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Need for automated record linkage

• RA time required for the following matching 
tasks:
– Finding financial records for Fortune 100: 200 hours
– Finding financial records for 50,000 small businesses: 

?? hours
– Unduplication of the U.S. Census survey frame 

(115,904,641 households): ????
– Identifying miscoded SSNs on 500 million wage 

records: ????
– Longitudinally linking the 12 milliion establishments in 

the Business Register: ????
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Implementing the Fellegi-Sunter
Algorithm

• Standardizing
• Blocking and matching variables
• Calculating the agreement index
• Choosing m and u probabilities
• Estimating m and u probabilities using EM
• Clerical editing
• Estimating the false match rate
• Estimating the false nonmatch rate
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Standardizing
• Standardization is a necessary preprocessing 

step for all data to be linked via probabilistic 
record linking

• A standardizer:
– Parses text fields into logical components (first name, 

last name; street number, street name, etc.)
– Standardizes the representation of each parsed field 

(spelling, numerical range, etc.)
• Commercial standardizers have very high value-

added compared to home-grown standardizers
but are very expensive.
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Blocking and Matching
• The essence of a probabilistic record link is iterating 

passes of the data files in which blocking variables (must 
match exactly) and matching variables (used to compute 
the agreement index) change roles.

• Blocking variables reduce the computational burden but 
increase the false non-match rate.

• As records are linked, the linked records are removed 
from the input files and the analyst can use fewer 
blocking variables to reduce the false non-matches.

• Matching variables increase the computational burden 
and manage the tradeoff between false match and false 
non-match errors
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Recall the Setup

• Comparison space

• Comparison vector

• Components of comparison vector take on 
finitely many values, typically {0,1}

Γ→× )()( ba βα

( )1 are  of elements , ×Γ∈ Kγγ
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Linkage rule

• A linkage rule defines a record pair’s 
status based on it’s agreement pattern
– Link (L)
– Undecided (Clerical, C)
– Non-link (N)

{ }NCL ,,:F →Γ
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Calculating the Agreement Index

• We need to compute P(γ|M), P(γ|U) and the agreement 
ratio R(γ) = P(γ|M) / P(γ|U)

• The agreement index is ln R(γ).
• The critical assumption is conditional independence:

P(γ|M) = P(γ1|M) P(γ2|M)… P(γK|M)
P(γ|U) = P(γ1|U) P(γ2|U)… P(γK|U)
Where the subscript indicates an element of the vector γ.

• Implies that the agreement index can be written as:
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Choosing m and u Probabilities

• The probabilities P(γk|M) and P(γk|U) are called the 
mk and uk probabilities for matching variable k.

• These probabilities are often assessed using a 
priori information or estimated from an 
expensive clerically edited link.

• m probabilities are often set a priori around 0.9
• u probabilities are often set a priori around 0.1
• Neither of these assumptions has much 

empirical support
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Estimating m and u Using Matched 
Data

• If you have two files α
and β that have 
already been linked 
(perhaps clerically) 
then these estimates 
are available:
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Estimating m and u Probabilities 
Using EM

• Based on Winkler 1988 "Using the EM Algorithm for 
Weight Computation in the Fellegi-Sunter Model of Record Linkage," 
Proceedings of the Section on Survey Research Methods, American 
Statistical Association, 667-671.

• Uses the identity
P(γ)=P(γ|M)P(M)+P(γ|U)P(U)

• Imposes conditional independence
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Estimating m and u Probabilities 
Using EM: Algorithm I

• Select blocking variables that give file 
sizes for the α and β files that are feasible 
(this depends on the size of your 
computer). There are N elements in α x β.

• For each matching variable, choose an 
initial mk and uk, often 0.9 and 0.1 
respectively. Note that they do not have to 
sum to one.
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Estimating m and u Probabilities 
Using EM: Algorithm II

• Set up the complete data model:
– Parameters: m, u, p, where the scalar p is the 

proportion of matches in α x β and m and u are the (k
x 1) vectors of unknown probabilities. An initial value 
for p is also required.

– rj is an element of α x β; γj is its associated agreement 
vector

– Either rj is an element of M or rj is an element of U. 
Let gj = (1,0) when rj is an element of M and gj = (0,1) 
when rj is an element of U. 

– Complete data g = (gj , γj)
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Complete Data Likelihood Function
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E-step

• Replace gj with its expectation (P(M|γj), P(U|γj))
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M-step
• Maximize the complete data likelihood function
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Convergence

• Alternate E and M steps
• Compute the change in the complete data 

likelihood function
• Stop when the change in the complete 

data likelihood function is small
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Clerical Editing

• Once the m and u probabilities have been 
estimated, cutoffs for the U, C, and L sets 
must be determined.

• This is usually done by setting preliminary 
cutoffs then clerically refining them.

• Often the m and u probabilities are 
tweaked as a part of this clerical review.
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Estimating the False Match Rate

• This is usually done by clerical review of a 
run of the automated matcher.

• Some help is available from Belin, T. R., 
and Rubin, D. B. (1995), "A Method for 
Calibrating False- Match Rates in Record 
Linkage," Journal of the American 
Statistical Association, 90, 694-707.
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Estimating the False Nonmatch
Rate

• This is much harder.
• Often done by a clerical review of a sample of 

the non-match records.
• Since false nonmatching is relatively rare among 

the nonmatch pairs, this sample is often 
stratified by variables known to affect the match 
rate.

• Stratifying by the agreement index is a very 
effective way to estimate false nonmatch rates.
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Implementing the Basic Matching 
Methodology

• Name and address parsing and standardization
• Identifying comparison strategies:

– Which variables to compare
– String comparator metrics
– Number comparison algorithms
– Search and blocking strategies

• Ensuring computational feasibility of the task
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Generic workflow

• Standardize
• Match
• Revise and iterate through again



© John M. Abowd and Lars Vilhuber 2005, all rights reserved

An example

Abowd and Vilhuber (2002), forthcoming in 
JBES: “The Sensitivity of Economic 
Statistics to Coding Errors in Personal 
Identifiers”

• Approx. 500 million records (quarterly 
wage records for 1991-1999, California)

• 28 million SSNs
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1’s tenure with A:
1’s employment history

Coded Coded
Name SSN EIN

Leslie Kay 1 A
Leslie Kay 2 A
Lesly Kai 3 B

Earnings

$10
$10
$11

Separations 
too high

Accessions 
too high

SSN Name editing
Example

/ 1
/ 1
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Need for Standardization

• Names may be written many different 
ways

• Addresses can be coded in many different 
ways

• Firm names can be formal, informal, or 
differ according to the reporting 
requirement
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How to standardize

• Inspect the file to refine strategy
• Use commercial software
• Write custom software (SAS, Fortran, C)
• Apply standardizer
• Inspect the file to refine strategy
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Standardizing Names

• Alternate spellings
1. Dr. William J. Smith, MD
2. Bill Smith
3. W. John Smith, MD
4. W.J. Smith, Jr.
5. Walter Jacob Smith, Sr.
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Standardized names
Pre First Mid Last Pos

t1
Post
2

Alt1 Std1

1 Dr William J Smith MD BWILL

2 Bill Smith William BWILL

3 W John Smith MD

4 W J Smith Jr

4 Walter Jacob Smith Sr WALT
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Standardizing addresses

• Many different pieces of information
1. 16 W Main Street #16
2. RR 2 Box 215
3. Fuller Building, Suite 405, 2nd door to 

the right
4. 14588 Highway 16W
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Standardized addresses

Pre
2

Hsnm Stnm RR Box Post1 Post2 Unit
1

Unit
2

Bldg

1 W 16 Main St 16

2 2 215

3 405 Fuller

4 14588 Hwy 16 W
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A&V: standardizing

• Knowledge of structure of the file: 
-> No standardizing

• Matching will be within records close in 
time -> assumed to be similar, no need for 
standardization

• BUT: possible false positives -> chose to 
do an weighted unduplication step 
(UNDUP) to eliminate wrongly associated 
SSNs
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A&V: UNDUP
SSN UID First Middle Last Earn YQ

123-45-6789

123-45-6789

123-45-6789

123-45-6789

58 John C Doe 25678 93Q1

58 John C Doe 26845 93Q2

59 Jon C Doe 24837 94Q4

60 Robert E Lee 7439 93Q1

A UID is a unique combination of SSN-First-Middle-Last

123-45-6A89
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A&V: UNDUP (2)
SSN UID First Middle Last Earn YQ

123-45-6789

123-45-6789

123-45-6789

123-45-6789 60 Robert E Lee 7439 93Q4

60 Robert E Lee 7439 94Q1123-45-6789

58 John C Doe 25678 93Q1

58 John C Doe 26845 93Q2

59 Jon C Doe 24837 94Q4

Conservative strategy: Err on the side of caution
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A&V: UNDUP (3)
SSN UID First Middle Last Earn YQ

123-54-6789

123-54-6789

123-54-6789

123-54-6789 40 Bobbie Lee 27439 93Q4

123-54-6789

38 Roberta C Doe 25678 93Q1

38 Roberta C Doe 26845 93Q2

39 Roberta Doe 24837 94Q4

40 Bobbie Lee 27439 94Q1

Conservative strategy: Err on the side of caution
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Matching

• Define match blocks
• Define matching parameters: marginal 

probabilites
• Define upper Tu and lower Tl cutoff values 
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Record Blocking

• Computationally inefficient to compare all 
possible record pairs

• Solution: Bring together only record pairs 
that are LIKELY to match, based on 
chosen blocking criterion

• Analogy: SAS merge by-variables
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Blocking example

• Without blocking: AxB is 
1000x1000=1,000,000 pairs

• With blocking, f.i. on 3-digit ZIP code or 
first character of last name. Suppose 100 
blocks of 10 characters each. Then only 
100x(10x10)=10,000 pairs need to be 
compared.
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A&V: Blocking and stages

• Two stages were chosen:
– UNDUP stage (preparation)
– MATCH stage (actual matching)

• Each stage has own 
– Blocking
– Match variables
– Parameters
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A&V: UNDUP blocking
• No comparisons are ever going to be made 

outside of the SSN
• Information about frequency of names may be 

useful
• Large amount of records: 57 million UIDs

associated with 28 million SSNs, but many 
SSNs have a unique UID

⇒Blocking on SSN
⇒Separation of files by last two digits of SSN 

(efficiency)
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A&V: MATCH blocking

• Idea is to fit 1-quarter records into work 
histories with a 1-quarter interruption at 
same employer

⇒Block on Employer – Quarter
⇒Possibly block on Earnings deciles
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A&V: MATCH block setup
# Pass 1: 
BLOCK1 CHAR SEIN SEIN
BLOCK1 CHAR QUARTER QUARTER
BLOCK1 CHAR WAGEQANT WAGEQANT
# follow 3 other BLOCK passes with identical setup
#
# Pass 2: relax the restriction on WAGEQANT
BLOCK5 CHAR SEIN SEIN
BLOCK5 CHAR QUARTER QUARTER
# follow 3 other BLOCK passes with identical setup
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Determination of match 
variables

• Must contain relevant information
• Must be informative (distinguishing 

power!)
• May not be on original file, but can be 

constructed (frequency, history 
information)
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A&V: Variables and Matching

• File only contains Name, SSN, Earnings, 
Employer

• Construct frequency of use of name, work 
history, earnings deciles

• Stage 1: use name and frequency
• Stage 2: use name, earnings decile, work 

history with employer
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Understanding comparators

• Comparators need to account for
– Typographical error
– Significance of slight variations in numbers 

(both absolute and relative)
– Possible variable inversions (first and last 

name flipped)
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String comparators: Soundex
• The first letter is copied unchanged 
• Subsequent letters:

bfpv -> "1" cgjkqsxzç -> "2" 
dt -> "3" l -> "4" 
mnñ -> "5" r -> "6 " 

• Other characters are ignored
• Repeated characters treated as single 

character.
• 4 chars, zero padded. 
For example, "SMITH" or "SMYTHE" would both be 

encoded as "S530".
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String comparators: Jaro

• First returns a value based on counting 
insertions, deletions, transpositions, and 
string length

• Total agreement weight is adjusted 
downward towards the total disagreement 
weight by some factor based on the value

• Custom adjustments (Winkler and others)
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Comparing numbers

• A difference of “34” may mean different 
things:
– Age: a lot (mother-daughter? Different 

person)
– Income: little
– SSN or EIN: no meaning

• Some numbers may be better compared 
using string comparators
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Number of matching variables

• In general, the distinguishing power of a 
comparison increases with the number of 
matching variable

• Exception: variables are strongly 
correlated, but poor indicators of a match

• Example: General business name and 
legal name associated with a license. 
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Determination of match 
parameters

• Need to determine the conditional probabilities 
P(agree|M), P(agree|U) for each variable 
comparison

• Methods:
– Clerical review
– Straight computation (Fellegi and Sunter)
– EM algorithm (Dempster, Laird, Rubin, 1977)
– Educated guess/experience
– For P(agree|U) and large samples (population): 

computed from random matching
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Determination of match 
parameters (2)

• Fellegi & Sunter provide a solution when γ
represents three variables. The solution 
can be expressed as marginal probabilities 
mk and uk

• In practice, this method is used in many 
software applications

• For k>3, method-of-moments or EM 
methods can be used.
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Marginal probabilities: educated 
guesses for starting values

• P(agree on characteristic X| M)=
0.9 if X = first, last name, age
0.8 if X = house no., street name, other 
characteristic

• P(agree on characteristic X| U)=
0.1 if X = first, last name, age
0.2 if X = house no., street name, other 
characteristicNote that distinguishing power of first name 

(R(first)=0.9/0.1=9) is larger than the street name 
(R(street)=0.8/0.2=4)
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Marginal probabilities: 
better estimates of P(agree|M)

• P(agree | M) can be improved after a first 
match pass by a clerical review of match 
pairs: 
– Draw a sample of pairs
– Manual review to determine “true” match 

status
– Recompute P(agree|M) based on known truth 

sample
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A&V: UNDUP match variables
# Pass1
MATCH1 NAME_UNCERT namef 0.9 0.001 700
MATCH1 NAME_UNCERT namel 0.9 0.02 700
MATCH1 NAME_UNCERT namem 0.9 0.02 700
MATCH1 NAME_UNCERT concat 0.9 0.02 700
# Pass 2
MATCH2 ARRAY NAME_UNCERT fm_name 0.9 -.02 750
MATCH2 NAME_UNCERT namel 0.9 0.001 700
MATCH2 NAME_UNCERT concat 0.9 0.02 700
# and so on…



© John M. Abowd and Lars Vilhuber 2005, all rights reserved

A&V: MATCH match variables
# Pass1
MATCH1 CNT_DIFF SSN SSN 0.9 0.000001 5
MATCH1 NAME_UNCERT namef namef 0.9 0.02 700
MATCH1 NAME_UNCERT namel namem 0.9 0.02 700
MATCH1 NAME_UNCERT namel namel 0.9 0.001 700
# Pass 2
MATCH2 CNT_DIFF SSN SSN 0.9 0.000001 5
MATCH2 NAME_UNCERT concat concat 0.9 0.02 700
# Pass 3
MATCH3 UNCERT SSN SSN 0.9 0.000001 700
MATCH3 NAME_UNCERT namef namef 0.9 0.02 700
MATCH3 NAME_UNCERT namem namem 0.9 0.02 700
MATCH3 NAME_UNCERT namel namel 0.9 0.001 700               and so on…
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Adjusting P(agree|M) for relative 
frequency

• Further adjustment can be made by adjusting for 
relative frequency (idea goes back to 
Newcombe (1959) and F&S (1969))
– Agreement of last name by Smith counts for less than 

agreement by Vilhuber
• Default option for some software packages
• Requires assumption of strong assumption 

about independence between agreement on 
specific value states on one field and agreement 
on other fields.
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A&V: Frequency adjustment

• UNDUP: 
– none specified

• MATCH: 
– allow for name info, 
– disallow for wage quantiles, SSN
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Marginal probabilities: 
better estimates of P(agree|U)

• P(agree | U) can be improved by 
computing random agreement weights 
between files α(A) and β(B) (i.e. AxB)
– # pairs agreeing randomly by variable X 

divided by total number of pairs 
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Error rate estimation methods

• Sampling and clerical review
– Within L: random sample with follow-up
– Within C: since manually processed, “truth” is always known
– Within N: Draw random sample with follow-up. Problem: 

sparse occurrence of true matches
• Belin-Rubin (1995) method for false match rates

– Model the shape of the matching weight distributions 
(empirical density of R) if sufficiently separated

• Capture-recapture with different blocking for false 
non-match rates
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Analyst Review

• Matcher outputs file of matched pairs in 
decreasing weight order

• Examine list to determine cutoff weights 
and non-matches.
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A&V: Finding cutoff values

• UNDUP:
– CUTOFF1 7.5 7.5
– CUTOFF2 8 8
– Etc.

• MATCH:
– CUTOFF1 18 18
– CUTOFF2 12 12
– CUTOFF 10 10
– Etc.
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A&V: Sample matcher output

RESULT RECNUM WGT SSN NAMEF NAMEM NAMEL

[UA] 504 -999.99 382661272 WILL TARY
[UB] 2827 -999.99 384883394 RICHARD PHOUK
[UB] 392 -999.99 335707385 MONA LISA

RESULT RECNUM WGT SSN NAMEF NAMEM NAMEL

[CA] 351 3.66 333343734 DONNA L DUK
[CB] 1551 3.66 333383832 MARGEN L PRODUCT

RESULT RECNUM WGT SSN NAMEF NAMEM NAMEL

[MA] 43 32.76 444444441 LUKE UPP
[MB] 169 32.76 444444447 LUKE UPP
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Post-processing

• Once matching software has identified 
matches, further processing may be 
needed:
– Clean up
– Carrying forward matching information
– Reports on match rates
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Generic workflow (2)

• Start with initial set of parameter values
• Run matching programs
• Review moderate sample of match results
• Modify parameter values (typically only 

mk) via ad hoc means
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