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The research presented in this work focuses on several aspects of the remote oper-

ation of ground vehicles, notably Navigation and Mapping for autonomous robots

and the effects of time delay in tele-operated vehicles.

Navigation and mapping of large, unstructured spaces is achieved by accu-

mulating constraints on the geometrical relationships between landmarks. These

relationships are tracked using two qualitative representations of space, one based

on qualitative angles between landmark triples, and a second which also considers

qualitative edge lengths. For the first representation, measurements and graph

inference are performed by way of manually computed lookup tables based on

geometrical constraints on qualitative states. For the second representation, mea-

surements are generated online using a branch-and-bound algorithm to solve a set

of nonlinear feasibility problems, while lookup tables for inference are generated us-

ing a similar, offline approach. Estimates of the Relative Neighborhood Graph are

extracted from the qualitative map and used to perform long-distance navigation.

The effects of human control of remote vehicles are considered, focusing on

the question of how operators are able to compensate for time delays when tele-

operating vehicles in continuous motion. Statistical models fit to experimental

data using the Least Angle Regression and Sparse Multinomial Regression algo-

rithms show that human operators anticipate future control needs by predicting

rover motion forward through time to determine predicted off-track errors. The



relative contributions of environmental features to model predictive power is used

to determine how feature ‘importance’ varies as a function of time delay.
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INTRODUCTION
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The research presented in this work focuses on several aspects of the remote

operation of ground vehicles, notably Navigation and Mapping for autonomous

robots and the effects of time delay in teleoperated vehicles. Chapters 1 and 2

focus on the landmark-based mapping and navigation of large, unstructured spaces

by autonomous and semi-autonomous robots in the absence of global position or

heading information. They present methods for doing so in a qualitative fashion,

in which geometrical relationships between landmarks are described in terms of

discrete labels. The work in Chapter 3 focuses on the question of modeling the

ability of Human operators to compensate for the time delays often incurred when

controlling remote vehicles.

The work in Chapter 1, currently in review for the AIAA Journal on Aerospace

Information Systems[1], presents a novel method for autonomous robotic naviga-

tion and mapping of large scale spaces with sparse landmarks and minimal sensing.

The proposed algorithm constructs a graph-based map which encodes the relative

location of landmarks in the environment. Uncertainty in these locations is cap-

tured by imposing qualitative constraints on the relationships between landmarks

observed by the robot. These relationships are represented in terms of the relative

geometrical layout of landmark triplets. A novel measurement method based on

camera imagery is presented which extends previous work from the field of Quali-

tative Spatial Reasoning, namely Freksa’s Double Cross(FDC). Measurements are

fused into the map using a deterministic approach based on iterative graph up-

dates. Algorithm performance is evaluated using Monte-Carlo simulations and

data-driven simulation results are presented for a robot traversing the Jet Propul-

sion Laboratory Mars Yard.

The Qualitative Relational Mapping system is extended in Chapter 2, currently

in preparation for a submission to the IEEE Transactions on Robotics, by a new
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qualitative representation that adds a form of qualitative distance to the FDC.

Reasoning with this geometrical representation is recast as a set of nonlinear fea-

sibility problems. In this new context, measurements of qualitative states can be

extracted from camera measurements by treating each state as a set of nonlinear

constraints on the unknown ranges to observed landmarks. Allowable states are

those for which a feasibility solution can be found. Similarly, the composition op-

erator lookup tables necessary for inference can also be set up as the solutions to

nonlinear constraints on landmark position. In both cases, the feasibility problems

can be quickly solved by a Branch-and-Bound approach, taking advantage of the

small dimensionality of the system. Given the new representation, estimates of an

additional graph structure, the Relative Neighborhood Graph (RNG), are easily

extracted from the map and used for a long-distance navigation strategy based on

a sequence of landmark objectives based on proximity. Asymptotic performance

of the mapping algorithm is again evaluated using Monte Carlo tests on randomly

generated maps, and simulation results are presented for a robot traversing the

Mars Yard.

Chapter 3 considers the effects of human control of remote vehicles, focusing

on the question of how operators are able to compensate for time delays when

tele-operating vehicles in continuous motion. This work, previously published in

the IEEE Transactions on Systems, Man, and Cybernetics: Systems[2], presents a

methodology for determining whether human operators anticipate future control

needs in order to compensate for time delays when controlling remote vehicles.

The approach utilizes techniques drawn from the machine learning community in

order to learn statistical models of human decision making. Models are fit to

an experimental data set generated by remote operations of a robot subjected

to time delays between 0 − 2.5s, using the Least Angle Regression (LARS) and

3



Sparse Multinomial Logistic Regression (SMLR) algorithms. These algorithms

make use of regularization to reduce the effects of over-parameterization due to

redundant or noisy environmental features. Models learned by LARS achieve an

average prediction rate between 81 − 98%, depending on time delay, while those

learned by SMLR achieve average rates between 68−86%. A novel metric of feature

‘importance’ is used to evaluate the relative contributions of environmental features

to model performance, motivated by the structure of the LARS algorithm. The

degree to which human operators rely on anticipation is determined by examining

how ‘importance’ scores for features representing different prediction horizons vary

with increasing time delay.
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CHAPTER 1

QUALITATIVE RELATIONAL MAPPING FOR MOBILE ROBOTS

WITH MINIMAL SENSING
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1.1 Introduction

When available, absolute position sensors such as GPS systems can provide ex-

cellent estimates of the position and attitude necessary for long-term autonomous

robotic operation. Unfortunately, such systems are unavailable for a number of in-

teresting mission classes, including extra-planetary exploration, operation in GPS-

denied regions, and operation of extremely small or low-cost robotic platforms.

In the absence of absolute position sensors, existing robot localization systems

tend to either rely solely on local sensors of ego-motion (e.g. Inertial Measurement

Units, wheel encoders) as in the current GESTALT system for the Mars Explo-

ration Rovers (MER) discussed by Ali et al. [3], or incorporate measurements of

the rover’s relative position and orientation with respect to certain landmarks in

the environment using vision or ranging sensors. The latter case may consist of tri-

angulation from known reference positions as demonstrated by Kuipers and Levitt

[4], or the construction of adaptive feature maps as in the Simultaneous Localiza-

tion and Mapping (SLAM) framework [5]. These methods have definite strengths,

including the ability to provide both global position and orientation estimates as

well as accurate estimates of the uncertainty in the parameters. They can also

provide global localization of environmental features and thus allow the accumu-

lation of information for the assembly of stable maps necessary for long-distance

planning. However, these approaches often face a number of limitations, including

the need for high quality sensing to determine the exact distance to visible land-

marks, a reliance on point estimates of landmarks, and the use of a large number

of closely spaced landmarks in order to overcome uncertainty but which do not

scale well computationally.

This chapter presents a method for online robotic mapping in the absence of

global reference data using qualitative spatial reasoning in a graph structure. The

6



Figure 1.1: Example of objects and groups of objects comprising a crater region
on Mars. Blue ellipses indicate distinctive rocks. Red outlines indicate groups of
rocks. Green boxes indicate areas of exposed crater wall. The yellow ellipse denotes
the distinctive sand pattern of the crater basin. The orange outline highlights an
area of exposed outcrop. Image taken by MER Opportunity rover on sol 270

proposed algorithm is an extension of the work developed by the authors and pre-

sented in [6]. This process is called a ‘Qualitative Relational Map’ (QRM), in

which the relative geometrical relationships between landmarks are tracked using

qualitative information inferred from monocular camera images. The key novel-

ties in this work are a greatly improved method for extracting measurements of

qualitative states from single-camera images using an optimization approach, and

the implementation of the mapping system in a realistic experimental scenario.

The use case presented here to evaluate system performance is the exploration

and mapping of a Mars-like environment, such as that depicted in Figure 1.1.

Such environments are often characterized by the presence of visually distinctive

objects, such as the rock clusters, outcrops, and crater walls outlined in Figure

1.1, embedded within large open spaces. Operation in the Martian environment is

approximated using the Mars Yard at the Jet Propulsion Laboratory (JPL).

A key characteristic of the proposed QRM is the ability to extract and use as

much information about the environment as possible from a minimal set of low-
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cost sensors. The QRM implementation detailed in this work relies on a single

camera with minimal quality requirements. However, the algorithm is applicable

to any sensor system which can provide relative bearing to landmarks as well as an

ordering by range. As with all monocular mapping strategies, the resulting map

is unable to specify a global scale. Recent work on monocular navigation, in par-

ticular monocular-SLAM algorithms such as those discussed by Davison et al. [7],

attempts to infer a scale from estimates of ego-motion. However, the qualitative

geometries in the QRM operate in a naturally scale-free environment. Critically,

algorithm performance does not depend on access to estimates of ego-motion be-

tween observations, a situation that is often the case in high-slip environments or

with low-cost platforms. While the experimental results in Section 1.5 are shown

with images used sequentially, the resulting maps would be the same for any choice

of image order, thus making the QRM approach very general.

Previous work on qualitative mapping and navigation for ground robots in-

cludes the QUALNAV system described by Lawton [8], which relied on binary

relationships inferred from the cyclical ordering of landmarks in a robots view.

This representation decomposed the space around landmarks into regions defined

by the rays passing through each landmark pair, as crossing those lines swaps land-

mark position in the view. Cyclical ordering was also used by Wallgrun [9] to learn

the topologies of environments made up of hallway junctions, where junctions are

labeled according to their qualitative cardinal orientation. The representation was

extended by Schlieder [10] to include the directions opposite landmarks in order

to eliminate map ambiguities and termed the ‘panorama’. The cyclical order is

also revised to include extended objects with occlusions by Fogliaroni et al. [11],

in which a topological map of visibility regions is induced by tangent lines from

the extrema of convex polygonal obstacles. These regions are then learned either

8



from an known map of object shapes and locations, or by an exhaustive search of

the space.

One major aim of the QRM system described in this paper is to decouple the

robot position estimation problem from that of map building as much as possi-

ble. This is inspired by the insight that many robot tasks, such as navigation,

do not require a fully defined metrical map. Use of qualitative relations between

objects allows maps to remain useful in the presence of errors from uncertain ego-

motion due to wheel slippage and rate-gyro drift. The proposed QRM encodes the

relationships between observed landmarks explicitly in terms of geometrical state-

ments, with qualitative states used to incorporate uncertainty in relative positions.

In contrast, the graphical models used in many algorithms from the SLAM com-

munity follow the framework summarized by Durrant-Whyte and Bailey in [12]

and [13], in which the probabilistic location of landmarks are measured relative to

the uncertain robot state and the landmark-landmark relationships are implicitly

encoded in a covariance matrix.

Metrical SLAM approaches work extremely well in structured spaces and ar-

eas with a high concentration of landmarks, but can have challenged operating

in sparse environments. In such environments the reliance on motion-models in-

creases, and errors such as model mismatch, wheel slip, and bias drifts can become

a significant limitation to accurate localization. In particular, EKF-SLAM al-

gorithms were proven to be inconsistent over time by Julier and Uhlmann [14],

due to the need to linearize about the incorrect ego-motion estimates. As ob-

served by Huang and Dissanayake [15], linearization induced filter inconsistencies

are particularly problematic when using the bearing only measurements provided

by monocular cameras. Several approaches have been taken in the literature to

address the SLAM consistency problem, such as ego-frame approaches with linked

9



submaps, as described by Castellanos et al. [16]. However, such approaches rely

on having a high density of nearby landmarks in order to generate meaningful

submaps, and while they can dramatically improve the operation time of SLAM

system, the filter will still diverge over long distances. Non-metrical solutions to

this problem, such as the topological and place-based methods presented by Angeli

et al. [17] and Cummins and Newman [18] respectively, have been more successful

at eliminating map drift entirely. However, these solutions rely on environments

having either topologies with limited connectivity, such as that seen indoors or in

urban environments, or well-defined places identifiable by high feature densities.

The qualitative approach detailed in this paper avoids the consistency problem

entirely by extracting geometrical constraints on landmark relationships directly

from camera measurements, rather than relying on estimated ego-motion. Conse-

quently the system avoids both integration and linearization errors, but does so at

the cost of maintaining scale free maps with large uncertainties in exact landmark

positions, particularly at the edge of the map. In essence, this can be seen as a

trade-off between map precision and map consistency.

Qualitative mapping bears some similarities with topological reasoning, al-

though the underlying representations of map elements are different. Topological

mapping places constraints on the geometrical arrangements of a map by specify-

ing the connectivity of extended spaces as discussed by Randell et al. [19]. Both

topological and topometric algorithms, such as those presented by Hoiem et al. [20]

and Sibley et al. [21], have achieved great success in mapping indoor and urban

environments, however they require that the environment be well structured. In

large, open environments, the regions represented as nodes in a topological graph

become poorly defined, as do the edges representing transitions between such re-

gions. The proposed QRM algorithm takes a similar constraint-based approach,
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but operates on the geometries of point sets rather than extended objects as it

is aimed at operations in large unstructured spaces, where the definition of dis-

crete areas is challenging or impossible. Just as there are an infinite number of

spatial layouts that may satisfy any given topological specification, there are an

infinite number of metrical arrangements of landmarks that have equivalent qual-

itative maps. However, the coordinate sets for all of these point arrangements are

constrained to satisfy a set nonlinear inequalities implied by the qualitative state-

ments in the map. Thus, one interpretation of the QRM algorithm is as a form of

topological-style reasoning operating on topologically ambiguous spaces.

One approach of how to represent the ‘shape’ of a set of points has been that

of statistical shape theory, which defines ‘shape’ to be what remains once scale, ro-

tation, and translation effects have been removed via dimensional reduction. The

approach discussed by Dryden and Mardia [22] and Mitteroecker and Gunz [23]

uses a QR decomposition to transform a set of high dimensional points to the sur-

face of a hypersphere in a scale, rotation, and translation invariant subspace. Con-

tinuous deformation of point sets corresponds to trajectories over the hypersphere,

and a statistical similarity metric can be constructed by considering probability

distributions over the hypersphere. The relationships encoded in the proposed

QRM, although driven by different geometrical concerns, corresponds to defining

nonlinear constraints on these point distributions. Landmark arrangements that

have the same qualitative map will occupy a bounded, though non-convex, region

of the hypersphere defined by the inequality constraints which correspond to the

qualitative states encoded in the map edges. Critically, while statistical shape the-

ory requires access to the true landmark locations in some reference frame in order

to calculate the ‘shape’ of a point set, the QRM learns the constraints without

attempting to estimate the locations themselves.
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The remainder of this chapter is laid out as follows. Section 1.2 contains a

background on the formalism used to define qualitative spatial relationships used

in this work. Section 1.3 presents a novel method for generating measurements

of qualitative states using camera images. Section 1.4 defines the map structure

and summarizes the algorithm used to update it with new measurements. Sec-

tion 1.5 presents results using a set of Monte-Carlo simulations to illuminate map

properties and limitations as well as the results of testing the algorithm on a rover

traversing the JPL Mars Yard.

1.2 Qualitative Geometric Relations

1.2.1 Freksa’s Double Cross

Qualitative statements of geometrical relationships require that the 2D plane

around landmarks be segmented into discrete regions. The approach presented in

this chapter makes use of a discretization based on triplets of landmarks, proposed

in [24] and sometimes termed Freksa’s double cross (FDC). While it is computa-

tionally preferable to define relations only in terms of pairs of landmarks, this is

impossible in 2D space without specifying an external reference frame, such as the

cardinal directions or a fixed origin point.

The FDC representation is based on the observation that humans are generally

good at determining if two points are 90◦ apart, but generally bad at determining

finer spacings of angles[25]. An FDC specifies the geometric relationships of a

query point C to −→AB, the vector from point A to point B, by stating that C can

be either to the left or right of −→AB, in front or behind A relative to the direction

of −→AB, and in front or behind B relative to the direction of −→AB. These three
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statements are equivalent to defining the separating boundaries shown in Figure

1.2a. If the boundary lines are also included as possible regions, this definition

results in the 15 possible geometrical relationships between C and −→AB shown in

Figure 1.2b. In this chapter the possibility that point C lies within region i of the

FDC around −→AB is denoted as AB : Ci ∈ {TRUE,FALSE}. If AB : Ci = TRUE,

then the case of point C lying in FDC region i with respect to −→AB, is consistent

with the observed measurements; if AB : Ci = FALSE this case is inconsistent

with the measurements. In general there may be insufficient information available

to determine exactly which FDC region around −→AB contains the point C. The 15

possible states AB : Ci, i ∈ {1...15} are collected in the boolean vector AB : C =

[AB : C1, · · · , AB : C15] and termed a ‘qualitative state’. These states can also be

rendered graphically using table of the form shown in Figure 1.2c, where a black

square for region i indicates that ci = TRUE. The number of TRUE elements of

AB : C is inversely proportional to the number of geometric constraints imposed.

For example [AB : Ci = TRUE, i ∈ {1, 2, 3}] indicates that C is somewhere in front

of B, while [AB : Ci = TRUE, i ∈ {3, 6, 9, 12}] indicates that C is somewhere to

the right of −→AB. The FDC structure can be interpreted as a generalization of the

representation imposed by the cardinal directions; if point B is taken to infinity

and seen as the north pole, then all query points must occur in regions 7-15 which

are equivalent in this limiting case to NE,N,NW,etc.

Although discretizing the plane around −→AB into a finer spatial resolution can

be achieved by adding additional separating boundaries, doing so comes at the

cost of increased complexity. Both the storage and computation time of the map-

ping approach presented in this chapter scale quadratically with the number of

constraints/regions. The 15 regions of the FDC representation provide intuitive

results and limit the size of measurement lookup tables, described in Section 1.3,to
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B

A

C Left of AB C Right of AB

C Behind B

C In Front 
of B

C Behind A

C In Front 
of A

(a) Region Boundaries

2 31

5 64

8 97

11 1210

14 1513

(b) Qualitative Regions.

(c) Example Measure-
ment Table

Figure 1.2: Schematics of a Freksa’s Double Cross for two landmarks A and B.
(a) shows the three dichotomies which split up the space around the vector AB.
(b) shows the 15 qualitative regions in which a third point can lie. (c) shows an
example measurement table for the case where C is in one of regions 2, 3, 6, or 9.
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the point where they can be computed manually. If greater accuracy is required,

the methods detailed in the remainder of this chapter can be readily extended to

arbitrary resolutions at the cost of additional off-line computation.

1.2.2 FDC Operators

Making use of the FDC representation requires the definition of five operators

that allow manipulation of qualitative states. For any landmark triplet A,B,C

there are six possible qualitative states: AB : C, BA : C, BC : A, CB : A,

CA : B, and AC : B. Converting between each of these states requires an inverse

operator and two cyclical permutation operators. The inverse operator converts

between AB : C and BA : C, and is equivalent to reversing the direction of the

vector between A and B. The left cyclical permutation operator converts between

AB : C and BC : A, while the right cyclical permutation operator converts between

AB : C and CA : B. The binary compose operator uses the information contained

in two qualitative states in order to reason about which configurations of a third

state are consistent (e.g. which regions in AC : D are consistent with the possible

relationships stored in AB : C and BC : D). The results of these operators

are easily found using lookup tables derived in [25] and [24] and summarized in

Appendix B. While the operators are defined over the individual regions of each

FDC, they can also be applied to each element of the qualitative state vector by

taking the union of the outputs. Finally, the map update procedure discussed in

Section 1.4 requires an additional intersection operator denoted as ∩ that combines

the constraints in two estimates of a qualitative state. Intersection is defined as

follows:
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(AB : C ∩ ÂB : C)i = TRUE

iff AB : Ci = TRUE ∧ ÂB : Ci = TRUE

A formal discussion of these and related operations for a set of spatial repre-

sentations which includes the FDC is presented by Scivos and Nebel [26].

Unfortunately, while the inverse operator is a one-to-one mapping, the two

cyclical permutation operators are not. For example, performing a left shift on

the qualitative state [AB : Ci = TRUE, i = 1] returns [BC : Ai = TRUE, i = 9],

while doing so on [AB : Ci = TRUE, i = 7] returns [BC : Ai = TRUE, i ∈

{1, 4, 7}]. These ambiguities, discussed in detail by Scivos and Nebel [27], have

unfortunate consequences for the compactness of the map representation discussed

in Section 1.4.

1.3 Measuring Qualitative States

Past work on qualitative mapping, and in particular work using the FDC or simi-

lar representations, has characteristically taken a cognitive science approach to the

problem. Consequently, the focus has generally been on proving that the underly-

ing representation is sufficient for human navigation, rather than on how it might

be practically accomplished in an automatic fashion [28]. The bulk of this research

assumes the human building the map is either able to determine exact qualitative

states involving all visible landmarks, or is traveling between landmarks and can

thus easily determine the states given the angles to landmarks at the beginning

and end of each leg. Given the challenges present in computer vision systems, this

assumption is insufficient for the general problem of a robot mapping an unknown

area. In order to overcome this limitation, a novel method of determining the
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possible qualitative relations between a set of landmarks visible in a camera image

is presented, which does not require knowledge of any past history or the location

of the imaging points.

The measurement function presented in this section uses estimates of the rela-

tive bearings to landmarks and an ordering by range in order to give sectors for the

measurement of landmark C with respect to landmarks A and B. Lookup tables

are then used in order to map these sectors to FDC regions stored in the qualita-

tive state AB : C. This process relies on three assumptions involving information

provided by the imaging system:

1. The cyclical order of landmarks can be determined

2. The relative angle between landmarks can be resolved to within a quadrant.

3. There is a low-level algorithm to determine the relative ordering of distances

to visible landmarks. In practice, potential methods for accomplishing this

ordering include exploiting known sizes of objects, motion parallax, relative

changes in object size during approach, and the fact that vertical position in

an image is proportional to distance in a flat environment.

4. The landmarks are sufficiently visually distinctive as to be unambiguously

identifiable from any orientation. While data association is a challenging and

task specific problem that is beyond the scope of this paper, some possible

solutions include comparison of high-dimensional visual features such as tex-

ture and shape parameters, tracking clusters of objects which may be more

distinctive than the individual elements, and the use of previously estimated

qualitative states to rule out incorrect associations.

For the purpose of book-keeping, two sets of discrete sectors are used to describe

the relative angles between landmarks A, B, and C: one relating ∠A and ∠B, the
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s=1
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s=2 s=16
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s=6

s=12

A
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(a) s sectors for g = 2

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(b) Lookup tables for g = 2
and
|A| < |B| < |C|

Figure 1.3: Measurement sectors and associated lookup tables for the case |A| <
|B| < |C|, 0◦ < B < 90◦. The robot is at the center of the circles. Each sector
in (a) corresponds to a measurement table element in (b) giving the possible FDC
regions for a test point C whose angle lies within the sector. For example, s = 2,
shown as a green region in (a), corresponds with the highlighted table entry in
(b). Black squares indicate that the FDC region is consistent with the angle and
range ordering. For this configuration of A and B there are additional tables (not
shown) for the other possible orderings of |A|, |B|, and |C|.
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other relating ∠C to both ∠A and ∠B. If ∠A is defined to be 0◦ then the first

of these is denoted as g ∈ {1, 2, . . . , 8} and corresponds to the cases ∠B = 0◦,

0◦ < ∠B < 90◦, ∠B = 90◦, etc. Thus g indicates in which quadrant, or line

dividing quadrants, B is located. The second sector is denoted as s ∈ {1, 2, . . . , 16}

and indicates whether C lies at or between the angles defined by integer multiples

of 90◦ added to ∠A or ∠B. So for the case g = 2 (i.e. 0◦ < ∠B < 90◦), s = 1

indicates that ∠C = 0◦, s = 2 indicates that 0◦ < ∠C < ∠B, s = 3 indicates that

∠C = ∠B, etc. Labels for s are shown in Figure 1.3a for the case of g = 2. The

geometries for other common values of g are shown in Appendix A.

Given the relative bearings and range orderings for any three points A, B, and

C visible in a camera image, a measurement of the qualitative state AB : C is

generated by the following method:

1. Define ∠A to be the 0 angle of the local reference frame, and |A| = 1.

2. Given ∠B, set the value for g as described above.

3. Given ∠B and ∠C, set the value for s as described above.

4. Determine the range ordering |A| < |B| < |C|, |A| < |B| = |C|, |A| < |C| <

|B|, etc.

5. Generate a measurement for AB : C using the lookup table associated with

g, s, and the range ordering

6. Repeat for all permutations of landmark triplets visible in the image.

This process is best illustrated by considering the example shown in Figure

1.3a where point C lies within the green region. In this case the range ordering

is A < B < C, q = 2 as landmark B lies to the left of A but less than 90◦, and

s = 2 as landmark C lies between A and B. The corresponding lookup table is
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outlined in green in Figure 1.3b and indicates that AB : C = {3, 6, 9, 12, 15} (i.e.

C lies somewhere on the right side of −→AB as shown in Figure 1.2b).

For every combination of landmark ordering and the sector g and s there is

an associated lookup table which stores the qualitative states consistent with the

measurement. These table can be manually constructed by considering the geo-

metrical limits of each FDC region given the constraints on relative ranges and

angles. For example, Figure 1.3a shows the case g = 2, |B| > |A|. In this case,

point B is constrained to lie somewhere in the upper left quadrant, outside the

circle of radius |A|. Lookup tables for the case where |C| > |B|, shown in Figure

1.3b, are computed by considering how the FDC boundary lines intersect the re-

gion outside the circle of radius |B|, as B is moved around within its constraints.

For example, the table for s = 5 can be constructed as follows: if point B is moved

close to the horizontal quadrant boundary, the ray in front of B will intersect the

s = 5 line outside the |B circle, so states 1,2,3 have TRUE values in the table. If

point B is moved close to the vertical quadrant boundary, both of the lines per-

pendicular to AB on the left side will cross the s = 5 line outside the |B| circle,

so states 4,7,10,13 have TRUE values in the table. However, there is no place B

can lie within its constraints that will allow the perpendicular line through B on

the right of AB to cross the s = 5 line, or for any portion of the s = 5 line to lie

between A and B, or for the line behind A to cross the s = 5 line. Consequently,

the remaining table elements are FALSE.

Similar arguments can be made for each of the remaining FDC regions, resulting

in the complete lookup tables shown in Figure 1.3b. This process can be performed

for each combination of g, s, and range ordering, resulting in a total of 2304 possible

measurement tables. Tables for the most common arrangements of landmarks are

listed in Appendix A. These tables were constructed manually, then verified against
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BA

C

Figure 1.4: Example measurement regions for three arbitrarily placed landmarks.
All images taken within a region provide the same qualitative information about
the relations AB : C, BC : A, and AC : B. In order to gather new information
about the qualitative states, a robot must travel between measurement regions.
Region coloring is only for the purpose of visual distinction.

truth for 10,000,000 randomly generate landmark triples.

As in the choice of resolution in the FDC representation, the limitation to

8 sectors for B and 16 sectors for C in the measurement region is motivated

by computational concerns. This resolution results in a set of 2304 measurement

tables, although there are a number of symmetries which can be exploited to reduce

the amount of calculation required. From a practical point of view, this is near the

limit of what can be feasibly computed by hand using the geometrical arguments

described above; otherwise one must develop a method to automatically generate

measurement tables for arbitrary angular resolutions.

For every set of three landmarks, the measurement function results in a segmen-

tation similar to that shown in Figure 1.4. Intuitively, measurements with differ-
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ent graph constraints can only be found by moving between regions, as movement

within a region provides no new qualitative information; this spatial breakdown

is equivalent to that generated by landmark pair boundaries in [8]. These regions

are formed by the lines through each landmark pair, the perpendicular bisectors

to those lines, and inward facing semicircles between each pair. In some landmark

geometries, adjacent regions may provide the same measurements, however the

space is never segmented beyond the degree seen in Figure 1.4.

1.4 Building Qualitative Maps

Repeated measurements of landmarks using the methods in Section 1.3 can be

combined to form a consistent map of the environment. This section details the

use of a graph structure for map representation and the method by which the map

can be updated given new measurements.

1.4.1 Map Structure

The landmark map generated by the QRM approach takes the form of a 3-uniform

hypergraph. Formally, the map is defined as a tuple M = (Q,E), where Q =

{P1, P2, · · · , PN} are the N nodes, and E = {Eijk}, i = 3 · · ·N, j = 2 · · · i, k =

1 · · · j are the edges Eijk = {PiPj : Pk, PjPk : Pi, PkPi : Pj}. Each node Pi

of the graph corresponds to an observed landmark, and each edge Eijk in the

graph connects three landmark nodes and contains the qualitative states necessary

to define constraints on their geometrical arrangement. There are six possible

qualitative states for any three landmarks A,B, and C: {AB : C,BA : C,BC :

A,CB : A,CA : B,AC : B}. As the inverse operator is a one-to-one mapping, the

states {BA : C,CB : A,AC : B} contain redundant information and need not be
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explicitly tracked in the map, as they can be easily recreated at any time from the

other three. Thus an edge between the three corresponding nodes consists only of

the states {AB : C,BC : A,CA : B}. Unfortunately, the left cyclical permutation

and right cyclical permutation operators which relate these three states to each

other are non-unique mappings. Consequently it is not possible to further reduce

the edge to a single qualitative state. In online operations, landmark nodes are

added to the graph when they are first observed, and need only have edges to other

nodes with at least one active constraint.

Maps formed using this graph structure are invariant under a number of poten-

tial transformations of the underlying landmark positions. The qualitative presen-

tation used to describe relative landmark positions depends solely on the angles

between triplets of landmarks. Consequently, transformations that preserve an-

gles cause no change in the map states. These include rotations, translations,

and uniform scaling of the underlying locations. As a result, the mapping system

cannot provide any information about the global position and orientation of the

map, or about the metrical distances between landmarks. However, transforma-

tions which do not preserve angles, such as shearing or non-uniform scaling, can

induce changes in the map states when applied to the landmark positions. This

means that the map can provide some information about the relative distances

between landmarks. For example, if the scale of the landmark distances is known

along one axis, the map places constraints on the possible scaling in all other di-

rections as there is a limit to the amount of off-axis scaling that can occur before

the constraints embedded in the qualitative states are violated.
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1.4.2 Graph Updates

Information provided by measurements is propagated though the graph structure

by making use of the operators discussed in Section 1.2. This procedure operates

as follows.

1. Given a new measurement AB : C, find the graph edge linking nodes A, B,

and C.

2. Use the inverse operator if the edge qualitative states are in the wrong order

(e.g. the measurement was AB : C but the graph edge stored B̂A : C).

3. Find the intersection of the stored estimate ÂB : C with the measurement:

ÃB : C = ÂB : C ∩ AB : C. The resulting qualitative state contains only

those regions consistent with the constraints embedded in both ÂB : C and

AB : C.

4. If ÃB : C = ÂB : C, terminate the update as the measurement contains no

new information.

5. Set ÂB : C = ÃB : C to update the estimated qualitative state.

6. Use the left cyclical permutation and right cyclical permutation operators to

generate B̃C : A and ÃC : B and update the corresponding stored estimates

as in steps 3 and 5.

7. For each qualitative state which has changed as a result of the measurement,

generate new qualitative state estimates using the compose operator on all

connected edges.

8. Treat the generated estimates as new measurements and repeat steps 1-6 on

each.
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The above procedure allows the logical consequences of the observed geomet-

rical constraints to be determined given the existing network of constraints. It is

equivalent to the path-consistency algorithm by van Beek [29] discussed in detail

by Renz and Nebel [30]. In general, the wavefront of updates may hit any given

node a number of times, though the first observation of a new landmark tends to

affect most of the graph edges, while subsequent observations tend to only update

a few. As portions of the graph become more constrained, they are less likely to

be affected by any new measurements. Each iteration either increases the number

of constraints or terminates; thus the update is guaranteed to terminate in a fi-

nite number of steps. In addition, the update procedure requires only simple set

intersections and table lookups, and has a minimal computational cost for each

iteration. The main limiting factor in this approach is that the number of edges

in a fully connected graph scales as O(n3).

For any number and configuration of landmarks, there exists some finite se-

quence of images which provide the measurements necessary to generate a fully

constrained graph. However, it is not guaranteed, and in general is not the case,

that any given image sequence of that length can generate a fully constrained

graph. Unlike standard triangulation, it is possible to construct an infinite se-

quence of measurements which do not further constrain the graph. For example,

all images taken from points in one of the regions in Figure 1.4 provide the same

measurements. Given the true positions of landmarks, it is always possible to

predict where a fully constraining image sequence should be taken, based on eval-

uations of the measurement function. However, it is not currently clear if these

predictions can be made in a way which enables a robot to automatically plan and

decide where to take measurements in order to resolve map ambiguities.
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1.4.3 Data Association

The mapping process described in this section relies critically on accurate mea-

surement associations, as an incorrect association can lead to inconsistent state

estimates which propagate through the graph. While the issue of consistent data

association is highly problem dependent and a full discussion is well beyond the

scope of this work, there is one aspect of the mapping process described above that

can be used to limit the number of associations that must be considered. When

presented with an uncertain assignment, feasibility tests can be performed on all

possible qualitative states with regard to visible landmarks with good associations,

just as though the landmark in question was a previously unobserved one. The

resulting set of qualitative states can then be compared to those for existing map

landmarks. Only landmarks with at least one overlapping state for each relation-

ship need be considered for associations, as the remainder are inconsistent with the

new measurement. If no possible associations remain after this step, the landmark

can be safely added to the graph as a new node. If association remains unclear,

the fusion of the measurement can be delayed until the map has converged further,

which will lead to fewer possible associations. The order in which measurements

are incorporated into the map has no effect on the final map performance, and a

delayed fusion will result in the same final map.

1.5 Mapping Results

This section discusses a series of Monte-Carlo simulations designed to test the

QRM algorithm, as well as the results of a mapping experiment performed at the

JPL Mars Yard.
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Figure 1.5: Example map layout for simulations, with landmarks as black circles
and imaging locations as green triangles.

1.5.1 Map Evaluation Metrics

There are two primary measures for evaluating the quality and convergence of a

relational map. The first is the number of open FDC states stored in the graph

(i.e. FDC states that are consistent with all the measurements taken thus far).

For a fully constrained graph in which the relationships between all landmarks

are known, this value is equal to three times the number of edges, as each edge

contains the three relationships {AB : C,BC : A,CA : B}, each with one possible

state. The second performance metric is the number of edges which have been

fully constrained, compared to the total number of edges in the graph.

1.5.2 Simulation Results

This section presents the results of several test scenarios designed to illuminate

some of the properties of the QRM algorithm defined above. The simulation sys-

tem operates on a set of specified landmark and imaging locations. At each imaging
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(b) Monte-Carlo Results

Figure 1.6: Performance of the QRM algorithm as measurements are incorporated
into the map. (a) plots results from the simulation shown in Figure 1.5. (b) shows
the mean and standard deviations for results from 1000 Monte-Carlo simulations
on maps of the same size, each consisting of 49 randomly placed imaging locations
and 15 randomly placed landmarks. In both plots the left axis plots the percentage
of open FDC states in the map, while the right axis plots the percentage of graph
edges which have been fully constrained (reduced to only one FDC state for each
of the relations AB : C, BC : A, and CA : B). The dashed line indicates the
percentage of FDC states that would remain in a fully converged map.

point the system generates measurements of all detected landmarks using the pro-

cess described in Section 1.3. Sensor performance can be arbitrarily degraded by

limiting the maximum range at which landmarks can be identified. A qualitative

map is built by combining measurements from each imaging point sequentially

using the approach detailed in Section 1.4.

The first scenario considered is a basic test case, as shown in Figure 1.5. The

four landmarks in the map are represented as black circles, and the seven imaging

locations are shown as green triangles, numbered by order of incorporation. The

imaging points were chosen using the measurement regions shown in Figure 1.4 in

order to generate a fully constrained graph by the end of the simulation. Construct-

ing such a sequence is straightforward for small numbers of known landmarks, but

is more challenging to do so for large numbers of landmarks without the use of

optimization tools. Simulation results are shown in Figure 1.6a. The left axis plots
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12 Landmarks
9 Landmarks
6 Landmarks

(c) Observed Landmarks

Figure 1.7: Performance of the QRM algorithm as measurements are incorporated
into the map for 100 randomly generated maps with 30 landmarks. For each sim-
ulation the N closest landmarks to the robot were used to generate measurements,
with N varying between 6 and 30. (a) plots mean and standard deviations of the
percentage of open FDC states in the map (i.e. states which are consistent with
all measurements up to that point), with the dashed line indicating a fully con-
strained map. (b) plots mean and standard deviations of the percentage of fully
constrained graph edges (i.e. edges with only one possible state for all 3 relation-
ships between the associated landmarks). (c) plots the mean computation time on
a Pentium Xeon 2.5 GHz processor. Relative errors are omitted for clarity, but
range between 30% and 120%.
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the number of open FDC states as a percentage of the total number of states in

the graph, with the number of states that corresponds to a fully constrained graph

shown as a dashed line. The right axis plots the number of fully constrained edges

in the graph (edges with only one open state for each of the three relationships

stored in the edge: AB:C, BC:A, CA:B) as a percentage of total graph edges. An

examination of the lookup tables shown in Figure 1.3b, as well as those listed in

Appendix A, shows that most measurements are able to constrain the associated

landmark triplet to less than half of the possible qualitative states. This effect

manifests as the rapid drop in open states after the first measurement seen in Fig-

ure 1.6a. While the initial measurements are able to greatly reduce the number

of open states, the system requires the repeated observation of landmarks from

different orientations in order to constrain any landmark triplet to a single state.

This is seen by the fact that none of the graph edges become fully constrained

until after the fourth measurement is incorporated into the map. While the image

sequence was processed in the order shown in Figure 1.5, the mapping approach

discussed in Section 1.4 makes no assumptions about the order of measurements

or about the locations of the imaging points.

The second simulation scenario consists of 1000 Monte-Carlo runs designed to

examine the general trends of the QRM algorithm for arbitrary map configura-

tions. For each run 15 landmarks were randomly generated from an area of similar

dimensions to that seen in Figure 1.5. Simulated measurements were then taken

from 49 randomly chosen imaging locations and combined into a qualitative map

using the method described in Section 1.4. Means and standard deviations for

both the percentage of open FDC states and the percentage of fully constrained

graph edges are plotted in Figure 1.6b, with the percentage of open states for a

perfect map again shown as a blue dashed line. These results show that the initial
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Figure 1.8: The FIDO research rover operating in the JPL Mars yard. The 3D
reconstruction of the area shown in Figure 1.9 was performed using images taken
by a stereo camera pair located on the sensor mast.

drop-off in open states seen in Figure 1.6a is a characteristic of the QRM algorithm

and is independent on the choice and ordering of imaging locations. The slow con-

vergence towards a fully constrained map is to be expected: after the first few

measurements are incorporated in the map, new information can only be gained

by visiting specific regions. Consequently, it becomes progressively more unlikely

that a randomly selected imaging location will provide additional constraints on

more than a few landmark relationships.

The QRM algorithm performs best when the robot is able to see all of the

landmarks in each image. Doing so allows measurements extracted from each im-

age to potentially add new constraints between all landmarks without needing to

rely on information propagating through the graph. This situation will not gen-

erally be true in practice, as landmarks visibility will be reduced by both range

and occlusions. The effects of reduced landmark visibility can be determined in a

straightforward manner by including only the N closest landmarks to the robot at
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each time step. In the case of uniformly distributed landmarks this is equivalent to

varying the sensor range, but avoids the need to specify a particular scale factor.

For this test a set of 100 Monte-Carlo simulations were performed on randomly

generated maps with 30 landmarks and 50 imaging positions, each uniformly dis-

tributed in a square area. For each map, simulations were performed with the

number of closest landmarks measured at each point varying from 6 to 30.

Figure 1.7a plots the mean and standard deviation of the percentage of open

FDC states after each update. The results for N=30 landmarks used show the

same convergence rate seen in Figure 1.6b, while the remaining curves show that

convergence remains rapid for N=24 and N=18, but drops rapidly after N=12.

Figure 1.7b plots the mean and standard deviations of the percentage of fully

constrained graph edges, and shows a more regular drop in performance as N is

decreased. This suggests that the open states that are not constrained due to

limited sensor range are uniformly distributed in the graph. These results are

consistent with tests performed on maps of different sizes, in which performance

remains high so long as half of the landmarks are observed at each point.

Figure 1.7c plots the mean computation time required for an unoptimized C#

implementation of the mapping algorithm running on a 2.5Ghz Pentium Xeon

processor. Relative errors are omitted for clarity, but range between 30% for

the peak times and 120% for the minimum times. These results suggest that

if limited computation is available, it may be useful to initialize the map using

only a subset of the visible landmarks, then increase the number used as the

map becomes more constrained. Alternatively, the fusion of measurements for

less important landmarks may be delayed until additional computing resources are

available. Although this will reduce the accuracy of the map initially, the final

performance will be the same regardless of the order in which measurements are
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Figure 1.9: 3D reconstruction of the JPL Mars Yard. The pointcloud was generated
from stereo panoramas taken at the imaging points denoted by red circles, stitched
together using the NDT and LUM algorithms implemented in the PointCloud
Library. Landmarks include medium sized rocks such as those in the image center
as well as similarly sized objects such as the generators in the upper left and right
corners.

fused. An empirical power-law analysis of varying the numbe of landmarks in the

map showed that both the peak time and the time at update 20 go as O(n5) with

the number of landmarks when using all landmarks in each measurement. This

improvement relative to the worst case scenario where each of the n3 measurements

affects each of the n3 graph edges is a result of the increasing level of constraint

imposed by each update. After a few measuremnts have been included, updates

cease propagating throught the entire graph and only effect edges within a few

steps of their origin.

1.5.3 Experimental Results

This section presents an experimental scenario designed to show the algorithm

performing in a more realistic environment. The robotic platform used was the JPL
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Figure 1.10: Performance of the QRM algorithm for mapping the area shown in
Figure 1.9. The left axis plots the percentage of open FDC states in the map,
while the right axis plots the percentage of graph edges which have been fully
constrained (reduced to only one FDC state for each of the relations AB : C,
BC : A, and CA : B). The dashed line indicates the percentage of FDC states
that would remain in a fully converged map.

‘FIDO’ research rover shown in Figure 1.8[31]. This vehicle is a 6-wheeled rocker-

bogey frame with a mast-mounted stereo camera, and is functionally equivalent to

the two Mars Exploration Rovers(MER), Spirit and Opportunity. The experiment

objective was to construct a qualitative map of a set of rock fields in a Mars-like

environment, in this case the JPL Mars Yard. The rover was driven through the

yard, stopping to take panoramic images every 1-2 meters of travel. Landmarks

measurements were extracted from these images using the method presented in

Section 1.3 and combined using the QRM algorithm described in Section 1.4.

Figure 1.9 shows a 3D reconstruction of the Mars Yard overlaid with the rover

trajectory and imaging locations in red; note that this reconstruction was used only

for data association and visualization purposes. The pointcloud was built using

tools drawn from the JPL Vision group and the PointCloud Library [32]. Specifi-
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cally, stereo range data was computed using the approach presented by Goldberg

et al. [33] and converted into robot-centered pointclouds containing position and

intensity data. The set of clouds from images taken at a single position were

aligned using mast attitude measurements, then refined using the Normal Distri-

bution Transform approach of Magnusson et al. [34]. These panoramic clouds were

then aligned using position estimates from rover odometry and fused into a final

map using the batch alignment method described by Lu and Milios [35]. The large

overlap in points between the first and last imaging position was exploited to con-

struct a circular graph of correspondences in order to minimize position drift over

the trajectory.

The 30 most visually distinct objects of appropriate size in the environment

were manually selected as landmarks for the mapping algorithm. These primarily

consisted of medium sized rocks in the clusters seen in the center of Figure 1.9,

but also included a few man-made objects such as the generators seen in the upper

left, upper right, and lower right corners of the field. At every imaging location,

the rover stopped and captured a panoramic set of images using the mast-mounted

cameras. Landmarks were extracted from the left camera images and compared

against the reconstruction for data association. While the QRM algorithm de-

scribed previously was run on this data set offline, a desktop computer was able

to construct the map in what would have been real-time for the experiment.

Figure 1.10 shows the QRM performance evaluated as a function of imaging

position for the experiment described above. The final map produced is somewhat

better than the mean results from Monte-Carlo simulations seen in Figure 1.6b,

but not dramatically so. The slow initial convergence, compared to the simulation

results, is likely due to the fact that the experimental image locations are close

together on the rover trajectory, rather than being randomly dispersed throughout
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the map. This spatial correlation reduces the likelihood that an image will pro-

duce novel measurements when compared to the previous image taken. In general

a realistic rover trajectory, which has not been chosen to optimize information

gathering, would be expected to perform somewhat worse than a random image

sequence of the same length, as the trajectory will have effectively sampled less of

the total workspace.

1.6 Conclusion

This chapter presents a novel method for generating qualitative maps for au-

tonomous robotic navigation of large scale spaces with sparse landmarks and min-

imal sensing. The Qualitative Relational Mapping (QRM) algorithm constructs

a constraint network in graph form which restricts the qualitative geometrical re-

lations between landmarks in the map. The underlying representation of these

relationships is based on Freksa’s Double Cross (FDC), with the addition of a

novel method for generating estimates of allowable qualitative relations based on

camera images. Intuitively, this mapping approach performs qualitative triangu-

lation based on angle measurements and estimates of the relative range orderings

of visually distinctive landmarks. The graph constructed by the QRM algorithm

provides a description of the landmark geometries which is invariant under trans-

lation, rotation, and some scaling transformations. Robot navigation objectives

which can be expressed in terms of the intersecting half planes formed by the

FDCs associated with the landmarks (e.g. ‘stay to the right of points A and B’)

can be re-expressed in terms of desired qualitative states with respect to the map

graph. Although the graph structure used in this work is fully connected, com-

putational performance could be improved by considering a hierarchical mapping

system which eliminates redundant long-distance connections. For a set of land-
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marks with known locations it is possible to determine an optimal trajectory for

generating a qualitative map; methods for doing so using only the qualitative in-

formation in the map are under investigation. Algorithm performance is evaluated

using Monte Carlo simulations and shows consistent map convergence as the num-

ber of imaging locations is increased. Additional simulations with restrictions on

sensor range show that the QRM algorithm continues to perform well so long as

at least half of the landmarks are, on average, visible in each image. Experimental

data from a traversal of the JPL Mars Yard is used to show that realistic robot

trajectories produce similar results, though in general more images will be required

for a given level of performance if the imaging are not uniformly distributed.
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CHAPTER 2

QUALITATIVE MAPPING AND NAVIGATION FOR LONG-TERM

EXPLORATION
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2.1 Introduction

When available, absolute position sensors such as GPS systems provide high qual-

ity measurements for generating the position and heading estimates necessary for

long-distance autonomous robotic operation. Unfortunately, such systems are un-

available for a number of applications, including extra-planetary exploration, oper-

ation in GPS-denied regions, and operation of extremely small or low-cost robotic

platforms.

In the absence of absolute position sensors, existing robot localization systems

tend to either rely solely on local sensors of ego-motion (such as IMUs and wheel

encoders) as in the current GESTALT system for the Mars Exploration Rovers

(MER) discussed by Ali et al. [3], or incorporate measurements of the rover’s rela-

tive position and orientation with respect to certain landmarks in the environment

using vision or ranging sensors. This may consist of triangulation from known ref-

erence positions as demonstrated by Kuipers and Levitt [4], or the construction of

adaptive feature maps as in the Simultaneous Localization and Mapping (SLAM)

framework [5]. These methods have definite strengths, including the ability to

provide both global position and orientation estimates as well as accurate esti-

mates of the uncertainty in the parameters. They can also provide localization of

environmental features in the global reference frame and thus allow the accumula-

tion of information for the assembly of the stable maps necessary for long-distance

planning. However, these approaches often face a number of limitations, including

computational expense, a reliance on point estimates of landmarks, and the need

for high quality sensing to determine metrical distance measurements to visible

landmarks. In contrast, the motivation behind this work is to extract information

about objects of interest from a minimal set of low-cost sensors, in this case a

single camera without any estimates of ego-motion.
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Figure 2.1: Example of a Martian landscape, taken by the Spirit rover on Sol 476.
The area shown in this figure is characterized by large open spaces with scattered
landmarks.

The solution to the problem of long-term autonomy in the absence of global

reference data proposed in this paper is process called the ‘Qualitative Relational

Map’ (QRM), in which the relative geometrical relationships between landmarks

are tracked using qualitative information inferred from camera images. The key

novelties in this work are a representation of geometrical relationships that defines

both qualitative orientations and distances, a method for extracting and fusing

measurements of qualitative states using global nonlinear optimization, and the

implementation of the mapping system in a realistic experimental scenario with

data gathered in the JPL Mars Yard. The test case used to evaluate system perfor-

mance is the exploration and mapping of a Mars-like environment; this application

is characterized by large open areas with clusters of interesting features such as

the region shown in Figure 2.1. The QRM system developed in this work is an

extension of the online mapping process presented in [36].

A key aim of the proposed qualitative framework is to decouple the robot posi-

tion estimation problem from that of map building. This is inspired by the insight

that many robot tasks, such as navigation, do not require a fully defined metrical

map. Use of qualitative relations between landmarks allows maps to remain useful

in the presence of the distortion that may occur in traditional metrical mapping
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approaches due to wheel slippage, rate gyro biases, etc. These sensing errors lead

to uncertain estimates of robot ego-motion, which can induce filter inconsisten-

cies in traditional metrical SLAM, as observed by Julier and Uhlmann [14] and

Huang and Dissanayake [15], particularly when using the bearing only measure-

ments provided by monocular cameras. SLAM inconsistencies have been addressed

in a number of ways in the literature; such as the ego-frame approach with linked

submaps presented by Castellanos et al. [16], the topological methods presented

by Randell et al. [19] andAngeli et al. [17], the topometric mapping discussed by

Sibley et al. [21], and the place-base mapping discussed by Cummins and Newman

[18]. These approaches are often successful at limiting filter inconsistencies and

map drift in indoors or in urban environments, however, they face a number of

challenges in large, unstructured environments. Such areas lack the high feature

densities necessary for generating well-defined places or submaps, and do not have

the limited connectivities between areas required for topological reasoning.

The qualitative approach detailed in this paper avoids the consistency problem

entirely by extracting geometrical constraints on landmark relationships directly

from camera measurements, rather than relying on estimated ego-motion. Naviga-

tion objectives can then be expressed in terms of these relationships. For example,

‘stay to the right of points A and B’ can be re-expressed in terms of a sequence

of desired qualitative states with respect to the map graph. Representing land-

mark relationships qualitatively avoids both integration and linearization errors,

but does so at the cost of maintaining scale free maps with large uncertainties in

exact landmark positions, particularly at the edge of the map. In essence, this can

be seen as a trade-off between map precision and map consistency. Just as there

are an infinite number of spatial layouts that may satisfy any given topological

specification, there are an infinite number of metrical arrangements of landmarks
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that have equivalent qualitative maps. However, the coordinate sets for all of these

point arrangements are constrained to satisfy a set nonlinear inequalities implied

by the qualitative statements in the map. Thus, one interpretation of the QRM

algorithm is as a form of topological-style reasoning operating on topologically

ambiguous spaces.

One approach of how to represent the ‘shape’ of a set of points has been that

of statistical shape theory, which defines ‘shape’ to be what remains once scale,

rotation, and translation effects have been removed via dimensional reduction.

The approach discussed by Dryden and Mardia [22] and Mitteroecker and Gunz

[23] uses a QR decomposition to transform a set of high dimensional points to

the surface of a hypersphere in a scale, rotation, and translation invariant sub-

space. Continuous deformation of point sets correspond to trajectories over the

hypersphere, and a statistical similarity metric can be constructed by considering

probability distributions over the hypersphere. The relationships encoded in the

proposed QRM, although driven by different geometrical concerns, correspond to

defining nonlinear constraints on these point distributions. Landmark arrange-

ments that have the same qualitative will occupy a bounded, though non-convex,

region of the hypersphere defined by the inequality constraints which correspond to

the qualitative states encoded in the map edges. Critically, while statistical shape

theory requires access to the true landmark locations in some reference frame in or-

der to calculate the ‘shape’ of a point set, the QRM learns the constraints without

attempting to estimate the locations themselves.

Previous work on qualitative mapping and navigation for ground robots in-

cludes the QUALNAV system described by Lawton [8], which relied on binary

relationships inferred from the cyclical ordering of landmarks in a robots view.

This representation decomposed the space around landmarks into regions defined
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by the rays passing through each landmark pair, as crossing those lines swaps land-

mark position in the view. Cyclical ordering was also used by Wallgrun [9] to learn

the topologies of environments made up of hallway junctions, where junctions are

labeled according to their qualitative cardinal orientation. The representation was

extended by Schlieder [10] to include the directions opposite landmarks in order

to eliminate map ambiguities and termed the ‘panorama’. The cyclical order is

also revised to include extended objects with occlusions by Fogliaroni et al. [11],

in which a topological map of visibility regions is induced by tangent lines from

the extrema of convex polygonal obstacles. These regions are then learned either

from an known map of object shapes and locations, or by an exhaustive search of

the space.

The remainder of this chapter is laid out as follows. Section 2.2 contains a

background on the formalism used to define qualitative spatial relationships used

in this work. Section 2.3 discusses the generation of lookup tables for operators

used to manipulate qualitative relationships. Section 2.4 presents a novel method

for generating measurements of qualitative states using camera images. Section 2.5

presents a Branch-and-Bound algorithm for solving the non-convex quadratic fea-

sibility problems required to generate measurements and operator tables. Section

2.6 defines the map structure and summarizes the measurement update algorithm.

Section 2.7 presents a method for extracting estimates of the Relative Neighbor-

hood Graph from qualitative maps, as well as a long-distance navigation strategy

based on Voronoi regions. Section 2.8 presents the results of a set of Monte-Carlo

tests used to evaluate average and asymptotic performance of the mapping algo-

rithm as a function of the number of landmarks simultaneously observed. The

results of a data-driven simulation are also presented for a robot moving through

a Mars-like environment.
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2.2 Qualitative Relational Geometry

Qualitative statements of geometrical relationships require that the 2D plane

around landmarks be segmented into discrete regions. The approach presented

in this chapter makes use of an extension of the double cross discretization based

on triplets of landmarks proposed by Freksa [24]. Freksa’s Double Cross (FDC)

specifies the position of a query point C to AB, the vector from point A to point

B, by stating that C can be either to the left or right of AB, in front or behind A

relative to the direction of AB, and in front or behind B relative to the direction of

AB. These three statements are equivalent to defining the separating boundaries

shown in Figure 2.2a. If the boundary lines are also included as states, this results

in the 15 possible geometrical relationships between C and AB shown in Figure

2.2b.

The work in this chapter defines an Extended Double Cross (EDC), which adds

the additional statements that compare the distance from C to A against that from

C to B, the distance from C to A with that between A and B, and the distance

from C to B with that between A and B. The separating boundaries associated

with the EDC representation are shown in Figure 2.3a, and the 20 possible regions

between boundaries are labeled in Figure 2.3b. The FDC representation can be

interpreted as qualitatively specifying the angles in the triangle ABC, while the

EDC adds explicit qualitative statements about the edge lengths |AB|, |BC|, and

|CA|.

The relationship between the point C and AB is denoted as the ‘qualitative

state’ AB : C, which can be one of 20 regions, as shown in Figure 2.3b. In general,

there may be insufficient information available to determine exactly which EDC

region around AB contains the point C, in which case the state AB : C will

indicate a set of possible EDC regions. For the sake of clarity, the qualitative
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Figure 2.2: Schematics of Freksa’s Double Cross for 2 landmarks A and B. (a)
shows the three dichotomies which split up the space around the vector AB. (b)
shows the 15 qualitative regions in which a third landmark C can lie that result
from these dichotomies.
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representation used in this chapter is restricted to considering only the relationships

defined by the 20 regions defined by the separating lines shown in Figure 2.3a,

which can be expressed in terms of linear and quadratic inequalities. In most

practical implementations, this is sufficient because physical landmarks are unlikely

to lie exactly on a boundary line. If necessary, the optimization approach detailed

in the following sections can be easily extended to equality constraints in order to

include the lines and line intersections as additional states, or the lines may be

incorporated into neighboring regions.

2.3 EDC Operators

Building a cohesive map of landmark relationships from disparate camera mea-

surements requires the ability to infer how observed relationships can restrict the

states of unobserved ones. Doing so requires three unary operators that convert

between different representations of a given landmark triple and a composition op-

erator that uses known information about two qualitative states in order to reason

about a third. These operators enable transformations between EDC states in the

same manner as the FDC operators discussed by Scivos and Nebel [26].

2.3.1 Unary Operators

The qualitative relationships between points A, B, and C can be stored in the

EDC states for any of {AB : C,BC : A,CA : B,BA : C,AC : B,CB : A}. These

states are highly interdependent; conversion between the triples is straightforward

using two cyclical permutation operations to generate BC : A and CA : B given

AB : C, and an inversion operation to determines BA : C given AB : C. The

left shift operator is denoted as LEFT (AB : C) = BC : A, while the right shift
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Figure 2.3: Schematics of the Extended Double Cross (EDC) for two landmarks
A and B. (a) six dichotomies splitting the space around the vector AB. (b) 20
qualitative regions where a third landmark C can lie.
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Table 2.1: EDC Unary Transformations

AB : C BC : A CA : B BA : C

1 17 7 20
2 18 8 19
3 19 13 18
4 20 14 17
5 12 7 16
6 11 13 15
7 {1,5} {12,17} 14
8 {2,10} {15,18} 13
9 16 14 12
10 15 8 11
11 13 6 10
12 7 5 9
13 {3,6} {11,19} 8
14 {4,9} {16,20} 7
15 8 10 6
16 14 9 5
17 7 1 4
18 8 2 3
19 13 3 2
20 14 4 1

operator is denoted as RIGHT (AB : C) = CA : B, and the inverse operator is

denoted as INV ERSE(AB : C) = BA : C. The results of these unary operations

are listed in Table 2.1, and derived algebraically in Appendix C. Unfortunately,

while the inversion operator provides a one-to-one mapping, there are four states

which are ambiguous under the cyclical transforms. The ambiguities introduced

by these operators are similar to those discussed by Scivos and Nebel [27].

2.3.2 Composition Operator

The composition operator determines which EDC states for AB : D are consistent

given observed states for AB : C and BC : D. While determining the composition

rule for any given pair of EDC states for AB : C and BC : D by inspection is
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a straightforward process, the number of combinations required to fully populate

the operator table renders accurate manual calculation impractical. Instead, the

problem can be formulated as determining the feasibility of a set of inequality

constraints that can be automatically defined and solved offline for each state

combination. Let the points A,B,C,D be generally defined as A = (0, 0), B =

(0, 1), C = (α, β), and D = (γ, δ). Specifying a state for AB : C is equivalent to

defining a set of inequalities drawn from the upper third of Table 2.2 that point C

must satisfy. For example, AB : C = 2 is equivalent to requiring that

α > 0

β − 1 > 0

α2 + β2 − 2β > 0

Similarly, the EDC states for BC : D are equivalent to inequality sets drawn from

the middle block of Table 2.2, while those for AB : D are drawn from the lower

third of Table 2.2. The problem of determining if the composition table entry for

a pair of states AB : C and BC : D should include a given state for AB : D is

accomplished by searching for a point (α, β, γ, δ) that jointly satisfies the associated

inequality constraints. An efficient Branch-and-Bound algorithm for solving these

problems offline is detailed in Section 2.5. An examination of the EDC geometry

indicates that any feasible region for this problem will both occupy a non-zero

volume of the search space and extend close to the origin. Thus, it is reasonable

to also include upper and lower bounds on (α, β, γ, δ), so long as those bounds are

large compared to |AB| = 1.
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Table 2.2: EDC boundary expressions for A = (0, 0), B = (0, 1), C = (α, β),
D = (γ, δ)

Expression Interpretation of Expression < 0

−α C is to the right of AB
−β C is in front of A wrt AB

1− β C is in front of B wrt AB
1− 2β |AC| > |BC|

1− (α2 + β2) |AC| > |AB|
2β − (α2 + β2) |BC| > |AB|

(αδ + γ)− (α + βγ) D is to the right of BC
(β + δ)− (βδ + αγ + 1) D is in front of B wrt BC

(α2 + β2 + δ)− (βδ + αγ + β) D is in front of C wrt BC
(α2 + β2 + 2δ)− (2βδ + 2αγ + 1) |BD| > |CD|
(α2 + β2 + 2δ)− (γ2 + δ2 + 2β) |BD| > |BC|

(2αγ + 2βδ + 1)− (γ2 + δ2 + 2β) |CD| > |BC|

−γ D is to the right of AB
−δ D is in front of A wrt AB

1− δ D is in front of B wrt AB
1− 2δ |AD| > |BD|

1− (γ2 + δ2) |AD| > |AB|
2δ − (γ2 + δ2) |BD| > |AB|
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2.3.3 Operators Example

The use of these operators on EDC states is best illustrated by a simple exam-

ple. Consider the case of four landmarks, A, B, C, and D. Let X represent

the set of qualitative states AB : C = {6, 7}, Y the state AC : D = {16},

and Z the states BC : D = {1, 5, 11, 12, 17, 18, 19, 20}. The EDC opera-

tors can be used to show that X and Y imply Z, or more specifically that

Z = COMPOSE(LEFT(X), INVERSE(Y )). Evaluation of this expression is done

as follows. Performing a left shift on X is done by finding the mappings from states

in AB : C to states in BC : A for each state in X using Table 2.1: 6 maps to 11

and 7 maps to {1, 5}. Consequently, LEFT(X) results in BC : A = {1, 5, 11}. The

inverse operator applied to Y uses the mappings from AB : C to BA : C given in

Table 2.1, so INVERSE(Y ) results in CA : D = {5}. The composition operator

results in the union of the composition of each pairwise combination of states in

its arguments. Evaluation of the compose look-up table gives the identities

COMPOSE(1, 5) = {1, 5, 11, 12, 17, 19}

COMPOSE(5, 5) = {12, 17, 18, 19, 20}

COMPOSE(11, 5) = {17, 18, 19, 20}.

Therefore

COMPOSE(LEFT(X), INVERSE(Y )) =

{1, 5, 11, 12, 17, 18, 19, 20} = Z

2.4 Measuring Qualitative States

Past work on qualitative mapping, particularly that using the FDC or similar

representations, has characteristically taken a cognitive science approach to the
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problem in which the focus has been on proving the representation to be sufficient

for human navigation, rather than for autonomous robotics [28]. In particular, past

work on the FDC has relied on the human building the map to be able to determine

exact qualitative states involving all visible landmarks, but has not discussed how

this might be achieved by a robot mapping an unknown area.

This section presents a novel method of determining the possible qualitative

states for landmarks visible in a camera image, without requiring knowledge of any

past history or the location of the imaging point. The measurement function relies

on three assumptions involving information provided by the imaging system.

1. Given the image, the angles to the centroids of all visible landmarks can

be determined. This is equivalent to having either point-like landmarks, or

landmarks with known geometries. The requirement on angle is only in the

local camera frame, and there is no need for the robot to know its global

orientation.

2. There is a low-level algorithm that determines the relative range ordering of

visible landmarks relative to the robot. Possible methods for accomplishing

this in practice include exploiting known sizes of objects, motion parallax,

relative changes in object size during approach, and the fact that vertical

position in an image is proportional to distance in a flat environment.

3. Landmarks are sufficiently distinctive as to be unambiguously identifiable

from any orientation. Section 2.6 discusses some aspects of the data associa-

tion problem and how the map structure can limit the number of associations

that must be considered.

Given the bearings and range ordering for each set of three points A, B, and

C visible in a camera image, a measurement can be generated which consists of a

list of all of the possible EDC states for AB : C consistent with the observation.
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Figure 2.4: Geometrical formulation for the problem of determining the qualitative
state AB : C given measurements of θ, φ, and the relative order of l, r, and 1. A
can be freely defined to lie at (1, 0) as camera measurements provide only relative
angle and a scaleless ordering of distances.

Table 2.3: EDC boundary expressions for A = (0, 1), B = (r · cos(θ), r · sin(θ)),
C = (l · cos(φ), l · sin(φ))

Expression Interpretation of Expression < 0

(sin(φ) cos(θ)− cos(φ) sin(θ))lr − sin(φ)l + sin(θ)r C is to the right of AB
−(sin(φ) sin(θ) + cos(φ) cos(θ))lr + cos(φ)l + cos(θ)r − 1 C is in front of A wrt AB
r2 − (sin(φ) sin(θ) + cos(φ) cos(θ))lr + cos(φ)l − cos(θ)r C is in front of B wrt AB
r2 − 2(sin(φ) sin(θ) + cos(φ) cos(θ))lr + 2 cos(φ)l − 1 |BC| < |AC|

l2 − r2 − 2 cos(φ)l + 2 cos(θ)r |AC| < |AB|
l2 − 2(sin(φ) sin(θ) + cos(φ) cos(θ))lr + 2 cos(θ)r − 1 |BC| < |AB|
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In a camera-centered local reference frame, the point A can be defined to lie at

A = (1, 0). Points B and C can then be specified as lying at B = (r·cos(θ), r·sin(θ))

and C = (l·cos(φ), l·sin(φ)), as shown in Figure 2.4, where θ and φ are the bearings

measured relative to the direction of A, and l and r are the unknown ranges. The

boundary conditions of EDC states may then be expressed as a series of equalities,

as listed in Figure 2.3b. These equalities are composed of the linear and quadratic

expressions listed in Table 2.3. Each EDC state corresponds to a set of three or

four expressions being less than or greater than zero. For example, EDC state 7

corresponds to the inequalities

(sin(φ) cos(θ)− cos(φ) sin(θ))lr − sin(φ)l + sin(θ)r > 0

r2 − 2(sin(φ) sin(θ) + cos(φ) cos(θ))lr + 2 cos(φ)l − 1 < 0

l2 − r2 − 2 cos(φ)l + 2 cos(θ)r < 0

Determining which EDC states are consistent with camera observations can

then be achieved by solving the feasibility problem of finding a point (l, r) > 0

that satisfies both the EDC state inequalities as well as the observed ordering of l,

r, and 1. These ordering constraints are: 1− l < 0 if A is closer than C, 1−r < 0 if

A is closer than B, and r− l if B is closer than C. This feasibility evaluation must

be performed for each EDC state (1 − 20). Solving these problems requires the

Branch-and-Bound strategy detailed in Section 2.5, as well as a problem-specific

upper bound on l and r which more practically bounds the search space. Lists

of EDC states consistent with the camera observation for each observed landmark

triplet are passed as measurements to the graph update algorithm discussed in

Section 2.6.
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2.5 Feasibility Detection

Both the calculation of measurements detailed in Section 2.4 and the generation

of the lookup table for Composition operator described in Section 2.3 require the

solution of feasibility problems in either two or four variables. These problems can

be formalized as determining whether there is an x that satisfies a set of quadratic

inequalities

xTAjx+ bT
j x+ cj < 0 j = 1, · · · ,M (2.1)

subject to the bound constraints

lb ≤ x ≤ ub

where Aj are N -by-N symmetric matrices, bj, lb, ub are N -by-1 matrices, and cj

are scalars. As Aj may be indefinite for some j, this problem is equivalent to a

non-convex global minimization and can be shown to be NP-Hard in general. For-

tunately, the small number of variables and the exploitation of the underlying ge-

ometry allows the problem to be rapidly solved using a Branch-and-Bound strategy

based on that used by Maranas and Floudas [37]. This approach, summarized in

Algorithm 1, proceeds by iteratively splitting the search space into sub-rectangles,

then finding a lower bound for each constraint inequality over those rectangles.

If any lower bound is non-negative, then the rectangle cannot contain a feasible

sub-region and is removed from the search. If all lower bounds over a rectangle

are negative, then the rectangle is split in half along its longest edge and the new

sub-rectangles are evaluated.

An examination of the constraint expressions listed in Tables 2.3 and 2.2

shows that the constraints are, in order of increasing complexity: linear, bi-linear,

quadratic with no cross terms, quadratic with only one cross-term, or general

quadratic. The exact minimum value in a rectangle can be easily found for the
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first four forms, while a tight lower bound can be found for the fifth. Methods for

doing this are as follows:

1. The exact minimum value of linear and bi-linear constraints can be found by

simply finding the smallest value of the constraint evaluated at each of the

rectangle corners [38].

2. The exact minimum value of constraints with no cross-terms can be found

by independently optimizing over each variable. The minimum for xi occurs

at either the upper bound on xi, the lower bound on xi, or at xi = −bij

2Aiij
if

this point lies within the rectangle.

3. The exact minimum value of constraints with only one non-zero diagonal

element in A can be found by one-dimensional optimizations over the cor-

responding variable with all other variables set to each permutation of their

extreme values[39].

4. Tight lower bounds can be found for general quadratic constraints by finding

the minima of relaxed linear approximations as discussed by Sherali and

Tuncbilek [40] and summarized as follows. Dropping the subscript j, let

z = x− lb, b̃ = (2lTb A+ b), and c̃ = (lTb Alb + bT lb + c), then the minimization

of the right hand side of equation 2.1 becomes

min zTAz + b̃T z + c̃ s.t. 0 ≤ z ≤ ub − lb (2.2)

The problem can be augmented by adding the nonlinear implied constraints

(gi −Giz)(gj −Gjz) ≥ 0 ∀1 ≤ i ≤ j ≤ 2n (2.3)

where gi and Gi are found by re-writing the original bound constraints ub − lb − z ≥ 0

z ≥ 0

 ≡
 gi −Giz ≥ 0

i = 1, · · · , 2n

 (2.4)
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The augmented problem is linearized by the substitution

wkl ≡ zkzl ∀1 ≤ k ≤ l ≤ n (2.5)

The resulting linear problem is

min b̃T z +
n∑

k=1
Akkwkk + 2

n−1∑
k=1

n∑
l=k+1

Aklwkl + c̃ (2.6)

subject to (gi −Giz)(gj −Gjz) ≥ 0

∀1 ≤ i ≤ j ≤ 2n

which can be easily solved using any off-the-shelf linear optimization routine.

This branch-and-bound approach is guaranteed to either find a feasible solution

to the constrained inequalities in Equation 2.1, or to prove that any such solution

must lie within the remaining rectangles of volume less than ε, where the value

of ε is dependent upon the maximum iteration count. The latter case generally

indicates that either there is no solution, or the the solution lies on a manifold

of lower-dimensionality than the search space and thus a randomly selected point

within a rectangle would be unlikely to ever exactly satisfy the constraint equa-

tions. For the feasibility problems considered in this chapter, if there is a solution,

it must occupy a finite volume of the search space, and an examination of the

geometries involved suggests that the necessary value of ε should be within a few

orders of magnitude of 1. In practice, a maximum depth of 30 with an initial

search rectangle of length 1, 000 gives error free results for the measurement prob-

lem in section 2.4 on trials of 100, 000, 000 randomly selected point combinations.

Generation of the composition tables is an offline function, so a depth of 60 was

chosen to minimize the possibility of errors. A copy of this table can be found at

https://campbell.mae.cornell.edu/content/edc-composition-table.
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Algorithm 1: Feasibility Detection
1 add rectangle r0 = [lb, ub] to search queue S;
2 while S 6= 0 do
3 pop rectangle r from S;
4 if V OLUME(r) < ε then
5 return FALSE;
6 else
7 choose random x∗ ∈ r;
8 evaluate constraints q(x)j = xTAjx+ cT

j x+ dj;
9 if q(x∗)j < 0, ∀j ∈ {1,M} then

10 return TRUE;
11 else
12 for j ← 1 to M do
13 find qj which lowerbounds q(x)j on r;
14 if qj < 0, ∀j ∈ {1,M} then
15 split r into rl and ru;
16 add rl and ru to S;
17 else
18 continue;

19 return FALSE;
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2.6 Building Qualitative Maps

2.6.1 Map Structure

The qualitative map generated by the algorithm presented in this section takes

the form of a 3-uniform hypergraph. Each node of the graph corresponds to an

observed landmark, and each edge in the graph connects three nodes and contains

estimates of the qualitative states for the geometrical relationships which define

their arrangement. There are six possible relationships for any three landmarks A,

B, and C: {AB : C,BA : C,BC : A,CB : A,CA : B,AC : B}. As the inversion

operator is a one-to-one mapping, the relationships {BA : C,CB : A,AC : B}

contain redundant information given {AB : C,BC : A,CA : B}, and need not

be explicitly tracked in the map. Thus, an edge between the three corresponding

nodes only stores estimates of {AB : C,BC : A,CA : B}. The cyclical operators

which relate states in these relationships to each other are non-unique mappings,

so reduction of the edge to a single relationship is not possible. Formally, the map

is defined as a tuple M = (P,E), where P = {p1, p2, · · · , pn} are the nodes, and

E = {eijk}, i = {3 · · ·n}, j = {2 · · · i}, k = {1 · · · j} are the edges eijk = {pipj :

pk, pjpk : pi, pkpi : pj}.

2.6.2 Graph Updates

For the following discussion, let AB : C indicate a set of states for relationship

AB : C stored in the graph, ÂB : C indicate a measurement of the qualitative

states for AB : C, and ÃB : C indicate temporary estimates of AB : C used for

intermediate steps. Information provided by measurements is propagated though

the graph structure by making use of the operators discussed in Section 2.2. This

procedure, equivalent to the path-consistency algorithm by van Beek [29] discussed
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in detail by Renz and Nebel [30], operates as follows.

1. Given a new measurement of relationship AB : C, labeled as ÂB : C, check

that nodes for landmarks A, B, and C are already in the map; if not add

new nodes and create new edges to all existing nodes.

2. Find the graph edge eABC linking nodes A, B, and C.

3. Invert the states in eABC if the nodes are stored in the wrong order (e.g. the

measurement was ÂB : C but the graph edge stored BA : C).

4. Update the stored set of qualitative states AB : C by finding the set intersec-

tion with the measured states: ÃB : C = ÂB : C ∩ AB : C. The resulting

qualitative state contains only those regions consistent with the constraints

embedded in both the original value stored in the map, AB : C, and the the

measurement, ÂB : C.

5. If the intersection resulted in the set of states already stored in the map,

i.e. ÃB : C = AB : C, terminate the update as the measurement contains

no new information.

6. Otherwise, store the reduced set of states in the map by setting AB : C =

ÃB : C.

7. Use the cyclical operators to generate pseudo-measurements B̂C : A and

ĈA : B and update the corresponding edge states as in step 3.

8. For each qualitative state which has changed as a result of the measurement,

generate new qualitative state estimates using the composition operator on

all connected edges. For example, if AB : C has been updated, find all

nodes X which have an edge with the stored state BC : X and generate

ÂB : X = COMPOSE(AB : C,BC : X)
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9. Treat the generated estimates ÂB : X as pseudo-measurements and repeat

steps 1-6 for each X.

For any number and configuration of landmarks, it is guaranteed that there

exists a finite image sequence which generates a fully constrained graph. Given

the 2D positions, of the landmarks the imaging position of such a sequence can be

predicted from evaluations of the measurement function.

2.6.3 Data Association

The mapping process described in this section relies critically on accurate mea-

surement associations, as an incorrect association can lead to inconsistent state

estimates which propagate through the graph. While the issue of consistent data

association is highly problem dependent and a full discussion is beyond the scope

of this work, there is one aspect of the mapping process described above that can

be used to limit the number of associations to be considered. When presented

with an uncertain assignment, feasibility tests can be performed on all possible

qualitative states with regard to visible landmarks with good associations, just as

though the landmark in question was previously unobserved. The resulting set

of qualitative states can then be compared to those for existing map landmarks.

Only landmarks with at least one overlapping state for each relationship need be

considered for associations, as the remainder are inconsistent with the new mea-

surement. If no possible associations remain after this step, the landmark can

be safely added to the graph as a new node. If association remains unclear, the

fusion of the measurement can be delayed until the map has converged further,

which leads to fewer possible associations. The order in which measurements are

incorporated into the map has no effect on the final map performance; the delayed

fusion results in the same final map.
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2.7 Qualitative Navigation

Landmark based robotic navigation can be intuitively decomposed into two distinct

sub-problems: long-distance navigation between landmarks widely separated in

the map, and short distance navigation between landmarks and nearby points of

interest. This section focuses upon the first of these sub-problems, as there are

a number of vision-based solutions to the second extant in the literature, such as

visual homing [41], place recognition [42], etc. Given the ability to reliably travel

between a landmark and nearby points, long distance navigation can be achieved

provided a strategy can be found to travel between the regions around any two

arbitrary landmarks.

Algorithm 2: RNG Estimation
1 Given qualitative map M = (P,E);
2 N = sizeof(P );
3 Initialize D = {}, W = {};
4 for i = 1 · · ·N , j = 1 · · ·N , i 6= j do
5 add dij to D;
6 add wij = 0 to W ;
7 for k = 1 · · ·N , k 6= i, j do
8 conflicts = 0;
9 openstates = 0;

10 for all states s ∈ eijk do
11 openstates = openstates+ 1;
12 if s ∈ {7, 8, 13, 14} then
13 conflicts = conflicts+ 1;

14 if openStates = conflicts then
15 remove dij from D remove wij from W ;
16 BREAK;
17 else
18 wij = wij + conflicts/openstates;

19 wij = wij/N
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2.7.1 The Relative Neighborhood Graph

The navigation approach presented in this section makes use of a Relative Neigh-

borhood Graph (RNG) of the landmarks. The RNG, as discussed by [43], is a

connected sub-graph of the well known Delaunay triangulation often used in com-

puter vision, as it generates point clusters similar to those produced by humans.

Landmarks are neighbors in the RNG if no third landmark appears in the lune

between them. As Figure 2.5 shows, points A and C are neighbors, as are C and

B, but A and B are not neighbors as point C lies within the green lune between

them.

Formally, the RNG is defined as the tuple R = (P,D,W ), where P =

{p1, p2, · · · , pn} are the landmark nodes used in section 2.6, D = {dij} are edges

connecting pairs of nodes pi and pj, and W = {wij} are edge costs for each

edge in D. Estimates of the RNG can be easily extracted from the qualita-

tive map described in section 2.6 by making use of the fact that EDC states

AB : C = {7, 8, 13, 14} correspond exactly to the lune between A and B. An RNG

edge dij only exists between nodes Pi and Pj for which there is no third landmark

in the map in any of these four states.

In the case of an incompletely converged map, estimates of the RNG have to be

realized. This is common in cases such as limited exploration of the area, reduced

sensor range, and landmark occlusions during exploration. In an incomplete map,

there will generally be edges that have some open states indicating that there is

a landmark in the lune, and others that indicate there is not. In order to accom-

modate these cases, candidate RNG edges can be assigned a cost based on the

number of potentially conflicting landmarks, each weighted by the fraction of open

states within the lune and normalized by the total number of nodes. Edges with

no conflicts have a cost of zero and are guaranteed to be true RNG edges, while
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A

B

C

Figure 2.5: Lunes for 3 points A, B, and C which govern their neighbors in the
RNG. A and C are neighbors, as are C and B, but A and B are not neighbors as
point C lies within the green lune between them.

edges with at least one landmark whose only open states are in the lune can be

pruned from the graph. This process, summarized in Algorithm 2, can be cheaply

performed after each measurement update, adding potential RNG edges between

new landmarks and all existing landmarks in the map, then pruning them away

based on the graph updates. As RNG edge estimates depend only on determining

if the lunes of landmark pairs contain other landmarks, the convergence rate is

bounded above by that of the qualitative map. However, in practice, close ap-

proximations to the true RNG are often found early in the mapping process, long

before the qualitative map is fully constrained.
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2.7.2 Graph-based Navigation

The navigation approach presented in this section assumes that local planners can

reliably operate with the Voronoi cells of each landmark (the locus of points closer

to the selected landmark than to any other), and focuses on traveling between

the Voronoi cells of the landmark closest to the start and goal points. This can

be achieved using the limited sensors used in Section 2.4 and the RNG described

above, assuming that landmarks are visible from adjacent cells. A simple, but

effective, navigation strategy is as follows:

1. Given the start and goal points START and END

2. Find ps and pe, the closest landmarks to START and END respectively

3. Use a graph search algorithm to find the shortest sequence of intermediate

landmarks connected by RNG edges between qs and qe. If the map is well

constrained (i.e. the RNG estimate is close to the true RNG), then Dijkstra’s

algorithm is sufficient. In less constrained cases a weighted approach, such

as A∗ or D∗ is likely to be more effective, using the RNG edge costs as a

heuristic to be added to a fixed separation-based distance costs. This biases

the search towards paths along the RNG edges least likely to be pruned away

by new measurements and towards edges that are most likely to be correct.

4. Drive towards the first landmark in the search path until the rover enters its

Voronoi cell, as detected by the relative range orderings of observed land-

marks.

5. Remove the current landmark from the search path and drive towards the

second landmark until you reach its Voronoi cell.

6. Repeat steps 4 and 5 until the rover has entered the cell around pe

7. Use a local planner to drive to END
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Figure 2.6 shows flow fields for two randomly selected END locations, along

with examples of rover trajectories from random START locations. These tra-

jectories show that the navigation approach generates paths that trade distance

optimality for a guarantee on reaching the goal, given the assumptions on landmark

visibility states in Section 2.4. As the landmark distribution approaches unifor-

mity, distance in the RNG becomes a better proxy for metrical distance, and the

difference between trajectories generated by the above strategy and optimal paths

decreases. Critically, the navigation approach has no control requirements other

than that the robot can always make forward progress towards visible landmarks,

and it only requires sensing of local landmarks in order to achieve long-distance

objectives.

2.8 Mapping Results

This section discusses a series of Monte-Carlo simulations designed to test the

QRM algorithm, as well as experimental results of a mapping the JPL Mars Yard.

2.8.1 Map Evaluation Metrics

There are three primary measures for evaluating the quality and convergence of a

relational map. The first is the number of incorrect EDC states that have been

removed from the graph by measurement updates, expressed as a percentage of

the total number of possible states. The second performance metric is the number

of map edges that have been fully constrained, i.e. have only one remaining open

state for each of the relationships AB : C, BC : A, and CA : B, again expressed as

a percentage of the number of edges in the final map. The third metric is the sum

of the edge costs in the RNG, ∑i

∑
j wij, which indicates the degree of confidence
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(a)

(b)

Figure 2.6: Example flow fields along which a robot would travel using the naviga-
tion strategy discussed in section 2.7.2. Open circles indicate landmark positions,
green lines indicate the borders of Voronoi cells for each landmark, black lines
indicate the RNG estimate used for navigation. Red arrows indicate the direction
of motion calculated at each point for a robot traveling to the Voronoi region con-
taining the green triangle. Blue lines indicate trajectory of a robot starting from
closed circles at three random starting locations.
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(d) Computation Time

Figure 2.7: Monte-Carlo performance of the QRM algorithm as measurements are
incorporated into the map, as a function of the number of n closest landmarks
used at each imaging position. The legend in (d) applies to all plots. (a) means
and standard deviations of the cumulative percentage of incorrect EDC states
that have been removed from the map due to being inconsistent with the observed
measurements. (b) means and standard deviations of the percentage of open EDC
states which are not adjacent to the true state. (c) means and standard deviations
of the total cost of all remaining RNG edges that have potentially conflicting nodes.
(d) mean computation times for each measurement update. The relative deviations
are not shown for the sake of clarity, but averaged between 15% and 30%.
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Figure 2.8: 3D reconstruction of the JPL Mars Yard. The pointcloud was gener-
ated from stereo panoramas taken at the imaging points denoted by red circles,
stitched together using the NDT [34] and LUM [35] algorithms implemented in the
PointCloud Library. Landmarks include medium sized rocks such as those in the
image center as well as similarly sized objects such as the generators in the upper
left and right corners.
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in the RNG estimate after each measurement.

2.8.2 Monte Carlo Simulations

This section presents the results of a set of Monte Carlo tests designed to illuminate

properties of the QRM algorithm defined above. The simulation operates on a set

of specified landmark and imaging locations. At each imaging point, the simulation

generates measurements of all detected landmarks using the process described in

Section 2.4. A qualitative map is built by combining measurements from each

imaging point sequentially using the approach detailed in Section 2.6. A total

of 100 Monte-Carlo simulations were run to examine the general trends of the

QRM algorithm for arbitrary map configurations. For each run, 30 landmarks

were randomly generated from a uniform distribution in a square map. Simulated

measurements were then taken from 50 randomly chosen imaging locations and

combined into a qualitative map using the method described in Section 2.6.

The QRM algorithm performs best when the robot is able to see all of the

landmarks in each image, as this allows measurements extracted from each image

to potentially add new constraints between all landmarks directly, without needing

to rely on less precise information propagated through the graph. This situation is

not generally true in practice, as landmark visibility is reduced by both range and

occlusions. In addition, for computational reasons the number of landmarks used

at each location may be limited. The effect of sensor limitations was tested by

evaluating algorithm performance using only closest n landmarks to the rover at

each imaging point. For uniformly distributed landmark maps, this measurement

restriction is equivalent to imposing a maximum sensor range. Results for these

simulations are shown in Figure 2.7 for values of n ranging from 6 to 30.

Figure 2.7a shows the means and standard deviations for the number of EDC
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states removed from the graph as a percentage of the total number of possible

incorrect states for 30 landmarks. Each plotted line corresponds to a different

number of landmarks used for measurement updates, as indicated in the legend

in Figure 2.7d. The overall trend is for a rapid initial pruning of the incorrect

states, followed by a slow tapering as the remaining states are removed. The

initial measurement of a landmark triple is always able to remove at least half of

the potential states, as seen by the jump at image position 1. While the initial

measurements are able to greatly reduce the number of unconstrained states, the

system requires the repeated observation of landmarks from different orientations

in order to constrain any landmark triplet to a single state. Consequently, a

randomly selected imaging location becomes progressively more unlikely to provide

additional constraints on more than a few landmark relationships, manifesting as

a slow convergence towards the fully constrained case. Convergence is fastest for

the case in which all landmarks are measured (the red 30 landmark line); however

the cases using the nearest 18 and 24 landmarks perform nearly as well by the

end of the simulations, despite a slower start. In contrast, convergence slows

dramatically when less than half of the landmarks, i.e. (n < 15), are used in each

imaging measurement.

Figure 2.7b plots the mean and standard deviations of the percentage of open

EDC states in the map which are not adjacent (sharing a boundary edge or ver-

tex) to the true state of the associated landmark triple. If open EDC states are

uniformly distributed, this value ranges between 45% and 90%, depending on the

exact geometry of the map. Values lower than 45% indicate that the open states

are clustered around the true states, i.e. the map ambiguities are primarily between

adjacent states, while values above 75% indicate that the remaining ambiguities

are between distant states. The results in Figure 2.7b show that for the 18, 24,
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and 30 visible landmark cases, the map ambiguities are quickly reduces to states

close to the true state, while the 6 and 9 landmark cases stay within the uniform

range.

Figure 2.7c plots the mean and standard deviations of the total edge cost of the

RNG estimates after each update. The initial peak in total edge costs followed by

a convergent tail corresponds to adding landmarks to the graph, and consequently

additional edges, faster than there is enough data to remove existing incorrect

edges. For the cases where more than half of the landmarks are used at each step,

the RNG estimates clearly converge faster than either the map qualitative states

or edges. This trend is unsurprising, as the RNG estimates depend on determining

only whether landmarks lie within one of the four lune states, so a great deal of

ambiguity can still be present in the map as a whole even after the RNG has

converged.

Figure 2.7d shows the mean computation time required for each measurement

update; the relative deviations are not shown for the sake of clarity, but were typ-

ically 15− 30%. Simulations were performed using unoptimized C# code running

on a Pentium Xeon at 2.5GHz. At each step, computation costs are dominated by

the number of feasibility tests that must be performed in order to generate mea-

surements, which depends on the number of landmarks observed and the number

of open EDC states in the map. When all, or nearly all, landmarks are seen in

every image, the peak computation time occurs in the initial measurements, as

every landmark triplet must be checked, and every EDC state is open. A power-

law analysis shows that that this peak cost scales as O(n3.5) with the number of

landmarks. When a small number of landmarks are seen in each image, the initial

cost is greatly reduced, as only a few triplets need to be checked, and the map itself

contains fewer edges. Results suggest that if limited computation is available, the
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map may be initialized using only a subset of the visible landmarks, and then the

number of landmarks used increased as the map becomes more constrained. Alter-

natively, the fusion of measurements for less important landmarks may be delayed

until additional computing resources are available. Although this may reduce the

accuracy of the map initially, the final performance will be the same regardless of

the order in which measurements are fused.

2.8.3 Data-Driven Simulation

This section presents a scenario designed to illuminate some of the properties of

the Qualitative Mapping and Navigation algorithms developed in this paper. The

platform used was a 6-wheeled rocker-bogey frame with a mast-mounted stereo

camera functionally equivalent to the two Mars Exploration Rovers (MER), Spirit

and Opportunity. The experiment objective was to construct a qualitative map

of a set of rock fields in a Mars-like environment, with Mars-like hardware and

operations. The rover was driven through the field, stopping to take panoramic

images every 1-2 meters of travel. Landmarks measurements were extracted from

these images using the method presented in Section 2.4 and combined using the

mapping algorithm described in Section 2.6.

As the Mars Yard data did not include the necessary parallax information for

range ordering of landmarks in each image, these measurements were generated

using the true position of the rover and landmarks at each imaging point. This

process relied on extracting landmark and rover positions from a 3D reconstruc-

tion of the environment overlaid with the rover trajectory and imaging locations,

as shown in Figure 2.8. Stereo ranges were computed using the approach pre-

sented in [33] and converted into robot-centered pointclouds containing position

and intensity data. The set of clouds from images taken at a single position were
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Figure 2.9: The FIDO research rover operating in the JPL Mars yard. The 3D
reconstruction of the area shown in Figure 2.8 was performed using images taken
by a stereo camera pair located on the sensor mast.

aligned using mast attitude measurements, then refined using the Normal Distri-

bution Transform approach of Magnusson et al. [34]. These panoramic clouds were

initially aligned using position estimates from rover odometry, and fused into the

final map using the batch alignment method described by Lu and Milios [35]. The

rover traversal formed a loop through the Mars yard, which created a significant

overlap in points between the first and last imaging position that was exploited to

construct a circular graph of correspondences in order to minimize position drift.

The 30 most visually distinct objects of appropriate size in the environment

were manually selected as landmarks for the mapping algorithm. These primarily

consist of medium sized rocks in one of the clusters seen in the center of Figure

2.8, but also a few man-made objects such as the generators seen in the corners of

the field. At every imaging location the rover stopped and captured a panorama

using the mast-mounted cameras. Landmarks were manually extracted from the

left camera images and compared against the reconstruction for data association.
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Figure 2.10: Mapping performance of the QRM algorithm for the FIDO rover
traversal of the JPL mars yard described in section 2.8.3 and shown in Figure 2.8.
At each step, measurements of the 18 landmarks nearest the rover were taken. (a)
the cumulative number of EDC states removed from the map after each imaging
point, as a percentage of the number of EDC states for a 30 landmark map. (b)
the percentage of open EDC states that are not adjacent to the true state. (c) the
total cost of the RNG edges extracted from the map at each step, where cost is
equal to the number of conflicting states as a fraction of the total number of open
states.
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The nearest 18 landmarks were then used to perform map updates. While the

mapping algorithm described previously was run on this data set offline, a desktop

computer was able to construct the map in real-time.

Mapping results for this experiment are shown in Figure 2.10; as a comparison

to the prior simulation results, the Mars yard experiment results can be compared

to the blue lines in Figure 2.7(a-c). The most striking features when compared

against the Monte-Carlo results is the slower convergence of map states and the

distinct sigmoid shape of the plot in Figure 2.10a. This can be attributed to two

distinguishing characteristics of a realistic traversal. The first is that the FIDO

rover explored a smaller fraction of the total map, measured in terms of rover

footprint, than a randomly selected set of imaging locations does. This means that

the range of novel viewpoints is more limited than the total waypoint count alone

suggests. The second, related, characteristic is that sequential images are highly

correlated in this experiment, and thus provide much less additional information

than would a new image taken from a random point on the map. These effects

are particularly apparent in the first few images, as the random points used in the

Monte-Carlo tests are likely to be far apart, and thus provide very different views

of the scene, while the first few waypoints in the FIDO traverse are close together.

The effects of these differences are less apparent toward the end of the simulations,

as in both cases, new images are taken near previously visited locations and provide

a limited amount of new information regarding landmark qualitative states.

The RNG performance shown in 2.10c shows equivalent final performance, re-

duced peak error, but a higher average error in the middle of the traverse than

seen in the Monte-Carlo results. This is a direct result of the limited sensor range

and sequential measurements. As the traverse imaging points are close spatially,

the system tends to acquire the measurements necessary to constrain the RNG
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(a) After 1st Measurement (b) After 15th Measurement

(c) After 30th Measurement (d) After 50th Measurement

Figure 2.11: Evolution of the Relative Neighborhood Graph (RNG) extracted from
the qualitative map generated for the rover traversal described in section 2.8.3 and
shown in Figure 2.8. Blue circles indicate the 2D locations of landmarks already
observed and included in the map, green triangles indicate the imaging locations,
with the rover starting in the upper right corner, the red triangle indicates the
most recent imaging location, and lines indicate RNG edges. RNG edges are
colored according to the edge weights wij discussed in Algorithm 2, with black
indicating that wij = 0 and then ranging from dark blue to red as wij ranges from
0 to 1.
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faster than than observing new landmarks and adding them to the graph. This

results in a slowly growing, but well constrained RNG estimate at each step. This

progression can be best seen through the snapshots of the RNG shown in Figure

2.11, taken after the 1st, 15th, 30th, and 50th (final) measurements are incorpo-

rated into the graph. In these plots, RNG edges are removed from consideration

if any landmark is confirmed to lie within the lune (i.e. there is some landmark C

s.t. AB : C has no components except for members of the set {7, 8, 13, 14}. These

figures illustrate that as the RNG grows, only a few long-distance (and thus, for

this case, incorrect) edges are maintained, and that these edges tend to have a

high edge cost. When a new landmark is observed, as occurs in 2.11c, there is suf-

ficient information stored in the map to restrict its incorrect connections to only

a few nodes, and these erroneous edges are quickly pruned away by subsequent

measurements.

Total computation time for generating the qualitative map and updating the

RNG estimate at each step was 250 seconds. For comparison, the FIDO rover

required approximately six hours of continuous operation to perform the traverse,

stopping every 1−2 meters to collect a panoramic image. The speed of this process

was primarily limited by the inefficient method used to gather panoramic images

and the rovers low top speed of 9cm/s.

2.9 Conclusion

A novel landmark-based mapping and long-distance navigation approach using

qualitative geometry has been presented. The problem of long-distance operation

of robots in sparse, unconstrained environments is considered, using the robotic

exploration of Mars as an example applications. The algorithms generate and

operate on graphical networks which store constraints on qualitative geometrical
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relationships between triplets of landmarks in the map based on limited sensor mea-

surements. The underlying qualitative representation of these relations, termed the

Extended Double Cross (EDC), defines constraints on the qualitative distances be-

tween landmark triplets as well as their qualitative angles. This mapping approach

performs a form of qualitative triangulation based on angle measurements and

estimates of the relative range orderings of visually distinctive landmarks; these

measurements are consistent with current Mars-rover sensing technology. Both the

measurements and the offline generation of lookup tables for converting between

states make use of a Branch-and-Bound approach to determining the feasibility

of sets of non-convex quadratic inequalities. The hypergraph constructed by this

algorithm provides a description of the landmark geometries which is invariant un-

der translation, rotation, and uniform scaling transformations. Robot navigation

objectives can be expressed in terms of the intersecting regions formed by the EDC

state boundaries associated with the landmarks; for example ‘stay to the right of

points A and B’, can be re-expressed in terms of desired qualitative states with

respect to the map graph. An example navigation strategy was presented which

uses estimates of the landmark Relative Neighborhood Graph (RNG) extracted

from the qualitative map in order to find paths between the Voronoi regions of

arbitrary landmarks.

The asymptotic behavior of the mapping system was evaluated using Monte-

Carlo simulations of randomly generated maps with 30 landmarks, and simulated

rovers which utilize a varying number of the closest landmarks at uniformly dis-

tributed random imaging positions. Results show that while map convergence

rates are closely linked to the number of landmarks simultaneously observed, the

system has similar asymptotic performance when at least half the landmarks are

used at each step, and with greatly reduce computational requirements compared
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to simultaneous observations of all 30 landmarks. The results also demonstrate

that computational cost is strongly tied to the presence of new landmarks in a

measurement, so that an incremental map-building strategy is preferred to a batch

approach. The qualitative mapping system was also evaluated using data-driven

simulations based on a traversal of the Jet Propulsion Laboratory Mars Yard by the

FIDO research rover. A 3D reconstruction of the yard was used to determine the

true rover trajectory and landmark locations. Results show that although overall

map convergence was slower than the Monte-Carlo results with random imaging

locations, due to correlations between sequential measurements, the system was

able to reach a comparable performance level by the end of the traverse, and that

the RNG extracted at each step tended to remain more constrained than that seen

in the Monte-Carlo results.
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CHAPTER 3

PROBABILISTIC MODELING OF ANTICIPATION IN HUMAN

CONTROLLERS
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3.1 Introduction

Substantial time delays are an endemic problem in many tele-robotic applications,

ranging from extraterrestrial exploration to remote surgery. Delays are often in-

troduced into a feedback loop by a combination of signal transmission time and

processing requirements at either end of the remote link. An extreme example of

this is the robotic exploration of Mars, in which one-way delays range from 3 to 22

minutes, and communication occurs only once or twice a day [44]. Delays may also

be a product of the dynamics of the control system, as in the case of underwater

vehicles controlled by a long tether, where delays may be as long as 5 minutes[45].

The effects of delay on mission performance varies with task complexity [46] and

the consequences of failure; results can include increased time to complete tasks

[47], reduced mission performance [44], and unacceptable or catastrophic failures

[48].

The use of onboard autonomy can improve robustness to time delays, and can

even replace a time-delayed remote operator. However, the required increase in

local processing power often presents serious limits to the application of autonomy

[49]. Indeed, even were fully autonomous robots to be in common use, it is likely

that there would remain tasks that were sufficiently complex or sensitive as to

require human control, such as remote surgery [48] or handling of sensitive material.

In such cases, systems must be constructed to mitigate the instabilities that are

introduced by time delay in the control loop. Accurate models of human adaptation

and behavior when presented with time delays are essential to the design process

of such systems.

The bulk of the research over the past 60 years in the area of human compen-

sation for time delays has focused on remote control of manipulators and haptic

force-feedback control systems. The work in [47] and [50] found that the time to
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complete manipulative tasks in the presence of delay can be consistently predicted.

Other studies have focused on how time delay effects can be mitigated, for example

by the use of predictive displays that provide the operator with a preview of the

results of control actions [51], or by adjusting the viewpoint of the operator [52].

There are two consistent limitations present in these studies. The first is that they

allowed the human operator complete control over robot velocities. This leads to so

called ’move and wait’ strategies, in which operators perform open loop maneuvers

and then wait for visual feedback before performing the next maneuver. Obviously,

the utility of such systems is limited to applications in which intermittent control

is allowed. The second limitation is that they generally avoid determining how

the operator compensates for the delay and focus on measuring and predicting

the degradation of performance, generally in terms of task completion time[53] or

tracking performance [54].

In contrast, the experiment conducted by the authors and discussed in [36],

was designed to show that when operating in a continuously closed-loop manner,

human operators rely upon anticipation in order to compensate for system time

delays. Anticipation is defined here as the ability of human operators to determine

future control needs based on internal system models, estimates of the current

system state, and visual cues from the environment. It is hypothesized that a

more detailed understanding of this anticipation can be accomplished by finding

good models of the input/output response of human subjects, and then examining

how the parameters of these models vary with time delay.

This chapter presents a statistical modeling paradigm designed to formally

study how humans anticipate in general, and how they compensate for time de-

lays in command and control systems. More specifically, the experimental data in

[36] is used to train models of the human input/output response when controlling
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a remote vehicle with time delayed feedback. The proposed modeling approach

naturally utilizes information gleaned from the local environment in order to eval-

uate how humans anticipate future control needs. Machine learning techniques

are used to probabilistically model the relationship between human responses and

the measured set of environmental data. This process is represented as a model

selection problem, in which models are fit to the data using two currently popular

approaches: the ‘Least Angle Regression’ (LARS) and ‘Sparse Multinomial Logis-

tic Regression’ (SMLR) algorithms. These methods are commonly used to either

find a model of minimum size achieving a desired performance level, or to find a

model with the maximum performance for a given size [55]. Unfortunately, these

two strategies provide little insight into the relative contribution of features within

the model to the final performance. This insight is critical to a deeper analysis of

the system, such as the discovery of the underlying causes of a particular decision.

In addition, the model parameter values cannot, in general, be compared between

subjects, as these can be very sensitive to the choice of model size as well as system

noise.

In order to overcome these limitations, this work defines a novel ‘importance’

metric in order to gain deeper insight into the environmental features most relied

upon by the human subjects in their decision making. This approach presumes that

if both modeling approaches produce models that are capable of predicting human

responses in a similar manner, then these models must share key characteristics

with the true input/output relationship of the system. Furthermore, if models

produced by two different algorithms on the same data show similar characteristic

patterns in feature scorings on the basis of importance, it is reasonable to conclude

that the underlying truth also exhibits these patterns. In the case presented here, if

the hypothesis that humans anticipate in command and control systems is correct,
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then the ‘importance’ of key features in both models is expected to vary with time

delay in the same manner.

The remainder of this chapter is structured as follows. Section 3.2 presents

the design of the experiment, and a brief discussion of the performance of human

subjects. The modeling strategies used to fit the resulting data are discussed in

Section 3.3, as are the motivations behind feature and algorithm selection. This

chapter makes use of two models with roots in the machine learning community:

regularized linear regression and regularized multiclass logistic classification. These

models are fit to the data using the LARS and SMLR algorithms respectively. The

resulting data fits and subsequent analysis of human compensation mechanisms is

presented in Section 3.4. Section 3.5 presents a method for determining feature

importance based on how they add to the predictive power of the models.

3.2 Human-Robotic Experiments With Time Delays

In August of 2009, a series of remote driving tests were conducted at Cornell

University, in which human subjects drove a wirelessly controlled robot around an

indoor route with varying amounts of time delay introduced into the control loop.

The goal of this experiment was to probe the degree to which human operators

rely on the ability to anticipate future control needs, as opposed to acting as a

purely reactive controller. The experimental hardware, procedures, and human

trial performance are presented in this section.

3.2.1 Hardware Setup

The robotic platform used for these experiments was a Mobile Robots Pioneer

3-DX differential drive robot mounted with a custom micro-ITX computer and a
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video camera. Subjects controlled the system by means of a joystick and robot-

mounted camera system; subjects had no view of the test area other than the video

feed. In order to eliminate move-and-wait strategies from the study, the robot was

programmed to move at a constant translational velocity of 0.2m/s, leaving the

user to command desired rotational velocities using the joystick interface. Con-

tinuous rotation rates were limited to lie between ±0.5rad/s. These speed limits

were chosen so that subjects were able to follow the route with relative ease when

no delays were present, and were able to avoid hitting the walls of the test area at

high time delays. By allowing the user to vary only the rotation rate, it was hy-

pothesized that the effects of time delay on the human controller would be clearer

in the resulting data, and more amenable to modeling. While compensation for

time delay can be expected to vary with translational velocity, an examination of

this relationship is outside the scope of this study.

The workspace was outfitted with a 24 camera, near-IR motion capture system

produced by Vicon, Inc operating at 100Hz, downsampled to 20Hz to match the

frame rate of the onboard camera. This system is able to localize the position of

the robot to within approximately 1cm in position and 2 degrees in angle. The

resulting data was stored and used to fit the models used in subsequent analysis.

While the robot-mounted camera recorded at a resolution of 640x480 pixels,

compressed 160x120 pixel jpeg images were broadcast at a rate of ∼20Hz to a

video monitor placed so that the subject could not directly observe the workspace

in which the robot operated. This reduction in quality was necessary due to

processing and bandwidth limitations, but the work in [56] indicates that this

decision should have had no effect on subject performance. The camera had a

50 ◦ field of view and could see objects lying between 0.4m and 2m from the

kinematic center of the robot; an example camera frame showing the green carpet
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Figure 3.1: Example of a camera image seen by subject at the beginning of a lap.
The yellow line is the reference route the subject has been instructed to follow.
Note that a future portion of the path is shown in the upper left.

environment and the desired route, is shown in Figure 3.1. Symmetric time delays

were introduced into the system between the joystick and the robot and between

the camera and the monitor.

3.2.2 Reference Route

The reference route, shown in Figure 3.2 as a black line, consisted of five curved

segments of varying complexity, separated by short straight segments inserted to

assist subjects in returning to the route between turns. The curved segments

included:

1. an initial slow turn to the left

2. a five turn switchback

3. a medium turn to the left

4. a medium turn to the right
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Figure 3.2: Reference route (black solid), along with four characteristic experimen-
tal trajectories for a single subject at differing time delays. Black bars indicate
breaks between segments used in performance analysis.

5. a sharp turn to the left

This layout was chosen to provide a range of driving challenges, from the easier

left turn (1) to the far more difficult switchback (2). It was observed that when the

robot passed through the tight turns of the switchback, the camera was only able

to see a small portion of the route ahead of the robot. It is hypothesized that this

challenging segment was likely to induce noticeable errors even under no delay.

3.2.3 Experimental Process

The experiment objective for each human subject was to steer the robot along the

reference route, keeping the robot center as close to the route as possible. Each

subject was first asked to drive a single lap at no delay in order to familiarize

them self with the control system and robot dynamics. The good performance

at no time delay seen in Figure 3.3 suggests that this training was sufficient for
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providing subjects with an internal model of the robot response to commands.

Subjects then conducted three laps at each delay, pausing after every lap to allow

the system to be reset. The round trip delay was varied in 0.5s intervals from

0 to 2.5s, which was the maximum delay at which the robot could be driven

safely given the space constraints of the experiment. Subjects were informed of

the current time delay, and the same sequence of increasing delays was used for

each subject. As all subjects were given the same order of delays, the presence

of long-term adaptation to time delay, or other order effects, cannot be ruled

out. However, the presence or absence of such effects has no effect on the overall

aim of this chapter, namely the use of model fitting algorithms to determine the

relative ‘importance’ of environmental features. For the remainder of this chapter,

all time delays discussed are stated in terms of the round trip delay imposed by

the software. While the effects of human reaction time can be significant when

presented with sudden visual stimuli, this work assumes that the variations in the

reference route are smooth enough that additional delay due to reaction time is

small enough compared to the imposed delays as to have negligible effect.

The following data was collected for each trial at a rate of 20Hz:

1. p: the 2D position of the robot kinematic center with regards to the fixed

coordinate system of the workspace.

2. θ: the robot heading with regards to the fixed coordinate system.

3. u: the control action of the human operator expressed as a desired angular

velocity, measured by the joystick commands.

Given this history of robot position and heading, and the known geometry of the

system, it was possible to determine the visible portion of the reference route (as

seen by camera) at each timestep of the experiment. This approach was used to
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Table 3.1: Results of the 6 x 5 x 3 ANOVA test for the effects of time delay, route
segment, and lap number on human RMS off-route error.

Independent Variable F p
Time Delay F (5, 1518) = 238 p < 0.001
Segment F (4, 1518) = 8.9 p < 0.001
Lap # F (2, 1518) = 1.2 p = 0.30
Time Delay + Segment F (20, 1518) = 1.2 p = 0.26
Time Delay + Lap # F (10, 1518) = 0.9 p = 0.49
Route Segment + Lap # F (8, 1518) = 0.5 p = 0.88

generate the extended feature set discussed in Section 3.3, and subsequently used

for modeling.

3.2.4 Human Subjects

A total of 20 subjects took part in the experiments, consisting of 16 students in

the Department of Mechanical and Aerospace Engineering at Cornell University

and 4 other members of the Cornell community. The gender breakdown was 7

women and 13 men between the ages of 20 and 40. None of the subjects had prior

experience using only a joystick and camera system to control a robot, with or

without delay added to the system.

3.2.5 Experimental Results

This section summarizes the performance of the human subjects in completing the

robot steering task. For the following analysis, subject performance is defined as

the root mean square (RMS) off-route error over each segment, defined at each

time step as the Euclidean distance between the robot position and the nearest

point on the reference route in the same segment. The effects on off-route error

of time delay, route segment, and which lap the subject was on are shown via
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the results of a 6 (Time Delay) x 5 (Route Segment) x 3 (Lap Number) ANOVA

test in Table 3.1. As expected, the effect of time delay meets the criterion for

statistical significance (p < 0.001). Likewise, the effect of route segment had a

significant effect on performance (p < 0.001), indicating that different maneuvers

had significantly different difficulties. The effect of lap number on RMS off-route

error is seen to be statistically insignificant (p > 0.05), which suggests that

there is little to no short term learning demonstrated between laps at the same

time delay. Consequently, for the rest of the analysis the results of different laps

within the same time delay, for one subject, are considered to be a single joint

data set. Finally, the ANOVA results show that there are no significant second

order interactions between variables, indicating that the relative difficulty of route

segments was independent of time delay.

The means and standard deviations for RMS error across subjects are shown

in Figure 3.3, for each combination of time delay and route segment. These results

show that, in addition to the average human performance decreasing with increased

time delay, the variation between subjects also increases. Consequently, models fit

to the human trial data are expected to have a more difficult time predicting human

responses to known inputs at higher delays. Note that, while subjects reported the

initial slow left turn (segment 1) to be the easiest segment, the mean RMS errors

for this segment were the highest for delays of 0.5s and above. This is likely due

to subjects’ attempts to center the reference route in the camera view, rather than

center the robot, leading to systematic over-steering and a large associated error.

Examples of typical paths taken at four different time delays are shown in

Figure 3.2. The growing oscillations with increasing time delay are characteristic

of all subjects. It is hypothesized that the primary cause of performance loss was

due to the over-correction of small errors, with larger deviations occurring due to
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Figure 3.3: Human performance as a function of time delay for each route segment.
Performance was measured by finding the RMS off-route error over each segment
at each time delay. Error bars indicate 1σ bounds.

subject disorientation when over-corrections lead to the camera losing sight of the

route for extended periods of time. These oscillations indicate that, while human

operators are clearly able to compensate for time delay to a degree, the manner

in which they do so is less than ideal. Likely sources of error include a difficulty

with keeping track of the true delay magnitude, an inaccurate internal model of

the robot, and insufficient memory of the control history.

3.3 Modeling Approach: Bayesian, with Feature Ordering

This section presents a strategy for generating models of the input/output response

of the human subjects. The goal is to find interpretable models of human decisions,

and their dependencies. A Bayesian approach is used, in which the human control

response u is modeled by the probability distribution p(u|x), where conditioning

occurs based on a set of features x extracted from the information provided to the
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operator. This approach is chosen because all available data can be used, including

a priori knowledge of the system, and because the representation is both compact

and intuitive. In addition, a probabilistic approach has an intuitive appeal when

faced with the vagaries of human response data, as the associated uncertainty can

be captured directly.

A key challenge in finding good models to explain the data set is that the video

signal is potentially very feature rich, and there is little a priori information as

to which features are important to operators. This implies that the data provides

little information on ‘over-fitting’, or the observability of model parameters. In

order to solve this problem, a feature set x is selected which deliberately over-

parameterizes the problem so that there is a high degree of confidence that the

system response can be accurately predicted. Models of the dependence of u on

this feature set are fit using two state of the art statistical learning techniques.

These two methods have the key characteristic that the features can be ‘ordered’

based on their relative importance to the model. Thus, it is hypothesized that these

methods can yield important insight into the decision making process of humans,

most notably as a function of time delays and anticipation. The remainder of this

section presents the chosen feature set followed by the implementation details of

both algorithms.

3.3.1 Feature Selection

Let Ik indicate the camera image displayed to the human operator at timestep k,

pk and θk be the position and orientation of the robot in the workspace reference

frame at the time Ik was taken, and r(pk) be the closest point on the reference

route to point pk. The definitions for pk and θk account for the fact that the

operator has no direct measurements of the robots current position and heading
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Figure 3.4: Schematic of combined human-robotic system. Note the symmetric
time delay blocks between the human controller and the robot.

relative to the reference route, only what is provided by the time-delayed image Ik.

The robot rotational rate commanded by the subject at timestep k is given by uk,

and lies in the range ±0.5rad/s. A block diagram of the resulting human-robotic

system is shown in Figure 3.4.

In principle, uk could depend on any number of nonlinear functions defined over

all the camera frames already observed, p(uk|f1(I0, · · · , Ik), f2(I0, · · · , Ik), · · · ).

However, it is hypothesized that the human subjects rely on a smaller set of fea-

tures extracted from the images nearest the current timestep. As such, a set of

environmental features was chosen to include those that have an intuitive appeal

to the problem, with the goal that the true set of features used by human opera-

tors is either contained within, or at the least highly correlated with, the chosen

set. This approach naturally leads to an over-parameterization of the system, a

challenge that requires the use of data fitting algorithms that have the potential

to ignore uninformative features.

In order to generate the chosen set of environmental features, the following

assumptions are made: the operator estimates pk and θk; given Ik and previous
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knowledge of the route the operator can find r(q) for any point q in the vicinity

of pk; and the operator has a course model of the internal mapping of the robot

response to input commands, represented mathematically as a kinematic model.

Knowledge of these elements even approximately enables an operator to predict

the consequences of their choice of the command uk.

The features generated at time k are shown in Figure 3.5, and defined as follows:

1. ηk: the past 3 seconds of control inputs uk, averaged over ∆t = 0.2s

bins. These features are designed to capture a form of control memory in

the system. It is assumed that η constitutes the only dependence on past

information and all other features can be generated knowing only Ik, pk, θk,

and the reference route.

2. eφk = (eφ(θk, r(pk)), · · · , eφ(θk, r(pk) + 8∆r)): route heading errors, de-

fined as the difference between the current robot heading θk and the tangent

to the route at each point over the visible portion of the reference route less

than 2m from the robot, averaged over ∆r = 0.2m intervals.

3. κk = (κ(Ik, r(pk)), · · · , κ(Ik, r(pk) + 8∆r)): the visible route curva-

tures, defined as the signed curvature of the route over the visible portion of

the reference route less than 2m from the robot, averaged over ∆r = 0.2m

intervals.

4. eψk = (eψ(Ik, r(pk)), · · · , eψ(Ik, r(pk) + 8∆r)): route camera angles,

defined as the angle between the center of the camera frame and the visible

portion of the reference route less than 2m from the robot, averaged over

∆r = 0.2m intervals. This is included because several subject reported

after trials that, rather than trying to center the robot body on the route,

they focused on centering the route in the camera view.
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5. epsk = (eps(pk, r(pk)), · · · , eps(pk, r(pk + 10∆p))): predicted off-track

error for the next 2m assuming the robot continues along the current heading

θk, averaged over ∆p = 0.2m intervals. Defined as the Euclidean distance

between the center of the robot and the point on the reference route nearest

the predicted robot position.

6. eθsk = (eθs(θk, r(pk)), · · · , eθs(θk, r(pk + 10∆p))): predicted heading

error for the next 2m assuming the robot continues along the current heading

θk, averaged over ∆p = 0.2m intervals. Defined as the difference between

θk and the tangent line to the route at the point nearest the predicted robot

position.

7. eptk = (ept(pk, r(pk)), · · · , ept(pk, r(pk + 10∆p))): predicted off-track

error for the next 2m assuming the robot continues to rotate at the last

commanded rate uk−1, averaged over ∆p = 0.2m intervals. Defined as the

Euclidean distance between the center of the robot and the point on the

reference route nearest the predicted robot position.

8. eθtk = (eθt(θk, r(pk)), · · · , eθt(θk, r(pk + 10∆p))): predicted heading er-

ror for the next 2m assuming the robot continues to rotate at the last com-

manded rate uk−1, averaged over ∆p = 0.2m intervals. Defined as the

difference between the predicted robot heading and the tangent line to the

route at the point nearest the predicted robot position.

Items 5-8 are a set of features based on predicting robot motion over a short

horizon into the future; this approach has worked well for model predictive control

(MPC) [57]. These predicted features assume that the subjects maintain a working

memory of the recently observed route that is sufficient to allow determination of

position and heading errors over the 0.4m blind spot directly in front of the robot.

Note that many of the above features are highly correlated, and determining which,
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if any, are relevant is a key element of the proposed modeling approach. Figure

3.5 shows schematics for eφk , eψk , epsk , eptk , eθsk , and eθtk .

The feature vector at timestep k is defined to be

xk = (ηk, eφk , κk, e
ψ
k , e

ps
k , eθsk , e

pt
k , eθtk )T

= (x(1)
k , x

(2)
k , · · · , x(m)

k )T , (3.1)

where m indicates the number of features. The full data set from k = 0 to

k = K can then be written as XK = (x1, x2, · · · , xK). If the selected features

form a sufficiently rich representation that the control uk is conditionally indepen-

dent given the feature values, the distribution of uk can be expressed as p(uk|xk).

Finding a model for the input/output behavior of the human operators then con-

sists of defining a form for p(uk|xk) and choosing an algorithm to estimate all

associated parameters.

3.3.2 Overview of Models and Algorithms

The remainder of this section summarizes the details of two popular statistical

modeling approaches. The first model considered, termed ‘least absolute shrinkage

and selection operator’ (LASSO), predicts the continuous control response of the

human subjects using a linear combination of feature values, with a constraint on

the absolute sum of the weighting parameters. LASSO models for all values of

the weight constraint are fit to the data using the Least Angle Regression (LARS)

algorithm. The second model used, termed ‘parse multinomial logistic regression’

(SMLR), finds the probability of a discretized control response using a normalized

exponential of a linear combination of features, with one weighting vector for each

discrete choice. As in LASSO, there is again a constraint on the absolute sum of

the weighting parameters. SMLR models are fit to the data at specified values of
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Figure 3.5: Schematics for defining the features which depend upon the robot
position and heading. The reference route is shown in black. (a) Components of
the predicted position errors eps and ept. (b) Components of the predicted heading
errors eθs and eθt. (c) Components of the route heading errors eφ and route camera
angles eψ.
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the constraint using an iterative algorithm that is also commonly called SMLR.

The purpose of examining the results of multiple modeling approaches is not to

suggest that one is superior to the other. Rather, the goal of this analysis is to

show that the ‘importance’ metric detailed in Section 3.5 generates results which

are consistent between models.

3.3.3 Model #1: LASSO with LARS

The LASSO approach attempts to find a predictive model of the human responses

where the control action of the human subjects is a linear combination of the ob-

served feature values. The exact form of this model is derived using a probabilistic

argument as follows. Assume that uk is linearly dependent on the feature vector

xk,

uk =
m∑
j=1

w(j)x
(j)
k + εk = wTxk + εk (3.2)

where εk ∼ N (0, β−1) is an error modeled as zero-mean Gaussian noise with

precision β, w is a column vector of model parameters, and the mth feature at

timestep k is defined to be x(m)
k = 1 in order to include a bias term in the

parameter vector. The conditional distribution of uk given the data xk and the

model parameter vector w is then written as

p(uk|xk,w, β) = N (uk|wTxk, β−1) (3.3)

Let the total control history be defined as uK = (u1, · · · , uK). Assuming the

data to be identically distributed and conditionally independent given the features,

the conditional distribution for uK is given as

p(uK|XK,w, β) =
K∏
k=0
N (uk|wTxk, β−1) (3.4)

The maximum likelihood estimate for the model parameters wML can be found by
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maximizing the log likelihood function,

`(w, β) = ln p(uK|XK,w, β)

=
K

2
lnβ −

K

2
ln(2π)−

β

2

K∑
k=0

(uk − wTxk)
2

(3.5)

Given that the best estimate for uk is based only on the peak of the distribution

p(uk|xk,w, β), the value of the width parameter β will have no effect on the

predicted control outputs and can be neglected. The maximization of Eqn. (3.5) is

equivalent the standard Ordinary Least Squares (OLS) solution for the parameter

vector w [55].

While Eqn. (3.4) serves as a good starting point in the modeling process,

the OLS solution has an unfortunate characteristic that prevents it from being

a good candidate for the purpose of this work. The OLS approach is prone to

overfitting errors when presented with highly correlated feature sets, or when some

features contain only noise [55]. Given that the features were deliberately chosen to

maximize the chance of selecting the unknown ‘true’ features used by the subjects,

the feature set is likely to contain highly noisy and redundant components; this is

confirmed by the analysis results presented in Section 3.5. As a consequence of this

overfitting, unique values for w cannot be estimated, and the relative contribution

of each feature to the regression accuracy is unobservable. The resulting high

variance in parameter estimates also leads to difficulties in finding consistent trends

between the parameters and feature ordering for different subjects, a key goal of

this work.

The challenge of redundant model features is commonly addressed in the statis-

tics and machine learning literature by using some form of ‘regularization’, where

the values for the parameters are constrained by adding a mathematically conve-

nient prior distribution on w to the model [55]. Two of the most popular regu-

larization strategies are to add a term to the cost in Eqn. (3.5) proportional to
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either the L2 or L1 norm of the parameter vector; these are often termed ‘ridge

regression’ and ‘the LASSO’ respectively. Ridge regression is equivalent to adding

a Gaussian prior over w; LASSO corresponds to adding a Laplacian prior over w.

While ridge regression does serve to reduce overfitting errors by minimizing the

parameters associated with uninformative features, the values of such parameters

remain noticeably non-zero even as the L2 term grows large [58]. In order to com-

pare the relative contributions of features across multiple subjects, the analysis in

this work makes use of an ‘importance’ metric which relies on the order in which

features are added to the model. Therefore the LASSO approach is used, as it is

known to drive the weights for noisy or redundant feature parameters identically

to zero without any hard thresholding required, as the prior distribution weight is

increased [58].

Formally: a posterior distribution p(uK,w|XK, β) is constructed by multiply-

ing the likelihood defined in Eqn. (3.4) by a Laplacian prior on w of the form

p(w) =
m∏
j=1

λ

2
exp

(
−
λ

2
|w(j)|

)
, (3.6)

where λ is a scaling constant. This produces a new log likelihood

L(w, β) =
K

2
(lnβ − ln(2π))−

β

2

K∑
k=0

(uk − wTxk)
2

+m ln
(
λ

2

)
−
λ

2

m∑
j=1
|w(j)| (3.7)

Minimizing Eqn. (3.7) is equivalent to the constrained minimization

wLASSO = argmin
w

K∑
k=0

(uk − wTxk)2 s.t.
m∑
j=1
|w(j)| ≤ t (3.8)

where t is a constraint that varies inversely with λ [58].

The LASSO approach has several convenient properties with regards to the

problem of interest. As t → ∑
j w

(j)
OLS, where wOLS is the OLS solution, the

LASSO solution wLASSO converges to that of the OLS solution and thereafter
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remains constant, as t ceases to constrain the elements of wLASSO. Conversely, as

t → 0, the parameter values w(j) decay to identically zero one at a time until

w(j) = 0, ∀j ∈ [1, · · · ,m] at t = 0. The varying of t thus determines an

ordering over the features, in terms of their importance in describing the data.

Additionally, estimator variance and bias errors vary as t changes, so that it is

common for the accuracy of the predictor, measured by the size of the residual,

to increase as uninformative features are removed from the model, then steadily

worsen as useful features are removed [58].

Since first proposed by Tibshirani [58], several algorithms have been developed

to efficiently solve the LASSO problem, including those in [59] and [60]. The

modified least angle regression (LARS) algorithm presented in [61] is used here due

to its useful computational properties and readily analyzable structure. Solutions

to the LASSO problem, the parameter valuesw(j)
LASSO, are piecewise linear functions

of the constraint t. The set of these solutions for all values of t can be interpreted

as a trajectory in parameter space, the shape of which is dependent upon the

data. The LARS algorithm uses an iterative approach to find the vertices of

this trajectory; linear interpolation is then used to calculate parameter values for

any value of t. The LARS algorithm is outlined as follows (with a summary in

Algorithm 3).

At iteration α, let w(α) be the current parameter vector, A(α) be the set

of features whose weights are non-zero, û(α) = Xw(α) be the predicted control

history given w(α), and µ(α) = u − û(α) be the current residual vector. The

correlations between the feature vectors and elements of the residual is then ρ =

XTµ(α). Note that the subscript has been dropped from X and u for the sake of

clarity, and that for the remainder of this chapter they will represent the full data

set through time k = K. These variables are initialized with w(0) = 0, û(0) =
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0, µ(0) = u, ρ = XTµ(0), and A = {ĵ}, where ĵ = argmaxj /∈A(|ρ(j)|).

The objective at each iteration of the LARS algorithm is to determine the value

of the parameters w at the next vertex of the solution trajectory. These vertices

occur either when a feature is found to be as correlated with the current residual

as the active features, in which case it is added tot he model, or when a feature is

removed from the model. Parameter values are found by taking an appropriately

sized step in a direction in parameter space that ensures that all active features

remain equally correlated with the residual. At iteration α of the algorithm the

following steps are performed. Define

XA = (· · · , sign(ρ(j))(x(j))T , · · · )Tj∈A (3.9)

wA = (1T (XAXT
A)−11)−1/2(XAXT

A)−11 (3.10)

where x(j) is the jth feature vector, ie the jth row of X. Let the direction in feature

space that is equiangular between all active feature vectors be d, the elements of

which are d(j) = sign(ρ(j))w(j)
A for j ∈ A, and d(j) = 0 for j /∈ A. Taking a

step along d ensures that all active features are equally correlated with the residual

at iteration (α+ 1). Let

γ =
+

min
j /∈A

[
P − ρ(j)

b− a(j)
,
P + ρ(j)

b+ a(j)

]
(3.11)

γ̃ = min
j∈A

(−w(j)/d(j) > 0) (3.12)

where P = maxj |ρ(j)|, a(j) is the jth element of a = XXT
AwA, b =

(1T (XT
AXA)−11)−1/2, and the + indicates finding a minimum only over pos-

itive components. If γ̃ < γ, remove ĵ = argminj∈A(γ̃) from A and set

γ = γ̃, as this indicates that the value of parameter w(ĵ) is zero, otherwise add

ĵ = argmaxj /∈A(γ) to A. The new LASSO model and control history estimate
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at iteration (α+ 1) is

w(α+ 1) = w(α) + γd (3.13)

û(α+ 1) = û(α) + γXT
AwA (3.14)

Algorithm 3: Least Angle Regression (LARS)
1 Set w(0)← 0, û(0)← 0, µ(0)← u, α← 0;
2 ρ← XTµ(0);
3 A(0)← {argmaxj(|ρ(j)|)};
4 while size(A(α)) < m do
5 µ(α)← u− û(α);
6 ρ← XTµ(α);
7 P ← maxρ(j)(|ρ(j)|);
8 XA ← result of Eqn. (3.9);
9 wA ← result of Eqn. (3.10);

10 for j ← 1 to m do
11 if j ∈ A(α), dj ← sign(ρ(j))w(j)

A ;
12 else, d(j) ← 0;
13 γ ← result of Eqn. (3.11);
14 γ̃ ← result of Eqn. (3.12);
15 if γ̃ < γ then
16 γ ← γ̃;
17 A(α+ 1)← A(α) \ argminj∈A(α)(γ̃);
18 else
19 A(α+ 1)← A(α) ∪ argmaxj /∈A(α)(γ);
20 update w(α+ 1) and û(α+ 1) with Eqns. (3.13) and (3.14);
21 α← α+ 1;

Figure 3.6 plots trajectories characteristic of LASSO models for a subset of

five model features, for one subject at no time delay. This example shows that

parameter values can vary as the constraint t is increased by at least an order

of magnitude, even after they are included in the model and become non-zero.

Also note that one feature switches sign and is removed from the model from

t = 0.3− 0.5. Finally, any ordering of features based on magnitude of parameter

size leads to a dependence on the choice of t, as the parameter trajectories for
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Figure 3.6: Example of 5 LASSO parameter trajectories for a random subset of
the features for one subject at no time delay as a function of constraint t. When
t = 0, the fully constrained case results in no features present in the model; when
t = 3.14, the unconstrained OLS solution results in all features present in the
model.

different features tend to cross. These variations make it impossible to use the

parameter values at any given value of t as a metric for determining the overall

contribution of a feature to the model. However, the order in which features

are added to the model will motivate a definition of relative feature importance,

described in Section 3.5.

3.3.4 Model #2: SMLR

The second approach to modeling the human controller uses a classification

method, where the control uk is assumed to be drawn from one of n discrete

classes defined by Gaussian class conditional densities. This approach is equiva-

lent to partitioning the feature space into regions separated by hyper planes, with

each region containing the feature values that are most likely to predict the associ-

ated discrete class of control output. The class label associated with feature vector
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xk can be encoded using a ‘1-of-n’ encoding so that ck = [c(1)
k , c

(2)
k , · · · , c(n)

k ]T

where c(i) = 1 if and only if xk is drawn from class i, and k is the time index.

Let W =
[
w(1),w(2), · · · ,w(n)

]
be a model parameter matrix, where w(i) is the

vector of parameters associated with class i. As before, m is the number of fea-

tures in xk, and x(m)
k ≡ 1 in order to include a bias term in the model parameters.

Given this representation, the probability that xk belongs to class i is described

by the multinomial logistic (also known as softmax) model,

P (c(i)
k = 1|xk,W) =

exp((w(i))Txk)∑n
h=1 exp((w(h))Txk)

(3.15)

The probability distribution over the full set of class identities C = (c1, · · · , cK)

is then,

P (C|X,W) =
K∏
k=0

n∏
i=1
P (c(i)

k = 1|xk,W) (3.16)

Similar to the OLS approach to linear regression, a unique maximum likelihood

solution for W cannot be found if noisy or redundant features are present in the

model [55]. As in the LASSO derivation earlier, the parameters associated with

uninformative features can be driven to zero by the addition of an L1 penalty

term. The likelihood model in Eqn. (3.16) is multiplied by a Laplacian prior over

W of the form

p(W) ∝ exp(−λ
n∑
i=1

m∑
j=1
|w(i,j)|), (3.17)

where w(i,j) is the jth component of the ith class vector w(i). This sets the log

likelihood to be

L(W) =
K∑
k=0

[
n∑
i=1
c

(i)
k (w(i))Txk − ln

n∑
i=1

exp((w(i))Txk)
]

− λ
n∑
i=1

m∑
j=1
|w(i,j)| (3.18)

Solutions for the parameter matrix W are found using the iterative approach

of the sparse multinomial logistic regression (SMLR) algorithm presented in [62]
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and summarized here. The SMLR algorithm finds an estimate WSMLR maximizing

the log likelihood in Eqn. (3.18), for some choice of the tuning parameter λ, by

means of the bound optimization approach presented in [63]. To begin, define

v to be the vectorized form of W, with v(l) = w(i,j) for appropriate choices

of the indices l, i, and j. The function L(v) = L(W) can be maximized by

finding a surrogate function Q(v|v̂(α)) such that [L(v)−Q(v|v̂(α))] achieves

a minimum at v = v̂(α), where v̂(α) is the estimated parameter matrix at

iteration α. Letting

v̂(α+ 1) = argmax
v

Q(v|v̂(α)) (3.19)

and iterating over α is guaranteed to monotonically increase the original function

L(v). For L(v) equivalent to Eqn. (3.18), a useful surrogate function is

Q(v|v̂(α)) = vT (g(v̂(α))−Hv̂(α))

+
1
2

vTHv−
1
2
λ
m×n∑
l=1

v̂(l), (3.20)

where H is a negative definite matrix that lowerbounds the Hessian of L(v), and

g(v̂(α)) is the gradient of L(v) evaluated at v̂(α). The definitions of H and

g(v) are

H = −
1
2

[
I−

1
m

11T
]
⊗

K∑
k=0

xkxTk (3.21)

g(v) =
K∑
k=0

[
(cTk − pk(v))⊗ xk

]
(3.22)

where pk(v) = [p(1)
k (v), p(2)

k (v), · · · , p(m−1)
k (v)]T , p(i)

k (v) = P (c(i)
k =

1|xk, v), 1 = [1, 1, · · · , 1]T , and ⊗ is the Kroneker matrix product.

The surrogate function Q(v|v̂(α)) is maximized in a component-wise fashion

by letting

v̂(l)(α+ 1) = soft
(
v̂(l)(α)−

g(l)(v̂(α))
H(ll) ;

−λ
H(ll)

)
, (3.23)
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where H(ll) is the lth diagonal component of H , g(l) is the lth component of the

gradient in Eqn. (3.22), and soft(a; δ) ≡ sign(a) ·max(0, |a|−δ), ∀(a, δ) ∈ <.

The estimate of v̂(α) is generated by cycling through every component l. Iteration

continues until the log likelihood in Eqn. (3.18) converges to within a desired

threshold ∆L.

Algorithm 4: Sparse Multinomial Logistic Regression (SMLR)
1 begin
2 Set H ← Eqn. (3.21), α← 0, v̂(α)← random init;
3 while ∆L ≥ ∆min do
4 g← result of Eqn. (3.22);
5 for l← 1 to n×m do
6 v̂(l)(α+ 1)← result of Eqn. (3.23);
7 ∆L ← L(v̂(α+ 1))− L(v̂(α));
8 α← α+ 1;

3.4 Model Fitting Results

This section presents the results of fitting the proposed models detailed in Section

3.3 to the data generated by the experiments discussed in Section 3.2. The pri-

mary intent is to demonstrate that the SMLR and LARS algorithms both provide

solutions that accurately predict the control response of the human subjects, and

to provide a relative importance score for each of the model features. If the result-

ing feature scores of the two approaches are similar, it is reasonable to conclude

that the set of features with high scores in both approaches is consistent with the

features utilized by the subjects in controlling the robot. In the process of ac-

complishing this objective, the relationship between predictive power and model

complexity is shown to be consistent with the hypothesis that only a subset of the

features are used by the subjects. For the remainder of this work LASSO will refer
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to regularized linear models with a Laplacian prior, and LARS will refer to the al-

gorithm used to find the parameter values that best predict the experimental data.

SMLR will indicate both regularized multinomial logistic models with Laplacian

priors and the algorithm used to learn such models from the data.

The computational cost of the LARS algorithm is O(m3 +K ·m2), where m

is the total feature count and K is the length of the data set, and plus an O(m2)

downdate for every iteration in which a feature is removed from the model [61].

While in principle there is no limit to the number of downdates that can occur, in

practice none of the data sets required more than ten additional iterations. The

cost of the SMLR algorithm is more variable, as the number of iterations required

to minimize of the log likelihood function below a selected threshold is highly

sensitive to the initialization. Each iteration requires O(K ·m ·n) computations,

with between 500 − 2000 iterations per data set for the choice of K, m, n,

and likelihood threshold used in this work [62]. The computational burden of the

SMLR algorithm is exacerbated by the need to fit a new model for every desired

value of λ/N , wile the LARS algorithm finds all possible solutions at once.

3.4.1 Algorithm Fitting Performance

In order to learn SMLR models, the control values uk were binned into n = 15

discrete classes. These classes correspond to sequential angle ranges of the joystick

used as an input device. The values of the control sequence, ûk, predicted by

LASSO models are also segmented into the same bins. This additional binning is

done so that a single scoring metric may be used to evaluate and compare both

modeling approaches.

The LASSO and SMLR models were both fit to the data as described in Section

3.3 and evaluated as follows. The features X and associated control histories u and
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Figure 3.7: Average performance of LASSO models, and the percentage of non-zero
parameters in the model as a function of the constraint ∑ |w(j)| ≤ t. Standard
deviations, not shown for the sake of clarity, varied between 10-20% for performance
and 6-12% for parameters.
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class labels C for each lap of the route (of a total of 3) were combined into a single

data set for each time delay, for each subject (of a total of 20). This resulted in 120

data sets, the length (K) of which varied based on the amount of time required for

the subject to complete all three laps at a given time delay. Data points belonging

to each of the n discrete control classes were sampled randomly from each data set

in order to ensure that the models were trained on an equal number of examples

from every class. This resulted in final data sets with between 1200-1500 data

points, or about 80-100 examples of each control class. The LASSO and SMLR

models were then fit and evaluated using 5-fold cross-validation, with both models

using the same data folds.

Training of LASSO models was performed once for each fold, giving solutions

for the vertices of the parameter trajectories, as described in Section 3.3.3. Linear

interpolation was used to generate exact solutions for intermediate values of t,

as the parameter trajectories are piecewise linear. One consequence of the class

discretization required for comparison of LASSO and SMLR results is that if a

control value is close to a class boundary, even a good LASSO prediction may be

placed into the adjacent class. For the sake of compactness, rather than plotting

both correct labels and a deviation, the performance score used in this work is

defined to be the percentage of class labels in the validation identified as either the

correct class or an adjacent class. In order to compare results between subjects,

the performance is evaluated at approximately 2000 points between t = 0 and

t = tOLS, and averaged over the 5 folds of cross-validation. This gives a score

for each subject, at each time delay, as a function of the constraint t. The mean

performance as a function of constraint t across all subjects is shown in Figure 3.7,

as well as the percentage of non-Zero parameters at each value of t.

The LASSO models have a peak performance (Figure 3.7 top) of between 81%
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Figure 3.8: Average performance of SMLR models, and the percentage of non-zero
parameters in the model as a function of the constraint ∑ |w(j)| ≤ t. Standard
deviations, not shown for the sake of clarity, varied between 5-15% for performance
and 1-10% for parameters.
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and 98%, depending on time delay, when averaged over all subjects. For all time

delays this occurs when the percentage of features included in the model (Figure

3.7 bottom) is ∼ 25%. The sharp change in performance at t ∼ 0.3 indicates

the remaining features can be removed from the model with little effect on perfor-

mance. The consistency between subjects of feature membership in this subset is

examined in the next section. The fact that peak performance does not occur at

the unconstrained end of the plot is a result of tradeoffs between classifier variance

and bias errors, and is characteristic of most regularization methods [58].

A total 15 values of λ/N were chosen for evaluation of the SMLR models,

because of the high computational load of the SMLR algorithm. These values are

spread over the full range between fully constrained (λ = inf) and unconstrained

(λ = 0) models. Statistics across folds and between subjects were generated in the

same manner as described for the LASSO results and are shown in Figure 3.8. The

SMLR models have a peak performance (Figure 3.8 top) of between 68% and 86%,

depending on time delay, when averaged over all subjects. For all time delays this

occurs when the percentage of non-zero parameters included in the model (Figure

3.8 bottom) is ∼ 55%.

Another approach to visualizing the performance of the LARS and SMLR mod-

els is to plot the pattern of classification errors across all subjects. For a given value

of the constraint t, a confusion matrix is generated for each time delay by plotting,

for each class i1, the percentage of validation examples classified into class i2 for

i1, i2 ∈ [1, · · · , 15],

CON(i1, i2) =
∑
s ξs(i1, i2)∑

j

∑
s ξs(i1, i2)

(3.24)

ξs(i1, i2) =
∑
k

c
(i1)
s,TRUE(k) · c(i2)

s,PRED(k) (3.25)

where cs,TRUE(k) is the class label vector for data set s at time k, and cs,PRED(k)

is the class label vector predicted by either LASSO or SMLR models. As in Section
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(a) LASSO at 0s delay (b) LASSO at 2.5s delay

(c) SMLR at 0s delay (d) SMLR at 2.5s delay

Figure 3.9: Confusion Matrices for the LASSO and SMLR models at 0s and 2.5s
of time delay. Elements were summed across all subjects at the value of t which
gave best average performance, then normalized to lie in the range [0,1]. By way of
comparison, a perfect predictor would have only a diagonal of ones in its confusion
matrix.
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3.3.4, class labels use the ‘1-of-n’ encoding: c(i)
s = 1 if and only if uk is an example

of class i. Confusion matrices for 0s and 2.5s of delay are shown in Figure 3.9, as

these results bound the error values for the other delay values. Intuitively, perfect

classification results in an identity matrix; consequently, a strong diagonal element

reflects good performance. A qualitative examination of the confusion matrices

can provide meaningful insight into the types of classification errors made by the

two models. For example, the diffusion of weight in the upper right and lower

left quadrants in Figure 3.9d shows that the SMLR models have difficulty with

distinguishing between similar control actions, but do not predict turns of the

wrong direction.

The difference in performance between LASSO and SMLR models of ∼ 10%

is likely due to the fact that the SMLR algorithm must determine the location and

orientation of each hyperplane segmenting the data into classes individually with

no knowledge of the underlying structure of the problem. In contrast, binning the

output û of LASSO models implicitly imposes the known condition that the classes

are intrinsically ordered. Consequently, the SMLR algorithm requires more data

than is available in this study in order to fit a model as accurately as the LARS

algorithm does.

Neither the number of nonzero parameters in the SMLR and LASSO models,

nor their values, can be directly compared. The parameters for SMLR models

indicate the contribution of features to each class definition independently, while

those for LASSO models are overall weights on the features themselves. A method

for feature comparison that does not depend on the parameter values directly, and

can thus be successfully applied to both models, is proposed in the next section.
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3.5 Model Feature Importance

The primary aims of this section are to develop a method for determining the rela-

tive ‘importance’ of a set of features to models produced by the LARS and SMLR

algorithms, and to use this method to analyze the experimental data described in

Section 3.2 in order to understand how humans anticipate control changes in re-

sponse to time delays. Further, if the importance analysis of both the LASSO and

SMLR models yields common patterns, then these patterns can yield important

insight into the true input/output function of human operators. The ‘importance’

of a feature is defined in this work to be the fraction of the predictive power of a

model that can be directly attributed to the inclusion of the feature. To begin,

Section 3.5.1 presents a novel procedure for calculating a measure of the relative

‘importance’ of a given feature to a particular model. Section 3.5.2 examines how

the ‘importance’ of groups of related features changes as a function of time delay.

3.5.1 Measuring Importance in LASSO and SMLR

This section presents a novel ‘importance’ scoring metric which allows a comparison

of the relative degree to which subjects make use of features at each time delay

in both the LASSO and SMLR models. This goal is in contrast to the traditional

model selection approach commonly used with LASSO, as the primary aim is to

examine the manner in which subjects directed their attention during the control

task, as opposed to finding a minimal model for a given level of performance. This

metric is inspired by the correlation structure underlying the LARS algorithm

described in Section 3.3.3, but can be generalized to the more complex SMLR

models.

Recall from Eqns. (3.11) and (3.13) that the LARS algorithm adds features to

the active set A, and adjusts the parameters at each iteration such that the active
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features in the set are equally correlated with the current residual and all inactive

features are less correlated. Thus, over one iteration of LARS, any increase in

classification performance can be equally attributed to all active features. A score

can then be generated for each feature by the following approach. Let τα ∈ [0, 1]

be the performance of the LASSO model produced by LARS at iteration α, Aα

be the set of parameters whose values are nonzero at iteration α, nα be the size

of Aα, and b(j)
α = 1 ∀ j ∈ Aα. The importance score for feature j is then given

as

I(j)
LASSO =

∑
α

b(j)
α max(0, τα − τ(α−1))/nα

max
α
τα

(3.26)

where the normalization by the maximum classification rate, max
α
τα, is taken in

order to allow meaningful comparison between subjects with varying performance.

Scores are averaged over the 5 cross-validation folds to get a single estimate of

the importance of each feature, for each subject. Feature importance scores can

range between 0 and 1, and must sum to 1. An importance score for a feature of

1 occurs only if all of the performance can be ascribed to that feature alone, in

which case all other features would have scores of 0. A score of 0 occurs whenever

the inclusion of a feature provides no improvement in performance, and generally

indicates that the feature is either a linear combination of other features already

in the model, or is entirely uncorrelated with the output.

If a feature with a nonzero score is removed from the set feature set being

considered, the scores of all remaining features can be expected to increase in

proportion to their original score, so that the sum remains 1. The ratios of feature

importance scores are stable when low-importance features are removed from the

model. However, if a high-scoring feature is removed from the model, the ratios of

other feature scores will only be constant if all remaining features are orthogonal

to the removed feature. If a low-scoring feature still present in the model is highly

117



correlated with the removed high-scoring feature, its score may be dramatically

increased. This effect is most clearly seen in the following example. Let x1 and

x2 be two features such that x1 = 2x2 + ε, where ε is a small random noise. If

by chance x1 is slightly more correlated with the output than x2, both the SMLR

and LARS algorithms will assign zero weights to x2 at all iterations. As a result,

x2 will have contributed nothing to the model and will be given a feature score of

0. If x1 is removed from the feature set, x2 will be added to the model in its place,

will have essentially the same contribution to the performance as x1 did, and will

end up with the same importance score previously obtained by x1. Consequently,

while the proposed importance metric indicates which features provide the best

predictive power, it does not imply that there is no subset of features which could

have performed almost as well as those selected.

Although it is based on the correlation structure of the LARS algorithm, im-

portance scores can be generated for any iterative algorithm that makes use of

an active set of features that is updated at each step. For example, while SMLR

models contain many more parameters than LASSO models, a performance score

can be constructed for each feature by increasing the importance score at iteration

α for all features which have any nonzero parameters.

I(j)
SMLR =

∑
α

[
n∑
i=1
b(i,j)
α max(0, τα − τ(α−1))/nα

]
max
α
τα

(3.27)

where b(i,j)
α = 1 ∀ (i, j) ∈ Aα indicates that the parameter w(i,j) associated

with class i and feature j is present in the model at iteration α, and α indicates

sequential values of λ/N for which a SMLR model is learned. Due to the restric-

tion to only 15 values of λ/N because of computational limits, the importance

results for the SMLR models are more uncertain than those for LASSO.
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3.5.2 Relative Importance of Feature Groups

As described in Section 3.3, features in the data set are grouped based on type and

a measure of temporal or spatial extent. Importance scores are averaged between

subjects for each feature at each time delay, which allows for a deeper analysis of

the two models. More specifically, insight can be attained by examining the relative

importance of feature groups as function of delay, as well as the relative importance

of features within each group. Figure 3.10 plots importance scores for feature

groups as a function of time delay, found by summing over the importance scores

for the features in each group. From these results it is apparent that both LASSO

and SMLR models agree that the past control history η is the most significant

feature group. The two models also agree that the predicted errors eps, ept, eθs,

and eθt comprise the next four most significant groups at low delays, and that the

route curvature κ increases in importance at 2s of delay and above. The models

disagree at 0.5s delay, where SMLR places eφ in the top four, and at 2-2.5s, where

LASSO drops ept towards zero.

Insight into the meaning of the large importance score attached to the past

control history group η can be gained by looking at how the scores of the compo-

nent features are distributed. In both the LASSO and SMLR models, more than

90% of the group score comes from the first element η(1), which corresponds to the

average control over the last 0.2s. This suggests that conditioning the model on

past control outputs, p(uk|u1, u2, · · · , uk−1), simply captures a smoothness in

the control history; this conclusion is not surprising given that subjects generally

tried to avoid rapid motions of the joystick, as these would result in excessive oscil-

lations. This pattern does not suggest that subjects make direct use of their past

control actions other than the most recent one. If past memory plays a role in the

decision making of human subjects, then clearly it must be captured in some other
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Figure 3.10: Relative Importance of feature groups for both LASSO and SMLR
models. Standard deviations are omitted for clarity but range between 0.003 −
0.17 for LASSO, and between 0.02− 0.19 for SMLR.

120



way. However, the high performance of both models seen in Figures 3.7 and 3.8

suggests that any other use of past memory by the subjects must play a relatively

small role, if any.

Support for the anticipation hypothesis discussed in Section 3.1 can be gained

by considering a breakdown of scores for the rest of the features that have signif-

icant ‘importance’ across all of the time delays. Figure 3.11 plots the importance

scores for components of the predicted errors eps, ept, eθs, and eθt as functions of

time delay for both LASSO and SMLR models. Each component corresponds to

a different look-ahead distance over which the robot’s trajectory is predicted. As

the LASSO and SMLR models assign different scores to each of the feature groups,

the relative changes in magnitude within a group as a time delay varies are more

important for this discussion than the absolute height of the peaks.

Figures 3.11a and 3.11a plot the scores for the predicted position errors as-

suming the robot continues in a straight line, and show a fairly linear relationship

between look-ahead distance and time delay. The peak score at no delay is 0.6m

and increases to 1.6m at 2.5s delay for LASSO, and to 1.2m at 2.5s delay for

SMLR. Figures 3.11c and 3.11d plot the scores for the predicted heading errors

assuming the robot continues in a straight line, and show very little dependence

on time delay. Figures 3.11e and 3.11f plot the scores for the predicted position

errors assuming the robot turns at its current rate, and show the roughly the same

dependence of peak score on time delay as in 3.11a and 3.11b, except that the

peak changes from 0.4m to 1.2m for LASSO and between 0.2m and 1m for SMLR.

Figures 3.11g and 3.11h plot the scores for the predicted heading errors assuming

the robot turns at its current rate, and show a second peak around 1.2m at no

time delay in addition to the main peak that shifts from 0.2m to 0.8m for both

models. A key feature of Figure 3.11 is that the scores for eps, ept, and eθt all show
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the same characteristics of a roughly linear increase in importance at distance as

a function of time delay.

The SMLR plots in Figure 3.11 for all four feature groups have a flatter dis-

tribution of importance scores at all time delays when compared with the LASSO

plots. This can be attributed to the coarser method of evaluating the SMLR mod-

els. As SMLR models were only fit at 15 different values of λ/N , parameters were

added to the model in blocks, rather than in the one at a time pattern of LARS.

This leads to more important features that would have entered the model earlier

having reduced scores, while less important features have increased scores.

The feature groups in Figure 3.11 show a marked pattern of increasing im-

portance further into the future as time delay increases, except for ept, which is

generally the lowest scoring of the four. Averaged between the remaining 3 fea-

ture groups, the mean of the score distribution shifted 0.73± 0.15m between 0s

and 2.5s of time delay. This transference of ‘importance’ to further look-ahead

distances supports the hypothesis that human subjects compensate for increasing

amounts of delay by increasing a prediction horizon in order to anticipate future

control needs. Even at no delay the importance scores for eps and eθs peak at

0.6m from the robot center. This distance is well inside the camera field of view

and suggests that subjects make use some form of this anticipation even when no

delay is present. An interpretation of the the feature ept, associated with predict-

ing robot motion forward at the current heading, is that subjects make use of the

off-track error of an ‘aim point’ in front of the robot, at a distance which increases

with added time delay. This view is consistent with the results presented in [64],

which found that driver behavior could be well predicted using such an input in

the case of undelayed control. The importance scores for ept seen in Figures 3.11a

and 3.11b suggest that subjects make use of such aiming points, and that the
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Figure 3.11: Comparison of average importance scores for four feature groups
between the LASSO and SMLR models. As described in Section 3.3.3, eps and
eθs are predicted position and heading errors assuming the robot continues in a
straight line; ept and eθt are predicted position and heading errors assuming the
robot continues turning at its current rate. The components of these groups are
based on the robot’s position and heading errors at set points on its predicted
trajectory. Importance scores are plotted as a function of time delay and look-
ahead distance.
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lead-distance increases with time delay

An examination of the variation of feature predictive power with time delay

shows that eθt(θk, r(pk + 1.2m)) is a far better predictor of control response in

the switchback region than other related features. This effect only occurs at 0s

of time delay, and is possibly due to the fact that 1.2m is the approximate size

of the physical features present in that segment of the route. As a consequence,

eθt(θk, r(pk + 1.2m)) provides a signal to turn at just the right moment in the

most challenging of the areas to traverse. This is likely the cause of the secondary

peak at no delay seen in Figures 3.11g and 3.11h.

3.6 Conclusion

A series of experiments and predictive models examining human compensation for

time delays in robotic control was presented. The experiment measured the abil-

ity of human subjects to drive a remotely operated robot around a closed track

when subjected to varied amounts of time delay. Position and heading data from

the robot collected during the experiment showed that subjects’ off-track error in-

creased as time delay was increased, and that no short-term learning effects were

apparent. Environmental features observable to the human subjects were combined

with the known responses to generate regularized linear and logistic models. These

models were trained on the data set using the ‘Least Angle Regression’ (LARS)

and ‘Sparse Multinomial Logistic Regression’ (SMLR) algorithms respectively, and

were able to successfully predict the human responses with a high degree of accu-

racy (up to 98% for models generated by LARS and 85% for those generated by

SMLR). A novel ‘importance’ metric was defined in order to determine the rela-

tive contributions of each model feature to the model performance. This metric

is potentially useful for applications in which the objective is to rank features in
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order of their contribution to the model prediction performance, as opposed to

simply finding a minimal model. ‘Importance’ scores can be found for any iter-

ative model fitting algorithm that maintains a limited active set of features. An

analysis of the feature scores showed that both models agree as to the relative

importance of feature groups: with the most important being the past control his-

tory η, followed by the predicted errors eps, ept, eθs, and eθt. This ordering shows

that subjects attempt to maintain a smooth control output, and rely primarily on

predicted errors based on an internal motion model in order to correct the robot

trajectory. The subject’s attention, as measured by importance scores, appears to

follow a window which moves forward approximately 0.73m between 0s and 2.5s of

time delay. The emphasis placed on predictive features, and the shift in subjects’

attention in response to increased delays, supports the hypothesis that subjects

are using a predictive model of the robot motion in order to anticipate upcoming

control needs.
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CONCLUSION
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The research presented in this work has focused on several aspects of the remote

operation of ground vehicles, notably Navigation and Mapping for autonomous

robots and the effects of time delay in teleoperated vehicles.

Chapter 1 presents a qualitative method for robotic mapping of large scale

spaces with sparse landmarks and minimal sensing. The Qualitative Relational

Mapping (QRM) algorithm constructs a constraint graph which tracks which qual-

itative geometrical relations between landmarks are consistent with the measure-

ments. The geometrical representation of these relationships is based on Freksa’s

Double Cross (FDC), in which the space aroudn a pair of landmarks is discretized

into 15 regions by front/back and left/right splits. This mapping approach can be

seen as a form of qualitative triangulation based on angle measurements and esti-

mates of the relative range orderings of visually distinctive landmarks. Algorithm

performance is evaluated using Monte Carlo simulations and shows consistent map

convergence as the number of imaging locations is increased. Additional simula-

tions with restrictions on sensor range show that convergence rates are dependent

upon the number of landmarks simultaneously observed, with good performance so

long as approximately half of the landmarks seen from any given point. Although

the graph structure used in this work is fully connected, computational perfor-

mance could be improved by considering a hierarchical mapping system which

eliminates redundant long-distance connections. Experimental data from a traver-

sal of the JPL Mars Yard shows that realistic robot trajectories produce similar

results, though in general more images are required for a given level of performance

if the imaging points are not uniformly distributed. A method for determining new

areas to take measurements is presented, given the metrical positions of the land-

marks. A practical mapping implementation would benefit from a strategy for

determining the optimal position for new measurements using only information
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in the qualitative map. This would allow a rover to dynamically plan an active

mapping strategy based on the environment.

The FDC representation is expanded in Chapter 2 to include splits based on

relative distances as well as angles, resulting in the Extended Double Cross (EDC).

The EDC states can be written as nonlinear inequalities in either range, for the

measurement problem, or landmark position, for the graph inference problem.

Both the measurements and the offline generation of lookup tables for convert-

ing between EDC states make use of a Branch-and-Bound approach to determin-

ing the feasibility of sets of these non-convex quadratic inequalities. An example

navigation strategy was presented which uses estimates of the landmark Relative

Neighborhood Graph (RNG) extracted from the qualitative map in order to find

paths between the Voronoi regions of arbitrary landmarks. The asymptotic be-

havior of the mapping system was again evaluated using Monte-Carlo simulations

of randomly generated maps and a data driven simulation of traversing the JPL

Mars Yard, with similar overall results to those seen in Chapter 2 despite the in-

creased complexity of the EDC representation. However, computation time was

significantly increased. Additionally, the RNG estimates were seen to converge

significantly faster than the map itself, indicating that navigation objectives can

be achieved even when significant map ambiguities remain. A major limitation of

the QRM system is a reliance on perfect data association in order to maintain map

consistency. Data association failures cause inconsistencies to rapidly propagate

through the graph, leading to edge estimates with no open states. This limitation

could be addressed by moving to a probabilistic representation, where measure-

ments updated discrete probability distributions over EDC states, rather than the

current hard ‘yes/no’ decisions about open states.
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Chapter 3 examined the ability of human operators to compensate for time

delays when tele-operating remote vehicles. An experiment measured the ability

of human subjects to drive a remotely operated robot around a closed track when

subjected to varied amounts of time delay. Statistical models were trained on the

data set using the ‘Least Angle Regression’ (LARS) and ‘Sparse Multinomial Lo-

gistic Regression’ (SMLR) algorithms, and were able to successfully predict the

human responses with a high degree of accuracy (up to 98% for models generated

by LARS and 85% for those generated by SMLR). A novel ‘importance’ metric was

defined in order to determine the relative contributions of each model feature to

the model performance. An analysis of the feature scores showed that both models

agree as to the relative importance of feature groups: with the most important be-

ing the past control history, followed by the predicted off-track and heading errors

based on simple models of the rovers future trajectory. The subject’s attention, as

measured by importance scores, appears to follow a window which moves forward

approximately 0.73m between 0s and 2.5s of time delay. The emphasis placed on

predictive features, and the shift in subjects’ attention in response to increased

delays, supports the hypothesis that subjects are using a predictive model of the

robot motion in order to anticipate upcoming control needs.

In summary, this thesis has presented the following novel contributions:

• A method for generating estimates of FDC states from camera images using

geometrically constructed look-up tables

• Evaluation of mapping performance using the new FDC measurement func-

tion, using both Monte-Carlo and data-driven simulations

• A qualitative representation of landmark geometrical relationships, the EDC,

which incorporates both qualitative angles and edge lengths

• Unary and Binary operators for manipulating EDC states
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• An optimization approach for generating offline look-up table necessary for

graph inference in the new representation, using algebraic inequalities derived

from the geometrical regions

• An optimization approach for generating online measurements of qualitative

states from camera images

• A branch-and-bound algorithm for solving the quadratic feasibility problems

required for the above approaches

• A method for extracting estimates of the landmark RNG from the EDC

qualitative map

• A long-distance navigation approach using the RNG to find intermediate

landmarks

• Evaluation of mapping performance using the new EDC representation, using

both Monte-Carlo and data-driven simulations

• A method for evaluating human anticipation when remote controlling time-

delayed vehicles using linear regression and classification algorithms

• An ‘importance’ metric for evaluating feature contributions to linear regres-

sions and classifiers

• Analysis of a set of human trials testing the anticipation hypothesis
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For the vast majority of configurations for a robot and the landmarks A,B,C,

landmark B will be either less than or greater than 90◦ from A. Listed below

are measurement tables covering the case in which B is to the left of A. The

symmetric case where B is to the right of A can be found by simply horizon-

tally mirroring each table element. While unlikely to occur outside of simulation,

measurement tables can be easily generated for the cases in which B is an exact

multiple of 90◦ from A. These tables are far more constrained and are omitted

for the sake of compactness. Likewise, additional tables must be generated if two

or more landmarks are exactly equidistant from the robot.
s=1

s=5 s=13

s=9

S=15

s=7 s=11

s=3

s=2 s=16

s=14

s=10s=8

s=6 s=12

B A
 

s=4

(a) Geometry of A and B

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(b)

|C| < |A| < |B|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(c)

|A| < |C| < |B|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(d)

|A| < |B| < |C|

Figure A.1: Case 1: g = 2 (B lies less than 90◦ from A), |A| < |B|. (a) shows

one possible arrangement of pointsA andB, superimposed with the corresponding

double cross in red. Black lines indicate 90◦ intervals with respect toA andB. The

numbers label angle sectors, s, for point C. The tables in (b-d) show the possible

qualitative states for AB : C for each sector as black squares. (b) corresponds to

the case that C is closer than both A and B, (c) to the case that C lies between

A and B, and (d) to the case that C lies further than A or B.
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s=5 s=13

s=9

S=15

s=7 s=11

s=3

s=2 s=16

s=14

s=10s=8

s=6 s=12

s=4

(a) Geometry of A and B

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(b)

|C| < |B| < |A|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(c)

|B| < |C| < |A|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(d)

|B| < |A| < |C|

Figure A.2: Case 2: g = 2 (B lies less than 90◦ from A), |B| < |A|. The figure

labeling and tables are constructed as described in Figure A.1

B

A
 

s=1

s=5 s=13

s=9

S=15

s=7 s=11

s=3

s=2 s=16

s=14

s=10s=8

s=6 s=12

s=4

(a) Geometry of A and B

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(b)

|C| < |A| < |B|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(c)

|A| < |C| < |B|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(d)

|A| < |B| < |C|

Figure A.3: Case 3: g = 4 (B lies more than 90◦ from A but less than 180◦),

|A| < |B|. The figure labeling and tables are constructed as described in Figure

A.1

133



B

A
 

s=1

s=5 s=13

s=9

S=15

s=7 s=11

s=3

s=2 s=16

s=14

s=10s=8

s=6 s=12

s=4

(a) Geometry of A and B

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(b)

|C| < |B| < |A|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(c)

|B| < |C| < |A|

s=1 s=2 s=3 s=4

s=5 s=6 s=7 s=8

s=9 s=10 s=11 s=12

s=13 s=14 s=15 s=16

(d)

|B| < |A| < |C|

Figure A.4: Case 4: g = 4 (B lies more than 90◦ from A but less than 180◦),

|B| < |A|. The figure labeling and tables are constructed as described in Figure

A.1
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B.1 Unary Operators

Zimmermann and Freksa [25] discusses three unary operators for the FDC model.

Equivalent operators, inverse, left cyclical, and right cyclical, are used in this paper

and are associated with the lookup tables shown in Figure B.1.

(a) Inverse (b) Left Cyclical

Permutation

(c) Right Cyclical

Permutation

Figure B.1: Lookup tables for the unary operators. (a) shows the effects

of converting AB : C to BA : C. (b) shows the effects of converting

AB : C to BC : A. (c) shows the effects of converting AB : C

to CA : B. Each table is organized according to the principle of self-

similarity: for example, the effect of the left shift operation on the right-

back state is found in the right-back table position (row 5, column 3).

136



B.2 Binary Composition Operator

Freksa [24] presents the binary composition operator which allows inference about

the qualitative relationships between landmarks not directly observed together.

The lookup table for compositions is recreated in Figure B.2, with some reordering

and omission of the elements corresponding to two landmarks being co-located.

Given a state for AB : C, shown in red on the vertical, and a state for BC : D,

shown in blue on the horizontal, the corresponding table element lists the possible

states for the relationship AB : D in black.
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A

B
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Figure B.2: FDC composition operator look-up table
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The EDC unary operators are defined by the state equivalences listed in Table

2.1. Table elements can be proven by showing that the listed states have the

same constraint equations for their boundaries. These constraints can be written

as follows for any three arbitrary points X = (x0, x1), Y = (y0, y1), and

Z = (z0, z1):

c1(X,Y, Z) = (y1 − x1)(z0 − x0)− (y0 − x0)(z1 − x1)

c2(X,Y, Z) = (x0 − y0)(z0 + y1 − x1 − x0)− (y1 − x1)(z1 − y0 − x1 + x0)

c3(X,Y, Z) = (x0 − y0)(z0 + y1 − y0 − x1)− (y1 − x1)(z1 − y1 − y0 + x0)

c4(X,Y, Z) = (z1 − y1)2 − (z1 − x1)2 + (z0 − y0)2 − (z0 − x0)2

c5(X,Y, Z) = (x1 − y1)2 + (x0 − y0)2 − (z1 − x1)2 − (z0 − x0)2

c6(X,Y, Z) = (x1 − y1)2 + (x0 − y0)2 − (z1 − y1)2 − (z0 − y0)2

Values of these expressions correspond to the EDC region boundaries as follows:

• if c1(X,Y, Z) < 0, Z is to the left of XY

• if c3(X,Y, Z) < 0, Z is in front of X

• if c2(X,Y, Z) < 0, Z is in front of Y

• if c4(X,Y, Z) < 0, Z is in closer to Y than it is to X

• if c5(X,Y, Z) < 0, Z is further from X than Y is from X

• if c6(X,Y, Z) < 0, Z is further from Y than Y is from X

If A = (ax, ay), B = (bx, by), C = (cx, cy), then the state equivalences in

the second column of Table 2.1 for the left-side EDC regions are proven as follows:

• State AB : C = 1 is defined by the constraints c1(A,B,C) < 0,
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c6(A,B,C) < 0, and c3(A,B,C) < 0. These can be expanded into

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.1)

−c2
y + 2bycy − c2

x + 2bxcx − 2ayby − 2axbx + a2
y + a2

x < 0 (C.2)

−bycy + aycy − bxcx + axcx + b2
y − ayby + b2

x − axbx < 0 (C.3)

State BC : A = 17 is defined by the constraints c1(B,C,A) < 0,

−c5(B,C,A) < 0, and −c2(B,C,A) < 0. These can be expanded

into

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.4)

−c2
y + 2bycy − c2

x + 2bxcx − 2ayby − 2axbx + a2
y + a2

x < 0 (C.5)

−bycy + aycy − bxcx + axcx + b2
y − ayby + b2

x − axbx < 0 (C.6)

(C.1) = (C.4), (C.2) = (C.5), and (C.3) = (C.6), therefore AB : C =

1 implies BC : A = 17.

• State AB : C = 3 is defined by the constraints c1(A,B,C) < 0,

−c6(A,B,C) < 0, and c3(A,B,C) < 0. These can be expanded into

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.7)

c2
y − 2bycy + c2

x − 2bxcx + 2ayby + 2axbx − a2
y − a

2
x < 0 (C.8)

−bycy + aycy − bxcx + axcx + b2
y − ayby + b2

x − axbx < 0 (C.9)

State BC : A = 19 is defined by the constraints c1(B,C,A) < 0,

c5(B,C,A) < 0, and −c2(B,C,A) < 0. These can be expanded into

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.10)

c2
y − 2bycy + c2

x − 2bxcx + 2ayby + 2axbx − a2
y − a

2
x < 0 (C.11)

−bycy + aycy − bxcx + axcx + b2
y − ayby + b2

x − axbx < 0 (C.12)
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(C.7) = (C.10), (C.8) = (C.11), and (C.9) = (C.12), therefore AB :

C = 2 implies BC : A = 19.

• State AB : C = 5 is defined by the constraints c6(A,B,C) < 0,

−c3(A,B,C) < 0, and c4(A,B,C) < 0. These can be expanded into

−c2
y + 2bycy − c2

x + 2bxcx − 2ayby − 2axbx + a2
y + a2

x < 0 (C.13)

bycy − aycy + bxcx − axcx − b2
y + ayby − b2

x + axbx < 0 (C.14)

−2bycy + 2aycy − 2bxcx + 2axcx + b2
y + b2

x − a
2
y − a

2
x < 0 (C.15)

State BC : A = 12 is defined by the constraints −c5(B,C,A) < 0,

c2(B,C,A) < 0, and c6(B,C,A) < 0. These can be expanded into

−c2
y + 2bycy − c2

x + 2bxcx − 2ayby − 2axbx + a2
y + a2

x < 0 (C.16)

bycy − aycy + bxcx − axcx − b2
y + ayby − b2

x + axbx < 0 (C.17)

−2bycy + 2aycy − 2bxcx + 2axcx + b2
y + b2

x − a
2
y − a

2
x < 0 (C.18)

(C.13) = (C.16), (C.14) = (C.17), and (C.15) = (C.18), therefore

AB : C = 5 implies BC : A = 12.

• State AB : C = 6 is defined by the constraints −c6(A,B,C) < 0,

−c3(A,B,C) < 0, and c5(A,B,C) < 0. These can be expanded into

c2
y − 2bycy + c2

x − 2bxcx + 2ayby + 2axbx − a2
y − a

2
x < 0 (C.19)

bycy − aycy + bxcx − axcx − b2
y + ayby − b2

x + axbx < 0 (C.20)

−c2
y + 2aycy − c2

x + 2axcx + b2
y − 2ayby + b2

x − 2axbx < 0 (C.21)

State BC : A = 11 is defined by the constraints c5(B,C,A) < 0,
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c2(B,C,A) < 0, and −c4(B,C,A) < 0. These can be expanded into

c2
y − 2bycy + c2

x − 2bxcx + 2ayby + 2axbx − a2
y − a

2
x < 0 (C.22)

bycy − aycy + bxcx − axcx − b2
y + ayby − b2

x + axbx < 0 (C.23)

−c2
y + 2aycy − c2

x + 2axcx + b2
y − 2ayby + b2

x − 2axbx < 0 (C.24)

(C.19) = (C.22), (C.20) = (C.23), and (C.21) = (C.24), therefore

AB : C = 6 implies BC : A = 11.

• State AB : C = 7 is defined by the constraints c4(A,B,C) < 0,

−c5(A,B,C) < 0, and c1(A,B,C) < 0. These can be expanded into

−2bycy + 2aycy − 2bxcx + 2axcx + b2
y + b2

x − a
2
y − a

2
x < 0 (C.25)

c2
y − 2aycy + c2

x − 2axcx − b2
y + 2ayby − b2

x + 2axbx < 0 (C.26)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.27)

States BC : A = {1, 5} are defined by the constraints c6(B,C,A) < 0,

c4(B,C,A) < 0, and c1(B,C,A) < 0. These can be expanded into

−2bycy + 2aycy − 2bxcx + 2axcx + b2
y + b2

x − a
2
y − a

2
x < 0 (C.28)

c2
y − 2aycy + c2

x − 2axcx − b2
y + 2ayby − b2

x + 2axbx < 0 (C.29)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.30)

(C.25) = (C.28), (C.26) = (C.29), and (C.27) = (C.30), therefore

AB : C = 7 implies BC : A = {1, 5}.

• StatesAB : C = {11, 19} are defined by the constraints−c4(A,B,C) <

0, c5(A,B,C) < 0, and c1(A,B,C) < 0. These can be expanded into

2bycy − 2aycy + 2bxcx − 2axcx − b2
y − b

2
x + a2

y + a2
x < 0 (C.31)

−c2
y + 2aycy − c2

x + 2axcx + b2
y − 2ayby + b2

x − 2axbx < 0 (C.32)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.33)
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State BC : A = 13 is defined by the constraints −c6(B,C,A) < 0,

−c4(B,C,A) < 0, and c1(B,C,A) < 0. These can be expanded into

2bycy − 2aycy + 2bxcx − 2axcx − b2
y − b

2
x + a2

y + a2
x < 0 (C.34)

−c2
y + 2aycy − c2

x + 2axcx + b2
y − 2ayby + b2

x − 2axbx < 0 (C.35)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.36)

(C.31) = (C.34), (C.32) = (C.35), and (C.33) = (C.36), therefore

AB : C = {11, 19} implies BC : A = 13.

• States AB : C = {12, 17} are defined by the constraints c6(A,B,C) <

0, −c5(A,B,C) < 0, and c1(A,B,C) < 0. These can be expanded into

−c2
y + 2bycy − c2

x + 2bxcx − 2ayby − 2axbx + a2
y + a2

x < 0 (C.37)

c2
y − 2aycy + c2

x − 2axcx − b2
y + 2ayby − b2

x + 2axbx < 0 (C.38)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.39)

State BC : A = 7 is defined by the constraints −c5(B,C,A) < 0,

c4(B,C,A) < 0, and c1(B,C,A) < 0. These can be expanded into

−c2
y + 2bycy − c2

x + 2bxcx − 2ayby − 2axbx + a2
y + a2

x < 0 (C.40)

c2
y − 2aycy + c2

x − 2axcx − b2
y + 2ayby − b2

x + 2axbx < 0 (C.41)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.42)

(C.37) = (C.40), (C.38) = (C.41), and (C.39) = (C.42), therefore

AB : C = {12, 17} implies BC : A = 7.

• State AB : C = 13 is defined by the constraints −c6(A,B,C) < 0,
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−c4(A,B,C) < 0, and c1(A,B,C) < 0. These can be expanded into

c2
y − 2bycy + c2

x − 2bxcx + 2ayby + 2axbx − a2
y − a

2
x < 0 (C.43)

2bycy − 2aycy + 2bxcx − 2axcx − b2
y − b

2
x + a2

y + a2
x < 0 (C.44)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.45)

States BC : A = {3, 6} are defined by the constraints c5(B,C,A) < 0,

−c6(B,C,A) < 0, and c1(B,C,A) < 0. These can be expanded into

c2
y − 2bycy + c2

x − 2bxcx + 2ayby + 2axbx − a2
y − a

2
x < 0 (C.46)

2bycy − 2aycy + 2bxcx − 2axcx − b2
y − b

2
x + a2

y + a2
x < 0 (C.47)

−bxcy + axcy + bycx − aycx − axby + aybx < 0 (C.48)

(C.43) = (C.46), (C.44) = (C.47), and (C.45) = (C.48), therefore

AB : C = 13 implies BC : A = {3, 6}.

Given the correct table elements for the left-side EDC states, the equivalences

for the right-side EDC states listed in the second column of Table 2.1 must be

true by symmetry. Given the state equivalences between AB : C and BC : A

and between AB : C and BA : C, we can safely use the LEFT and INVERSE

operators to generate the equivalent states for CA : B listed in the third column

of Table 2.1, exploiting the identity INVERSE(LEFT(INVERSE(AB : C))) =

CA : B.
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