The protein was then buffer exchanged into 20 mM Tris (pH 

7.7), 50 mM NaCl, and 1 mM DTT and concentrated to 8 mg/mL. 

Enzymatic Synthesis of the Substrate.  The enzymatic synthesis and 

purification of 2-methyl-3-hydroxypyridine-4,5-dicarboxylic acid (MHPD) has been 

previously described (10).  MHPC was enzymatically synthesized from MHPD in a 10 

mL reaction mixture containing 5 mM MHPD and 100 μM of MHPD decarboxylase 

in 100 mM sodium phosphate buffer (pH 8.0) incubated over night at room 

temperature.  MHPC was purified by the HPLC (10) and upon lyophilization yielded a 

stable white solid.  1H NMR (300 MHz, D2O) δ 2.46 (s, 3H, CH3), 7.68 (s, 1H, C4-H), 
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and 8.12 (s, 1H, C6-H).  The purified MHPC was dissolved in 100 mM Tris (pH 7.7) 

to a final concentration of 100 mM and stored frozen at -20 °C until use. 

Activity Assay for MHPCO.  The recombinant His-tagged MHPCO was 

assayed by monitoring the disappearance of NADH absorbance at 340 nm as 

previously described (12).   

Analytical Ultracentrifugation. Samples of MHPCO were prepared as 

described above and analyzed by analytical ultracentrifugation to determine the 

oligomeric state of the enzyme.  To obtain MHPCO with cleaved His tag, the sample 

was dialyzed overnight into 50 mM Tris (pH 8.0), 150 mM NaCl, and 2 mM DTT at 4 

°C.  It was then incubated with TEV protease at 4 °C for 20 hours and then passed 

over a Ni-NTA column to remove uncleaved MHPCO and the TEV protease.  The 

cleavage reaction was monitored by SDS-PAGE analysis.  The protein samples, both 

with and without the His tag, were extensively dialyzed into 20 mM Tris (pH 8.0) 150 

mM NaCl and then subjected to sedimentation velocity analytical ultracentrifugation 

on a ProteomeLab XL-I protein characterization system (Beckman Coulter).  Data 

were analyzed using the programs SEDNTERP and DCDT+ (20). 

 Protein Crystallization.  Initial crystallization conditions were identified using 

the hanging drop vapor diffusion method (Crystal Screens 1 and 2, Hampton 

Research; Wizard Screens 1 and 2, Emerald Biosystems) at room temperature.  

Hanging drops were set up by mixing 1 μL of reservoir solution with 1 μL of protein 

sample.  Optimized crystallization conditions were 6-9% PEG8000 and 100 mM Tris 

(pH 8.1-8.5).  Yellow plate-like crystals grew to 100-200 μm × 50-100 μm in five 

days.  To obtain crystals complexed with the substrate MHPC, SeMet MHPCO 

crystals were transferred to a drop consisting of the reservoir solution and 10 mM 

MHPC then allowed to soak for 3-5 h.  This crystallization condition, supplemented 

with 17% glycerol, was used as cryoprotectant and for crystals soaked with MHPC, 10 
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mM MHPC was also present in the cryoprotectant.  After briefly soaking the crystals 

in the cryoprotectant, they were flash frozen by plunging in liquid nitrogen.  Both 

SeMet MHPCO and the substrate complex crystals belong to the space group C2 with 

unit cell parameters a = 111.3 Å, b = 130.2 Å, c = 89.5 Å, and β = 122.6°, for 

unliganded MHPCO.  The asymmetric unit contains two monomers with a Matthew’s 

number of 3.28 Å3/Da and solvent content of 60% (21).  

 X-Ray Data Collection and Processing.  For structure determination, data were 

collected on a single SeMet MHPCO crystal at the Advanced Photon Source beamline 

24-ID-E (Argonne National Laboratory) using a Quantum315 detector (Area Detector 

Systems Corporation).  To maximize the anomalous signal, a single wavelength 

anomalous diffraction experiment was conducted at the peak f″ for selenium.  Data 

were collected to 2.1 Å resolution using a 1° oscillation range for 330 frames.  Data 

collection on a crystal containing SeMet MHPCO complexed with MHPC was done 

on the 24-ID-C beamline using a Quantum315 detector.  Data were collected at 0.9795 

Å over 180° using a 1° oscillation range.  Datasets were indexed, integrated, and 

scaled using the HKL2000 suite of programs (22).  The data collection statistics are 

summarized in Table 6.1. 

 Structure Determination, Model Building, and Refinement.  Se atom positions 

were located using data cut off at 2.5 Å resolution and the program hkl2map; 18 of a 

possible 20 Se atoms were located (23-25).  These heavy atom positions were then 

used in CNS for phasing, density modification, and calculation of electron density 

maps (26).  Further improvement to the maps and automated model building were 

performed using RESOLVE, which succeeded in modeling 377 residues with correct 

side chains and 196 residues as alanine out of 758 total residues in the asymmetric unit 

(27).  Iterative rounds of model building in COOT and refinement in CNS successfully 

positioned residues 11-379 for both chains (28).  An FAD molecule was then modeled 
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into each chain, followed by addition of water molecules using CNS.  Lastly, for the 

complex MHPC was modeled into MHPCO before a final round of refinement.  The 

refinement statistics are summarized in Table 6.2.  The geometry of MHPCO was 

verified using PROCHECK which identified one residue, Ala51, in each chain in the 

disallowed region (29).  Figures were generated using PYMOL and ChemBioDraw 

(30).  
 
Table 6.1.  Summary of Data Collection Statistics 
 SeMet MHPCO MHPCO + MHPC 
Beamline APS NE-CAT 24-IDE APS NE-CAT 24-IDC 
Resolution (Å) 2.10 2.10 
Wavelength (Å) 0.97918 0.97949 
Space Group C2 C2 
a (Å) 111.3 110.4 
b (Å) 130.2 129.5 
c (Å) 89.5 89.1 
β (°) 122.6 122.6 
Reflections 408805 208350 
Unique reflectionsa 121606 (11380) b 58150 (4574) 
Average I/σ 13.9 (3.2) 12.6 (3.5) 
Redundancy 3.4 (2.5) 3.6 (3.0) 
Completeness (%) 98.6 (91.8) 94.4 (74.2) 
Rsymc (%) 12.0 (33.5) 9.4 (21.3) 
aUnique reflections include Bijvoet pairs. 
bValues in parentheses are for the highest resolution shell. 
cRsym

 = ΣΣi⎟ Ii−<Ι>⏐/Σ<Ι>, where <I> is the mean intensity of the N reflections with 
intensities Ii and common indices h,k,l. 

Section 6.3. Results 

MHPCO Activity.  The recombinant His-tagged MHPCO was purified using 

metal ion chromatography and was found to be active using the assay previously 

described (12).  The activity of recombinant MHPCO with the His tag cleaved by 

digestion with TEV protease was comparable to the activity of the His-tagged 

MHPCO sample. 

 Structure of the MHPCO monomer.  The structure of MHPCO was determined 

at 2.1 Å resolution using SAD phasing.  The final model of the MHPCO monomer is  
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Table 6.2.  Summary of Data Refinement Statistics 
 SeMet MHPCO MHPCO + MHPC 
Resolution (Å) 50.00 – 2.10 50.00 – 2.10 
# of protein atoms 5730 5730 
# of ligand atoms 108 130 
# of water atoms 744 483 
Reflections in working set 59384 52927 
Reflections in test set 3175 2867 
Rfactora (%) 19.3 20.1 
Rfreeb (%) 22.4 22.9 
Rmsd from ideals 
   Bonds (Å) 
   Angles (º) 

 
0.0055 
1.3 

 
0.0061 
1.3 

Avg B factor (Å2) 19.4 22.7 
Ramachandran Plot 
   Most favored (%) 
   Additionally allowed (%) 
   Generously allowed (%) 
   Disallowed (%) 

 
90.0 
9.7 
0.0 
0.3 

 
90.3 
9.1 
0.3 
0.3 

aR factor = ∑hkl⏐⏐Fobs ⏐− k⏐Fcal⏐⏐/ ∑hkl⏐Fobs⏐ where Fobs and Fcal are observed and 
calculated structure factors, respectively.  
b For Rfree the sum is extended over a subset of reflections (5%) excluded from all 
stages of refinement. 

shown in Figure 6.2 and contains residues 11-379 of the protein and one molecule of 

FAD.  The final model of the ternary substrate complex also contains one molecule of 

MHPC.  MHPCO shows strong structural similarity to other members of the flavin-

dependent hydroxylase family.  MHPCO comprises three domains exhibiting mixed 

α/β folds.  The N-terminal domain has a five-stranded parallel β-sheet 

(β7↑β2↑β1↑β11↑β18↑) flanked on one side by a small, three stranded antiparallel β-

sheet (β10↑β9↓β8↑) and seven α-helices arranged in two layers on the opposite side.  

This domain forms most of the interactions with the FAD molecule.  The second 

domain consists of a six-stranded mostly antiparallel β-sheet with a strand order of 

β5↓β4↑β14↑β15↓β16↑β13↓ that is flanked on the solvent exposed side by three 

short α-helices and forms part of the substrate binding pocket on the other face.  The 

third domain connects the first two domains and consists of α11 stretching the length  
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Figure 6.2.  The monomeric structure of MHPCO.  (A)  Stereoview ribbon diagram of 
MHPCO with FAD and MHPC bound and secondary structural elements labeled.  The 
α-helices are shown in blue and the β-strands are shown in green with loops colored 
yellow.  The bound ligands, FAD and MHPC, are shown in stick representation and 
colored red.  (B)  Topology diagram of MHPCO with the same color scheme as 6.2A.
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of MHPCO and the two stranded antiparallel β-sheet β3↓β6↑.  Domain 3 is largely 

solvent exposed on the back side of MHPCO.   

 Oligomeric Structure.  Two protomers are found within the asymmetric unit 

lying antiparallel to each other and the dimer spans approximately 75 Å, (Figure 

6.3A).  The two active sites are independent of each other, but face in the same 

direction and are located more than 40 Å apart.  The total surface area for the dimer of 

MHPCO is 28750 Å2 and the total surface area buried is 1375 Å2 at the dimeric 

interface (31).  The primary interactions occur through β12 to form an extended β-

sheet consisting of β17↑β12↓β12*↑β17*↓ where strands marked with an asterisk are 

located in the opposing protomer.  β12 is five residues long and consists of mostly 

hydrophilic residues, stretching from Glu170 to Val174.  Five hydrogen bonds are 

formed between carbonyl oxygen atoms and nitrogen atoms from the protein 

backbone, stabilizing the dimer formation and ranging in length from 2.65 Å and 3.1 

Å.  A nitrogen atom of Arg172 is involved in an additional hydrogen bond to the 

carbonyl oxygen atom of the side chain of Asn170*.  One salt bridge is also present at 

this interface, between Arg172 and Asp164*.  These interactions are shown in Figure 

6.3B.  The oligomeric state of MHPCO was further investigated using analytical 

ultracentrifugation.  To determine if the N-terminal 6X-His tag was responsible for 

dimer formation over tetramer formation, sedimentation velocity analytical 

ultracentrifugation experiments were performed on MHPCO samples with and without 

the His tag (32).  These experiments showed that both sets of samples formed 

tetramers in solution with a molecular weight of roughly 160 kDa, as shown in Figures 

6.3C and 6.3D. 

FAD Binding Site.  The FAD molecule binds within a long cleft roughly 30 Å 

long and 15 Å wide.  FAD is tightly bound in a non-covalent fashion and copurified 

with the enzyme.  Each protomer within the asymmetric unit contains one bound FAD 
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Figure 6.3.  The dimeric structure of MHPCO.  (A)  Ribbon diagram of the MHPCO 
dimer with FAD and MHPC bound and shown in red.  The first protomer is shown in 
green and the opposing protomer is colored yellow.  Hydrogen bonds and salt bridges 
are shown using dashed lines.  (B)  Ball and stick representation of the dimeric 
interface at β12β12*.  The color scheme is the same as Figure 6.4A.  (C)  Overlay of 
sedimentation velocity analytical ultracentrifugation data with the fitted curve for a 
single species.  The data points are shown as open blue circles and the best fit line is 
shown in red.  The overlay for MHPCO with the N-terminal His tag attached.  (D)  
The overlay for MHPCO with the N-terminal His tag cleaved.  The fits were 
prepared using the program DCDT+. 

molecule (Figure 6.4).  The adenine base and ribose sugar are partially buried and 

surrounded by the hydrophilic residues Glu41, Lys42, Glu129, Asp156 and Lys161.  

N1 of the adenine base forms a hydrogen bond to the amide nitrogen of Ala130 and 

both N6 and N7 form water-mediated hydrogen bonds to Lys161.  The ribose sugar is 

stabilized through water-mediated hydrogen bonds to the backbone carbonyl oxygen 

atom of Arg47.  The 2′-hydroxyl group also forms a strong hydrogen bond (2.5 Å) 

with Glu41.  The α-phosphate group is largely solvent exposed, while the β-phosphate 
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Figure 6.4.  Stereoview diagram of FAD conformation found in MHPCO both with 
and without MHPC bound.  Residues from MHPCO are shown in green using the ball 
and stick representation and the interactions with the protein indicated using black 
dashed lines. Water molecules are shown as red nonbonded spheres.  FAD adopts the 
“IN” conformation and is shown with carbon atoms colored yellow. 

group interacts with two water molecules and two backbone amide nitrogen atoms 

found at the start of helix α1.  The isoalloxazine ring adopts an “IN” conformation for 

both structures and is positioned in a large pocket lined with hydrophobic and 

aromatic residues.  The N1 atom and the carbonyl oxygen atom of C2 are hydrogen 

bonded to the amide nitrogen atom of Ala301 and Gly302, the first residues of helix 

α10.  N3 is hydrogen bonded to the main chain carbonyl oxygen atom of Tyr54.  N5 

and the carbonyl oxygen of C4 form a water-mediated hydrogen bond to Tyr223.  

There are no interactions with the rest of the isoalloxazine ring.  

 Substrate Binding Site.  Soaking MHPCO crystals in a reservoir solution 

containing 10 mM MHPC for 3 h resulted in MHPC binding in each active site of the 

MHPCO dimer (Figure 6.5).  The active site forms a pocket 15 Å by 10 Å by 12 Å and 

is much larger than the MHPC molecule.  In addition to MHPC, nine water molecules 

are found in the binding pocket.  A channel 7 Å wide lined with aromatic and 

hydrophobic residues points away from the FAD binding site leading from the back 
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side of the dimer interface to the active site (Figure 6.6).  This tunnel is roughly 17 Å 

long.  MHPC binds beneath the loop connecting α9 to α10 and is stacked 5 Å above 

Tyr54.  The C2 carbon atom of MHPC is 5.3 Å from the C4a atom of the isoalloxazine 

ring.  MHPC has no direct interactions with the residues lining the active site; instead, 

all interactions are mediated through hydrogen bonds with water (Figure 6.5).  The 

hydroxyl group is hydrogen bonded to Tyr223 through a water molecule (2.4 Å from 

the hydroxyl group to the water molecule and 2.7 Å to Tyr223) and N1 is coordinated 

to Tyr82 through another water molecule 2.6 Å from N1 and 3.0 Å from the hydroxyl 

group of Tyr82.  Each oxygen atom of the carboxylate group is hydrogen bonded to a 

water molecule that is part of a water molecule network leading down the tunnel to the 

solvent.  Arg211 is oriented 3.2 Å and 90° from the carboxylate group of MHPC and 

is positioned through a salt bridge with Asp201, but is poorly positioned to contribute 

a hydrogen bond to MHPC. 

Figure 6.5.  Stereoview diagram of the active site of MHPCO with FAD and MHPC 
bound.  Water molecules are shown as nonbonded red spheres.  Hydrogen bonds 
between MHPC and water molecules and water molecules and the protein are shown 
as dashed lines. 

Section 6.4. Discussion 

Oligomeric State of MHPCO.  Previous work on MHPCO in both 

Pseudomonas MA-1 and M. loti has identified MHPCO as a homotetramer using gel 
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Figure 6.6.  Space filling representation of the substrate tunnel leading to the 
binding pocket.  FAD and MHPC are red and shown in ball and stick and the 
electrostatic surface of MHPCO is colored by protomer with green being the chain 
with FAD and MHPC bound and yellow being the opposing chain.  Water 
molecules in the tunnel are shown as red spheres.  The secondary structural 
elements are shown in cartoon representation. 

filtration and analytical ultracentrifugation.  The stoichiometry of FAD in each 

tetramer has been less conclusively determined with different experiments indicating 

either two or four FAD molecules per tetramer (12-14, 33).  The crystal structure of 

M. loti MHPCO suggests that each active site contains an FAD molecule, and sample 

preparation did not require excess flavin to be added during purification or 

crystallization.  However, the MHPCO is a dimer in the crystal structures reported 

here.  A dimer has only been reported for Pseudomonas MA-1 MHPCO apoenzyme 

where the FAD had been chemically removed from the active site (33).  Activity 

assays indicate that samples of MlMHPCO with and without the His tag are equally 

active.  It is still possible that the His tag disrupted the tetramer assembly as opposed 

to crystal packing.  The His tag and the first ten residues of MHPCO are disordered in 

the crystal structures and Thr11 is solvent exposed at one end of the monomeric 
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structure.  It is conceivable that the His tag could have adopted a conformation that 

prevents the coupling of two dimers to form the tetramer.  Examination of crystal 

packing shows some weak interactions between opposing dimers in adjacent 

asymmetric units.  Arg47 hydrogen bonds to Ser44*, the carboxylate side chain of 

Asp123 forms hydrogen bonds to the amino side chain of Lys263*, and several water-

mediated hydrogen bonds occur between the three stranded antiparallel β-sheet 

(β10↑β9↓β8↑) of one protomer and the loop region between α8 and β17 of the 

second protomer.  These interactions could be remnants of a tetramer disrupted by the 

His tag or by crystal packing.  To investigate the role the N-terminal His tag may have 

played in disrupting the tetramer, analytical ultracentrifugation was performed.  The 

presence of the His tag does not appear to be sufficient to prevent tetramer formation 

in solution as shown in Figure 6.3C; however, it is possible that the His tag at the N-

terminus could weaken the interactions occurring at the interface.  In combination with 

crystallization conditions and crystal lattice packing, the tetramer may have been 

disrupted, resulting in the dimer observed in the crystal structures solved. 

Comparison of MHPCO to Other Enzymes.  Previous work has identified 

MHPCO as a member of the flavin aromatic monooxygenases on the basis of cofactor 

requirement, substrate structure, and sequence similarity (16, 34).  Both BLAST and 

DALI searches were performed to determine which enzymes in this family are the 

closest structural relatives of MHPCO (35, 36).  The BLAST search revealed that 

MHPCO is most closely related to flavin monooxygenases.  The most similar proteins 

were hypothetical proteins, salicylate 1-monooxygenases, and FAD monooxygenases.  

These proteins had sequence identity with MHPCO of 22-25% and sequence similarity 

below 50%.  Because of the nucleotide binding motif, the DALI search identified 

many enzymes as being structurally similar to MHPCO (Table 6.3).  As expected, 

these enzymes are all flavin-dependent aromatic monooxygenases that use a flavin 
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hydroperoxide intermediate to hydroxylate an aromatic ring (37-40).  The overall fold 

of these enzymes is the same as that seen for MHPCO and first described for PHBH 

(41).  The substrates for three of these enzymes, p-hydroxybenzoate hydroxylase 

(PHBH), m-hydroxybenzoate hydroxylase (MHBH), and 2,6-dihydroxypyridine 

hydroxylase (DHPH) are aromatic rings with a hydroxyl group ortho to the position 

being hydroxylated, as seen in MHPCO (42).  The RMSD for each of these enzymes 

to MHPCO is less than 3 Å for at least 325 aligned residues with Z-scores of 26 or 

higher, and the structures are compared in Figure 6.7.  Each of these enzymes bind 

FAD in a long narrow cleft stretching between two domains and bind very specifically 

to their respective substrates.   
 
Table 6.3.  Enzymes Identified as Structurally Similar to MHPCO through DALI 
Protein PDB ID Z Score RMSD % 

Identical 
# aligned 
residues 

Pyocyanin biosynthetic 
enzyme, PhzS 

2RGJ 35.1 2.3 25.7 325 

p-Hydroxybenzoate 
hydroxylase (PHBH) 

1D7L 33.7 2.7 17.2 338 

2,6-Dihydroxypyridine 
hydroxylase (DHPH) 

2VOU 33.3 2.8 21.9 336 

Probable tryptophan 
hydroxylase, VioD 

3C4A 32.6 2.8 20.1 329 

m-Hydroxybenzoate 
hydroxylase (MHBH) 

2DKI 31.9 2.6 13.1 332 

Phenol hydroxylase 1FOH 31.9 2.8 14.0 341 
Rebeccamycin 
biosynthetic enzyme, 
RebC 

2R0G 25.7 2.9 15.8 334 

The mechanism of substrate binding within these enzymes appears to be 

different.  Some enzymes, such as PhzS and MHBH, have a tunnel that provides 

access to the binding pocket without requiring a conformational change in the FAD 

(38, 43).  Other structurally similar enzymes do not have such a channel.  For 

example, DHPH could not be crystallized with substrate because the ligand would not 

bind.  PHBH is believed to require the flavin to adopt multiple, different 
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conformations over the cycle of reaction.  The flavin is found in an “IN” conformation 

when p-hydroxybenzoate (p-OHB) is bound, an “OPEN” conformation before p-OHB 

binds, and an “OUT” conformation when undergoing reduction by NAD(P)H (40, 44, 

45).  RebC appears to have a helix that can undergo conformational change upon 

substrate binding (39).  Examination of MHPCO suggests that MHPC most likely 

enters the active site through a tunnel (Figure 6.6) without inducing any large 

conformational changes of the protein.  Tyr270, Trp173, Arg211, Met227, Asp177, 

and Arg350 line the channel and form the mouth of the active site.  Despite the 

presence of a substrate tunnel in several of the flavin monooxygenases, in MHPCO the 

tunnel is in a different location compared to PhzS and MHBH.  Moreover, the MHBH 

tunnel has two openings leading to the surface of the protein, but these are pointed in 

different directions.  One opening of MHBH is suggested to be for molecular oxygen 

to enter the active site and the second, filled with water molecules in the structure, is 

postulated to be the tunnel for substrate entrance (38).  The channel of MHPCO does 

not have two entrances and does not appear to be as wide as that of MHBH although it 

is also filled with water molecules.   

The binding of FAD by MHPCO also shares many similarities with other 

flavin monooxygenases but has some significant differences.  In all structures of flavin 

aromatic monooxygenases determined, the FAD binds lengthwise in a groove 

contained within one protomer.  The adenine base in all structures is bound in a pocket 

between arginine and aspartate residues and forms hydrogen bonds to the amide 

nitrogen atom of the protein backbone.  A conserved glutamate residue (Glu41) is 

pointed toward the hydroxyl groups of the ribose ring in all structures.  The phosphate 

tail is coordinated by water molecules hydrogen bonded to the protein backbone and 

several residues along the FAD are conserved, including Gly18, Gly23, and Asp288.  

The isoalloxazine ring is held in the “IN” conformation when the substrate is bound to 
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the active site.  In some structures where ligand is not bound, the isoalloxazine ring 

has been found in the “OUT” conformation.  The crystal structures of PhzS, RebC, 

and MHBH (PDB ID 2rgj, 2roc, and 2dkh respectively) show the flavin in the “OUT” 

conformation.  In contrast to these enzymes, the FAD of MHPCO remains in the “IN” 

conformation and shows very little movement, regardless of the presence or absence 

of substrate (Figure 6.4).  Using PHBH as a model, it has been previously proposed 

that NADH could bind parallel to the FAD molecule for transfer of the hydride to 

yield the reduced flavin (13).  However, the binding site for NADH in MHPCO has 

not been definitively identified.  Additionally, for FAD in MHPCO to adopt the 

“OUT” conformation seen in PhzS, the loop connecting β2 and β3 would have to 

move 3 to 4 Å to accommodate the isoalloxazine ring.  The “OUT” conformation of 

FAD in PhzS is stabilized largely through π stacking with a tryptophan residue found 

on a loop that extends to the active site.  This loop structure in MHPCO, between β16 

and α7, is much shorter with only 8 residues instead of 16 residues, when compared to 

the PhzS structure and does not extend to cover the active site of MHPCO.  The π 

stacking between the flavin in MHBH occurs with a tyrosine residue.  The equivalent 

aromatic residue in MHPCO, Tyr270, is one residue shifted and is the most likely 

residue to provide π stacking to FAD if the “OUT” conformation were adopted.  

However, studies done by Chaiyen et al. using FAD analogues substituted at the 8-

position showed that the effects on rate of reduction were due solely to the changes in 

redox potential and that the size of the substituent had no effect (46).  This suggests 

that flavin movement may not play a role in FAD reduction for MHPCO and raises the 

possibility that FAD could remain in the “IN” conformation during reduction by 

NADH.  The FAD of MHPCO may be reduced by NADH in a manner different than 

for other flavin aromatic monooxygenases.  
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Active Site of MHPCO.  The active site of MHPCO is a large pocket lined 

mostly by hydrophobic and aromatic residues (Figure 6.5).  These residues include 

Tyr54, Tyr82, Tyr223, Phe358, Trp203, Asp 203, and Arg211.  The hydroxyl groups 

of the tyrosine residues point into the active site and the side chain of Arg211 is also 

positioned within the active site.  These residues are hydrogen bonded to the many 

water molecules that are found within the active site in both structures.  Comparisons 

of the active sites of flavin aromatic monooxygenases whose structures are available 

show some similarities.  All structures have an absolutely conserved proline residue 

above the FAD isoalloxazine ring containing C7 and C8 (Pro295 in MHPCO).  The 

other commonality is the presence of several aromatic residues at the back of the 

binding pocket.  MHPCO has three tyrosine residues, two tryptophan residues, and 

two phenylalanine residues in the rear of the active site and none form any direct 

contacts with the substrate MHPC.  PHBH (PDB ID 1pbe) and DHPH have a similar 

wall in the active site.  p-Hydroxybenzoate (p-OHB), the substrate of PHBH, forms a 

hydrogen bond to a tyrosine hydroxyl group, which can deprotonate p-OHB for 

activation.  The carboxylate group of p-OHB forms a salt bridge with an arginine side 

chain, helping correctly orient the substrate within the active site.  The binding of 

MHPC within the active site of MHPCO is quite different.  Unlike PHBH, MHPCO 

makes no direct interactions with its substrate (Figure 6.5).  The 3-hydroxyl group of 

MHPC forms a water-mediated hydrogen bond to Tyr223 and the N1 atom is 

hydrogen bonded to Tyr82 through a water molecule.  The carboxyl oxygen atoms are 

each hydrogen bonded to two water molecules that lead into the tunnel.  Arg211 is one 

of the few charged residues found in the active site and it is poorly positioned to help 

stabilize MHPC.  The surprising lack of direct interactions between MHPC and 

MHPCO and the large open cavity of the active site is unusual and differentiates 

MHPCO from other members of this enzyme family. 
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Mechanistic Implications of the MHPCO Structure.  One possible mechanism 

for the oxidative ring opening of MHPC is shown in Figure 6.7.  In this mechanism, 

the hydroxylation of MHPC first occurs by an electrophilic attack by the flavin 

hydroperoxide on C2 of the pyridine 7 to give 9, which could then  undergo an 

electrocyclic ring opening to produce the ketene 10.  Tautomerization to 11 followed 

by addition of water to the ketene would generate the product E-2AMS 8.  Several 

other variations on this proposal for the conversion of 9 to 8 are possible. (34).  This 

mechanism is consistent with all previous 18O2 and H2
18O labeling experiments, with 

substrate analogue studies, and with kinetics data (16, 33, 47, 48) and the current 

structure of MHPCO bound with MHPC seems to position the substrate optimally for 

this attack to occur.   

Figure 6.7.  Possible mechanism for the reaction catalyzed by MHPCO.  The 
aromatic ring is opened through an electrocyclic mechanism after pyridine 
hydroxylation by the flavin hydroperoxide. 

 The structure of MHPCO complexed with the substrate MHPC 7 clarifies 

many of the details of the active site and provides further insight into the catalytic  
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Figure 6.8.  Stereoview diagrams of the active site with possible bases for the ring 
opening reaction.  All residues and ligands are shown in ball and stick representation 
and colored according to atom type.  Red nonbonded spheres are water molecules.  
The 2-hydroxy-MHPC intermediate 9 was manually modeled into the active site using 
the binding of MHPC as a guide.  (A)  Tyr223 as the active site acid.  Tyr223 activates 
a water molecule for attack at the C3 carbonyl and could provide stabilization of the 
intermediate.  (B)  Arg181 as the active site base.  Arg181 could protonate the 
carbonyl and stabilize the intermediate after attack of water at the carbonyl.  Arg181 
has adopted a different conformation than that seen in the crystal structure. 
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mechanism.  The C2 of MHPC is located 5.3 Å from C4a of the isoalloxazine ring.  

This separation, in addition to the orientation of the planes of the pyridine and the 

isoalloxazine rings, gives a reasonable geometry for reaction of the distal oxygen atom 

of the flavin hydroperoxide with C2 of the substrate.  The position of this oxygen is 

indicated by structurally conserved water molecules seen in both structures of 

MHPCO described here.   Comparable substrate-C4a distances have been observed in 

other aromatic ring oxidizing flavin-dependent monooxygenases.  Tyr223 and Tyr82 

are likely catalytic residues (Figure 6.8A).  Tyr223 could activate the water molecule 

located 2.7 Å from the substrate C3 oxygen and facilitate the conversion of 7 to 9.  

Tyr82 is hydrogen bonded to the water molecule located 2.6 Å from the pyridine 

nitrogen and may facilitate the conversion of 10 to 11.  Arg181 is also a possible 

candidate for an active site base.  In the crystal structure, this residue is oriented along 

the isoalloxazine ring but a conformational change of the side chain may position the 

guanidinium group within hydrogen bonding distance of the substrate C3 oxygen 

(modeled in Figure 6.8B).  However, for Arg181 to adopt this conformation some 

conformational changes of the active site would have to occur to avoid close contacts 

between the isoalloxazine ring and the arginine.  Removal of the hydroxyl group of 

Tyr223 (Y223F) or substitution of the guanidinium group of Arg181 with an amide 

group (R181Q) both render the enzyme inactive.  Arg211 is located below the plane of 

the pyrimidine ring and its guanidinium group is facing the C5 carboxylate of MHPC.  

While poorly positioned to form a salt bridge in the enzyme substrate complex, 

conformational changes during the course of the reaction could increase the strength 

of this interaction.
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CHAPTER 7 

STRUCTURE DETERMINATION AND CHARACTERIZATION OF THE 

VITAMIN B6 DEGRADATIVE ENZYME (E)-2-

(ACETAMIDOMETHYLENE)SUCCINATE HYDROLASE1 

Section 7.1. Introduction 

 Vitamin B6 is an essential vitamin whose active cofactor, pyridoxal 5′-

phosphate (PLP), plays an important role within the cell to stabilize carbanion 

intermediates adjacent to an amino group (1).  Vitamin B6 degradation was first shown 

to occur in select microorganisms in the late 1950s by culturing bacteria on minimal 

media where the only carbon and nitrogen sources were different B6 vitamers (2).  

Two pathways for the degradation of vitamin B6 have been described; the first has 

been characterized in Pseudomonas sp. MA-1 and the second in Pseudomonas IA and 

Arthrobacter Cr-7 (2).  None of the PLP catabolic genes in these microorganisms were 

identified.  Gene identification was greatly facilitated when the genome of 

Mesorhizobium loti MAFF303099 was sequenced in 2000 (3).  Shortly thereafter, the 

pyridoxine 4-oxidase gene was identified, suggesting that this bacterium was capable 

of degrading vitamin B6 (4).  Six other catabolic genes were rapidly identified 

completing the vitamin B6 degradative pathway in M. loti, shown in Figure 7.1 (5-11).  

Crystal structures have been determined for three of these enzymes (12-14).  The M. 

loti degradative pathway is slightly different from that observed in Pseudomonas sp. 

MA-1.  

 E-2-(acetamidomethylene)succinate (E-2AMS) hydrolase is the last enzyme to 

be biochemically characterized on the vitamin B6 catabolic pathway.   This enzyme 

catalyzes the hydrolysis of E-2AMS to succinic semialdehyde, ammonia, acetate, and 

                                                 
1 Reproduced with permission from McCulloch, K.M., Mukherjee, T., Begley, T.P., and Ealick, S.E. 
(2010) Biochemistry 49: 1226-1235.  Copyright 2010 American Chemical Society 
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carbon dioxide.  The products of this reaction have been conclusively identified and 

the steady state kinetics of the enzyme have been characterized (7, 10).  A similar 

reaction in nicotinate catabolism, catalyzing the amide hydrolysis of 2-(enamine)-

glutarate, is performed by an enamidase, a member of the amidohydrolase superfamily 

(15).  The primary sequence of E-2AMS hydrolase, however, indicated that this 

enzyme was most similar to members of the α/β hydrolase superfamily, although the 

sequence homology was low.  This superfamily often utilizes a catalytic triad 

consisting of an active site nucleophile, an absolutely conserved histidine residue, and 

an acidic residue.  Sequence alignments failed to identify this acidic residue and it was 

unclear how this enzyme catalyzed its metal-independent hydrolysis reaction (10).  

The structure reported here identifies this acidic residue and also suggests several 

other residues within the active site that could be involved in substrate binding and 

catalysis. 

Section 7.2. Materials and Methods 

 Cloning, Overexpression, and Purification of E-2AMS Hydrolase.  The 

molecular cloning of the mlr6787 gene from M. loti MAFF303099 has been 

previously described (7).  The resulting pMl5331.XF1 plasmid contains the mlr6787 

gene with an N-terminal polyhistidine tag and was transformed into Escherichia coli 

B834(DE3), a cell line auxotrophic for methionine.  Overnight cultures were grown by 

transferring a single colony to 10 mL LB medium with 150 μg/mL ampicillin at 37 °C 

with shaking.  Selenomethionyl-incorporated (SeMet) protein was grown using a 

minimal medium supplemented with 0.4% glucose, 20 mg/L of all amino acids except 

methionine, 50 mg/L L-selenomethionine, 1× MEM vitamin mix (Invitrogen), 2 mM 

MgSO4, 0.1 mM CaCl2, 25 mg/L FeSO4, and 150 μg/mL ampicillin.  The overnight 

culture, grown in LB, was harvested at 4 °C at 2,000 × g for 15 min then resuspended 

in the minimal medium for inoculation of 1 L cultures.  The large culture was allowed 
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Figure7.1. Vitamin B6 degradative pathway found in M. loti.  1, pyridoxine; 2, 
pyridoxal; 3, 4-pyridoxolactone; 4, 4-pyridoxic acid; 5, 5-formyl-2-methyl-3-
hydroxypyridine-4-carboxylic acid; 6, 2-methyl-3-hydroxypyridine-4,5-dicarboxylic 
acid; 7, 2-methyl-3-hydroxypyridine-5-carboxylic acid; 8, 2-
(acetamidomethylene)succinic acid; 9, succinic semialdehyde.  Other final products 
are ammonia, acetate, and carbon dioxide 

to grow at 37 °C with shaking to an OD595 of 0.6.  The temperature was then lowered 

to 15 °C and overexpression of protein was induced overnight with 1 mM isopropyl β-

D-thiogalactopyranoside (IPTG).  After 16 h, cells were pelleted by centrifugation at 

6,000 × g and stored frozen at -20 °C.  For native protein overexpression, 1 L of LB 

medium with 150 μg/mL ampicillin was inoculated with 5 mL of overnight culture, 

then grown at 37 °C with shaking to an OD595 of 0.6 and induced with 1 mM IPTG.  

The cells were harvested as described for the SeMet protein preparation. 

 Purification of both native and SeMet protein followed the same protocol.  

Frozen cell pellet was resuspended in 30 mL of purification buffer (50 mM NaH2PO4 

at pH 8.0, 300 mM NaCl, 3 mM β-mercaptoethanol) with 10 mM imidazole and lysed 

by sonication.  After lysis, the cell extract was clarified by centrifugation at 40,000 × g 

for 1 h at 4 °C.  The supernatant was then twice passed over a 2 mL Ni-NTA column 

(Qiagen) pre-equilibrated with purification buffer.  The column was then washed with 

50 mL of purification buffer and nonspecifically binding contaminants were removed 

by washing with 25 mL of purification buffer containing 20 mM imidazole.  The 
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protein was eluted from the column using purification buffer containing 250 mM 

imidazole.  The resulting sample was further purified using size exclusion 

chromatography (HiLoad 26/60 Superdex 75 pg, GE Healthcare) to greater than 95% 

homogeneity as judged by SDS-PAGE analysis (results not shown).  The protein 

samples were concentrated to ~8 mg/mL as measured by Bradford assay and stored at 

-80 °C in storage buffer (20 mM Tris pH 8.0, 50 mM NaCl), with 1 mM dithiothreitol 

(DTT) added to the SeMet sample (16). 

 Activity Assay for E-2AMS Hydrolase.  The assay used for determining the 

activity of E-2AMS hydrolase has previously been described (7).  Briefly, freshly 

purified enzyme was buffer exchanged into 50 mM phosphate buffer containing a 

quantified amount of E-2AMS and the decrease in absorbance at 261 nm is monitored.  

This assay was used to determine the steady state kinetic parameters previously 

reported (7, 10). 

 Crystallization of E-2AMS Hydrolase.  The hanging-drop vapor diffusion 

method was used to crystallize E-2AMS hydrolase by mixing equal volumes of 

protein sample with reservoir solution and allowing the drop to equilibrate against 500 

μL of reservoir solution at 22 °C.  Initial hits were determined for the native protein 

using commercially available sparse matrix screens (Hampton Research, Emerald 

BioSystems).  Optimized reservoir conditions consisted of 8-12% PEG 8000, 200 mM 

MgCl2, and 100 mM Tris buffer, pH 7.4-8.0 and 1.5 μL of reservoir solution was 

mixed with an equal volume of protein solution.  Tetragonal bipyramidal crystals grew 

to 200 μm × 150 μm within two days.  SeMet E-2AMS hydrolase crystals grew under 

the same conditions, but required an additional microseeding step.  Briefly, native 

crystals were transferred to a seed stabilization solution of 9% PEG 8000, 200 mM 

MgCl2, 100 mM Tris at pH 7.8, then crushed using Seed Bead (Hampton Research).  

The freshly prepared seeds were then serially diluted and 0.5 μL of seed solution was 
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added to SeMet hanging drops pre-equilibrated overnight.  Crystals began growing 

within 20 min of seeding and reached full size overnight.  Native and SeMet E-2AMS 

hydrolase crystals both belong to the space group P212121 with average unit cell 

parameters of a = 115 Å, b = 179 Å, and c = 189 Å.  The asymmetric unit consists of 

twelve chains, corresponding to a Matthew’s coefficient of 2.40 Å3/Da and a solvent 

content of 49% (17).   

 X-Ray Data Collection and Processing.  Protein crystals were cryoprotected in 

the crystallization solution supplemented with 17% glycerol and then flash frozen by 

plunging into liquid nitrogen.  A single wavelength anomalous dataset was collected 

on a single SeMet E-2AMS hydrolase crystal on the NE-CAT 24-ID-C beamline at the 

Advanced Photon Source.  A fluorescence scan was performed on a SeMet crystal to 

determine the maximum f″ for selenium, and the data were collected at this 

wavelength to a maximum resolution of 2.7 Å over a total rotation range of 180°.  A 

native crystal diffracted to 2.3 Å resolution and data were collected over 110° on the 

NE-CAT 24-ID-E beamline.  Both datasets were collected using Quantum315 

detectors (Area Detector Systems Corp.) and used a 0.5° oscillation range to minimize 

reflection overlaps.  The data were then indexed, integrated, and scaled using the 

HKL2000 suite of programs (18). Data collection statistics are given in Table 1.   

 Structure Determination, Model Building, and Refinement.  Positions for 36 of 

a possible 60 selenium atoms were determined using the SAD dataset to 2.7 Å and the 

program hkl2map (19-21).  These heavy atom coordinates were then used for SAD 

phasing, followed by density modification and calculation of initial electron density  

maps in CNS (22).   RESOLVE was then used to perform phase extension to 2.3 Å 

with the native data and automated model building (23-24).  The initial model, 

consisting of 1511 out of 3336 residues in the asymmetric unit, required extensive 

manual model building in COOT (25).  Once twelve chains had been positioned in the 
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asymmetric unit relying solely on the experimental phase information, iterative rounds 

of refinement were performed in CNS followed by additional manual model building.  

Strict non-crystallographic symmetry (NCS) restraints were utilized and gradually 

lessened throughout refinement (26).  Water molecules were added during later rounds 

of refinement using CNS.  The final model, consisting of residues 11-278 for twelve 

chains, was analyzed using PROCHECK; Ser106 and Asp257 were each identified as 

having geometry that falls within the disallowed region, although each residue has 

clear electron density (27).  Final refinement statistics are summarized in Table 2.  

Figures were generated using PYMOL and ChemDraw (28). 

Table 7.1.  Summary of Data Collection Statistics 
   SeMet Native 
Source APS 24-ID-C APS 24-ID-E 
Resolution (Å) 2.70 2.26 
Wavelength (eV) 12662 12667 
Space Group P212121 P212121 
a (Å) 115.2 115.2 
b (Å) 179.0 178.5 
c (Å) 189.2 189.3 
Matthew’s Coef. 2.4 2.4 
     % solvent 49 49 
     Mol/a.s.u. 12 12 
Measured Reflections 531900 727191 
Unique reflectionsa 207285 (20629) b 168768 (12441) 
Average I/σ 11.7 (2.4) 13.1 (1.7) 
Redundancy 2.6 (2.5) 4.3 (2.1) 
Completeness (%) 99.9 (99.4) 91.6 (68.2) 
Rsymc (%) 7.9 (35.7) 10.3 (45.8) 
aUnique reflections include Bijvoet pairs for anomalous data.  bValues in parentheses 
are for the highest resolution shell.  cRsym = ΣΣi|Ii - 〈I〉|/Σ〈I〉, where 〈I〉 is the mean 
intensity of the N reflections with intensities Ii and common indicies h,k,l. 
 

 Mutagenesis of E-2AMS Hydrolase.  Mutants of E-2AMS hydrolase were 

prepared using standard procedures for site-directed mutagenesis (29).  The plasmid 

p5331.XFI in E. coli Mach1 cell line was used as template DNA.  Primers used for 

generating S106A are as follows: 5′-(for)CCA TCC TCG TCG GAC ACG CGC TTG 
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GTG CTC GAA ATT CGG-3′; 5′-(rev)CCG AAT TTC GAG CAC CAA GCG CGT 

GTC CGA CGA GGA TGG-3′.  The D130N mutant was prepared using the following 

primers: 5′-(for)GGT GCG GTC GGT CGT CGC GAT TAA CTT TAC GCC GTA 

CAT CGA G-3′; 5′-(rev)C TCG ATG TAC GGC GTA AAG TTA ATC GCG ACG 

ACC GAC CGC ACC-3′.  To generate the S230A mutant, the following primers were 

used: 5′-(for)CGT TCG GGG CGA GTC CGC CAA GTT GGT TTC TGC G-3′; 5′-

(rev)C GCA GAA ACC  AAC TTG GCG GAC TCG CCC CGA ACG-3′.  

Additionally, the S230C and S230N mutants were generated by replacing the 

underlined bases in the forward primer with CTG and TTG and CAG and CAA, 

respectively.  These mutants were each overexpressed and purified as described for the 

wild-type E-2AMS hydrolase.  The S106A mutant was crystallized using the seeding 

procedure required for the SeMet sample. 

Section 7.3. Results 

 Packing of E-2AMS Hydrolase.  A typical diffraction pattern from an E-2AMS 

hydrolase dataset is shown in Figure 7.2A.  At low resolution, it is clear that every 

third row of diffraction maxima exhibited a much greater intensity than the 

intervening two rows of maxima.  This pattern indicated the possibility of pseudo-

translational symmetry (30), which was confirmed by the structure.  Twelve chains 

were built into the asymmetric unit and resulted in 49% solvent content.  Figure 7.2B 

shows one layer of monomers in the unit cell, which consists of three unique 

protomers from the asymmetric unit and their crystallographic equivalents.  The 

pseudo-translational symmetry occurs along the B-axis, where the spacing between 

protomers is nearly equal for two of the three pairs and nearly 10 Å further for the 

final spacing. 

 Overall Structure of E-2AMS Hydrolase.  The structure of E-2AMS hydrolase 

was solved using SeMet SAD phasing at 2.7 Å resolution followed by phase extension 
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with native data to 2.3 Å.  Each of the twelve protomers within the asymmetric unit 

consists of residues 11-278; the first ten residues and the polyhistidine tag are not 

visible in the electron density.  Figure 7.3 shows the final model of E-2AMS 

hydrolase.  The overall fold of this enzyme indicates that E-2AMS hydrolase belongs 

to the α/β hydrolase superfamily.  The core of the enzyme is an eight-stranded mostly 

parallel β-sheet where β2 is the only strand running antiparallel 

(β1↑β2↓β4↑β3↑β5↑β6↑β9↑β10↑).  The β-sheet has a very tight twist so that β10 is 

oriented nearly perpendicular to β1 when looking down the β-sheet.  One side of the 

Table 7.2.  Summary of Data Refinement Statistics 
 E-2AMS Hydrolase 
Resolution (Å) 50.00 – 2.30 
No. of protein atoms 24444 
No. of ligand atoms 12 
No. of water atoms 1387 
Reflections in working set 279026 
Reflections in test set 18821 
R factora (%) 20.4 
Rfree

b (%) 24.5 
Rmsd from ideal 
   Bonds (Å) 
   Angles (º) 

 
0.0058 
1.2 

Average B-factor (Å3) 28.4 
Ramachandran Plot 
   Most favored (%) 
   Additionally allowed (%) 
   Generously allowed (%) 
   Disallowed (%) 

 
87.6 
11.9 
0.1 
0.4 

aR factor = Σhkl||Fobs| - k|Fcal||/Σhkl |Fobs| where Fobs and Fcal are observed and calculated 
structure factors, respectively.  bFor Rfree, the sum is extended over a subset of 
reflections (5%) excluded from all stages of refinement 

β-sheet is flanked by three α-helices, α2, α10, and α11.  A bundle of α-helices, 

consisting of α1, α3, α8, and α9, packs on the other side of the β-sheet.  A cap 

domain is inserted between β6 and β9 and sits at the N-terminal side of the β-sheet.  

This lid is made up of four α-helices (α4, α5, α6, and α7) and a small two-stranded 

antiparallel β-sheet (β7↑β8↓). 
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Figure 7.2.  Pseudo-translational symmetry in E-2AMS hydrolase crystals.  (A)  A 
typical diffraction pattern for E-2AMS hydrolase.  At low resolution, every third 
row of reflections is much more intense than other rows.  (B)  Crystal packing of 
E-2AMS hydrolase.  For clarity only one third of the unit cell is shown, with the 
three unique chains colored blue, red and green.  The crystallographically related 
protomers are shown in grey. 

 The twelve protomers of E-2AMS hydrolase in the asymmetric unit form six 

pairs of dimers with identical interfaces.  The two protomers are related to each other 

by local twofold symmetry.  The β-sheets of each chain face in the same direction, but 

twist in opposite directions, as seen in Figure 7.4.  The dimer interface involves the 

loop region between α9 and β10, residues from β10, and the C-terminal end of α10 

from both protomers.  Each dimer is about 95 Å long with a total surface area of 

nearly 20,000 Å2.  Roughly 2000 Å2 is buried at the dimer interface (31).  Two 

hydrogen bonds are formed between the carbonyl oxygen and amide nitrogen atoms of  
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Figure 7.3.  Monomeric structure of E-2AMS hydrolase.  (A)  Stereoview ribbon 
diagram of E-2AMS hydrolase with the secondary structures labelled.  β-strands are 
shown in green and α-helices are shown in blue.  (B)  Topology diagram of E-2AMS 
hydrolase, using the same color scheme as A.  (C)  Ribbon diagram of E-2AMS 
hydrolase illustrating the sharp twist in the β-sheet running through the core of the 
enzyme and the cap domain. 

the protein backbone at Val250 and Val250* (where * indicates the second protomer 

of the dimer).  A salt bridge is formed between Arg243 and Glu228*, a hydrogen bond 

is found between Asn274 and Aps247*, and Arg124 forms interactions with the 

oxygen atoms of the carboxy terminus at Ala278*.  Additionally, Phe275, Pro221, 

Leu223, Pro 249, Val250, Val251, and Ala271 from each protomer form an extended 

hydrophobic patch at the dimer interface.   
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Figure 7.4. Dimeric structure of E-2AMS hydrolase.  Each chain is colored 
differently, one red and the second blue.  The second orientation obtained by rotating 
the first orientation by 90° along the horizontal axis. 

 Active Site of E-2AMS Hydrolase.  The putative active site was identified 

through sequence and structural homology with other α/β hydrolases and is located at 

the C-terminal end of the β-sheet and is shielded from solvent by the cap domain.  

Three positively charged residues, Arg146, Arg167, and Lys231, are present at the 

entrance to the active site.  The active site pocket has two distinct environments, as 

seen in Figure 7.5.  The narrow cleft adjacent to Ser106 is lined with primarily 

hydrophobic residues, including Ile41, Leu207, Leu143, Leu232, and Phe131.  The 

second half of the active site, however, is more hydrophilic.  This pocket, roughly 10 

Å deep and 6 Å wide, is filled with water molecules coordinated to hydrophilic 

residues.  Arg179 forms hydrogen bonds to two water molecules and is oriented in the 

active site by Glu262.  Three tyrosine residues, Tyr184, Tyr168, and Tyr259, are 

positioned so the hydroxyl group faces into the active site and forms hydrogen bonds 

with water molecules.  Other hydrophilic residues in the active site include Thr42, 

Ser43, and His105. 
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Figure 7.5.  Stereoview ball and stick diagram of the active site of E-2AMS 
hydrolase.  Water molecules are shown as red nonbonded spheres and the chloride 
ion is shown as a nonbonded grey sphere.  Key protein interactions are shown as 
dashed lines. 

 The putative nucleophilic residue, Ser106, adopts a strained conformation at 

the C-terminal end of β5 and is hydrogen bonded to a structurally conserved water 

molecule, which is also coordinated to the backbone amide nitrogen atoms of Leu107 

and Leu41.  A chloride ion is bound in a pocket next to Ser106.  The chloride ion is 

bound in an oxyanion hole, coordinated to Ser106 2.9 Å away and is also forming 

interactions with two backbone amide nitrogen atoms from Ile41 and Leu107 (3.2 and 

3.3 Å, respectively).  His258, located after β10, is 3.0 Å from Ser106 and is itself 

positioned by Asp130, 2.5 Å away.  Asp130 is found at the end of β6 and Ser230 

occurs after β9.  Ser230 forms a strong hydrogen bond with Asp130 (2.7 Å) and a 

second hydrogen bond with the amide nitrogen atom from the protein backbone of 

Leu232.  These interactions are shown in Figure 7.5.   

 Activity of E-2AMS Hydrolase Mutants.  The extinction coefficient at 261 nm 

for E-2AMS is 18600 M-1 cm-1 as previously determined, and the KM and kcat values 

for E-2AMS hydrolase have also been reported (7, 10, 32).  The activity of the active 

site mutants S106A, D130N, and S230C were assayed by measuring the decrease in 
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the absorbance at 261 nm, the λmax for E-2AMS as previously described (7, 10).  Each 

of these mutants was found to be completely inactive relative to the native enzyme, 

which retained an activity comparable to published results.  The active site mutants 

S230A and S230N could not be assayed because these proteins precipitated in the 

assay buffer.  The inactive S106A mutant was then used for cocrystallization and 

soaking experiments with E-2AMS, which were unsuccessful in producing an 

enzyme-substrate complex. 

Section 7.4. Discussion 

 Comparison of E-2AMS Hydrolase to Other Members of the α/β Hydrolase 

Superfamily.  The α/β hydrolase superfamily comprises a very large class of enzymes, 

catalyzing myriad reactions and related through similar tertiary structures.  This family 

has been structurally well characterized and includes esterases, lipases, epoxidases, 

alkane dehalogenases, carbon-carbon bond hydrolases, amidohydrolases, and 

thioesterases (33-34).  Previous analysis of the primary sequence for E-2AMS 

hydrolase using BLAST suggested that this enzyme was a member of the α/β 

hydrolase superfamily, despite a low sequence identity to this family of enzymes (10).  

A DALI search was performed using the structure of E-2AMS hydrolase and these 

results confirmed that E-2AMS hydrolase is a member of the α/β hydrolase family.  

Representative members of this superfamily are shown in Table 3.3 and their 

similarity to E-2AMS hydrolase is given by their Z-score, rmsd, sequence identity, and 

the number of residues aligned (34-40).  The core of E-2AMS hydrolase is formed by 

an eight stranded β-sheet flanked on both sides by α-helices with a strand order that 

agrees with the other members of this superfamily (41-42).  The cap domain is an 

insertion between β6 and β9, with a short two stranded antiparallel β-sheet and four α-

helices.  The cap domain acts to shield the active site from solvent.  While this second 

domain is not part of the α/β hydrolase fold, insertions are common after the fifth β-
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strand of the core β-sheet (42).  Additionally, the cap domain is not conserved.  For 

example, the cap domains of the serine hydrolase CarC and the carbon-carbon 

hydrolase MhpC (34, 37) are composed of three long α-helices and the cap domain 

from an α/β hydrolase of Novosphingobium aromaticivorans DSM 12444 has a three 

stranded antiparallel β-sheet flanked by four α-helices (PBD ID: 3BWX). 
 
Table 7.3.  Enzymes Identified as Structurally Similar to E-2AMS Hydrolase by DALI 
Protein PDB ID Z Score RMSD % ID # aligned 

residues 
α/β Hydrolase, 
YP_496220.1 

3BWX 30.4 2.4 23 263 

Serine hydrolase 
(CarC) 

1J1I 29.1 2.2 21 238 

Chloroperoxidase L 1A88 28.7 2.4 21 246 
Arylesterase (PFE) 1VA4 28.7 2.5 23 247 
Esterase (EST) 1ZOI 28.5 2.5 21 247 
Esterase (ybfF) 3BF7 27.5 2.5 21 242 
Fluoroacetate 
dehalogenase 

1Y37 27.3 2.7 24 246 

C-C bond hydrolase 
(MhpC) 

1U2E 26.3 2.6 18 251 

 Figure 7.6 shows a sequence alignment of similar enzymes identified through 

DALI (43-44).  The “nucleophilic elbow” begins at the C-terminal end of β5 in E-

2AMS hydrolase and is identified using the fingerprint motif Gly-X-Nu-X-Gly, where 

X is any amino acid and Nu is the nucleophilic amino acid necessary for catalysis.  In 

E-2AMS hydrolase, the nucleophile is Ser106.  The sequence alignment identified few 

conserved residues; the majority being glycine residues, presumably important for 

proper folding.  An absolutely conserved histidine residue required for catalysis in the 

α/β hydrolase family is found after the last β-strand in the core domain.  Additionally, 

the seventh β-strand of the eight stranded β-sheet is mostly conserved, with 

hydrophobic residues forming interactions with neighboring β-strands. 

 Active Site Comparison.  The α/β hydrolase superfamily utilizes a catalytic 

triad consisting of a nucleophile, a strictly conserved histidine residue, and an acidic 
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Figure 7.6.  Sequence alignment of E-2AMS hydrolase with other enzymes 
identified as structurally homologous by DALI.  Included enzymes are the α/β 
hydrolase YP_496220.1 (3BWX), CarC (1J1I), chloroperoxidase L (1A88), the PFE 
arylesterase (1VA4), the EST esterase (1ZOI), ybfF (3BF7), fluoroacetate 
dehalogenase (1Y37), and MhpC (1U2E).  The nucleophile is marked with a green 
circle, the catalytic histidine is labelled with a blue star, and the different active site 
acids are labelled using triangles.  The expected acidic residues have a purple 
triangle, while the location of the acidic residue in E-2AMS hydrolase has a yellow 
triangle. 

residue, usually an aspartate residue.  The nucleophile, identified as Ser106, and the 

catalytic histidine residue, His258, are located in structurally conserved positions at 

the interface of the two domains of E-2AMS hydrolase.  However, the third residue of 

the catalytic triad is not located at the C-terminal end of the seventh β-strand as 

expected.  Instead, His258 forms a hydrogen bond with Asp130 found after β6 with 

Ser230 occupying the turn between β9 and α9.  Figure 7.7 shows the superposition of 

the active site of E-2AMS hydrolase (green) with the esterase ybfF (white) from E. 

coli (PDB ID: 3BF7) and the carbon-carbon bond hydrolase MhpC (purple) from E. 
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Figure 7.7.  Stereoview ball and stick diagram comparing the active site of E-2AMS 
hydrolase to other members of the α/β hydrolase superfamily.  The E-2AMS 
hydrolase structure is shown with green carbon atoms, ybfF is shown using magenta 
carbon atoms, and the carbon-carbon bond hydrolase MhpC has white carbon atoms.  
All residues of E-2AMS hydrolase are labelled and the catalytic residues of ybfF and 
MhpC are labelled. 

coli (PDB ID: 1U2E) (34, 40).  All three structures have an oxyanion hole formed by 

the amide nitrogen atoms of the protein backbone using the residue adjacent to the 

nucleophile (Leu107 in E-2AMS hydrolase) and a residue at the C-terminal end of the 

fourth β-strand (Ile41 at the end of β3 in E-2AMS hydrolase).  The catalytic triads 

observed in E-2AMS hydrolase and ybfF are similar.  The histidine responsible for 

activation of the nucleophile is 3.0 Å from Ser106 and 2.9 Å in the ybfF structure.  

The histidine residues in these two structures are each then coordinated to one oxygen 

atom of the carboxylate group of the acidic residue at the end of β6.  The catalytic 

triad seen in MhpC, shown in purple in Figure 7.7, adopts the more common 

arrangement.  The nucleophile, Ser110, is positioned 3.3 Å from the Nε2 atom of the 

side chain of His263.  The aspartate residue responsible for activation of His263, 

Asp235, is coordinated to the Nδ1 atom of the histidine side chain using both oxygen 

atoms of the carboxylate side chain.  Asp235 is located at the end of the seventh β-

strand of the β-sheet.  The remaining residues lining the active site are not conserved 
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and show no sequence similarity.  However, careful sequence analysis has identified 

several residues apart from the catalytic triad that can help identify the reaction 

catalyzed and suggest E-2AMS hydrolase is quite similar to the esterase subclass of 

the α/β hydrolase superfamily (45-46).  The residue preceding the active site 

nucleophile is a histidine and two residues before the catalytic histidine is a 

hydrophobic residue in esterases (His105 and Ala261, respectively, in E-2AMS 

hydrolase).  While the reaction catalyzed is a hydrolysis of an amide bond instead of 

an ester linkage, the requirements and chemistry are very similar.  Additionally, the 

arrangement of active site residues in which the acidic residue is found at the end of 

β6 and a fourth catalytic residue, a serine at the C-terminal end of the seventh β-

strand, is not uncommon in esterases (40). 

 Mechanistic Implications for E-2AMS Hydrolase.  Previous characterization of 

E-2AMS hydrolase has suggested a possible mechanism for the hydrolysis of E-

2AMS to form succinic semialdehyde, acetate, ammonia, and carbon dioxide, shown 

in Figure 7.8 (7).  This mechanism utilizes an active site base to activate a water 

molecule for nucleophilic attack on the carbonyl carbon atom of the amide group.  

Collapse of the tetrahedral intermediate then leads to the loss of acetate.  

Tautomerization of intermediate 11 is followed by loss of carbon dioxide and release 

of ammonia through the addition of water.  The last two steps could also occur in the 

reverse order.  Direct addition of an active site nucleophile to the amide carbonyl 

carbon atom is also a possibility (Figure 7.8, Mechanism 2).  Direct attack by the 

active site nucleophile is most commonly observed in serine proteases, which are not 

members of the α/β superfamily but have a similar active site triad, composed of 

serine, histidine, and aspartate (47).  However, 2,4-dioxygenases, which have the α/β 

hydrolase fold, are believed to function through direct attack of the nucleophilic serine 

residue at a carbonyl carbon of the substrate to initiate catalysis (48).  Another 
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Figure 7.8.  Proposed mechanisms for the hydrolysis of E-2AMS to produce 
succinic semialdehyde, acetate, ammonia, and carbon dioxide.  Mechanism 1 
utilizes Ser106 to activate a water molecule for attack at the carbonyl carbon of the 
amide bond, while Mechanism 2 utilizes a direct attack on E-2AMS by Ser106. 

example of direct attack by the nucleophilic serine is found in an aryl esterase from 

Pseudomonas fluorescens capable of catalyzing both ester and bromoperoxide bonds 

(35).  A third possibility for the hydrolysis of E-2AMS to form intermediate 10 

utilizes a general base mechanism, where His258 deprotonates a water molecule for 

attack on the carbonyl carbon, leading to loss of acetate and intermediate 11 through 

tautomerization.  In this mechanism, Ser106 could serve to help stabilize the 

negatively charged tetrahedral intermediate found in the oxyanion hole.  The general 

base mechanism has precedence; the carbon-carbon bond hydrolase MhpC from E. 

coli is believed to use His263 for activation of water and Ser110 for stabilization of 

the intermediate after tautomerization of its substrate, 2-hydroxy-6-keto-nona-2,4-

diene-1,9-dioic acid (34, 49-50).   

 Although all attempts at cocrystallization or soaking E-2AMS into crystals of 

E-2AMS hydrolase or into crystals of the E-2AMS hydrolase S106A mutant were 

unsuccessful, examination of the active site suggests several residues that could play 
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important roles in both the binding of E-2AMS and the catalysis of E-2AMS 

hydrolase (Figure 7.9).  The catalytic triad, shown in Figure 7.4, consists of Ser106, 

His258, and Asp130 and most likely functions as seen in other α/β hydrolase enzymes 

(42).  Briefly, Asp130 activates His258 for deprotonation of Ser106, which could act 

as a nucleophile for direct attack on the E-2AMS, or activate a water molecule for 

attack on the substrate.  Mutation of Ser106 to alanine abolished all catalytic activity, 

confirming this residue’s critical importance for activity.  The D130N mutant also 

showed no activity, indicating that the activation and stabilization of the catalytic 

histidine residue is necessary for catalysis. Ser230, found after β9 in the position most 

commonly occupied by the acidic residue of the catalytic triad, is more than 4 Å from 

His258 but forms a strong hydrogen bond (2.7 Å) with Asp130.  Ser230 may play an 

important role in the structural integrity of the enzyme because the S230A, S230C and 

S230N mutants were all unstable. It is possible the slightly larger sulphur atom of 

cysteine in the S230C mutant could disrupt this sharp turn between β9 and α9.  Other  

interactions involving Ser230 include two hydrogen bonds to amide nitrogen atoms of 

the protein backbone of Leu232 and Val233 in a β-turn.  

 The active site has several positively charged residues which could be involved 

in coordination to the carboxylate groups of E-2AMS (Figure 7.4).  Three arginine 

residues, Arg146, Arg167, and Arg179, face into the active site.  Additionally, Arg179 

forms two salt bridges with Glu262 to help orient Arg179 within the active site.  

Manual placement of the substrate, such that the carbonyl carbon of the amide group is 

located near Ser106 in the active site and the carbonyl oxygen points towards the 

oxyanion hole, suggests Arg146 and Arg179 are both likely candidates for 

coordination to the carboxylate groups and could play a role in the proper orientation 

of E-2AMS within the active site (Figure 7.9).  Either arginine residue could also 

stabilize the enol intermediate and serve as a proton donor in the first mechanism.   
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Figure 7.9.  Possible coordination of E-2AMS within the active site.  (A)  Schematic 
diagram where E-2AMS (shown in red) was manually positioned such that either 
Ser106 or an activated water molecule could attack the carbonyl carbon of the amide 
group.  Potential hydrogen bonds are shown as dashed lines.  (B)  Stereoview ball and 
stick diagram of the E-2AMS hydrolase active site with E-2AMS manually positioned 
in the active site.  Carbon atoms of E-2AMS hydrolase are colored green and carbon 
atoms of E-2AMS are colored gray.  Possible interactions and hydrogen bonds 
important for active site orientation are shown in dashed lines. 

Protonation of the enol intermediate 11 could utilize Tyr166, Tyr259, or His105, either 

directly or using an activated water molecule.  These same residues could also be 

involved in catalyzing the decarboxylation reaction leading to succinic semialdehyde.

171 



REFERENCES 

1. Eliot, A. C., and Kirsch, J. F. (2004) Pyridoxal phosphate enzymes: 

mechanistic, structural, and evolutionary considerations, Annu. Rev. Biochem. 

73, 383-415. 

2. Snell, E. E., and Haskell, B. E. (1971) The Metabolism of Vitamin B6, In: 

Comprehensive Biochemistry, Vol. 21, Elsevier/North Holland, New York. 

3. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., 

Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, 

Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Mochizuki, Y., 

Nakayama, S., Nakazaki, N., Shimpo, S., Sugimoto, M., Takeuchi, C., 

Yamada, M., and Tabata, S. (2000) Complete genome structure of the 

nitrogen-fixing symbiotic bacterium Mesorhizobium loti, DNA Res. 7, 331-

338. 

4. Yuan, B., Yoshikane, Y., Yokochi, N., Ohnishi, K., and Yagi, T. (2004) The 

nitrogen-fixing symbiotic bacterium Mesorhizobium loti has and expresses the 

gene encoding pyridoxine 4-oxidase involved in the degradation of vitamin B6, 

FEMS Microbiol. Lett. 234, 225-230. 

5. Funami, J., Yoshikane, Y., Kobayashi, H., Yokochi, N., Yuan, B., Iwasaki, K., 

Ohnishi, K., and Yagi, T. (2005) 4-Pyridoxolactonase from a symbiotic 

nitrogen-fixing bacterium Mesorhizobium loti: cloning, expression, and 

characterization, Biochim. Biophys. Acta 1753, 234-239. 

6. Ge, F., Yokochi, N., Yoshikane, Y., Ohnishi, K., and Yagi, T. (2008) Gene 

identification and characterization of the pyridoxine degradative enzyme 4-

pyridoxic acid dehydrogenase from the nitrogen-fixing symbiotic bacterium 

Mesorhizobium loti MAFF303099, J. Biochem. 143, 603-609. 

172 
 



7. Mukherjee, T., Hilmey, D. G., and Begley, T. P. (2008) PLP catabolism: 

identification of the 2-(Acetamidomethylene)succinate hydrolase gene in 

Mesorhizobium loti MAFF303099, Biochemistry 47, 6233-6241. 

8. Mukherjee, T., Kinsland, C., and Begley, T. P. (2007) PLP catabolism: 

identification of the 4-pyridoxic acid dehydrogenase gene in Mesorhizobium 

loti MAFF303099, Bioorg. Chem. 35, 458-464. 

9. Yokochi, N., Nishimura, S., Yoshikane, Y., Ohnishi, K., and Yagi, T. (2006) 

Identification of a new tetrameric pyridoxal 4-dehydrogenase as the second 

enzyme in the degradation pathway for pyridoxine in a nitrogen-fixing 

symbiotic bacterium, Mesorhizobium loti, Arch. Biochem. Biophys. 452, 1-8. 

10. Yuan, B., Yokochi, N., Yoshikane, Y., Ohnishi, K., Ge, F., and Yagi, T. (2008) 

Gene identification and characterization of the pyridoxine degradative enzyme 

alpha-(N-acetylaminomethylene)succinic acid amidohydrolase from 

Mesorhizobium loti MAFF303099, J. Nutr. Sci. Vitaminol. (Tokyo) 54, 185-

190. 

11. Yuan, B., Yokochi, N., Yoshikane, Y., Ohnishi, K., and Yagi, T. (2006) 

Molecular cloning, identification and characterization of 2-methyl-3-

hydroxypyridine-5-carboxylic-acid-dioxygenase-coding gene from the 

nitrogen-fixing symbiotic bacterium Mesorhizobium loti, J. Biosci. Bioeng. 

102, 504-510. 

12. Mukherjee, T., McCulloch, K. M., Ealick, S. E., and Begley, T. P. (2007) Gene 

identification and structural characterization of the pyridoxal 5'-phosphate 

degradative protein 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 

decarboxylase from mesorhizobium loti MAFF303099, Biochemistry 46, 

13606-13615. 

173 
 



13. Yoshikane, Y., Yokochi, N., Yamasaki, M., Mizutani, K., Ohnishi, K., 

Mikami, B., Hayashi, H., and Yagi, T. (2008) Crystal structure of 

pyridoxamine-pyruvate aminotransferase from Mesorhizobium loti 

MAFF303099, J. Biol. Chem. 283, 1120-1127. 

14. McCulloch, K. M., Mukherjee, T., Begley, T. P., and Ealick, S. E. (2009) 

Structure of the PLP degradative enzyme 2-methyl-3-hydroxypyridine-5-

carboxylic acid oxygenase from Mesorhizobium loti MAFF303099 and its 

mechanistic implications, Biochemistry 48, 4139-4149. 

15. Kress, D., Alhapel, A., Pierik, A. J., and Essen, L. O. (2008) The crystal 

structure of enamidase: a bifunctional enzyme of the nicotinate catabolism, J. 

Mol. Biol. 384, 837-847. 

16. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein-dye binding, 

Anal. Biochem. 72, 248-254. 

17. Matthews, B. W. (1968) Solvent content of protein crystals, J. Mol. Biol. 33, 

491-497. 

18. Otwinowski, Z., and Minor, W. (1997) Processing of x-ray diffraction data 

collected in oscillation mode, Methods Enzymol. 276, 307-326. 

19. Pape, T., and Schneider, T. R. (2004) HKL2MAP: a graphical user interface 

for phasing with SHELX programs, J. Appl. Cryst. 37, 843-844. 

20. Schneider, T. R., and Sheldrick, G. M. (2002) Substructure solution with 

SHELXD, Acta Cryst. D58, 1772-1779. 

21. Sheldrick, G. M. (2002) Macromolecular phasing with SHELXE, Z Kristallogr 

217, 644-650. 

22. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-

Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, 

174 
 



R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & 

NMR system: A new software suite for macromolecular structure 

determination, Acta Cryst. D54, 905-921. 

23. Terwilliger, T. C. (2000) Maximum-likelihood density modification, Acta 

Cryst. D56, 965-972. 

24. Terwilliger, T. C. (2003) Automated main-chain model building by template 

matching and iterative fragment extension, Acta Cryst. D59, 38-44. 

25. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular 

graphics, Acta Cryst. D60, 2126-2132. 

26. Vellieux, F. M., and Read, R. J. (1997) Noncrystallographic symmetry 

averaging in phase refinement and extension, Methods Enzymol. 277, 18-53. 

27. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) 

PROCHECK: a program to check the stereochemical quality of protein 

structures, J. Appl. Cryst. 26, 283-291. 

28. DeLano, W. L. (2002) The PyMOL Molecular Graphics Systems, DeLano 

Scientific, San Carlos, CA. 

29. Sambrook, J., Fritsch, G. F., and Maniatis, T. (1989) Molecular Cloning:  A 

Laboratory Guide, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 

NY. 

30. Chook, Y. M., Lipscomb, W. N., and Ke, H. (1998) Detection and use of 

pseudo-translation in determination of protein structures, Acta Cryst. D54, 

822-827. 

31. Hasel, W., Hendrickson, T. F., and Still, W. C. (1988) A rapid approximation 

to the solvent-accessible surface areas of atoms, Tetrahedron Comp. Meth. 1, 

103-116. 

175 
 



32. Huynh, M. S., and Snell, E. E. (1985) Enzymes of vitamin B6 degradation. 

Purification and properties of two N-acetylamidohydrolases, J. Biol. Chem. 

260, 2379-2383. 

33. Du, X., Wang, W., Kim, R., Yakota, H., Nguyen, H., and Kim, S. H. (2001) 

Crystal structure and mechanism of catalysis of a pyrazinamidase from 

Pyrococcus horikoshii, Biochemistry 40, 14166-14172. 

34. Dunn, G., Montgomery, M. G., Mohammed, F., Coker, A., Cooper, J. B., 

Robertson, T., Garcia, J. L., Bugg, T. D., and Wood, S. P. (2005) The structure 

of the C-C bond hydrolase MhpC provides insights into its catalytic 

mechanism, J. Mol. Biol. 346, 253-265. 

35. Cheeseman, J. D., Tocilj, A., Park, S., Schrag, J. D., and Kazlauskas, R. J. 

(2004) Structure of an aryl esterase from Pseudomonas fluorescens, Acta 

Cryst. D60, 1237-1243. 

36. Elmi, F., Lee, H. T., Huang, J. Y., Hsieh, Y. C., Wang, Y. L., Chen, Y. J., 

Shaw, S. Y., and Chen, C. J. (2005) Stereoselective esterase from 

Pseudomonas putida IFO12996 reveals alpha/beta hydrolase folds for D-beta-

acetylthioisobutyric acid synthesis, J. Bacteriol. 187, 8470-8476. 

37. Habe, H., Morii, K., Fushinobu, S., Nam, J. W., Ayabe, Y., Yoshida, T., 

Wakagi, T., Yamane, H., Nojiri, H., and Omori, T. (2003) Crystal structure of 

a histidine-tagged serine hydrolase involved in the carbazole degradation 

(CarC enzyme), Biochem. Biophys. Res. Commun. 303, 631-639. 

38. Hofmann, B., Tolzer, S., Pelletier, I., Altenbuchner, J., van Pee, K. H., and 

Hecht, H. J. (1998) Structural investigation of the cofactor-free 

chloroperoxidases, J. Mol. Biol. 279, 889-900. 

39. Holm, L., and Sander, C. (1998) Touring protein fold space with Dali/FSSP, 

Nucleic Acids Res. 26, 316-319. 

176 
 



40. Park, S. Y., Lee, S. H., Lee, J., Nishi, K., Kim, Y. S., Jung, C. H., and Kim, J. 

S. (2008) High-resolution structure of ybfF from Escherichia coli K12: a 

unique substrate-binding crevice generated by domain arrangement, J. Mol. 

Biol. 376, 1426-1437. 

41. Heikinheimo, P., Goldman, A., Jeffries, C., and Ollis, D. L. (1999) Of barn 

owls and bankers: a lush variety of alpha/beta hydrolases, Structure 7, R141-

146. 

42. Nardini, M., and Dijkstra, B. W. (1999) Alpha/beta hydrolase fold enzymes: 

the family keeps growing, Curr. Opin. Struct. Biol. 9, 732-737. 

43. Gouet, P., Courcelle, E., Stuart, D. I., and Metoz, F. (1999) ESPript: analysis 

of multiple sequence alignments in PostScript, Bioinformatics 15, 305-308. 

44. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: 

improving the sensitivity of progressive multiple sequence alignment through 

sequence weighting, position-specific gap penalties and weight matrix choice, 

Nucleic Acids Res. 22, 4673-4680. 

45. Li, C., Hassler, M., and Bugg, T. D. (2008) Catalytic promiscuity in the 

alpha/beta-hydrolase superfamily: hydroxamic acid formation, C--C bond 

formation, ester and thioester hydrolysis in the C--C hydrolase family, 

ChemBioChem 9, 71-76. 

46. Li, C., Li, J. J., Montgomery, M. G., Wood, S. P., and Bugg, T. D. (2006) 

Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for 

Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD, 

Biochemistry 45, 12470-12479. 

47. Hedstrom, L. (2002) Serine protease mechanism and specificity, Chem. Rev. 

102, 4501-4524. 

177 
 



178 
 

48. Fischer, F., Kunne, S., and Fetzner, S. (1999) Bacterial 2,4-dioxygenases: new 

members of the alpha/beta hydrolase-fold superfamily of enzymes functionally 

related to serine hydrolases, J. Bacteriol. 181, 5725-5733. 

49. Li, C., Montgomery, M. G., Mohammed, F., Li, J. J., Wood, S. P., and Bugg, 

T. D. (2005) Catalytic mechanism of C-C hydrolase MhpC from Escherichia 

coli: kinetic analysis of His263 and Ser110 site-directed mutants, J. Mol. Biol. 

346, 241-251. 

50. Li, J. J., and Bugg, T. D. (2007) Investigation of a general base mechanism for 

ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase 

superfamily: a novel mechanism for the serine catalytic triad, Org. Biomol. 

Chem. 5, 507-513. 

 

 
 



CHAPTER 8 

SUMMARY 

 The examination of structure through the use of X-rays and macromolecular 

crystals has been providing insight into mechanistic enzymology, rational drug design, 

and enzyme activity identification for decades.  The elegant experiment of taking a 

pure protein solution, growing crystals, collecting the diffraction patterns, and 

determining the structure of a protein molecule at atomic resolution has revolutionized 

our understanding of the molecular machinery of the cell and the various pathways 

which exist within the cell.  Knowing the precise positioning of each atom within a 

protein structure or complex often allows the determination of key catalytic residues, 

which can in turn suggest mechanistic possibilities.  An alternative scenario in which 

structural biology can be very helpful is when two distinct mechanisms appear 

plausible.  Often, the structure of the enzyme in question can provide evidence for one 

mechanism over another.  An example of this is the determination that thiamin 

phosphate synthase utilizes a dissociative mechanism (1).  Before the crystal structures 

were available both SN1 and SN2 type mechanisms were being considered; the 

complexes were able to illuminate the reaction coordinate by trapping intermediate 

species which represented the carbocation formed during the dissociative mechanism.   

 The thiamin biosynthetic pathway has been extensively probed over the last 

twenty years, yet interesting and novel chemistry, and surprising variations of this 

pathway, is still being discovered (2).  The thiazole and pyrimidine moieties of 

thiamin are biosynthesized separately and then coupled together (Figure 1.1).  The last 

portion of the thiamin biosynthetic pathway consists of this coupling reaction, 

followed by a phosphorylation event to produce the biologically active form of 

vitamin B1, thiamin pyrophosphate.  Recent work has shown that these final steps in 

thiamin biosynthesis contain interesting chemistry.  The true product of the thiazole 
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biosynthetic branch is not the expected 4-methyl-5-(hydroxyethyl)thiazole phosphate, 

but a non-aromatic carboxylated thiazole phosphate tautomer (3).  TenI, a protein 

closely related to thiamin phosphate synthase, has been implicated as an aromatase to 

generate 2-carboxyl-4-methyl-5-(hydroxyethyl)thiazole phosphate (Figure 1.1).  The 

work presented in Chapter Two presents the structure determination of B. subtilis 

thiamin phosphate synthase obtained through a brief soak with a trifluorinated 

pyrimidine analogue and the carboxylated thiazole phosphate.  The resulting structure 

clearly showed three species with disconnected electron density, representing an 

intermediate complex along the reaction coordinate toward thiamin phosphate.  This 

data, in conjunction with NMR and steady state kinetics, demonstrated that the 

carboxylated thiazole phosphate is a substrate for thiamin phosphate synthase and is 

suggestive that the coupling of the pyrimidine and thiazole moieties occurs before the 

decarboxylation event takes place.  An absolutely conserved active site lysine residue 

may be involved in the decarboxylation reaction; structural studies are underway to 

attempt to crystallize the K159A mutant with the carboxylated thiazole phosphate to 

determine if the carboxylated thiamin phosphate can be structurally characterized.  

Chapter Three presents a second structure of thiamin phosphate synthase, from M. 

tuberculosis.  Because M. tuberculosis lacks a thiamin uptake or salvage pathway, the 

bacterium is reliant upon the de novo biosynthetic pathway to generate thiamin (4).  

The thiamin biosynthetic pathway is also a potential pathway to target as humans do 

not contain these enzymes and thus would not need to be concerned about inhibition 

of thiamin biosynthesis is man.  This crystal structure of thiamin phosphate synthase 

was determined to 2.3 Å resolution, solved by molecular replacement, and is similar to 

the structures of other thiamin phosphate synthases.  The active site contains two 

cysteine residues, however, that are not observed in other thiamin phosphate 

synthases.  This structure was then used to screen a virtual library of small molecules 
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and the top hits were then scored based on their virtual docking and the free binding 

energy calculated for each molecule.  The best 25 compounds were then subjected to a 

novel in vivo thiamin detection assay in which β-galactosidase becomes upregulated 

by the thiamin riboswitch in response to low thiamin levels (Table 3.3).  Three 

compounds first identified by the virtual screening showed some inhibition of thiamin 

phosphate synthase.  These compounds will be pursued structurally.   

 The final enzyme involved in thiamin biosynthesis is thiamin monophosphate 

kinase (ThiL), which catalyzes the transfer of the γ-phosphate group from ATP to 

thiamin monophosphate to generate thiamin pyrophosphate.  Previous work on the 

purine biosynthetic pathway identified a novel ATP binding superfamily which 

consists of only five members: aminoimidazole ribonucleotide synthetase (PurM), N-

formylglycinamidine ribonucleotide synthetase (PurL), HypE, a nickel-iron 

hydrogenase maturation protein, selenophosphate synthetase (SelD), and ThiL.  The 

enzymes were hypothesized to utilize similar mechanisms and form a phosphoimidate 

intermediate, as seen in Figure 4.10 (5).  However, it was unclear why a simple 

phosphate transfer would require this type of intermediate or if ThiL instead formed a 

phosphoenzyme intermediate.  The crystal structures presented in Chapter Four 

describe four complexes: AaThiL with ATP, AaThiL with AMP-PCP, AaThiL with 

AMP-PCP and thiamin phosphate, and AaThiL with ADP and thiamin pyrophosphate 

at resolutions ranging from 1.5 Å to 2.6 Å.  An active site serine residue was the only 

available residue that could be phosphorylated, however, the geometry was more 

suggestive of a direct, in-line transfer of the γ-phosphate group.  Additionally, the 

presence of five magnesium ions in the complexes containing a thiamin moiety 

provides significant positive charge to stabilize the phosphate groups and the direct 

inline transfer of the phosphate group is more likely than an indirect transfer utilizing 

a phosphoenzyme intermediate.   
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 Vitamin B6 metabolism is another pathway containing interesting chemistry 

and novel enzymatic activities.  The first pyridoxine catabolic pathway was identified 

in the 1950’s and contains seven enzymatic steps to reduce PLP to succinic 

semialdehyde, ammonia, acetate and carbon dioxide, shown in Figure 1.2 (6).  In the 

early 2000’s a similar pathway was discovered in M. loti MAFF303099, a symbiotic 

bacterium that grows on the roots of legumes.  This pathway contains several 

mechanistically interesting reactions, such as the decarboxylation of a substituted 

benzene ring without requiring any organic cofactor, or the oxidative ring opening 

reaction that is dependent only on flavin and does not need a non-heme iron for 

catalysis.  Chapter Five presents the gene identification, kinetic characterization, and 

structural characterization of 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 

decarboxylase (HMPDdc).  The structure was determined by SAD phasing to 1.9 Å 

resolution and the structural superfamily HMPDdc belongs to offered a potential 

mechanism for catalysis (Figure 5.8).  HMPDdc forms a tetramer using a fourfold 

crystallographic axis with the active site located at a dimer interface and a manganese 

ion coordinated by three conserved histidine residues.  The hydroxyl group ortho to 

C4, the position being decarboxylated, coordinates to the active site manganese ion 

and forms a tetrahedral intermediate at C4 by removing a proton from the active site 

glutamate.  Collapse of this intermediate leads to the loss of carbon dioxide, then 

product release and recoordination of the glutamate residue to the manganese ion.  

This type of chemistry is commonly found in class II aldolases, with which HMPDdc 

has high structural homology. 

 The ensuing enzyme, 2-methyl-3-hydroxypyridine-5-carboxylic acid 

oxygenase (MHPCO) has been extensively studied due to the highly unusual oxidative 

ring-opening of a substituted aromatic ring without requiring a nonheme iron for 

catalysis.  MHPCO catalyzes two oxidation reactions where the first incorporates one 
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atom of oxygen from diatomic oxygen at the C2 of MHPC in a flavin dependent 

reaction, leading to a nonaromatic intermediate.  An oxygen atom from water is then 

added, triggering the ring to break open (Figure 6.7).  Despite many studies on 

MHPCO, the mechanism for this second step remained unclear.  The solution of the 

MHPCO structure with FAD, both with and without MHPC bound, allowed for the 

identification of additional residues that could be involved in the second step (Figure 

6.8).  Mutagenesis studies of Tyr223 and Arg181 have demonstrated that loss of either 

residue renders this enzyme inactive.   

 The final enzyme in the PLP degradative pathway, (E)-2-

(acetamidomethylene)succinate hydrolase (E-2AMS hydrolase) is responsible for 

degrading E-2AMS from MHPCO and producing ammonia, succinic semialdehyde, 

acetate, and carbon dioxide.  This gene had been successfully cloned and kinetically 

characterized and seemed to belong to the α/β hydrolase superfamily based on 

catalytic activity and sequence homology with other members of this structural 

superfamily.  The Ser-His-Asp catalytic triad, however, appeared to be missing the 

aspartate when sequence alignments were examined.  To address catalysis, the 

structure of E-2AMS hydrolase is reported to 2.3 Å in Chapter Seven.  These crystals 

suffered from pseudo-translational symmetry, producing a unit cell that was three 

times the expected volume and containing six dimers in the asymmetric unit.  E-

2AMS hydrolase is a true member of the α/β hydrolase superfamily, with the third 

catalytic residue, Asp130, within hydrogen bonding distance of His258 but not in the 

structurally conserved position (Figure 7.7).  This structure has allowed a mechanism 

to be proposed for catalysis (Figure 7.8).   

 The thiamin biosynthetic pathway and the PLP catabolic pathway each offered 

unique opportunities to probe the structure, function, and mechanistic action of 

interesting enzymes.  As collaboration between structural biologists, mechanistic 
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enzymologists, biochemists, and organic chemists continue to work at the interface 

between chemistry and biology, the interesting and difficult mechanistic questions will 

continue to be addressed and elucidated.
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