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My dissertation contains three chapters. Chapter one proposes a 

nonparametric method to evaluate the performance of a conditional factor 

model in explaining the cross section of stock returns. There are two tests: one 

is based on the individual pricing error of a conditional model and the other is 

based on the average pricing error. Empirical results show that for value-

weighted portfolios, the conditional CAPM explains none of the asset-pricing 

anomalies, while the conditional Fama-French three-factor model is able to 

account for the size effect, and it also helps to explain the value effect and the 

momentum effect. From a statistical point of view, a conditional model always 

beats a conditional one because it is closer to the true data-generating 

process.  

 

Chapter two proposes a general equilibrium model to study the implications of 

prospect theory for individual trading, security prices and trading volume.  Its 

main finding is that different components of prospect theory make different 

predictions. The concavity/convexity of the value function drives a disposition 

effect, which in turn leads to momentum in the cross-section of stock returns 

and a positive correlation between returns and volumes. On the other hand, 

loss aversion predicts exactly the opposite, namely a reversed disposition 

effect and reversal in the cross-section of stock returns, as well as a negative 

correlation between returns and volumes. In a calibrated economy, when 



 

prospect theory preference parameters are set at the values estimated by the 

previous studies, our model can generate price momentum of up to 7% on an 

annual basis. 

 

Chapter three studies the role of aggregate dividend volatility in asset prices. 

In the model, narrow-framing investors are loss averse over fluctuations in the 

value of their financial wealth. Persistent dividend volatility indicates persistent 

fluctuation in their financial wealth and makes stocks undesirable. It helps to 

explain the salient feature of the stock market including the high mean, excess 

volatility, and predictability of stock returns while maintaining a low and stable 

risk-free rate. Consistent with the data, stock returns have a low correlation 

with consumption growth, and Sharpe ratios are time-varying.   
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CHAPTER 1 

A NEW TEST of TIME-VARYING FACTOR MODELS 1 
 

1.1 Introduction  

Tests of time-varying factor models have caught a lot of attention in recent 

literature. On the one hand, abundant empirical evidence have shown that 

betas from a factor model are time-varying (e.g., Fama and French, 1997; 

Lewellen and Nagel, 2006). On the other hand, tests of the unconditional 

CAPM, one of the most important factor models, fails to explain the cross 

section of stock returns (e.g., Fama and French, 1993). As a result, a lot of 

research efforts have been devoted to exploring the performance of a 

conditional factor model by allowing betas and expected returns to vary over 

time. A long-standing approach to testing a time-varying factor model is to 

allow factor loadings to depend on observable state variables (e.g., Shanken, 

1990; Lettau and Ludvigson, 2001).2  

 

Recently, Lewellen and Nagel (2006; henceforth, LN) don’t use state variables 

but divide data into non-overlapping small windows such as months, quarters, 

half-years or years, and directly estimate the time series of alphas and betas 

from short-window regressions.3 If the conditional CAPM holds period-by-

                                                 
1This chapter is based on a joint paper with Liyan Yang. 
 
2Numerous studies rely on state variables in the estimation of CAPM and other 
asset pricing models. See, for example, Campbell (1987), Ferson, Kandel and 
Stambaugh (1987), Ferson and Harvey (1991, 1993), Cochrane (1996), Wang 
(2003), Petkova and Zhang (2005), and Santos and Veronesi (2006). 
 
3It is arguable whether dividing data into small windows is a right way to 
condition on information. In this paper, we don’t attempt to participate in this 
debate and follow Lewellen and Nagel (2006) by assuming that investors’ 
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period, then the average pricing errors from small window regressions should 

be equal to zero. Contrary to some other recent studies (e.g., Jagannathan 

and Wang, 1996; Lettau and Ludvigson, 2001; Santos and Veronesi, 2006; 

Lustig and Van Nieuwerburgh, 2005), LN find that conditioning doesn’t 

improve the performance of the simple and consumption CAPMs.  

 

The time-series test proposed by LN possesses a special advantage over 

traditional cross-sectional tests which ignore important restrictions on cross-

sectional slopes. However, it also has its own limitation. As argued in Boguth, 

Carlson, Fisher, and Simutin (2008; henceforth, BCFS), the procedures in LN 

can lead to potentially large biases in alphas, which arises when the division of 

windows is too fine. In other words, the test of LN is subject to a small sample 

bias. After correcting for this small sample bias with standard instruments, 

BCFS manage to obtain much smaller alphas for momentum portfolios, 

leading them to conclude that the conditional CAPM is superior to the 

unconditional CAPM in explaining momentum portfolios. 

 

In essence, the small sample bias in LN will eventually vanish as the window 

size increases. However, when estimated using data from a large window size, 

betas will generally not be stable. This makes the test subject to the 

underconditoning bias, which occurs when empirical tests of a conditional 

model fail to account for the investor's time-varying information set (e.g., 

Hansen and Richard, 1987; Jagannathan and Wang, 1996). Therefore, the 

ideal test would rely on an optimal window size which takes into account both 

                                                                                                                                             
information sets change gradually and thus betas are stable within certain time 
periods.  
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the underconditioning bias and the small sample bias.  

 

The first goal of this paper is to propose such a test.4 Following LN, we don't 

rely on state variables, but assume that the investor's information set is 

relatively stable within certain time periods. Rather than dividing the windows 

arbitrarily, we use a nonparametric method to find the data-driven window size, 

such that within the window (i) investors’ information sets don’t greatly change; 

(ii) there are sufficient observations to achieve estimation efficiency. In other 

words, our estimation aims to minimize both the underconditioning and the 

small sample biases. We find that the optimal window size varies greatly 

across different portfolios. For instance, in the test of the conditional CAPM, 

the optimal window size varies from as short as 47 days to as long as 333 

days for different value-weighted portfolios. To compare our results with those 

obtained by LN, we also estimate the model using their non-overlapping 

window approach. We find that the estimates from LN's method are very 

sensitive to the window size. When the window size changes from one month 

to three months, the monthly average pricing error can differ by as much as 

1%! More importantly, different window estimates can also lead to different 

inferences. Therefore, arbitrarily fixing the window size as three months or six 

months for all portfolios may lead to unreliable estimates and inconsistent 

inferences. 

 

The second goal of this paper is to consider a more general nonlinear 

relationship between asset returns and factor returns. Ang and Chen (2002), 

                                                 
4In a contemporaneously proposed paper, Ang and Kristensen proposed a 
similar test to ours.  
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Ang, Chen and Xing (2006), and Hong, Tu and Zhou (2007) show that many 

securities covary differently when the market goes down from when it goes up, 

providing evidence of payoff nonlinearity5. Our empirical studies are based on 

a nonparametric methodology that avoids the misspecification between asset 

returns and factor returns, and hence is immune from potential nonlinearity 

biases. In testing the conditional CAPM, Wang (2003) also uses a 

nonparametric method to avoid nonlinearity biases, but his focus is on the 

nonlinear relationship between betas (risk premia) and state variables that 

represent conditioning information. We, in contrast, don't rely on state 

variables; we are concerned with the nonlinear relationship between asset 

returns and factor returns. 

 

Our estimation method possesses further advantages. First, we use an 

overlapping window estimation, which allows a gradual change in betas rather 

than a drastic change through the non-overlapping window estimation as in 

Grundy and Martin (2001) and LN. Moreover, previous studies on time-varying 

betas by Campbell and Vuolteenaho (2004), Fama and French (2006), and LN, 

among others, assume that betas are constant within subsamples, thereby 

ignoring the variations in the betas within each window. Our method estimates 

the conditional alphas and betas at every point in time, and hence directly 

captures the variations that are overlooked by these studies. Another 

advantage is that our estimation is conducted in the spirit of generalized least 

                                                 
5The nonlinear relationship considered in Ang and Chen (2002), Ang, Chen 
and Xing (2006), and Hong, Tu and Zhou (2007) depends on realized data, 
hence it is an ex-post relationship. Our nonlinear relationship is ex-ante 
because at time t  we don't observe the realization at 1+t .  
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squares, which puts more weight on recent data than on remote data, thus 

improving estimation efficiency. 

 

Our estimation method applies to any time-varying factor models. In this paper, 

we focus on two models: the conditional CAPM and the conditional Fama-

French three-factor model (1993; henceforth, the FF model). These two 

models have been widely used in empirical applications but whether they are 

able to explain the cross section of stock returns are in the spotlight of current 

research. After estimating these two models, we propose two tests to examine 

their performance in explaining asset-pricing anomalies. The null hypothesis is 

that if a conditional model holds at every point in time, then the pricing error 

should be zero at all time periods. Our first test focuses on individual pricing 

errors, i.e., we examine whether a conditional model holds at any given time. 

The unique advantage of this test is that it enables us to identify the exact time 

periods in which a conditional model holds or fails. Investigating the time 

periods when a model holds might sharpen our understanding of the 

conditions under which a model better applies, and examining the periods in 

which a model fails might help us identify the missing factors to further 

improve the model.  

 

Our second test looks at the average pricing error. That is, if a conditional 

model holds, then the average pricing error should be zero. Under a general 

assumption of heteroskadastic innovations, we derive the asymptotic 

distribution of the average pricing error, which turns out to follow a normal 

distribution. For value-weighted portfolios, our results show that the conditional 

CAPM fails to explain any of the asset-pricing anomalies. For these portfolios, 
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the conditional FF model explains the size and value effect quite well, thus 

standing in sharp contrast to the results in Ferson and Siegel (2003) among 

others; it also helps to explain the momentum portfolios, but unlike Wang 

(2003), we strongly reject the model. For equally-weighted portfolios, it's rather 

difficult for either the conditional CAPM or the conditional FF model to explain 

return variations. 

 

In addition to evaluating the conditional models from an economics point of 

view, i.e., whether they are able to explain asset-pricing anomalies, we also 

perform a statistical test to evaluate the goodness of fit for the conditional 

versus the unconditional models. We are interested in which model, the 

conditional or the unconditional, is closer to the true data-generating process. 

Our results show that the conditional models invariably outperform their 

unconditional counterparts for all portfolios, implying that the conditional 

models fit the data better.  

 

The paper proceeds as follows. Section 1.2 introduces the methodology used 

to estimate and test the conditional models. Section 1.3 describes the data 

and presents the empirical results for the conditional CAPM, the conditional FF 

model, and the test on goodness of fit. Section 1.4 concludes the paper. 

 

1.2 Methodology 

In this section, we introduce a nonparametric approach to estimating and 

testing a conditional factor pricing model, for which the conditional CAPM and 

the conditional FF model are special cases. We first define the econometric 

specification of a conditional factor pricing model. We then discuss how to 
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choose the optimal window for estimating it. Finally we propose two tests to 

evaluate its performance in explaining the cross section of stock returns. 

 

1.2.1 Econometric Framework 

If a conditional factor model holds, then we have the following relationship  

 
),()( 1,1, ++ = tttitit fERE β          (1) 

 

where 1, +tiR  is the excess return for portfolio i  at time 1+t , and 1+tf  stands for 

the factors at time 1+t  in the corresponding factor model. For the CAPM, the 

market excess return is the only factor, so 1,1 ++ = tmt Rf ; for the FF model, there 

are two additional factors SMB  and HML  other than the market factor, so 

( )′++++ = 111,1 ,, tttmt HMLSMBRf . The notation )(⋅tE  indicates the conditional 

expectation, given a common public information set tI  at time t . 

 

In order to estimate (1), econometricians must know the investor's information 

set tI , but a significant practical obstacle is that tI  is unobservable. Standard 

empirical methods use state variables observable to investors, such as the 

dividend yield or term spread, to proxy tI , and specify beta as a linear function 

of lagged instruments (e.g., Shanken, 1990). This method therefore requires 

that the state variables be the right ones in the investor's information set. It is 

rather difficult, however, to identify which state variables are the right ones. 

 

In recent literature, an alternative approach has been proposed for doing away 

with state variables and estimating factor loadings directly from short-windows. 

Grundy and Martin (2001) use monthly returns in the window from t  to 5+t  to 
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estimate the factor loading in month t . LN argue that (a)s long as betas are 

relatively stable within a month or quarter, simple CAPM regressions 

estimated over a short window---using no conditioning variables---provide 

direct estimates of assets' conditional alphas and betas. (P. 291) 

 

Like Grundy and Martin (2001) and LN, we also dispense with state variables. 

Since the investor's information set is time-varying, we can let time t  index her 

information set, and so the conditional alphas and betas change with time t . 

More specifically, 

 
,,...2,1,1,1,,1, TtfR tittititi =++= +++ εβα               (2) 

 

where ( ) 0| 11, =++ ttit fE ε . ti ,α  and ti ,β  are portfolio i 's alpha and beta at time t , 

respectively. 

 

Unlike Grundy and Martin (2001) and LN, we apply a data-driven method to 

obtain the optimal estimation window size. As will be seen from the empirical 

results later on, the estimates of a model from LN's method vary greatly as the 

window size enlarges or shrinks. The monthly average pricing error can differ 

by as much as 1.00% when the window size changes from one month to six 

months. Moreover, it is possible to arrive at totally different inferences based 

on different window estimates. Dividing data into arbitrary windows may 

therefore lead to inconsistent and unreliable conclusions. 

 

Another important difference from BCFS is that we allow a more general 

relationship between asset payoffs and factor payoffs. BCFS assume an 
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asymmetric nonlinear relationship between asset returns and factor returns, 

i.e., betas are different for up and down markets. They demonstrate that with 

this special structure, the beta estimated in any window can covary with 

contemporaneous market returns, generating large biases in LN. In general, 

however, the true relationship between asset returns and factor returns is 

more complicated than merely asymmetric. Adjustments based on a particular 

structure, as assumed by BCFS, could potentially lead to large biases as well. 

Our estimation of (2) doesn't impose any special structure between 1, +tiR  and 

1+tf , thereby avoiding the misspecification between asset returns and factor 

returns. 

 

Another advantage of our method is that we directly capture the variation of 

betas over time. In practice, new information keeps arriving, and the investor 

keeps adjusting her portfolio according to the changing information sets. Betas 

therefore keep changing. Campbell and Vulteennaho (2004), Franzoni (2004), 

Adrian and Franzoni (2005), Fama and French (2006), and LN, among others, 

consider the variation of betas only across different non-overlapping windows, 

but ignore the variation of betas within each window. Our estimation, on the 

other hand, utilizes overlapping windows, permitting continuous information 

updating and thus capturing the gradual changes in betas. 

 

1.2.2 Estimation of the Model 

To estimate (2), we first find an optimal window size, to be discussed in the 

next subsection. With the optimal window in hand, at every time t , we use the 

data within this window to obtain the conditional alpha and beta corresponding 

to time t . Our goal is to choose parameters to minimize the following local 
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sum of squared residuals:  

 

a 0, b 0, a 1, b 1

min ∑st−Th
tTh Ri,s −  i,s − i,sf s 2k st

s.t.  i,s   sT   a0  a1  s−tT ,

i,s   sT   b0  b1  s−tT ,

k st  1
h
k s−t

Th
.

 (3) 

 

Here, s  is a particular data point within the window, so siR ,  is the portfolio i 's 

excess return at time s , and sf  is the factor return at time s . T  is the total 

sample size, and h  is the optimal window size. Thus, after fixing a time point t , 

we use observations from ][Tht −  to +t  ][Th  to estimate ti,α  and ti,β , where 

][Th  denotes the integer part of Th . To simplify notation, we drop the portfolio 

index i  and the time index t  for )(⋅α  and )(⋅β . Note that )(⋅α  and )(⋅β  are 

functions of Tt  rather than t , because, as shown by Robinson (1989), it's 

necessary to let these functions depend on the sample size T  in order to 

achieve asymptotic consistency. 

 

In essence, we are approximating the unknown functions ( )⋅α  and ( )⋅β  with a 

first-order Taylor expansion within the window, thus introducing four unknown 

coefficients 0a , 0b , 1a  and 1b . There are two main approaches to estimating 

( )⋅α  and ( )⋅β  in the nonparametric literature: local constant smoothing and 

local linear smoothing. If 1a  and 1b  are zero, then )(⋅α  and )(⋅β  are constants 

within the estimation window, which corresponds to the local constant 

smoothing method; on the other hand, if 1a  and 1b  are not zero, then )(⋅α  and 

)(⋅β  are different even within each estimation window, which corresponds to 
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the local linear smoothing method. These two approaches yield qualitative 

similar results, so to save space, we report the estimation results of (2) based 

on the local constant smoothing method only. The time- t  conditional alpha ti,α  

and the conditional beta ti,β  are the estimates for 0a  and 0b , respectively.6 

 

)(⋅k  is a weighting function satisfying certain statistical properties.7 In our 

empirical work, we present results based on the following Epanechniov kernel 

 

,)1(1)1(
4
3)( 2 ≤−= uuuk  

 

which has been proven to achieve the highest estimation efficiency. This 

kernel function also gives higher weight to observations close to the point t  at 

which the conditional alpha and beta are estimated and discounts the 

observations far away from t , which is consistent with the idea that recent 

data contain more relevant information than remote data. We also try two 

other popular kernels in the nonparametric literature, the uniform kernel and 

the Daniel kernel. Our main results are robust to the choice of these 

alternative kernels. 

 

                                                 
6At a different time t , we use different data to estimate 0a  and 0b . Therefore, 

0a  and 0b  are time-varying. 
 
7The kernel function )(⋅k  is a pre-specified symmetric probability density 
function such that (i) 1)( =∫

+∞
∞− duuk , (ii) 0)( =∫

+∞
∞− uduuk , (iii) ∞<∫

+∞
∞− duuuk 2)( , and 

∞<∫
+∞
∞− duuk )(2 . 
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An important issue in the nonparametric literature is the boundary problem. 

Simply put, there are no symmetric data for estimating the models in the 

boundary areas. For instance, if we want to estimate the model at time 1=t , 

we have data only after 1=t  but lack data before 1=t . Following the literature, 

we use a reflection method to obtain pseudodata titi RR −= ,, , tt ff −=  for the 

left boundary when [ ] 2−≤≤− tTh , and tTiti RR −= 2,, , tTt ff −= 2 , for the right 

boundary when [ ]ThTtT +≤≤+1 .8 

 

In our empirical implementation, for each portfolio i , we first estimate its 

optimal window size and then, at every time t , we solve the minimization 

problem (3) to obtain the conditional alpha ti,α  and the conditional beta ti,β . 

Since the optimal window size serves to minimize the underconditioning and 

the small sample biases, let us now turn our discussion to how to find it. 

 

1.2.3 The Choice of Window Size 

When we dispense with state variables and assume the investor's information 

set to be relatively stable in adjacent periods, the optimal window size 

approximates the right amount of information to be used in the estimation. To 

reduce the underconditioning bias, we want the window size to be as small as 

possible. If h  chosen is too large, the information set may have already 

changed within the window. As a result, if we estimate the model according to 

this large window, we are more likely to miss the variations in risk and are 

                                                 
8For a robustnes check, we also estimate the model only for the interior points 
which have symmetric data. 
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therefore subject to the underconditioning bias.9 On the other hand, to mitigate 

the small sample bias, we would like the window size to be as large as 

possible. If h  chosen is too small, there will be too few observations within the 

window, so that the data are too noisy to yield reliable estimates. In this case, 

we run the risk of the small sample bias. Therefore, the optimal window size 

ought to minimize both the underconditioning and the small sample biases. 

This is exactly what the extensive nonparametric literature has been centering 

on. 

 

We obtain the optimal window size from a standard nonparametric method 

called the cross-validation method. Define the leave-one-out estimators 
ti ,0ˆ

−
α  

and 
ti ,0

ˆ
−

β  from the following regression 

 

a 0, b 0, a 1, b 1

min ∑st−Th, s≠t
tTh Ri,s −  i,s − i,sf s 2k st

s.t.  i,s   sT   a0  a1  s−tT ,

i,s   sT   b0  b1  s−tT ,

k st  1
h
k s−t

Th
,

 

(4) 

 

with 
ti ,0ˆ

−
α  and 

ti ,0
ˆ

−
β  being the estimates for 0a  and 0b  for portfolio i  at time t . 

The only difference between (4) and (3) is that when doing the minimization 

problem at time t , we exclude the data point at t  in (4). The optimal window 

size h  is then chosen to minimize 

                                                 
9An extreme example is a model estimated using all observations, which 
corresponds to the largest window size. In this case, we simply estimate the 
unconditional model, totally ignoring the predictable variations in risk. 
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CVh ∑
t1

T

Ri,t − ̂0−i,t − ̂0−i,t f t
2 .

 

 

Intuitively, for any portfolio i , we first fix an arbitrary window size. At every 

time t , we use all data within this window except the data at time t  to do the 

minimization in (4), obtaining the predicted value and prediction error 

corresponding to t . Intuitively, since the data in the vicinity of time t  contain 

similar information to the data at time t , we can use them predict the time- t  

observation. We do this for all time periods ( Tt ,...2,1= ), and sum up all the 

prediction errors denoted by )(hCV . The optimal window is chosen to 

minimize )(hCV . 

 

For any given portfolio, the optimal window size obtained from the leave-one-

out cross-validation method is the same for all time periods. It is possible that 

betas might change faster in some periods than in others, thus a time-varying 

window size might seem to be needed. We leave this for future research. 

Since existing studies relying on the simple window approach use a uniform 

window size, in order to better compare our results with the literature, we stick 

to the uniform window size in this paper. 

 

1.2.4 Two Tests of a Conditional Factor Model 

Our null hypothesis is that a conditional factor model holds at each point in 

time. If factors themselves are excess returns, as is the case with the 

conditional CAPM and the conditional FF model, then testing this hypothesis is 

equivalent to testing 0)( =T
tα  for all t 10. First, we test if the individual pricing 

                                                 
10As has been mentioned, to achieve estimation consistency as proved by 
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errors are zero, i.e., 0)( =T
tα  for any t . Second, we test if the average pricing 

error is equal to zero, i.e., 0)(
1

1 =∑
=

T
t

T

tT
α . 

 

1.2.4.1 Test on Individual Pricing Errors 

Under usual technical assumptions, Cai (2007) shows that the individual alpha 

obtained from (2) follows an asymptotic normal distribution. Let T
t=τ , under 

the null hypothesis that alphas are equal to zero at every point t , the interior 

alphas follow11 

 

( ) ( ),)(,0ˆ 0 τντα Σ→NTh
d

           (5) 

 

where T  is the sample size, and h  is the optimal bandwidth or the window 

size. Since the effective data used to estimate )(τα  is Th , )(ˆ τα  converges at 

the rate of Th . The details for the variance of ( )τα̂  are provided in Appendix 

1.A. 

 

The asymptotic behavior of the estimated boundary alphas is different from 

that of the interior ones. But the boundary alphas are not particularly 

interesting in our context,12 and they also make up only a small proportion of 

                                                                                                                                             
Robinson (1989), the pricing errors are functions of Tt /  instead of t . 
 
11The interior alphas are those corresponding to the time periods which 
doesn't suffer the boundary problem. 
 
12One scenario in which the boundary alphas are particularly interesting is 
when the conditional alphas (also betas) are functions of, for example, the 
market return rather than time. In this case, the boundary alphas correspond 
to the pricing errors under extreme market conditions, such as market crashes 
or market frenzies. 
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the estimated time series of the conditional alphas. To save notation and 

space, we report the results only for interior alphas. Incorporating the 

boundary alphas won’t change our results dramatically.  

 

1.2.4.2 Test on Average Pricing Errors 

If two models are both rejected at, for example, 80% of the time periods, the 

test on individual pricing errors alone cannot tell us which model is relatively 

better. Thus we need to turn to the second test, which focuses on the 

implication that if a conditional factor model holds, then the average pricing 

error should be equal to zero. This measure is also adopted by LN. 

 

The average pricing error is  

 

.ˆ1ˆ
1

⎟
⎠
⎞

⎜
⎝
⎛= ∑

= T
t

T

T

t

αα  

 

In Appendix 1.B, we derive the asymptotic distribution of α̂  when the random 

error process { }Ttt 1=ε  is heteroskedastic. We find it follows a normal distribution: 

 

( ),,0ˆ VNT
d
→α                 (6) 

 

where V  is the asymptotic variance and equals the (1,1) th  element of 

( ) 1
0

1
0

−
+

′
+

∞

−∞=

− Ω∑Ω jttjtt
j

XXE εε , with ( )′= tt fX ,1 , ( )′=Ω tt XXE0 , and j  denoting 

the lag order. Even though we use a nonparametric estimation method, the 

asymptotic variance V  resembles the standard Newey-West estimator. In 

implementation, we use the corresponding sample moments to estimate V . 
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1.3. Empirical Results 

1.3.1 Data 

Our data are obtained from Professor Kenneth French's website.13 From the 

25 size-B/M portfolios, we form six size and B/M portfolios. S is the average 

return of the five portfolios in the lowest size quintile, B is the average return of 

the five portfolios in the highest size quintile, and S-B is the difference. G is the 

average return of the five portfolios in the low-B/M quintile, V is the average 

return of the five portfolios in the high-B/M quintile, and V-G is the difference. 

The three momentum portfolios are directly obtained from Professor Kenneth 

French's website, where we let W stand for the return of the winner portfolio, L 

for the return of the loser portfolio, and W-L for their difference. 

 

To compare our findings with existing studies, we look at both the value-

weighted and the equally-weighted portfolios, using daily data from 1963 to 

2007.14 The long time series of daily data not only provide rich information 

about the underlying information structure, but also help improve estimation 

efficiency. Moreover, the debate on the small sample bias of LN’s procedure 

also focuses on daily data. For a robustness check, we also conduct tests 

using monthly data and obtain qualitatively similar results not reported here. 

 

                                                 
13http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
 
14LN examine the performance of the conditional CAPM using value-weighted 
portfolios, while BCFS focus on momentum portfolios which are equally-
weighted. 
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It is well known that nonsynchronous trading can have a great impact on short-

horizon betas (Lo and MacKinlay, 1990). Since we use high-frequency daily 

data, we need to consider the microstructure issues such as the bid-ask 

spread. To address these issues, when estimating the unconditional models, 

we use Dimson (1979) regressions with the structure suggested by LN: 

 

,
3 ,

4

2

3,
12,1,, tipt

p

i
titiiti fffR ε

β
ββα ++++= −

=
− ∑      (7) 

 

where p  denotes lag. The estimated pricing error for portfolio i  is iα , and the 

estimated beta is 3,2,1, iii βββ ++ . 

 

Table 1.1 and Table 1.2 present the summary statistics for the value-weighted 

and equally-weighted portfolios, respectively. The daily estimates are 

multiplied by 21, the average number of trading days per month, so that all 

estimates are expressed as monthly percentages. With respect to the value-

weighted portfolios, excess returns exhibit the usual cross section patterns. 

Overall, the small stocks outperform the big stocks (0.63% vs. 0.51%), the 

value stocks outperform the growth stocks (0.84% vs. 0.30%), and the winner 

stocks outperform the loser stocks (1.12% vs. -0.32%). Except for the size 

portfolios, the unconditional CAPM alphas are all significant, implying that the 

unconditional CAPM fails. In line with prior research (e.g., Fama and French, 

1993), the unconditional FF model improves upon the unconditional CAPM 

because the alphas for the size and B/M portfolios are much smaller. However, 

the alphas for the B/M portfolios are still significant. For the momentum 

portfolios, the unconditional FF alphas are highly significant, and they are also 
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of the same magnitude of the unconditional CAPM alphas, indicating that the 

unconditional FF model doesn't help to explain the momentum effect. 

 

Table 1.2 shows that the equally-weighted portfolios display some interesting 

patterns. First, the size effect is very pronounced. The equally-weighted S-B 

has an excess return of 1.05%, compared to only 0.13% for the value-

weighted S-B. The unconditional CAPM alpha is also much higher: 1.04% for 

equally-weighted S-B vs. 0.07% for value-weighted S-B. The unconditional FF 

alpha for equally-weighted S-B is 1.00%, which is close to the unconditional 

CAPM alpha, indicating that the unconditional FF fails to explain the size effect 

in the equally-weighted portfolios. This is not surprising because the equally-

weighted portfolios put more weight on small stocks, which, as shown in Fama 

and French (1996), the unconditional FF model doesn't explain quite well. 

Second, momentum portfolios have a very different pattern from the one 

usually observed in the monthly data. The loser portfolio actually earns a 

higher average return than the winner portfolio (2.08% vs. 1.71%), implying 

that the equally-weighted momentum strategy is not profitable at daily horizon. 

Neither the CAPM nor the FF model is able to account for the return variations 

in the momentum portfolios.  

 

We now allow the factor loadings to vary over time, and investigate whether 

the conditional versions of the CAPM and the FF model are able to account for 

the return variations in these portfolios. To correct for the impact of 

nonsynchronous trading, we also append two lags in the estimation of (2): 
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( )
.,...2,1,

3 ,

4

2

3
121, Ttff

T
tf

T
t

T
tR tipt

p

T
t

ttti =++⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛= −

=
− ∑ ε

β
ββα    (8) 

 

Thus, portfolio i 's pricing error at time t  is ( )Ttα , and its conditional beta at t  is 

( ) ( ) ( )TtT
t

T
t

321 βββ ++ . 

 

1.3.2 Testing the Conditional CAPM 

In subsection 1.3.2.1, we report the data-driven window size for the conditional 

CAPM obtained from the cross-validation method described in subsection 

1.2.3. In subsections 1.3.2.2 and 1.3.2.3, we estimate the conditional CAPM 

and evaluate its performance through the two tests proposed in subsection 

1.2.4. 

 

1.3.2.1 Data-Driven Window Size  

If the investor optimally rebalances her portfolios according to changes in her 

information set, then the realized data structure should reflect changes in the 

underlying information structure and, as a result, the estimated window size 

serves as a proxy for the stability of the information structure. A larger window 

size implies that the relationship between asset returns and factor returns, or 

the underlying information structure, is generally more stable. Consequently, 

betas will change less frequently with a larger window than with a smaller 

window.  
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Table 1.1: Summary statistics for value-weighted size, B/M, and momentum 
portfolios, 1963-2007 

 
The table reports the average excess returns, the unconditional CAPM alphas 
and the unconditional FF alphas for value-weighted size, B/M, and momentum 
portfolios using daily data. The unconditional CAPM alphas are obtained from 

the regression in (7) by letting mRf = , and the unconditional FF alphas are 

obtained from the regression in (7) by letting ( )′= HMLSMBRf m   . Average 
returns and alphas are expressed in percentage monthly. Bold values denote 

estimates greater than two standard errors from zero. 
 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Excess returns
Ave. 0.63 0.51 0.13 0.30 0.84 0.54 -0.32 1.12 1.44
Std. err 0.16 0.18 0.13 0.21 0.16 0.10 0.25 0.25 0.21
Panel B: Unconditional CAPM alphas
Est. 0.16 0.09 0.07 -0.28 0.42 0.69 -0.94 0.56 1.50
Std. err 0.09 0.05 0.12 0.07 0.07 0.09 0.14 0.12 0.21
Panel C: Unconditional FF alphas
Est. -0.05 -0.05 0.003 -0.11 -0.04 0.08 -0.92 0.60 1.52
Std. err. 0.04 0.03 0.04 0.03 0.03 0.04 0.15 0.11 0.21

 

 

 

 

 



 

 22

 

 

 

 
 

Table 1.2: Summary statistics for equally-weighted size, B/M, and momentum 
portfolios, 1963-2007 

 
The table reports the average excess returns, the unconditional CAPM alphas 

and the unconditional FF alphas for equally-weighted size, B/M, and 
momentum portfolios using daily data. The unconditional CAPM alphas are 

obtained from the regression in (7) by letting mRf = , and the unconditional FF 

alphas are obtained from the regression in (7) by letting ( )′= HMLSMBRf m   . 
Average returns and alphas are expressed in percentage monthly. Bold values 

denote estimates greater than two standard errors from zero. 
 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Excess returns
Ave. 1.65 0.60 1.05 0.58 1.17 0.60 2.08 1.71 -0.37
Std. err 0.14 0.17 0.13 0.21 0.15 0.11 0.19 0.21 0.15
Panel B: Unconditional CAPM alphas
Est. 1.21 0.16 1.04 -0.01 0.75 0.76 1.53 1.16 -0.37
Std. err 0.09 0.05 0.10 0.08 0.07 0.09 0.13 0.11 0.14
Panel C: Unconditional FF alphas
Est. 0.99 -0.01 1.00 0.14 0.31 0.17 1.37 1.07 -0.31
Std. err. 0.06 0.04 0.06 0.05 0.04 0.05 0.11 0.08 0.14
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Table 1.3 presents the estimated window size for the conditional CAPM and 

the conditional FF model. For now, we focus only on the conditional CAPM, 

and discuss some notable patterns of the estimated window size. First, the 

window size is much larger for the big portfolio than for other portfolios, 333 if 

value-weighted and 285 if equally-weighted, indicating a less frequent change 

in betas of large stocks. This is consistent with Shanken (1990), in which the 

T-bill rate serves as the state variable, and betas of large stocks are far less 

sensitive to changes in the T-bill rate than betas of small stocks. 

 

Second, the window size is always larger for the value-weighted portfolios 

than for the equally-weighted portfolios. For example, we use 87  observations 

to estimate the value-weighted loser portfolio, while we use only 33  

observations for the equally-weighted one. This is mostly likely due to the fact 

that the value-weighted portfolios put more weight on large stocks, whose 

underlying information structure turns out to be less volatile. We caution that 

we are not attempting to map one-to-one the window size to the underlying 

information structure. But we do argue that the data-driven window size 

reveals important information about the unknown information structure. 

 

Our results in Table 1.3 show that the estimated window size ranges from as 

short as 31 days to as long as 333  days, varying widely from portfolio to 

portfolio. This suggests that fixing a window size as one month or three 

months for all portfolios may incur estimation biases, which generally become 

larger if the underlying relationship between asset returns and factor returns 

changes in a more complicated way. 
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Using the optimal window size, we estimate (8) with mRf =  to get the time 

series of the conditional CAPM alphas for every portfolio. In order to evaluate 

whether the conditional CAPM explains the return variations, we apply the two 

tests on the pricing errors proposed in subsection 1.2.4. 

 

1.3.2.2 Individual Pricing Errors  

Panel A of Figures 1.1 and 1.2 plot the conditional alphas for the value-

weighted and equally-weighted S-B, V-G, and W-L, respectively. The 

conditional alphas of all portfolios fluctuate greatly over time, but W-L displays 

the largest variation, with the daily alpha ranging from a minimum of -0.88% to 

a maximum of 1.38% if value-weighted, and from -2.11% to 0.97% if equally-

weighted. 

 

Unlike the existing studies, ours obtains the conditional alpha at every point in 

time, which enables us to investigate whether the conditional CAPM holds at 

any given time. Based on the distribution of the individual pricing error in (5), 

we can calculate the standard error tsd , for tα , the conditional alpha at time t . 

Define the difference between tα  and tsd96.1 , 1.96 times the corresponding 

time t  standard error, as follows: 

 
.96.1 ttt sdDiff α−=         (9) 

 

The sign of tDiff  indicates whether we should accept or reject the conditional 

CAPM at the 5% significant level. If tDiff  is positive, then we don't have the 

evidence for rejecting the conditional CAPM at time t ; if tDiff  is negative, then 

we find evidence that indicates the failure of the model at time t . The series of 
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tDiff  for S-B, V-G, and W-L are plotted in Panel B of Figures 1.1 and 1.2. 

These graphs show that for all portfolios, tDiff  tend to be negative most of the 

time, implying that the conditional CAPM may hold for only a small fraction of 

the time periods. 

 

To examine the persistence of the model's explanatory power, we plot the 

autocorrelation function of the Diff  measure for the value-weighted S-B, V-G 

and W-L in Panel A of Figure 1.3 and the corresponding equally-weighted 

ones in Panel A of Figure 1.4. These figures show that the autocorrelation of 

Diff  generally declines to zero in an AR(1) fashion, because the information 

structure is more stable within adjacent time periods. Today's information 

structure, for example, is most like yesterday's, so that if we reject (accept) the 

model today, it's most likely that we rejected (accepted) the model yesterday. 

As we move further away from today, the similarity in information structure 

typically declines, and it becomes less likely for us to reject (accept) the model, 

given that we reject (accept) it today. After certain periods, the information 

structure may have totally changed, sharing no commonality with today's 

information structure, which explains why the autocorrelation usually drops to 

zero after certain lags. 
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Table 1.3: Optimal data-driven window size 
 

This table reports the estimated window size using the cross-validation 
method described in subsection window size. The window size is measured in 

terms of days. For example, a window size of 60 days means that when 
estimating the model at day t , we use the 60-day data from 30−t  to 30+t . 

 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Value-weighted Portfolios
conditional CAPM 60 333 62 131 91 56 87 133 47
conditional FF 356 349 322 596 378 502 205 160 165
Panel B: Equally-weighted Portfolios
conditional CAPM 44 285 44 100 58 56 33 51 31
conditional FF 278 349 331 331 209 298 145 116 122
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To get a quantitative idea of the overall performance of the conditional CAPM, 

for each portfolio, we calculate the fraction of the time when the conditional 

CAPM holds, the results of which are shown in Table 1.4.15 Panel A shows 

that, for the value-weighted portfolios, the conditional CAPM performs best for  

L, holding 22.31% out of all time periods; it performs worst for S, holding 

15.89% out of all time periods. In other words, out of the 44 years of data we 

are considering, the conditional CAPM roughly holds 9.8 years for the loser 

portfolio and 7.0 years for the small portfolio. Interestingly, examining the 

performance of the conditional CAPM period-by-period reveals that it fails 

most often for size portfolios, rather than, as generally assumed, momentum 

portfolios. In fact, among all the portfolios, the conditional CAPM seems to 

perform best for momentum portfolios, yielding 22.31% for L, 22.21% for W, 

and 17.25% for W-L. 

 

Panel B of Table 1.4 shows that, for the equally-weighted portfolios, the 

conditional CAPM works best for G, holding 20.25% out of all time periods, 

and worst for S, holding only 12.76% out of all time periods. Therefore, the 

small portfolios, both value-weighted and equally-weighted, represent the 

greatest challenge to the conditional CAPM. Overall, the conditional CAPM 

holds for fewer periods for the equally-weighted portfolios than for the value-

weighted ones, which is especially true for momentum portfolios. For example, 

it holds 14.24% of the time for the equally-weighted L, much less than 22.31% 

for the value-weighted L. 

                                                 
15A statistical test needs to be constructed to rigorously evaluate the time 
periods in which a model holds. Here we propose this preliminary intuitive 
measure.  
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Figure 1.1: Conditional CAPM alphas and the Diff  measure for the value-
weighted S-B, V-G, and W-L. 

 
Panel A plots the series for the conditional alphas, which are obtained from the 

nonparametric estimation of (8) with mRf = . The conditional alphas are 
reported as daily percentages. Panel B plots the series of Diff  which are 

calculated from (9). Positive values of Diff  correspond to the periods in which 
the conditional CAPM is accepted while negative values indicate the failure of 

the model. 
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Figure 1.2: Conditional CAPM alphas and the Diff  measure for the equally-
weighted S-B, V-G, and W-L. 

 
Panel A plots the series for the conditional alphas, which are obtained from the 

nonparametric estimation of (8) with mRf = . The conditional alphas are 
reported as daily percentages. Panel B plots the series of Diff  which are 

calculated from (9). Positive values of Diff  correspond to the periods in which 
the conditional CAPM is accepted while negative values indicate the failure of 

the model. 
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Figure 1.3: Autocorrelation function of Diff  for value-weighted portfolios. 
 

The series of Diff  are calculated from (9). Panel A plots the autocorrelation of 
Diff  for the conditional CAPM, and Panel B plots the autocorrelation of Diff  

for the conditional FF model. 
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Figure 1.4: Autocorrelation function of Diff  for equally-weighted portfolios. 
 

The series of Diff  are calculated from (9). Panel A plots the autocorrelation of 
Diff  for the conditional CAPM, and Panel B plots the autocorrelation of Diff  

for the conditional FF model. 
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The tests on individual pricing errors thus show the inadequacy of the 

conditional CAPM to explain the dynamics of stock returns. For every portfolio, 

the conditional CAPM holds less than 1/4 of the time. More importantly, to 

claim success, a model has to be able to price all portfolios simultaneously. If 

we consider the time when the conditional CAPM holds for all three portfolios 

of the value-weighted S-B, V-G, and W-L, it will be even less than 4%! 

 

Compared to existing methods in the literature, these tests on individual 

pricing errors possess a unique advantage, i.e., they enable us to identify the 

exact time periods in which the conditional CAPM holds or fails. For instance, 

referring to Figures 1.1 and 1.2, we observe that the most extreme values of 

alphas for S-B, V-G, and W-L all appeared around March 2001, when the 

technology bubble burst, thus representing the greatest failure of the 

conditional CAPM. We can also identify the periods when the conditional 

CAPM holds, and by investigating these periods' important variables, such as 

the market conditions and the economic situations, we will be able to discover 

the conditions under which the market risk factor will determine investors' 

portfolio choice. This has important theoretical and empirical implications but 

hasn't yet been pursued in the literature. We leave this for future research. 

 

 

 

 

 

 

 



 

 33

 
 
 
 
 
 
 
 
 
 
 

Table 1.4: Test of individual pricing errors 
 

This table reports the proportion of time in which the conditional CAPM and 
the conditional FF model are accepted. At each time t , using the distribution in 

equation (5), we calculate the test statistic for the alpha at time t , and 
compare it with 1.65, the 5% critical value for the standard normal distribution. 
If the test statistic is less than 1.65, we accept the conditional model to hold at 
t . Summing up all the periods in which the model holds and dividing by the 

total number of periods gives the proportion, which is reported as the 
percentage. 

 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Value-weighted Portfolios (%)
conditional CAPM 15.89 16.01 16.50 20.39 17.91 16.33 22.31 22.21 17.25
conditional FF 20.30 23.00 18.64 19.23 17.59 26.58 20.98 24.44 19.75
Panel B: Equally-weighted Portfolios (%)
conditional CAPM 12.76 17.74 12.84 20.25 15.02 17.08 14.24 14.46 15.42
conditional FF 9.74 20.44 9.06 18.91 13.78 19.75 14.06 12.48 17.79
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1.3.2.3 Average Pricing Errors 

Now let us examine how the conditional CAPM explains the nine portfolios 

based on tests of the average pricing errors. We first conduct our discussions 

for the value-weighted portfolios and then for the equally-weighted. Since 

BCFS challenge the results of LN through the momentum portfolios, we first 

look at the results of the momentum portfolios, and then analyze the results of 

the size and B/M portfolios. 

 

Value-weighted Portfolios 

The results from our nonparametric method are presented in Panel A of Table 

1.5. They show that for the momentum portfolios, the average conditional  

alphas are -0.88% (z-stat -6.77),16 0.54% (z-stat 5.40), and 1.72% (z-stat 

11.47) for L, W and W-L, respectively. The estimates for L and W are slightly 

smaller than the unconditional alphas of -0.94% and 0.56%, but the estimate 

for W-L is larger than its unconditional alpha of 1.50%. Therefore, the 

conditional CAPM performs even worse than the unconditional CAPM in 

explaining W-L. Moreover, all these estimates are highly significant, providing 

strong evidence that the conditional CAPM fails to explain the momentum 

portfolios. 

 

BCFS point out that the method in LN suffers potentially serious small sample 

biases. But how large are these biases? Are they as large as BCFS have 

                                                 
16We use "z-stat" to stand for the statistics calculated based on the normal 
distribution of (6). That is, α

α
 oferror  standard

 of estimate=z . If 65.1>z , we reject the model at 
5% significant level. 
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claimed? To answer these questions, we also estimate the model using the 

method in LN by choosing the non-overlapping window as 6,3,1=N  months. 

Following Fama and Macbeth (1973), we obtain the standard error of the 

estimates from the time series variation of the conditional alphas. 

 

The results from LN's method are presented in Panel B of Table 1.5, which 

show that the average conditional alphas for W-L are 2.49% (t-stat 7.78) when 

1=N , 1.96% (t-stat 7.54) when 3=N , and 1.58% (t-stat 6.32) when 6=N . 

Therefore, the LN method provides estimates that are very sensitive to the 

window size, where the difference in average pricing errors is as large as 

0.91% (2.49%-1.58%) for W-L. This sensitivity to window size highlights the  

importance of using the data-driven window to estimate the model. 

 

An important feature of the momentum portfolios is that they are typically 

rebalanced every month, and the entering and exiting stocks may not have 

similar betas.17 Another shortcoming of the non-overlapping window 

estimation is that it fails to account for changing composition in the momentum 

portfolios, because by fixing 6=N , for instance, it assumes that betas are 

constant over periods of as long as six months. Our method can account for 

the high turnover in the momentum portfolios because we estimate the 

conditional alphas and betas continuously at each point in time. 

 

 

                                                 
17Grundy and Martin (2001) show that due to selection, betas of newly added 
winner and loser stocks vary with the market return in the formation period. 
 
 



 

 36

 
 
 
 
 

Table 1.5: Test of average conditional CAPM alphas for the value-weighted 
portfolios, 1963-2007 

 
The table reports the average conditional alphas for value-weighted size, B/M 

and momentum portfolios (% monthly). Panel A reports the nonparametric 
estimates from equation (8) with mRf =  using daily data. The standard error is 

obtained from equation (6). Panel B presents estimates using the non-
overlapping window estimation as in LN, with window size 3,1=N  and 6 . The 

standard error is calculated from the time series variation of the conditional 
alphas, in the spirit of Fama and Macbeth (1973). Bold values denote 

estimates greater than two standard errors from zero. 
 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Nonparametric Conditional Alphas
Est. 0.42 0.05 0.39 -0.19 0.45 0.64 -0.88 0.54 1.72
Std. err 0.07 0.04 0.09 0.07 0.06 0.07 0.13 0.10 0.15
Panel B: Non-overlapping WindowEstimated Conditional Alphas
N  1

Est. 0.83 -0.05 0.88 0.15 0.63 0.48 -1.45 1.04 2.49
Std. err 0.17 0.07 0.21 0.12 0.11 0.15 0.23 0.17 0.32
N  3

Est. 0.35 -0.02 0.37 -0.05 0.45 0.49 -1.18 0.79 1.96
Std. err 0.17 0.05 0.19 0.11 0.11 0.14 0.19 0.14 0.26
N  6

Est 0.15 0.01 0.14 -0.16 0.33 0.49 -0.97 0.6 1.58
Std. err 0.17 0.06 0.2 0.12 0.11 0.16 0.18 0.15 0.25  
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Despite the shortcomings of LN's method, we agree with them on the ability of 

the conditional CAPM to explain the momentum portfolios. Our estimates of 

the conditional alphas are of similar magnitude to the unconditional alphas, 

indicating that the conditional CAPM is not superior to the unconditional CAPM. 

This is very different from the conclusion of BCFS, who estimate the 

conditional alphas to be 20-40% smaller than the unconditional estimates. The 

reason BCFS achieve these results is most likely their special payoff structure, 

i.e., betas tend to be smaller when the market goes up and larger when the 

market goes down. Imposing a specific payoff structure in the estimation, 

however, may lead to serious misspecification bias. In our estimation, we don't 

assume any specific payoff structure, thus avoiding the misspecification bias, 

and we obtain very different results from BCFS. 

 

The results for the size and B/M portfolios are also shown in Table 1.5, with 

the results from our nonparametric method in Panel A and those from LN's 

method in Panel B. Panel A shows that for the size portfolios, the S and S-B's 

average conditional alphas are 0.42% (z-stat 6.00) and 0.39% (z-stat 4.33), 

which are economically large and statistically significant. For the B/M portfolios, 

V's average conditional alpha is 0.45% (z-stat 7.50), G's average conditional 

alpha is -0.19% (z-stat -2.71), and V-G's average conditional alpha is 0.64% 

(z-stat 9.14). We therefore reject the conditional CAPM for all B/M portfolios. 

 

Panel B of Table 1.5 shows that the estimates of the size and B/M portfolios 

using LN's method display wide variations. More importantly, they provide 

inconsistent results. For instance, S-B's average alphas are 0.88% (z-stat 4.19) 

for 1=N , showing strong evidence for rejecting the conditional CAPM, but 
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when 6=N , the average alpha drops sharply to 0.14% (z-stat 0.70), providing 

no evidence for rejecting the model. 

 

To sum up, our method provides consistent and efficient estimates, which 

enable us to accurately evaluate the performance of the conditional CAPM. 

We find that after taking into account the underconditioning and small sample 

biases, the conditional CAPM fails miserably to explain either the momentum 

effect, the value effect, or the size effect. 

 

Equally-weighted Portfolios 

Panel A of Table 1.6 presents the results of the equally-weighted portfolios 

using our nonparametric estimation method. For the momentum portfolios, W-

L's average conditional alpha is 0.005% (z-stat 0.06), which is neither 

economically nor statistically significant. The average pricing error test 

therefore provides no evidence for the failure of the conditional CAPM.18 

However, the conditional alphas for L and W are 1.78% (z-stat 19.78) and 

1.57% (z-stat 19.63), which are very large and significant, indicating the failure 

of the conditional CAPM. 

 

 

 

 

                                                 
18A test that relies on average absolute pricing error or average squared 
pricing errors may reject the conditional CAPM in the equally-weighted W-L. 
But in this paper we choose the most conservative test, i.e., the test on 
average pricing errors. 
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Table 1.6: Test of average conditional CAPM alphas for equally-weighted 
portfolios, 1963-2007 

 
The table reports the average conditional alphas for equally-weighted size, 

B/M and momentum portfolios (% monthly). Panel A reports the nonparametric 
estimates from equation (8) with mRf =  using daily data. The standard error is 

obtained from equation (6). Panel B presents estimates using the non-
overlapping window estimation as in LN, with window size 3,1=N  and 6 . The 

standard error is calculated from the time series variation of the conditional 
alphas, in the spirit of Fama and Macbeth (1973). Bold values denote 

estimates greater than two standard errors from zero. 
 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Nonparametric Conditional Alphas
Est. 1.57 0.15 1.43 0.16 0.86 0.68 1.78 1.57 0.00
Std. err 0.07 0.04 0.09 0.07 0.06 0.07 0.09 0.08 0.09
Panel B: Fixed WindowConditional Alphas
N  1

Est. 1.82 0.09 1.72 0.4 0.93 0.54 1.68 2.22 0.53
Std. err 0.17 0.07 0.2 0.13 0.11 0.14 0.25 0.2 0.24
N  3

Est. 1.36 0.12 1.24 0.23 0.78 0.55 1.45 1.56 0.11
Std. err 0.2 0.06 0.21 0.13 0.12 0.14 0.3 0.18 0.25
N  6

Est 1.16 0.14 1.02 0.13 0.68 1.02 1.36 1.23 -0.13
Std. err 0.21 0.06 0.23 0.13 0.11 0.23 0.33 0.19 0.28
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For the B/M portfolios, V's average conditional alpha is 0.86% (z-stat 14.33), 

G's average conditional alpha is 0.16% (z-stat 2.29), and V-G's average 

conditional alpha is 0.68% (z-stat 9.71). We therefore reject the conditional 

CAPM for all B/M portfolios. Moreover, our rejection of the equally-weighted 

B/M portfolios is stronger than our rejection of the value-weighted ones. 

For the size portfolios, our nonparametric estimation provides strong evidence 

that the conditional CAPM is unable to explain S, B, or S-B. The conditional 

alphas are 1.57% (z-stat 22.43), 0.15% (z-stat 3.75), and 1.43% (z-stat 15.89), 

respectively, which are all large and significant. Our rejection of the conditional 

CAPM is again much stronger than that for the value-weighted size portfolios. 

Panel B of Table 1.6 presents the results using LN's non-overlapping window 

method. The conditional alphas vary greatly with the window size. V-G's 

average conditional alpha, for example, increases from 0.54% (t-stat 3.86) 

when 1=N  to 1.02% (t-stat 4.43) when 6=N . Based on different window 

estimates, we also draw inconsistent inferences for B, G, and W-L. 

Overall, these tests on average pricing errors provide strong evidence that the 

conditional CAPM fails to account for the size and value effect. The failure is 

more pronounced for the equally-weighted portfolios than for the value-

weighted ones. This is consistent with the results obtained from the tests on 

individual pricing errors. 

 

1.3.3 Testing the Conditional Fama-French Three-Factor Model 

The FF model has become the workhorse in empirical asset pricing. Fama and 

French (1993, 1996) have provided ample evidence that the unconditional 

version of the model captures much of the return variation in portfolios sorted 

by size and B/M. For these portfolios, by allowing the betas and risk premia to 
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vary, we would expect the conditional version of the model to perform even 

better. Surprisingly, empirical tests of the conditional FF model by He, Kan, Ng 

and Zhang (1996), Ferson and Harvey (1999), and Ferson and Siegel (2003) 

strongly reject the conditional model, providing strong evidence that the 

conditional FF model fails to explain the dynamics of asset returns. Wang 

(2003), in contrast, uses a nonparametric estimation method and finds that the 

conditional FF model performs well in explaining the size and B/M portfolios. 

Despite the different conclusions reached by these studies, they all rely 

heavily on state variables. Ferson and Harvey (1999), for example, specify the 

intercept in the conditional FF model to be linear in lagged state variables, and 

test the collective significance of the coefficients. Wang (2003) assumes a 

more flexible form, relating the stochastic discount factor to the state variables. 

 

The momentum effect documented by Jegadeesh and Titman (1993) has 

become one of the most serious challenges to existing asset pricing models. 

Many studies have shown that the unconditional FF model is unable to explain 

this return anomaly, but very few studies have explored the conditional version 

of this model to explain the momentum effect. Wang (2003) evaluates the 

nonparametric version of the conditional FF model for momentum portfolios 

and finds that the model can't be rejected. Since the results of Wang (2003) 

heavily depend on state variables, it is unknown how the conditional FF model 

will perform when we dispense with state variables. 

 

In this subsection, we will re-examine the performance of the conditional FF 

model in the size, B/M portfolios and momentum portfolios without using state 

variables. Similar to the conditional CAPM, we first use the cross-validation 



 

 42

method to find the optimal estimation window for each portfolio, and then 

obtain the conditional alphas and betas from (8) by letting mRf (=  

SMB )′HML . To examine how the model explains the various portfolios, we 

conduct the tests on individual pricing errors and average pricing errors. 

 

1.3.3.1 Data-Driven Window Size 

The estimated window size for the conditional FF model is provided in Table 

1.3. A couple of features deserve highlighting. Because the conditional FF 

model has more regressors, the optimal windows are now much larger than 

those for the conditional CAPM, ranging from a minimum of 116 days for the 

equally-weighted W to a maximum of 596 days for the value-weighted G. As in 

the conditional CAPM, the window size for the equally-weighted portfolios are 

smaller than those for the value-weighted ones, implying a less stable 

information structure for the equally-weighted portfolios. 

 

We notice that the difference between the window size for S and B is not as 

dramatic as it is for the conditional CAPM. For the conditional CAPM, B has a 

much larger window size than S: 333 vs. 60 if value-weighted, and 285 vs. 44 

if equally-weighted. For the conditional FF model, however, the estimation 

windows are comparable for S and B: 356 vs. 349 if value-weighted, and 278 

vs. 349 if equally-weighted. This is most likely because the conditional FF 

model has included the SMB factor, which attenuates the difference between 

S and B. 

 

Another notable pattern is that momentum portfolios have the smallest 

windows among all portfolios. This is to be expected, because momentum 
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portfolios typically involve high turnovers and, as a result, their information 

structure should be volatile and unstable. This pattern, however, is not obvious 

for the conditional CAPM, probably because in the one-factor model, the 

difference between S and B plays a larger role than the high turnover. The 

conditional FF model, on the other hand, introduces the additional factor SMB, 

which may help diminish this difference, so that the window size can reveal 

more about the information structure pattern unique to momentum portfolios. 

 

1.3.3.2 Individual Pricing Errors 

Panel A of Figures 1.5 and 1.6 plot the conditional alphas for S-B, V-G, and 

W-L associated with the conditional FF model. The individual pricing errors still 

fluctuate over time, but the magnitude is much smaller than in the conditional 

CAPM, especially for S-B and V-G. Our intuition is that the conditional FF 

model produces much smaller pricing errors than the conditional CAPM. 

Comparing Panel A of Figure 1.5 to Panel A of Figure 1.1, and Panel A of 

Figure 1.6 to Panel A of Figure 1.2, we find a striking difference between the 

conditional CAPM and the conditional FF model. That is, the explanatory 

power of the conditional FF model seems to be more persistent over time than 

that of the conditional CAPM. To confirm our intuition, we plot the 

autocorrelation function for the Diff  measure, defined in equation (9), with the 

value-weighted S-B, V-G and W-L in Panel B of Figure 1.3 and the 

corresponding equally-weighted ones in Panel B of Figure 1.4. These figures 

show that the autocorrelation of Diff  for the conditional FF model remains 
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Figure 1.5: Conditional FF alphas and the Diff  measure for the value-
weighted S-B, V-G, and W-L. 

 
Panel A plots the series for the conditional alphas, which are obtained from the 

nonparametric estimation of (8) with ( )′= HMLSMBRf m   . The conditional 
alphas are reported as daily percentages. Panel B plots the series of Diff  
which are calculated from (9). Positive values of Diff  correspond to the 

periods in which the conditional FF model is accepted while negative values 
indicate the failure of the model. 
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Figure 1.6: Conditional FF alphas and the Diff  measure for the equally-
weighted S-B, V-G, and W-L. 

 
Panel A plots the series for the conditional alphas, which are obtained from the 

nonparametric estimation of (8) with ( )′= HMLSMBRf m   . The conditional 
alphas are reported as daily percentages. Panel B plots the series of Diff  
which are calculated from (9). Positive values of Diff  correspond to the 

periods in which the conditional FF model is accepted while negative values 
indicate the failure of the model. 
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 very high for a long time before it gradually declines. For S-B and V-G, the 

autocorrelation of Diff  stays close to 1 for as long as 40 lags. For the 

conditional CAPM, however, the autocorrelation of Diff  declines much faster, 

generally declining almost zero within 60 lags. The persistence of the 

explanatory power for different portfolios is closely related to the optimal 

window size used to estimate these portfolios. In fact, it generally holds that 

the larger the window size, the longer it takes for the autocorrelation to 

approach zero. Consistent with the fact that the conditional FF model has a 

larger window size than does the conditional CAPM, it takes much longer for 

the autocorrelation to decline over time in the conditional FF model than in the 

conditional CAPM. Focusing on the conditional FF model, its explanatory 

power is least persistent for the momentum portfolios, which have the smallest 

windows and most volatile information structures. 

 

As in the conditional CAPM, we also obtain the fraction of the time that the 

conditional FF model holds, which is shown in Table 1.4. Panel A shows that 

for the value-weighted portfolios, on average, the conditional FF model holds 

for more periods than the conditional CAPM. For instance, for the value-

weighted V-G, the conditional FF model holds 26.58% of the time, which is 

much higher than the 16.33% in which the conditional CAPM holds. This 

implies that, as with the unconditional FF model, adding two additional risk 

factors helps explain the dynamics of most portfolios. 

 

Panel B of Table 1.4 indicates that for the equally-weighted portfolios, the 

performance of the conditional FF model is somewhat mixed. For some 

portfolios, such as W-L, the proportion in which the model holds increases, but 
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for other portfolios such as S-B, the explanatory power decreases. Examining 

the conditional FF model, we find that the time periods drop sharply if 

portfolios are switched from value-weighted to equally-weighted; in the case of 

W, the decrease is as large as 12%. We therefore come to the same 

conclusion as in the conditional CAPM that it is much more difficult for the 

conditional FF model to explain the equally-weighted portfolios than the value-

weighted ones. 

 

Since the conditional FF model tends to hold for consecutive periods, we can 

identify the block of time periods in which it holds, and investigate under which 

conditions the model will perform best. This can shed light on when to use the 

conditional FF model to evaluate the profitability of certain trading strategies, 

the performance of mutual fund managers, etc. Alternatively, we can identify 

the periods in which the conditional FF model will fail. By examining the 

corresponding market and macroeconomic conditions, we can discover the 

missing factors, which is essential to improving the model. For example, one 

prominent pattern for the equally-weighted S-B is that the conditional FF 

model consistently failed in recent years, somewhere from the middle of the 

1980s to 2003. Since the equally-weighted S-B puts more weight on small 

stocks, which are generally illiquid, investigating the behavior of small (illiquid) 

stocks during this period might help explain why the model fails. Moreover, as 

argued by Amihud and Mendelson (1986), Hasbrouck and Seppi (2001), 

Pastor and Stambaugh (2003), and Acharya and Pedersen (2007), among 

others, liquidity should be priced. Therefore, it would be interesting to find out 

whether incorporating the additional liquidity factor would help improve the 

performance of the conditional FF model in the equally-weighted S-B. In fact, 
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because neither the conditional CAPM nor the conditional FF model is able to 

explain the small portfolios, it would be interesting to find out whether the 

inclusion of the liquidity factor would help improve both models to explain 

these portfolios. 

 

1.3.3.2 Average Pricing Errors 

Table 1.7 shows the results for the value-weighted size, B/M, and momentum 

portfolios, where Panel A presents the results based on our nonparametric 

estimation using the optimal window size, and Panel B presents the results 

based on the non-overlapping window estimation. 

 

Our results for the size and B/M portfolios in Panel A of Table 1.7 are similar to 

those obtained in Wang (2003), but stand in stark contrast to those in He, Kan, 

Ng and Zhang (1996), Ferson and Harvey (1999), and Ferson and Siegel 

(2003). Simply put, we find that the conditional FF model performs quite well 

for the size and B/M portfolios. For the size portfolios, S-B's average 

conditional alpha is -0.01% (z-stat -0.33), which is both economically and 

statistically insignificant. The average alphas for S and B are -0.07% (z-stat -

2.33), and -0.05% (z-stat -2.50), respectively, which are statistically significant 

but economically small. V's average conditional alpha is -0.01% (z-stat -0.33), 

which is indistinguishable from zero. G's and V-G's average conditional alphas 

are -0.14% (z-stat -4.67), and 0.11% (z-stat 3.67), which are comparable to 

their unconditional FF model alphas of -0.11% and 0.08%, even though they 

are significant. All this indicates that the conditional FF model explains the  
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Table 1.7: Test of average conditional FF alphas for value-weighted portfolios, 
1963-2007 

 
The table reports the average conditional alphas for value-weighted size, B/M 

and momentum portfolios (% monthly). Panel A reports the nonparametric 
estimates from equation (8) with mRf (=  SMB  )′HML  using daily data. The 

standard error is obtained from equation (6). Panel B presents estimates using 
the non-overlapping window estimation as in LN, with window size 3,1=N  and 

6 . The standard error is from the time series variation of the conditional 
alphas, in the spirit of Fama and Macbeth (1973). Bold values denote 

estimates greater than two standard errors from zero. 
 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Nonparametric Conditional Alphas
Est. -0.07 -0.05 -0.01 -0.14 -0.01 0.11 -0.49 0.44 0.91
Std. err 0.03 0.02 0.03 0.03 0.03 0.03 0.12 0.08 0.16
Panel B: Non-Overlapping WindowConditional Alphas
N  1

Est. 0.30 -0.14 0.44 0.08 -0.06 -0.14 -1.60 0.91 2.50
Std. err 0.14 0.09 0.15 0.13 0.14 0.13 0.40 0.33 0.57
N  3

Est. -0.07 -0.06 -0.01 -0.10 -0.00 0.09 -1.05 0.68 1.73
Std. err 0.06 0.03 0.05 0.05 0.05 0.05 0.17 0.12 0.24
N  6

Est -0.08 -0.04 -0.04 -0.09 0.03 0.12 -0.63 0.46 1.09
Std. err 0.05 0.03 0.04 0.05 0.04 0.05 0.34 0.11 0.23  
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return variation of the size and B/M almost as well as the unconditional FF  

model. 

 

Interestingly, the conditional FF model helps explain the momentum effect. 

Panel A of Table 1.7 shows that the average conditional alphas for L, W and 

W-L are -0.49% (z-stat -4.08), 0.44% (z-stat 5.50), and 0.91% (z-stat 5.69), 

respectively. Even though these pricing errors are still large and significant, 

they are much smaller than those from the unconditional FF model, which are 

-0.92% (t-stat -6.57), 0.60% (t-stat 5.45), and 1.52% (t-stat 7.24), respectively. 

This implies that the conditional FF model explains the momentum portfolios 

much better than the unconditional version, indicating that incorporating time-

varying betas and risk premia does help to explain the momentum anomaly. 

Moreover, the conditional FF model also produces much smaller average 

pricing errors than those from the conditional CAPM. For the conditional 

CAPM, the average pricing errors for L, W, and W-L are -0.88% (z-stat -6.77), 

0.54% (z-stat 5.40), and 1.72% (z-stat 11.47), which are 25% to 80% larger 

than those from the conditional FF model. Even though we find that the 

conditional FF model helps to explain the momentum portfolios, we still 

strongly reject the model, which is different from Wang (2003). 

 

Panel B of Table 1.7 shows the results from the non-overlapping window 

estimation. We observe that, like the conditional CAPM estimation, the results 

display great variations as the window size changes, especially for the 

momentum portfolios. The W-L's average conditional alpha, for example, 

decreases from 2.50% to 1.09% as the window increases from one month to 

three. Different window estimations moreover yield inconsistent results. The S-



 

 51

B's average alpha, for example, is 0.44% (t-stat 2.93) if 1=N , indicating the 

failure of the conditional FF model, whereas it becomes -0.01% (t-stat -0.20) if 

3=N , providing no evidence to reject the model. 

 

The results for the equally-weighted portfolios are presented in Table 1.8. 

Panel A shows that the conditional FF model is no longer able to explain the 

S-B, and the average pricing errors for S-B and V-G are also much larger than 

those for the value-weighted portfolios. The conditional FF model generally 

produces much smaller average pricing errors than does the conditional 

CAPM (except for W-L and G). For instance, V-G's average pricing error is 

0.18% (z-stat 4.50) using the conditional FF, and 0.68% (z-stat 9.71) using the 

conditional CAPM. However, the conditional FF model performs no better than 

the unconditional FF, with W-L's average pricing error being -0.40% using the 

conditional FF model and -0.31% using the unconditional FF model. 

 

In summary, with respect to the value-weighted portfolios, the average pricing 

errors from the conditional FF model are economically small for the size and 

B/M portfolios, providing evidence that the conditional model helps to explain 

the dynamics of the returns of these portfolios. For momentum portfolios, even 

though the conditional FF model still fails to capture their return variation, the 

average pricing errors are much smaller than those from the unconditional 

model, and they are also smaller than those from the conditional CAPM. As for 

the equally-weighted portfolios, their return variations are very difficult to 

capture by the conditional FF model. 
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Table 1.8: Test of average conditional FF alphas for equally-weighted 
portfolios, 1963-2007 

 
The table reports the average conditional alphas for equally-weighted size, 

B/M and momentum portfolios (% monthly). Panel A reports the nonparametric 
estimates from equation (8) with mRf (=  SMB  )′HML  using daily data. The 

standard error is obtained from equation (6). Panel B presents estimates using 
the non-overlapping window estimation as in LN, with window size 3,1=N  and 

6 . The standard error is from the time series variation of the conditional 
alphas, in the spirit of Fama and Macbeth (1973). Bold values denote 

estimates greater than two standard errors from zero. 
 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Nonparametric Conditional Alphas
Est. 1.04 0.04 1.00 0.20 0.38 0.18 1.46 1.01 -0.40
Std. err 0.05 0.03 0.06 0.04 0.03 0.04 0.10 0.05 0.11
Panel B: Non-Overlapping WindowConditional Alphas
N  1

Est. 1.18 -0.07 1.25 0.22 0.20 -0.02 0.85 1.57 0.72
Std. err 0.18 0.15 0.25 0.16 0.14 0.16 0.31 0.21 0.36
N  3

Est. 0.97 0.06 0.90 0.14 0.36 0.22 1.09 1.13 0.05
Std. err 0.11 0.04 0.12 0.07 0.05 0.06 0.24 0.11 0.23
N  6

Est 0.95 0.11 0.84 0.20 0.41 0.21 1.27 0.93 -0.34
Std. err 0.12 0.04 0.13 0.07 0.05 0.06 0.27 0.10 0.26  
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1.3.4 Conditional Models or Unconditional Models? 

So far, our focus has been on the test of the pricing errors, or the conditional 

alphas. We find that the conditional CAPM is not superior to the unconditional 

CAPM in explaining asset-pricing anomalies, and that even though the 

conditional FF model is superior to the unconditional FF model, it still fails to 

account for the momentum effect. In this subsection, we evaluate the models 

from the statistical point of view by asking the following question: Which model 

fits the actual data better? Or, which is closer to the true data generating 

process, the conditional or the unconditional model? 

 

To answer this question, we need to directly compare the fit of an 

unconditional model to that of a conditional one. This is important because, 

even though a conditional model performs as badly as an unconditional one 

from the economic point of view, it may still fit the data better and thus 

represent a better model from the statistical point of view. In cases in which we 

have to rely on one model, it is better to choose the one which is closer to the 

true data generating process. 

 

In this subsection, we directly compare the goodness of fit of the conditional 

and unconditional models by using a nonparametric test statistic proposed by 

Chen (2008). The idea is to compare the sum squared residuals (SSR) 

estimated from an unconditional model with those estimated from a time-

varying conditional model. The test statistic is constructed in the spirit of F -

test and follows a convenient standard normal distribution: 
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where 0SSR  is the SSR from an unconditional model of (7), and 1SSR  is the 

SSR from a conditional model of (8). h  is the optimal window size, and A , B  

are centering and scaling factors. The details of A  and B  are provided in 

Appendix 1.C. 

 

The null hypothesis is that there is no difference between a conditional model 

and an unconditional one in describing the true data generating process. This 

is a one-tail test. If the unconditional model is closer to the true data 

generating process than the conditional one, then we expect 0SSR  to be 

smaller than 1SSR . In this case, S  will be small and the null hypothesis won't 

be rejected. On the other hand, if the conditional model is closer to the truth, 

then 0SSR  will be larger than 1SSR , generating a large S  so that the null 

hypothesis is rejected. 

 

We consider two pairs of models: the unconditional CAPM versus the 

conditional CAPM, and the unconditional FF model versus conditional FF 

model. For each portfolio, we calculate the test statistics from (10) associated 

with each model. The results are provided in Table 1.9. We see that for both 

pairs of models, the value of S  far exceeds the 5% critical value of 1.65 for 

every portfolio, whether value-weighted or equally-weighted. This provides 

strong evidence that the conditional models are closer to the true data-

generating process than the unconditional ones. 
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1.4. Conclusion 

We propose a nonparametric method to estimate and test a time-varying 

factor model. Our method does away with state variables, and it also takes 

into account the nonlinear relationship between asset returns and factor 

returns. Rather than dividing windows in an arbitrary way as in existing studies, 

we obtain the optimal data-driven window size, which serves to minimize both 

the underconditioning and the small sample biases.  

 

We then propose two tests to evaluate the performance of the conditional 

models. Our first test focuses on individual pricing errors and reveals whether 

or not a conditional model holds at a particular time period. In addition to the 

test on individual pricing errors, we derive the asymptotic distribution of 

average pricing errors under a very general distributional assumption, and test 

whether the average pricing errors are equal to zero. 

 

Based on different estimation methods, there have been some controversies 

as to whether either the conditional CAPM or the conditional FF model can 

explain the well-known asset-pricing anomalies. In this paper, we use the 

nonparametric method to estimate the time series of the alphas and betas 

associated with these two conditional models and evaluate their performance 

in explaining cross section of stock returns.  
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Table 1.9: Test on Goodness of Fit 
 

This table reports the test statistics calculated based on (10). The test statistic 
for the CAPM is calculated by comparing the sum squared residuals (SSR) 

estimated from equation (7) to the SSR estimated from equation (8), by letting 
mRf = . The test statistic for FF is calculated by SSR estimated from equation 

(7) to the SSR estimated from equation (8), by letting mRf (=   SMB   )′HML . 
If the test statistic is greater than 1.65, we reject the hypothesis that there is no 

difference between an unconditional and conditional model at 5% significant 
level. 

 

Size B/M Mom
S B S-B G V V-G L W W-L

Panel A: Value-weighted Portfolios
CAPM 122.8 200.7 109.8 68.7 141.2 116.8 94.4 135.7 130.4
FF 227.8 271.4 149.4 132.4 199.9 106.1 197.3 216.8 276.0
Panel B: Equally-weighted Portfolios
CAPM 134.9 148.9 128.5 81.7 129.3 123.7 124.3 139.7 162.6
FF 235.1 221.9 158.0 183.4 214.7 106.2 165.3 273.5 267.0
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 Our results show that the conditional CAPM holds at less than 1/4 of all the 

time periods for every portfolio. The conditional FF model holds at more time 

periods, and its explanatory power tends to be more persistent. The 

uniqueness of this test is that we are able to identify the exact time periods in 

which a conditional model holds, suggesting an interesting research direction 

for discovering the conditions in which a conditional model is better applied. 

 

For the value-weighted portfolios, we provide strong evidence that the 

conditional CAPM fails miserably to explain the size effect, the value effect, 

and the momentum effect. The conditional FF model explains the size and 

value effect quite well, and it also helps to explain the momentum effect. 

However, it's rather difficult for either conditional model to explain the return 

variations in the equally-weighted portfolios, so the small portfolios remain a 

serious challenge to existing factor pricing models. 

 

We also examine the goodness of fit for conditional versus unconditional 

models. Our results show that the conditional models are closer to the true 

data-generating process and are thus better models. 
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CHAPTER 2 

PROSPECT THEORY, THE DISPOSITION EFFECT AND ASSET PRICES19 

 

2.1 Introduction  

One of the mostly studied individual trading behaviors is the disposition effect: 

investors have a greater tendency to sell assets that have risen in value since 

purchase than those that have fallen.20 This effect has been observed in many 

markets, both for retail investors and for professional investors.21 It is puzzling 

because none of the most obvious rational explanations, such as portfolio 

rebalancing or information story, can entirely account for the disposition effect 

(Odean, 1998). As a result, an alternative view based on prospect theory has 

gained favor. 
                                                 
19This chapter is based on a joint paper with Liyan Yang.  
 
20Shefrin and Statman (1985) coined the term the disposition effect. This effect 
is puzzling because the purchase price of a stock should not matter much for 
an investor's decision to sell it. In addition, tax laws encourage investors to sell 
losers rather than winners to reduce taxes. In a careful further study, Odean 
(1998) finds that the most obvious explanations, namely those based on 
information, taxes, rebalancing, or transaction costs, fail to capture important 
features of the data. 
 
21Odean (1998), Grinblatt and Keloharju (2001), and Feng and Seasholes 
(2005) find disposition effects in the stock markets of the U.S., Finland, and 
China, respectively. Grinblatt and Keloharju (2001), Shapira and Veneezia 
(2001), Werners (2003), Garvey and Murphy (2004), Coval and Shumway 
(2005), Locke and Mann (2005), Frazzini (2006), and Scherbina and Jin (2006) 
document the disposition effect in the trading of professionals who trade on 
behalf of their firms; Genesove and Mayor (2001) and Heath et al. (1999) 
document disposition effects in the housing market and in the exercise of 
executive stock options, respectively. Webber and Camerer (1998) and Oehler 
et al. (2002) uncover disposition effects with experimental data. See Feng and 
Seasholes' (2005) Appendix A for more empirical studies on the disposition 
effect. 
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The literature has produced both informal arguments (e.g., Odean, 1998) and 

formal models (Kyle et al., 2006; Hens and Vlcek, 2006; Barberis and Xiong, 

2009), relying on prospect theory to explain the disposition effect. As a 

prominent theory of decision-making under risk, prospect theory was first 

proposed by Kahneman and Tversky (1979) and extended by Tversky and 

Kahneman (1992). A prospect theory investor evaluates gambles through 

gains and losses, not final wealth levels. The value function used by the 

investor to process gains and losses has a kink in the origin, indicating that 

investors are more sensitive to losses than to gains; this feature is referred to 

as loss aversion in the literature. Moreover, the value function is concave for 

gains and convex for losses, meaning that the investor is risk averse for gains 

and risk-loving for losses, which is known as diminishing sensitivity.22 

 

Aside from using prospect theory to study the underlying cause of the 

disposition effect, recent empirical studies suggest that the disposition effect 

has pricing and volume implications: it can generate momentum in stock 

returns (Grinblatt and Han, 2005; Shumway and Wu, 2007), induce post-

earnings announcement drift (Frazzini, 2006), and contribute to a positive 

correlation between returns and volumes (e.g., Statman et al., 2006). 

 

While existing studies have offered many insightful understandings on the link 

                                                 
22For a review of prospect theory, see Barberis and Thaler's (2003) Section 
3.2.1 or Barberis and Huang's (2008) Section 2. Another salient feature of 
prospect theory is probability weighting: the investor overweights small 
probabilities and underweights intermediate probabilities in computing the 
expectation. We don't incorporate this feature in our model due to the reasons 
discussed in Section 2.2. 
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from prospect theory to the disposition effect, and on the link from the 

disposition effect to return and volume patterns, they have almost always 

investigated these two links separately. On the one hand, the partial 

equilibrium models proposed by Kyle et al. (2006), Hens and Vlcek (2006) or 

Barberis and Xiong (2009) assume an exogenous stock return process, and 

are therefore silent about the pricing and volume implications of the disposition 

effect. On the other hand, Grinblatt and Han's (2005) theoretical model shows 

that the disposition effect can lead to price momentum, but it begins with a 

demand function featuring the disposition effect without exploring whether 

such a demand function can indeed be generated from prospect theory 

preferences. In particular, Barberis and Xiong (2009)'s partial equilibrium 

results suggest that when the expected stock return is high, the disposition 

effect leads to a reversed disposition effect, implying a reversal in stock 

returns and a negative correlation between returns and volumes. The literature 

thus lacks a theoretical foundation to support the intuition from prospect theory 

to the disposition effect and the intuition from the disposition effect to price 

momentum or volume patterns. 

 

Without such a general equilibrium model, the following questions are thus left 

unanswered: Whether the intuitions emphasized in existing studies are 

coherent in a unified framework? Does prospect theory predict the disposition 

effect when stock returns are endogenous? Which component of prospect 

theory drives the momentum, and which drives the reversal? In a calibrated 

economy, how much can prospect theory explain the data? The challenges of 

proposing such a general equilibrium model come from: (i) an investor's 

decision involves solving an optimal stopping time problem with a non-smooth 
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and partially convex objective function, and (ii) the state vector in the general 

equilibrium model is high-dimensional, including the distribution of stock 

holdings and purchase prices (i.e., the reference points) for all investors in 

every possible state of nature. 

 

In this paper, we develop an overlapping-generation (OLG) model to simplify 

an investor's optimal stopping time problem and to reduce the dimensions of 

the state vector, making it possible to simultaneously study the link between 

prospect theory and the disposition effect, as well as the impact of this effect 

on stock prices. In our model, over their lifetimes, investors can trade stocks 

and a risk-free asset in the financial market, and, at the end of their final 

periods, receive prospect theory utility based on their trading profits. The 

behavior of those investors who bought stocks in previous periods can 

potentially exhibit the disposition effect. Our model shows that different 

components of prospect theory make different predictions regarding trading 

behavior, return predictability and volume patterns. 

 

Specifically, the diminishing sensitivity component, which posits that investors 

are risk averse (risk-loving) for gains (losses), or that the value function is 

concave (convex) in the gain (loss) domain, predicts the disposition effect in 

equilibrium, which in turn drives price momentum and a positive correlation 

between returns and volumes (See Subsection 2.4.2).23 However, the loss 

                                                 
23Throughout this paper, we follow the literature in using the terms diminishing 
sensitivity and concavity/convexity interchangeably to refer to the S-shaped 
value function of prospect theory. 
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aversion component, which says that investors are more sensitive to losses 

than to gains, or that the value function has a kink at the origin, predicts 

exactly the opposite, namely, a reversed disposition effect in individual trading, 

reversal in the cross-section of stock returns and a negative correlation 

between returns and volumes (See Subsection 2.4.3). In a calibrated economy, 

when preference parameters are set at the values estimated by the previous 

studies, the concavity/convexity feature of prospect theory value function 

dominates, so that our model can generate an annual momentum of up to %7  

(See Subsection 2.4.4). 

 

The intuition for the implications of diminishing sensitivity is as follows. When a 

stock experiences good news and increases in value relative to the purchase 

price, these investors will be keen to sell it to lock in the paper gain, due to the 

concavity of the value function of prospect theory in the region of gains. Their 

selling increases volume. The selling pressure, moreover, depresses the stock 

price, generating subsequent higher returns. Similarly, when a stock 

experiences bad news and decreases in value relative to the purchase price, 

these investors are facing capital losses, and they are reluctant to sell, absent 

a premium, because of the convexity in the region of losses. In this case, the 

volume dries up, and the price is inflated, giving rise to subsequent lower 

returns. In this way, our model proves the internal consistency of the existing 

informal arguments which link prospect theory to the disposition effect (e.g., 

Odean, 1998) and which rely on the disposition effect to explain the 

momentum effect (e.g., Grinblatt and Han, 2005) and the positive relationship 

between price changes and volume (e.g., Odean, 1998; Statman et al., 2006). 
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What's the intuition for the implications of loss aversion? Loss aversion means 

that prospect theory value function has a kink at the origin, and investors are 

afraid of holding stocks if they are close to the kink. It is well understood in the 

literature that loss aversion can raise equity premiums in equilibrium (e.g., 

Benartzi and Thaler, 1995; Barberis et al., 2001). So in equilibrium, good (bad) 

news will push investors far from (close to) the kink, making them more likely 

to hold (sell) stocks when facing gains (losses). This resulting reversed 

disposition effect, in turn, leads to a negative correlation between returns and 

volumes, as well as reversal in the cross-section of returns: when a stock 

experiences good (bad) news and increases (decreases) in value relative to 

the purchase price, investors, according to the reversed disposition effect, 

want to hold (sell) stocks, which reduces (raises) the trading volume and 

inflates (depresses) the stock price; from that higher (lower) base, subsequent 

stock returns will also be lower (higher). 

 

To the best of our knowledge, this paper is the first to comprehensively study 

the implications of prospect theory for individual trading behavior, asset prices 

and trading volume in a dynamic setting. Previous research on the effect of 

prospect theory in the asset pricing literature has focused primarily on the loss 

aversion component and shown that it can increase the equity premium, i.e., 

the mean of stock returns in excess of the risk free rate (e.g., Barberis et al., 

2001).24 Our model demonstrates that loss aversion also has implications for 

                                                 
24Recently, in a one period (two dates) model, Barberis and Huang (2008) 
show that the probability weighting feature of prospect theory can cause a 
security's individual skewness to be priced in equilibrium. 
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return predictability and the correlation between returns and volumes. In 

addition, our paper shows that the S-shaped value function of prospect theory 

helps explain the disposition effect, the momentum effect and the comovement 

between stock returns and turnovers. Over and above these results, in 

Subsection 2.4.2, we argue that diminishing sensitivity alone, in the absence 

of loss aversion, can raise equity premiums. 

 

The rest of the paper is organized as follows. Section 2.2 describes the model, 

and Section 2.3 characterizes the equilibrium. Section 2.4 solves the price-

dividend ratios and uses simulated data to analyze the implications of 

diminishing sensitivity and loss aversion for individual trading behavior, asset 

prices and trading volumes. In particular, Subsection 2.4.4 conducts a 

quantitative analysis to evaluate how well our model matches the historical 

data. Section 2.5 concludes the paper. The appendix discusses the 

robustness of our results to certain modeling assumptions. 

 

2.2. The Model 

Let us consider an OLG model with one consumption good. Time is discrete 

and indexed by t . In each period, there are 3 generations (age-1, age-2 and 

age-3), each with a unitary mass. We adopt an OLG setup simply to reduce 

the dimension of the state vector. In the context of the disposition effect, the 

reference points usually relate to the purchase prices, which enter the state of 

the economy via the disposition effect, making the state history dependent. In 

an OLG setup, investors live for a finite period of time, so their purchase prices 

involve only a finite number of periods, effectively reducing the dimension of 

the state vector. The OLG setup should therefore not be interpreted literally. 
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Generations should be understood as generations of transactions, not 

generations of people. Since the average holding periods of stocks are six 

months to one year, one generation corresponds to six months to one year. 

Why are there three generations in each period? First, in order to study the 

disposition effect, which concerns selling decisions, we need at least three 

generations. In the standard two generation models, old investors always sell 

stocks whether facing good news or bad, thereby automatically ruling out the 

disposition effect. On the other hand, one model with more than two 

generations allows some investors to decide when to liquidate stocks which 

they bought in previous periods. Second, if there were more than three 

generations, the state vector would be highly dimensional, making the model 

intractable. In Appendix 2.A.2, we intuitively argue that our results might still 

hold in a setup with more than three generations. 

 

2.2.1 Financial Assets 

There are two traded assets: a risk-free bond and a risky stock. The bond is in 

perfectly elastic supply at a constant gross interest rate 1>fR . The stock pays 

a random dividend 0>tD  in period t . The dividend growth rate 
t

t
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The stock is in limited supply (normalized as 1) and is traded in a competitive 

market at price tP . Let 1+tR  be the gross return on the stock between time  t   
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Investors can buy or short bonds at any level, but they can not short stocks, 

and if they buy stocks, they can hold exactly 1 unit in each period. We assume 

that people hold either zero or one unit of stock for several reasons. First, this 

specification is realistic in the sense that the lower (upper) bound of the 

holding position captures the shorting (borrowing) constraints in stock trading. 

Second, the assumption that people buy at most one unit of stock at one time 

captures the idea that they tend to form different mental accounts for the same 

stock bought at different prices. Third, a binary choice in stock holdings 

simplifies an investor's decisions, because otherwise it is very difficult to 

characterize the investor's demand function due to the convexity of the 

Kahneman and Tversky (1992) value function in the loss domain. Finally, a 

binary choice and an OLG setup combine to reduce the complicated optimal 

stopping problem of an age-2 investor owning a stock to a simple problem of 

choosing between an early liquidation and a late liquidation. 

 

2.2.2 Beliefs 

In order to study the impact of the disposition effect on trading volumes, we 

make two assumptions on investors' beliefs. First, investors hold 

heterogeneous beliefs about the dividend growth rate within one period. Due 

to this cross-sectional heterogeneity in beliefs, investors, in particular young 

investors, will make different investment decisions: more optimistic investors 

will purchase a stock, while more pessimistic investors will not. Second, an 

investor's one-period-ahead dividend forecast changes during his lifetime. The 

time-variation in an investor's belief will motivate the selling of a middle-aged 

investor who purchased the stock when he was young. With these two 

assumptions, we ensure that in each period, there is always a group of middle-
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aged investors who bought stocks last period and want to sell them this period. 

It is this group of investors that can potentially exhibit a disposition effect. Of 

course, these two assumptions are just a modelling device, and any other 

trading motives, such as liquidity shocks (e.g., Kaustia, 2008), can also serve 

the same purpose. 

 

As a matter of fact, in the informal arguments that have been used to link 

prospect theory and the disposition effect, investors are often assumed to 

experience belief changes, i.e., time-variation in an investor's beliefs is often 

maintained as the following quotation from Odean (1998, p. 1777) illustrates. 

 

(S)uppose an investor purchases a stock that she believes to have an 

expected return high enough to justify its risk. If the stock appreciates and the 

investor continues to use the purchase price as a reference point, the stock 

price will then be in a more concave, more risk-averse, part of the investor's 

value function. It may be that the stock's expected return continues to justify its 

risk. However, if the investor somewhat lowers her expectation of the stock's 

return, she will be likely to sell the stock. What if, instead of appreciating, the 

stock declines? Then its price is in the convex, risk-seeking, part of the value 

function. Here the investor will continue to hold the stock even if its expected 

return falls lower than would have been necessary for her to justify its original 

purchase. Thus the investor's belief about expected return must fall further to 

motivate the sale of a stock that has already declined than one that has 

appreciated. [Emphasis added as italics] 

 

Formally, in period t , investor i  believes that the dividend growth rate 1+tθ  
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follows a distribution given by 
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where tiq ,  is a random variable with uniform distribution on [ ]1,0  and tiq ,  is i.i.d. 

across investors (index i ) and over time (index t ).25 On average, investors 

have the correct beliefs, since the mean of tiq ,  is equal to 2
1 .  Investors are 

forward looking, so that we can apply the standard dynamic programming 

techniques to solve their optimal decision problems. 

 

2.2.3 Preference 

An investor derives prospect theory utility from trading assets in the spirit of 

Kahneman and Tversky (1979, 1992).26 When investor i is born, he is 

endowed with iW ,1  units of consumption good. He can trade when he is young 

and middle-aged, leaving his final wealth as iW ,3  and his capital gains/losses 

as iX ,3 . Let i
tE  denote the investor's expectation operator at time t . His time t  

utility, i
tU , is then given by 

                                                 
25In reality, an investor's one-period-ahead dividend forecasts might be 
correlated. As a robustness check, we also try the following specification to 
capture this correlation: ( ) 1,,1, 1 ++ −+= tititi qq ερρ  with )1,0(∈ρ , where tiq ,  
follows a beta distribution and 1, +tiε  follows a uniform distribution. If 0=ρ ,  
then we return to the specification in the main text in which his forecasts are 
independent over time; if 1=ρ , then an investor's forecasts about dividend 
growth rate are constant over time. 
 
26We also considered a model, similar to Barberis et al. (2001), in which an 
investor derives two kinds of utilities --- the standard consumption utility and 
prospect theory utility --- and obtained similar results. 
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i
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i
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where 
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0 if

⎩
⎨
⎧

<−−
≥

=
xx
xx

xv α

α

λ
    (5) 

 

with 10 ≤< α  and 1≥λ . 

 

Here, the function ( )⋅v  is the standard value function of prospect theory 

proposed by Tversky and Kahneman (1992). The argument of ( )⋅v  is the 

capital gain/loss, iX ,3 , not the final period wealth, iW ,3 . Function ( )⋅v  is 

concave for gains and convex for losses, meaning that investors are risk 

averse in the domain of gains and risk-seeking in the domain of losses; it has 

a kink at the origin, implying a greater sensitivity to losses than to gains of the 

same magnitude. Parameter α  governs its concavity/convexity and parameter 

λ  controls loss aversion. For simplicity, we don't explore prospect theory's 

probability weighting feature in the above preference specification and just 

apply the standard expectation operator i
tE . The primary effect of probability 

weighting is to overweight small probabilities; it therefore has its biggest 

impact on securities with highly skewed returns. Since most stocks are not 

highly skewed, we do not expect probability weighting to be central to the link 

between prospect theory and the disposition effect. Indeed, Hens and Vlcek 

(2006) find that probability weighting only plays a minor role in determining 
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whether prospect theory predicts the disposition effect. 

 

In equation (4), we follow the literature (e.g., Gomes, 2005; Barberis and 

Huang, 2008; Barberis and Xiong, 2009) and define the capital gain/loss as 

ifii WRWX ,1
2

,3,3 −= .27 That is, we take a reference point as an investor's final 

wealth which he could have earned by investing in bonds when he was young 

and middle-aged.28 The gain/loss from a particular stock sale is calculated as 

the difference between the reference point and the investor's final wealth 

resulting from buying and selling this stock. For example, if investor  i  buys a 
stock at price BP  at age 1, sells it at price SP  and collects a dividend iD ,2  at 

age 2 , and he then reinvests i
S DP ,2+  in bonds, getting back if

S
f DRPR ,2+  

at age 3 . If he had not bought the stock at age 1, but had invested BP  in 

bonds and held them till age 3 , then he would have collected B
f PR
2  at age 3 . 

Therefore, the gain/loss from this stock sale is B
fif

S
fi PRDRPRX 2

,2,3 −+= . 

This definition reflects the idea that an investor usually starts considering the 

stock investment as a loss if he could have earned more from investing in the 

riskless bond. 

                                                 
27Two implementations of propect theory have been proposed in the literature. 
The first implementation defines propect theory over annual gains/losses 
(Benartzi and Thaler, 1995; Barberis et al., 2001; Barberis and Huang, 2008). 
Another implementation is to define prospect theoy over "realized gains/losses 
as in Barberis and Xiong (2008, 2009). The two implementations will be 
identical in our setup, because investors are allowed to hold only one unit of 
stock over their lifetimes. 
 
28In Appendix 2.A.1, we further show that our results are robust to taking 
purchase prices as reference points. 
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2.2.4 Timeline 
To summarize, in the model, the exogenous random variables are tθ  and tiq , , 

and the exogenous parameters of the model are 0>Hθ , 0>Lθ , 1>fR , 

10 ≤< α  and 1≥λ . The order of events in each period t  is shown in Figure 

2.1. At the beginning of period t  , age-1 investors are born and receive 

consumption good endowments. The dividend growth rate tθ  is realized, and 

all investors observe tθ . The idiosyncratic belief shock tiq ,  is realized, and 

investor i  observes tiq , . All investors trade in the stock and bond market; age-

2 and age-3 investors carry stocks to the market; after trading, age-1 and age-

2 investors hold stocks. At the end of period t , age-3 investors receive 

prospect theory utility and exit the economy. 

 

Our OLG setup can be understood as a stylized way of describing how 

different types of investors existing in real markets interact with each other. 

Our model economy can be linked to reality as follows. The potential buyers, 

namely an age-1 investor and an age-2 investor without a stock, correspond 

respectively to a new participant and to a wait-and-seer who has been sitting 

in the market for some time. The potential sellers, namely an age-3 investor 

and an age-2 investor owning a stock, correspond respectively to a pure noise 

investor, one who has no discretion with regard to the timing of his trade, and  
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Figure 2.1 Timeline 
 

Figure 2.1 plots the order of events in period  t  . 
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to a discretionary liquidity investor, one who can determine when to trade.29 

 

2.2.5 Extension: A Multi-Stock Setting 

So far, we have assumed just one risky asset, but our analysis has 

implications for the cross-section property of stock returns, so long as the 

investor engages in mental accounting or narrow framing (Thaler, 1980, 1985), 

thus deriving prospect theory utility separately from the trading profit on each 

distinct stock. This assumption is always present in the literature relating 

prospect theory to the disposition effect (e.g., Odean, 1998; Barberis and 

Xiong, 2009). Kumar and Lim (2008) also document that narrow framers 

indeed exhibit more of a disposition effect. Formally, we can consider an 

economy with N  stocks, in which each stock has i.i.d. dividend processes with 

distribution given by equation (1), investors hold heterogeneous beliefs about 

the dividend growth rates and experience belief changes in their lifetimes, and 

these investors derive prospect theory utility from accumulative trading profits 

at the level of individual stocks. Then we can still use the conditions that 

characterize the equilibrium in the single stock setting --- more precisely, 

equations (6) through (23) --- to define an equilibrium, stock by stock, in this 

mutli-stock setting. In Section 2.4, we conduct such an analysis and calculate 

the average returns to the winners-minus-losers portfolio to examine whether 

price momentum exists in our model economies. 

 

                                                 
29The importance of differentiating a pure noise investor from a discretionary 
liquidity investor has been emphasized in the microstructure literature, for 
example, Admati and Pfleiderer (1988). 
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2.3 Equilibrium 
We now derive equilibrium asset prices. Let 

t

t
D
P

tf =  denote the price-dividend 

ratio in period t . To ease exposition, the investors of age 2 who have (don't 

have) a stock when they enter the market are referred to as age-2-1 investors 

(age-2-0 investors). Let tz  be the mass of age-2-1 investors in period t , i.e., zt  

captures the distribution of stocks. Then in period t , the state of the economy 

is ( )tttt zfS ,, 1−= θ . In equilibrium, the stock price-dividend ratios will be a 

function of the state vector, ( )tt Sff = . The three variables tθ , 1−tf  and tz  

affect stock prices because (i) tθ  and 1−tf  affect age-2-1's investment 

decisions through the disposition effect, and (ii) tz  relates to aggregate effect 

on prices of age-2-1 investors as a whole. We construct the price-dividend 

function f  by solving investors' optimal decisions backwards and using the 

market clearing condition. 

 

2.3.1 Age-3 Investors' Decisions 
A typical investor i  of age 3  faces a state vector ( )tit qS ,, . His decision is 

simple: if he has a stock, he sells it and derives prospect theory utility from his 

trading profit; if he does not have a stock, he just waits until the end of the 

period and receives prospect theory utility. In sum, age-3 investors will sell 

1 − zt  stocks as a whole. 

 

2.3.2 Age-2 Investors' Decisions 
A typical investor i of age 2  faces a state vector ( )1,, ,, −titit hqS , where 11, =−tih  if 

he belongs to age-2-1 and 01, =−tih  if he belongs to age-2-0. An age-2-1 

investor decides whether to sell the stock, and an age-2-0 investor decides 

whether to buy a stock. 
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Let us first look at the age-2-1 investors. If an age-2-1 investor continues to 

hold the stock, what is his expected prospect theory utility? In the next period, 

he will sell the stock at price 1+tP , resulting in a gain/loss 

 

( ) .1with 

,

1
2

11
1
11

1
1
111

2
11

−++
+
→

−
+
→−++

−++=

=−++

tftfttt
t

t
t

tftftt

fRRfG

DGPRDRDP

θθθ
 (6) 

 

As a result, his expected utility is 

 
( ) ( )[ ] ,, 1

1
11,11

α
−

+
→→ = t
ti

ttit DGvEqSU                                            (7) 

 

where i
tE  is the subjective expectation operator conditional on investor i 's 

period t  information set { }tit
i
t qS ,,=F . Here, investor i  takes expectation over 

the random variables 1+tθ  and 1+tf  according to his subjective belief [equation 

(2)] and the transition law of the state vector [equation (22)]. 

 

If he sells the stock, what is his expected prospect theory utility? Since he sells 

at price tP , then his gain/loss is  

 

( ) .1with 

,

1
2

01

1011
2

−→

−→−

−+=

=−+

tftft
t

t
t

tftftf

fRRfG

DGPRDRPR

θ
     (8) 

 

Therefore, his expected utility is 

 
( ) ( ) .10101

α
−→→ = t

t
t DGvSU                                       (9) 

 

If ( ) ( )ttit SUqSU 01,11 , →→ ≥ , then investor i  will continue to hold the stock. That is, 
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those with sufficiently large belief shocks tiq ,  will not sell their stocks. 

To sum up, the optimal decision of an age-2-1 investor is 

 
( ) ( ) ( ) ( )[ ] ( ).111,,

01
1
1101,11 ,, tti

tttit GvGvESUqSUtit qSh
→

+
→→→ ≥≥ ==   (10) 

 

The corresponding indirect value function is30 

 
( ) ( )
( ) ( ) ( )[ ] ( )[ ] ( ).1,,11,,1,,ˆwith 

,1,,ˆ1,,

01,
1
11,,

1,,

t
tit

ti
ttittit

ttittit

GvqShGvEqShqSV
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→
+
→

−

−+=

= α

  (11) 

 

After trading, the fraction of those age-2-1 investors who continue to hold on to 

their stocks is 

 

( ) ( ) ( )[ ],|1,,1,,1, ,,02 ttitttit

z

t SqShEzdiqShSH t == ∫   (12) 

 

where the second equality follows from the law of large numbers and the 

expectation is taken over the random variable tiq , , which follows a uniform 

distribution over [ ]1,0 . 

 

Next, let us check the age-2-0 investors. If an age-2-0 investor decides to buy 

a stock, then he will have a gain/loss 

                                                 
30Note that the indirect value function, ( )1,, , tit qSV , is different from the value 
function of prospect theory ( )⋅v . Function ( )⋅v  corresponds to a standard 
Bernoulli utility function in the choice theory under uncertainty, but function 
( )1,, , tit qSV  is the indirect utility function which has taken into account the 

investor's optimal decisions. 
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and have expected prospect theory utility 

 
( ) ( )[ ] ., 1

1
10,10

α
−

+
→→ = t
ti

ttit DGvEqSU                     (14) 

 

If he decides not to buy a stock, then his utility is 0 . So an age-2-0 investor's 

optimal decision is 

 
( ) ( ) ( )[ ] ,110,,

00,, 1
10,10 ≥≥ +

→→
== ti

ttit GvEqSUtit qSh    (15) 

 

and the corresponding indirect value function is 

 
( ) ( ) ( ) ( ) ( )[ ].0,,0,,ˆwith ,0,,ˆ0,, 1

10,,1,,
+
→− == ti

ttittitttittit GvEqShqSVDqSVqSV α    (16) 

 

After trading, the aggregate stock holding of age-2-0 investors is 

 

( ) ( ) ( ) ( )[ ].|0,,10,,0, ,,

1

02 ttitttit

z

t SqShEzdiqShSH t −== ∫
−

   (17) 

 

2.3.3 Age-1 Investors' Decisions 

A typical investor i  of age 1 faces a state vector ( )tit qS ,, . If he decides to buy 

a stock, then his expected prospect theory utility is  
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and if he decides not to buy a stock, then his expected utility is  

 
( ) ( )[ ] ( )
( ) ( )[ ].0,,ˆ,ˆwith 

,,ˆ0,,,

1,1,0

,01,1,0
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     (19) 

 

Therefore, his optimal decision is 

 
( ) ( ) ( ).1,

,0,1 ,ˆ,ˆ, tittit qSUqSUtit qSh
≥

=                                              (20) 

 

So after trade, age 1 as a whole will hold 

 

( ) ( ) ( )[ ].|,, ,,

1

01 ttittitt SqShEdiqShSH == ∫                           (21) 

 

2.3.4 Evolution of State Variables 

The state vector tS  evolves according to the following equation 

 
( ) ( ) ( )( ),,,,, 11111 ttttttt SHSfzfS ++++ == θθ                           (22) 

 

where functions ( )tSH1  [given by (21)] and ( )tSf  are both endogenously 

determined. The random process { }∞=+ 11 ttθ  is i.i.d. with distribution 

( ) ( ) 2
1

11 PrPr ==== ++ LtHt θθθθ  [i.e., equation (1)]. When investors make 

decisions, however, they believe that  t1  evolves according to 

( ) tiHt
i
t q ,1Pr ==+ θθ  [i.e., equation (2)]. Since tS  is in the investors' information 

set, they know the other two variables in 1+tS , i.e., tf  and 1+tz . 
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2.3.5 Market Clearing Condition 

The market clearing condition is 

 
( ) ( ) ( ) ,11,0, 221 =++ ttt SHSHSH              (23) 

 

which states that the stock holdings from age-1, age-2-0, and age-2-1 add up 

to the total stock supply 1. An equilibrium price-dividend function f  is 

implicitly determined by equations (6) through (23). 

 

We adopt the equilibrium concept of Radner (1972), known as equilibrium of 

plans, prices, and price expectations. An equilibrium is formally defined as 

follows. 

 

 Definition An equilibrium consists of decision rules, ( )tit qSh ,, , ( )0,, , tit qSh  and 

( )1,, , tit qSh , and a law of motion ( ) ( ) ( )( )ttttttt SHSfzfS 11111 ,,,, ++++ == θθ  such 

that 

(1) the decision rules maximize investors' expected prospect theory utility 

conditional on their information; 

(2) markets clear: ( ) ( ) ( ) 11,0, 221 =++ ttt SHSHSH  for almost every realization of 

tS ; and 

(3) the law of motion is generated by decision rules. 

Note that the above definition of equilibrium has implicitly incorporated prices 

into the price-dividend ratio function in the law of motion. 
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2.3.6 Benchmark Case: Standard Risk Neutral Utility 

Suppose 1== λα . Concavity/convexity and loss aversion, two distinctive 

features of prospect theory, will vanish, reducing the preferences to a standard 

risk neutral utility representation. This works as a benchmark economy to 

illustrate that all our results are driven by prospect theory preferences. We 

don't use a standard, risk averse preference, such as power utility functions, 

as the benchmark, because risk aversion per se can qualitatively generate a 

disposition effect through portfolio rebalancing, although Odean (1998) argues 

that portfolio rebalancing cannot quantitatively account for the disposition 

effect.31 Risk neutrality removes this contamination and therefore gives 

cleaner results. 

 

When investors are risk neutral, i.e., when 1== λα , both the price-dividend 

ratio and the mass of age 2-1 investors are constant: 
( )
( ) ( )LHf

LH

tf

t

RER
E

t ff θθ

θθ
θ

θ

2
1

2
1

2
1

2
1

1

1

+−

+
− ==≡

+

+  and 2
1=tz . This result can be obtained by 

examining equations (6) to (23). 

In fact, the constant price-dividend ratio is consistent with the simple Gordon 

rule: ( )
( )1

1

+

+
−=

tf

tt
ER

DE
tP θ

θ . Intuitively, the potential buyers of stocks are those age-1 

and age-2 investors who hold optimistic views about next period's dividend 

realization; the marginal buyer's subjective belief, coinciding with the true 

                                                 
31If investors sell winners due to portfolio rebalancing, then they will partially 
reduce their position in a winning stock, rather than sell the entire position of 
the stock. Odean (1998) shows that the disposition effect still remains strong, 
even when the sample is restricted to transactions of investors' entire holdings 
of a stock, i.e., to those transactions not motivated by portfolio rebalancing. 
This suggests that portfolio rebalancing cannot entirely account for the 
disposition effect. 
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distribution of the dividend process, brings the stock price equal to the sum of 

the discounted expected dividends. In this special case, we have an i.i.d. 

return process, 

 

,1
1

11
1 +

++
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+
=

+
= t

t

tt
t f

f
P
DPR θ  

 

with mean equal to fR . The age-2-1 investors no longer exhibit a disposition 

effect, because half of them, those who have received pessimistic belief 

shocks (i.e., 2/1, <tiq ), will always liquidate stocks no matter whether they 

face gains or losses. 

 

For the general cases of 1<α  or 1>λ , we have to numerically solve the 

price-dividend function ( )⋅⋅⋅ ,,f  and age-1 investors' stock demand function 

( )⋅⋅⋅ ,,1H . The basic methodology is as follows: starting from an initial conjecture 

of ( ) ( )⋅⋅⋅ ,,0f  and ( ) ( )⋅⋅⋅ ,,0
1H , solve ( ) ( )tSf 1  and ( ) ( )tSH 1

1  on a grid of tS  from 

equations (6)-(23), and continue this process until ( ) ( ) ( )⋅⋅⋅→⋅⋅⋅ ,,,, ff n  and 
( ) ( ) ( )⋅⋅⋅→⋅⋅⋅ ,,,, 11 HH n . 

 

2.4 Numerical Results and Intuitions 

In this section we solve equations (6) through (23) for the two endogenous 

functions in the law of motion: the price-dividend ratio function, ( )⋅⋅⋅ ,,f , and the 

aggregate demand function of age-1 investors, ( )⋅⋅⋅ ,,1H . We then use 

simulations to show that the two components of prospect theory, diminishing 

sensitivity and loss aversion, make exactly opposite predictions regarding 

individual trading behavior, return predictability, and the correlation between 
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returns and volume. Specifically, Subsection 2.4.2 demonstrates that 

diminishing sensitivity drives a disposition effect, which in turn leads to 

momentum in the cross-section of stock returns and a positive correlation 

between returns and volume. Subsection 2.4.3 shows, on the other hand, that 

loss aversion predicts a reversed disposition effect and reversal in the cross-

section of stock returns, as well as a negative correlation between returns and 

volume. Subsection 2.4.4 conducts further quantitative analysis to examine 

how successful prospect theory is in explaining price momentum, and 

suggests testable empirical predictions. 

 

2.4.1 Calibrating Technology Parameters 

There are five exogenous parameters in our model: two preference 

parameters (λ  andα ) and three technology parameters ( Hθ  , Lθ  and fR ). 

Since we are interested in the implications of preferences, we allow the 

preference parameters to vary over a certain range. But we calibrate the 

technology parameters as follows. We take one period to be one year, and 

thus set the net risk-free rate to 86.31=−fR  percent, a choice adopted by 

Barberis and Huang (2001). Since the disposition effect refers to the behavior 

of individual stocks, we choose dividend parameters to match the mean and 

standard deviation of the dividend growth rate of a typical individual stock. 

Barberis and Huang (2001) estimate the moments of individual stock dividend 

growth using the COMPUSTAT database, and based on their results, we set 

28.1=Hθ  and 76.0=Lθ , such that the mean and volatility of the net growth 

rate of the dividend are %24.2  and %97.25 , respectively. Table 2.1 

summarizes our choice of technology parameters. 
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2.4.2 Implications of Diminishing Sensitivity  

We obtain the implications of diminishing sensitivity through comparative static 

analysis with respect to parameterλ , which governs the curvature of the value 

function. To ensure that our results are completely driven by the 

concavity/convexity component of prospect theory, in this subsection we also 

set parameterλ  at 1 to remove the loss aversion feature of the preference. 

Table 2.2 presents the main results for a range of values of α : 2.0 , 5.0 , 88.0  

and 1. In particular, when 1=α , the investor is risk neutral, which provides a 

benchmark for highlighting the fact that our results stem from prospect theory 

preferences. The value of 88.0  is the number estimated by Tversky and 

Kehneman (1992). Our results demonstrate that, in a general equilibrium 

setting, diminishing sensitivity drives the disposition effect, the momentum 

effect and the comovement between returns and volume. We also find that 

diminishing sensitivity alone, in the absence of loss aversion, raises equity 

premiums. 

 

2.4.2.1 Disposition Effects 

We use the following measure to test whether our model can generate a 

disposition effect, 
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Table 2.1   Technology Parameter Values 
 

We take one period to be one year. Dividend parameters ( Hθ  and Lθ ) are 
calibrated to generate a dividend growth rate with the mean and standard 

deviation equal to %24.2  and %97.25 , respectively. 
 

Parameter Values
Risk-free rate
Rf 1.0386

Dividend parameters
H 1.2821

L 0.7628
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Table 2.2   Implications of Diminishing Sensitivity 
 

PGR and PLR are the simulated proportion of gains realized and proportion of 
losses realized. We define PLR

PGRDispEffect =  , and if 1>DispEffect , then a 
disposition effect exists. ( ) ( )LREHREMomEffect tttt θθθθ =−== ++ || 11 . WML  is the 

simulated average momentum portfolio return in the multi-stock setting. If 
0>MomEffect  and 0>WML , then a momentum effect exists. ( )121 ,tSHtQ −=  is 

the turnover, or aggregate selling, in period t . Technology parameter values 
are fixed at the values in Table 2.1: 2821.1=Hθ , 7628.0=Lθ  and 0386.1=fR . 
The preference parameter 1≥λ  determines loss aversion; in this table, we 

deliberately set λ  as 1 , so that the investor is not averse to loss. 
 

  0.2   0.5   0.88   1
(i) Disposition Effect

PGR 0.49 0.56 0.53 0.50
PLR 0.29 0.36 0.47 0.50
DispEffect 1.73 1.56 1.12 1.00

(ii) Momentum Effect
ERt1 | t  H  1.1295 1.0934 1.0516 1.0386
ERt1 | t  L  1.0158 1.0439 1.0410 1.0386
MomEffect 11.37% 4.95% 1.06% 0.00%
WML 10.91% 4.67% 1.06% 0.00%

(iii) Turnover
CorrRt,Qt  0.52 0.83 0.92 0.00

(iv) Equity Premium
ERt − Rf  3.43% 3.01% 0.82% 0.00%

EH1St  0.43 0.46 0.49 0.50
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If 1>DispEffect , then we conclude that investors exhibit the disposition effect 

in our model. The numerator of DispEffect  is the average fraction of age-2-1 

investors who close their positions facing a capital gain. This term is the 

theoretical analog to Odean's (1998) proportion of gains realized (PGR), i.e., 

the number of gains that are realized as a fraction of the total number of gains 

that could have been realized. Similarly, the denominator of DispEffect  is the 

average fraction of age-2-1 investors who realize losses and corresponds to 

Odean's proportion of losses realized (PLR). Odean uses the difference 

between PGR and PLR to measure the disposition effect. In equation (24), we 

instead adopt a ratio of PGR to PLR to remove the effect of equity premiums 

on the magnitudes of PGR or PLR.32 

 

To obtain the two conditional moments in equation (24), we simulate a long 

time series { }∞=1ttθ  of 500,000 independent draws from the distribution 

described in equation (1). Then we use the solved functions ( )⋅⋅⋅ ,,f  and ( )⋅⋅⋅ ,,1H  

to calculate tf  and 1+tz  and get the time series { }∞=1ttS . When we do this, we 

also compute ( ){ }∞=12 1, ttSH  and { }∞=→ 101 t
tG  along the way, using equations (H21) 

and (G10). We compute sample moments from these simulated data to serve 

as approximations of population moments. 

 

Table 2.2 reports the results for different values of α . The case of 1=α  

corresponds to a linear value function, when investors don't exhibit a 

disposition effect, so that 1=DispEffect . As we gradually decrease α  from 1 

                                                 
32Brown et al. (2006) also use the ratio of PGR to PLR to measure the 
disposition effect when examining Australian stock trading data. 
 
 



 

 91

to 2.0 , the value function becomes more curved along the way, and the value 

of DispEffect  increases monotonically from 1 to 73.1 , giving rise to an even 

stronger disposition effect. The mechanism behind this result is exactly 

Odean's (1998) intuition: risk aversion (risk-seeking) for gains (losses) causes 

an age-2-1 investor more (less) likely to sell the stock. 

 

Figure 2.2 graphs this intuition for the case of 5.0=α . Here, from the 

simulated time series of state vectors, we randomly choose a realization of 

( ) ( )50.0,01.20,1 =− tt zf , and then graph the possible gains/losses together with 

the associated prospect theory utilities faced by an age-2-1 investor in periods 

t  and 1+t .33 The period t  gains/losses as well as prospect theory utilities 

from liquidating the stock [i.e., ( )( )tt GvG 0101 , →→ ] are marked with dots, while the 

period 1+t  gains/losses and prospect theory utilities from keeping the stock 

[i.e., ( )( )1
11

1
11 , +

→
+
→

tt GvG ] are marked with circles. 

 

Good dividend news ( Ht θθ = ) will bring an age-2-1 investor to the point of 

choosing a sure medium gain ( 5.6 , Point H in the figure) versus a gamble 

which offers either a smaller gain ( 18.1 , Point HL) or a larger gain ( 45.14 , Point 

HH) with some probabilities. Whether an age-2-1 investor will continue to hold 

the stock depends on his one-period-ahead dividend forecast. In this example, 

those age-2-1 investors who believe, with probability higher than 54.0  (i.e., 
( ) ( )
( ) ( )18.145.14

18.15.6
vv
vv
−
− ), that the next period dividend growth rate ( 1+tθ ) will take a high 

value ( Hθ ) will continue to hold the risky stock. 
 

                                                 
33The result is robust to the choice of ( )tt zf ,1− . 
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Figure 2.2 Diminishing Sensitivity Drives the Disposition Effect 
 

Figure 2.2 graphs the possible capital gains/losses, as well as prospect theory 
utilities, faced by an age-2-1 investor. If this investor liquidates his stock, his 

capital gains/losses, together with his prospect theory utilities, are marked with 
dots; if he keeps the stock, then his possible future capital gains/losses and 

his prospect theory utilities are marked with circles. The two endogenous state 
variables are  01.201 =−tf   and  50.0=tz  . The parameter values are  

2821.1=Hθ  ,  7628.0=Lθ  ,  0386.1=fR  ,  1=λ   and  5.0=α  . 
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What will happen if the dividend news is negative ( Lt θθ = ) at period t ? If an 

age-2-1 investor sells the stock, he experiences a sure loss ( 23.4− , Point L); if 

he continues to hold the stock, he faces the gamble of a smaller loss (−0.28 , 

Point LH) or an even larger loss ( 18.8− , Point LL). In this example, those age-

2-1 investors who believe that Ht θθ =+1  with probability lower than 35.0  (i.e., 
( ) ( )
( ) ( )18.828.0

18.823.4
−−−
−−−

vv
vv ), will liquidate their stocks. Note that the cutoff probability in the 

low dividend realization case, 35.0 , is lower than that in the high dividend 

realization, 54.0 . This precisely supports the informal argument, which relies 

on prospect theory to explain the disposition effect: the investor's belief about 

expected return must fall further to motivate the sale of a stock that has 

already declined than one that has appreciated (Odean, 1998, p. 1777). 

 

Table 2.2 suggests that PGR and PLR respond to a change in α  differently: 

as α  falls from 1 to 2.0 , PGR first goes up from 50.0  to 56.0  and then goes 

down to 49.0 , while PLR continuously decreases from 50.0  to 29.0 . There are 

two forces at work here. As α  becomes smaller, the value function is more 

concave for gains and more convex for losses, causing the investor to be 

more likely to sell winners and hold losers, and hence generating a higher 

PGR and a lower PLR. However, as α  falls, the expected stock return rises 

and the stock becomes more attractive to the investor, which will be discussed 

shortly; this decreases the investor's propensity to sell the stock no matter 

whether he is facing gains or losses, and therefore leads to both a lower PGR 

and a lower PLR. In sum, as α  decreases, both forces tend to lower PLR, 

while the first force tends to raise PGR and the second to lower PGR. As α  

falls slightly below 1, the first force dominates, and we observe a higher PGR, 

but once α  falls sufficiently, the second force catches up and we obtain a 
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lower PGR. 

 

2.4.2.2 Momentum  

Following Barberis et al. (1998), who also rely on a model with one risky asset 

to explain the cross-section of stock returns, we measure momentum as  

 
( ) ( ),|| 11 LttHtt REREMomEffect θθθθ =−== ++  (25) 

 

i.e., the difference in the expected return following a positive shock and 

following a negative shock. If 0>MomEffect , then we claim that there is 

momentum in the stock returns. The two moments in equation (25) are 

obtained using simulations. The results are also reported in Table 2.2. Since 

0>MomEffect  for 1<α , our model shows that the concavity/convexity feature 

of prospect theory preferences generates momentum in stock returns. 

Moreover, the momentum effect becomes stronger as we increase the 

curvature of the value function, i.e., decrease the value of α . For example, 

MomEffect  increases from %06.1  to %37.11  as α  decreases from 88.0  to 2.0 . 

The underlying reason for this momentum effect is simple. Following a positive 

shock ( Ht θθ = ), stock prices will rise, moving age-2-1 investors into their 

capital gain domain. Due to the concavity of the value function of prospect 

theory in the gain region, age-2-1 investors tend to close their stock positions, 

which depresses the stock price, generating higher subsequent returns. On 

the other hand, a negative shock ( Lt θθ = ) will decrease the stock price, driving 

age-2-1 investors into their capital loss domain. Convexity in the region of 

losses means that they are less likely to sell the stock absent a price premium; 

the stock price is therefore initially inflated, generating lower subsequent 
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returns. 

 

We also conduct a cross-section analysis and replicate the momentum effect 

in the empirical literature (e.g., Jegadeesh and Titman, 1993; Liu and Zhang, 

2008). As discussed in the end of Section 2.2, we can extend our model to an 

economy with N  stocks. We simulate dividend data on 000,2=N  

independent stocks over 000,10=T  time periods, and then compute the 

resulting equilibrium return sequence for each stock. We create the winners-

minus-losers zero cost portfolios as follows. In each period, we sort stocks into 

two equal-sized groups based on their last period returns and record the 

equal-weighted return of each group over the next period; in particular, winner
tR  

( loser
tR ) is the return on the portfolio containing stocks with better (worse) 

performance. Repeating this each period produces long time series of returns 

on the winner and loser portfolios, namely { }Ttwinner
tR 1=  and { }Ttloser

tR 1= . Our second 

measure of momentum is the difference in the average returns on these two 

portfolios: 

 

( ).1
1

loser
t

winner
t

T
t RR

T
WML −∑= =    (26) 

 

Table 2.2 also reports the results for this alternative measure. We find that the 

two measures for momentum are almost identical, so that they behave in 

precisely the same way: both MomEffect  and WML are greater than 0  for 

1<α , and both decrease with α .  
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2.4.2.3 Turnover 

Empirical studies show that there is more trading in rising markets than in 

falling markets (Statman et al., 2006; Griffin et al., 2007). In our model, the 

age-2-1 investors have a much greater propensity to sell stocks facing good 

news ( Ht θθ = ) than facing bad news ( Lt θθ = ). This will contribute to a positive 

correlation between turnover and stock returns. Let ( )1,1 2 tt SHQ −=  be the 

turnover or aggregate selling in period t . In Table 2.2, we report the simulated 

correlations between stock returns and turnovers, ( )tt QRCorr , . Indeed, we 

have ( ) 0, >tt QRCorr  so long as 1<α . This demonstrates that diminishing 

sensitivity drives a positive correlation between returns and volume. 

 

As we gradually decrease α  from 88.0  to 2.0 , ( )tt QRCorr ,  decreases from 

92.0  to 52.0 . The stock distributions ( tz ) and price-dividend ratios ( 1−tf ) 

combine to contribute to this relationship, but they work in different ways when 

α  varies. When α  is close to 1, both tz  and 1−tf  are almost constant at their 

values in the benchmark economy (i.e., 1=α ), so that the state of the 

economy is captured only by dividend growth rates ( tθ ). Since the disposition 

effect causes returns and turnovers to vary with tθ  in the same direction, there 

is an almost perfect correlation between returns and volume. On the other 

hand, as α  gets close to 0 , both tz  and 1−tf  will change over time and 

influence trading behavior. However, returns and volumes respond to the 

variation in tz  and 1−tf  in opposite ways. For example, a larger tz  implies that 

more stocks are held by age-2-1 investors and fewer by age-3 investors; after 

trading, all age-3 investors will have to close their positions, even though this 

is not the case for age-2-1 investors; as a result, stock selling (i.e., trading 

volumes tQ ) will decrease with tz , but at the same time, the decreasing selling 
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pressure causes stock returns tR  to rise with tz . The variation in tz  and 1−tf  

will therefore attenuate the positive correlation between returns and volume 

generated by tθ . As a result, for 10 <<α , a lower α  implies a lower 

( )tt QRCorr , . 

 

2.4.2.4 Equity Premiums 

Our model also demonstrates that the S-shaped value function of prospect 

theory can help explain the equity premium puzzle. Table 2.2 reports the 

simulated equity premiums, ( )ft RRE − , as well as average stock purchases by 

young people, ( )[ ]tSHE 1 . As α  gets smaller, the curvature of the value 

function becomes larger, and equity premiums become higher. Note that the 

positive equity premium is not due to loss aversion, since we have set 1=λ  in 

this section. Notably, a low α  is also associated with a low ( )[ ]tSHE 1 , 

suggesting that equity premiums are driven by the behavior of young people. 

The young investor makes investment decisions by comparing the expected 

utility from buying the stock to that from not buying. These utility levels are 

determined by his belief tiq ,  (current belief about 1+tθ ), and by how he 

evaluates his future reactions to 1, +tiq  (future belief about 2+tθ ). Those who are 

extremely optimistic (pessimistic), i.e., those with extremely high (low) values 

of tiq , , always buy (not buy) the stock. It is those who have intermediate 

values of tiq ,  that care more about their future reactions to 1, +tiq . It turns out 

that only high realizations of 1, +tiq  will matter, because there will be no extra 

benefit of holding a stock from middle-aged till old when 1, +tiq  is low. Only 

when 1, +tiq  is high will holding the stock from middle-aged till old bring an extra 

benefit: a young investor who buys a stock now will enjoy a further gain if he 

keeps the stock, and one who doesn't buy now will enjoy a new gain if he buys 
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the stock when middle-aged. 

 

How does this extra gain associated with high 1, +tiq  relate to the current 

purchasing decision and the value function's curvature α ? Not buying now 

means that when evaluating this gain, the young investor will stay in the origin 

of the value function, where the marginal utility is the highest; the more curved 

the value function, the higher is this marginal utility. In contrast, if he buys now, 

he will be pushed away from the origin because this gain has to be appended 

to an existing gain or loss, namely the one generated by holding the stock 

from young until middle-aged. In this case, the marginal utility is much smaller 

compared to that in the origin; the more curved the value function, the smaller 

is this marginal utility. 

 

To summarize, the higher the curvature of the value function, the less a young 

investor will value the potential gain associated with high realizations of 1, +tiq , 

and the less they want to buy now, thereby depressing stock prices and 

raising equity premiums. 

 

2.4.3 Implications of Loss Aversion 

To obtain the implications of loss aversion, we conduct comparative static 

analysis with respect to the parameter λ . In Table 2.3, we present the results 

for a variety of values of :λ  1, 25.2 , 3  and 4 . In particular, 1=λ  is still our 

benchmark economy when the investor is risk neutral. The value of =λ  25.2  

is the number estimated by Tversky and Kahneman (1992). To guarantee that 

our results are solely due to the loss aversion component, we always set 

parameter 1=α  to remove the curvature feature of the prospect theory value 
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function. Table 2.3 demonstrates that loss aversion drives a reversed 

disposition effect and reversal in the cross-section of stock returns, as well as 

a negative correlation between returns and volume. In addition, Table 2.3 

produces a well-known result in the asset pricing literature: loss aversion can 

raise equity premiums, such as Benartzi and Thaler (1995) and Barberis et al. 

(2001). 

 

2.4.3.1 Reversed Disposition Effects 

Again, when investors are risk neutral, i.e., when 1=λ , they don't exhibit a 

disposition effect, so that 1=DispEffect . When investors are loss averse, i.e., 

when 1>λ , we obtain a reversed disposition effect, since 1<DispEffect . 

Moreover, as we gradually increase λ  from 1 to 4 , investors become more 

loss averse, and the value of DispEffect  decreases monotonically from 1 

to 83.0 , giving rise to an even stronger reversed disposition effect. 

 

What's the intuition behind this result? The mechanism works through a 

combination of two forces: one is the kink at the origin of the value function, 

which is a direct implication of loss aversion; the other is the positive equity 

premium, which is an indirect equilibrium implication of loss aversion 

preferences. Roughly speaking, when investors are close to (far from) the kink, 

they are reluctant (inclined) to take risk, and want to sell (keep) the stock; 

when the average stock returns are higher than the risk free rate, bad (good) 

dividend news will bring investors relatively close to (far from) the kink, so that 

they are more (less) likely to liquidate the stock. 
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Table 2.3   Implications of Loss Aversion 
 

PGR and PLR are the simulated proportion of gains realized and proportion of 
losses realized. We define PLR

PGRDispEffect = , and if 1<DispEffect , then a reversed 
disposition effect exists. ( ) ( )LREHREMomEffect tttt θθθθ =−== ++ || 11 . WML  is the 

simulated average momentum portfolio return in the multi-stock setting. If 
0<MomEffect  and 0<WML , then there is reversal in the cross-section of stock 

returns.  Qt 1 −H2St , 1  is the turnover, or aggregate selling, in period t . 
Technology parameter values are fixed at the values in Table 2.1: 2821.1=Hθ , 

7628.0=Lθ   and 0386.1=fR . Preference parameter α controls the curvature of 
the value function. In this table, we deliberately set α  to be1 , so that the value 

function is piecewise linear. 
 

  1   2.25   3   4
(i) Disposition Effect

PGR 0.50 0.39 0.35 0.31
PLR 0.50 0.41 0.39 0.38
DispEffect 1.00 0.97 0.91 0.83

(ii) Momentum Effect
ERt1 | t  H  1.0386 1.1000 1.1255 1.1519
ERt1 | t  L  1.0386 1.1006 1.1311 1.1632
MomEffect 0.00% −0.06% −0.56% −1.13%
WML 0.00% −0.23% −0.85% −1.48%

(iii) Turnover
CorrRt,Qt  0.00 −0.70 −0.91 −0.94

(iv) Equity Premium
ERt − Rf  0.00% 6.17% 8.97% 11.89%
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Figure 2.3 conducts an exercise to confirm this intuition for the case of 4=λ . 

Now that we assumed 1=α  to remove the curvature, the investor's value 

function becomes piecewise linear with a kink at the origin due to loss 

aversion. Similar to the exercise in Figure 2.2, we randomly choose a 

realization of ( )tt zf ,1− , which is ( )48.0,75.7  in this case, from the simulated time 

series of state vectors. We then graph an age-2-1 investor's period t  

gains/losses as well as prospect theory utilities from liquidating the stock [i.e. 

( )( )tt GvG 0101 , →→ ] with dots, and the period 1+t  gains/losses and prospect theory 

utilities from keeping the stock [i.e. ( )( )1
11

1
11 , +

→
+
→

tt GvG ] with circles. 

 

Good dividend news ( Ht θθ = ) will bring the investor to Point H. Bad dividend 

news ( Lt θθ = ) will bring him to Point L, which is closer to the kink relative to 

Point H. That is, the investor is more cautious in holding stocks at Point L than 

at Point H. Specifically, at Point H, if the investor liquidates the stock, he will 

lock in a medium gain of 29.3 ; if he keeps the stock, when he becomes old he 

will arrive either at Point HH, enjoying a large gain of 35.7 , or at Point HL, 

enjoying a small gain of 46.1 . Since both Point HH and Point HL are in the 

gain domain, the investor's behavior at Point H can be described as risk 

neutral. Of course, whether an age-2-1 investor will indeed continue to hold 

the stock depends on his one-period-ahead dividend forecast. In this example, 

those age-2-1 investors who believe that Ht θθ =+1  with probability higher than 

31.0  (i.e., ( ) ( )
( ) ( )46.135.7

46.129.3
vv
vv

−
− ), will continue to hold the risky stock. 
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Figure 2.3 Loss Aversion Drives the Reversed Disposition Effect 
 

Figure 2.3 graphs the possible capital gains/losses, as well as prospect theory 
utilities, faced by an age-2-1 investor. If this investor liquidates his stock, his 

capital gains/losses, together with his prospect theory utilities, are marked with 
dots; if he keeps the stock, then his possible future capital gains/losses and 

his prospect theory utilities are marked with circles. The two endogenous state 
variables are 75.71 =−tf  and 48.0=tz . The parameter values 

are 2821.1=Hθ , 7628.0=Lθ , 0386.1=fR , 4=λ  and 1=α . 
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At Point L, if the investor sells the stock, he will realize a loss of 48.1 . If he 

keeps the stock, then he will arrive either at Point LH, enjoying a small gain of 

01.1 , or at Point LL, facing a large loss of 52.2 . Because Point LH and Point 

LL straddle over the kink, the investor is reluctant to take a risk at Point L 

relative to Point H, at which point his behavior resembles risk neutrality. In this 

example, those age-2-1 investors who believe that Ht θθ =+1  with probability 

lower than 37.0  (i.e., ( ) ( )
( ) ( )52.201.1

52.248.1
−−
−−−

vv
vv ), will liquidate their stocks. 

 

In Table 2.3, we also observe that both PGR and PLR decrease with λ . This 

is because loss aversion raises equity premiums, making the investor less 

likely to sell stocks, whether facing good news or bad news. We also observe 

PGR decreases at a faster rate than PLR due to the reversed disposition 

effect. 

 

2.4.3.2 Reversal 

As discussed above, when 1=λ , the investor is risk neutral, and there is no 

momentum effect in the cross-section of stock returns, because both 

measures capturing momentum, MomEffect  and WML , are equal to zero. But 

as long as 1>λ , i.e., as long as the investor is loss averse, we obtain reversal 

in the cross-section of stock returns, since both MomEffect  and WML  are 

negative. In particular, as we increase λ  from 1 to 4 , reversal gets stronger. 

This result demonstrates that the loss aversion feature of prospect theory has 

implications for return predictability. 

 

The underlying reason for this result is similar to Grinblatt and Han's (2005). 

For example, facing good dividend news, age-2-1 investors are more likely to 
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hold stocks according to the reversed disposition effect. This generates extra 

buying pressure, which will inflate stock prices and lead to lower stock returns 

later. Similarly, facing bad dividend news, those investors are likely to sell 

stocks and depress prices, generating higher subsequent returns. 

 

2.4.3.3 Turnover 

Table 2.3 also shows that loss aversion can generate a negative correlation 

between returns and volumes: ( ) 0, <tt QRCorr  as long as 1>λ . This result is 

also driven by trading by age-2-1 investors, who, due to the reversed 

disposition effect, have a much greater propensity to sell stocks in down 

markets ( Lt θθ = ) than in up markets ( Ht θθ = ), contributing to a negative 

correlation between turnover and stock returns. 

 

As we gradually increase λ  from 1 to 4 , ( )tt QRCorr ,  monotonically decreases 

from 0  to 94.0− . This pattern is different from the relationship between 

( )tt QRCorr ,  and α  in Table 2.2 and can be understood as follows. In Table 

2.2, when we vary α  while fixing λ , dividend news tθ  contributes to a positive 

( )tt QRCorr ,  via the disposition effect, while the other endogenous state 

variables, stock distributions ( tz ) and price-dividend ratios ( 1−tf ), tend to 

generate a negative ( )tt QRCorr , . These two forces are counteracting. On the 

other hand, in Table 2.3, when we vary λ  and fix α , dividend news tθ  also 

leads to a negative ( )tt QRCorr ,  through the reversed disposition effect, which 

strengthens the impact of the two endogenous state variables on ( )tt QRCorr , . 
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2.4.3.4 Equity Premiums 

Table 2.3 also reproduces the well-known result that loss aversion can raise 

equity premiums (e.g., Benartzi and Thaler,1995; Barberis et al.,2001). As we 

increase λ  from 1 to 4 , equity premiums rise from 0  to %12 . This result is 

intuitive: loss aversion means that investors are more sensitive to losses than 

to gains, and since stocks often perform poorly and investors often face losses, 

a large premium is required to convince them to hold stocks. The asset pricing 

literature studying loss aversion has focused primarily on its implications for 

the equity premium, that is, the average level of stock returns. Our model, on 

the other hand, shows that loss aversion can lead to reversal in the cross-

section of stock returns, suggesting, in turn, that loss aversion may also be a 

useful ingredient for equilibrium models trying to understand return 

predictability. 

 

2.4.4 Quantitative Analysis and Testable Predictions  

In this Subsection, we conduct further quantitative analysis to examine how 

successful prospect theory is in explaining price momentum and derive 

testable empirical predictions which are either unique to our model or 

consistent with the existing empirical studies. 

 

2.3.4.1 Quantitative Analysis: How Successful is Prospect Theory? 

So far, we have shown that there are two counteracting forces in equilibrium --

- diminishing sensitivity and loss aversion --- driving the disposition effect, the 

momentum effect and the correlation between returns and volumes. In order to 

understand how successful prospect theory is in explaining price momentum, 

we set preference parameters at certain empirical values and examine which 
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force will dominate, and to what extent. 

 

What are the empirical values of preference parameters, λ  and α ? The 

existing evidence concerning parameter λ  is relatively rich and remarkably 

consistent: both experimental data (e.g., Kahneman et al., 1990; Tversky and 

Kahneman, 1991, 1992; Novemsky and Kahneman, 2005) and real data (e.g., 

Putler, 1992; Hardie et al., 1993) suggest a number close to 2 . This is true 

even for monkeys (Chen et al., 2006). So in the following analysis, we fix λ  at 

25.2 , the value estimated by Tversky and Kahneman (1992). 

 

But there is not much evidence as to the value of α . As far as we know, only 

two studies have estimated this parameter, and the results differ markedly in 

the data sets used. Tversky and Kahneman (1992) estimate 88.0=α  by 

offering subjects isolated gambles in experimental settings. Wu and Gonzalez 

(1996) use a different experimental data set and estimate 52.0=α , but when 

they apply Camerer and Ho's (1994) data, they find 37.0=α . Due to the small 

sample size in the experiments, none of those studies can estimate α  with 

great precision. So our strategy is to report results for all these three possible 

values of α  in Table 2.4. 
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Table 2.4  Quantitative Analysis 
 

PGR and PLR are the simulated proportion of gains realized and proportion of 
losses realized. We define PLR

PGRDispEffect =  and 
( ) ( )LREHREMomEffect tttt θθθθ =−== ++ || 11 . WML  is the simulated average 

momentum portfolio return in the multi-stock setting. ( )121 ,tSHtQ −=  is the 
turnover, or aggregate selling, in period t . Technology parameter values are 
fixed at the values in Table 2.1: 2821.1=Hθ , 7628.0=Lθ  and 0386.1=fR . Loss 

aversion parameter λ is set at 25.2 , the value estimated by Tversky and 
Kahneman (1992).The empirical values of PGR/PLR and momentum are 

taken from Dhar and Zhu (2006) and Jegagdeesh and Titman (1993), 
respectively. The empirical values of ( )tt QRCorr ,  and ( )ft RRE −  are based on 

AMEX/NYSE data from 1926-2006. 
 

  0.37   0.52   0.88 Empirical Value
(i) Disposition Effect

PGR 0.40 0.41 0.41 0.38
PLR 0.18 0.23 0.37 0.17
DispEffect 2.25 1.75 1.10 2.24

(ii) Momentum Effect
ERt1 | t  H  1.1575 1.1431 1.1091 —
ERt1 | t  L  1.0822 1.0927 1.1004 —
MomEffect 7.54% 5.04% 0.87% —
WML 7.20% 4.76% 0.76% 8.60%

(iii) Turnover
CorrRt,Qt  0.84 0.88 0.91 0.28

(iv) Equity Premium
ERt − Rf  8.14% 7.94% 6.62% 7.84%
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Table 2.4 also presents the historical values for the disposition effect, the 

momentum effect and the correlation between returns and volumes. Unlike 

Odean (1998), who studies the disposition effect by aggregating across 

investors, Dhar and Zhu (2006) examine the disposition effect at the level of 

the individual. They report, in their Table 2.2, that the means of PGR and PLR 

for all individuals are 38.0  and 17.0 , respectively. We adopt these numbers as 

the empirical values of PGR and PLR. Regarding the momentum effect, we 

use Jegagdeesh and Titman's (1993) estimate, that is, %60.8 , on an annual 

basis. Using AMEX/NYSE data from 1926-2006 from CRSP, we find that the 

correlation between returns and volumes, ( )tt QRCorr , , and the equity 

premium, ( )ft RRE − , for a typical firm, are 28.0  and %84.7 , respectively.34 

Those historical values help us to evaluate how well our model matches the 

data. Even though, because we are not confident of the actual value of α  

among real investors, this evaluation should be interpreted with caution, our 

quantitative analysis makes a methodological contribution: a general 

equilibrium model, such as the one provided in the present paper, is the only 

way to link prospect theory preference to momentum, thereby explaining how 

much prospect theory preference can contribute to price momentum. 

 

Table 2.4 demonstrates that, for all the three possible values of α , the 

diminishing sensitivity component of prospect theory dominates the loss 

aversion component. In particular, when 37.0=α , our model matches the 

                                                 
34More precisely, we take all stocks in the CRSP database for which at least 
11 consecutive years of return and volume data are recorded, compute the 
correlation between real returns and volume as well as the mean returns in 
excess of the 30-day T-bill rate for each, and then calculate the medians. 
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historical data well, except for the dimension of the correlation between returns 

and volumes. To be specific, for 37.0=α , our model predicts that 

25.2=DispEffect , %20.7=WML  and ( ) %14.8=− ft RRE , while the historical 

counterparts for these variables are 24.2 , %60.8  and %84.7 , respectively. The 

model predicts too high a correlation between returns and volumes, i.e., 

( ) 84.0, =tt QRCorr , but the empirical value is 28.0 . 

 

2.4.4.2 Testable Predictions 

One testable prediction emerges from Table 2.4, which suggests that prospect 

theory simultaneously predicts momentum and a positive correlation between 

returns and volumes. So we expect the momentum effect to be stronger 

among those stocks whose returns are positively correlated with their own 

trading volumes.35 This empirical prediction is unique to our mechanism and is 

easy to test. We can rely on this prediction to differentiate our story from other 

explanations of price momentum, such as the belief-based models proposed 

by Barberis et al. (1998), Daniel et al. (1998) or Hong and Stein (1999). Note 

that our prediction is different from that of Lee and Swaminathan (2000), who 

show that price momentum is more pronounced among those stocks with 

higher levels of trading volumes, while our predictions relates momentum to 

the sensitivity of returns to volumes. 

 

Besides the above new prediction, our model also makes certain predictions 

which are consistent with the existing studies. For example, we do not expect 

                                                 
35Note that we don't claim that momentum profits are monotonically increasing 
in  CorrRt,Qt   . Actually, Table 4 suggests that the opposite is true. 
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prospect theory utility to be equally important for all investors, expecting it to 

matter more for individual investors than for institutional investors. Indeed, 

some empirical studies find that mutual fund managers are less prone to the 

disposition effect than individual investors: the difference between PGR and 

PLR is %3  for managers, and %5  for retail investors (c.f. Shefrin, 2008). Since 

our results on momentum are completely driven by prospect theory, one 

prediction of our model is that a stronger momentum effect will exist among 

stocks with greater individual investor ownership. Hur et al. (2008) test 

precisely this prediction with a large sample of NYSE/AMEX/NASDAQ stocks 

between 1981 and 2005 and find strong evidence for this hypothesis. Further 

evidence comes from Hong et al. (2000) and Fama and French (2008), who 

find that the profitability of momentum strategies declines sharply with market 

capitalization; since small firms are traded more heavily by individuals, this 

finding is consistent with our prediction. 

 

Our model can also relate momentum to the volatility of cash flow. Table 2.5 

examines the effect of varying the volatility of the dividend growth rate. For a 

binary distribution given by equation (1), the dividend growth rate has a mean 

equal to ( ) 21
LH

tE θθθ +
+ = , and a volatility equal to ( ) 21

LH
t

θθθσ −
+ = . In Table 2.5, we 

maintain ( ) 11 −+tE θ  at %24.2  and change ( )1+tθσ  from %21  to %26  to %31 .36 

The preference parameters are set at 52.0=α  and 25.2=λ . Table 2.5 

suggests that increasing ( )1+tθσ  generates stronger momentum effects and  
 

                                                 
36Barberis and Huang (2001) use COMPUSTAT data to estimate the 
dispersion in firm-level dividend growth volatilities to be  5   percent. So, we 
choose  5%  as a step. 
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Table 2.5   Sensitivity Analysis w.r.t Dividend Growth Rate Volatility   t1   
 

PGR and PLR are the simulated proportion of gains realized and proportion of 
losses realized. We define PLR

PGRDispEffect =  and 
( ) ( )LREHREMomEffect tttt θθθθ =−== ++ || 11 . WML  is the simulated average 

momentum portfolio return in the multi-stock setting. ( )121 ,tSHtQ −=  is the 
turnover, or aggregate selling, in period t . The risk-free rate is set at 

0386.1=fR . The preference parameters are 52.0=α  and 25.2=λ . 
 

L  0.81586

H  1.2289

L  0.7628

H  1.2821

L  0.70865

H  1.3362

(i) Disposition Effect
PGR 0.41 0.41 0.41
PLR 0.24 0.23 0.23
DispEffect 1.71 1.75 1.79

(ii) Momentum Effect
MomEffect 3.83% 5.04% 6.28%
WML 3.62% 4.76% 5.94%

(iii) Turnover
CorrRt,Qt  0.88 0.88 0.88

(iv) Equity Premium
ERt − Rf  6.13% 7.94% 9.96%
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higher equity premiums. Since a higher ( )1+tθσ  is also associated with a higher 

return volatility, the momentum effect is expected to be stronger among stocks 

both with higher dividend volatility and with higher return volatility. This 

observation is in fact consistent with Zhang's (2006) finding that momentum 

profits are higher among firms with higher cash flow volatility or return volatility. 

 

2.5 Conclusion  

In this paper, we propose a general equilibrium model to study the implications 

of prospect theory for individual trading, security prices and trading volume. 

We show that, in a general equilibrium setting, different components of 

prospect theory make very different predictions. The diminishing sensitivity 

component drives a disposition effect, which in turn leads to momentum in the 

cross-section of stock returns and a positive correlation between returns and 

volumes. On the other hand, the loss aversion component predicts exactly the 

opposite, namely a reversed disposition effect and reversal in the cross-

section of stock returns, as well as a negative correlation between returns and 

volume. In a calibrated economy, when prospect theory preference 

parameters are set at the values estimated by the previous studies, our model 

can generate price momentum of up to %7  on an annual basis. One testable 

empirical prediction unique to our model is that the momentum strategy is 

most profitable, all else equal, among stocks whose returns are positively 

correlated with their trading volumes. 
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CHAPTER 3 

DIVIDEND VOLATILITY and ASSET PRICING37 

 

3.1 Introduction  

How does aggregate dividend volatility affect asset prices?38 Until now the 

literature has largely disregarded this question. To the best of our knowledge, 

the only exception is Longstaff and Piazzesi (2004), who demonstrate that 

volatile and procyclical dividends can raise equity premiums in a 

representative agent model with power utility. However, their model explains 

less than half as large as historical equity premiums, and they don't explore 

whether dividend volatility can help explain other puzzling facts in the 

aggregate stock market, such as return predictability and time-varying Sharpe 

ratios. More importantly, their consumption-based model will inevitably predict 

a high correlation between consumption and stock returns, contradicting our 

observation. In this paper, we turn to a narrow-framing approach to 

comprehensively study the pricing implications of dividend volatility, and find 

that our model can explain key asset markets phenomena. 

 

Narrow-framing means that, when people evaluate risk, they often appear to 

pay attention to narrowly defined gains and losses. This behavior is uncovered 

by experimental work on decision-making under risk (e.g., Kahneman and 

                                                 
37This chapter is based on a joint paper with Liyan Yang.  
 
38Throughout the paper, the term dividend volatility refers to the standard 
deviation of the growth rate of (not the level of) the aggregate dividends paid 
to all stocks. See equation (4) for a technical definition. 
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Lovallo, 1993; Kahneman, 2003). In the context of financial investment, 

narrow-framing states that investors tend to separate their financial wealth 

from their overall wealth, and are inclined to get utility directly from fluctuations 

in the value of their overall portfolio of stocks (Benartzi and Thaler, 1995; 

Barberis and Huang, 2001; Barberis, Huang, and Santos, 2001, henceforth 

BHS; Barberis and Huang, 2007).39 Under this assumption, investors may 

perceive aggregate dividend volatility, which drives fluctuations in the value of 

their financial wealth, as a more appropriate metric to represent risk than 

consumption volatility, a commonly used measure in the literature. This 

immediately implies that dividend volatility has significant implications for asset 

prices. 

 

In this paper, we first provide strong empirical evidence that (i) dividend 

volatility exhibits strong persistence, usually called volatility clustering, 

indicating the tendency of a big (small) change today to be followed by a big 

(small) change tomorrow, (ii) dividend volatility has declined dramatically in the 

postwar period.40 The aggregate dividend time series we use is backed out 

from CRSP stock return data.41 This imputed dividend series has accounted 

for stock repurchases as an increasingly significant component of dividends 

                                                 
39In the literature, narrow-framing is sometimes applied to individual stocks 
that investors own (e.g., Barberis and Huang, 2001). For a deep discussion on 
narrow-framing, see Barberis and Huang (2007). 
 
40Lettau, Ludvigson and Wachter (2008) also mention that the volatility of 
dividend growth has declined since 1990s. But their model assumes that this 
decline affects stock prices through consumption. 
 
41This constructed dividend index is identical to Campbell (2000). The detailed 
data construction is given in the appendix. 
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since 1980. One may argue that the declining trend in dividend volatility is 

partly due to corporate managers' intention to smooth dividend. Whatever the 

reason is, however, an investor in our theoretical model takes the dividend 

process as exogenously given when making her investment decisions, which 

is a standard assumption in the asset pricing literature. 

 

We further propose a theoretical model in which dividend volatility is persistent 

and investors exhibit loss aversion: they dislike fluctuations in their financial 

wealth; and the more persistent the dividend volatility, the more they dislike 

stocks. Loss aversion is a central feature of the prospect theory of Kahneman 

and Tversky (1979), which is based on a variety of experimental evidence and 

has been extensively used in behavioral finance literature (e.g., Benartzi and 

Thaler, 1995; BHS, 2001). 

 

Our model is able to account for many of the stylized facts of asset prices, 

including the high mean and excess volatility of stock prices, predictability of 

stock returns, time-varying Sharpe ratios, a low and stable risk-free rate, and 

the low correlation between consumption and stock returns. Our model shows, 

moreover, the substantial decline in dividend volatility since the 1950s, signals 

a much more stable investment environment, which loss averse investors 

prefer; they therefore require a much lower return on holding stocks, resulting 

in lower equity premiums. This is consistent with Blanchard (1993), Fama and 

French (2002), and Buranavityawut, Freeman and Freeman (2006), who find 

that ex-ante equity premiums have declined in the past fifty years. 

Dividend volatility plays an essential role in explaining the intuitions of our 

model. As the state variable, it completely determines equilibrium price-



 

 122

dividend ratios and helps explain the high mean and excess volatility of stock 

returns. In equilibrium, a rise (drop) in dividend volatility lowers (raises) asset 

prices, and hence price-dividend ratios fluctuate with the dividend volatility 

process, generating excess volatility in market returns. The high volatility of 

returns, in turn, means that stocks often perform poorly, causing loss averse 

investors considerable discomfort and leading to low stock prices or high risk 

premiums. Furthermore, dividend volatility tends to be higher in market 

troughs than in booms, which leads to the countercyclical expected excess 

returns observed in financial markets. 

 

The persistence of dividend volatility leads to the persistence of the price-

dividend ratio, producing predictability in stock returns, where the forecasting 

power increases with the forecast horizon. The conditional mean and 

conditional standard deviation of expected returns are driven differently by 

dividend volatility, hence the Sharpe ratio as a measure of the price of risk 

changes over time. Moreover, the model-generated stock returns correlate 

only weakly with consumption, because stock returns are ultimately driven by 

dividend news, which has a low correlation with consumption news. 

 

Many studies have been devoted to explaining these puzzling facts in the 

literature. Our work is closely related to two prominent approaches,42 but also 

differs in a variety of ways. The first approach, including Campbell and 

                                                 
42Besides the two approaches mentioned here, another line of research relies 
on modifying the market and asset structure (e.g., Constantinides and Duffie, 
1996; Heaton and Lucas, 1996). 
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Cochrane (1999) and BHS (2001), relies on stochastic changing risk aversion, 

whereas the second, including Bansal and Yaron (2004, henceforth BY), relies 

on the changing economic environment. 

 

With respect to the first approach, we share with BHS (2001) the use of loss 

aversion to describe investors' preferences. However, we depart from them in 

two ways: we use loss aversion as the only psychological assumption, and our 

result isn't driven by the changing risk aversion of investors. BHS's result 

depends crucially on another psychological assumption, usually labelled the 

house money effect, which refers to the experimental finding that people are 

more (less) willing to bear risks when they have had prior gains (losses). The 

house effect together with loss aversion generates their model's results. 

In terms of the mechanism, our model is similar to BY (2004) in that we all 

require a persistent component in the underlying processes. However, our 

model specification is less stringent than theirs. In BY's model, it's critical to 

model the growth rates of both consumption and dividends as containing a 

long-run predictable component, as well as containing persistent volatility to 

stand for fluctuating economic uncertainty. In conjunction with Epstein and 

Zin's (1989) preferences, they succeed in explaining the financial market 

phenomena. However, as BY have pointed out, since it's econometrically 

difficult to distinguish an i.i.d. process from a process containing a small 

persistent component, it's rather difficult to justify the forecastable persistent 

component in the consumption and dividend growth rates. In our model, we 

need the persistent component only in the volatility of the dividend growth rate, 

which is supported by strong econometric evidence; we don't rely on the 

persistent component in the growth rates per se, which lacks empirical 
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evidence. The consumption growth rate is still maintained to be a white noise 

process in our model. 

 

The rest of the paper is organized as follows. Section 3.2 provides extensive 

econometric evidence to show that (i) dividend volatility is persistent over time 

and (ii) it changes with the business cycle and experiences significant declines 

in the postwar period. Section 3.3 presents the model and characterizes the 

equilibrium asset prices. Section 3.4 calibrates the model and solves the price-

dividend ratios, then analyzes model simulation results. Section 3.5 concludes 

the paper. 

 

3.2. Key Features of Historical Dividend Volatility 

3.2.1 Dividend Volatility Clustering 

In this subsection, we provide evidence that dividend volatility displays the 

property of clustering, which, as we will see more clearly later, plays an 

important role in explaining the high mean, excess volatility, as well as the 

predictability of stock returns. We perform a variety of standard econometrics 

tests: first identify whether volatility clustering in dividend in fact exists and, if 

so, run a unit-root test to check how strong this persistence is. 

 

Volatility clustering, which characterizes the persistence in volatility, has been 

documented as a standard feature of many financial series. For instance, 

Bollerslev, Engle and Wooldridge (1988) show that conditional variance of 

market return fluctuates across time and is very persistent. For high-frequency 

return data, the ARCH literature finds a very high coefficient in the correlation 

of conditional standard deviations of returns. In our model, we consider 
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volatility clustering in the dividend growth rate and examine its impact on 

equilibrium asset prices. Even though our data are at a low-frequency, the 

estimated coefficient is very similar to those found in high-frequncy data. 

Before running the ARCH type tests, we first run two diagnostic tests to see if 

there is volatility clustering in the dividend growth rate, which is constructed 

from the value weighted NYSE/AMEX return data from CRSP. More 

specifically, we use two standard tests in the econometric literature, the Box-

Pierce-Ljung test and ARCH test, to check whether there are strong 

correlations in the second moment of the dividend growth rate. Both tests have 

as the null hypothesis that there's no volatility clustering in the dividend growth 

rate, and under the null, both tests asymptotically follow a Chi square 

distribution. Panel A of Table 3.1 presents the test results. The statistics from 

both tests significantly reject the null hypothesis, indicating strong persistence 

in the volatility of the dividend growth rate. 

 

The preliminary tests make us comfortable using the exponential GARCH 

(EGARCH) model to identify the persistent component in dividend volatility. 

We use EAGRCH for two reasons: first, it matches best with our theoretical 

dividend volatility specification in section 3.3; second, it can capture the 

asymmetric behaviors in volatility, i.e., larger (smaller) volatility is associated 

with negative (positive) news. Specifically, we consider the following 

regression: 
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Table 3.1   Dividend Volatility Estimates 

 
Panel A reports the test statistics for Box-Pierce-Ljung test and ARCH test for 
lag=4, 8 and 12 on quarterly dividend growth rate from 1926.Q3 to 2006.Q3. 

Panel B models the dividend growth rate, 1, +tDg , as AR(1)-EAGRCH(1,1), 

1,101, ++ ++= tttDtD Zgg σββ , [ ] ttttt ZZEZ 11
2

11
2 loglog LAG +−++= −σσ κ , where 

2
tσ  is conditional variance of 1, +tDg , and ( )1,0...1 NdiiZt ∼+ . Panel C reports an 
augmented Dicky-Fuller test on the log of the conditional volatility series 

estimated by an AR(1)-EAGRCH(1,1). Panel D models the dividend growth 
rate as a regime-switching process: 11, ++ += tsstD vg

tt
σμ , ( )1,01 N∼+tv , where 

},{ 21 μμμ ∈
ts

 and },{ 21 σσσ ∈
ts

 depend on the underlying state ts , which 
follows a Markov chain characterized by transitional probabilities 11p  and 22p . 

In Panels B and D, the standard errors of the estimated parameters are 
reported in parentheses. ∗∗  and  ∗  mean that the estimates are significantly 

different from zero at  %1  and  %5  levels, respectively. 
 

Panel A: Dividend Volatility Clustering Tests
Lag 4 8 12
Box-Pierce-Ljung Test 32. 57∗∗ 93.29∗∗ 101. 37∗∗

ARCH Test 24. 96∗∗ 66.72∗∗ 73.58∗∗

Panel B: AR(1)-EAGRCH(1,1) Estimation
Parameters ̂0 ̂1 ̂ Ĝ1 Â1 L̂1

Values
0.001 

0. 002∗
0.0618 

0.451∗∗
0.109 
−0.224∗

0.014 
0. 968∗∗

0.077 
0.423∗∗

0.034 
0. 037

Panel C: Augmented Dicky-Fuller Test
Critical Values

Test Statistic 1% 5% 10%
−11.8 −20. 3 −14.0 −11.2

Panel D: Regime-switching Estimation
Parameters ̂1 ̂1 ̂2 ̂2 p̂11 p̂22

Values
0.001 

0. 007∗∗
0.001 
0. 018∗∗

0.013 
−0.013

0.007 
0. 078∗∗

0.007 
0.969∗∗

0.046 
0.797∗∗
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where 1, +tDg  is the dividend growth rate, 2
tσ  is the conditional variance of 

1, +tDg , and 1110 ,,,, AGκββ  and 1L   are coefficients.43 Panel B of Table 3.1 

reports the estimation result. In addition to this EGARCH specification, we also 

try the specifications in Bansal, Khatchatrian and Yaron (2005) and get similar 

results not reported here. 

 

The coefficient for dividend volatility is ,968.0ˆ
1 =G   indicating that persistent 

dividend volatility indeed exists, which is consistent with the standard findings 

in the ARCH literature. However, the coefficient that measures the persistence 

in the dividend growth rate per se is much smaller ( 451.0ˆ
1 =β ). In the long-run 

risk literature (e.g., BY, 2004; Bansal, Kiku and Yaron, 2007), it is crucial to 

have the persistence in both the mean and the volatility of the dividend growth 

rate to explain the high equity premium, in other words, both 1Ĝ  and 1β̂  are 

assumed to be close to one. In contrast, our model requires persistence only 

in the volatility, but not in the mean of the dividend growth rate process. The 

current estimation result shows that the econometric evidence is weak for the 

persistence in the dividend growth rate, but that the persistence in dividend 

volatility is strong, providing strong econometric evidence for our model. 

 

                                                 
43In what follows, we report results based on this AR(1)-EGARCH(1,1) 
specification. We also tried AR(2)-EGARCH(1,1) and other specifications, and 
the main results remain unchanged. 
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To further confirm that the persistence of dividend volatility is indeed very high, 

we resort to the augmented Dicky-Fuller unit root test by running the following 

regression:44 

 

( ) ( ) ( ) tttt e+Δ++= −− 12110 ˆlogˆlogˆlog σσσ ααα  

 

where tσ̂  is conditional dividend volatility obtained from the EGARCH 

estimation (equation [1]), and 10 ,αα and 2α  are coefficients. Panel C of Table 

3.1 reports the test statistics together with the critical values at 1%, 5%, and 

10% levels. We can hardly reject the null hypothesis of 11 =α  at the 10% 

critical level, which implies that dividend volatility is indeed very persistent.45 

For comparison, we also run the unit root test in the dividend growth rate, and 

the unreported result strongly rejects the unit root hypothesis at any critical 

level, which is not surprising given that 1β̂  is only 451.0  in Panel B of Table 3.1. 

 

Given the strong econometric evidence, we believe that dividend volatility 

clustering is an important feature of the actual dividend data. Our theoretical 

model incorporates this feature when we specify the dividend growth rate 

                                                 
44An IGARCH (integrated GARCH) model will be able to nest the EGARCH 
estimation and the unit root estimation. However, we don't use IGARCH for 
two reasons: first, IGARCH is not stationary because it assumes a unit root in 
the volatility process; second, EGARCH fits more with our theoretical dividend 
volatility specification. We dispense with long memory GARCH models for 
similar reasons. 
 
45The persistence of dividend volatility is going to generate important model 
results. Therefore, α  has to be sufficiently high although it need not be close 
to 1.  
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process.46 

 

3.2.2 Time-Varying Dividend Volatility 

In this subsection, we examine the evolution of dividend volatility by asking 

two questions. How does dividend volatility vary with the business cycle? Is 

there any remarkable change in dividend volatility over the years? Since 

dividend volatility is the state variable in our model, the answer to the first 

question will enable us to analyze the procyclical stock prices through the 

model. The answer to the second question can relate our measure of 

macroeconomic risk to the measures in other papers, and provide empirical 

support for our model to explain the dynamics of equity premiums. 

 

To see how dividend volatility varies with the business cycle, Figure 3.1 plots 

dividend volatility, the real GDP growth rate, and the recession periods 

identified using NBER's business cycle chronology. In this figure, dividend 

volatility is the conditional standard deviation estimated from the EGARCH 

model (equation [1]); the real GDP growth rates are obtained from the website 

of the Bureau of Economic Analysis and start from the second quarter of 1947; 

and the shaded areas correspond to the economic recession periods 

according to NBER's business cycle chronology. 

 

We see that dividend volatility changes over time, with the highest values 

appearing in the 1930's. Comparing dividend volatility with GDP growth rates, 

                                                 
46That is, we require a high φ  in equation (5). 
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we see roughly a negative relationship: high dividend volatility usually 

coincides with lower GDP growth rates. This pattern makes sense, because 

it's usually the case that more uncertainty is present when the economy is in a 

trough. Further comparing it with NBER identified recessions, we find that 

dividend volatility tends to be very high during most recessions. The evidence 

suggests that dividend volatility evolves in a counter-cyclical way, which can 

potentially generate procyclical stock prices as well as counter-cyclical equity 

premiums and Sharpe ratios. Although this direction is promising, this 

evidence is weak. We thus take a conservative view in next section, assuming 

that the dividend volatility process is uncorrelated with the consumption growth 

process.47 

 

Observing the data through time, Figure 3.1 also shows that dividend volatility 

was relatively high before 1952 and became much smoother thereafter, except 

for a spike around 1989. Therefore, dividend volatility seems to have 

undergone a significant decline in the postwar years, which suggests that 

investors' perceived48 financial risk, as an inseparable part of macroeconomic 

risk, has experienced a significant decline since the 1950s. 

 

 

 
 

                                                 
47That is we assume ( ) 0, =tt uCov η  in equation (6). 
 
48Here, perceived is used to emphasize the notion that investors treat the 
dividend process as exogenous, although firms tend to smooth dividends in 
reality. 
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Figure 3.1 Dividend Volatility, GDP Growth and Recessions 
 

Figure 3.1 plots quarterly consumption growth rates for period 1947.Q1-
2006.Q3, and conditional dividend volatility for period 1926.Q3-2006.Q3. The 
dividend volatility tσ  is estimated from an AR(1)-EGARCH(1,1) regression. 
The shaded bars indicate the recessions according to NBER's website data. 
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To characterize the decline in dividend volatility more formally, we follow 

Hamilton (1989) to estimate a regime-switching model. The basic idea is to 

model the dividend growth rate as deriving from one of two regimes, a regime 

with a high dividend volatility or one with a low dividend volatility. The 

parameter values in each regime, together with the transitional probability can 

be obtained through maximum likelihood estimation. These parameter 

estimates can then be used to infer which regime the process was in at any 

historical date. Specifically, the dividend growth rate, 1, +tDg , is generated 

according to: 

 

( ),1,0, 111, N∼+= +++ ttsstD vvg
tt

σμ  

 

where },{ 21 μμμ ∈
ts

 is the mean, and },{ 21 σσσ ∈
ts

 is the volatility in state ts  . 

Thus, when 1=ts , the observed dividend growth rate, 1, +tDg , is presumed to 

have been drawn from a ( )11,σμN  distribution, whereas when 2=ts , 1, +tDg , is 

drawn from another distribution ( )22 ,σμN . The state evolves according to a 

Markov process, and we denote the transitional probability of the Markov 

chains 
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The parameter values and their standard deviations are reported in Panel D of 

Table 3.1. The estimated two regimes are characterized as follows: the high-

mean, low-volatility regime has an average growth rate of %65.0  per quarter, 

with a low standard deviation of 018.0 ; the low-mean, high-volatility regime 
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has an average growth rate of %3.1−  per quarter, with a very high standard 

deviation 078.0 . In addition, the high-mean, low-volatility regime seems more 

persistent, because its transitional probability is higher, 969.0ˆ11 =p . 

 

Figure 3.2 plots the smoothed posterior probability of the dividend growth rate 

being in a low-mean, high-volatility state. The probability is very high in prewar 

data, but exhibits sharp declines after the 1950s. In much of the postwar 

period, the posterior probability of being in a high-mean, low-volatility regime is 

close to one. 

 

The reported evidence clearly shows that dividend volatility has been declining 

since 1950s. This is broadly consistent with the findings in Kim, Morley and 

Nelson (2004), who document a similar pattern in stock returns. In Section 

3.4.3.5, we incorporate this finding into our theoretical framework by doing 

comparative statics with respect to the exogenous parameters governing the 

dividend process, and find that the declining dividend volatility helps to explain 

the decreasing equity premiums after WWII. 

 

3.3 The Model 

3.3.1 Setup 

Consider an economy populated with a continuum of identical, infinitely lived, 

narrow-framing and loss averse agents. Two assets are available to trade: a 

risk-free asset in zero net supply, paying a gross interest rate tfR , , and one 

unit of risky asset, paying a gross return 1+tR , between time t  and 1+t . 
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Figure 3.2 Smoothed Probability of a High Volatility Regime and Historical 
Dividend Growth Rate 

 
In Figure 3.2, the dividend growth rate is assumed to be generated from a 

regime switching model. The estimation results in Panel D of Table 1 suggests 
that one regime features a positive mean and a low volatility, while the other 

one has a negative mean and a high volatility. The top panel plots the 
posterior probability of dividend growth being in the high volatility regime given 
the observed data process. The bottom panel plots the dividend growth rate 

for period 1926.Q3-2006.Q3. 
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The loss averse investor chooses consumption tC  and risky asset holdings  St   

to maximize the utility function  
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subject to the standard budget constraint, and  
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The first term in the objective function is the standard utility over consumption, 

where ( )1,0∈ρ  is the time discount factor; 0>γ  measures the curvature of the 

investor's utility over consumption;49 and tC  is the aggregate per capita 

consumption at time t , which is exogenous to the investor. The exogenous 

scalor tC  is introduced to ensure that consumption utility and prospect utility 

are of the same order as aggregate wealth increases over time.50 

 

The second term deserves more attention, as it captures the direct utility the 

investor derives from fluctuations in the value of her financial wealth. 

Depending on the return of the risky asset, her total portfolio excess return 1+tX   

                                                 
49For 1=γ , we replace ( )γγ −− 1/1

tC with ( )tClog . 
 
50Another tractable preference specification that incorporates narrow-framing 
but doesn't rely on a scaling to ensure stationarity can be found in Barberis 
and Huang (2007). 
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can be either positive or negative, a positive one indicating a financial gain, 

and a negative one a financial loss. The function ( )1+tXv  describes how she 

feels about her investment performance. Since she is loss averse, the pain 

she receives from financial losses outweighs the happiness from financial 

gains. Therefore, ( )1+tXv  takes different functional form with respect to the 

values of 1+tX : when 1+tX  is positive showing that she makes money, ( )1+tXv  is 

linear in 1+tX  with slope one; in contrast, when 1+tX  is negative meaning that 

she loses money, ( )1+tXv  amplifies her utility loss by a magnitude of ,λ  with λ   

being greater than one. Figure 3.3 plots the function ( )1+tXv . 

 

The dynamics of the economy crucially depends on the value of 0b , which tells 

how much the second utility counts in her total utility. If 00 =b , loss aversion 

doesn't play a role in the overall utility, and the model is reduced to a 

traditional asset pricing setting studied by Hansen and Singleton (1983). In this 

case, higher dividend volatility leads to a higher dividend growth rate, resulting 

in a higher price-dividend ratio and a lower equity premium. However, as the 

value of 0b  increases, the investor suffers more utility loss from her financial 

loss and demands a higher risk premium in holding stocks. As will be clearer 

later, the balance of these two utility forces generates the pattern actually 

observed in financial markets. 
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Figure 3.3 Gain and Loss Function 
 

Figure 3.3 plots the gain and loss function ( )
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Both consumption and dividend growth follow lognormal processes, 

 
                        ( ) ,/log 111, +++ +== tCCtttC gCCg ησ                                              (3)  
                        ( ) ,/log 111, +++ +== ttDtttD gDDg εσ                                             (4)  
                        ( ) ( ) ( ) ( )[ ] 11 loglogloglog ++ +−=− tutt uσσσφσσ                             (5)  

 

Here 1, +tCg  is the growth rate of aggregate consumption tC .  Cg  and  Cσ   are 

the mean and standard deviation of consumption growth. tD  is dividend: its 

growth rate is denoted as ,1, +tDg   with mean Dg  and standard deviation tσ . 

We draw special attention to equation (5), which characterizes the evolution of 

dividend volatility. To ensure the positiveness of tσ , we model ( )1log +tσ  

instead of tσ  as an )1(AR  process. In this sense, the dividend volatility 

equation (5) is very similar to an EGARCH specification (equation [1]). uσ  

captures the magnitude of the innovation to the conditional volatility tσ  : a big 

uσ  will increase dividend volatility. A particular interesting parameter is the 

coefficient ,φ   which controls the strength of dependence on past volatilities. A 

larger φ  implies that the impact of a shock to dividend volatility is very 

persistent. As has been shown in Section 3.2, this persistence parameter φ  is 

very high in actual dividend data. 

 

The innovations to the consumption growth tη , the dividend growth tε , and the 

dividend volatility tu  are jointly normally distributed as  
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where ω  is the correlation between consumption shocks and dividend shocks. 

Note that when allowing for persistence in dividend volatility, the unconditional 

correlation between 1, +tCg  and 1, +tDg  is ( ) ωω φσ <−− 22 1/5.0 ue . As discussed in 

Section 3.2.2, we assume consumption growth shocks are independent of 

dividend volatility shocks, i.e., ( ) 0, =tt uCov η , although data suggests a weak 

negative correlation between tη  and tu , which has important implications for 

the time-variation pattern of the equity premiums. We allow for the interaction 

between shocks to the dividend growth rate tε  and shocks to the dividend 

volatility tu , and the interaction of these two shocks are denoted by θ . As will 

be shown later, θ  also plays a role in generating certain model results. 

 

3.3.2 Equilibrium Prices 

This subsection derives the equilibrium asset prices. We first construct a one-

factor Markov equilibrium, in which the risk-free rate is a constant and the 

state variable tσ  (dividend volatility) determines the distribution of future stock 

returns. Assume that the price-dividend ratio is a function of tσ : 

 

.)(/ tttt fDPf σ=≡  

 

We are going to verify that there is indeed an equilibrium satisfying this 

assumption. 

 

Given the one-factor assumption, the stock returns 1+tR  can be determined as 
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Intuitively, the change in stock returns can be attributed to either the news 

about dividend growth ,1+tε  or the financial market uncertainty ,tσ   or changes 

in the price-dividend ratio .f  Since the dividend process is exogenously given, 

the key to solving 1+tR  is to solve the price-dividend ratio .f   

 

In equilibrium, the Euler equations fully capture the dynamics of the 

economy51  

 
                             ( )[ ],/1 1

γρ −
+= tttf CCER                             (8) 

 
                  ( )[ ] ( )[ ],ˆ/1 1011 +
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Equation (8) and the i.i.d. assumption on the consumption growth together 

imply a constant risk free rate, 

 

                                  .2/1 22
CCg

f eR σγγρ −−=                                 (10) 

 

After substituting in the respective consumption and dividend processes, 

equation (9) boils down to 
                                                 
51The Euler equations are both necessary and sufficient to characterize the 
equilibrium. Refer to BHS (2001) for a proof. 
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In equilibrium, the function f must evolve according to equation (11), which 

also verifies the conjectured one-factor Markov equilibrium price function. 

 

3.3.3 Methodology of Numerical Computation 

We solve f numerically on a grid search of the state variable tσ . We start out 

by guessing a solution to (11), ( )0f  say. According to (5), the distribution of 

1+tσ  is completely determined by tσ  and 1+tu . Then we get a new candidate 

solution ( )1f  by the following recursion 
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We continue this process until ( ) ff i → . 

 

3.4 Model Results 

3.4.1 Calibrating Parameter Values 

We calibrate the model at quarterly frequency, such that the model implied 

moments match those of the observed annual data. In reality, many 

companies issue their dividend policies and earning reports at quarterly 

frequency, hence it is reasonable for the investors to re-evaluate their 

investment performance at a quarterly basis. We also calibrate the model at 

monthly and annual frequency, in which cases investors re-evaluate their 
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performance more frequently or less frequently. We get qualitatively similar 

results, so we only report the results based on quarterly decision making 

throughout our analysis. 

 

Table 3.2 summarizes our choice of parameter values. We choose similar 

values as BHS for the consumption growth parameters and the preference 

parameters. For Cg  and Cσ , the mean and standard deviation of log 

consumption growth, we follow Cecchetti, Lam and Mark (1990) and set 

%46.0=Cg  and %90.1=Cσ , which corresponds to an annual growth rate of 

%84.1  with volatility of %79.3 . The curvature γ  of utility over consumption and 

the time discount factor ρ  are set as 0.1  and 995.0  respectively, bringing the 

net annual risk free rate close to 86.3  percent by equation (10) and the values 

of Cg  and Cσ . The loss aversion parameter λ  is equal to ,25.2  since many 

independent experimental studies have estimated it as being around this level. 

Similar to BHS, the parameter 0b  does not have an empirical counterpart, and 

we present results for a range of values of 0b . 

 

Using NYSE/AMEX data and Fama risk-free rate data from 1926.Q3 to 

2006.Q4 from CRSP, we calibrate the unconditional mean of quarterly 

dividend growth rate as its empirical mean, %39.0=Dg . By matching the first 

moment of Equation (4), ( )[ ] ( ) ( )[ ]11, logloglog ++ +=− tDtD EggE εσ , we calibrate 

( )σlog  as 91.3− . The parameter φ , who governs the persistence of dividend 

volatility, takes the value 99.0 , close to the estimated value from an EGARCH 

model in Section 3.2. 
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Table 3.2   Calibrated Parameters 
 

This table reports the calibration values for the preference parameters and 
technology parameters in the theoretical model. γ  is the curvature of utility 

over consumption, ρ  is the time discount factor, λ  is the loss aversion 
parameter, and 0b  controls the importance of the loss aversion relative to the 

consumption in the utility function. Cg  and Dg  are the means of the 
consumption and dividend growth rate, respectively. Cσ  is the volatility of 

consumption growth. ( )σlog  is the mean of the log of conditional volatility of 
dividend growth. φ  measures the persistence of dividend volatility, while uσ  

controls the variation in dividend volatility. ω  is the correlation between 
consumption news and dividend news, and θ  is the correlation between 
dividend level news and volatility news. The calibration for the dividend 

parameters is based on the dividend sample 1926.Q3-2006.Q3 constructed 
from the value weighted NYSE/AMEX returns from CRSP. 

 

Parameters Calibration Values
Preference

 1.0
 0.995
b0 range
 2.25

Technology
gC 0.46%
gD 0.39%
C 1.90%

log̄ −3.91
 0.15
 0.99
 −0.67
u 0.14
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The parameter uσ  is very important since it measures the magnitude of 

dividend volatility. We calibrate this parameter as 14.0 , such that the model 

implied annual dividend growth rate has a volatility equal to its empirical 

counterpart. Compared to BY (2004), the value of uσ  appears large. However, 

this is an artifact of our specification of the volatility process in equation (5), 

where the logarithm of dividend volatility rather than its square follows an AR(1) 

process. Indeed, given 1≈φ , taking a first order approximation of (5), we have 

1
22

1 ++ +≈ twtt uσσσ , where ( ) 42 102.82 −×== utw E σσσ , close to the value in BY 

(2004). 

 

Two more model parameters remain to be calibrated: θ , which captures the 

interaction between innovations in dividend growth rate and dividend volatility; 

and ω , the correlation between consumption and dividend. By equations (4) 

and (5), we calibrate θ  at 67.0− . Following Campbell (2000), we set 15.0=ω , 

which implies an unconditional correlation of 1.0  between consumption and 

dividend growth processes. 

 

3.4.2 Price-dividend Ratio Function f   

Figure 3.4 plots the price-dividend ratio f  as a function of ( )tσlog  for 7.00 =b , 

20 =b  and 60 =b . We also try a variety of other values for 0b , for example, 

1.00 =b  , 200 =b , 2000 =b , etc. The essential pattern, however, is fully 

depicted by Figure 3.4. 
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Figure 3.4 Price-Dividend Functions f 
 

Figure 3.4 plots the equilibrium price-dividend ratios against the log of the 
conditional dividend volatility,  log( tσ ),  for b0 = 0.7, 2 and 6. 

 

 

 

 

 



 

 146

Investors in our model care not only about consumption, the standard 

expected log utility term in (2), but also about fluctuations in the value of their 

investments, the additional prospect utility term in (2). These two forces jointly 

determine the shape of the function f . Without loss aversion, a higher 

dividend volatility implies a higher dividend growth rate in the future, and thus 

higher expected cash flows from holding stocks. Since the stochastic discount 

factor depends on the consumption process, which is weakly correlated with 

dividend, it is relatively unchanged. Therefore, stocks are more attractive and 

their prices are higher. The standard consumption utility contributes to a 

positive relationship between tσ  and the price-dividend ratio ( )tf σ . 

 

The presence of loss aversion, in contrast, contributes to a negative 

relationship between dividend volatility tσ  and the price-dividend ratio ( )tf σ . 

For a fixed 0b , the more volatile the dividend process, the more volatile the 

returns, therefore, the more likely investors are to suffer financial losses. This 

causes loss averse investors great pains, and makes stocks less desirable. As 

a result, they require more compensations when faced with more volatile 

dividend processes, causing lower stock prices or higher equity premiums. 

 

The negative slope of f function is consistent with BY (2004) and Bansal, 

Khatchatrian and Yaron (2005), who find that asset prices drop as economic 

uncertainty rises, although their measure of economic uncertainty is 

conditional consumption volatility rather than dividend volatility. It is rather 

difficult to justify this negative relationship within the standard power utility 

framework, where, as we have discussed before, a higher dividend volatility is 

associated with higher expected dividend growth, hence price-dividend ratios 
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always vary positively with dividend volatility. However, it can be easily 

understood with the introduction of loss aversion preferences. 

 

The overall shape of f  can now be summarized as follows. For low values of 

tσ , the impact of loss aversion is dominant, hence the function f  is downward 

sloping. As tσ  becomes larger, the impact of log utility catches up, and the 

function f eventually becomes upward sloping. That is, f  is U-shaped, as 

shown in Figure 3.4. The smaller is 0b , the earlier f  achieves its minimum. 

Moreover, larger values of 0b  say that investors care more about their wealth 

fluctuations, in which case the risk premiums for holding stocks are higher. 

Therefore, as 0b  increases, the function f  will move downward. 

 

How does f  look like in the data? According to our calibration, ( )tσlog  is 

normally distributed with mean 91.3−  and standard deviation 99.0 . Therefore, 

just reading from Figure 3.4, we will expect to see a negative relationship 

between price-dividend ratios and dividend volatility for most of the time. To 

see this more formally, we run an AR(1)-EGARCH(1,1) estimation on the 

quarterly dividend growth for 1926.Q3-2006.Q4 and plot the price-dividend 

ratios against the estimated conditional dividend volatilities tσ̂  in Figure 3.5. 

Indeed, more than 80 percent of the observed data display a negative 

relationship. In addition, we also notice an interesting positive relationship 

between price-dividend ratios and dividend volatility, which occurs for some 

extremely high realizations of tσ̂ . For instance, when the logarithm of dividend 

volatility is larger than 05.0 , price-dividend ratios actually rise with dividend 

volatility. Therefore, the data display a similar U-shaped pattern as predicted 

by our model. 
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Figure 3.5 Historical Price-Dividend Ratios v.s. 
Conditional Dividend Volatility 

 
Figure 3.5 plots the historical price-dividend ratios against the conditional 
dividend volatility estimated from an AR(2)-EGARCH(1,1) regression for 

period 1926.Q3-2006.Q3. 
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3.4.3 Simulation Results 

In this subsection, we generate artificial data under the parameter 

configuration in Table 3.2, and show that the model-simulated data replicate 

the interesting patterns found in actual data. 

 

In order to facilitate a comparison with historical data, we simulate the model 

at a quarterly frequency and time-aggregate them to get annual data. We do 

10,000 simulations each with 320 quarterly observations. We then calculate 

the interested statistics and report their sample moments. Given that the 

simulation number is large enough, the sample moments should serve as 

good approximations to population moments. 

 

3.4.3.1 Stock Returns and Stock Volatility 

Table 3.3 reports a variety of statistics calculated from model simulated data 

and the corresponding statistics from historical data. It is noteworthy that the 

model can match the mean and standard deviations of excess stock returns 

pretty well. When ,60 =b  the model generates a sizable premium of %75.6  per 

annum, which is slightly higher than the empirical value %90.5 ; the model also 

generates a standard deviation of %49.19 , which is almost equal to the 

corresponding value of %17.19  in the data. 

 

We notice that as 0b  grows, both the mean and standard deviations from 

model simulated excess returns increase. This is because when 0b  increases, 

loss aversion becomes a more important feature of investors' preference, so 

investors become more and more fearful of risky assets, pushing down stock 

prices. 
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We also report the mean and standard deviation of the simulated annual price-

dividend ratios, ( )ata
t DPE /  and ( )ata

t DP /σ .52 The empirical value 

( ) %43.12/ =a
t

a
t DPσ  is relatively high to those found in other papers (BHS, 

2001; BY, 2004; Campbell and Cochrane, 1999). This is due to the relatively 

high price-dividend ratios from 1996 to 2006, which includes the high-tech 

bubble period. 

 

We are able to match stock returns volatility even though the volatility of price-

dividend ratios is lower than their empirical counterparts, a common problem 

with one factor models. The reason to achieve excess volatility in stock returns 

is due to the positive relationship between price-dividend ratios and dividend 

innovations. To see this more clearly, consider the following approximate 

relationship (Campbell, Lo and MacKinlay, 1997): 
 

( ) ( )[ ] ,/log 111 +++ ++≈ ttttt ffAr εσσσ  
 

where A  is a constant. The excess volatility of market return relative to that of 

the dividend growth (or the fundamental), ( ) ( )11 ++ − ttt VarrVar εσ , comes from 

two sources: the volatility of price-dividend ratios, ( )
t

t
f
fVar 1log + , and the 

covariance between the price-dividend ratios and the news to the dividends, 

( )1,log 1
+

+
ttf

f

t

tCov εσ . In actual data, since 0<θ  in (6), good dividend news 

(positive 1+tε ) tends to be associated with negative dividend volatility shock 

(negative 1+tu ), implying that next period price-dividend ratios will increase 

(see Figure 3.4). Therefore, the covariance term ( )1,log 1
+

+
ttf

f

t

tCov εσ  is positive. 
 

                                                 
52The superscript a indicates annualized variables. 
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Table 3.3 Asset Prices and Annual Returns (1926-2006) 
 

This table provides information regarding stock returns for the simulated data 
and historical data. The historical data correspond to the period 1926-2006. 
The entries for the model are based on 10,000 simulations each with 320 

quarterly observations that are time-aggregated to an annual frequency. The 
parameter configuration in simulation follows that in table 3.2. The expressions 

( )a
tf

a
t rrE ,1 −+  and ( )a

tf
a
t rr ,1 −+σ  are, respectively, the mean and volatility of the 

annualized continuously compounded returns. ( )a
tC

a
t grCorr 1,1, ++  is the correlation 

between the annual stock return and annual growth rate. ( )ata
t DPE /  and 

( )ata
t DP /σ  are the mean and volatility of the annualized price-dividend ratios. 

 

Empirical Value Model
Variables (1926-2006) b0  0.7 b0  2 b0  6

Annual Excess Stock Return
E rt1

a − rf,t
a 5.90 2.68 4.98 6.75

 rt1
a − rf,t

a 19. 17 16.18 18.44 19.49

E rt1
a − rf,t

a / rt1
a − rf,t

a 0.31 0.16 0.27 0.35

Corrrt1
a ,gC,t1

a  0. 1 0.1 0.1 0.1

Annual Price-Dividend Ratio
EPta /Dta  29. 08 19.01 13.47 11.06

Pta /Dta  12. 43 2.56 2.62 2.47
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The model is also able to generate the low correlation between stock returns 

and consumption growth, ( ) 1.0, 1,1 =++
a
tC

a
t grCorr . This happens because the 

variation in stock returns is completely driven by the innovations in the 

dividend process, which is only weakly correlated with the consumption 

process. 

 

3.4.3.2 Autocorrelations of Returns and Price-Dividend Ratios 

Table 3.4 presents autocorrelations in returns and price-dividend ratios. Our 

model predicts negative autocorrelations in stock returns, as documented by 

Poterba and Summers (1988) and Fama and French (1988a). This negative 

correlation comes from the fact that returns and price-dividend ratios depend 

solely on a persistent AR(1) dividend volatility process. Moreover, our model 

closely matches the highly positively correlated price-dividend ratios in the 

data. 

 

3.4.3.3 Return Predictability 

To analyze the predictability pattern of returns, we run the following regression 

on both simulated and historical data: 

 

( ) ,/... ,21 tj
a
t

a
tjj

a
jt

a
t

a
t PDrrr εβα ++=+++ +++  

 

where a
jtr +  refers to the annual cumulative log returns from year 1−+ jt  to 

jt +  . Table 3.5 presents the regression result for different values of 0b . This 

estimation result from model-simulated data resembles the classic pattern 

documented by Campbell and Shiller (1988) and Fama and French (1988b). 
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The coefficients are significant and negative, indicating that high prices tend to 

predict low expected returns. Moreover, the forecasting power increases with 

forecasting horizons, as reflected by the increasing coefficients and 2R 's. 

 

The pattern of return predictability generated by our model can be understood 

through the volatility test in Cochrane (1992). Starting from the accounting 

identity 1
1
11 +

−
+= tt RR  with tttt PDPR /)( 111 +++ += , the log-linearization around the 

average price-dividend ratios, DP / , implies that, in the absence of rational 

asset price bubbles, 

 

),(),()(
1

,
1

jttt
j

jtDtt
j

tt rdpCovhgdpCovhdpVar jj
+

∞

=
+

∞

=

−−−≈− ∑∑  

 

where lower case indicates log values and )/1/(/ DPDPh += . This suggests 

that the variation in the price-dividend ratio will forecast either the change in 

expected dividend growth rate, or the discount rate, or both. 

 

In our model, even though dividend volatility is time varying, the dividend 

growth rate per se is still a white noise, meaning 0),( , =− + jtDtt gdpCov . Given 

that the risk-free rate is maintained as a constant, the only thing remaining for 

the price-dividend ratio to predict is the excess return. A high price-dividend 

ratio is associated with a decline in dividend volatility, so the required expected 

return will be lower. Therefore, our model implies an extreme version of the 

volatility test results. 
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Table 3.4 Autocorrelations of Returns and Price-Dividend Ratios 
 

This table reports the autocorrelations of annualized stock returns and price-
dividend ratios for the simulated data and historical data. The historical data 
correspond to the period 1926-2006. The entries for the model are based on 

10,000 simulations each with 320 quarterly observations that are time-
aggregated to an annual frequency. The parameter configuration in simulation 

follows that in table 3.2. The expressions ( )a
jt

a
t rrCorr −,  and 

( )a
jt

a
jt

a
t

a
t DPDPCorr −− /,/  are, respectively, the autocorrelations of the annualized 

compound equity returns and P/D ratios. 
 

Empirical Value Model
(1926-2006) b0  0.7 b0  2 b0  6

Corr rta , rt−ja

j  1 0.09 −0.01 −0.01 −0.01
j  2 −0.17 −0.02 −0.02 −0.02
j  3 −0.06 −0.02 −0.02 −0.02
j  4 −0.12 −0.02 −0.02 −0.02
j  5 −0.06 −0.02 −0.02 −0.02

Corr Pta /Dta ,Pt−ja /Dt−ja

j  1 0.90 0.68 0.79 0.82
j  2 0.81 0.61 0.71 0.74
j  3 0.75 0.56 0.64 0.66
j  4 0.68 0.50 0.58 0.60
j  5 0.60 0.45 0.51 0.53
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Table 3.5 Return Predictability Regressions (1926-2006) 

 
This table provides evidence of predictability of future excess returns by price-

dividend ratios. The entries correspond to regressing 
( ) tj

a
t

a
tjj

a
jt

a
t

a
t PDrrr ,21 /... εβα ++=+++ +++ , where a

jtr +  refers to the annual 
cumulative log returns from year 1−+ jt  to jt + . The historical data 

correspond to the period 1926-2006. The entries for the model are based on 
10,000 simulations each with 320 quarterly observations that are time-

aggregated to an annual frequency. The parameter configuration in simulation 
follows that in table 3.2. 

 

Empirical Value Model
(1926-2006) b0  0.7 b0  2 b0  6

1 2.55 2.42 2.08 1.83
2 5.99 4.90 4.08 3.58
3 8.28 7.23 5.95 5.20
4 11.26 9.44 7.71 6.69
R21 0.04 0.03 0.05 0.06
R22 0.09 0.05 0.09 0.11
R23 0.13 0.07 0.13 0.16
R24 0.18 0.09 0.16 0.20
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It's worth noting that a central fact driving predictability of returns is the 

persistence of dividend volatility. As shown in Cochrane (2005), both the 

estimated coefficients and  R2′s   increase with the persistence of the price-

dividend ratio, which depends on dividend volatility. 

 

3.4.3.4 Time-varying Sharpe Ratios 

Empirical evidence suggests that estimates of both conditional means and 

conditional standard deviations of returns change through time, but they do 

not move one for one. Hence Sharpe ratios are time-varying. Figure 3.6 

presents the conditional means and conditional standard deviations as 

functions of the state variable )log( tσ . Overall, as tσ  increases, the dividend 

growth becomes more volatile; thus both the means and the standard 

deviations of expected returns increase. 

 

Comparing the conditional means, ( )1+tt RE , and conditional standard 

deviations, ( )1+tt Rσ , of expected returns, we see that they are different 

functions of dividend volatility. Most noticeably, for those values of 

( )tσlog smaller than ( ) 91.3log −=σ , the conditional standard deviation is 

almost a constant, whereas the conditional mean has more variations and 

increases with ( )tσlog . Therefore, the Sharpe ratio of conditional mean to 

conditional standard deviation varies over time, with its variation due to the 

difference between ( )1+tt RE  and ( )1+tt Rσ . 
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Figure 3.6 Conditional Moments of Stock Returns 
 

Panel (a) and (b) plot the conditional expected stock return ( )1+tt RE  and 
conditional volatility of return ( )1+tt Rσ  for the case b0=6. 
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More formally, according to (4)-(7), the conditional mean and conditional 

variance of 1+tR  are respectively, 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( ) .1

1

,1

2

112
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e
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e
f
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To get a clearer picture of the distribution of Sharpe ratios, we numerically 

calculate the conditional Sharpe ratios from the above formula. Specifically, 

we make 160,000 random draws of 1+tε  and 1+tu , calculate the conditional 

mean and conditional standard deviation of expected returns by numerical 

integration, and then obtain the conditional Sharpe ratios as a function of 

)log( tσ  when 60 =b . Figure 3.7 presents the histogram of the simulated 

conditional Sharpe ratios, showing that the price of risk is changing over time. 

The unconditional mean and standard deviation of simulated Sharpe ratios are 

0.14 and 0.05, matching their empirical values. 
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Figure 3.7 Distribution of the Conditional Sharpe Ratios 
 

The distribution is based on a simulation for the case b0=6. 
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3.4.3.5 Structural Break and Equity Premiums 

Recent empirical evidence shows that the macroeconomic risk has declined 

over the past fifty years. It still remains an open question how this reduced risk 

affects ex-ante equity premiums, which are identified to have declined since 

WWII, by Blanchard (1993), Fama and French (2002), Freeman (2004), and 

Buranavityawut, Freeman and Freeman (2006). We use dividend volatility to 

stand for risk and study how this risk is priced in financial markets. 

 

The econometric evidence in Section 3.2 suggests that dividend volatility has 

decreased dramatically since the 1950s. According to our model, lower 

dividend volatility means that stocks are less likely to perform poorly; thus loss 

averse investors are less worried about fluctuations in their financial wealth. 

As a result, they are more willing to hold risky stocks, pushing up stock prices 

and driving down expected returns. To test our model performance in the 

postwar period with declined dividend volatility, we re-calibrate the model 

according to the data for 1954-2006. The new parameter values are provided 

in Table 3.6. Comparing the new values with those calibrated from all data, we 

find that the mean dividend growth rate doesn't change a lot, however, the 

standard deviation of ( )tσlog  decreased from 14.0  to 10.0 , a decline of 

roughly %30 . Consistent with our intuition, the model-simulated data match 

the actual data very well in excess returns, in the standard deviation of excess 

returns, as well as in Sharpe ratios. 
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Table 3.6 Structural Break and Asset Prices 
 

This table reports the mean and volatility of stock returns for the simulated 
data for two sets of dividend parameter configurations. Calibration I is based 

on the dividend sample 1926.Q3-2006.Q3; Calibration II is based on the 
dividend sample 1954.Q3-2006.Q3. The preference parameters and 

consumption parameters are the same as table 3.2 for both configurations. 
The expressions ( )a

tf
a
t rrE ,1 −+  and ( )a

tf
a
t rr ,1 −+σ  are, respectively, the mean and 

volatility of the annualized continuously compounded returns. 
 

Dividend Parameter Configuration
Parameters u gD log̄ 

Calibration I 0.14 0.39% −3.91 −0.67
Calibration II 0.10 0.35% −4.16 −0.34

Annual Excess Returns

Variables E rt1
a − rf,t

a  rt1
a − rf,t

a E rt1
a −rf,ta

 rt1
a −rf,ta

Empirical Value
1926–2006 5.90 19.17 0.31
1954–2006 4.87 15.35 0.32

Model (b0  6)
Calibration I 6.75 19.49 0.35
Calibration II 4.71 16.54 0.28
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Our model suggests that the decline in equity premiums is a direct result of 

declining macroeconomic risk, which is characterized by dividend volatility. 

The existing literature has focused on other measures of macroeconomic risk. 

Pastor and Stambaugh (2001) and Kim, Morley and Nelson (2004, 2005) have 

examined structural changes in market volatility and argue that, if the market 

price of risk does not vary greatly, then falls in market volatility should be 

associated with a decline in the required rate of return for equity. Lettau, 

Ludvigson and Wachter (2008) use consumption volatility to measure 

economic risk, and argue that this reduced macroeconomic risk contributed to 

the recent run-up in price-dividend ratios. We prefer dividend volatility to other 

measures of macroeconomic risk because dividend volatility is an important 

feature of the underlying endowment process, which determines market 

volatility in equilibrium. More importantly, as in the data, stock returns are only 

weakly correlated with consumption, therefore, a model relying on 

consumption volatility will inevitably generate a high correlation between stock 

returns and consumption, contradicting our observation. 

 

3.5 Conclusion 

This paper proposes a model in which dividend volatility is used to represent 

fluctuating economic uncertainty, and investors are loss averse over 

fluctuations in their financial wealth. Experimental and psychological evidence 

supports the behavioral assumption of loss aversion. Our empirical analysis of 

the aggregate dividend (including all distributions) establishes that dividend 

volatility is highly persistent and has experienced a remarkable decline in the 

postwar period. 

 



 

 163

Our model-simulated data exhibit similar patterns to those observed in actual 

return data: stock returns have a high mean, high volatility and a low 

correlation with consumption; they are predicted by price-dividend ratios; the 

Sharpe ratios are time-varying. 

 

To address the dynamic evolution of equity premiums, we also calibrate the 

models according to postwar data, in which dividend volatility is shown to be 

substantially lower than in prewar data. Based on the new calibrated 

parameter values, the model can generate much lower equity premiums 

(higher price-dividend ratios) thanks to a more stable economic environment. 

 

In essence, this paper highlights the significant effect of dividend volatility on 

asset prices when investors are narrow-framing, i.e., they derive direct utility 

from their financial investments. In the face of an uncertain investment 

environment captured by dividend volatility, loss averse investors are fearful of 

holding risky assets; if this uncertainty is persistent, their fears are stronger. 

This mechanism can generate important asset price behaviors in financial 

markets. 
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APPENDIX 

 

Appendix 1.A: Distribution of individual pricing errors 

 
Cai (2006) proves that for interior points, the distribution of individual pricing 

error ( )τα  is 

 

( ) ( ).)(,0 0 τντα Σ→NTh
d

 

The variance of ( )τα  is composed of two parts: 0ν  and ( )τΣ . duuK )(2
0 ∫=ν , 

which represents some kernel adjustments. 1
00

1
0 )()( −− ΩΣΩ=Σ ττ , with 

( )′=Ω tt XXE0 , where ( )′= tt fX ,1  and 

( ) ( ) ( )[ ]ττεττετ −−∑=Σ +++

∞

−∞=
kthktktthtt

t
KXKX ,cov0 , which captures the possible 

heteroskedasticity. 

 

In implementation, we use the sample moment to estimate 0 . To estimate 

)(0 τΣ , we compute the residuals tε̂ , and then apply the method of moment to 

obtain a direct estimator as 

 

( ) ( ) ( ) .ˆˆˆ
110

0

′

==
⎟
⎠
⎞

⎜
⎝
⎛ −∑⎟
⎠
⎞

⎜
⎝
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ν
τ thtt

T

t
thtt

T

t
KXKX

T
h  

 

See Cai and Chen (2005) for details about the asymptotic consistency of this 

estimator. 
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Appendix 1.B: Derivation of the asymptotic distribution of average pricing 

errors 

 

The average of conditional alpha is 

 

.ˆ1ˆ
1

⎟
⎠
⎞

⎜
⎝
⎛= ∑

= T
t

T

T

t

αα  

Under the general assumption that the random error process { }Ttt 1=ε  is 

heteroskadastic, the asymptotic distribution of α̂  is  

 

( ),,0ˆ VNT
d
→α  

where V  is the asymptotic variance and equals the (1,1) element of  

( ) 1
0

1
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−
+

′
+
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− Ω∑Ω jttjtt
j

XXE εε . 

 
 

Proof: 

Cai (2007) shows that ( )τα̂  can be approximated as the (1,1) element of 

( )τ∗−Ω 0,
1

0 nT , where tht
T
tn TtKXTT εττ )/()( 1

1
0, −∑= =

−∗ . So ( )α̂Var  asymptotically 

approaches the (1,1) element of 

0
−1 1
T2 ∑

1

T

∑
 ′1

T

Cov T−1∑
t1

T

XtKh t − 
T t,T−1∑

s1

T

XsKh s − ′
T s 0

−1

 0
−1 1

T4 ∑
1

T

∑
 ′1

T

∑
j1−T

T−1

j∑
t1

T

Kh t − 
T Kh

t − j − ′
T 0

−1

 0
−1 ∑
j1−T

T−1

j 1
T4 ∑

1

T

∑
 ′1

T

∑
t1

T

Kh t − 
T Kh

t − j − ′
T 0

−1

 1
T0

−1∑
j−



j0
−1

 



 

 170

where ( ) ( )jttjtt XXEj +
′
+= εεγ . 

 

Note that the coefficient 
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Appendix 1.C: Goodness of fit for conditional models versus unconditional 

models 

 

Chen (2008) shows that  A   and  B  in (10) take different forms depending the 

specifications of the errors. We report the statistics based on i.i.d. errors, but 

the results are robust to more general error assumptions. Under i.i.d. errors, 

 

Ŝ  h SSR0 − SSR1  − Â

B̂
,

 

where the centering and scaling factors are 
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t XXTM 1

1ˆ . Intuitively, Â  and B̂  are approximately the mean and 
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variance of ( )10 SSRSSRh − . The third term of Â  involving the factor h  arises 

due to the use of the pseudodata in the reflection method to correct the 

boundary issue, but it is proportional to h  and will vanish to zero when ∞→T . 

It is a finite sample correction. Note that the residual variance estimator 2σ̂  

here is based on the nonparametric residuals and is consistent for ̂2  under 

both the null and alternative hypotheses. One could also use the OLS 

residuals to estimate 2σ̂ , and the asymptotic distribution of Ĉ  remains 

unchanged. However, the OLS residuals will not give a consistent estimator 

for 2σ̂  under the alternative hypothesis. Thus, the use of the nonparametric 

residuals is expected to deliver better power. 
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Appendix 2.A.1 Sensitivity Analysis 

 
We have mentioned that generations in our model should be understood as 

generations of trades, so that one period corresponds to six months to one 

year. So far in our analysis, we have taken one period to be one year. Table 

2.A1 analyzes the effect of changing this assumption, by assuming the 

decision interval of an investor to be six months. We recalibrate dividend 

parameters as 19.1=Hθ  and 83.0=Lθ , so that the time-aggregated annual 

growth rate of dividends has the same mean and volatility as the data. We 

also reset 1−fR  to be 91.1  percent to maintain a net annual risk-free rate of  

86.3   percent. The loss aversion parameter is still set at 25.2=λ , and the 

diminishing sensitivity parameter α  can take three values: 37.0 , 52.0 and 

88.0 . The variable 2WML  is the simulated average cumulative annualized 

momentum portfolio returns: 

 

( ).12 111
loser
t

loser
t

winner
t

winner
t

T
t RRRR

T
WML ++= −∑=  

 

Comparing Table 2.A1 with Table 2.4, where one period is assumed to be one 

year, we find that changing the length of the decision interval affects the 

momentum effect and the equity premium. When the decision interval 

becomes shorter, a typical investor will experience more losses in one year, 

and since he is averse to losses, he will demand a higher premium. The higher 

equilibrium equity premium or, equivalently, the lower price-dividend ratio, 

means that the disposition effect, i.e., age-2-1 investors' different behavior 

facing good news versus bad news, will have a higher impact on the stock 

return predictability, thereby generating higher returns to the winners-minus-
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losers portfolio. 
 

As described in Section 2.2, we suppose that investor i  uses ifWR ,1
2  as a 

reference level of wealth when calculating gains and losses. Odean (1998) 

and Genesove and Mayer (2001) assume that the investor uses the original 

purchase price as a reference point. That is, if an investor buys a stock at 

price BP  and sells at price SP , he calculates gains/losses X  as follows: if he 

holds the stock one period and receives a dividend D , then he perceives 
BS PDPX −+= ; if he holds the stock two periods and collects dividends D  

and D′ , then he perceives BS PDDPX −′++= . Table 2.A2 presents the 

results for this specification of gains/losses. We still take one period as one 

year, and the parameter values are fixed at 28.1=Hθ , 76.0=Lθ , 0386.1=fR  

and 25.2=λ .  Comparing Table 2.A2 with Table 2.4, we find that this 

alternative definition of gains/losses has virtually no effect on our results 

except to deliver a lower equity premium. The reason for the low equity 

premium is that stock returns don't need to beat the risk-free rate to be 

counted as gain, which in turn makes the investor more willing to purchase a 

stock. 
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Table 2.A1   Results for a Decision Interval of Six Months 
 

The decision interval of the investor is assumed to be six months. Dividend 
parameters are recalibrated as 1913.1=Hθ  and 8309.0=Lθ , so that the 

annualized dividend growth rate has a mean of %24.2  and a volatility of %97.25 . 
The risk-free rate is set as %91.11 =−fR . Loss aversion parameter λ  is set at 

25.2 . PGR and PLR are the simulated proportion of gains realized and 
proportion of losses realized. We define PLR

PGRDispEffect = . 2WML is the simulated 

average cumulative annualized momentum portfolio return. ⎟
⎠
⎞⎜

⎝
⎛ −+

2
1 fRRRE tt  is 

the annualized equity premium. ( )121 ,tSHtQ −=  is the turnover, or aggregate 
selling, in period t. 

 

  0.37   0.52   0.88
(i) Disposition Effect

PGR 0.40 0.41 0.40
PLR 0.18 0.24 0.37
DispEffect 2.15 1.68 1.07

(ii) Momentum Effect
WML2 10.33% 6.59% 0.78%

(iii) Turnover

Corr RtRt1 , QtQt1

2 0.87 0.88 0.89

(iv) Equity Premium
E RtRt1 − Rf

2 11.27% 11.22% 9.69%
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When we extend our model to a multi-stock setting and construct the winners-

minus-losers portfolio, we have assumed that investors engage in narrow-

framing. Is it plausible that people frame individual stocks narrowly? As argued 

by Barberis and Huang (2007), narrow framing is related to non-consumption 

utility such as regret: if one of the investor's stocks performs poorly, he may 

regret the specific decision to buy that stock. So, from a theoretical 

perspective, gains and losses on individual stocks can affect the investor's 

decisions. In addition, the extensive empirical evidence on the disposition 

effect documents that investors, including institutional investors, are reluctant 

to take losses on the level of individual stocks, suggesting that investors 

engage in narrow framing in the real market. Of course, a framework that 

allows the investor to derive utility directly from trading profits on individual 

stocks, but also, as in traditional models, to derive utility from consumption, 

namely a framework that allows for both narrow and traditional broad framing 

at the same time, might fit the data better. Although to construct such a formal 

model poses significant technical challenges and is beyond the scope of our 

current analysis, we believe our intuition will carry over, and our main results 

will survive in this more general setting, so long as the investor's preference 

can be partially captured by narrow framing and prospect theory, which are the 

two main drivers of our results. 
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Table 2.A2   Results for Using Purchase Prices as Reference Points 
 

The investor uses the purchase price as the reference point when calculating 
capital gains or losses. PGR and PLR are the simulated proportion of gains 

realized and proportion of losses realized. We define PLR
PGRDispEffect =  and 

( ) ( )LREHREMomEffect tttt θθθθ =−== ++ || 11 . WML  is the simulated average 
momentum portfolio return in the multi-stock setting. ( )121 ,tSHtQ −=  is the 

turnover, or aggregate selling, in period t . Technology parameter values are 
fixed at their values in Table 2.1: 2821.1=Hθ , 7628.0=Lθ  and 0386.1=fR . Loss 

aversion parameter λ is set at 25.2 , the value estimated by Tversky and 
Kahneman (1992). 

 

  0.37   0.52   0.88
(i) Disposition Effect

PGR 0.40 0.41 0.49
PLR 0.18 0.24 0.43
DispEffect 2.24 1.74 1.16

(ii) Momentum Effect
MomEffect 7.39% 4.91% 0.86%
WML 7.07% 4.65% 0.68%

(iii) Turnover
CorrRt,Qt  0.84 0.88 0.95

(iv) Equity Premium
ERt − Rf  3.86% 3.77% 2.76%
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Appendix 2.A.2 Heterogeneity, Aggregation and Price Impacts 

 
In our model, all investors have prospect theory preferences, the preference 

parameters (α  and λ ) are the same across investors, and the disposition 

investors (age-2-1 investors) frame gains/losses in the same way. In reality, 

investors are likely to be heterogeneous in a number of ways. First, some of 

them might be better described by traditional, risk-averse expected utility 

preferences, for example, the standard power utility representation, and these 

investors might take advantage of prospect theory investors and kill their 

effects on prices. Second, even prospect theory investors may differ in many 

dimensions, and this heterogeneity might somehow cause their aggregate 

behaviors to wash out. So recognizing these heterogeneities raises the 

question of whether the results of our model still hold in this more realistic 

world. 

 

A full analysis of this issue poses significant technical hurdles, but there is 

good reason to believe that a more general model might deliver similar results. 

On the one hand, as pointed out in the limits to arbitrage literature, there might 

be limits to the ability and willingness of traditional expected utility maximizers, 

or arbitrageurs, to offset the pricing effects of prospect theory investors, 

because by exploiting prospect theory investors, arbitrageurs face 

fundamental risk as well as noise trader risk, over and above the significant 

implementation costs they have to bear.53 As a result, arbitrageurs will trade 

                                                 
53See Barberis and Thaler (2003) Section 2.2, Barberis and Huang (2001) 
Section IV B, or Barberis and Huang (2008) Section III F for more detailed 
discussion of this point. 
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cautiously and only partially absorb the impact on prices of prospect theory 

investors, thereby allowing our results to persist. 

 

On the other hand, even though prospect theory investors might be 

heterogeneous in many ways, their disposition related tradings are likely to be 

systematic and have implications for stock prices. For example, empirical 

evidence documents that both institutional investors and individual investors 

exhibit a disposition effect, although the former do so to a smaller extent. This 

suggests that prospect theory can indeed capture the preferences of both type 

of investors, albeit differently. Formally, we can model their preferences as 

prospect theory utility with different parameters (α  and λ ), or as a 

combination of consumption utility and prospect theory utility with different 

weights. This kind of heterogeneity should not wash out in the aggregate, so 

that prospect theory preferences should have pricing implications. Actually, 

Coval and Shumway (2005) have provided strong evidence that prospect 

theory investors indeed move prices.  

 

Another heterogeneity of prospect theory investors relates to the framing of 

gains/losses. One may argue that different investors might buy into stocks at 

different prices, so that, in a given period, some investors face gains and 

others face losses, causing their disposition related tradings to cancel out in 

aggregate. However, this argument is flawed because it ignores the updating 

of reference points. When the investor has held a stock many periods, it is 

more reasonable for him to think of the reference point as some weighted 

average of the purchase price and other former prices. Once this updating 

process is taken into account, then in a rising (falling) market, most investors 
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holding the stock will accumulate gains (losses), regardless of when they 

bought into the stock or at what price, making their disposition related tradings 

systematic. This idea can be formalized in a setup with more than three 

generations. It will, however, exponentially increase the dimension of state 

vector, making the problem intractable. 
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APPENDIX 3: Constructing Dividend Time Series 

 

We follow Bansal, Khatchatrian and Yaron (2005) to impute the dividend time 

series from CRSP database. This appendix describes the details. The data 

covers quarterly sample from 1926.Q3 till 2006.Q3. In order to construct the 

quarterly dividend variable, the following series are used: 

• indxP  : Monthly stock price index on NYSE/AMEX. The price index for month 

j  is calculated as ( ) 1,, 1 −⋅+= jindxjjindx PVWRETXP , where VWRETX  is the 

value weighted return on NYSE/AMEX excluding dividends, taken from 

CRSP. 

• indxD : Monthly dividend index on NYSE/AMEX. The dividend for month j  is 

calculated as ( ) jindxVWRETX
VWRETD

jindx PD
j

j

,1
1

, 1 ⋅−= +
+ , where VWRETD  and VWRETX  are, 

correspondingly, the value weighted return on NYSE/AMEX including and 

excluding dividends, taken from CRSP. 

• indxD : Quarterly dividend index on NYSE/AMEX. The dividend for a quarter 

is the sum of the monthly dividend indices for the 3 months comprising the 

quarter. Then a four period backward moving average is taken to remove 

seasonality. That is, ( ) ( ) ( )[ ]jtindxjtindxjtindxjtindx DDDD −−−−−= ++∑= 3,13,23,
3

04
1

, , where 

t  indexes quarters. 

• Inflation : Quarterly inflation index. The inflation index for a quarter is the 

inflation index in the last month of the quarter, taken from CRSP. 

 

The resulting quarterly dividend series and dividend growth rate series are 

calculated as follows: 
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