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Abstract

We investigate the tail behavior of the distributions of subadditive functionals of the sample paths
of infinitely divisible stochastic processes when the Lévy measure of the process has suitably defined
exponentialy decreasing tails. It is shown that the probability tails of such functionals are of the
same order of magnitude as the tails of the same functionals with respect to the Lévy measure, and
it turns out that the results of this kind cannot, in general, be improved. In certain situations we can
further obtain both lower and upper bounds on the asymptotic ratio of the two tails. In the second
part of the paper we consider the particular case of Lévy processes with exponentially decaying
Lévy measures. Here we show that the tail of the maximum of the process is, up to a multiplicative
constant, asymptotic to the tail of the Lévy measure. Most of the previously published work in the
area considered heavier than exponential probability tails.

1 Introduction and preliminaries

Let X = {X(t), t € T} be an infinitely divisible stochastic process, in the sense that all its finite
dimensional distributions are infinitely divisible . Following the suit of a number of recent publications,
we are interested in the tail behavior of the distributions of various functionals of the sample paths
of X. Unlike much of the previous work in the area which dealt with suitably heavy tails (the major
exception being the body of work on Gaussian processes,) the functionals of the processes considered
in the present paper will typically have probability tails that decrease exponentialy fast. We now
proceed with formal definitions.

We work with a general infinitely divisible process whose characteristic function is given in the
form

Eexp{i< 3, X>} = (1.1)
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exp{i < B,b > —B'SB/2+ /RT{«W’“’> C1-i< Bor(e) >lde)},

where b € RT, T is the covariance matrix of the Gaussian part of X and v is the the Lévy measure of
the Poisson part of X. Here 3 € R(T), the space of real functions 3 defined on T such that 3(¢) =0
for all but finitely many t’s, < B,z >= LierB(t)z(t), and 7(z)(t) = z(t)/(*(t) + 1).

Let ¢ be a measurable subadditive function RT — (—00,c]; that is,

by + @2) < d(@1) + &) for all 21,22 € R (1.2)

Such functions include suprema of the sample paths, oscillations, LP-norms and many others (with
measurability questions treated in a standard way). This framework has been considered by Rosinski
and Samorodnitsky [RS93], who have shown that

P($(X) > A) ~ H(A) as A — 0 (1.3)

where
H\) =v({x e RT: ¢(x)> A}) (1.4)

as long as H is asymptotically equivalent to a tail of a subezponential probability distribution. We
remind the reader that a distribution F on [0,00) is subexponential if

F s F(\
[:= \]er;o F}i\() ) exists and is finite (1.5)
and I € £(0), where B
Lla) = {F: I}LH;OE%%)-”Z = e, any v > 0}, (1.6)

a > 0. The name subezponentialis due to the assumption F' € £(0), and in this paper we are interested
in exponentialy decreasing tails. We will therefore consider the case when H in (1.4) is asymptotically
equivalent to a tail of a probability distribution in the ezponential class S(a), > 0, defined as the class
of distributions in £(a),a > 0, satisfying (1.5). These distributions were introduced by Chistyakov
[Chi64] and Chover, Ney and Wainger [CNW73], and were studied by a number of authors. We refer
the reader to Teugels [Teu75], Embrechts and Goldie [EG82] and Cline [C1i86], [Cli87] for a detailed
analysis of both subexponential and exponential classes of distributions. The question discussed in
this paper is what version of (1.3) holds under the assumption of exponential tails of H.

Intuitively, recalling the effect of convolutions on subexonential and exponential tails (see Em-
brechts, Goldie and Veraverbeke [EGV79], Theorem 3, Embrechts and Goldie [EG82], Theorem 4.2),
one might guess that under the assumption of exponentiality the appropriate version of (1.3) is

P(p(X)> A)~cH(N)as A — (1.7)

for some ¢ > 0. What we discover in this paper is that, while (1.7) is false in general, it is “almost
true”. More precisely, the true statement is

POX)>N) = POX) > A)

0< ll_I_n_A__,oo H()\) < In,\__»oo-_—H,—(-X‘)"—”‘ 0. (1.8)



This result is proven in the next section, and it requires a somewhat more involved argument than the
corresponding subexponential result of Rosinski and Samorodnitsky [R593].

Before proceeding, let us collect some facts about distributions in exponential classes. First of all,
in the remainder of this paper S(a) refers to the collection of distributions on the whole of R which
are in £(a) and for which (1.5) holds. Although most of literature on exponential and subexponential
classes treats only distributions concentrated on [0, o), the extensions to the more general case are, as
noted by Bertoin and Doney [BD93], entirely straightforward. In particular, the law of X is in S(a)
if and only if the law of X is.

LEMMA 1.1 Let F € S(a), a« > 0. Then

(i) mp(a) = [, e F(dz) < 00 and | = 2mp(a) in (1.5).
(ii) If the limit ¢; = limy_. G erists and is finite for two distribution functions Gy, G2 then

F(A\)
/\1_1_?;0 “G—l—‘—;:‘(g/‘\l)(‘i\l = ClmGz(ai) + Cama, (CY)

Moreover, G; € S(a) if ¢; > 0.
11) For every n > 1, limy_ ) o nmp(a)*~L. Furthemore, there is a K < co such that for
y O
everyn > 1 and A >0

J— I n—1
F(0)/FO) < K (1+mp(e) .

(iv) Forap >0 let G(r)=e "3 205 w F F*"(x). Then limy—oo %f\\‘} = pmg(a).

(v) Let G € L(a), and sup,\>0G(/\)/F(/\) < 0. Then H = F x G is in S(a) and H(\) ~
ma(a)F()\) + mp(a)G(X) as A — oo.

ProoF: (i) This an immediate extension of the corresponding result for distributions on [0, co) due
to Chover, Ney and Wainger [CNW73]; see also Cline [Cli&7], Theorem 2.9.

(ii) Again, this follows from the known result for the distributions on [0,00) due to Embrechts and
Goldie [EG82]; it is spelled out in Cline [Cli87], Corollary 2.10.

(iii) The first part is an immediate consequence of (ii). The second part is Lemma 2.6 of Embrechts
and Goldie [EG82].

(iv) This is Theorem 4.2 (ii) of Embrechts and Goldie [EG82].

(v) See Corollary 1 of Cline [CLi86]. B

The main theorem establishing (1.8) is proven in the next section. We show further by example
that (1.7) is false in general when o > 0, and that, when (1.7) does hold, the asymptotic constant c is
not determined by the function H. Finally, we provide bounds on the upper and lower limits in (1.8)
under certain further assumptions on the process X and the functional ¢.

In Section 3 we consider the important particular case of the maxima of Lévy processes with Lévy
measures with exponential right tails. We prove that, in this case, the limiting relation (1.7) does
hold, and we further provide bounds for the asymptotic constant c.



2 Tails of subadditive functionals

Our framework is similar to that of Rosinski and Samorodnitsky [RS93]. Specifically, to avoid measur-
ability problems we will work in this section with processes defined on a countable set T'. We assume
that there is a lower-semicontinuous pseudonorm ¢ : RT — [0, 00] such that

|p(x)| < ¢(x) for every x € RT. (2.1)

(That is, q(x + y) < ¢(x) + q(y) for all x,y € RT, ¢(0) = 0 and ¢(px) < ¢(x) for all x € RT and
|p| < 1.) The following is our general theorem.

TurorEM 2.1 Let X be given by (1.1), ¢ and q be, correspondingly, a measurable subadditive function
and a lower-semicontinuous seminorm related by (2.1). Assume that P(¢(X) < oo) = 1 and that the
distribution function F(z) =1 — min(L, H(z)) is in S(a). Then (1.8) holds.

We start with a lemma, which strengthens Lemma 2.2 of Rosinski and Samorodnitsky [RS93].

LEMMA 2.1 Let X be an infinitely divisible process with characteristic fuention given by (1.1). Assume
that P(¢(X) < 00) = 1 and that v({x € RT : 4(x) > r}) = 0 for some r > 0. Then E exp(eq(X)) < oo
for every € > 0.

Remark Lemma 2.2 of Rosinski and Samorodnitsky [RS93] proved that E exp(eq(X)) < oo for
some ¢ > 0. Note further that the result does not follow from the standard facts about the Banach
space valued infinitely divisible random vectors (see e.g. deAcosta [dA80]) because our ¢ is not, in
general, either homogeneous or continuous.

ProoF: We begin as in Rosinski and Samorodnitsky [R593] by choosing an a T — (0,00) such that
ST la(t) X (1)]* < > a.s.. Let X' be an independent copy of X, and consider an [%(T)-valued process
with stationary independent and symmetric increments {Z(u),u > 0} such that Z(1) 4 a(X — X').
(We are talking about coordinate-wise products, of course.) Finally, let p(h) = g(a™'h), h € (7).
Note that p is a lower-semicontinuous pseudonorm on [*(T), and that P(p(Z(l)) < oo)) =1. Ifpis
the Lévy measure of Z(1), then it follows that p({h € [>(T): p(h) >r})=0.

Since Eexp(eq(X — X')) = Eexp(ep(Z(1)), a standard application of Fubini’s theorem and sub-
additivity of ¢ shows that it is enough to prove that for any € > 0,

Eexp(ep(Z(l))) < 0. (2.2)

Observe that a standard argument (like the one used in Theorem 1.3.2 of Fernique [Fer75]) shows that
(2.2) holds if Z(1) is Gaussian. Therefore we use again subadditivity of p to note that it is enough to
prove our statement in the case when X, and thus Z, have no Gaussian component.

For a 6 > 0 let u denote the restriction of u to the set {h € I(T) : ||h||z¢ry < 6}, and let
{Z%(u), w > 0} be an [%(T)-valued process with stationary independent and symmetric increments
such that p® is the Lévy measure of Z5(1).



Choose a sequence 6, | 0. We put {Z°"(1)}n>1 on the same probability space as follows. Let
{U,}n>1 be a sequence of independent infinitely divisible random vectors in [%(T) such that the Lévy
measure of U, is the restriction of u to the set {h € I*(T): §u41 < [|hll7) < 6.}, n > 1. Then
we set Z0(1) = 2, U;, n > 1. Now an immediate application of Kolmogorov’s 0-1 law shows that
there is a k € [0, 00] such that

iMoo p(Z°7(1)) = & ass.. (2.3)

We claim that k < oc. Indeed, choose an R > 0 so large that

P(p(Z(l)) > R/2> <1/4.

Then by Lévy’s inequality, for every n,m > 1,

P( max  p(Z%(1)) > R) < 2P<p(Z(1)) > R/Z),

n<k<n+m
and so

P(iggﬂz&k(m > R) < 2P (1) > R/2) < 1/2

for every n > 1, showing that x < R. An immedaite conclusion from (2.3) is that for every v > k,
A, P(p(Z‘S"('l)) > 7) =0. (24)
Now fix an € > 0. Choose a v > k. By (2.4) there is an n > 1 such that

P(p(Z‘S”(l)) > 7> < %e"(&*”’”). (2.5)

Obviously, Z(1) 4 Z%"(1)+ W, where Z%7(1) and W are independent, and the latter random vector is
infinitely divisible with Lévy measure p. equal to the restriction of i to the set {h € I*(T) : ||hl|;z() >
6,}. Note that y, is a finite measure. Let m, be the total mass of i.. By the subadditivity of p,

FEexp (ep(Z(l))) < Eexp (ep(Z5"(l))> Eexp (ep(W)) .

Clearly,
N N
Eexp (ep(W)) = Fexp (ep(z Y]-)) < Eexp (e Z p(Yj)>
7=1 i=1
< Eexp(erN) < o0,
where N is a Poisson random variable with mean m., and Y1, Ys,...is an independent of N sequence

of i.i.d. {2(T)-valued random vectors with common distribution (m.) " 'p.. We have used the fact that
1t does not charge vectors h € (3(T) with p(h) > r. Our statement will therefore follow once we prove
that

Eexp(ep(Z'S"(l))) < 0. (2.6)
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We now repeat the argument of the proof of Lemma 2.2 of Rosinski and Samorodnitsky [RS93] (as
applied to the process {Z%(w), u > 0}) to conlcude that

Eexp(p(Z7(1) < limso s, (2.7)

where for each § > 0, M satisfies

Mg < 2Mgsexp (6(87 + 27‘))P<])(Z§”(1)) > 'y> + exp(8e7). (2.8)

(This is just (2.9) and (2.10) of Rosinski and Samorodnitsky [RS93].) By the choice of n, we conclude
from (2.5) and (2.8) that Ms < 2exp(8ey) for every 6 > 0, and so by (2.7)

Eexp <ep(Z5"(1))> < 2exp(8ey) < oo.

This completes the proof of the lemma. [ |

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.1 of Rosinski and Samorodnitsky [RS93], thereis an r > 0
such that v({x € RT : q(x) > r}) < co. Write

X =X, + X, + X3, (29)

where X;, i = 1,2, 3 are independent infinitely divisible stochastic processes on T such that
Eexp{i < 3,X; >} = eXp{/RT[ei<ﬂ,w> — 1]v;(d=z)},
j=1,2,and
Eexp{i < B,X3>} =exp{i < B,b1 > -B'TB/2 + /RT[EKﬁ""> ~1-1i< B,7(z) >vs(dx)},

where
vi(A) = (AN {x € BT : (x) > 1)),
1a(A) = (AN {x € BT : ¢(x) < r,q(x) > 7)), (2.10)
r3(A) =v(ANn{x € RT : ¢(x) < 7)),

and by, € RT. Since v, is a finite measure, the simple argument used in the proof of Lemma 2.1 based
on the tail behavior of a Poisson random variable shows that for every € > 0 (in particular, for an
€> a)

Jim_ eAP(H(X2) > A) =0, (2.11)

and, further, by Lemma 2.1 we also have

lim eP(H(X3) > A) =0 (2.12)



for all ¢ > 0. We now consider X;. Note that vy is also a finite measure; let m be its total mass, and
let {Y,}n>1 be a sequence of i.i.d. stochastic processes on 7" with common law m~lyy. Clearly,

P(p(Y1) > A)=m™ H(X) (2.13)

whenever A > 7, and so the distribution of ¢(Y}) is in S(a), see Lemma 1.1 (ii). Let N be a mean m
Poisson random variable independent of the sequence {Yn}n>1. Then by the subadditivity of ¢,

P(#(X1) > A) (qﬁ(ZY ) > ,\> (2.14)

(Z o(Y;) > A) ~ m P(6(Y1) > \)Eexpla qu(Y ))

= H(\) exp(m(E exp(ad(Y1)) - 1))

as A — oo by (2.13) and Lemma 1.1 (iv). Now the finiteness of the upper limit in (1.8) follows from
the subadditivity upper bound

H(X) < $(Xy) + d(X2) + ¢(X3),

(2.11), (2.12), (2.14) and Lemma 1.1 (ii).
The positivity of the lower limit in (1.8) is even simpler. First, by the subadditivity of ¢ and the
first part of (2.14),

N
P(&(X1) > A) > P(¢(Y1) S5 e(=Y) > A N2 1)
7=2

= (1~e"m)/RP(¢(Y1) > A u) K (du),

where K is the conditional distribution function of Z;Vﬂ #(=Y;) given N > 1. Using (2.13) and
Fatou’s lemma we conclude that

n_rn_HmP_(‘".%A—) > m=1(1—e™) /R e~ K (du). (2.15)

Now we use the subadditivity lower bound

B(X) > $(X1) — o(—X2) - ¢(—X3)

to obtain

P(8(X) > ) 2 /Rp(qs(xl) > A + v)M(dv),

where M is the law of ¢(—X3) + #(—X3) (it is easily seen to be non-defective,) and so the positivity
of the lower limit in (1.8) follows from (2.15) and Fatou’s lemma. This completes the proof of the
theorem. W



Comparing the result of Theorem 2.1 with the corresponding statement in the subexponential case
(Theorem 2.1 of Rosinski and Samorodnitsky [RS93]) one cannot fail to observe that the latter has a
much more definite conclusion than the former. The following example shows that this is in the nature
of the distinction between the exponential and subexponential cases; that is, the limiting relation (1.7)
does not hold in general.

EXAMPLE 2.1 We start with the fact that any distribution F' on R with F(z) = 1—z7PL(z)e™ " for
¢ > 0, where p > 1 and L varies slowly at infinity is in S(a) (see e.g. Cline [Cli86], Theorem 4). It
follows from this that, by choosing appropriately the slowly varying functions, one can construct two
distributions, F; and Fy, both in S(a), such that Fy is a symmetric distribution, F3 is concentrated
on [0,0), and

0 < inf F1(A)/F()) < sup F1(A)/Fa(X) < o0, (2.16)
A>0 A>0
but
A1im F1(X)/Fo()) does not exist. (2.17)

Let T = {1,2},and let X = "N | Y;, where N is a mean 1 Poisson random variable, independent
of the sequence of i.i.d. random vectors in R?, {Y;};>1 such that

v, & (U, W), with U and W independent and U ~ Fy, W ~ Fy.

Then, of course, X is an infinitely divisible stochastic process on T with v = F; x F;. Finally, let
P(x) = @1, x2) = |21| + |22l
Observe that by Lemma 1.1 (v)

H(N) = P($(Y1) > \) = P(lU|+w > ) (2.18)

~ 2mp () Fi(A) + 2m () Fo( ),

where

o0
m}i(a) = ./o e** Fy(dz).
In particular, it follows from (2.16) and (2.17) that
0 < limy_ o Fo(A)/H(A) :=1 < L:=Tim_o0oF2(X)/H(X) < 00. (2.19)

We claim that for every k > 2 there are positive numbers aj and by such that

k
P(&(} Yn) > A) ~ arH) + b F3() (2.20)

n=1

as A — co. To this end observe that

k k k
n=1

n=1 n=1



where {U,}n>1 are i.id. with common law Fy, {Wy}a>1 are iid. with common law F5, and the two
sequences are independent. Let T} = | Sk _, Un|, and observe that by Lemma 1.1 (iii) we immediately
have

P(T > A) ~ 2kmp, (@)Y (N)

and

k
P(S" Wy > A) ~ kmp, (o) FR(A)

n=1

as A — 0o. Therefore, by (2.16) and Lemma 1.1 (v) we conclude that, as A — oo,

k
P(p(3 Ya)> A) ~ 2kmig, (@) mg, (@)FTL(A) + kmg, (o) mr, (a)Fy(X) (2.21)

- k(77lpl(a)nlp2(a))k_l (7 + (Ezl%;_)—f — 2mf; () FR(N)].

Now (2.20) follows from (2.21) and the simple fact that for every k>2
mr, (a) > 2771}?1(a)mpl(a)k"l

Now we use Lemma 1.1 (iii) to conclude that

limy oo P(#(X) > A)/H(N) = n_m,\qoop(wfj Ya) > A)/H(N)

n=1
0 k o0 k
= limy e ™ Y PO V) > )0 = €7 3 lima P (63 X0 > ) HOY)
k=0 """ n=1 k=0 " n=1

ak + lby),

=~

o0
-1

while

o P (#(X) > A)/H(A) = ¢ Z (ak + Lbg),
and the former is strictly smaller than the latter. Therefore, the limit
Ali_{xgoP(qb(X) > A)/H()
does not exist.

The following example shows that even when the limiting relation (1.7) does hold, one cannot
expect the limiting constant to be determined by the measure 1 — H.



EXAMPLE 2.2 Take an arbitrary F € S(a), and let {X;}i>1 be a sequence of i.i.d. random variables
with common ditsribution F. Let once again T = {1,2}, and let us define two infinitely divisible
stochastic processes on T, X and X®@ | as follows. For m = 1,2 let X(m) = Zﬁ};l ng), where N
is a mean 1 Poisson random variable, independent of the sequence of i.i.d. random vectors in R?,
{Yl(»m)},-zl such that
v = { (X;,0) with probability 1/2,
: (0,X;) with probability 1/2,

and
YZ(Z) = (Xivxi)v

1> 1.
Choose ¢(z1,22) = T1 V 2, and observe that

HM () = P(e(Y™) > A) =F(\)

for both m = 1,2. However a trivial computatiton shows that, as A — o<,

P((b(X(l)) > )\) ~ exp(—-%(l - mF(a))F(/\),

while
P(p(X®) > A) ~ exp(~(1- mr(a)) F(N),

and so the two constants are different unless mp(a) = 1.

The last two examples notwithstanding, in certain situations one can estimate the lower and upper
limits in (1.8). Suppose, for example, that the characteristic function of X is given in the form

Eexp{i< 3,X>} = exp{/RT[ei<'8’m> — 1) >v(de)}, (2.22)

with v such that the integral f(—l,l)T zv(de) converges (coordinatewise). If v is a finite measure, then
the simple subadditivity argument used in (2.14) shows that

— P(¢(X) > A)

lim,\_,oo————-ﬁ—(:\)—“ < exp{— /R(e“x — 1)H(dz)} < exp{— /Oco(eax — 1)H(dz)}. (2.23)

An estimate for the lower bound can be obtained in a similar way. To this end, let
H_(A\) =v({x e RT: ¢(—x) > A}). (2.24)

Further, let ¢, = #V0, and observe that ¢ is subadditive if ¢ is. We can now estimate the asymptotics
of P(¢(X) > ) (which can be treated as P(¢(X1) > A) in (2.14) if v is a finite measure) as follows.
Let m = v(RT), and {Y;};>1 be i.i.d., with common law m~lv. Forany A >0 and n > 1,

P(64(2 Y1) > 4) 2 P(UH6:(¥0 = T eu (=) > 1),
j=1 =1

J#
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and so by Fatou’s lemma

P (6450 Y30 > A HHO) 2 3l P01 (Y0 = T 64(-Y) > 4)H)
=1

j=1 j#i

> nm™! (Ee""“’“f("y1 )>n_1.

Therefore,
. P(H(X) > A N _amt n
iy " 2 2 Dt P(64(X Y5) > A) OV (2:25)
n= j=
> 7 n—1
> Z e—m%nm—l (Ee—a¢+(—Y1)> = exp (—m(l _ Ee—a¢+(—Y1))>

= exp{— /Oco(e"” — 1)H_(dz)}.

The following proposition describes a situation in which the bounds (2.23) and (2.25) hold for
infinitely divisible processes satisfying (2.22), even when the Lévy measure v is infinite.

ProposITION 2.1 Let X be an infinitely divisible stochastic process given by (2.22). Under conditions
of Theorem 2.1 assume, additionally, that

/ (1 A g(x))w(dx) < oo. (2.26)
RT
Then - P(&(X R

exp(= [(e D (a0} < B DT (227)

_— P A o0 .

< umm—iﬂ%‘(—f\%—) <exp(~ [ (e = DA ().

PROOF: We start with the obvious observation that (2.26) implies
v({x e RT : ¢(x) > r}) < (2.28)

for every r > 0. Because of this we can split the Lévy measure v as in (2.10) for any r > 0, and
the measures vy and vy will be finite. Fix now 7 >0 and let X;, ¢ = 1,2,3 be independent infinitely
divisible processes given by

Eexpli < 8,1 >} = exp{ [ [P 1) >]ui(de)),
i = 1,2,3, and such that (2.9) holds. For the upper bound in (2.27) note that by the subadditivity
of ¢, (2.11), (2.12), Lemma 1.1 (ii) and the fact that (2.23) holds for processes with a finite Lévy

measure, we have

L’HTA_*OOP(MX) > ,\) JH(X) < exp{- / (€27 — 1)H (dx)} Ee~X2) Ee#(Xa), (2.29)
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Therefore, to complete the proof of the upper bound in (2.27) it remains to show that
Ii——rﬁrﬁoEe“‘b(Xz) <1, Ii—rﬁrﬁoEead’(Xi’) < 1.

We start with X,. Let m, be the total mass of v, and observe that by (2.26), m, = o(1/r). Therefore,
letting N, be a Poisson random variable with mean m,, we conclude that

Eea¢(X2) < E€CY7'NT — exp(mr(ear — 1)) —

as 7 — 0. It remains to consider X3, and here our claim will follow from (2.26) and the standard
estimate

Ee8(Xa) < Eec(Xa) < exp(/
a(x)<r

(e¥1X) — 1)1/(dx)) .

This proves the upper bound in (2.27). For the lower bound note the the argument similar to the one
we used to establish (2.29) gives us

lim, o, P($(X) > A)/H(N) 2 exp{~ / (= = WH(da)} Eemo X pemad(=X0) - (2.30)
4]
where

H(_”')()\) =v({x € RT: ¢(x) > r, ¢(=x) > A}).

Define further
H®O) = v({x e RT 1 ¢(x) <7, q(x) >, ¢(=x) > A}).
We then have

Ee~2#(=%X2) > exp{~ / (e7o% — DWH® (dz)} > exp{n/ (e7% — l)H(_2’r)(da:)}.
R 0

Since _(HE}”) + H(_Z’T)) converges vaguely, as r — 0, to —H_, we do get our lower bound in (2.30)
if we prove that

lim, _oEeo?"X2) > 1.

However, this follows from the corresponding statement for the upper bound and the inequality
E1/Z > 1/EZ, Z > 0. Therefore, the proof of the proposition is now complete. W

Remark. One can extend the statement of Proposition 2.1 to, say, symmetric infinitely divisible
processes satisfying (2.26), but for which the integral f[_m]f xv(dx) may diverge. We leave it to an
interested reader to generalize this result further, by accomodating various possible shifts.

3 Maxima of Lévy processes

Let X = {X(t), 0 <t < 1} be a process with stationary independent increments (Lévy process) such
that
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Eexp (zGX(t)) = exp (tz,/J(H)), (3.1)
where

¥(6) = b0 — 0267 /2 + /°° (¢ = 1~ ifo1(ja] < 1))p(da) (3.2)

with b € R, ¢ > 0 and p a Borel measure such that [*_(1 A z%)p(dz) < 0.

We consider the tail of the supremum of X, P<SUP05t51 X(t) > )\). It has been shown by Berman
[Ber86] and Marcus [Mar87] that

. P(Supo<t<1 X(t) > )‘\)
Alingo p(A, 00) =1 (3-3)

provided the right tail of the Lévy measure, p(}, 00) was regularly varying at infinity (plus some extra
conditions). Later Rosinski and Samorodnitsky [RS93] shown that (3.3) holds under the assumption
of subexponentiality of the right tail of the Lévy measure p. See also Willekens [Wil87]. We are
interested in the exponential case: assume that

the distribution function 1 — min(p(z,00),1)is in S(a) (3.4)

for an a > 0. Clearly, this situation falls into the framework of Theorem 2.1, an application of which
shows immediately that

P(Supogtgl X(t) > /\) T P(S‘lpogtgl X(t)> )\)
Mieo
p(X, 20) =0 p(X, )

It is the purpose of this section to demonstrate that in this important case the limit
limy oo P(sup0<t<1 X(t) > /\) /p(A,00) does exist, and so the two tails are truly equivalent. For
a related result in the context of a random walk drifting to —oco see Bertoin and Doney [BD93].

We start with some notation. Let Y7,Ya,... be ii.d. random variables. Then {Sn=Y1+...+
Y,, n > 0} is a random walk, and we denote by {M,, = maxo<i<n S;, n > 0} the corresponding ladder
height process. Obviuosly, for every n > 0,

0< _]j_nl)\—->00

< 0.

Mn+1 g‘ ma,x{O, Mn + ;Yn+1},

and so if the common distribution F of {Y;};>1 is in S(a), then by Lemma 1.1 (ii) and an inductive
argument we immediately conclude that

. P(M, > }) & i—1 '
where m(a) = Ee*¥, and mp, (a) = EeMk k> 0.
Suppose, for a moment, that our Lévy process is actually compound Poisson, with Lévy exponent
¥ in (3.1) having the form

v(8) = [ (¢ = )p(da) (3.6)

13



with p satisfying (3.4), and being a finite measure. That is,

p = uF, (3.7)

where ¢ > 0 and F is a distribution in S(a). Then we let Y1,1,... be ii.d. random variables with
common law F, independent of a Poisson random variable N with mean p. Then, clearly,

oo n
P(sup X(1)> ) = P(My > ) = 3 e B P, > ).
0<t<1 s n!

Observe further that by Lemma 1.1 (iii) we know that there is a K < co such that for every A > 0
and n > 1,

P, > A) £ PS> 2 € (1 ma (@) ()
=1

(where my(a) = Ee*()+ ) Therefore, by the Lebesgue Dominated Convergence Theorem and (3.5)
we have

P(supogics X(1) > A) . P(supogtg X(t) > A)

; - 3.8

Ao p(A, 00) A—00 LF(A) (3.8)
o n-1 00 el n

- e . P(M,>A\) _uH R |

a n;l ¢ n! ,\1520 F(\) - 2'::1 € T ; m(a)'~ ma,_,(a) € (0,00).

This shows that the limit limy_ P(sup(KK1 X(t) > /\) /p(), 00) exists when the Lévy process is
compound Poisson. More importantly, it is also an important ingredient in the proof of the general
case, stated in the following theorem.

THEOREM 3.1 Let X be a Lévy process with characteristic function given by (3.1) and (3.2). If the
tail of p is equivalent to the tail of a distribution in S(c) (i.e. (3.4) holds,) then

. P(supOStQ X(t) > /\)
)\LLH;O p(A, 00) - (3.9)

for some ¢ € (0,00).

PrOOF: We prove the theorem by sequentially increasing the level of generality. On the first level
(compound Poisson process) its statement follows from (3.8); we regard this situation as Step 0 of
the proof.

Step 1 Here we add the possibility of a drift. That is, suppose that the Lévy exponent % of the
process has the form

¥(8) = ib6 + /_ Z(e”ac — 1)p(dz), (3.10)

with the Lévy measure p still of the form (3.7). Although the argument is somewhat different in the
two cases, b > 0 and b < 0, the approach is the same, and we consider only the (marginally more
complicated) case b > 0.

14



Fix an ¢ > 0 small enough so that b — ¢ > 0, and let A" > 0 be a large positive number to be
specified later. Consider two Lévy processes, X4 = {X4(t), 0 <t <1} and X_ = {X_(),0<t< 1}
defined by their corresponding Lévy exponents

by (0) = K(e®POrI/N 1) 4 / (€% — 1)p(dz), (3.11)
and oo

p_(0) = K(e?¥C=9/K _q) +/ (€% — 1)p(dz). (3.12)
Observe that both X, and X_ are compound Poisson processes, with Lévy measures

P+ =P+ Kbpie/r)

and
p—=p+ KooKy

correspondingly. In particular, p1(A,00) ~ p_(A,00) ~ p(A, ) as A — o0, and since the statement
of the theorem has been proved for such processes, we conclude that the limits

o P(supogict X)) > )
L =, p(%o0)

and 4
P(supogier X-(t) > A)
p(A, 00)

L_(K,e)= Alim

exist and are in (0,00).

Recall that Yi,Ys,... are i.i.d. random variables with common law F, and let T'y,T'y,... and
Iy, T3, ... be the sequences of arrival times of two independent Poisson processes with rates 4 and K
accordingly, independent of the sequence ¥1,Y5,... as well. Let I‘, =T;A1l,j > 1. Then for every
A >0,

P(Os;% X(t)>\) = P(i%?gl(g Y; 4 blis1) > A). (3.13)

Furthemore, '

. : b+ ¢
P X(t Al =P Y, i A, 3.14
(Os;gl X4 (1) > ) (J‘ﬁf‘é‘l(; it R > ) (3.14)
where R; = number of 7 : f‘j < f’i+1, 1> 0.
Choose any é € (0,1). We have
: b+e¢ b+ ¢ - .

P X (t Al > P Y.+ —R; A, —R; >0 Ve T, <1 3.15
(0851;21 +1) > ) h (anlagl(; it K k) > K = Ot ¥ - ) ( )

: , . b+ ¢ . .
> P(i:nrl?gl(;h +0041) > A, o Re 2 0 Vi T < 1)

15



b+ ¢

hi+1 for somei: I'; < 1)

= P(Oggl X(t) > A) - P(i}llzfx%il(;yj + 0041

= P( sup X (t) > /\) — Q).

0<it<1
Now, for every N € {1,2,...}

o . b+ ¢ . . .
QM) < P(i:m?é(l(; Y;) > A—0, TRi < bl'jy1for some ¢ : I'; < 1) (3.16)
b+e€ - )
( aX(Z} ) > A=b, FN<1>+P<ma,x Z} ——b)P( B i+1forsomez§N)
= Q1(A) + Qa(A
Observe that by (3.5) and Lemma 1.1 (iii) we have
lim 2L o Z W zn:m(a)i“lmMn_i(a) < 6/2 (3.17)
Ao p(}‘ OO) n=N n! =1

if N is large enough.
In the following k will stand for a finite positive constant that is allowed to change from line to
line. With this in mind we use Lemma 1.1 (iv) to conclude that

— A b+e
hm,\_mop?/\zfog) < k'P( I R; < bI‘H_l for some i < N) (3.18)
N
Z ( 1+1> S 6/2
if K > Ko = Ko(e, 6) because
=46
K Fz+1 1
(the point mass at 1) as K — oo. Therefore, for such K,
— Q(N)
<6,
e 208, o0 = :

and we conclude by (3.15) that for every K > Ko(e,0)

P(SUPogtgl X() > /\> P(supogtg Xi(t) > /\>

e <) 6= Ly(K.€)+8. .
s p()\aoo) - /\Lnolo p(/\,oo) + +(I& €)+ (3 19)
We now turn to lower bounds. As in (3.14) we have
: b—e
P X_(t A = Y Ri , )
(Oss‘ﬁgl (t)> ) P(i:rrrxf\%il(; i+ R > A) (3.20)
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and proceeding in a similar fashion to the above arguments we can write for every é € (0,1):

. b—
P(osg% X_(1)>A) = (max Zy > A —I—-—R < bliyaViz Ty < 1) (3.21)
(znrla;(l(ZY - ) > A, %—6—& > blj41 for some i : T; < 1)

L
b—e- b—e¢ .
<P Xt A P Y, —_— A, ——R; > bl f <
< (OSS‘;IS)I (t) > )+ (J};l( )+ + T L> A, I > bl';4 for somez_L)

= P( sup X(t) > /\> + Q3(A).
0<t<1

Here I = max{i: I} < 1} and L = max{s : I; <1}
We continue in a similar manner. For every N € {1,2,...} we have

Qs(\) < P(ZL:

=1

>N) (3.22)
+P(Z(} )4 + %—L > A, b—:,-——R > by for some i < N) = Qa(A) + Qs(N).
=1

Observe that Ee%L is bounded from above uniformly over 0 < € < b and K > 1. Therefore, by

Lemma 1.1 (ii) and (iii), we conclude that

Q4(>\) S ‘u“n-l n—1 <L
pued < < .
e = 2 & e T <) (3.23)

if N is large enough. Furthemore, for every N € {1,2,...} we have
N b—e- -
Qs < P(L (V)4 + L >N L > N)
j=1

N
b—e. . b- .
+P(3(Yy)4 + KEN >\, TfRi > bli41 for some i < V) := Qo(A) + Q7(N)-
=1

Now, by Lemma 1.1 (ii) and (iii) we immediate conclude that

A Cpee
Aﬂo%&)—) = ' Nma(@)V T E (P F UL > N)) < /4 (3.24)

if N is large comparatively to N. Finally, letting k being a constant that depends on the choice of N
and N. we obtain, similarily to (3.18)

— Q7(A)
OO 1 < -
lim) e oo)"kP( Fre R > bI'i41 for some i < N) (3.25)
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<kZP<

n=1

z+1) < 6/4
if K> Ky, = Ki(¢,68). We conclude by (3.21)-(3.25) that for every K > Ki(€, 6),

P{sup X(t)y> A P{sup X_(t)>A
(supogic X() > ) > lim (supogi X-( )—6:L_(Ix",e)~6. (3.26)

p(/\,OO) 7Aoo p()\,oo)

limy .o

It remains to compare L, (K,¢) and L_(K,¢). For any v > 0 by (3.14) and (3.20) we have

2€ ~
P(sup Xi(t) > A) < P sup X_(1) > A 7) +P( sup X4(t) > A, I—fL >7)
0<t<1 0<t<1 0<t<1 S

b+e ¢ -
SP(OsSgng—(tb /\-7)+P(§(Y)++ > A, -EL>7),

and so by Lemma 1.1 (ii) and (iv) we conclude that
v L 4 €7 2 fod
Li(K,€)<e®"L_(K,e)+pu ' Ee’ ZFl(}’)“‘E(eo’é{’_Ll(}—;L > 'y)). (3.27)
But 9
oltsf 4 26 7 25%—-:!'—6
E(eo% WFL > 7)) < (Be ) (P(L/A > 7/2e))

< exp{%]\" 2088 L 1)} 2¢ 1/2 a(b+e) ( )1/2

for an absolute finite constant k£ as long as K > 1 and € < b (say). Observe, further, that for such K
and ¢ the limit L_(K,¢) is unformly bounded from above. Therefore, choosing + in (3.27) small and
then choosing ¢ small, we may achieve

Li(K,e)— L_(K,e)<$
and so by (3.19) and (3.26) we have

P(SUPO_<_t§1 X(t) > A) . P(supoﬁfl X > /\> < 36

H_H-l-/\—wo —ll_l‘!__l_ 00 s

and since § > 0 is arbitrarily small, the statement of the theorem has now been proved for Lévy
processes of the form (3.10).

Step 2 Here we prove the theorem for general Lévy processes without a Brownian component.
That is, we assume now that the Lévy exponent of X has the form

¥(6) = ib + /_ Z (¢ — 1 - ifz1(Je] < 1)) p(da) (3.28)

without any additional assumptions on the Lévy measure p.
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Fix an € > 0, and let X, and X, be two independent Lévy motions, with Lévy exponents
D1 (0) = ib6 + (% =1 - ib1(l2] < 1)) p(dz)
lz|>€
and

wz(e):]lxKE(ei"I 1 - ibz1(]2] < 1))p(de)

correspondingly, such that X = X; + Xj. Observe first that X; is a Lévy process of the type (3.10),
and for such processes the theorem has already been proved. Therefore,

) P(SUPogtgl X1(t) > A)
lim
Ao p(A, 00)

= L(€) € (0,00).
It is, of course, well known that

P(sup Xo(t) > A
lim (supoges ) =0 (3.29)
A—o00 p(/\, OO)

for every € > 0 and that
Eexp{a sup [Xg(t)l}—-» 1 (3.30)
0<t<1

as € — 0. Since

P( sup X;(t) - sup ])&g(t)l > /\) < P( sup X (1) > /\) < P( sup X;(t) + sup ]Xg(t)l > )\)
0<t<1 0<t<1 0<t<1

we conclude by (3.29) and Lemma 1.1 (ii) that

P<sup0$t$1 X(t) > /\>

Ee~®suPogt<1 [Xz(t)[L <1
e (O e 85

o P(SUPogtgl X(t) > /\)

and an immediate application of (3.30) shows that the lower and the upper limits are, in fact, equal.
This proves the statement of the theorem for Lévy processes without a Brownian component.

Step 3 Finally, we add a possible Brownian component. That is, the Lévy exponent 1) is given
now in its most general form (3.2). Again, the idea is to use a Poisson approximation to the Brownian
component. For a K > 0 consider a Lévy process X = {X(t), 0 <t < 1} with Lévy exponent

< Ee*sostsi UL (¢)

B(8) = ib + \/??(\/?E(e“’”/m - 1) —ifo) + /oo (6% — 1 - if21 (|| < 1) p(dz). (3.31)

-0

Observe that we may write
X2 X,+B, X2X+2Zx, (3.32)
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where X is a Lévy process with Lévy exponent given by (3.28), B is an independent of X, symmetric
Brownian motion with variance 02, and Zg is an independent of X Lévy process with Lévy exponent

9(8) = VE (VE (V1) - if0).
Both X and Xo are Lévy processes of the kinds already considered, so the limits

P(Supogtgl X(t) > /\)

i; = 1l ,
faees p(X, 0)
and
) P(SUP0<t<1 Xo(t) > )\>
Lo = lim ==
A=r00 p()\’ OO)

exist and are in (0, 1).

Clearly, Zy = B weakly in D[0,1], equipped with Skorohod’s topology Ji, as K — oco. Let
now I~ — oo through the positive integers. We put everything on the same probability space in the
following way. By a standard embedding theorem (see e.g. Theorem 1V.3.13, p. 71 of Pollard [Pol84])
there is a probability space (Q4,F1, P1) on which we can define the processes {Zg }x>1 and B such
that Zx — B a.s. in D[0,1] as K — oo. Let further X be defined on a different probability space
(Qq, Fa, Py). Let (2, F, P) be the product probability space.

Let Dy = supgei<; |Zr(t) — B(t)]. Then D — 0 a.s. as K — co. We have by (3.32) for any
v >0, o

P( sup X () > /\) > P( sup X(t)> A+7, Dk < 7)
0<i<1 0<t<1
= P( sup X(t) > /\+7) - P( sup X(1) > A+7, Dk > 7).
0<t<1 0<t<1
Now,
P(SUPogtgl X(t)> A+7, Dg > 7)
p(A, 20)

limy oo

P(Supogtgl Xo(t) + supg<i<1 Zi(t) > A+ 7, Dk > 7)
p(A, )
=e " LoE (ea SUPp<i<1 ZI\'(t)l(DK > ,7))

< mA—-»oo

Using sequentially the Cauchy-Schwartz inequality and then a maximal inequality for submartin-
gales we conclude that for all K > 1

E(ea supo<e<1 ZK ()1 (Dpe > 7)) < (Eewsupostsl ZK(t)yﬂ (P(DK > 7))1/2

< k(P(Dx > )",
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where k is an absolute finite constant. Observe that this argument also shows that the limit L, regarded
as a function of K, is uniformly bounded from above for k' > 1. Therefore, for any fixed § € (0,1) we
can choose first v small and then I so large that

P(SUP0<1<1 X(t) > A) .
I > L—6. 3.33
s © (339

l—i__rg,,\ —00

Similarily, for every v > 0

PQE%XUﬁ»0<P&2%XW>A 7)+P&2%X(M»MDK>7)

Arguing as above we conclude that

P<S‘1P05151 X(t)> A, Dr > 7)
p(A, )

lim e

P(Supogtsl J’Yo(t) + SupOStSl B(f) > A” DA— > ,},)
p(A, )

< Hmy

and, for a fixed 6 € (0,1) we take a suffciently small v and then a sufficiently large A to obtain

P{sup X(t)> A .
(suposes: )§L+5. (3.34)

hm\—wo

p(A, o0)

Since 6 can be taken as close to 0 as we wish, the proof of the theorem is now completed in the full
generality by comparing (3.33) and (3.34). n

We conclude this paper with a discussion of the value of the limit ¢ in (3.9). If the Lévy exponent
of the Lévy process ¢ has the form (3.6) then one may use the general bounds of Proposition 2.1 in our
particular case (note that (2.26) holds automatically in this case). However, we can get better bounds
than those given by the general result, and these bounds are contained in the following proposition.

PRrRoOPOSITION 3.1 Under conditions of Theorem 3.1 we have
c> exp{ab + a?0?/2 +/ (e‘“" —1—azl(lz] < 1))p(dz)}. (3.35)
—00
Furthemore, if the Lévy exponent ¢ of the process is given in the form (3.6), then

exp{ f (1- ea”)p(dw)}
0 (1 —ex®)p(dz) '

¢ < exp{/ooo( - 1)p(dz)} (3.36)
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Proor: Clearly, P(supog;<y X(t) > A) > P(X(1) > A). Now (3.35) follows from the folibwing
simple generalization of Lemma 1.1 (iv): for every ¢t > 0,

: P(X(t) > )\) _ aX(t) ‘ -
,\h_?;o—_/;(_)\—,—o—o-)—_ =tFEe (3.37)

= texp{abt + a?o?t/2 +t/_oo (e‘“’ ~1-azl(|z]| L 1))p(dm)}.

o0

Relation (3.37) has been undoubtedly known to (among other people) Embrechts and Goldie, who
included in their paper [EG82] only the compound Poisson case (probably because other parts of their
result are not as easy to extend to the case of infinite Lévy measure). We add for completeness that
one can easily derive (3.37) from Lemma 1.1 (iv) by the usual argument consisting of representing
X(t) as a sum of two independent infinitely divisible random variables by splitting p into two parts,
that around the origin, and that away from the origin.

We apply the same idea to prove (3.36). To this end, fix an ¢ > 0 and, as in the proof of Theorem
3.1, consider two independent Lévy processes, X; and X satisfying X = X4 X3, with Lévy exponents

1(8) = /W(e“’f - 1)p(da)

and

a(8) = [xl<€(eief — 1)p(da)

correspondingly. By (3.8) we conclude that

P(sup0<t<1 X1(t) > )\) o et & A
. =t= . - -1,
,\linéo S o0) = ngle —r ;m(a) mpp,_, (@), (3.38)

where u = p{z : |z| > €}, and m(a) and mps (o) correspond to a random walk with the step
distribution Fi(A) = p(An{z : |z| > €})/p. Observe that for any k > 0
k

mag, (o) < m (@)t = ( /_ 1(1 Ve F(dz)) (3.39)

Substituting (3.39) into (3.38) and simplifying we obtain

. P(Supo<t<1 Xa(t) > ’\)
lim —

1- exp{— oo - e‘“”)p(dx)}
A—r00 p(/\., OO) )

< exp{/ﬁoo(eax — 1)p(da:)} 2o (1 — ex=)p(dz)

= I(e).

The probability tail of supgc,<; X2(t) is lighter than that of supg;<; X1(¢), and so we conclude
by Lemma 1.1 (ii) that

. P(SUPogtgl X(t) > A)
lim
A—00 p(A, 00)

< l(e)Fexp{a sup Xa(t)}, (3.40)
0<t<1
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and now (3.36) follows from the obvious fact that the right hand side of (3.40) converges to the right
hand side of the former when ¢ — 0. W

Remark. Of course, one can use (3.36) and subadditivity to derive an upper bound on ¢ when
a drift and/or Brownian component is present. Furthemore, one can get tighter than (3.35) lower
bounds on ¢ by minorizing stochastically supg<;<q X(t) by the maximum of the process observed at
the points ¢/n, ¢ =0,1,...,n for some n > 1 and then appealing to (3.8). The resulting bounds are
somewhat less transparent than (3.35), and so are not presented here.
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