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ABSTRACT 

Complete classes of designs and of moment matrices for linear re­
gression over the multi-dimensional unit cube are presented. An essen­
tially complete class of designs comprises the uniform distributions on 
the vertices with a fixed number of entries being equal to unity, and mix­
tures of neighboring such designs. The corresponding class of moment 
matrices is minimally complete. The derivation is built on information 
increasing orderings, that is, a superposition of the majorization order­
ing generated by the permutation group, and the Loewner ordering of 
symmetric matrices. 

* On leave from the lnstitut fur Mathematik der U niversitat Augsburg. The work of this 

author is partially supported by the Mathematical Sciences Institute, Cornell University. 
t Paper BU-942-M in the Biometrics Unit, Cornell University. 

AMS 1980 subject classiE.cation. 62K05, 62C07. 
Key words and phrases. Group majorization, permutation group, completely sym-

metric matrices, Loewner matrix ordering, p-mean optimality. 

1 



1. Introduction 

In a brilliant paper C.-S. Cheng {1986) recently determined optimal designs over the k­

dimensional rmit cube [ 0,1 ]k for the linear model 

E[Y) = x'B, V[Y) = u 2 • 

In this setting the experimenter chooses the regression vector x in the cube [ 0,1 ]k prior 

to rrmning the experiment, and then observes the response Y. The response is assumed 

to have expected value and variance as given above, furthermore repeated responses are 

taken to be uncorrelated. As pointed out by Cheng this model has interesting applications 

in Hadamard transform optics. 

The optimal designs of Cheng {1986) are the j-vertex designs ei and mixtures of j + l­
and j-vertex designs, defined as follows. A j-vertex of the unit cube [ 0, 1 ]k is a vector x 

with j entries equal to unity and the remaining k- j entries equal to zero, for j = 0, ... , k. 

There are (~) many j-vertices. The j-vertex design ei is the design that has the j-vertices 

for support, and assigns uniform mass 1/(~) to each of them. For mixtures of the form 

aej+l + (1 - 0:' )ej the following notation is convenient, in that it provides a continuous 

parametrization in the support defining parameters E [0, k]. Given j = 0, ... , k -l define 

the design 

for s E (j,j + 1). 

In terms of s we have that j is the integer part of s, j = int s. In other words, the two 

integers j + 1 and j closest to s specify the vertices supporting es, and the fractional 

part s- j determines the weight for mixing ei+1 and ei· For example, e2.11 = 0.116 + 
0.89e2, and 6.4 = OAes + 0.66; see also Figure 1. 

Under the p-mean criteria considered by Cheng (1986) the class of optimal designs is 

C = {es: s E [intk; \k]}, 

starting from the 'median vertex design' eint(k+l)/2 and running through the j-vertex 

designs ej and mixtures es up to the design ek that assigns all mass to the vector with 

every entry equal to unity. It is notationally convenient to set 

. k + 1 
m=1nt--· 

2 ' 

note that m is the largest median of the set of numbers 0, ... , k. As usual the class of all 

designs on [ 0, 1 ]k is denoted by 3. 
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Figure 1. Corners of the unit cube with j entries 1 and the remaining 
entries 0 are called j-vertices. For the cube in dimension 3 the figure 
shows 0-, 1-, 2-, and 3-vertices. 

In Section 2 we show that Cheng's class C is essentially complete, and that the cor­

responding class of moment matrices M( C) is minimally complete, with respect to the 

information ordering generated by the permutation group Perm(k). As a consequence the 

class C contains an optimal design whenever the optimality criterion is given by an infor­

mation function <P that is permutationally invariant. Cheng (1986) studied the subclass of 

p-means </Jp· In Section 3 we present some graphs showing how the optimal support pa­

rameter s(p) and the optimal value v(p) change with the order p E [ -oo, 1] of the mean </Jp, 
and with the dimensionality k. 

3 



2. Complete class results 

The performance of a design e hinges on its moment matrix M(e) = ./[o,l]l: xx' de. These 

matrices are of order k x k, and nonnegative definite. Our complete class results refer to 

the information increasing ordering generated by the group Perm(k) of k x k permutation 

matrices. The general theory is surveyed in Pukelsheim (1987), we here only recall such 

details as are necessary for the present discussion. A matrix B is said to be more centered 

than a moment matrix A whenever 

BE conv{ QAQ': Q E Perm(k) }, 

that is, B lies in the convex hull of the orbit of A when the group Perm(k) acts through 

congruence. A moment matrix M is said to be at least as informative as another moment 

matrix A when in the Loewner ordering one has M ~ B for some matrix B that is more 

centered than A. A moment matrix is said to be more informative than another moment 

matrix A when M is at least as informative as A, but does not lie in the orbit of A. 

Theorem 1. The class of designs C is essentially complete, that is, for all designs TJ 

in 3 there exists a design es in C such that M(es) is at least as informative as M(?J). 
The corresponding class of moment matrices M(C) is minimally complete, that is, for all 

moment matrices A not in M( C) there exists a moment matrix M in M( C) such that M is 

more informative than A and there is no proper subclass of M(C) with the same property. 

Proof. Let TJ be a design not in C. First symmetrization leads to an invariant design f[; then 

a Loewner improvement produces a better design e, and another Loewner improvement 

yields a design es in the class c. 

I. Averaging TJ leads to a design f[ that is permutationally invariant. Its moment 

matrix matrix A is the average of the moment matrix A of 'fj, A= EQEPerm(k) QAQ', and 

therefore more centered than A. 

But it may happen that 'fJ has an invariant moment matrix A without 'fJ itself being 

invariant. In this case A = A, so that the passage from A to A means no improvement what­

soever. The optimal balanced incomplete block designs of Corollary 3.5 in Cheng (1986) 

provide an instance of this. 

II. Being invariant the design f[ must be a mixture of j-vertex designs for j ~ 0, 

with min/3j > 0 and E /3j = 1. Let J be the k X k matrix with every entry equal to 1/k, 

and set K = Ik - J; this is an orthogonal pair of orthogonal projection matrices. The 
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moment matrix of e; is 

M(e;) =A; J + >.; K, 

Therefore the moment matrix of fj is 

·2 
J 

where A;= k' 
j(k- j) 

>.; = k(k- 1)" 

M(fi) = 2:: ·>o f3;(A;J + >.;K). 
}_ 

The eigenvalues A; and>.; increase as j runs over the initial section from 0 up tom. Hence 

we introduce new weights a; that sweep the initial mass into the median m, 

a;= 0 for all j < m, 

a;= !3; for all j > m. 

This produces a design which is a mixture of j-vertex designs for j ~ m, 

with a Loewner improved moment matrix 

Furthermore the two moment matrices are distinct, unless the weights {3; vanish for j < m. 

III. The moment matrix of e is M( e) = AJ + >.K, with 

A = """"" a · k ( j_) 2 

L.Jj?_m 3 k ' >-=2: a·-- 1-- . k j ( j) 
j?_m 3 k- 1 k k 

Thus the eigenvalue pair (A,>.) varies over the convex set 

conv{(A;,>.;):j=m, ... ,k}=conv{ (kz 2 ,k k 1z(1-z)):z= 7, ... ,1 }· 

In other words, on the curve x(z) = kz 2 and y(z) = k~l z(1- z) we pick the points (A;,>.;) 

corresponding to z = j / k for j ~ m, and then form their convex hull. Figure 2 shows the 

limiting continuous curve (x(z), y(z)) with z E [1/2, 1]. 

The geometry exhibits that for every eigenvalue pair (A,>.) there exist 'neighboring' 

points (A;+I, >.;H) and (A;,>.;) on the curve such that with some a E [0, 1] we obtain, 

with s = j +a, 
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Thus the design es has a Loewner improved moment matrix, 

and lies in Cheng's class C. Furthermore the two moment matrices are distinct, unless e 
itself lies in C. 

IV. As s varies over [m, k] the eigenvalues As and As strictly increase and decrease, 

respectively. Therefore a proper subclass of M( C) cannot be complete. ¢ 

-N 
I .,... -N 

0.00 +--....-----,r------r----r---T---~ 
0.25 0.50 0.75 1.00 

z**2 

Figure 2. The figure illustrates the set of eigenvalue pairs (A, .A) of 
the designs e that are mixtures of j-vertex designs for j 2: m. The j­
vertex designs have eigenvalue pairs (Aj, Aj) that are the corners of the 
convex set shown in the picture. Dots indicate the pairs for j = 2, 3, 4 
in dimension k = 4 . See part III of the proof of Theorem 1. 

The eigenvalue improvement in part III of the proof appears to be small, indicating 

that mixtures of j-vertex designs for j > m may perform well even when they are not in 

the class C. 
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Every optimality criterion 4> that is isotonic relative to the Loewner ordering, con­

cave, and permutaionally invariant is invariant also relative to the information increasing 

ordering: M is at least as informative as A if and only if 

with Qi E Perm(k), and minai 2: 0 and L:ai = 1. The functional properties of 4> then 

yield 

The same reasoning also establishes that if there exists a design e E 3 that is </>-optimal 

over 3 then there actually exists a design es E C with the same optimality property. 

An optimal design always exists provided the criterion 4> is upper semicontinuous. The 

following corollary summarizes this behaviour. 

Corollary 1.1. Let 4> be an optimality criterion tbat is Loewner-isotonic, concave, and 

permutationally invariant. If a moment matrix M is at least as informative as anotber 

moment matrix A tben 

t/>(M) ></>(A). 

Moreover, tbere exists a design es E C wbicb is </>-optimal over 3, 

provided 4> is upper semicontinuous. 

A particular class of criteria to which this corollary applies are the p-means t/>p, for 

p E [-oo, 1], studied by Cheng (1986). 
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3. Optimal designs for the p-rnean criteria 

As it happens the complete class of moment matrices M(C is in fact exhausted by the 

moment matrices M(es(p)) belonging to </>p-optimal designs es(p)' asp varies over [-oo, 1]. 
This follows from Theorem 3.1 in Cheng (1986); we now briefly recall this result. Cheng 

subdivides the interval [-oo, 1] using two interlacing sequences of numbers f(j) and g(j), 

j = m, ... , k, according to 

-oo = f(m) < g(m) < J(j) < g(j) < J(j + 1) < g(j + 1) < f(k) = g(k) = 1 

for j = m + 1, ... , k- 2. His result can then be stated as follows. 

Theorem 2. For every order p E [-oo, 1] there exists a support parameter s(p) E [m, k] 

such that the design es(p) is </>p-optimal over 3. As a function s(p) is continuous, being 

equal to j on the closed intervals [f(j), g(j)] and strictly increasing from j to j + 1 on the 

open intervals (g(j),J(j + 1)). 0 

Cheng (1986) actually provides explicit formulae for these quantities, namely 

. log ( 1 - 2}'_1 ) . log ( 1 - 2j~l) 
!(J) = 1 + 1 (k-l)j ' g(J) = 1 + 1 (k-l)j ; 

og ---r=} og ---r=} 

j(j + 1) ( k -1 + { 1- 2j~l} ~) 
s(p) = 1 for p E (g(j),J(j + 1)). 

(2j + 1)(k- 1) + (2j + 1- k) { 1- 2j~l} p-
1 

Figures 3 and 4 illustrate how the standardized support parameter s(p)fk and the optimal 

value </>(es(p)) vary with p. Variation is small for p < -1 and is not shown, variation is 

relatively large for p > 0. 

Writing sk(P) in place of s(p) we show that for large dimensions k the support of the 

optimal designs tends to the the vertices with half of their entries unity, 

1. Sk(P) _ 1 
lmk-+oo -k- - 2' 

Let Jk be the integer part of sk(P), so that sk(P) E [jk, jk + 1), and p E [f(jk), f(jk + 1)). 

Hence it suffices to show that Jk/k tends to 1/2. From Jk > m we clearly get liminf Jk/k ~ 

1/2. We show that limsupjk/k > 1/2 is impossible. There is no loss in generality in 

assuming limjk/k =a> 1/2. Then we obtain 

log (1- 2. 71-l/k) 
!( . ) - 1 + )k ---t 

J k - lo ( k - 1) ___ilc__f__!_ g 'f='Ji:1k 

log (1- 2~) 
1 + 1' 1 (k ) Q = 1. Imk og - 1 1-a 

Hence eventually p falls below f(jk), and this is impossible. 
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Figure 3. The graph shows the support parameter sk(P)/k, standard­
ized by the dimension k, of the </>p-optimal design esr.(p)l as a function 
of the order p of the mean </>p· Most of the variation takes place when p 
is positive. The limiting value for large dimensions k is 1/2. 
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Figure 4. The graph shows the dependance of the optimal value v(p) = 
</>(es(p)) on the order p of the mean </>p, for varying dimensions k. 
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