SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NY 14853-3801 TECHNICAL REPORT NO. 1080 January 1994 # Functionals of Infinitely Divisible Stochastic Processes with Exponential Tails by $\begin{array}{c} {\rm Michael~Braverman^1} \\ {\rm and~Gennady~Samorodnitsky^2} \end{array}$ ¹Research was supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027. ²Research was supported by the NSA grant 92G-116 and United States - Israel Binational Science Foundation. # Functionals of infinitely divisible stochastic processes with exponential tails *†‡ Michael Braverman Russian Academy of Sciences Gennady Samorodnitsky Cornell University December 5, 1993 #### Abstract We investigate the tail behavior of the distributions of subadditive functionals of the sample paths of infinitely divisible stochastic processes when the Lévy measure of the process has suitably defined exponentialy decreasing tails. It is shown that the probability tails of such functionals are of the same order of magnitude as the tails of the same functionals with respect to the Lévy measure, and it turns out that the results of this kind cannot, in general, be improved. In certain situations we can further obtain both lower and upper bounds on the asymptotic ratio of the two tails. In the second part of the paper we consider the particular case of Lévy processes with exponentially decaying Lévy measures. Here we show that the tail of the maximum of the process is, up to a multiplicative constant, asymptotic to the tail of the Lévy measure. Most of the previously published work in the area considered heavier than exponential probability tails. ## 1 Introduction and preliminaries Let $\mathbf{X} = \{X(t), t \in T\}$ be an infinitely divisible stochastic process, in the sense that all its finite dimensional distributions are infinitely divisible. Following the suit of a number of recent publications, we are interested in the tail behavior of the distributions of various functionals of the sample paths of \mathbf{X} . Unlike much of the previous work in the area which dealt with suitably heavy tails (the major exception being the body of work on Gaussian processes,) the functionals of the processes considered in the present paper will typically have probability tails that decrease exponentialy fast. We now proceed with formal definitions. We work with a general infinitely divisible process whose characteristic function is given in the form $$E\exp\{i<\boldsymbol{\beta},\mathbf{X}>\} = \tag{1.1}$$ ^{*}Braverman's research was supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027. Samorodnitsky's research was supported by the NSA grant 92G-116 and United States - Israel Binational Science Foundation $^{^\}dagger AMS$ 1980 subject classification. Primary 60E07, 60G07. Secondary 60G57, 60H05 [‡]Keywords and phrases: exponential distributions, infinitely divisible processes, tail behavior of the distributions of functionals of sample paths. $$\exp\{i<\boldsymbol{\beta},\mathbf{b}>-\boldsymbol{\beta}^t\boldsymbol{\Sigma}\boldsymbol{\beta}/2+\int_{\mathbf{R}^T}[e^{i<\boldsymbol{\beta},\boldsymbol{x}>}-1-i<\boldsymbol{\beta},\boldsymbol{\tau}(\boldsymbol{x})>]\nu(d\boldsymbol{x})\},$$ where $\mathbf{b} \in \mathbf{R}^T$, Σ is the covariance matrix of the Gaussian part of \mathbf{X} and ν is the the Lévy measure of the Poisson part of \mathbf{X} . Here $\boldsymbol{\beta} \in \mathbf{R}^{(T)}$, the space of real functions $\boldsymbol{\beta}$ defined on T such that $\boldsymbol{\beta}(t) = 0$ for all but finitely many t's, $\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle = \sum_{t \in T} \boldsymbol{\beta}(t) x(t)$, and $\tau(\boldsymbol{x})(t) = x(t)/(x^2(t)+1)$. Let ϕ be a measurable subadditive function $\mathbf{R}^T \to (-\infty, \infty]$; that is, $$\phi(\boldsymbol{x}_1 + \boldsymbol{x}_2) \le \phi(\boldsymbol{x}_1) + \phi(\boldsymbol{x}_2) \text{ for all } \boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbf{R}^T.$$ (1.2) Such functions include suprema of the sample paths, oscillations, L^p -norms and many others (with measurability questions treated in a standard way). This framework has been considered by Rosinski and Samorodnitsky [RS93], who have shown that $$P(\phi(\mathbf{X}) > \lambda) \sim H(\lambda) \text{ as } \lambda \to \infty$$ (1.3) where $$H(\lambda) = \nu(\{\mathbf{x} \in \mathbf{R}^T : \phi(\mathbf{x}) > \lambda\})$$ (1.4) as long as H is asymptotically equivalent to a tail of a *subexponential* probability distribution. We remind the reader that a distribution F on $[0,\infty)$ is subexponential if $$l := \lim_{\lambda \to \infty} \frac{\bar{F} * \bar{F}(\lambda)}{\bar{F}(\lambda)} \text{ exists and is finite}$$ (1.5) and $F \in \mathcal{L}(0)$, where $$\mathcal{L}(\alpha) = \{ F : \lim_{u \to \infty} \frac{\bar{F}(u+v)}{\bar{F}(u)} = e^{-\alpha v}, \text{ any } v > 0 \},$$ (1.6) $\alpha \geq 0$. The name subexponential is due to the assumption $F \in \mathcal{L}(0)$, and in this paper we are interested in exponentialy decreasing tails. We will therefore consider the case when H in (1.4) is asymptotically equivalent to a tail of a probability distribution in the exponential class $\mathcal{S}(\alpha)$, $\alpha > 0$, defined as the class of distributions in $\mathcal{L}(\alpha)$, $\alpha > 0$, satisfying (1.5). These distributions were introduced by Chistyakov [Chi64] and Chover, Ney and Wainger [CNW73], and were studied by a number of authors. We refer the reader to Teugels [Teu75], Embrechts and Goldie [EG82] and Cline [Cli86], [Cli87] for a detailed analysis of both subexponential and exponential classes of distributions. The question discussed in this paper is what version of (1.3) holds under the assumption of exponential tails of H. Intuitively, recalling the effect of convolutions on subexonential and exponential tails (see Embrechts, Goldie and Veraverbeke [EGV79], Theorem 3, Embrechts and Goldie [EG82], Theorem 4.2), one might guess that under the assumption of exponentiality the appropriate version of (1.3) is $$P(\phi(\mathbf{X}) > \lambda) \sim cH(\lambda) \text{ as } \lambda \to \infty$$ (1.7) for some c > 0. What we discover in this paper is that, while (1.7) is false in general, it is "almost true". More precisely, the true statement is $$0 < \underline{\lim}_{\lambda \to \infty} \frac{P(\phi(\mathbf{X}) > \lambda)}{H(\lambda)} \le \overline{\lim}_{\lambda \to \infty} \frac{P(\phi(\mathbf{X}) > \lambda)}{H(\lambda)} < \infty. \tag{1.8}$$ This result is proven in the next section, and it requires a somewhat more involved argument than the corresponding subexponential result of Rosinski and Samorodnitsky [RS93]. Before proceeding, let us collect some facts about distributions in exponential classes. First of all, in the remainder of this paper $S(\alpha)$ refers to the collection of distributions on the whole of R which are in $L(\alpha)$ and for which (1.5) holds. Although most of literature on exponential and subexponential classes treats only distributions concentrated on $[0, \infty)$, the extensions to the more general case are, as noted by Bertoin and Doney [BD93], entirely straightforward. In particular, the law of X is in $S(\alpha)$ if and only if the law of X_+ is. LEMMA 1.1 Let $F \in \mathcal{S}(\alpha)$, $\alpha \geq 0$. Then - (i) $m_F(\alpha) = \int_{-\infty}^{\infty} e^{\alpha x} F(dx) < \infty$ and $l = 2m_F(\alpha)$ in (1.5). - (ii) If the limit $c_i = \lim_{\lambda \to \infty} \frac{\overline{G_i(\lambda)}}{\overline{F(\lambda)}}$ exists and is finite for two distribution functions G_1, G_2 then $$\lim_{\lambda \to \infty} \frac{\overline{G_1 * G_2}(\lambda)}{\overline{F}(\lambda)} = c_1 m_{G_2}(\alpha) + c_2 m_{G_1}(\alpha).$$ Moreover, $G_i \in \mathcal{S}(\alpha)$ if $c_i > 0$. (iii) For every $n \geq 1$, $\lim_{\lambda \to \infty} \frac{\overline{F^{\bullet n}}(\lambda)}{\overline{F}(\lambda)} = nm_F(\alpha)^{n-1}$. Furthermore, there is a $K < \infty$ such that for every $n \geq 1$ and $\lambda > 0$ $$\overline{F^{*n}}(\lambda)/\overline{F}(\lambda) \le K(1+m_F(\alpha))^{n-1}.$$ - (iv) For $a \mu > 0$ let $G(x) = e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^n}{n!} F^{*n}(x)$. Then $\lim_{\lambda \to \infty} \frac{\overline{G}(\lambda)}{\overline{F}(\lambda)} = \mu m_G(\alpha)$. - (v) Let $G \in \mathcal{L}(\alpha)$, and $\sup_{\lambda>0} \overline{G}(\lambda)/\overline{F}(\lambda) < \infty$. Then H = F * G is in $\mathcal{S}(\alpha)$ and $\overline{H}(\lambda) \sim m_G(\alpha)\overline{F}(\lambda) + m_F(\alpha)\overline{G}(\lambda)$ as $\lambda \to \infty$. PROOF: (i) This an immediate extension of the corresponding result for distributions on $[0, \infty)$ due to Chover, Ney and Wainger [CNW73]; see also Cline [Cli87], Theorem 2.9. - (ii) Again, this follows from the known result for the distributions on $[0, \infty)$ due to Embrechts and Goldie [EG82]; it is spelled out in Cline [Cli87], Corollary 2.10. - (iii) The first part is an immediate consequence of (ii). The second part is Lemma 2.6 of Embrechts and Goldie [EG82]. - (iv) This is Theorem 4.2 (ii) of Embrechts and Goldie [EG82]. - (v) See Corollary 1 of Cline [Cli86]. The main theorem establishing (1.8) is proven in the next section. We show further by example that (1.7) is false in general when $\alpha > 0$, and that, when (1.7) does hold, the asymptotic constant c is not determined by the function H. Finally, we provide bounds on the upper and lower limits in (1.8) under certain further assumptions on the process X and the functional ϕ . In Section 3 we consider the important particular case of the maxima of Lévy processes with Lévy measures with exponential right tails. We prove that, in this case, the limiting relation (1.7) does hold, and we further provide bounds for the
asymptotic constant c. #### 2 Tails of subadditive functionals Our framework is similar to that of Rosinski and Samorodnitsky [RS93]. Specifically, to avoid measurability problems we will work in this section with processes defined on a countable set T. We assume that there is a lower-semicontinuous pseudonorm $q: R^T \to [0, \infty]$ such that $$|\phi(\mathbf{x})| \le q(\mathbf{x}) \text{ for every } \mathbf{x} \in R^T.$$ (2.1) (That is, $q(\mathbf{x} + \mathbf{y}) \leq q(\mathbf{x}) + q(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in R^T$, $q(\mathbf{0}) = 0$ and $q(\rho \mathbf{x}) \leq q(\mathbf{x})$ for all $\mathbf{x} \in R^T$ and $|\rho| \leq 1$.) The following is our general theorem. THEOREM 2.1 Let X be given by (1.1), ϕ and q be, correspondingly, a measurable subadditive function and a lower-semicontinuous seminorm related by (2.1). Assume that $P(q(X) < \infty) = 1$ and that the distribution function $F(x) = 1 - \min(1, H(x))$ is in $S(\alpha)$. Then (1.8) holds. We start with a lemma, which strengthens Lemma 2.2 of Rosinski and Samorodnitsky [RS93]. LEMMA 2.1 Let **X** be an infinitely divisible process with characteristic function given by (1.1). Assume that $P(q(\mathbf{X}) < \infty) = 1$ and that $\nu(\{\mathbf{x} \in R^T : q(\mathbf{x}) > r\}) = 0$ for some r > 0. Then $E \exp(\epsilon q(\mathbf{X})) < \infty$ for every $\epsilon > 0$. **Remark** Lemma 2.2 of Rosinski and Samorodnitsky [RS93] proved that $E \exp(\epsilon q(\mathbf{X})) < \infty$ for some $\epsilon > 0$. Note further that the result does not follow from the standard facts about the Banach space valued infinitely divisible random vectors (see e.g. deAcosta [dA80]) because our q is not, in general, either homogeneous or continuous. PROOF: We begin as in Rosinski and Samorodnitsky [RS93] by choosing an $\mathbf{a}: T \to (0, \infty)$ such that $\sum_{t \in T} |a(t)X(t)|^2 < \infty$ a.s.. Let \mathbf{X}' be an independent copy of \mathbf{X} , and consider an $l^2(T)$ -valued process with stationary independent and symmetric increments $\{\mathbf{Z}(u), u \geq 0\}$ such that $\mathbf{Z}(1) \stackrel{d}{=} \mathbf{a}(\mathbf{X} - \mathbf{X}')$. (We are talking about coordinate-wise products, of course.) Finally, let $p(\mathbf{h}) = q(\mathbf{a}^{-1}\mathbf{h})$, $\mathbf{h} \in l^2(T)$. Note that p is a lower-semicontinuous pseudonorm on $l^2(T)$, and that $P(p(\mathbf{Z}(1)) < \infty) = 1$. If μ is the Lévy measure of $\mathbf{Z}(1)$, then it follows that $\mu(\{\mathbf{h} \in l^2(T): p(\mathbf{h}) > r\}) = 0$. Since $E \exp(\epsilon q(\mathbf{X} - \mathbf{X}')) = E \exp(\epsilon p(\mathbf{Z}(1)))$, a standard application of Fubini's theorem and subadditivity of q shows that it is enough to prove that for any $\epsilon > 0$, $$E\exp(\epsilon p(\mathbf{Z}(1))) < \infty.$$ (2.2) Observe that a standard argument (like the one used in Theorem 1.3.2 of Fernique [Fer75]) shows that (2.2) holds if $\mathbf{Z}(1)$ is Gaussian. Therefore we use again subadditivity of p to note that it is enough to prove our statement in the case when \mathbf{X} , and thus \mathbf{Z} , have no Gaussian component. For a $\delta > 0$ let μ^{δ} denote the restriction of μ to the set $\{\mathbf{h} \in l^2(T) : ||\mathbf{h}||_{l^2(T)} \leq \delta\}$, and let $\{\mathbf{Z}^{\delta}(u), u \geq 0\}$ be an $l^2(T)$ -valued process with stationary independent and symmetric increments such that μ^{δ} is the Lévy measure of $\mathbf{Z}^{\delta}(1)$. Choose a sequence $\delta_n \downarrow 0$. We put $\{\mathbf{Z}^{\delta_n}(1)\}_{n\geq 1}$ on the same probability space as follows. Let $\{\mathbf{U}_n\}_{n\geq 1}$ be a sequence of independent infinitely divisible random vectors in $l^2(T)$ such that the Lévy measure of \mathbf{U}_n is the restriction of μ to the set $\{\mathbf{h} \in l^2(T) : \delta_{n+1} < ||\mathbf{h}||_{l^2(T)} \leq \delta_n\}, n \geq 1$. Then we set $\mathbf{Z}^{\delta_n}(1) = \sum_{i=n}^{\infty} \mathbf{U}_i, n \geq 1$. Now an immediate application of Kolmogorov's 0-1 law shows that there is a $\kappa \in [0, \infty]$ such that $$\overline{\lim}_{n\to\infty} p(\mathbf{Z}^{\delta_n}(1)) = \kappa \text{ a.s..}$$ (2.3) We claim that $\kappa < \infty$. Indeed, choose an R > 0 so large that $$P\Big(p(\mathbf{Z}(1)) > R/2\Big) < 1/4.$$ Then by Lévy's inequality, for every $n, m \ge 1$, $$P\bigg(\max_{n \le k \le n+m} p(\mathbf{Z}^{\delta_k}(1)) > R\bigg) \le 2P\bigg(p(\mathbf{Z}(1)) > R/2\bigg),$$ and so $$P\bigg(\sup_{k>n} p(\mathbf{Z}^{\delta_k}(1)) > R\bigg) \le 2P\bigg(p(\mathbf{Z}(1)) > R/2\bigg) \le 1/2$$ for every $n \geq 1$, showing that $\kappa \leq R$. An immediate conclusion from (2.3) is that for every $\gamma > \kappa$, $$\lim_{n \to \infty} P\bigg(p(\mathbf{Z}^{\delta_n}(1)) > \gamma\bigg) = 0. \tag{2.4}$$ Now fix an $\epsilon > 0$. Choose a $\gamma > \kappa$. By (2.4) there is an $n \geq 1$ such that $$P\left(p(\mathbf{Z}^{\delta_n}(1)) > \gamma\right) < \frac{1}{4}e^{-(8\gamma + 2r)}.$$ (2.5) Obviously, $\mathbf{Z}(1) \stackrel{\mathrm{d}}{=} \mathbf{Z}^{\delta_n}(1) + \mathbf{W}$, where $\mathbf{Z}^{\delta_n}(1)$ and \mathbf{W} are independent, and the latter random vector is infinitely divisible with Lévy measure μ_* equal to the restriction of μ to the set $\{\mathbf{h} \in l^2(T) : ||\mathbf{h}||_{l^2(T)} > \delta_n\}$. Note that μ_* is a finite measure. Let m_* be the total mass of μ_* . By the subadditivity of p, $$E\exp\Bigl(\epsilon p(\mathbf{Z}(1))\Bigr) \leq E\exp\Bigl(\epsilon p(\mathbf{Z}^{\delta_n}(1))\Bigr) E\exp\Bigl(\epsilon p(\mathbf{W})\Bigr).$$ Clearly, $$\begin{split} E \exp \left(\epsilon p(\mathbf{W}) \right) &= E \exp \left(\epsilon p(\sum_{j=1}^{N} \mathbf{Y}_{j}) \right) \leq E \exp \left(\epsilon \sum_{j=1}^{N} p(\mathbf{Y}_{j}) \right) \\ &\leq E \exp (\epsilon rN) < \infty, \end{split}$$ where N is a Poisson random variable with mean m_* , and $\mathbf{Y}_1, \mathbf{Y}_2, \ldots$ is an independent of N sequence of i.i.d. $l^2(T)$ -valued random vectors with common distribution $(m_*)^{-1}\mu_*$. We have used the fact that μ does not charge vectors $\mathbf{h} \in l^2(T)$ with $p(\mathbf{h}) > r$. Our statement will therefore follow once we prove that $$E\exp\left(\epsilon p(\mathbf{Z}^{\delta_n}(1))\right) < \infty. \tag{2.6}$$ We now repeat the argument of the proof of Lemma 2.2 of Rosinski and Samorodnitsky [RS93] (as applied to the process $\{\mathbf{Z}^{\delta_n}(u), u \geq 0\}$) to conclude that $$E \exp\left(\epsilon p(\mathbf{Z}^{\delta_n}(1))\right) \le \underline{\lim}_{\delta \to 0} M_{\delta},$$ (2.7) where for each $\delta > 0$, M_{δ} satisfies $$M_{\delta} \le 2M_{\delta} \exp\left(\epsilon(8\gamma + 2r)\right) P\left(p(\mathbf{Z}^{\delta_n}(1)) > \gamma\right) + \exp(8\epsilon\gamma).$$ (2.8) (This is just (2.9) and (2.10) of Rosinski and Samorodnitsky [RS93].) By the choice of n, we conclude from (2.5) and (2.8) that $M_{\delta} \leq 2 \exp(8\epsilon \gamma)$ for every $\delta > 0$, and so by (2.7) $$E \exp\left(\epsilon p(\mathbf{Z}^{\delta_n}(1))\right) \le 2 \exp(8\epsilon \gamma) < \infty.$$ This completes the proof of the lemma. We are now ready to prove Theorem 2.1. **Proof of Theorem 2.1.** By Lemma 2.1 of Rosinski and Samorodnitsky [RS93], there is an r > 0 such that $\nu(\{\mathbf{x} \in R^T : q(\mathbf{x}) > r\}) < \infty$. Write $$X = X_1 + X_2 + X_3, (2.9)$$ where X_i , i = 1, 2, 3 are independent infinitely divisible stochastic processes on T such that $$E\exp\{i<\boldsymbol{eta},\mathbf{X}_j>\}=\exp\{\int_{\mathbf{R}^T}[e^{i<\boldsymbol{eta},\boldsymbol{x}>}-1]\nu_j(d\boldsymbol{x})\},$$ j = 1, 2, and $$E\exp\{i<\boldsymbol{\beta},\mathbf{X}_3>\}=\exp\{i<\boldsymbol{\beta},\mathbf{b}_1>-\boldsymbol{\beta}^t\boldsymbol{\Sigma}\boldsymbol{\beta}/2+\int_{\mathbf{R}^T}[e^{i<\boldsymbol{\beta},\boldsymbol{x}>}-1-i<\boldsymbol{\beta},\boldsymbol{\tau}(\boldsymbol{x})>]\nu_3(\boldsymbol{d}\boldsymbol{x})\},$$ where $$\nu_1(A) = \nu(A \cap \{\mathbf{x} \in R^T : \phi(\mathbf{x}) > r\}),$$ $$\nu_2(A) = \nu(A \cap \{\mathbf{x} \in R^T : \phi(\mathbf{x}) \le r, q(\mathbf{x}) > r\}),$$ $$\nu_3(A) = \nu(A \cap \{\mathbf{x} \in R^T : q(\mathbf{x}) \le r\}),$$ $$(2.10)$$ and $\mathbf{b}_1 \in R^T$. Since ν_2 is a finite measure, the simple argument used in the proof of Lemma 2.1 based on the tail behavior of a Poisson random variable shows that for every $\epsilon > 0$ (in particular, for an $\epsilon > \alpha$) $$\lim_{\lambda \to \infty} e^{\epsilon \lambda} P(\phi(\mathbf{X}_2) > \lambda) = 0, \tag{2.11}$$ and, further, by Lemma 2.1 we also have $$\lim_{\lambda \to \infty} e^{\epsilon \lambda} P(\phi(\mathbf{X}_3) > \lambda) = 0 \tag{2.12}$$ for all $\epsilon > 0$. We now consider \mathbf{X}_1 . Note that ν_1 is also a finite measure; let m be its total mass, and let $\{\mathbf{Y}_n\}_{n\geq 1}$ be a sequence of i.i.d. stochastic processes on T with common law $m^{-1}\nu_1$. Clearly, $$P(\phi(\mathbf{Y}_1) > \lambda) = m^{-1}H(\lambda) \tag{2.13}$$ whenever $\lambda > r$, and so the distribution of $\phi(\mathbf{Y}_1)$ is in $\mathcal{S}(\alpha)$, see Lemma 1.1 (ii). Let N be a mean m Poisson random variable independent of the sequence $\{\mathbf{Y}_n\}_{n\geq 1}$. Then by the subadditivity of ϕ , $$P(\phi(\mathbf{X}_1) > \lambda) = P\left(\phi(\sum_{j=1}^{N} \mathbf{Y}_j) > \lambda\right)$$ (2.14) $$\leq P\left(\sum_{j=1}^{N} \phi(\mathbf{Y}_{j}) > \lambda\right) \sim m P(\phi(\mathbf{Y}_{1}) > \lambda) E \exp\left(\alpha \sum_{j=1}^{N} \phi(\mathbf{Y}_{j})\right)$$ $$= H(\lambda) \exp \left(m(E \exp(\alpha \phi(\mathbf{Y}_1)) - 1) \right)$$ as $\lambda \to \infty$ by (2.13) and Lemma 1.1 (iv). Now the finiteness of the upper limit in (1.8) follows from the subadditivity upper bound $$\phi(\mathbf{X}) \le \phi(\mathbf{X}_1) + \phi(\mathbf{X}_2) + \phi(\mathbf{X}_3),$$ (2.11), (2.12), (2.14) and Lemma 1.1 (ii). The positivity of the lower limit in (1.8) is
even simpler. First, by the subadditivity of ϕ and the first part of (2.14), $$P(\phi(\mathbf{X}_1) > \lambda) \ge P\left(\phi(\mathbf{Y}_1) - \sum_{j=2}^{N} \phi(-\mathbf{Y}_j) > \lambda, N \ge 1\right)$$ $$= (1 - e^{-m}) \int_{R} P\left(\phi(\mathbf{Y}_1) > \lambda + u\right) K(du),$$ where K is the conditional distribution function of $\sum_{j=2}^{N} \phi(-\mathbf{Y}_j)$ given $N \geq 1$. Using (2.13) and Fatou's lemma we conclude that $$\underline{\lim}_{\lambda \to \infty} \frac{P(\phi(\mathbf{X}_1) > \lambda)}{H(\lambda)} \ge m^{-1} (1 - e^{-m}) \int_R e^{-\alpha u} K(du). \tag{2.15}$$ Now we use the subadditivity lower bound $$\phi(\mathbf{X}) \ge \phi(\mathbf{X}_1) - \phi(-\mathbf{X}_2) - \phi(-\mathbf{X}_3)$$ to obtain $$P(\phi(\mathbf{X}) > \lambda) \ge \int_{R} P(\phi(\mathbf{X}_1) > \lambda + v) M(dv),$$ where M is the law of $\phi(-\mathbf{X}_2) + \phi(-\mathbf{X}_3)$ (it is easily seen to be non-defective,) and so the positivity of the lower limit in (1.8) follows from (2.15) and Fatou's lemma. This completes the proof of the theorem. Comparing the result of Theorem 2.1 with the corresponding statement in the subexponential case (Theorem 2.1 of Rosinski and Samorodnitsky [RS93]) one cannot fail to observe that the latter has a much more definite conclusion than the former. The following example shows that this is in the nature of the distinction between the exponential and subexponential cases; that is, the limiting relation (1.7) does not hold in general. EXAMPLE 2.1 We start with the fact that any distribution F on R with $F(x) = 1 - x^{-p}L(x)e^{-\alpha x}$ for x > 0, where p > 1 and L varies slowly at infinity is in $S(\alpha)$ (see e.g. Cline [Cli86], Theorem 4). It follows from this that, by choosing appropriately the slowly varying functions, one can construct two distributions, F_1 and F_2 , both in $S(\alpha)$, such that F_1 is a symmetric distribution, F_2 is concentrated on $[0, \infty)$, and $$0 < \inf_{\lambda > 0} \overline{F_1}(\lambda) / \overline{F_2}(\lambda) \le \sup_{\lambda > 0} \overline{F_1}(\lambda) / \overline{F_2}(\lambda) < \infty, \tag{2.16}$$ but $$\lim_{\lambda \to \infty} \overline{F_1}(\lambda) / \overline{F_2}(\lambda) \text{ does not exist.}$$ (2.17) Let $T = \{1, 2\}$, and let $\mathbf{X} = \sum_{n=1}^{N} \mathbf{Y}_{j}$, where N is a mean 1 Poisson random variable, independent of the sequence of i.i.d. random vectors in R^{2} , $\{\mathbf{Y}_{j}\}_{j\geq 1}$ such that $$\mathbf{Y}_1 \stackrel{\mathrm{d}}{=} (U, W)$$, with U and W independent and $U \sim F_1, W \sim F_2$. Then, of course, **X** is an infinitely divisible stochastic process on T with $\nu = F_1 \times F_2$. Finally, let $\phi(\mathbf{x}) = \phi(x_1, x_2) = |x_1| + |x_2|$. Observe that by Lemma 1.1 (v) $$H(\lambda) = P(\phi(\mathbf{Y}_1) > \lambda) = P(|U| + W > \lambda)$$ $$\sim 2m_{F_2}(\alpha)\overline{F_1}(\lambda) + 2m_{F_1}^+(\alpha)\overline{F_2}(\lambda),$$ (2.18) where $$m_{F_1}^+(\alpha) = \int_0^\infty e^{\alpha x} F_1(dx).$$ In particular, it follows from (2.16) and (2.17) that $$0 < \underline{\lim}_{\lambda \to \infty} \overline{F_2}(\lambda) / H(\lambda) := l < L := \overline{\lim}_{\lambda \to \infty} \overline{F_2}(\lambda) / H(\lambda) < \infty.$$ (2.19) We claim that for every $k \geq 2$ there are positive numbers a_k and b_k such that $$P\left(\phi(\sum_{n=1}^{k} \mathbf{Y}_n) > \lambda\right) \sim a_k H(\lambda) + b_k \overline{F_2}(\lambda)$$ (2.20) as $\lambda \to \infty$. To this end observe that $$\phi(\sum_{n=1}^{k} \mathbf{Y}_n) = |\sum_{n=1}^{k} U_n| + \sum_{n=1}^{k} W_n,$$ where $\{U_n\}_{n\geq 1}$ are i.i.d. with common law F_1 , $\{W_n\}_{n\geq 1}$ are i.i.d. with common law F_2 , and the two sequences are independent. Let $T_k = |\sum_{n=1}^k U_n|$, and observe that by Lemma 1.1 (iii) we immediately have $$P(T_k > \lambda) \sim 2km_{F_1}(\alpha)^{k-1}\overline{F_1}(\lambda)$$ and $$P(\sum_{n=1}^{k} W_n > \lambda) \sim k m_{F_2}(\alpha)^{k-1} \overline{F_2}(\lambda)$$ as $\lambda \to \infty$. Therefore, by (2.16) and Lemma 1.1 (v) we conclude that, as $\lambda \to \infty$, $$P\left(\phi(\sum_{n=1}^{k} \mathbf{Y}_n) > \lambda\right) \sim 2k m_{F_1}(\alpha)^{k-1} m_{F_2}(\alpha)^k \overline{F_1}(\lambda) + k m_{F_2}(\alpha)^{k-1} m_{T_k}(\alpha) \overline{F_2}(\lambda)$$ (2.21) $$=k\Big(m_{F_1}(\alpha)m_{F_2}(\alpha)\Big)^{k-1}\Big[H(\lambda)+\Big(\frac{m_{T_k}(\alpha)}{m_{F_1}(\alpha)^{k-1}}-2m_{F_1}^+(\alpha)\Big)\overline{F_2}(\lambda)\Big].$$ Now (2.20) follows from (2.21) and the simple fact that for every $k \geq 2$ $$m_{T_k}(\alpha) > 2m_{F_1}^+(\alpha)m_{F_1}(\alpha)^{k-1}$$. Now we use Lemma 1.1 (iii) to conclude that $$\underline{\lim}_{\lambda \to \infty} P\left(\phi(\mathbf{X}) > \lambda\right) / H(\lambda) = \underline{\lim}_{\lambda \to \infty} P\left(\phi\left(\sum_{n=1}^{N} \mathbf{Y}_{n}\right) > \lambda\right) / H(\lambda)$$ $$= \underline{\lim}_{\lambda \to \infty} e^{-1} \sum_{k=0}^{\infty} \frac{1}{k!} P\left(\phi\left(\sum_{n=1}^{k} \mathbf{Y}_{n}\right) > \lambda\right) / H(\lambda) = e^{-1} \sum_{k=0}^{\infty} \frac{1}{k!} \underline{\lim}_{\lambda \to \infty} P\left(\phi\left(\sum_{n=1}^{k} \mathbf{Y}_{n}\right) > \lambda\right) / H(\lambda)$$ $$= e^{-1} \sum_{k=0}^{\infty} \frac{1}{k!} (a_{k} + lb_{k}),$$ while $$\overline{\lim}_{\lambda \to \infty} P(\phi(\mathbf{X}) > \lambda) / H(\lambda) = e^{-1} \sum_{k=0}^{\infty} \frac{1}{k!} (a_k + Lb_k),$$ and the former is strictly smaller than the latter. Therefore, the limit $$\lim_{\lambda \to \infty} P(\phi(\mathbf{X}) > \lambda) / H(\lambda)$$ does not exist. The following example shows that even when the limiting relation (1.7) does hold, one cannot expect the limiting constant to be determined by the measure 1 - H. EXAMPLE 2.2 Take an arbitrary $F \in \mathcal{S}(\alpha)$, and let $\{X_i\}_{i\geq 1}$ be a sequence of i.i.d. random variables with common distribution F. Let once again $T = \{1,2\}$, and let us define two infinitely divisible stochastic processes on T, $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$, as follows. For m = 1, 2 let $\mathbf{X}^{(m)} = \sum_{n=1}^{N} \mathbf{Y}_i^{(m)}$, where N is a mean 1 Poisson random variable, independent of the sequence of i.i.d. random vectors in \mathbb{R}^2 , $\{\mathbf{Y}_i^{(m)}\}_{i\geq 1}$ such that $$\mathbf{Y}_{i}^{(1)} = \left\{ \begin{array}{ll} (X_{i},0) & \text{with probability } 1/2, \\ (0,X_{i}) & \text{with probability } 1/2, \end{array} \right.$$ and $$\mathbf{Y}_i^{(2)} = (X_i, X_i),$$ $i \geq 1$. Choose $\phi(x_1, x_2) = x_1 \vee x_2$, and observe that $$H^{(m)}(\lambda) = P(\phi(\mathbf{Y}_1^{(m)}) > \lambda) = \overline{F}(\lambda)$$ for both m=1,2. However a trivial computation shows that, as $\lambda \to \infty$, $$P(\phi(\mathbf{X}^{(1)}) > \lambda) \sim \exp(-\frac{1}{2}(1 - m_F(\alpha))\overline{F}(\lambda),$$ while $$P(\phi(\mathbf{X}^{(2)}) > \lambda) \sim \exp(-(1 - m_F(\alpha))\overline{F}(\lambda),$$ and so the two constants are different unless $m_F(\alpha) = 1$. The last two examples notwithstanding, in certain situations one can estimate the lower and upper limits in (1.8). Suppose, for example, that the characteristic function of **X** is given in the form $$E\exp\{i<\boldsymbol{\beta}, \mathbf{X}>\} = \exp\{\int_{\mathbf{R}^T} [e^{i<\boldsymbol{\beta}, \boldsymbol{x}>} - 1)>]\nu(d\boldsymbol{x})\}, \tag{2.22}$$ with ν such that the integral $\int_{(-1,1)^T} \boldsymbol{x} \nu(d\boldsymbol{x})$ converges (coordinatewise). If ν is a finite measure, then the simple subadditivity argument used in (2.14) shows that $$\overline{\lim}_{\lambda \to \infty} \frac{P(\phi(\mathbf{X}) > \lambda)}{H(\lambda)} \le \exp\{-\int_{R} (e^{\alpha x} - 1)H(dx)\} \le \exp\{-\int_{0}^{\infty} (e^{\alpha x} - 1)H(dx)\}. \tag{2.23}$$ An estimate for the lower bound can be obtained in a similar way. To this end, let $$H_{-}(\lambda) = \nu(\{\mathbf{x} \in \mathbf{R}^T : \phi(-\mathbf{x}) > \lambda\}). \tag{2.24}$$ Further, let $\phi_+ = \phi \vee 0$, and observe that ϕ_+ is subadditive if ϕ is. We can now estimate the asymptotics of $P(\phi(\mathbf{X}) > \lambda)$ (which can be treated as $P(\phi(\mathbf{X}_1) > \lambda)$ in (2.14) if ν is a finite measure) as follows. Let $m = \nu(R^T)$, and $\{\mathbf{Y}_j\}_{j\geq 1}$ be i.i.d., with common law $m^{-1}\nu$. For any $\lambda > 0$ and $n \geq 1$, $$P\left(\phi_{+}\left(\sum_{j=1}^{n}\mathbf{Y}_{j}\right)>\lambda\right)\geq P\left(\bigcup_{i=1}^{n}\left\{\phi_{+}\left(\mathbf{Y}_{i}\right)-\sum_{j\neq i}\phi_{+}\left(-\mathbf{Y}_{j}\right)>\lambda\right\}\right),$$ and so by Fatou's lemma $$\begin{split} & \underline{\lim}_{\lambda \to \infty} P\bigg(\phi_{+}(\sum_{j=1}^{n} \mathbf{Y}_{j}) > \lambda\bigg) / H(\lambda) \geq \sum_{i=1}^{n} \underline{\lim}_{\lambda \to \infty} P\Big(\phi_{+}(\mathbf{Y}_{i}) - \sum_{j \neq i} \phi_{+}(-\mathbf{Y}_{j}) > \lambda\Big) / H(\lambda) \\ & \geq n m^{-1} \Big(E e^{-\alpha \phi_{+}(-\mathbf{Y}_{1})} \Big)^{n-1}. \end{split}$$ Therefore, $$\underline{\lim}_{\lambda \to \infty} \frac{P(\phi(\mathbf{X}) > \lambda)}{H(\lambda)} \ge \sum_{n=0}^{\infty} e^{-m} \frac{m^n}{n!} \underline{\lim}_{\lambda \to \infty} P\left(\phi_+(\sum_{j=1}^n \mathbf{Y}_j) > \lambda\right) / H(\lambda)$$ $$\ge \sum_{n=1}^{\infty} e^{-m} \frac{m^n}{n!} n m^{-1} \left(E e^{-\alpha \phi_+(-\mathbf{Y}_1)} \right)^{n-1} = \exp\left(-m(1 - E e^{-\alpha \phi_+(-\mathbf{Y}_1)})\right)$$ $$= \exp\left\{ -\int_0^\infty (e^{-\alpha x} - 1) H_-(dx) \right\}.$$ (2.25) The following proposition describes a situation in which the bounds (2.23) and (2.25) hold for infinitely divisible processes satisfying (2.22), even when the Lévy measure ν is infinite. Proposition 2.1 Let X be an infinitely divisible stochastic process given by (2.22). Under conditions of Theorem 2.1 assume, additionally, that $$\int_{R^T} (1 \wedge q(\mathbf{x})) \nu(d\mathbf{x}) < \infty. \tag{2.26}$$ Then $$\exp\{-\int_{0}^{\infty}
(e^{-\alpha x} - 1)H_{-}(dx)\} \leq \underline{\lim}_{\lambda \to \infty} \frac{P(\phi(\mathbf{X}) > \lambda)}{H(\lambda)}$$ $$\leq \overline{\lim}_{\lambda \to \infty} \frac{P(\phi(\mathbf{X}) > \lambda)}{H(\lambda)} \leq \exp\{-\int_{0}^{\infty} (e^{\alpha x} - 1)H(dx)\}.$$ (2.27) PROOF: We start with the obvious observation that (2.26) implies $$\nu(\{\mathbf{x} \in R^T : q(\mathbf{x}) > r\}) < \infty \tag{2.28}$$ for every r > 0. Because of this we can split the Lévy measure ν as in (2.10) for any r > 0, and the measures ν_1 and ν_2 will be finite. Fix now r > 0 and let \mathbf{X}_i , i = 1, 2, 3 be independent infinitely divisible processes given by $$E\exp\{i<\boldsymbol{\beta},\mathbf{X_i}>\}=\exp\{\int_{\mathbf{R}^T}[e^{i<\boldsymbol{\beta},\boldsymbol{x}>}-1)>]\nu_i(d\boldsymbol{x})\},$$ i=1,2,3, and such that (2.9) holds. For the upper bound in (2.27) note that by the subadditivity of ϕ , (2.11), (2.12), Lemma 1.1 (ii) and the fact that (2.23) holds for processes with a finite Lévy measure, we have $$\overline{\lim}_{\lambda \to \infty} P(\phi(\mathbf{X}) > \lambda) / H(\lambda) \le \exp\{-\int_{r}^{\infty} (e^{\alpha x} - 1) H(dx)\} E e^{\alpha \phi(\mathbf{X}_{2})} E e^{\alpha \phi(\mathbf{X}_{3})}. \tag{2.29}$$ Therefore, to complete the proof of the upper bound in (2.27) it remains to show that $$\overline{\lim}_{r\to 0} E e^{\alpha\phi(\mathbf{X}_2)} \le 1, \ \overline{\lim}_{r\to 0} E e^{\alpha\phi(\mathbf{X}_3)} \le 1.$$ We start with X_2 . Let m_r be the total mass of ν_2 , and observe that by (2.26), $m_r = o(1/r)$. Therefore, letting N_r be a Poisson random variable with mean m_r , we conclude that $$Ee^{\alpha\phi(\mathbf{X}_2)} \le Ee^{\alpha r N_r} = \exp(m_r(e^{\alpha r} - 1)) \to 1$$ as $r \to 0$. It remains to consider X_3 , and here our claim will follow from (2.26) and the standard estimate $Ee^{\alpha\phi(\mathbf{X}_3)} \le Ee^{\alpha q(\mathbf{X}_3)} \le \exp\Bigl(\int_{q(\mathbf{x}) < r} (e^{\alpha q(\mathbf{x})} - 1)\nu(d\mathbf{x})\Bigr).$ This proves the upper bound in (2.27). For the lower bound note the the argument similar to the one we used to establish (2.29) gives us $$\underline{\lim}_{\lambda \to \infty} P(\phi(\mathbf{X}) > \lambda) / H(\lambda) \ge \exp\{-\int_0^\infty (e^{-\alpha x} - 1) H_-^{(1,r)}(dx)\} E e^{-\alpha \phi(-\mathbf{X}_2)} E e^{-\alpha \phi(-\mathbf{X}_3)}, \qquad (2.30)$$ where $$H_{-}^{(1,r)}(\lambda) = \nu(\{\mathbf{x} \in \mathbf{R}^T: \ \phi(\mathbf{x}) > r, \phi(-\mathbf{x}) > \lambda\}).$$ Define further $$H^{(2,r)}(\lambda) = \nu(\{\mathbf{x} \in \mathbf{R}^T : \phi(\mathbf{x}) \le r, q(\mathbf{x}) > r, \phi(-\mathbf{x}) > \lambda\}).$$ We then have $$Ee^{-\alpha\phi(-\mathbf{X}_2)} \ge \exp\{-\int_R (e^{-\alpha x}-1)H_-^{(2,r)}(dx)\} \ge \exp\{-\int_0^\infty (e^{-\alpha x}-1)H_-^{(2,r)}(dx)\}.$$ Since $-(H_-^{(1,r)}+H_-^{(2,r)})$ converges vaguely, as $r\to 0$, to $-H_-$, we do get our lower bound in (2.30) if we prove that $\varliminf_{r\to 0} Ee^{-\alpha\phi(-\mathbf{X}_3)} \geq 1.$ However, this follows from the corresponding statement for the upper bound and the inequality $E1/Z \ge 1/EZ$, $Z \ge 0$. Therefore, the proof of the proposition is now complete. **Remark.** One can extend the statement of Proposition 2.1 to, say, *symmetric* infinitely divisible processes satisfying (2.26), but for which the integral $\int_{[-1,1]^T} \mathbf{x} \nu(d\mathbf{x})$ may diverge. We leave it to an interested reader to generalize this result further, by accommodating various possible shifts. #### 3 Maxima of Lévy processes Let $X = \{X(t), 0 \le t \le 1\}$ be a process with stationary independent increments (*Lévy process*) such that $$E\exp(i\theta X(t)) = \exp(t\psi(\theta)), \tag{3.1}$$ where $$\psi(\theta) = ib\theta - \sigma^2 \theta^2 / 2 + \int_{-\infty}^{\infty} \left(e^{i\theta x} - 1 - i\theta x \mathbf{1}(|x| \le 1) \right) \rho(dx)$$ (3.2) with $b \in R$, $\sigma \ge 0$ and ρ a Borel measure such that $\int_{-\infty}^{\infty} (1 \wedge x^2) \rho(dx) < \infty$. We consider the tail of the supremum of X, $P(\sup_{0 \le t \le 1} X(t) > \lambda)$. It has been shown by Berman [Ber86] and Marcus [Mar87] that $$\lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} = 1 \tag{3.3}$$ provided the right tail of the Lévy measure, $\rho(\lambda, \infty)$ was regularly varying at infinity (plus some extra conditions). Later Rosinski and Samorodnitsky [RS93] shown that (3.3) holds under the assumption of subexponentiality of the right tail of the Lévy measure ρ . See also Willekens [Wil87]. We are interested in the exponential case: assume that the distribution function $$1 - \min(\rho(x, \infty), 1)$$ is in $S(\alpha)$ (3.4) for an $\alpha > 0$. Clearly, this situation falls into the framework of Theorem 2.1, an application of which shows immediately that $$0<\underline{\lim}_{\lambda\to\infty}\frac{P\Big(\sup_{0\leq t\leq 1}X(t)>\lambda\Big)}{\rho(\lambda,\infty)}\leq\overline{\lim}_{\lambda\to\infty}\frac{P\Big(\sup_{0\leq t\leq 1}X(t)>\lambda\Big)}{\rho(\lambda,\infty)}<\infty.$$ It is the purpose of this section to demonstrate that in this important case the limit $\lim_{\lambda\to\infty} P\Big(\sup_{0\le t\le 1} X(t)>\lambda\Big)/\rho(\lambda,\infty)$ does exist, and so the two tails are truly equivalent. For a related result in the context of a random walk drifting to $-\infty$ see Bertoin and Doney [BD93]. We start with some notation. Let $Y_1, Y_2, ...$ be i.i.d. random variables. Then $\{S_n = Y_1 + ... + Y_n, n \geq 0\}$ is a random walk, and we denote by $\{M_n = \max_{0 \leq i \leq n} S_i, n \geq 0\}$ the corresponding ladder height process. Obviously, for every $n \geq 0$, $$M_{n+1} \stackrel{\mathrm{d}}{=} \max\{0, M_n + X_{n+1}\},\,$$ and so if the common distribution F of $\{Y_j\}_{j\geq 1}$ is in $S(\alpha)$, then by Lemma 1.1 (ii) and an inductive argument we immediately conclude that $$\lim_{\lambda \to \infty} \frac{P(M_n > \lambda)}{\overline{F}(\lambda)} = \sum_{i=1}^n m(\alpha)^{i-1} m_{M_{n-i}}(\alpha) \in (0, \infty),$$ (3.5) where $m(\alpha) = Ee^{\alpha Y_1}$, and $m_{M_k}(\alpha) = Ee^{\alpha M_k}$, $k \geq 0$. Suppose, for a moment, that our Lévy process is actually compound Poisson, with Lévy exponent ψ in (3.1) having the form $$\psi(\theta) = \int_{-\infty}^{\infty} (e^{i\theta x} - 1)\rho(dx)$$ (3.6) with ρ satisfying (3.4), and being a *finite* measure. That is, $$\rho = \mu F,\tag{3.7}$$ where $\mu > 0$ and F is a distribution in $S(\alpha)$. Then we let Y_1, Y_2, \ldots be i.i.d. random variables with common law F, independent of a Poisson random variable N with mean μ . Then, clearly, $$P(\sup_{0 \le t \le 1} X(t) > \lambda) = P(M_N > \lambda) = \sum_{n=0}^{\infty} e^{-\mu} \frac{\mu^n}{n!} P(M_n > \lambda).$$ Observe further that by Lemma 1.1 (iii) we know that there is a $K < \infty$ such that for every $\lambda > 0$ and $n \ge 1$, $$P(M_n > \lambda) \le P(\sum_{i=1}^n (Y_i)_+ > \lambda) \le K(1 + m_+(\alpha))^{n-1} \overline{F}(\lambda)$$ (where $m_{+}(\alpha) = Ee^{\alpha(Y_1)_{+}}$.) Therefore, by the Lebesgue Dominated Convergence Theorem and (3.5) we have $$\lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} = \lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\mu \overline{F}(\lambda)}$$ (3.8) $$= \sum_{n=1}^{\infty} e^{-\mu} \frac{\mu^{n-1}}{n!} \lim_{\lambda \to \infty} \frac{P(M_n > \lambda)}{\overline{F}(\lambda)} = \sum_{n=1}^{\infty} e^{-\mu} \frac{\mu^{n-1}}{n!} \sum_{i=1}^{n} m(\alpha)^{i-1} m_{M_{n-i}}(\alpha) \in (0, \infty).$$ This shows that the limit $\lim_{\lambda\to\infty} P\left(\sup_{0\leq t\leq 1}X(t)>\lambda\right)/\rho(\lambda,\infty)$ exists when the Lévy process is compound Poisson. More importantly, it is also an important ingredient in the proof of the general case, stated in the following theorem. THEOREM 3.1 Let X be a Lévy process with characteristic function given by (3.1) and (3.2). If the tail of ρ is equivalent to the tail of a distribution in $S(\alpha)$ (i.e. (3.4) holds,) then $$\lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} = c \tag{3.9}$$ for some $c \in (0, \infty)$. PROOF: We prove the theorem by sequentially increasing the level of generality. On the first level (compound Poisson process) its statement follows from (3.8); we regard this situation as **Step 0** of the proof. Step 1 Here we add the possibility of a drift. That is, suppose that the Lévy exponent ψ of the process has the form $\psi(\theta) = ib\theta + \int_{-\infty}^{\infty} (e^{i\theta x} - 1)\rho(dx), \tag{3.10}$ with the Lévy measure ρ still of the form (3.7). Although the argument is somewhat different in the two cases, b > 0 and b < 0, the approach is the same, and we consider only the (marginally more complicated) case b > 0. Fix an $\epsilon > 0$ small enough so that $b - \epsilon > 0$, and let K > 0 be a large positive number to be specified later. Consider two Lévy processes, $\mathbf{X}_+ = \{X_+(t), 0 \le t \le 1\}$ and $\mathbf{X}_- = \{X_-(t), 0 \le t \le 1\}$ defined by their corresponding Lévy exponents $$\psi_{+}(\theta) = K(e^{i\theta(b+\epsilon)/K} - 1) + \int_{-\infty}^{\infty} (e^{i\theta x} - 1)\rho(dx), \tag{3.11}$$ and $$\psi_{-}(\theta) = K(e^{i\theta(b-\epsilon)/K} - 1) + \int_{-\infty}^{\infty} (e^{i\theta x} - 1)\rho(dx).$$ (3.12) Observe that both \mathbf{X}_+ and \mathbf{X}_- are compound Poisson processes, with Lévy measures $$\rho_{+} = \rho + K \delta_{\{(b+\epsilon)/K\}}$$ and $$\rho_{-} = \rho + K \delta_{\{(b-\epsilon)/K\}}$$ correspondingly. In particular, $\rho_+(\lambda, \infty) \sim \rho_-(\lambda, \infty) \sim \rho(\lambda, \infty)$ as $\lambda \to \infty$, and since the statement of the theorem has been proved for such processes, we conclude that the limits
$$L_{+}(K,\epsilon) = \lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_{+}(t) > \lambda\right)}{\rho(\lambda,\infty)}$$ and $$L_{-}(K,\epsilon) = \lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_{-}(t) > \lambda\right)}{\rho(\lambda,\infty)}$$ exist and are in $(0, \infty)$. Recall that Y_1, Y_2, \ldots are i.i.d. random variables with common law F, and let $\Gamma_1, \Gamma_2, \ldots$ and $\tilde{\Gamma}_1, \tilde{\Gamma}_2, \ldots$ be the sequences of arrival times of two independent Poisson processes with rates μ and K accordingly, independent of the sequence Y_1, Y_2, \ldots as well. Let $\hat{\Gamma}_j = \Gamma_j \wedge 1, j \geq 1$. Then for every $\lambda > 0$, $$P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right) = P\left(\max_{i: \Gamma_i \le 1} \left(\sum_{j=1}^i Y_j + b\hat{\Gamma}_{i+1}\right) > \lambda\right). \tag{3.13}$$ Furthemore, $$P\left(\sup_{0 \le t \le 1} X_{+}(t) > \lambda\right) = P\left(\max_{i: \Gamma_{i} \le 1} \left(\sum_{j=1}^{i} Y_{j} + \frac{b+\epsilon}{K} R_{i}\right) > \lambda\right),\tag{3.14}$$ where R_i = number of j: $\Gamma_j \leq \Gamma_{i+1}$, $i \geq 0$. Choose any $\delta \in (0,1)$. We have $$P\left(\sup_{0 \le t \le 1} X_{+}(t) > \lambda\right) \ge P\left(\max_{i : \Gamma_{i} \le 1} \left(\sum_{i=1}^{i} Y_{i} + \frac{b+\epsilon}{K} R_{i}\right) > \lambda, \frac{b+\epsilon}{K} R_{i} \ge b\hat{\Gamma}_{i+1} \,\forall i : \, \Gamma_{i} \le 1\right)$$ (3.15) $$\geq P\left(\max_{i:\Gamma_{i}\leq 1}(\sum_{j=1}^{i}Y_{j}+b\hat{\Gamma}_{i+1})>\lambda,\,\frac{b+\epsilon}{K}R_{i}\geq b\hat{\Gamma}_{i+1}\,\forall i:\,\Gamma_{i}\leq 1\right)$$ $$\begin{split} &= P\Bigl(\sup_{0 \leq t \leq 1} X(t) > \lambda\Bigr) - P\Bigl(\max_{i:\, \Gamma_i \leq 1} (\sum_{j=1}^i Y_j + b\hat{\Gamma}_{i+1}) > \lambda, \, \frac{b+\epsilon}{K} R_i < b\hat{\Gamma}_{i+1} \, \text{for some} \,\, i:\, \Gamma_i \leq 1\Bigr) \\ &:= P\Bigl(\sup_{0 < t < 1} X(t) > \lambda\Bigr) - Q(\lambda). \end{split}$$ Now, for every $N \in \{1, 2, \ldots\}$ $$Q(\lambda) \le P\left(\max_{i:\Gamma_i \le 1} \left(\sum_{i=1}^i Y_i\right) > \lambda - b, \, \frac{b+\epsilon}{K} R_i < b\hat{\Gamma}_{i+1} \text{ for some } i: \, \Gamma_i \le 1\right)$$ (3.16) $$\leq P\Big(\max_{i:\Gamma_i \leq 1} (\sum_{j=1}^i Y_j) > \lambda - b, \ \Gamma_N \leq 1\Big) + P\Big(\max_{i \leq N} (\sum_{j=1}^i Y_j) > \lambda - b\Big) P\Big(\frac{b+\epsilon}{K} R_i < b\hat{\Gamma}_{i+1} \text{ for some } i \leq N\Big)$$ $$:= Q_1(\lambda) + Q_2(\lambda).$$ Observe that by (3.5) and Lemma 1.1 (iii) we have $$\lim_{\lambda \to \infty} \frac{Q_1(\lambda)}{\rho(\lambda, \infty)} = e^{\alpha b} \sum_{n=N}^{\infty} e^{-\mu} \frac{\mu^{n-1}}{n!} \sum_{i=1}^{n} m(\alpha)^{i-1} m_{M_{n-i}}(\alpha) \le \delta/2$$ (3.17) if N is large enough. In the following k will stand for a finite positive constant that is allowed to change from line to line. With this in mind we use Lemma 1.1 (iv) to conclude that $$\overline{\lim}_{\lambda \to \infty} \frac{Q_2(\lambda)}{\rho(\lambda, \infty)} \le kP\Big(\frac{b+\epsilon}{K} R_i < b\hat{\Gamma}_{i+1} \text{ for some } i \le N\Big)$$ (3.18) $$\leq k \sum_{i=1}^{N} P\left(\frac{b+\epsilon}{K}R_i < b\hat{\Gamma}_{i+1}\right) \leq \delta/2$$ if $K > K_0 = K_0(\epsilon, \delta)$ because $$\frac{R_i}{K\hat{\Gamma}_{i+1}} \Rightarrow \delta_{\{1\}}$$ (the point mass at 1) as $K \to \infty$. Therefore, for such K, $$\overline{\lim}_{\lambda \to \infty} \frac{Q(\lambda)}{\rho(\lambda, \infty)} \le \delta,$$ and we conclude by (3.15) that for every $K > K_0(\epsilon, \delta)$ $$\overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} \le \lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_{+}(t) > \lambda\right)}{\rho(\lambda, \infty)} + \delta = L_{+}(K, \epsilon) + \delta. \tag{3.19}$$ We now turn to lower bounds. As in (3.14) we have $$P\left(\sup_{0 \le t \le 1} X_{-}(t) > \lambda\right) = P\left(\max_{i: \Gamma_{i} \le 1} \left(\sum_{j=1}^{i} Y_{j} + \frac{b - \epsilon}{K} R_{i}\right) > \lambda\right),\tag{3.20}$$ and proceeding in a similar fashion to the above arguments we can write for every $\delta \in (0,1)$: $$\begin{split} P\Big(\sup_{0\leq t\leq 1}X_{-}(t)>\lambda\Big) &= P\Big(\max_{i:\;\Gamma_{i}\leq 1}(\sum_{j=1}^{i}Y_{j}-\frac{b-\epsilon}{K}R_{i})>\lambda,\,\frac{b-\epsilon}{K}R_{i}\leq b\hat{\Gamma}_{i+1}\,\forall i:\;\Gamma_{i}\leq 1\Big) \\ &+ P\Big(\max_{i:\;\Gamma_{i}\leq 1}(\sum_{j=1}^{i}Y_{j}-\frac{b-\epsilon}{K}R_{i})>\lambda,\,\frac{b-\epsilon}{K}R_{i}>b\hat{\Gamma}_{i+1}\,\text{for some }i:\;\Gamma_{i}\leq 1\Big) \\ &\leq P\Big(\sup_{0\leq t\leq 1}X(t)>\lambda\Big) + P\Big(\sum_{j=1}^{L}(Y_{j})_{+} + \frac{b-\epsilon}{K}\tilde{L}>\lambda,\,\frac{b-\epsilon}{K}R_{i}>b\hat{\Gamma}_{i+1}\,\text{for some }i\leq L\Big) \\ &:= P\Big(\sup_{0< t\leq 1}X(t)>\lambda\Big) + Q_{3}(\lambda). \end{split}$$ Here $L = \max\{i : \Gamma_i \leq 1\}$ and $\tilde{L} = \max\{i : \tilde{\Gamma}_i \leq 1\}$. We continue in a similar manner. For every $N \in \{1, 2, \ldots\}$ we have $$Q_3(\lambda) \le P\left(\sum_{j=1}^L (Y_j)_+ + \frac{b-\epsilon}{K}\tilde{L} > \lambda, L \ge N\right)$$ (3.22) $$+P\Big(\sum_{j=1}^{N}(Y_{j})_{+}+\frac{b-\epsilon}{K}\tilde{L}>\lambda,\,\frac{b-\epsilon}{K}R_{i}>b\hat{\Gamma}_{i+1}\,\text{for some }i\leq N\Big):=Q_{4}(\lambda)+Q_{5}(\lambda).$$ Observe that $Ee^{\alpha \frac{b-\epsilon}{K}\tilde{L}}$ is bounded from above uniformly over $0 < \epsilon < b$ and K > 1. Therefore, by Lemma 1.1 (ii) and (iii), we conclude that $$\lim_{\lambda \to \infty} \frac{Q_4(\lambda)}{\rho(\lambda, \infty)} = \sum_{n=N}^{\infty} e^{-\mu} \frac{\mu^{n-1}}{n!} n m_+(\alpha)^{n-1} E e^{\alpha \frac{b-\epsilon}{K} \tilde{L}} \le \delta/2$$ (3.23) if N is large enough. Furthemore, for every $ilde{N} \in \{1,2,\ldots\}$ we have $$Q_5(\lambda) \le P\left(\sum_{j=1}^N (Y_j)_+ + \frac{b-\epsilon}{K}\tilde{L} > \lambda, \, \tilde{L} > \tilde{N}\right)$$ $$+P\Big(\sum_{j=1}^N (Y_j)_+ + \frac{b-\epsilon}{K}\tilde{N} > \lambda, \frac{b-\epsilon}{K}R_i > b\hat{\Gamma}_{i+1} \text{ for some } i \leq N\Big) := Q_6(\lambda) + Q_7(\lambda).$$ Now, by Lemma 1.1 (ii) and (iii) we immediate conclude that $$\lim_{\lambda \to \infty} \frac{Q_6(\lambda)}{\rho(\lambda, \infty)} = \mu^{-1} N m_+(\alpha)^{N-1} E\left(e^{\alpha \tilde{L} \frac{b-\epsilon}{K}} \mathbf{1}(\tilde{L} > \tilde{N})\right) \le \delta/4 \tag{3.24}$$ if \tilde{N} is large comparatively to N. Finally, letting k being a constant that depends on the choice of N and \tilde{N} , we obtain, similarly to (3.18) $$\overline{\lim}_{\lambda \to \infty} \frac{Q_7(\lambda)}{\rho(\lambda, \infty)} \le kP\left(\frac{b - \epsilon}{K} R_i > b\hat{\Gamma}_{i+1} \text{ for some } i \le N\right)$$ (3.25) $$\leq k \sum_{n=1}^{N} P\left(\frac{b-\epsilon}{K}R_i > b\hat{\Gamma}_{i+1}\right) \leq \delta/4$$ if $K > K_1 = K_1(\epsilon, \delta)$. We conclude by (3.21)-(3.25) that for every $K > K_1(\epsilon, \delta)$, $$\underline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} \ge \lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_{-}(t) > \lambda\right)}{\rho(\lambda, \infty)} - \delta = L_{-}(K, \epsilon) - \delta. \tag{3.26}$$ It remains to compare $L_{+}(K,\epsilon)$ and $L_{-}(K,\epsilon)$. For any $\gamma>0$ by (3.14) and (3.20) we have $$P\Big(\sup_{0 \le t \le 1} X_{+}(t) > \lambda\Big) \le P\Big(\sup_{0 \le t \le 1} X_{-}(t) > \lambda - \gamma\Big) + P\Big(\sup_{0 \le t \le 1} X_{+}(t) > \lambda, \frac{2\epsilon}{K}\tilde{L} > \gamma\Big)$$ $$\leq P\Big(\sup_{0\leq t\leq 1}X_{-}(t)>\lambda-\gamma\Big)+P\Big(\sum_{j=1}^{L}(Y_{j})_{+}+\frac{b+\epsilon}{K}\tilde{L}>\lambda,\frac{2\epsilon}{K}\tilde{L}>\gamma\Big),$$ and so by Lemma 1.1 (ii) and (iv) we conclude that $$L_{+}(K,\epsilon) \le e^{\alpha\gamma} L_{-}(K,\epsilon) + \mu^{-1} E e^{\alpha \sum_{j=1}^{L} (Y_j)_{+}} E\left(e^{\alpha \frac{b+\epsilon}{K}\tilde{L}} \mathbf{1}(\frac{2\epsilon}{K}\tilde{L} > \gamma)\right). \tag{3.27}$$ But $$E\left(e^{\alpha \frac{b+\epsilon}{K}\tilde{L}}\mathbf{1}(\frac{2\epsilon}{K}\tilde{L}>\gamma)\right) \leq \left(Ee^{2\alpha \frac{b+\epsilon}{K}\tilde{L}}\right)^{1/2} \left(P(\tilde{L}/K>\gamma/2\epsilon)\right)^{1/2}$$ $$\leq \exp\left\{\frac{1}{2}K(e^{2\alpha \frac{b+\epsilon}{K}\tilde{L}}-1)\right\} \left(\frac{2\epsilon}{\gamma}\right)^{1/2} \leq e^{k\alpha(b+\epsilon)} \left(\frac{2\epsilon}{\gamma}\right)^{1/2}$$ for an absolute finite constant k as long as K > 1 and $\epsilon < b$ (say). Observe, further, that for such K and ϵ the limit $L_{-}(K, \epsilon)$ is unformly bounded from above. Therefore, choosing γ in (3.27) small and then choosing ϵ small, we may achieve $$L_{+}(K,\epsilon) - L_{-}(K,\epsilon) \le \delta$$ and so by (3.19) and (3.26) we have $$\overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} - \underline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} \le 3\delta,$$ and since $\delta > 0$ is arbitrarily small, the statement of the theorem has now been proved for Lévy processes of the form (3.10). Step 2 Here we prove the theorem for general Lévy processes without a Brownian component. That is, we assume now that the Lévy exponent of X has the form $$\psi(\theta) = ib\theta + \int_{-\infty}^{\infty} \left(e^{i\theta x} - 1 - i\theta x \mathbf{1}(|x| \le 1) \right) \rho(dx)$$ (3.28) without any additional assumptions on the Lévy measure ρ . Fix an $\epsilon > 0$, and let \mathbf{X}_1 and \mathbf{X}_2 be two independent Lévy motions, with Lévy exponents $$\psi_1(\theta) = ib\theta + \int_{|x| > \epsilon} \Big(e^{i\theta x} - 1 - i\theta x \mathbf{1}(|x| \le 1) \Big) \rho(dx)$$ and $$\psi_2(\theta) = \int_{|x| < \epsilon} \left(e^{i\theta x} - 1 - i\theta x \mathbf{1}(|x| \le 1) \right) \rho(dx)$$ correspondingly, such that $X
= X_1 + X_2$. Observe first that X_1 is a Lévy process of the type (3.10), and for such processes the theorem has already been proved. Therefore, $$\lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_1(t) > \lambda\right)}{\rho(\lambda, \infty)} = L(\epsilon) \in (0, \infty).$$ It is, of course, well known that $$\lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_2(t) > \lambda\right)}{\rho(\lambda, \infty)} = 0 \tag{3.29}$$ for every $\epsilon > 0$ and that $$E\exp\left\{\alpha\sup_{0\leq t\leq 1}|X_2(t)|\right\}\to 1 \tag{3.30}$$ as $\epsilon \to 0$. Since $$P\Big(\sup_{0 \le t \le 1} X_1(t) - \sup_{0 \le t \le 1} |X_2(t)| > \lambda\Big) \le P\Big(\sup_{0 \le t \le 1} X(t) > \lambda\Big) \le P\Big(\sup_{0 \le t \le 1} X_1(t) + \sup_{0 \le t \le 1} |X_2(t)| > \lambda\Big)$$ we conclude by (3.29) and Lemma 1.1 (ii) that $$Ee^{-\alpha\sup_{0\leq t\leq 1}|X_2(t)|}L(\epsilon)\leq \underline{\lim}_{\lambda\to\infty}\frac{P\Big(\sup_{0\leq t\leq 1}X(t)>\lambda\Big)}{\rho(\lambda,\infty)}$$ $$\leq \overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \leq t \leq 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} \leq E e^{\alpha \sup_{0 \leq t \leq 1} |X_2(t)|} L(\epsilon)$$ and an immediate application of (3.30) shows that the lower and the upper limits are, in fact, equal. This proves the statement of the theorem for Lévy processes without a Brownian component. Step 3 Finally, we add a possible Brownian component. That is, the Lévy exponent ψ is given now in its most general form (3.2). Again, the idea is to use a Poisson approximation to the Brownian component. For a K>0 consider a Lévy process $\tilde{\mathbf{X}}=\{\tilde{X}(t),\,0\leq t\leq 1\}$ with Lévy exponent $$\tilde{\psi}(\theta) = ib\theta + \sqrt{K} \left(\sqrt{K} (e^{i\theta\sigma/\sqrt{K}} - 1) - i\theta\sigma \right) + \int_{-\infty}^{\infty} \left(e^{i\theta x} - 1 - i\theta x \mathbf{1}(|x| \le 1) \right) \rho(dx). \tag{3.31}$$ Observe that we may write $$\mathbf{X} \stackrel{\mathrm{d}}{=} \mathbf{X}_0 + \mathbf{B}, \quad \tilde{\mathbf{X}} \stackrel{\mathrm{d}}{=} \mathbf{X}_0 + \mathbf{Z}_K, \tag{3.32}$$ where X_0 is a Lévy process with Lévy exponent given by (3.28), **B** is an independent of X_0 symmetric Brownian motion with variance σ^2 , and Z_K is an independent of X_0 Lévy process with Lévy exponent $$\psi(\theta) = \sqrt{K} \Big(\sqrt{K} (e^{i\theta\sigma/\sqrt{K}} - 1) - i\theta\sigma \Big).$$ Both $\tilde{\mathbf{X}}$ and \mathbf{X}_0 are Lévy processes of the kinds already considered, so the limits $$\tilde{L} = \lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} \tilde{X}(t) > \lambda\right)}{\rho(\lambda, \infty)}$$ and $$L_0 = \lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_0(t) > \lambda\right)}{\rho(\lambda, \infty)}$$ exist and are in (0,1). Clearly, $\mathbf{Z}_K \Rightarrow \mathbf{B}$ weakly in D[0,1], equipped with Skorohod's topology J_1 , as $K \to \infty$. Let now $K \to \infty$ through the positive integers. We put everything on the same probability space in the following way. By a standard embedding theorem (see e.g. Theorem IV.3.13, p. 71 of Pollard [Pol84]) there is a probability space $(\Omega_1, \mathcal{F}_1, P_1)$ on which we can define the processes $\{\mathbf{Z}_K\}_{K\geq 1}$ and \mathbf{B} such that $\mathbf{Z}_K \to \mathbf{B}$ a.s. in D[0,1] as $K \to \infty$. Let further \mathbf{X}_0 be defined on a different probability space $(\Omega_2, \mathcal{F}_2, P_2)$. Let (Ω, \mathcal{F}, P) be the product probability space. Let $D_K = \sup_{0 \le t \le 1} |\mathbf{Z}_K(t) - B(t)|$. Then $D_K \to 0$ a.s. as $K \to \infty$. We have by (3.32) for any $\gamma > 0$, $$\begin{split} &P\Big(\sup_{0\leq t\leq 1}X(t)>\lambda\Big)\geq P\Big(\sup_{0\leq t\leq 1}\tilde{X}(t)>\lambda+\gamma,\,D_K\leq \gamma\Big)\\ &=P\Big(\sup_{0\leq t\leq 1}\tilde{X}(t)>\lambda+\gamma\Big)-P\Big(\sup_{0\leq t\leq 1}\tilde{X}(t)>\lambda+\gamma,\,D_K>\gamma\Big). \end{split}$$ Now, $$\frac{\overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} \tilde{X}(t) > \lambda + \gamma, D_K > \gamma\right)}{\rho(\lambda, \infty)}$$ $$\le \overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_0(t) + \sup_{0 \le t \le 1} Z_K(t) > \lambda + \gamma, D_K > \gamma\right)}{\rho(\lambda, \infty)}$$ $$= e^{-\gamma \alpha} L_0 E\left(e^{\alpha \sup_{0 \le t \le 1} Z_K(t)} \mathbf{1}(D_K > \gamma)\right).$$ Using sequentially the Cauchy-Schwartz inequality and then a maximal inequality for submartingales we conclude that for all $K \geq 1$ $$\begin{split} E\Big(e^{\alpha\sup_{0\leq t\leq 1}Z_K(t)}\mathbf{1}(D_K>\gamma)\Big) &\leq \Big(Ee^{2\alpha\sup_{0\leq t\leq 1}Z_K(t)}\Big)^{1/2}\Big(P(D_K>\gamma)\Big)^{1/2} \\ &\leq k\Big(P(D_K>\gamma)\Big)^{1/2}, \end{split}$$ where k is an absolute finite constant. Observe that this argument also shows that the limit \tilde{L} , regarded as a function of K, is uniformly bounded from above for $K \geq 1$. Therefore, for any fixed $\delta \in (0,1)$ we can choose first γ small and then K so large that $$\underline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} \ge \tilde{L} - \delta. \tag{3.33}$$ Similarly, for every $\gamma > 0$ $$P\Big(\sup_{0 \leq t \leq 1} X(t) > \lambda\Big) \leq P\Big(\sup_{0 \leq t \leq 1} \tilde{X}(t) > \lambda - \gamma\Big) + P\Big(\sup_{0 \leq t \leq 1} X(t) > \lambda, \, D_K > \gamma\Big).$$ Arguing as above we conclude that $$\overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda, D_K > \gamma\right)}{\rho(\lambda, \infty)}$$ $$\le \overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_0(t) + \sup_{0 \le t \le 1} B(t) > \lambda, D_K > \gamma\right)}{\rho(\lambda, \infty)}$$ $$= L_0 E\left(e^{\alpha \sup_{0 \le t \le 1} B(t)} \mathbf{1}(D_K > \gamma)\right),$$ and, for a fixed $\delta \in (0,1)$ we take a sufficiently small γ and then a sufficiently large K to obtain $$\overline{\lim}_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} \le \tilde{L} + \delta. \tag{3.34}$$ Since δ can be taken as close to 0 as we wish, the proof of the theorem is now completed in the full generality by comparing (3.33) and (3.34). We conclude this paper with a discussion of the value of the limit c in (3.9). If the Lévy exponent of the Lévy process ψ has the form (3.6) then one may use the general bounds of Proposition 2.1 in our particular case (note that (2.26) holds automatically in this case). However, we can get better bounds than those given by the general result, and these bounds are contained in the following proposition. Proposition 3.1 Under conditions of Theorem 3.1 we have $$c \ge \exp\left\{\alpha b + \alpha^2 \sigma^2 / 2 + \int_{-\infty}^{\infty} \left(e^{\alpha x} - 1 - \alpha x \mathbf{1}(|x| \le 1)\right) \rho(dx)\right\}. \tag{3.35}$$ Furthemore, if the Lévy exponent ψ of the process is given in the form (3.6), then $$c \le \exp\left\{ \int_0^\infty (e^{\alpha x} - 1)\rho(dx) \right\} \frac{1 - \exp\left\{ - \int_{-\infty}^0 (1 - e^{\alpha x})\rho(dx) \right\}}{\int_{-\infty}^0 (1 - e^{\alpha x})\rho(dx)}.$$ (3.36) PROOF: Clearly, $P(\sup_{0 \le t \le 1} X(t) > \lambda) \ge P(X(1) > \lambda)$. Now (3.35) follows from the following simple generalization of Lemma 1.1 (iv): for every t > 0, $$\lim_{\lambda \to \infty} \frac{P(X(t) > \lambda)}{\rho(\lambda, \infty)} = tEe^{\alpha X(t)}$$ (3.37) $$= t \exp \left\{ \alpha bt + \alpha^2 \sigma^2 t / 2 + t \int_{-\infty}^{\infty} \left(e^{\alpha x} - 1 - \alpha x \mathbf{1}(|x| \le 1) \right) \rho(dx) \right\}.$$ Relation (3.37) has been undoubtedly known to (among other people) Embrechts and Goldie, who included in their paper [EG82] only the compound Poisson case (probably because other parts of their result are not as easy to extend to the case of infinite Lévy measure). We add for completeness that one can easily derive (3.37) from Lemma 1.1 (iv) by the usual argument consisting of representing X(t) as a sum of two independent infinitely divisible random variables by splitting ρ into two parts, that around the origin, and that away from the origin. We apply the same idea to prove (3.36). To this end, fix an $\epsilon > 0$ and, as in the proof of Theorem 3.1, consider two independent Lévy processes, X_1 and X_2 satisfying $X = X_1 + X_2$, with Lévy exponents $$\psi_1(\theta) = \int_{|x| > \epsilon} (e^{i\theta x} - 1)\rho(dx)$$ and $$\psi_2(\theta) = \int_{|x| \le \epsilon} (e^{i\theta x} - 1)\rho(dx)$$ correspondingly. By (3.8) we conclude that $$\lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X_1(t) > \lambda\right)}{\rho(\lambda, \infty)} = \sum_{n=1}^{\infty} e^{-\mu} \frac{\mu^{n-1}}{n!} \sum_{i=1}^{n} m(\alpha)^{i-1} m_{M_{n-i}}(\alpha), \tag{3.38}$$ where $\mu = \rho\{x : |x| > \epsilon\}$, and $m(\alpha)$ and $m_{M_k}(\alpha)$ correspond to a random walk with the step distribution $F_{\epsilon}(A) = \rho(A \cap \{x : |x| > \epsilon\})/\mu$. Observe that for any $k \geq 0$ $$m_{M_k}(\alpha) \le m_+(\alpha)^k = \left(\int_{-\infty}^{\infty} (1 \vee e^{\alpha x}) F_{\epsilon}(dx)\right)^k.$$ (3.39) Substituting (3.39) into (3.38) and simplifying we obtain $$\lim_{\lambda \to \infty} \frac{P\Big(\sup_{0 \le t \le 1} X_1(t) > \lambda\Big)}{\rho(\lambda, \infty)} \le \exp\Big\{ \int_{\epsilon}^{\infty} (e^{\alpha x} - 1)\rho(dx) \Big\} \frac{1 - \exp\Big\{ - \int_{-\infty}^{-\epsilon} (1 - e^{\alpha x})\rho(dx) \Big\}}{\int_{-\infty}^{-\epsilon} (1 - e^{\alpha x})\rho(dx)}.$$ $$:= l(\epsilon).$$ The probability tail of $\sup_{0 \le t \le 1} X_2(t)$ is lighter than that of $\sup_{0 \le t \le 1} X_1(t)$, and so we conclude by Lemma 1.1 (ii) that $$\lim_{\lambda \to \infty} \frac{P\left(\sup_{0 \le t \le 1} X(t) > \lambda\right)}{\rho(\lambda, \infty)} \le l(\epsilon) E \exp\left\{\alpha \sup_{0 \le t \le 1}
X_2(t)\right\},\tag{3.40}$$ and now (3.36) follows from the obvious fact that the right hand side of (3.40) converges to the right hand side of the former when $\epsilon \to 0$. **Remark.** Of course, one can use (3.36) and subadditivity to derive an upper bound on c when a drift and/or Brownian component is present. Furthemore, one can get tighter than (3.35) lower bounds on c by minorizing stochastically $\sup_{0 \le t \le 1} X(t)$ by the maximum of the process observed at the points i/n, $i = 0, 1, \ldots, n$ for some n > 1 and then appealing to (3.8). The resulting bounds are somewhat less transparent than (3.35), and so are not presented here. #### References - [BD93] J. Bertoin and R.A. Doney. Some asymptotic results for transient random walks. Technical Report No. 93/1, Statistical Laboratory, Department of Mathematics, University of Manchester, 1993. - [Ber86] S.M. Berman. The supremum of a process with stationary, independent and symmetric increments. Stoch. Proc. Appl., 23:281-290, 1986. - [Chi64] V.P. Chistyakov. A theorem on sums of independent random variables and its applications to branching random processes. *Theory Probab. Appl.*, 9:640-648, 1964. - [Cli86] D.B.H. Cline. Convolutions tails, product tails and domain of attraction. *Probab. Theory Rel. Fields*, 72:529-557, 1986. - [Cli87] D.B.H. Cline. Convolutions of distributions with exponential and subexponential tails. *J. Austral. Math. Soc.*, 43:347–365, 1987. (Series A). - [CNW73] J. Chover, P. Ney, and S. Wainger. Functions of probability measures. *J. Analyse Math.*, 26:255–302, 1973. - [dA80] A. de Acosta. Exponential moments of vector-valued random series and triangular arrays. Ann. Prob., 8:381–389, 1980. - [EG82] P. Embrechts and C.M. Goldie. On convolution tails. Stochastic Proc. Appl., 13:263-278, 1982. - [EGV79] P. Embrechts, C.M. Goldie, and N. Veraverbeke. Subexponentiality and infinite divisibility. Zeitschrift für Wahrscheinlichkeitstheorie, 49:335–347, 1979. - [Fer75] X. Fernique. Regularité des trajectoires des fonctions aléatoires gaussiennes. In Lecture Notes in Mathematics, Vol. 480, pages 1–96, New York, 1975. Springer Verlag. - [Mar87] M.B. Marcus. ξ -radial processes and random fourier series. Memoirs Amer. Math. Soc., 368, 1987. - [Pol84] D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984. - [RS93] J. Rosiński and G. Samorodnitsky. Distributions of subadditive functionals of sample paths of infinitely divisible processes. *Ann. Probab.*, 21:996–1014, 1993. - [Teu75] J.L. Teugels. The class of subexponential distributions. Ann. Probab., 3:1000-1011, 1975. - [Wil87] E. Willekens. On the supremum of an infinitely divisible process. Stoch. Proc. Appl., 26:173-175, 1987. Michael Braverman Institute for Applied Mathematics Russian Academy of Sciences Far Eastern Branch Khabarovsk 680002 RUSSIA Gennady Samorodnitsky School of Operations Research and Industrial Engineering Cornell University Ithaca, NY 14853