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This is a collection of algebraic topological results for toric origami manifolds,

mostly in dimension 4. Using a known formula for the fundamental group of

a compact orientable toric origami manifold, a list of all groups obtainable as

the fundamental group of a compact orientable toric origami 4-manifold is given,

along with example manifolds that realize them. The known fundamental group

formula is generalized to compact non-orientable toric origami manifolds of all

dimensions. The homology and cohomology groups of toric origami 4-manifolds

are explicitly constructed with generators realized as embedded submanifolds, and

the intersection form and cohomology ring are calculated.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Overview

This thesis is a collection of results concerning the topology of toric origami man-

ifolds, mostly in dimension four. Toric origami manifolds are a generalization of

toric symplectic manifolds. Symplectic geometers often use toric symplectic man-

ifolds as a source of inspiration and examples because 2n-dimensional toric sym-

plectic manifolds are in one-to-one correspondence with Delzant polytopes in Rn.

In other words, all of these manifolds’ interesting symplectic geometry is captured

by the combinatorics of the half-dimensional polytopes that represent them.

There is a similar correspondence for toric origami manifolds, which is what

makes them so interesting to study. Each 2n-dimensional toric origami manifold

can be represented by a collection of n-dimensional Delzant polytopes together

with “folding data” that records the gluing of specific facets of the polytopes to

one another. These polytopes and folding data together are called an origami

template for the toric origami manifold.

In [3] and [4], Ana Cannes da Silva and her collaborators start from the sym-

plectic geometry, build up the definitions for folded symplectic forms and origami

forms, and then explain how to prove the one-to-one correspondence of toric

origami manifolds to origami templates. This viewpoint is the best when the

goal is to study and understand the origami forms on the toric origami manifolds.

However, this thesis will largely ignore the symplectic and origami geometry.

The results we prove will be about the underlying topology forced on the mani-
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folds by the symplectic and origami structure, so we will take a slightly different

approach. We will begin by defining an origami template. We will then explain

how to construct a topological manifold from an origami template. Finally, we will

define and explain how these constructed manifolds are endowed with an origami

form, but this will be incidental to the topological results presented.

1.2 How Does a Polytope Become a Manifold?

A polytope in Rn is the convex hull of a finite number of points in Rn. A facet of

a polytope is a top-dimensional (i.e. n− 1) face.

Definition. A Delzant polytope in Rn is a polytope that is:

• simple: there are n facets adjacent to each vertex

• rational: the primitive normal vector to each facet lives in the Zn lattice

• smooth: at each vertex, the primitive normal vectors to the n facets adjacent

to the vertex form a Z-basis of Zn.

In order to construct a manifold from a Delzant polytope, we are going to rely

heavily on a chosen isomorphism tn ∼= Rn where tn is the Lie algebra associated

to the n-dimensional torus T n. Our isomorphism sends the generator of the i-th

copy of t to the basis element xi ∈ Rn. Thus the i-th S1 factor in T n can now be

identified with the i-th basis element of Rn. This induces an isomorphism between

Zn and π1(T
n) which takes xi to [S1

i ], the loop that goes once around the i-th

circle factor of T n. For example, the vector (2,−3) ∈ Z2 corresponds to the loop

in π1(T
2) that goes 2 times around the first circle factor (in the positive direction)

and 3 times around the second circle factor (in the negative direction).
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Let P be an n-dimensional Delzant polytope embedded in Rn, with facets

F1, . . . , Fm. Let νi ∈ Zn be the primitive outward normal vector to the facet

Fi. To construct the 2n-dimensional manifold MP that corresponds to P , do the

following:

MP := (P × T n)/ ∼,

where (p1, t1) ∼ (p2, t2) if and only if p1 = p2 ∈ Fi for some facet Fi and t2−t1 = rνi

for some r ∈ R. In each fiber over the facet Fi, the relation ∼ collapses the circle of

T n spanned by the normal vector νi, leaving a fiber homeomorphic to T n−1. This

is not a fiber bundle because the dimension of the fibers drops over the facets, but

it helps to think of MP as having base space P with T n fibers and weirdness over

the facets.

Let q : MP → P be the projection q(p, t) = p. The preimage q−1(Fi) of a

facet Fi is a codimension-2 submanifold of M . As an example, consider P as the

standard 2-simplex embedded in R2 (Exercise: quickly check that P is Delzant).

See Figure 1.1.

p12 p13

p23

v1

(
0
−1

)

v2 (
1
1

)
v3(
−1
0

)
F1

F2F3

P

Figure 1.1: The Delzant polytope P corresponding to MP
∼= CP 2.
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The corresponding manifold MP has facets F1, F2, and F3. The preimage of

each facet q−1(Fi) is homeomorphic to a 2-sphere S2. Notice that the preimage of

the vertex p12 in the intersection of F1 and F2 has the circle fibers corresponding to

both v1 and v2 collapsed. The smooth condition on P means that v1 and v2 span

all of Z2, and thus the entire T 2 fiber over p12 is collapsed. In particular, q−1(p12)

is a single point.

Although it’s neither obvious nor trivial, the 4-dimensional manifold MP corre-

sponding to the 2-simplex P in Figure 1.1 is homeomorphic to CP 2. The preimages

of all three facets are homologous, and they are all representatives of the homology

class of the non-trivial CP 1 inside CP 2.

1.3 Toric Symplectic Definitions

At this point we have shown how to construct a manifold from a Delzant polytope.

However, we promised a toric symplectic manifold. This requires some definitions.

Again, for the results in this thesis the toric and symplectic structures are mostly

unnecessary. We include their definitions and constructions because we expect

anyone who cares about the topology of these manifolds will also care about how

the toric and symplectic structures interact with the topology. A good introduction

to symplectic manifolds can be found in [2].

A symplectic manifold (M,ω) is a manifold M along with a 2-form ω ∈

Ω2(M) called the symplectic form which is closed (i.e. dω = 0) and non-

degenerate (i.e. M is even dimensional and the top wedge-power of ω is a volume

form on M).
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Suppose that a compact connected abelian Lie group T n = (S1)n acts on M

preserving ω. The action is weakly Hamiltonian if for every vector ξ ∈ t in the

Lie algebra tn of T n, the vector field

Vξ(x) =
d

dt

∣∣∣∣
t=0

exp(tξ) · x

is a Hamiltonian vector field. That is, we require ω(Vξ, ·) to be an exact one-

form

ω(Vξ, ·) = dµξ.

Each µξ is a smooth function on M defined up to a constant by the differential

equation above. Taking them together we may define a moment map

µ : M → (tn)∗, x 7→
(
ξ 7→ µξ(x)

)
.

The action is Hamiltonian if the moment map µ can be chosen to be T n-invariant

with respect to the coadjoint action of (tn)∗. Atiyah [1] and Guillemin and Stern-

berg [9] have shown that when M is a compact Hamiltonian T n-manifold, the

image µ(M) is a convex polytope, and is the convex hull of the images of the fixed

points of the T n action.

If the Hamiltonian action is effective (i.e. no non-trivial subgroup of T n acts

trivially on M), then dim(T n) ≤ 1
2

dim(M). The action is called toric if it is

effective and this inequality is an equality, so dim(M) = 2n. A symplectic manifold

M2n with a toric Hamiltonian T n action is called a toric symplectic manifold.

Fun fact: if we start with a Delzant polytope P , the manifold MP we construct

has a symplectic form ω which can be described locally in coordinates. Let x1 . . . xn

be coordinate functions for Rn around p ∈ P . Let t1, . . . tn be the corresponding

coordinate functions for the torus fiber T n above p. Then ωp =
∑n

i=1 dxi ∧ dti.
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In addition, MP inherits the structure of a toric symplectic manifold from

the action of T n on each T n fiber. The moment map µ : MP → (tn)∗ ∼= Rn is

exactly the projection map q which is also the quotient map for the T n action.

In particular, the orbit space for the T n action on MP is P . None of this is

trivial, and is in fact the meat of Delzant’s theorem which is nicely presented in

[2]. As mentioned earlier, toric symplectic manifolds are well-understood from

many different perspectives and provide a great class of examples for symplectic

geometers. This thesis will attempt to take the intuition from toric symplectic

manifolds and expand it to the more general situation of toric origami manifolds.

1.4 How Does an Origami Template Become a Manifold?

Let Dn be the set of all Delzant polytopes in Rn and let En be the set of all subsets

of Rn which are facets of elements of Dn.

Definition. An n-dimensional origami template is a graph G = (V,E), called

the template graph, along with a pair of maps ΨV : V → Dn and ΨE : E → En

such that:

1. If e is an edge between v1 and v2, then ΨE(e) is a facet of each of the polytopes

ΨV (v1) and ΨV (v2), and these polytopes agree on a neighborhood of ΨE(e).

2. If e1, e2 ∈ E are two edges of G adjacent to v ∈ V , then ΨE(e1) and ΨE(e2)

are disjoint facets of ΨV (v).

The manifold M we will construct from the origami template will again have

a T n action on it, so we start by constructing the template-space X which will
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end up being M/T . We define X as

X =

(⊔
v∈V

ΨV (v)

)/
∼

where x ∈ ΨV (u) is equivalent to y ∈ ΨV (v) if and only if there exists an edge

e ∈ E with endpoints u and v so that x = y ∈ ΨE(e). Thus X is the disjoint

union of the Delzant polytopes corresponding to the vertices of G where the facets

corresponding to each edge of G have been glued via the identity map. In two

dimensions, X will resemble the folded paper art from which it gets its name. See

Figure 1.2 for an example. In Figure 1.2, the Delzant polytopes P1, . . . , P4 are

glued along the red facets F1, . . . , F4.

P2

F2

P3

F3

P4
F4

F1

P1

X

v1

v2v3

v4

e1

e2

e3

e4

G

Figure 1.2: An example template-space X and corresponding template graph G.

A facet is called folded if it is ΨE(e) for some e ∈ E (i.e. it folds or glues two

Delzant polytopes in X together via ∼). All other facets are called unfolded. A
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folded facet whose corresponding edge connects two distinct vertices of G is called a

coörientable. A folded facet whose corresponding edge is a loop adjacent to a sin-

gle vertex is called non-coörientable. In the template graph X, the coörientable

facets glue distinct Delzant polytopes together. The non-coörientable facets are

glued to themselves via the identity map, and therefore are indistinguishable from

the unfolded facets. However, we remember they are folded for the construction

of M .

To construct M , we mimic the toric symplectic case, but we will only be col-

lapsing torus fibers above unfolded facets and non-coörientable facets. That is,

given an n-dimensional origami template with template-space X define then 2n-

dimensional manifold MX as

MX := (X × T n)/ ∼,

where (x, t1) ∼ (x, t2) if x ∈ F for any unfolded facet F of X and t2 − t1 = rv for

some r ∈ R and v the normal vector to the facet F . Additionally, (x, t1) ∼ (x, t2) if

x ∈ F for any folded, non-coörientable facet F of X where t1 and t2 are antipodal

points of the S1 factor of T n defined by v the normal vector to the facet F (in

particular, 2(t2 − t1) = kv for some k ∈ Z).

That is, in each T n fiber above a point in an unfolded facet we collapse the

circle corresponding to the facet’s normal vector. Thus the fiber above a point in

an unfolded facet will be homeomorphic to T n−1. In each T n fiber above a point in

a non-coörientable folded facet we quotient the circle corresponding to the facet’s

normal vector by the antipodal map. This leaves fibers still homeomorphic to T n.

Note that the manifold MX has a T n action given by the action of T n on

each T n fiber. The orbit space M/T of this action of T n on MX is exactly X.

We let q : M → M/T be the quotient map by the T -action. The antipodal

8



map quotient makes a q−1(F ) a one-sided codimension 1 submanifold of M for

each non-coörientable facet F . The existence of non-coörientable folded facets will

imply that M is non-orientable. In Chapters 2 and 4 we will be assuming M to

be orientable, and thus all folded facets will be coörientable. Chapter 3 will deal

with the non-orientable situation.

single point
fiber

single
point
fiber

tori fibers

circle fibers

circle
fibers

unfolded unfolded

unfolded unfolded

folded

P1 P2

Figure 1.3: A template-space X for two polytopes folded along a single facet. The
q−1 fibers above some points are illustrated. The constructed manifold is S4.

See Figure 1.3 for an example topological construction. The template-space X

consists of two identical polytopes P1 = ΨV (v1) and P2 = ΨV (v2) folded together
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along a single facet. The fibers q−1(p) above points p in the interior of the Pi are

the full T 2 tori. The fibers above points contained in exactly one of the unfolded

facets are T 2/S1 ∼= S1, where the collapsed S1 corresponds to the unfolded facet’s

normal vector. The fibers above the points contained in two unfolded facets (i.e.

the bottom-left corner of either Pi) are single points, which are fixed points of the

T 2 action. Fibers above the folded facet act like fibers above the polytope interior:

they are full torus orbits above the interior of the facet, and circle orbits above the

ends where the folded facet meets an unfolded facet. The manifold M constructed

from this particular origami template is S4, where q−1(P1) and q−1(P2) are both

homeomorphic to D4, and q−1(F ) for the folded facet F is the boundary S3 of D4.

1.5 Toric Origami Definitions

We define a folded symplectic form on a 2n-dimensional manifold M to be a

2-form ω ∈ Ω2(M) that is closed (dω = 0), whose top power ωn intersects the

zero section transversely on a subset Z of M , and whose restriction to points in

Z has maximal rank. The transversality condition forces Z to be a codimension-1

embedded submanifold of M . We call Z the folding hypersurface or fold. Let

i : Z ↪→ M be the inclusion of Z into M . The maximal rank assumption implies

that i∗ω has a 1-dimensional kernel on Z. This line field is called the null foliation

on Z. An origami manifold is a folded symplectic manifold (M,ω) whose null

foliation is fibrating: π : Z → B is a fiber bundle with orientable circle fibers over

a compact base B. The form ω is called an origami form and the bundle π is

called the null fibration. A diffeomorphism φ between two origami manifolds

(M1, ω1) and (M2, ω2) is called an origami-symplectomorphism if φ∗ω2 = ω1.
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Since the definition of a Hamiltonian action depends only on ω being closed,

we may define moment maps and toric actions on origami manifolds exactly as we

did on symplectic manifolds in Section 1.3.

The big picture is that an oriented origami manifold (M,ω) with folding hyper-

surface Z can be unfolded into a symplectic manifold. To do this, we first take

the closures of the connected components of M \Z. The result is a manifold with

boundary, whose boundary is two copies of Z. We then use the origami structure

to collapse the circle fibers of the null fibration: p1 ∼ p2 if p1 and p2 are boundary

points in the same fiber of the null fibration. The result is a disconnected smooth

manifold M0 := (M \Z)∪B1∪B2, where B1 and B2 are copies of the compact base

B of the null fibration. M0 has one connected component for each Delzant poly-

tope in the origami template for M (i.e. for each vertex in M ’s template graph),

and is exactly the disjoint union of the corresponding toric symplectic manifolds.

Therefore M0 inherits a symplectic form which on M0 \ (B1 ∪ B2) coincides with

the origami form on M \ Z. Because this process can be achieved using symplec-

tic cutting techniques, the manifold M0 is called the symplectic cut space, the

connected components are called symplectic cut pieces, and the whole process

is called cutting. The symplectic cut space of a nonorientable origami manifold

is the Z2-quotient of the symplectic cut space of its orientable double cover.

Since M0 is a symplectic manifold, it inherits an orientation from ωn, the top

wedge power of the symplectic form. If M is an orientable manifold with a chosen

volume form vol2n, then on each cut piece of M0, the orientation from ωn either

agrees or disagrees with the orientation from vol2n. Thus M0 = M+ tM− where

M+ is the disjoint union of the components of M0 on which the orientations agree,

and M− is the disjoint union of the components of M0 on which the orientations

11



disagree. The transversality condition on the fold Z demands that if a cut piece

Mi ⊆ M+ is folded to a cut piece Mj, then Mj ⊆ M− (and vice versa). In

particular, if ωn > 0 on one side of the folding hypersurface, then ωn < 0 on the

other side.

1.6 The 1-Skeleton of M

It will be very helpful to have a way to reference the collections of unfolded facets of

a template-spaceX that have been glued together as single entities. As an example,

let Pi and Pj be Delzant polytopes within X, folded together by the facet F . If

Ui is an unfolded facet in Pi adjacent to F , then there is a corresponding unfolded

facet Uj in Pj adjacent to F with the same normal vector as Ui. The unfolded

facets Ui and Uj are glued together at the edge of the folded facet F . When X is

2-dimensional (so MX is 4-dimensional), q−1(Ui) and q−1(Uj) are hemispheres that

glue together along their “equators” in F to form a 2-sphere q−1(Ui ∪Uj). We will

refer to q−1(Ui ∪ Uj) as a component of the 1-skeleton of M .

Formally, we define the 1-skeleton of M to be the union of all the 0 and 1-

dimensional T orbits. Thus, if M is 4-dimensional then the 1-skeleton is q−1 of the

collection of unfolded facets (i.e. edges) in M/T .

If a connected component of the 1-skeleton contains no T -fixed points, then it

must be a circles’ worth of circle orbits and therefore homeomorphic to S1× S1 ∼=

T 2. If a connected component of the 1-skeleton has j fixed points, then it is

homeomorphic to j−1 spheres cyclically connected with the north pole of the i-th

sphere glued to the south pole of the (i+1)-st sphere (think a torus with j pinched

meridian circles).
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sphere

spheresphere

sphere

torus

torus

Figure 1.4: M/T with its 1-skeleton components labeled.

The notation here is messy because we want to distinguish between “compo-

nents” and “connected components” of the 1-skeleton. We will use “connected

component” as it is usually defined in topology. However, we will define a com-

ponent of the 1-skeleton to mean a single torus or sphere in the 1-skeleton. In

particular, if a connected component of the 1-skeleton has n fixed points, then it

is comprised of n spheres and therefore n components. If a connected component

has no fixed points, then it is a torus and is also a component.
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CHAPTER 2

ORIENTABLE FUNDAMENTAL GROUPS

2.1 Orientable Fundamental Group Introduction

The goal of this chapter will be to prove a result about the fundamental group

of toric origami manifolds. In [11], Holm and Pires prove that for a toric origami

manifold (M2n, ω, T n, µ) the fundamental group is given by π1(M) ∼= N/NX ×

π1(G), where N/NX is a lattice quotient and G is the template graph for M .

In particular, N ∼= H1(T
n) ∼= Zn and NX is the span of the loops in H1(T

n)

corresponding to the normal vectors to the unfolded facets of X = M/T . See

Section 1.4 for a detailed explanation of the space X. Since adjacent facets cannot

be folded, the Delzant smoothness condition will ensure that NX always contains

at least n − 1 linearly independent vectors in Zn. Therefore N/NX will always

be isomorphic to Z/kZ for some non-negative integer k, where k = 0 implies

N/NX
∼= Z, and k = 1 implies N/NX

∼= 1. Since G is a graph, π1(G) will always

be a free group F` for some non-negative integer `.

This chapter addresses the following question: For which combinations of non-

negative integers k and ` does there exist a compact, orientable, 4-dimensional

toric origami manifold M such that π1(M) ∼= Z/kZ × F`? For the combinations

where such an M exists, we will produce an example. In all other cases, we will

prove that no such M can exist.
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2.2 Orientable Fundamental Group Theorem

Theorem 2.2.1 (Main Theorem). The following combinations of k and ` are the

only ones for which there exists a compact, orientable, toric origami 4-manifold M

with π1(M) ∼= N/NX × π1(G):

N/NX π1(G) Proof

1 F` for any ` ≥ 0 Theorem 2.3.1

Z F1 Theorem 2.3.2

Z/2Z F` for any ` ≥ 1 Theorem 2.4.1

Z/3Z F` for odd ` ≥ 1 Theorem 2.5.4

Z/kZ for k ≥ 4 F1 Theorem 2.6.3

Note that F1
∼= Z and that we let F0 := 1.

We begin by outlining some preliminary tools and ideas that will be crucial

to the proof of the theorem. First, note that if π1(G) ∼= 1 then N/NX
∼= 1 as

well. This is Corollary 2-16 in [11], which states that π1(M) ∼= 1 if and only if

π1(G) ∼= 1. The proof is that if π1(G) ∼= 1, then G has a leaf node. The polytope

represented by the leaf node must have an unfolded vertex, and hence the Delzant

smoothness condition at that vertex will force N/NX
∼= 1. Conversely, if N/NX is

non-trivial then it must be that π1(G) is non-trivial as well.

The second important tool is the correspondence between polygon corner chops

and symplectic blow-ups. Suppose M is a toric symplectic manifold with Delzant

polygon P . If P̃ is a Delzant polygon obtained from P by chopping off a corner,

then the toric symplectic manifold M̃ represented by P̃ is a symplectic blow-up of

M . When chopping off a corner, there is exactly one choice of normal vector to
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the new facet which will preserve the smoothness (and therefore Delzant-ness) of

the new polygon. To chop off a corner between facets with normal vectors v and

w, the new facet must have normal v +w. Corner chopping is important because:

Proposition 2.2.2. Every compact toric symplectic 4-manifold can be obtained

from either CP 2 or a Hirzebruch surface by a succession of symplectic blow-ups at

fixed points of the T -action.

This translates into the discrete geometry of polygons as: We can obtain any

2-dimensional Delzant polygon by a sequence of corner chops, starting with either

the standard triangle representing CP 2 or one of the trapezoids representing a

Hirzebruch surface. Hirzebruch surfaces are a family of symplectic manifolds whose

Delzant polytopes are trapezoids with normal vectors (0,−1), (−1, 0), (0, 1), and

(1, k) for k ∈ Z≥0. If k is even, then the Hirzebruch surface is homeomorphic to

S2×S2. If k is odd then the Hirzebruch surface is homeomorphic to the twisted S2

bundle over S2. See [13, Lemma 2.15] for a detailed statement of the proposition,

and see [8, Section 2.5] for a proof.

Finally, it should be noted here that if the goal is to obtain a toric origami

manifold with N/NX
∼= Z/kZ for k ≥ 1, then no vertex can be left unfolded in the

origami template. By the Delzant smoothness condition, if any vertex is unfolded

then N/NX will be trivial. However, the definition of an origami template also

requires that adjacent facets not both be folded. Therefore every polygon in the

origami template must have an even number of facets, every other one of which

is folded. In the case where the origami template is two identical copies of some

polygon P , it follows that to increase the number of generators in π1(G) by 1 we

must create two additional facets in each copy of P , one pair of which can be folded

together to create a new edge in G. We will use this strategy in all of the example
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manifolds we create.

2.3 Proof in Base Cases

Theorem 2.3.1. For any ` ≥ 0 there exists a compact, orientable, toric origami

manifold M so that π1(M) ∼= 1× F`.

Proof of Theorem 2.3.1. Any toric symplectic manifold M (take CP 2 for ex-

ample) satisfies π1(M) ∼= 1, which produces the ` = 0 case. For the ` > 0 case,

start with the Delzant triangle for CP 2. Do any sequence of 2` corner chops to

get a new Delzant polygon P which has 2` + 3 facets. Take two identical copies

of P and create an origami template by folding the two copies of P together via

the identity map on any set of ` + 1 non-adjacent facets. The resulting origami

template will have an unfolded vertex, so N/Nx
∼= 1. The template graph G will

have 2 vertices and `+ 1 edges, so π1(G) ∼= F` as desired.

Theorem 2.3.2. If M is a compact, orientable, toric origami 4-manifold with

N/NX
∼= Z, then it must be that π1(G) ∼= F1. There exists such an M with

π1(M) ∼= Z× Z.

(
−1
0

)
(

0
1

)
(

1
0

)
(

0
−1

)
Figure 2.1: Delzant polygon P .
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Proof of Theorem 2.3.2. This is the “prismatic” case from Definition 2-12 and

Corollary 2-13 of [11]. Corollary 2-13 states that if a compact orientable toric

origami manifold M has N/NX
∼= Z, then π1(G) ∼= Z ∼= F1 as well.

To get such an M , start with the Delzant polygon P representing S2×S2 which

is a square or rectangle whose facets have outward pointing normal vectors:−1

0

 ,

 0

−1

 ,

1

0

 ,

0

1

 .

To create an origami template for M , start with two copies of the polygon P .

Fold together the two copies of the facet with normal vector (0,−1) via the identity

map. Do the same for the two copies of the facet with normal vector (0, 1). This

leaves only the facets with normal vectors (−1, 0) and (1, 0) unfolded. See Figure

2.1, where the black facets with solid normal vectors are unfolded, and the red

facets with dashed normal vectors are folded.

Recall that N ∼= Z2 for all 4-dimensional M , and that the unfolded normal

vectors generate NX . Therefore

N/NX
∼= Z2/ 〈(−1, 0), (1, 0)〉 ∼= Z.

Since the template graph G has 2 vertices and 2 edges, we get that π1(G) ∼= F1
∼= Z,

as desired.

2.4 Proof in N/NX
∼= Z/2Z Case

Theorem 2.4.1. For any ` ≥ 1 there exists a compact, orientable, toric origami

4-manifold M such that π1(M) ∼= Z/2Z× F`.
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(
−1
0

)
(

0
1

) (
1
2

)

(
0
−1

)
(a) Moment image of M1. (b) M1 template graph G.

(c) Orbit space for M1.

Figure 2.2: Origami template information for M1.

Proof of Theorem 2.4.1. Let P1 be the quadrilateral representing a Hirzebruch

surface whose facets have the following outward primitive normal vectors:−1

0

 ,

 0

−1

 ,

1

2

 ,

0

1

 .

In the ` = 1 case, begin with two identical copies of P1. Create an origami tem-

plate by first folding the two facets with outward normal vectors (0,−1) together

via the identity map, and then folding the two facets with outward normal vectors

(0, 1) together via the identity map. Let M1 be the toric origami four manifold

represented by this origami template. Figure 2.2a shows the moment map image

of M1. The red facets with dashed normal vectors are the folded facets. The black

facets with solid normal vectors are the unfolded facets.

Recall that NX is generated by the primitive normal vectors to the unfolded

facets. Therefore,
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(
−1
0

) (
0
1

)
(

1
4

)
(

1
3

)
(

1
2

)

(
0
−1

)
(a) Moment image of M2. (b) M2 template graph G.

(c) Orbit space for M2.

Figure 2.3: Origami template information for M2.

N/NX
∼= Z2/ 〈(−1, 0), (1, 2)〉 ∼= Z/2Z.

The template graph G pictured in Figure 2.2b has two vertices connected by

two edges. Each vertex represents one of the polygons seen in 2.2a, and each

edge represents one of the red facets folding the polygons together. Therefore

π1(G) ∼= F1. Therefore π1(M1) ∼= Z/2Z× F1.

Now consider the ` = 2 case. By performing a corner chop between the (1, 2)

facet and the (0, 1) facet, we get a new facet with normal vector (1, 3). Chopping

again between (1, 3) and (0, 1) gives a polygon P2 with normal vectors:−1

0

 ,

 0

−1

 ,

1

2

 ,

1

3

 ,

1

4

 ,

0

1

 .

Create an origami template by taking two copies of P2 and folding together the
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pairs of facets with normal vectors (0,−1), (1, 3), and (0, 1).

The corresponding manifold M2 will have

N/NX
∼= Z2/〈(−1, 0), (1, 2), (1, 4)〉 ∼= Z/2Z.

Further, the template graph G pictured in Figure 2.3b has 2 vertices connected by

3 edges, so π1(G) ∼= F2. This finishes the ` = 2 case.

By continuing this corner chop pattern, we can produce examples of manifolds

M with π1(M) ∼= Z/2Z × F` for any ` ≥ 1. To see this, fix ` ≥ 1. Begin with P1

from above, and perform pairs of corner chops until the outward primitive normal

vectors are

(−1, 0), (0,−1), (1, 2), (1, 3), (1, 4), . . . , (1, 2`− 1), (1, 2`), (0, 1).

Call this new polygon P`. Create an origami template by taking two copies of P`

and folding together the pairs of facets with normal vectors (0,−1), (1, 3), (1, 5),

. . . , (1, 2`− 1), (0, 1). Call the manifold represented by this origami template M`.

The origami template information for M3 can be seen in Figure 2.4.

The sublattice NX of M` will be generated by the unfolded facets, and so

N/NX
∼= Z2/〈(−1, 0), (1, 2), (1, 4), . . . , (1, 2`− 2), (1, 2`)〉 ∼= Z/2Z.

The corresponding template graph G will have 2 vertices and (` + 1) edges, and

so π1(G) ∼= F`. Since π1(M`) ∼= Z/2Z× F`, we have proved the theorem.

2.5 Proof in N/NX
∼= Z/3Z Case

In Theorem 2.5.4 we will prove that if M is a compact, orientable, toric origami

4-manifold with N/NX
∼= Z/3Z, then π1(M) ∼= Z/3Z × F` for some odd integer
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(
−1
0

) (
0
1

)

(
1
6

)
(

1
5

)
(

1
4

)
(

1
3

)
(

1
2

)

(
0
−1

)
Figure 2.4: Moment image for M3.

` ≥ 1. We begin with a few lemmas and definitions we will use in the proof.

Lemma 2.5.1. If (M,ω) is a compact, orientable, toric origami 4-manifold with

origami template graph G = (V,E), and if N/NX is non-trivial, then it must be

that |V | is even.

Proof of Lemma 2.5.1. Define Q be the set of all vectors w ∈ R2 for which there

exists v ∈ V such that w is a primitive outward normal vector to an unfolded facet

of ΨV (v). Choose any element of Q and label it q1. Consider all the vectors of

Q to be anchored at the origin, and label the vector closest to q1 in the counter-

clockwise direction as q2. Continue in a counter-clockwise direction from q2 to label

the remaining elements of Q as q3, . . . , qn. Order the elements of Q by qi < qj if

and only if i < j.

Define q : V → Q to be the function which for v ∈ V returns the minimal

element qi of Q for which there exists an unfolded facet in ΨV (v) with primitive
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outward normal vector qi. For 1 ≤ i ≤ n, define

Vi := {v ∈ V | q(v) = qi}.

Notice that since each polygon ΨV (v) will have a unique minimal element q(v), it

must be that the sets Vi are disjoint, and that V =
⊔
i Vi. We will now show that

each set Vi contains an even number of elements, and therefore V will also contain

an even number of elements, as desired.

Fix any 1 ≤ i ≤ n. We will show that |Vi| is even. Suppose that |Vi| is non-

zero. Let v ∈ Vi. The polygon P = ΨV (v) has adjacent facets F1, F2, F3 labeled

in counter-clockwise order, where F3 is the unfolded facet with primitive outward

normal vector qi. Since N/NX is non-trivial, F2 must be a folded facet and F1

must be an unfolded facet. Suppose primitive outward normal vector to F1 is qj

for some j 6= i. Since q(v) = qi, it must be that j > i.

Since F2 is folded, there exists w ∈ V , w 6= v, with ΨV (w) being identical

to ΨV (v) in a neighborhood of F2. Therefore there are counter-clockwise labeled

adjacent facets F ′1, F
′
2, F

′
3 of ΨV (w) with primitive outward normal vectors identical

to F1, F2, and F3 respectively. Since the normal to F ′1 is qj and the normal to F ′3

is qi, it must be that q(w) = qi and therefore w ∈ Vi.

Remove v and w from Vi. Either Vi is empty, or the process can be repeated.

Since elements of Vi always come in pairs, it must be that |Vi| is even, and therefore

|V | is even as well.

Definition. A cyclic sequence of integers a1, . . . , a2m is called k-foldable if it is

even length, and if either

(1) a2i ≡ 0 mod k for all i, or
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(2) a2i+1 ≡ 0 mod k for all i.

By “cyclic” we mean that there is no true start or end to the sequence: we consider

a1 to follow a2m in the sequence.

Definition. A cyclic sequence of integers b1, . . . , bm+1 is the blow-up of a cyclic

sequence of integers a1, . . . am if there exists some i such that

b1 = a1

...

bi = ai

bi+1 = ai + ai+1

bi+2 = ai+1

...

bm+1 = am.

These definitions are useful because once we put an origami template in stan-

dard position, either (0,−1) or (−1, 0) will be unfolded. If (0,−1) is unfolded,

then the problem of determining the total span of the unfolded facets reduces to

determining the span of the remaining unfolded facets’ x-coordinates. The un-

folded x-coordinates will form a cyclic sequence of integers, and N/NX
∼= Z/kZ

if and only if this sequence is k-foldable. Similarly, if (−1, 0) is unfolded, then

N/NX
∼= Z/kZ if and only if the cyclic sequence of unfolded y-coordinates is k-

foldable. Performing a corner chop on a polygon P is equivalent to performing a

blow-up of the corresponding cyclic sequence of integers.

Lemma 2.5.2. Let M be a toric origami manifold with template graph G = (V,E).
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Let v ∈ V , and let P = ΨV (v) in standard position. Letx1 = −1

y1 = 0

 ,

 x2 = 0

y2 = −1

 ,

x3
y3

 , . . . ,

xm
ym


be the outward primitive normal vectors to the facets of P . Let SP be the span of

the primitive normal vectors to the unfolded facets of P . If N/SP ∼= Z/kZ, then

either x1, . . . , xm is k-foldable or y1, . . . , ym is k-foldable.

Proof of Lemma 2.5.2. Since N/SP is not trivial, it must be that m is even.

Suppose the facet with normal vector (x1, y1) is unfolded. Then all the odd index

facets are unfolded and the even index facets are folded. Therefore

N/SP ∼= (Z× Z)/ span〈(x1, y1), (x3, y3), . . . (xm−1, ym−1)〉.

Since x1 = −1, it follows that

N/SP ∼= Z/ gcd(y1, y3, . . . , ym−1).

Since N/SP ∼= Z/kZ, it is necessary that y2i+1 ≡ 0 mod k for all i. By definition,

y1, . . . , ym is k-foldable.

On the other hand, if we suppose (x1, y1) is folded, then the odd facets are

folded and the even facets are unfolded. Since y2 = −1, we get that

N/SP ∼= Z/ gcd(x2, x4, . . . , xm),

and so x2i ≡ 0 mod k for all i. Therefore x1, . . . , xm is k-foldable, as desired.

Lemma 2.5.3. Let (M,ω) be a compact, orientable, toric origami 4-manifold with

origami template graph G = (V,E), and suppose N/NX
∼= Z/3Z. If v ∈ V , then

ΨV (v) is a polygon with a multiple of four facets, and therefore an even number of

folded facets. This means that all vertices in the template graph have even degree.
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Proof of Lemma 2.5.3. Let P = ΨV (v) for some v ∈ V . Put P in standard

position and let {(xi, yi)}i be the ordered set of outward pointing normal vectors

to facets of P . Since N/NX
∼= Z/3Z, either the sequence of xi’s or the sequence of

yi’s must be 3-foldable by Lemma 2.5.2. By Proposition 2.2.2, we know that any

Delzant polygon P with more than 4 facets can be obtained from some Hirzebruch

surface by a sequence of corner chops. Let Hj be the Hirzebruch surface in standard

position with outward pointing normal vectors−1

0

 ,

 0

−1

 ,

1

j

 ,

0

1

 ,

for some j ∈ Z+ so that after some number of corner chops, Hj becomes P .

This implies that after some number of blow-ups, either -1, 0, 1, 0, or 0, -1, j, 1

becomes a 3-foldable cyclic sequence. Since the case j ≡ 0 (mod 3) is identical to

the first sequence, suppose without loss of generality that the sequence 0, -1, j, 1

will blow-up to become 3-foldable. Consider the first corner chop in the sequence

that eventually produces P . There are two main cases.

Case 1: Suppose j ≡ 0 (mod 3). Then the first blow-up occurs between a 0

and a ±1 (mod 3), since there are no other options. Any blow-up between a 0 and

a ±1 forces 3 additional unique blow-ups to occur before the subsequence between

the original 0 and ±1 is 3-foldable. Here is the sequence of blow-ups that must

occur:

0 ±1 (mod 3)

0 ±1 ±1 (mod 3)

0 ±1 ±2 ±1 (mod 3)

0 ±1 0 ±2 ±1 (mod 3)

0 ±1 0 ±2 0 ±1 (mod 3)
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After performing these 3 necessary blow-ups (for a total of 4 blow-ups), we will

have a sequence that is 3-foldable: every other integer is 0 mod 3. Since 2 ≡ −1

(mod 3), any additional unforced blow-ups will repeat the above pattern and must

come in sets of four. Since Hj has four facets and corner-chops must come in sets

of four, we get that P has a multiple of four facets.

Case 2: Suppose j ≡ ±1 (mod 3). This means that the subsequence -1, ±1,

1 must become 3-foldable. In both cases (j ≡ 1 and j ≡ −1), it takes exactly four

corner chops to make this subsequence 3-foldable:

- 1 1 1

- 1 0 1 1

- 1 0 1 2 1

- 1 0 1 0 2 1

- 1 0 1 0 2 0 1

or

- 1 -1 1

- 1 -2 -1 1

- 1 0 -2 -1 1

- 1 0 -2 0 -1 1

- 1 0 -2 0 -1 0 1

After performing these four required blow-ups (and remembering that 2 ≡ −1

(mod 3)), our sequence becomes 3-foldable and any additional blow-ups will occur

between a 0 and a ±1 mod 3. This puts us back into case 1, and means that

additional blow-ups will happen in sets of four. Therefore P must have a multiple

of four facets.

Theorem 2.5.4. There exists a compact, orientable, toric origami 4-manifold M

with π1(M) ∼= Z/3Z× F` if and only if ` ≥ 1 is odd.

Proof of Theorem 2.5.4. Suppose M is an orientable toric origami manifold

with origami template graph G = (V,E), and suppose that N/NX
∼= Z/3Z. We

want to show that π1(G) ∼= F`, where ` must be odd. We know that ` = |E| −
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(|V | − 1). By Lemma 2.5.1 we know that |V | is even. We will show here that |E|

is also even, and therefore ` is odd.

By Lemma 2.5.3, we know that each vertex represents a polygon with an even

number of folded facets. Since folded facets are represented by edges, this implies

that each vertex in G has even degree. Veblen’s Theorem states that the set of

edges of a finite graph can be written as a union of disjoint simple cycles if and

only if every vertex in the graph has even degree [15]. Since we assumed M to be

an orientable manifold, we also know that there cannot be any odd cycles in the

template graph. Since E can be written as the disjoint union of even cycles, it

must be that |E| is even, and hence ` must be odd.

Finally, we construct examples of orientable toric origami 4-manifolds M for

which π1(M) ∼= Z/3Z×F` for odd ` ≥ 1. In all cases, the origami template for M

will be two identical polygons with folded facets glued via the identity map. Begin

with the Hirzebruch surface with outward pointing normal vectors−1

0

 ,

 0

−1

 ,

1

3

 ,

0

1

 .

Folding second and fourth facets via the identity map will result in a manifold

M with π1(M) ∼= Z/3Z × F1. Choose any two adjacent vectors, and perform the

sequence of four corner chops outlined in the proof of Lemma 2.5.3 that preserves

the Z/3Z lattice. This will introduce two new folded facets, and so the new man-

ifold will have fundamental group Z/3Z×F3. Repeat to get Z/3Z×F5, etc. This

process creates orientable toric origami 4-manifolds M` with π1(M`) ∼= Z/3Z× F`

for all odd ` ≥ 1.
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2.6 Proof in N/NX
∼= Z/kZ, k ≥ 4 Case

In Theorem 2.6.3 of this section we will prove that if M is an orientable toric

origami 4-manifold with N/NX
∼= Z/kZ for k ≥ 4, then π1(M) ∼= Z/kZ× F1.

Lemma 2.6.1. If any two adjacent elements of a cyclic sequence of integers are

equivalent to 1 and 2 (mod k), respectively, or to -1 and -2 (mod k), respectively,

for k ≥ 4, then no finite number of blow-ups will result in a k-foldable cyclic

sequence of integers.

Proof of Lemma 2.6.1. Suppose that a1, . . . am is a cyclic sequence of integers.

Case 1: Suppose some pair of adjacent elements are 1 and 2 mod k. The

definition of k-foldable is that either every even index element must be equivalent

to 0 mod k, or every odd index element must be equivalent to 0 mod k. Therefore

a1, . . . , am is not k-foldable. We will show that any attempt to create a sequence

which is k-foldable by performing blow-ups will fail.

Since neither 1 nor 2 is equivalent to 0 mod k, a blow-up must be performed

between them for the sequence to have a chance to become k-foldable. This creates

the sub-sequence 1, 3, 2, which means we now have an adjacent 1 and 3 mod k.

Again neither is 0 mod k, so a blow-up must be performed between them. This

creates an adjacent 1 and 4 mod k. We continue making the necessary blow-ups

until we get an adjacent 1 and (k−2) mod k. The next blow-up creates an adjacent

(k − 1) and (k − 2) mod k. This is equivalent to an adjacent -1 and -2 mod k.

In order to get an element which is 0 mod k between the 1 and 2, we had to

introduce a new set of adjacent elements which are equivalent to -1 and -2 mod k.

This puts us into Case 2.
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Case 2: Suppose some pair of adjacent elements are -1 and -2 mod k. In order

to obtain a sequence which is k-foldable, a blow-up will have to be performed

between them. By the same logic as Case 1, this forces blow-ups until we have an

adjacent −(k − 1) and −(k − 2) mod k. These are equivalent to 1 and 2 mod k,

so we are back in Case 1.

Since the adjacent elements in Case 1 force at least two blow-ups and introduce

a new pair of elements satisfying Case 2 in the process, and vice versa, no finite

number of blow-ups of a1, . . . , am will result in a k-foldable cyclic sequence.

Lemma 2.6.2. Let H be a Delzant polygon representing a Hirzebruch surface, and

let C be the Delzant polygon representing CP 2. Suppose P is a Delzant polygon

with at least 6 facets which is obtained from either H or C by a finite number of

corner chops. If P = ΨV (v) for some vertex v of an origami template graph G,

then N/NX is not isomorphic to Z/kZ for any k ≥ 4.

Proof of Lemma 2.6.2. Suppose for a contradiction that N/NX
∼= Z/kZ for

some k ≥ 4. Let SP be the span of the outward primitive normal vectors to the

unfolded facets of P . Since SP ≤ NX , it follows that

Z/kZ ∼= N/NX ≤ N/SP .

Thus Z/kZ is a subgroup of N/SP , so N/SP ∼= Z/rkZ for some integer r ≥ 1. Let

s = rk. Thus N/NX
∼= Z/kZ implies that N/SP ∼= Z/sZ.

Put H and C into standard position by actions of SL2(Z), so that the primitive

outward normal vectors to their facets are

H :

−1

0

 ,

 0

−1

 ,

1

j

 ,

0

1

 ,
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for some j ∈ Z, and

C :

−1

0

 ,

 0

−1

 ,

1

1

 .

Let the normal vectors to the facets of P be−1

0

 ,

x2
y2

 ,

x3
y3

 , . . . ,

xm
ym

 .

It is important to note that if {vi} are the normal vectors to a Delzant polytope,

with vi = (ai, bi), then a corner chop between vi and vi+1 results in a blow-up of the

cyclic sequences {ai} and {bi} between the ai and ai+1 elements and between the

bi and bi+1. Therefore if P is obtained from H by some sequence of corner chops,

it follows that x1 . . . xm is obtained from -1, 0, 1, 0 and y1, . . . , ym is obtained from

0, -1, j, 1 by the same sequence of blow-ups.

Since (x1, y1) = (−1, 0) begins next to (0,−1) in both H and C, it follows that

any sequence of corner chops between these two vectors will result in y2 = −1.

Thus by Lemma 2.5.2, since N/SP ∼= Z/sZ for s ≥ 4, and x1 = −1, and y2 = −1,

it must be that either x1, . . . , xm or y1, . . . , ym is s-foldable. We will show that

neither of these cases can be true.

Case 1: Suppose x1, . . . , xm is s-foldable. If P is obtained from H by corner

chopping, then some finite number of blow-ups of the cyclic sequence -1, 0, 1, 0 is

s-foldable. However any blow-up to this sequence will result in either adjacent 1’s

or adjacent -1’s. Suppose without loss of generality that we have adjacent 1’s. To

be s-foldable, every even index (or odd index) element of the sequence must be 0

mod s. Therefore another blow-up must be done between the adjacent 1’s. This

gives us the subsequence 1, 2, 1. It then follows from Lemma 2.6.1 that no finite

sequence of blow-ups will result in s-foldability.
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If P is obtained from C, then some finite number of blow-ups of the cyclic

sequence -1, 0, 1 is s-foldable. Any blow-up to this sequence creates adjacent 1’s

or -1’s. It follows from the same argument as above that no finite sequence will

result in s-foldability. Therefore x1, . . . , xm cannot be s foldable.

Case 2: Suppose y1, . . . , ym is s-foldable. If P is obtained from C, then some

finite number of blow-ups of 0, -1, 1 is s-foldable. After a single blow-up, either

there are adjacent 1’s or -1’s, or the sequence looks like 0, -1, 0, 1. Since P has at

least 6 facets, at least 2 more blow-ups must be done to obtain y1, . . . , ym. The first

of these blow-ups will result in adjacent 1’s or -1’s. By the same argument as in

case 1, there is no sequence of additional blow-ups which will result in s-foldability.

Thus P is not obtained from C.

Suppose P is obtained from H. Then after some finite number of blow-ups of

0, -1, j, 1 is s-foldable. Since s-foldability is defined mod s, we may assume that

0 ≤ j < s. If j = 0, then any additional blow-up will result in adjacent 1’s or

-1’s and a contradiction. If j = 1, then we again have a contradiction. Suppose

2 ≤ j < s. Since neither −1 nor j is equivalent to 0 mod s, a blow-up must be

done between them. This results in the subsequence -1, (j − 1), j. If (j − 1) = 1,

then (j−1) and j are an adjacent 1 and 2. If not, a blow up must be done between

−1 and (j − 1). This repeats until eventually there must be an adjacent 1 and 2.

Then it follows from Lemma 2.5.2 that y1, . . . ym cannot be s-foldable.

Since neither x1, . . . xm nor y1, . . . , ym is s-foldable, Lemma 2.5.2 is in contra-

diction with our assumption and so it must be that N/SP is not isomorphic to

Z/sZ. This further implies that N/NX is not isomorphic to Z/kZ, as desired.

Now finally we put this all together to prove Theorem 2.6.3.
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Theorem 2.6.3. If M is a toric origami 4-manifold with N/NX
∼= Z/kZ for

k ≥ 4, then it must be that π1(G) ∼= F1. For every k ≥ 4 such a manifold exists.

Proof of Theorem 2.6.3. Suppose that M is a toric origami 4-manifold with

N/NX
∼= Z/kZ for some k ≥ 4. Let G = (V,E) be the corresponding template

graph. Suppose for the sake of a contradiction that π1(G) is not isomorphic to

F1. Since π1(G) is neither trivial nor isomorphic to F1, it follows that some vertex

v ∈ V has at least 3 edges incident to it. The corresponding Delzant polygon

P = ΨV (v) must have at least 3 folded facets, and therefore at least 6 total facets.

By Proposition 2.2.2, P is obtained from a Delzant polygon H or C representing

a Hirzebruch surface or CP 2, respectively, by some finite number of corner chops.

This contradicts Lemma 2.6.2. Therefore it must be that π1(G) ∼= F1.

Examples of such manifolds M with π1(M) ∼= Z/kZ× F1 are provided in [11].

Given k ≥ 4, they result as the manifolds represented by the origami template

with 2 copies of the polygon Hk, where the primitive normal vectors to the facets

of Hk are: −1

0

 ,

 0

−1

 ,

1

k

 ,

0

1

 ,

folded together along the facets with normal vectors (0,−1) and (0, 1).
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CHAPTER 3

NON-ORIENTABLE FUNDAMENTAL GROUPS

3.1 Non-Orientable Fundamental Group Introduction

In this chapter we will investigate the fundamental groups of non-coörientable

toric origami manifolds. This chapter is unique in that it applies to toric origami

manifolds of all dimensions rather than specializing to dimension four.

Recall that a facet F of X is a fold facet if F = ΨE(e) for some edge e in

G. If e is an edge between distinct vertices u and v, then we call F two-sided

because it will fold ΨV (u) to ΨV (v) and the tubular neighborhood of q−1(F ) will

be two-sided. If, on the other hand, e is a loop edge adjacent to a single vertex v,

then q−1(F ) is folded to itself with a one-sided tubular neighborhood and we call

F one-sided.

Two-sided fold facets are also called coörientable, and one-sided fold facets

are called non-coörientable. If every fold facet in M/T is coörientable, then

we call M itself coörientable. Note that if M is orientable, then it must also be

coörientable. The converse is not true however. If a coörientable M has an odd

length cycle in its template graph, then M will be non-orientable.

Holm and Pires have a formula for the fundamental group of an orientable

toric origami manifold (M2n, ω, T n, µ) in terms of the combinatorics of its template

graph [11]. In particular, π1(M) ∼= N/NX × π1(X) where N ∼= H1(T
n) ∼= Zn and

NX is the span of the loops in H1(T
n) corresponding to the normal vectors to the

unfolded facets of M/T . Their proof of this isomorphism goes through word for

word in the case where M is coörientable but not orientable. In this chapter we
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will explore the case where M is non-coörientable.

3.2 Non-Coörientable Fundamental Group Theorem

Theorem 3.2.1. Let (M2n, ω, T n, µ) be a compact toric origami manifold, with

template graph G and template-space (i.e. orbit space) X. Note that we allow

M to be non-coörientable and therefore non-orientable. Let F1, . . . Fm be the one-

sided facets in M , with corresponding primitive outward normal vectors τ1, . . . , τm.

Let U i
1, . . . , U

i
ki

be the unfolded facets adjacent to Fi, with corresponding primitive

outward normal vectors ηi1, . . . , η
i
ki

. Then

π1(M) ∼= π1(X)×

〈
α1, . . . , αm

α2
i − τi · x, for all 1 ≤ i ≤ m,

x1, . . . , xn
ηi1 · x, . . . , ηiki · x, for all 1 ≤ i ≤ m,

[xi, xj], for all 1 ≤ i, j ≤ n

〉
.

Proof. (Proof of Theorem 3.2.1) We will be using the Seifert–van Kampen theorem

to prove Theorem 3.2.1. Choose a basepoint p ∈ M so that q(p) is in the interior

of M/T (i.e. not in any facet). We will begin by carefully choosing open sets that

cover M , and calculating their fundamental groups.

Let V0 be the open set which is M with all the non-orientable folded facets cut

out, given by V0 = q−1
(
X −

⊔m
i=1 Fi

)
= M − q−1

(⊔m
i=1 Fi

)
. Then by [11], we have

that π1(V0) ∼= π1(G)×N/NX . Since G is a graph, it follows that π1(G) is always

a free group.

N is the lattice generated by x1, . . . , xn inside tn. Let U1, . . . , Ur be the unfolded

facets in X, with corresponding primitive outward normal vectors ν1, . . . , νr. Then

since any loop in the torus factor of M ∼=
(
X × T

)
/∼ is homotopic to the same
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loop moved into the facet Ui where the subtorus νi · x is collapsed, we get that

N/NX
∼=

〈
x1, . . . , xn

ν1 · x, . . . , νr · x,

[xi, xj] for all 1 ≤ i, j ≤ n

〉
.

If νi is the vector (νi,1, . . . , νi,n) in Zn ∼= N , we use the notation νi·x to represent the

linear combination νi,1x1+· · ·+νi,nxn ∈ N . In this notation, NX = 〈ν1·x, . . . , νr·x〉.

Therefore,

π1(V0) ∼= π1(X)×

〈
x1, . . . , xn

ν1 · x, . . . , νr · x,

[xi, xj] for all 1 ≤ i, j ≤ n

〉
.

Next, we define Vi for 1 ≤ i ≤ m to be the one-sided open tubular neighborhood

of q−1(Fi), together with an open tube or “tongue” in M connecting to p. Let

U i
1, . . . , U

i
ki

be the unfolded facets of X adjacent to Fi, and with corresponding

outward primitive normal vectors ηi1, . . . , η
i
ki

. Let τi be the primitive outward

normal vector to Fi.

Since q−1(Fi) is a one-sided hypersurface in M , we understand it as the natural

Z2-quotient of its orientation double cover. Let d : M̂ → M be the orientation

double cover of M . In the orientation double cover, d−1(Vi) is a two-sided neigh-

borhood of the coörientable fold d−1(q−1(Fi)). Therefore we have that

π1
(
d−1 (Vi)

)
=

〈
x1, . . . , xn

ηi1 · x, . . . , ηiki · x,

[xi, xj] for all 1 ≤ i, j ≤ n

〉
.

At a point in d−1(q−1(Fi)), the direction of the null fibration is given by the tangent

vector τi. Since d−1(Fi) is toric origami, the null fibration integrates into S1 fibers.

In particular, the S1 fibers are the loops generated by τi in T n. The map d acts

by collapsing the null fibration via the antipodal map. Topologically, this means

that there is a generator in π1(Vi) which squares to be the loop τi · x. Call this
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generator αi. Then α2
i = τi · x and thus

π1(Vi) ∼=

〈
αi, x1, . . . , xn

α2
i − τi · x,

ηi1 · x, . . . , ηiki · x,

[xi, xj] for all 1 ≤ i, j ≤ n

〉
.

The theorem result is now a direct application of the Seifert–van Kampen

theorem. Let ιi : Vi ↪→ M be the inclusions of the open sets Vi into M for

0 ≤ i ≤ m. We notice that for 1 ≤ i ≤ m, we have that ι0(xj) = ιi(xj) for all

1 ≤ j ≤ n. In particular, the generators for the loops in the torus fibers have been

chosen in a consistent manner for each open set Vi. Since the generators x1, . . . , xn

are the only generators in each V0 ∩ Vi, Seifert–van Kampen implies that π1(M)

is essentially just combining the relations from π1(V0) with the relations for π1(Vi)

for each i. This gives exactly the group presentation in Theorem 3.2.1.
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CHAPTER 4

HOMOLOGY AND COHOMOLOGY

4.1 Homology Groups of Toric Symplectic Manifolds

This chapter will focus on explicitly describing minimal generating sets for the

homology groups of all ranks of any compact, orientable, toric origami 4-manifold.

After finding embedded submanifolds representing each homology class, we will

then use Poincaré duality to understand the corresponding cohomology groups and

ring structure. Before getting to the homology and cohomology of toric origami

manifolds, however, it is instructive to understand the homology and cohomology

of toric symplectic manifolds. As a note, all cohomology groups in this chapter

will be assumed to have Z coefficients unless otherwise specified.

Let (M2n, ω, T n, µ) be a toric symplectic manifold with Delzant polytope P =

M/T . Suppose P has facets F0, . . . , Fm−1 with normal vectors ν0, . . . νm−1 such

that F0 and F1 are in standard position (so ν0 = −x0 and ν1 = −x1). Then

q−1(Fi) is an embedded co-dimension 2 submanifold of M . If M is a 4-manifold,

then q−1(Fi) is an embedded 2-sphere for each i. The Danilov-Jurkiewicz theorem,

originally from [6] and [12] and carefully described in Theorem 12.4.4 of [5], states

that the cohomology ring H∗(M ;Z) is generated in degree 2 by the classes [Fi]

dual to q−1(Fi) for 2 ≤ i ≤ m− 1. When dim(M) = 4,

H0(M) ∼= Z H0(M) ∼= Z

H1(M) ∼= 0 H1(M) ∼= 0

H2(M) ∼= Zm−2 H2(M) ∼= Zm−2

H3(M) ∼= 0 H3(M) ∼= 0

H4(M) ∼= Z H4(M) ∼= Z.
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Explicit details are given in [7] for this case, including a calculation of the in-

tersection form. In particular, the spheres q−1(Fi) intersect their neighbors trans-

versely so that [Fi] · [Fi+1] = +1. Non-adjacent spheres have intersection number

0. The self-intersection number of [Fi] is given by [Fi] · [Fi] = det(νi−1, νi+1), where

ν0 = νm. Since H1(M) and H3(M) are 0, this completely describes the cohomology

ring of a 4-dimensional toric symplectic manifold.

4.2 Homology Groups of Toric Origami Manifolds

Let (M,ω, T, µ) be a compact, orientable, toric origami 4-manifold with template

graph G = (GV , GE) and graph maps ΨV : GV → D2 and ΨE : GE → E2, as in

Section 1.2. Suppose |GV | = n, so there are n polygons folded together to create

M/T . Let P1, . . . , Pn be these polygons. In particular, Pi := ΨV (vi) for vi ∈ GV .

We will also assume that M (and therefore G) is path-connected.

The calculations by Holm and Pires in [11] for the fundamental group and Betti

numbers of a toric origami 4-manifold M give that π1(M) ∼= π1(G)×N/NX where

π1(G) is a free group on ` generators, and N/NX
∼= Z/kZ for some k ∈ Z≥0. The

case that N/NX
∼= Z is called the “primsatic” case, and they show that if M is

prismatic then M is homeomorphic to S2 × T 2. For the rest of the chapter, we

will assume M is not prismatic, so N/NX is 0 or finite cyclic. The Betti number

calculations in [11] for non-prismatic M give

bi(M) =


1, i = 0, 4

`, i = 1, 3

2`+ #MT − 2, i = 2,

where #MT is the number of fixed points of the torus action, or equivalently the
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number of components of the 1-skeleton which are spheres (see Section 1.6). Com-

bining these Betti number calculations calculations with the Universal Coefficients

Theorem and Poincaré Duality gives the following list of homology and cohomology

groups:

H0(M) ∼= Z H0(M) ∼= Z

H1(M) ∼= Z` × Z/kZ H1(M) ∼= Z`

H2(M) ∼= Z2`+#MT−2 × Z/kZ H2(M) ∼= Z2`+#MT−2 × Z/kZ

H3(M) ∼= Z` H3(M) ∼= Z` × Z/kZ

H4(M) ∼= Z H4(M) ∼= Z

Our goal is to find explicit embedded submanifolds representing generating

sets for each Hk(M), which will then be dual to generating classes for H4−k(M).

We will start with H1(M) by choosing explicit generators for π1(M) ∼= π1(G) ×

N/NX . To do this, choose a fixed spanning tree within the template graph G.

Since G is connected with n vertices, a spanning tree is comprised of n− 1 edges.

Let e∗1, . . . e
∗
n−1 be a spanning set of edges in GE. Label the remaining edges in

GE as e1, . . . , e`, where ` = |GE| − (n − 1). In the acyclic case where G is a

tree, ` = 0. The edges e∗1, . . . e
∗
n−1 of the fixed spanning tree in G correspond

via ΨE to a fixed collection of folded facets E∗1 , . . . , E
∗
n−1 in M/T which glue

the polygons P1, . . . , Pn into a tree-like structure. The remaining edges e1, . . . e`

correspond to the remaining folded facets E1, . . . E` and create cycles in the graph.

The fundamental group of a graph will always be a free group whose rank can

be determined by collapsing a spanning tree (creating a bouquet of circles) and

counting how many edge loops remain. Each ei for 1 ≤ i ≤ ` corresponds to one

of the generators of π1(G) by taking a loop that is entirely contained within the

(acyclic) spanning tree, except for passing exactly once along ei.

Let αi for 1 ≤ i ≤ ` be the inclusion of the generator of π1(G) corresponding
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to ei ∈ GE into π1(M) using the isomorphism π1(M) ∼= π1(G) × N/NX . Thus,

αi is a lift of the generator loop in π1(G) that passes exactly once along the edge

ei. In particular, αi is a loop in M that passes exactly once through the folded

facet preimage q−1(Ei) and otherwise lives in the spanning tree-like structure of

the
⋃
q−1(Pi) polytopes and

⋃
q−1(E∗i ) folded facets. Since α1, . . . , α` generate

the free part of π1(M) (i.e. they represent π1(G)), they will also generate the free

abelian part of H1(M). In the case that N/NX
∼= Z/kZ with k ≥ 2, let β ∈ H1(M)

be the class of a loop that generates N/NX in π1(M). Then β will be a generator

for the k-torsion subgroup of H1(M).

The facets E1, . . . , E` are the folded facets of X which do not correspond to the

spanning tree of G. In particular, αi is a loop in M that passes through q−1(Ei)

exactly once, with intersection number +1. Let Li := q−1(Ei) for 1 ≤ i ≤ `.

Taking the intersection number of a class in H1(M) with Li defines an element

[Li] ∈ HomZ(H1(M),Z) dual to Li which sends αi to 1 and all other αj to 0.

Since H1(M) is torsion-free by the Universal Coefficients Theorem, it follows that

HomZ(H1(M),Z) ∼= H1(M ;Z) and thus [L1], . . . , [L`] form a free Z-module basis

for H1(M ;Z). In addition, by Poincaré duality H3(M) ∼= Z` is generated by the

facet preimages L1, . . . L` (which are 3-dimensional lens spaces).

The remainder of this chapter will be devoted to understanding H2(M) and

H2(M ;Z), and then finally the ring structure on H∗(M,Z). The ring structure

results are collected in Theorem 4.5.1.

We will be understanding H2(M) using a generalized Mayer-Vietoris argument

with one open set for each Delzant polytope Pi in X. We define Ai to be an

open neighborhood of Mi = q−1(Pi) in M that deformation retracts onto Mi. We

choose the Ai so that if Pi is folded to Pj along a facet F = ΨE(e), then the
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corresponding connected component of the intersection Ai ∩ Aj is an open set in

M that deformation retracts to µ−1(F ).

Notice that {Ai}ni=1 is an ordered collection of open sets coveringM , and that all

triple intsersections amongs the Ai are empty. Mirroring the argument in Section

2.2 of Hatcher’s Algebraic Topology [10] for the Mayer-Vietoris sequence for two

open sets, there are short exact sequences of chain complexes

0 Ck

( ⊔
1≤i<j≤n

Ai ∩ Aj

)
n⊕
i=1

Ck(Ai) Ck(M) 0

where the inclusion Ck(Ai ∩ Aj) ↪→ Ck(Ak) for i < j is positive if k = i and

negative if k = j to create exactness. These short exact sequences combine to

form a generalized Mayer-Vietoris long exact sequence

· · · Hk+1(M)
⊕

1≤i<j≤n

Hk(Ai ∩ Aj)
n⊕
i=1

Hk(Ai) Hk(M) · · · ,

which we will use to understand the homology of M . Since each component of

Ai ∩ Aj deformation retracts to a lens space, we have that H2(Ai ∩ Aj) ∼= 0.

Therefore we will be using the exact sequence

0
n⊕
i=1

H2(Ai) H2(M)
⊕

1≤i<j≤n

H1(Ai ∩ Aj)
n⊕
i=1

H1(Ai)
f g h

to understand H2(M). In what follows, we will describe an embedded collection of

submanifolds of M that represent a generating set of homology classes in H2(M).

In the case where H2(M) is a free Z-module, these classes will form a basis for

H2(M).
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4.3 A Dual Basis for Toric Symplectic H2(M)

To understand H2(M) for toric origami M via the Mayer-Vietoris sequence in Sec-

tion 4.2, we first need to understand H2(Ai) ∼= H2(Mi) for the toric symplectic

manifolds with boundary Mi that cover M . To do this, we need a better under-

standing of H2(M) when M is a toric symplectic manifold.

As described in Section 4.1 with results from [7], if M is a toric symplectic

4-manifold M with Delzant polygon P with m facets, H2(M) ∼= Zm−2, with the

sphere preimages of m− 2 of the facets generating H2(M) and dual to generators

for the entire ring H∗(M). It is shown by Holm and Pires in [11] that in an open

toric symplectic 4-manifold Mi with Delzant polygon Pi with mi facets, ki of which

are folded, b2(Mi) = mi − 2− ki.

If Pi is P with ki facets designated as folded, then the topological difference

between Mi and M is that Mi is M with an open neighborhood of q−1 of each

folded facet removed. This is topologically the same as deleting a neighborhood

of the sphere corresponding to each of the ki folded facets from M . This formula

then makes some sense, because it is saying that deleting ki of the generators for

H2(M) from M exactly decreases the rank of H2(M) by ki.

However, since the removed spheres are preimages of folded facets which inter-

sect adjacent unfolded facets, removing the folded facets also rips a point out of

the spheres representing the unfolded facets. Our goal is to find a different basis

(which will end up being dual to the usual sphere basis) for H2(M) when M is

toric symplectic that translates very nicely to a basis for H2(Mi) when Mi is toric

symplectic with boundary.
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4.3.1 Defining Spider Homology Classes

We begin constructing our new basis by setting out some notation. Let M be

a toric symplectic manifold with Delzant polytope P whose facets F0, . . . , Fm−1

have normal vectors ν0, . . . , νm−1. Suppose F0 and F1 are in standard position so

that ν0 = (0,−1) and ν1 = (−1, 0). Let [νi] ∈ H1(T
2) be the homology class of

the loop in the torus fiber corresponding to the normal vector νi. In particular, if

νi = (a, b) then [νi] is the class representing the curve which goes a times around

the first S1 factor of T 2 and b times around the second S1 factor of T 2. Then

since F0 and F1 are in standard position, [ν0] and [ν1] form a basis for H1(T
2).

Therefore for each 2 ≤ i ≤ m− 1, there is a linear relation ci0[ν0] + ci1[ν1] + [νi] = 0

in H1(T
2). By definition, this means there is a 2-chain Ki in C2(T

2) with boundary

∂Ki = ci0[ν0] + ci1[ν1] + [νi].

By using disks to cap off each component of ∂Ki, we will create a 2-cycle

representing an element of H2(M). Let p be a point in the interior of P , and let

Ki live in the T 2 fiber over p. This fiber is the core, or “body” of the “spider”

class we are building. Let γi be a path in P from p to a point on the unfolded facet

with normal vector νi. See Figure 4.1. Then γi × [νi] is a 2-disk with boundary

[νi]. This is because γi is an interval, and [νi] is a circle fiber above all points of γi

(creating a cylinder), except above the endpoint of γi in the unfolded facet where

[νi] is collapsed to a point. We call γi × [νi] a “leg” of the spider.

By taking ci0 copies of the leg γ0 × [ν0], and ci1 copies of γ1 × [ν1], and 1 copy

of the leg γi × [νi], we get a collection of disks that will cap off all the boundary

components of Ki. To get a leg with a negative coefficient, simply reverse the

orientation of γi so that it begins at the facet and ends at the spider body. Once

the legs are glued to the body Ki, this spider represents a class in H2(M) that
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ν2 =

(
0
1

)
ν3 =

(
1
3

)
ν4 =

(
1
2

)

ν5 =

(
1
1

)

ν6 =

(
1
0

)

ν0 =

(
0
−1

)

ν1 =

(
−1
0

)
K3

γ0 × [ν0]

γ1 × [ν1]

γ3 × [ν3]

Figure 4.1: The image of a spider in the polytope P .

never interacts with any of the folded facets of P .

Although it is particularly nice when F0 and F1 are in standard position, it

is not actually necessary. This construction will create a spider homology class

representing any relation of the form
∑m−1

i=0 ci[νi] = 0 in H1(T
2), with a single

body fiber and ci legs to the νi facet.

4.3.2 Embedding Spiders

These spiders are nice classes in singular homology. Each leg can be realized by

a map of a single 2-simplex into M . The body of the spider is b of copies of the

torus 2-cell, for some b ∈ Z. Since the torus has a nice simplicial complex structure

45



with two 2-simplices, we can realize the body by 2b maps of the 2-simplex into M .

These maps form a chain with trivial boundary, since we choose the legs exactly

to cancel the boundary of the body maps. The problem that remains is to find

an embedded submanifold in the same homology class as our spider cycle. This is

important because we want to compute the cup product structure by interpreting

the cup product as the intersection of embedded submanifolds in the dual homology

classes.

We will first show that the spiders are a basis for H2(M) when M is a 4-

dimensional toric symplectic manifold represented by Delzant polygon P . Let [si]

be the spider class that connects the facet Fi to the facets F0 and F1, as defined in

Section 4.3.1. Thus, its generating relation is ci0[ν0] + ci1[ν1] + [νi] = 0 in H1(T
2).

Our first goal is to find an embedded submanifold in the equivalence class [si].

We begin by considering the collection of maps f ij : ∆2
j → M that realize

[si] as a cycle in singular homology. The problem with the maps f ij is that their

image as a chain is not generally an embedded submanifold. Since we want to

compute the cup product structure on H2(M) as the intersection form on dual

embedded submanifolds, we need to find an embedded submanifold in the same

homology class as [si]. By identifying the boundaries of some of the 2-simplices

∆2, we can get a map of a ∆-complex D into M given by f : D → M which

will exactly agree with the maps fi on each 2-simplex. We will then show that D

is homeomorphic to S2. Once we have a map f : S2 → M with image [si], we

will approximate f by an immersion whose only failure to be embedded will be a

finite number of transverse double points. We will then do local surgeries on these

double points to remove the intersections. These surgeries may increase the genus

of the representing submanifold, but they will maintain the homology class.

46



γγ γ

Figure 4.2: The map from ∆2 to the leg γ × ν. Each horizontal line maps to the
circle ν above a different point on the path γ.

We start by defining the map f : D →M . As an example, consider the spider

connecting the facets ν0 = (−1, 0), ν1 = (0,−1), and νi = (3, 2). Note that we can

always use a linear transformation to put ν0 and ν1 into this standard position.

Thus the generating relation is 3[ν0]+2[ν1]+[νi] = 0. This spider has six legs total:

three to the ν0 facet, two to the ν1 facet, and one to the νi facet. Each of these

legs is an embedded disk in M , and is the image of a single 2-simplex. To define

the map from ∆2 to an arbitrary leg γ × ν with path γ to the facet that collapses

the circle ν, consider the 2-simplex ∆2 in Figure 4.2. Each horizontal line in ∆2

will be mapped to the circle {p} × ν for some point p ∈M/T on γ. Straight lines

from each point on the bottom edge to the top vertex will be mapped to γ × {c}

for some point c ∈ ν. The bottom edge will be mapped to ν on the body fiber.

The top vertex will be mapped to the facet where ν is collapsed to a point. Since

there are six legs in our example, we will need six such maps. We label the maps

fi with domain ∆2
i for i = 0, . . . , 5.

The body requires six copies of the generator of H2(T
2), each of which will

be the image of two 2-simplices. The two maps from the two 2-simplices to the

torus fiber are given by putting a simple ∆-complex structure on T 2, as shown in
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T 2

∆2

∆2

(0, 1)

(1, 0)

Figure 4.3: The pair of maps from two copies of ∆2 to the torus fiber above a
single point in M/T . The body of the spider consists of copies of these maps.

Figure 4.3. To create D in our example, we need six copies of this pair of maps

together with the six leg maps. Label the body maps fi : ∆2
i →M for i = 6, . . . 17.

Taken together, the twelve 2-simplices representing the six torus cells and the six

2-simplices representing the six legs glue together into a rectangular disk with

triangle protrusions as shown in Figure 4.4. This gluing can be done because the

maps fi into M agree on the overlapping boundaries.

To turn this disk into a sphere, we glue each of the 2-simplices that will get

mapped to a leg into a cone. In Figure 4.4, this means making six edge identi-

fications: glue the two edges labeled e0 together, glue the two edges labeled e1

together, etc. We call this space D. To see that D is homeomorphic to a sphere,

note that these leg edge gluings affect the rectangular disk representing the body

of the spider: it becomes a sphere with boundary a wedge of six circles. The six leg

cones exactly cap off these boundary circles with disks, making D homeomorphic

to S2. We call the union of the maps fi with domains identified to become D ∼= S2

the map f : S2 →M . Note that the image of f is exactly the cycle [si].

Now we want to find an embedded submanifold in the same homology class as

[si]. To do so, we invoke a result of Whitney. Theorem 2 in [16] states that if f :

N →M is a continuous map of differentiable manifolds with 2 dim(N) ≤ dim(M),

then there is a differentiable immersion F : N → M approximating f arbitrarily
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e3

e3

e4

e4

e5

e5

Figure 4.4: The disk of 2-simplices which will become the sphere D.

closely in the uniform topology whose only failure to being an embedding is a

finite set of transverse double-points. Since f : S2 →M is a continuous map with

2 dim(S2) ≤ dim(M), there is such an approximating map F .

We can turn the map F into an embedding by following the argument in Section

3.1 of [14]. Suppose we have local coordinates around a double-point so the image

is two planes meeting transversely at the origin in R4. Their intersection with the

3-sphere S3 is two circles, linking once. We remove the portions of the planes in

the open 4-ball bounded by S3, and instead connect the two circles by an annulus.

This will increase the genus of the image of F , but maintain the homology class

and remove the double-point. Repeating this for each double-point will yield an

embedded submanifold in the same homology class as [si]. Equally importantly,
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all of the changes we made can be contained to a neighborhood of the body of [si],

leaving the legs (which were already embedded away from the body) alone. This

means we will be able to compute the intersection number of two spider classes

by placing their bodies in (or near) disjoint fibers, and then looking only at the

intersections of their legs.

4.3.3 Spiders Form a Dual Basis

From this point forward, we will conflate the original singular spider class [si] with

its homologous embedded submanifold. Our goal in this section is to prove that the

m−2 spider classes [s2], . . . , [sm−1] defined in Section 4.3.2 form a basis for H2(M)

when M is a toric symplectic manifold. To do so we will use Poincaré duality,

and the fact that the cup product on H2 can be computed using the intersection

number of dual embedded submanifolds. In order to do this, we need to be very

clear about the orientations placed on the spiders, and on M .

Let x0 and x1 be the coordinate functions corresponding to e0 and e1 in the

base space M/T . Note that these are well-defined on each Pi, but don’t form global

functions on M/T . Let t0 and t1 be the corresponding coordinate functions on the

fiber T 2, so that the standard volume form providing an orientation on each toric

symplectic piece Mi is given by dx0 ∧ dt0 ∧ dx1 ∧ dt1. However, recall from Section

1.5 that the orientations of the Mi only agree with the global orientation of M up

to a sign, and the sign swaps when passing through a folded facet to an adjacent

Mj. Therefore the oriented basis to the tangent space of Mi is dx0∧dt0∧dx1∧dt1

if Mi ⊆M+ and is −dx0 ∧ dt0 ∧ dx1 ∧ dt1 if Mi ⊆M−.

To compute the orientation on a leg γ × ν, assume ν is the circle (a, b) in
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H1(T
2) and γ is a path starting at some point in M/T and terminating in the facet

corresponding to ν. Then in local coordinates a basis for the tangent space to γ is

a dx0+b dx1, and a basis for the tangent space to ν is a dt0+b dt1. Therefore a basis

for the tangent space to the leg γ×ν is given by α(a, b) := (a dx0 +b dx1)∧ (a dt0 +

b dt1). This is equal to α(a, b) = (a2 dx0dt0 + ab dx0dt1 + ab dx1dt0 + b2 dx1dt1).

q(p)

γi

Fi

νi =

(
0
−1

)
Figure 4.5: The intersection of γi × νi with q−1(Fi) projected into M/T .

The first calculation we want to make is the oriented intersection number of a leg

γi×νi with the 2-sphere q−1(Fi) where Fi is the facet with primitive normal vector

νi. By using a linear transformation, we can always put the point of intersection

into a standard form. We let νi be the vector (0,−1), and we let the facet Fi lie

along the x0-axis of R2. We let γi be a vertical path in the −x1 direction of R2,

terminating on Fi. Let p ∈ M be the point of intersection between q−1(Fi) and

γi× νi. See Figure 4.5. We assume that the orientations of the spheres q−1(Fi) are

consistently counter-clockwise around Pi for Mi ⊆ M+ and consistently clockwise

around Pi for Mi ⊆ M−. Then an oriented basis for the tangent space to γi × νi

is given by −dx1 ∧ −dt1 = dx1dt1, and an oriented basis for the tangent space to

q−1(Fi) in the M+ case is given by dx0 ∧ dt0 = dx0dt0. The direct sum of these

oriented bases is dx1dt1 ∧ dx0dt0 = dx0dt0dx1dt1. Since this is exactly the chosen
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oriented basis for M+, the intersection [si] · [q−1(Fi)] = +1. A similar calculation

yields the same result in the M− case.

Since the spider [si] need not intersect the sphere q−1(Fj) whenever i 6= j,

we have that [si] · [q−1(Fj)] = 0 for i 6= j. From these two facts and the uni-

modularity of the intersection form it follows that the spiders [s2], . . . , [sm−1]

are a basis for H2(M) because they are dual to standard basis of spheres

[q−1(F2)], . . . , [q
−1(Fm−1)]. See Section 3.2 of [14] for more details on dual bases

and intersection forms.

4.4 Generators for Toric Origami H2(M)

4.4.1 Spiders in the Open Submanifolds Ai

To understand H2(M) for toric origami M , we will use Mayer-Vietoris as outlined

in Section 4.2. This will require us to understand H2(Ai) for the open sets Ai

which cover M .

Each Ai is an open set in M which deformation retracts onto Mi = q−1(Pi) the

toric symplectic manifold with boundary homeomorphic to the following construc-

tion: Start with the Delzant polytope Pi which has mi facets, and let all facets

of Pi corresponding to an edge of the template graph G be called folded, and the

rest be unfolded. Let ν0, . . . , νki−1 be the set of normal vectors to the ki unfolded

facets F0, . . . Fki−1. Let Tj be the circle subgroup of T 2 generated by νj. Then

Mi
∼=
(
Pi × T 2

)
/ ∼

where (p1, t1) ∼ (p2, t2) if and only if p1 = p2 are both in some unfolded facet Fj and
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t1 − t2 ∈ Tj. This is the almost the topological construction of a toric symplectic

manifold as given in Section 1.2, but the quotient by the normal direction circle

only happens in fibers above points in the unfolded facets. The preimage of each

folded facet is a 3-dimensional lens space and a component of ∂Mi. There are

mi − ki such folded facets and thus ∂Mi has mi − ki connected components.

Holm and Pires show in [11] that H1(Mi) ∼= 0, and that H2(Mi) ∼= Zki−2.

Therefore by Poincaré duality for manifolds with boundary H3(Mi, ∂Mi) ∼= 0, and

H2(Mi, ∂Mi) ∼= Zki−2.

The long exact sequence for relative homology

· · · H3(Mi, ∂Mi) H2(∂Mi) H2(Mi) H2(Mi, ∂Mi) H1(∂Mi) · · ·

becomes

· · · 0 Zs H2(Mi) Zki−2 Zs ⊕

(
mi−ki−s⊕
j=1

Z/pjZ

)
· · ·

where s is the number of components of ∂Mi homeomorphic to S1×S2 rather than

“normal” lens spaces and the Z/pjZ comes from H1 of the “normal” lens spaces.

It follows from this piece of the long exact sequence that H2(Mi) ∼= Zki−2.

Let NX be the Z-span of the normal vectors ν0, . . . , νki−1 in Z2 ∼= N . If N/NX
∼=

Z, then Mi is prismatic which forces the entire toric origami manifold M to be

prismatic and homeomorphic to S×T 2 so we ignore this case. Thus we assume

N/NX is zero or finite cyclic. In either case, we have ki vectors Z-spanning a

2-dimensional subspace of N . There must therefore be ki− 2 linearly independent

linear relations amongst the νi. In particular, no non-trivial linear combination
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of the linear relations can create the trivial linear relation. Suppose the linear

relations are given for 1 ≤ j ≤ ki − 2 by:

ki−1∑
r=0

cjrνr = 0.

where cjr ∈ Z not all zero for fixed j. Each of these ki − 2 linear relations specifies

a spider class in H2(Mi). Let [sj] ∈ H2(Mi) be the spider with cjr legs to the facet

with normal vector νr.

We claim that the spiders [sj] are linearly independent in H2(Mi) and therefore

form a basis for H2(Mi). Suppose for a contradiction that there were a linear

dependence
∑ki−2

j=1 aj[sj] = 0 with not all aj = 0. Consider the map q̂ : Mi → M̂i

where M̂i is the toric symplectic manifold corresponding to Pi. The map q̂ is

a quotient map which collapses the circle fibers above the folded facets of Mi,

finishing the topological construction for a toric symplectic manifold.

Then H2(M̂i) ∼= Zmi−2 as described in Sections 4.3.1 and 4.3.3. We label the

normal vectors ν̂0, . . . , ν̂mi−1 in M̂i so that ν̂j = νj for 0 ≤ j ≤ ki − 1. Fur-

ther, we can assume that we chose labels such that the 2 basis normal vectors in

Mi are ν̂0 and ν̂mi−1. Therefore the spider basis classes in H2(M̂i) are given by

[ŝ1], . . . , [ŝmi−2]. Then map q̂∗ : H2(Mi)→ H2(M̂i) is a homomorphism such that

q∗([sj]) =

ki−1∑
r=1

cjr[ŝr].

Therefore if
∑ki−2

j=1 aj[sj] = 0 then

0 = q∗

(
ki−2∑
j=1

aj[sj]

)
=

ki−2∑
j=1

(
aj

ki−1∑
r=1

cjr[ŝr]

)
=

ki−1∑
r=1

(
ki−2∑
j=1

ajc
j
r

)
[ŝr].

The linear independence of the [ŝr] implies that
∑ki−2

j=1 ajc
j
r = 0 for all 1 ≤ r ≤

ki − 1. However, this exactly contradicts the assumption that the linear relations
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∑ki−1
r=0 c

j
rνr = 0 are linearly independent: the aj (with a0 = 0) are a non-trivial

linear dependence between the relations. Therefore it must be the case that no such

aj exist and the [sj] are linearly independent in H2(Mi). Since H2(Mi) ∼= Zki−2,

the [sj] in fact form a basis.

4.4.2 Origami Spiders

Let M be a toric origami 4-manifold covered by the open sets A1, . . . , An which de-

formation retract onto the toric symplectic manifolds with boundary M1, . . . ,Mn.

Each component of the 1-skeleton of M as defined in Section 1.6 is made up of

unfolded facets from the Mi. Let C0, . . . , Cm−1 be the 1-skeleton components of

M with corresponding normal vectors ν0, . . . , νm−1. Exactly as in the case for the

individual Mi in Section 4.4.1, we can define spider classes in H2(M) by taking

m−2 linearly independent linear relations amongst the vectors ν0, . . . , νm−1 in Z2.

In particular, let
m−2∑
r=0

cjrνr = 0

for 1 ≤ j ≤ m − 2 be linearly independent relations. Then for each j there is a

spider class [sj] ∈ H2(M) with a single body fiber in above a point in the interior

of M/T and cjr legs to the 1-skeleton component with normal vector νr. Recall that

the image of a leg under the map q : M → M/T is a path γ starting at the point

corresponding to the body fiber, and ending in an unfolded facet. The difference

between spiders in the Mi and spiders in M is that π1(Mi/T ) ∼= 0, but π1(M/T )

may be non-trivial. Therefore the path γ may be somewhat complicated and the

[sj] are not well-defined.

To fix a choice of leg-path for each leg of each [sj], we recall from the notation
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set out in Section 4.2 that we have chosen a collection E∗1 , . . . , E
∗
m−1 of folded

facets in M/T that correspond to a spanning tree in the template graph G. The

remaining folded facets are labeled E1, . . . , E`, and each corresponds to a generator

of π1(M/T ). The space M/T−
(⋃`

i=1Ei

)
is simply connected. For each leg of each

spider in our generating set, the paths γ in M/T that start at the body fiber and

end at the respective 1-skeleton component will live entirely in M/T −
(⋃`

i=1Ei

)
.

This makes the γ unique up to homotopy and fixes our choice of spiders [sj]. The

classes [s1], . . . , [sm−2] make up approximately half of the classes which will form

our generating set for H2(M).

4.4.3 Origami Tori

Recall that b2(M) = 2`+#MT−2 where ` is the rank of π1(M/T ) and #MT is the

number of fixed points of the torus action. Let m be the number of components of

the 1-skeleton of M . Let t ≤ m be the number of components of the 1-skeleton of

M which are tori rather than spheres. Then #MT = m− t because the number of

fixed points of the torus action is equal to the number of spheres in the 1-skeleton.

Thus b2(M) = 2`+ (m− t)− 2. Since we have found m− 2 spider classes, we are

looking for another 2`− t classes to round out our generating set for H2(M).

The other 2`− t classes will be embedded 2-tori in M , defined as follows. Let

αi for 1 ≤ i ≤ ` be a loop in the interior of M/T that lifts to a representative of

the generator in π1(M) corresponding to the folded facet Ei. That is, αi passes

through the the facet Ei exactly once, and does not pass through any facet Ej for

j 6= i. Since αi is a loop in the interior of M/T , the fiber above every point is a

full 2-torus. Thus q−1(αi) ∼= αi × S1
x × S1

y
∼= T 3, where S1

x is the (1, 0) loop in the

torus fiber and S1
y is the (0, 1) loop in the torus fiber. Since the 3-torus T 3 has
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H2(T
3) ∼= Z3, there are 3 possible classes that could include into H2(M). The full

torus fiber S1
x × S1

y is trivial in H2(M) because it is the boundary of the 3-chain

solid torus created by taking q−1(γ) for any path γ that starts at a generic fiber

and ends in an unfolded facet. (
ai
bi

)

βi

q(Ti)

M/T

Figure 4.6: Showing that [τi] = ai[βix]× bi[βiy] is trivial in H2(M).

In general, the other two 2-tori, αix := αi × S1
x and αiy := αi × S1

y , are non-

trivial in H2(M) and provide 2` generators. However, each torus component of

the 1-skeleton introduces a linear relation amongst the αix and αiy. In particular,

let T1, . . . Tt be the torus components of the 1-skeleton. Let βi = ti1α1 + · · ·+ ti`α`

for tij ∈ {0,±1} be the loop in H1(M) that is homologous to the loop q(Ti) which

is the image of Ti in M/T . Let (ai, bi) be the normal vector to the 1-skeleton

component Ti. Then for each 1 ≤ i ≤ t,

[τi] = ai
(
ti1[α1x] + · · ·+ ti`[α`x]

)
+ bi

(
ti1[α1y] + · · ·+ ti`[α`y]

)
= 0

because [τi] ∈ H2(M) is the boundary of the solid torus S1 × D2 where the S1

factor is the circle ti1α1 + · · · + ti`α` and the D2 factor is the annular homotopy

between βi and q(Ti) in M/T crossed with the circle (a, b) in the torus fibers above

M/T . Since (ai, bi) is collapsed in Ti, the circle cross annulus is collapsed at one
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end forming a solid torus S1 × D2. Since [τi] is exactly ai[βix] × bi[βiy], it is the

boundary of this S1 ×D2 and therefore trivial in H2(M). See Figure 4.6.

Therefore each loop αi for 1 ≤ i ≤ ` adds two elements to our generating set for

H2(M), and each torus Ti in the 1-skeleton adds a single relation. Taken together,

the tori add 2`− t generators to our generating set for H2(M), as desired.

4.4.4 Spider Moves

The set of m− 2 spiders [sj] chosen in 4.4.2 along with the set of 2` tori chosen in

4.4.3 will form our generating set X ⊆ H2(M). In order to show that span(X) =

H2(M), we first need a better understanding of span(X). In particular, this section

discusses some “moves” that can be applied to spider and tori classes that change

their projections to M/T but maintain their homology classes.

γ1 γ2 =
γ3

D
γ1 γ2

γ3

because:

Figure 4.7: The 3-chain D× [ν] shows that (γ1× [ν]) + (γ2× [ν]) is homologous to
γ3 × [ν].

First, if one spider leg γ1 × ν is entering the facet F corresponding to ν and

another spider leg γ2 × ν is leaving F , then these two legs are homologous to a

third leg γ3 × ν that does not enter F . This can be shown by letting D be the
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2-disk in M/T with ∂D = γ1 + γ2 − γ3. Then the 3-chain D × [ν] has boundary

∂(D × [ν]) = (γ1 × [ν]) + (γ2 × [ν])− (γ3 × [ν]), as desired. See Figure 4.7.

p1
p2

p1
γ =

Figure 4.8: Consolidating body fibers joined by a single leg cylinder.

Second, suppose two spider body fibers above p1 and p2 are connected by a “leg

cylinder” γ × [ν] where γ is a path from p1 to p2 and [ν] is any loop in H1(T
2).

Then contracting γ in a single point allows us to move the two body fibers into

the fiber above a single point, say p1. See Figure 4.8.

= =
α

γ

β

γ

β

Figure 4.9: Consolidating body fibers joined by multiple leg cylinders.

In the situation that there are n leg cylinders connecting the same two body

fibers, the body fibers can still be consolidated. First contract along a single leg

cylinder. This will leave a single body fiber, by with n− 1 leg loops connected to

it. The disks bounded by each loop form null-homotopies of each leg loop, and

thus they can be removed. Note that the orientations of the paths between the

two body fibers are irrelevant once they become loops based at a single fiber. See

Figure 4.9.

In general, given any linear relations amongst the normal vectors to the 1-

skeleton components of M , there is a corresponding spider [s] living in H2(M)

with legs above the spanning tree of M/T . Since there can only m − 2 linearly
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independent relations amongst ν0, . . . , νm−1, it follows that some combination of

the relations defining the spiders [s1], . . . , [sm−2] must create the spider [s]. The

moves outlined above show how a linear combination of the [s1], . . . , [sm−2] spiders

combine to form the single spider [s].

To create a spider whose legs stray outside the spanning tree, we simply use

the tori αix and αiy. Suppose γ1 is a leg path in the spanning tree starting at the

body and ending in some facet F with normal vector (a, b). Let γ2 be any other

leg path starting at the body and ending at F . To replace the leg γ1 × (a, b) with

γ2 × (a, b), we note that γ2γ
−1
1 is a loop in H1(M) and is therefore homologous

to some combination of the loops αi. Let γ2γ
−1
1 =

∑`
i=1 ciαi. Then the torus∑`

i=1 ci(a[αix] + b[αiy]) added to the spider with leg γ1× (a, b) will be homologous

to the same spider with leg γ2 × (a, b).

The uptake from this is that if X is our set of m − 2 basis spiders together

with our 2`− t tori, then any spider representing any relations amongst the normal

vectors corresponding to the 1-skeleton of M is in the span(X), regardless of the

paths the legs take when projected to M/T .

4.4.5 Proof that X Generates H2(M)

We will first prove a general lemma which gives two conditions under which our set

X will generate H2(M). We will then show that X satisfies these two conditions,

and thus generates H2(M).

Lemma 4.4.1. Let A,B,C be Z-modules with module homomorphisms f : A→ B

and g : B → C such that im(f) = ker(g). Suppose that X = {x1, . . . , xn} is a set

of elements in B. Then span(X) = B if:
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• im(f) ⊆ span(X) and

• im(g) = g(span(X)).

Proof of Lemma 4.4.1. Suppose im(f) ⊆ span(X) and im(g) = g(span(X)). Since

span(X) ⊆ B by definition, to show that span(X) = B we will show that B ⊆

span(X).

Let b ∈ B. Then g(b) ∈ im(g) = g(span(X)), so g(b) = g(x) for some x ∈

span(X). Then g(b − x) = 0, so b − x ∈ ker(g) = im(f) ⊆ span(X). Thus there

exists y ∈ span(X) such that b− x = y. Then b = x+ y, and both x and y are in

span(X). Thus b ∈ span(X) and so span(X) = B, as desired.

From the Mayer-Vietoris long exact sequence we have the maps

⊕
i

H2(Ai) H2(M)
⊕
i 6=j

H1(Ai ∩ Aj)
f g

where im(f) = ker(g). Let X be our chosen set of tori and spider classes in H2(M).

Then to show that span(X) = H2(M) it suffices to show that im(f) ⊆ span(X)

and im(g) = g(span(X)).

Proof that im(f) ⊆ span(X)

The map f :
⊕n

i=1H2(Ai) → H2(M) is induced by the inclusion maps Ai ↪→

M . Each Ai is an open neighborhood of the toric symplectic submanifold with

boundary Mi in M . Each connected component of Ai∩Aj is an open neighborhood

of q−1(F ) for some folded facet F gluing the polytope Pi to the polytope for Pj

in M/T . We will show that the basis spiders in an arbitrary H2(Mi) map into
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the span of X. Fix 1 ≤ i ≤ n. Let C0, . . . , Cm−1 be the 1-skeleton components

of M , with normal vectors ν0, . . . , νm−1. Re-index the Cj so that the unfolded

facets F0, . . . , Fki−1 in Mi include into the 1-skeleton components C0, . . . , Cki−1

respectively.

Recall from Section 4.4.2 that H2(Ai) ∼= H2(Mi) can be generated by a set of

ki−2 spider classes where ki is the number of unfolded facets of Pi. Let [s] ∈ H2(Mi)

be one of these spider generators, represented by the relation

ki∑
j=1

cj[νj] = 0.

Thus [s] is a spider with cj legs to the facet Fj in Mi. Then f([s]) is the identical

spider in M , with cj legs to the 1-skeleton component Cj. By the arguments in

Section 4.4.4, any such spider is contained in the span of X, as desired.

Proof that im(g) = g(span(X))

We now focus on the portion of the long exact sequence given by

H2(M)
⊕

i 6=j H1(Mi ∩Mj)
⊕

iH1(Mi)
g h

where we have replaced each Ai in the original sequence by the Mi manifold with

boundary it deformation retracts onto. Since im(g) = ker(h), we really need to

show that g(span(X)) = ker(h). Each connected component of Mi ∩Mj is q−1(F )

for some folded facet F with normal vector ν. Suppose the normal vectors to

the facets adjacent to F are ν0 and ν1. Then q−1(F ) = L is a lens space with

H1(L) ∼= Z2/〈ν0, ν1〉. Note that if span(ν0, ν1) = Z2, then L ∼= S3 and H1(L) ∼= 0.

If span(ν0, ν1) = Z, then L ∼= S1 × S2 and H1(L) ∼= Z. Further, if φ : L → Mi is

the inclusion map and β is a generator of H1(L), then φ∗(β) ∈ H1(Mi) is exactly
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the loop [ν] ∈ H1(Mi). This is because the loop [ν] spans H1(T
2) when paired

with either [ν0] or [ν1] by the smoothness condition on the Delzant polytope for

Mi. Therefore we can choose [ν] to be the generator of H1(L) ∼= Z2/〈ν0, ν1〉.

We enumerate the connected components of
⊔
i 6=jMi ∩Mj as the lens spaces

L1, . . . , Lr corresponding to the folded facets of M (i.e. let r be the number of

edges in the template graph G). Let φ1, φ2 :
⊔r
k=1 Lk →

⊔n
i=1Mi be the maps that

include the lens spaces into their corresponding two toric symplectic manifolds

with boundary. For example, if L3 is a lens space corresponding to a connected

component of M2 ∩M5, then φ1(L3) is the image of the inclusion of L3 into M2

and φ2(L3) is the image of the inclusion of L3 into M5. In general, if Lk ∈Mi∩Mj

with i < j, then φ1(Lk) ∈Mi and φ2(Lk) ∈Mj.

We need notation that lets us keep track of which Lk are included in which Mi.

We will do this by creating an n× r matrix B. We define

Bik =


1, φ1(Lk) ∈Mi

−1, φ2(Lk) ∈Mi

0, else.

Thus each of the r columns of B will correspond to one of L1, . . . , Lr, and will

have exactly one 1, exactly one -1, and the rest of its entries 0. Each of the n rows

of B will correspond to one of the open toric manifolds M1, . . . ,Mn and will have

non-zero entries corresponding to that manifold’s boundary components.

Since L1, . . . , Lr are the connected components of
⊔
i 6=jMi∩Mj, it follows that⊕

i 6=j H1(Mi ∩Mj) ∼=
⊕r

k=1H1(Lk). Thus we can write h as h :
⊕r

k=1H1(Lk) →⊕n
i=1H1(Mi).

To understand h, let [νk] be the generator of the cyclic group H1(Lk). Then
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h([νk]) = (h1([νk]), . . . , hn([νk]) with hi([νk]) ∈ H1(Mi) such that

hi([νk]) =


(φ1)∗[νk], Bik = 1

−(φ2)∗[νk], Bik = −1

0, Bik = 0.

Since g(span(X)) ⊆ im(g) = ker(h), it remains to show that ker(h) ⊆

g(span(X)). Let β ∈ ker(h). That is, let β ∈
⊕

i 6=j H1(Mi ∩Mj) ∼=
⊕n

k=1H1(Lk)

with h(β) = 0.

Our goal is to construct a class x ∈ span(X) such that g(x) = β. We will do

this by constructing classes xi ∈ H2(Mi, ∂Mi) in relative homology such that the

boundary components of the xi and xj match up in each connected component

∂Mi ∩ ∂Mj and they can therefore be glued together into a class x ∈ H2(M) with

g(x) = β. We will then show that this class x is in span(X).

Write β = (β[ν1], . . . , β[νr]) with βk ∈ Z and [νk] ∈ H1(Lk). Then the i-th

coordinate of h(β) (i.e. the image of h(β) in H1(Mi)) is given by

hi(β) =
r∑

k=1

βkBik[νk].

Since hi(β) = 0 for all i and H1(Mi) ∼= Z2/〈normals to unfolded facets in Mi〉, it

follows that hi(β) is contained in the span of the normal vectors νi1, . . . , ν
i
ki

to the

unfolded facets F i
1, . . . , F

i
ki

of Mi. Thus there is a linear relation

ki∑
j=1

cij[ν
i
j] +

r∑
k=1

βkBik[νk] = 0.

Create the spider xi which has cij legs to the facet F i
j for each 1 ≤ j ≤ ki, and

βkBik legs to the boundary component Lk of Mi for each non-zero Bik. The legs

to Lk will not be true spider legs, because they will be cylinders rather than disks

64



as the circle [νk] is not collapsed above Lk. Thus the spider xi is a relative spider,

with boundary components βkBik[νk] above Lk.

We create such a spider xi for each 1 ≤ i ≤ n. Therefore, in the intersection

Lk of Mi and Mj for i < j, the spider xi has boundary component βk[νk] and the

spider xj has boundary component −βk[νk]. Thus the two leg cylinders can be

glued together, creating a cylinder γ× [νk] for γ a path starting and the body fiber

of xi and ending at the body fiber of xj. After gluing the cylinder legs above each

lens space intersection Lk for 1 ≤ k ≤ r, the new 2-chain will be called x and will

have no boundary components. Thus x ∈ H2(M).

Mi Mj

Lk xj
xi

Figure 4.10: Combining the spiders xi and xj.

Further, by construction we have that g(x) = β because the intersection of x

with each Lk will be exactly βk[νk]. Finally, using the spider moves from Section

4.4.4, we can combine the n body fibers of x into a single body fiber, and move

all the legs that connect body fibers. What remains will be a normal spider class

connecting 1-skeleton components of M . Therefore x ∈ span(X), and in fact

span(X) = H2(M), as desired.
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4.4.6 Non-Trivial Torsion

Let M be a toric origami 4-manifold, and let NX be the span of the normal vectors

to the 1-skeleton components of M . The case where N/NX is finite cyclic deserves

a short section of explanation. In general, if M has any fixed points under the

T action, then N/NX
∼= 0. This is because a fixed point of the action implies

two adjacent unfolded facets in some polytope Pi whose smoothness condition will

immediately force NX
∼= Z2. In addition, fixed points of the action are paired with

sphere components of the 1-skeleton. Therefore the N/NX
∼= Z/kZ case is also the

case where every component of the 1-skeleton is a torus.

We know H2(M) = Z2`+(m−t)−2 ×N/NX where m is the number of 1-skeleton

components and t is the number of torus 1-skeleton components. In this case, there

are still m − 2 spider classes, 2` torus classes, and t relations amongst the torus

classes. However, the t relations don’t cleanly remove t torus generators; they leave

behind a Z/kZ. In this section we will describe exactly the linear combination of

torus classes that becomes a generator for the Z/kZ factor.

To do so, we will do a slight notation reset since we need to discuss the normal

vectors at the component level. Let x1, . . . , x`+1, y1, . . . , y`+1 be the x and y torus

generators corresponding to each of the t = ` + 1 torus components of the 1-

skeleton. Since π1(M/T ) is free on ` generators and M/T is topologically an `+ 1

times punctured sphere, we can assume that x`+1 =
∑`

i=1 xi and y`+1 =
∑`

i=1 yi.

The ` + 1 torus relations give that aixi + biyi = 0 for each 1 ≤ i ≤ ` + 1. By

putting M/T into a standard position we can assume that a`+1 = −1 and b`+1 = 0.

Combined, this gives us the following relation for the torus part of H2(M):
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〈
x1, . . . , x` aixi + biyi = 0 for all 1 ≤ i ≤ `,

y1, . . . , y` x1 + · · ·+ x` = 0

〉

Since (−1, 0) is unfolded, it follows that gcd(b1, . . . , b`) = k. We define A =

lcm(a1, . . . , a`) with âi = A/ai so that aiâi = A. Finally, let m = min(a1, . . . , a`).

To find our torsion class we will work backwards, starting by adding up all the

relations from the group presentation, and then working until we get k times a

class equal to 0.

∑̀
i=1

aixi + biyi = 0

A

[∑̀
i=1

(ai −m)xi + biyi

]
= 0

∑̀
i=1

ai(A− âim)xi + Abiy = 0

∑̀
i=1

(A− âim)(−biyi) + Abiy = 0

∑̀
i=1

âibimyi = 0

k

[∑̀
i=1

bi
k
âimyi

]
= 0.

Therefore the class β =
∑`

i=1
bi
k
âimyi is of order k or some divisor of k. However,

no divisor of k can divide âi or m = aj for some j without one of the (ai, bi) failing

to be a primitive vector. Therefore β is truly of order k.

In addition, the presentation of the group ensures that β is non-trivial. The

only way to destroy a generator yi is to replace it with xi and then use the
∑
xi = 0

relation. However, translating the yi generators to xi’s creates the class Am
k

∑`
i=1 xi.

But divisor of k can divide A or m, so Am
k

is not an integer and no such translation
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into xi terms is possible. Thus β is non-trivial of order k and must generate the

Z/kZ factor of H2(M).

4.5 Intersections and the Cohomology Ring

We now have embedded submanifold representatives of the generating classes for

each homology group. By applying Poincaré duality, the dual classes will gener-

ate the cohomology groups. The cup product structure on the cohomology ring

is dual to the oriented intersection of embedded submanifolds in the homology

groups. Therefore by carefully describing the intersections of all the embedded

submanifolds generating the homology of M we will be describing the ring struc-

ture on H∗(M ;Z). Recall that

H0(M) ∼= Z H0(M ;Z) ∼= Z

H1(M) ∼= Z` × Z/kZ H1(M ;Z) ∼= Z`

H2(M) ∼= Z2`+#MT−2 × Z/kZ H2(M ;Z) ∼= Z2`+#MT−2 × Z/kZ

H3(M) ∼= Z` H3(M ;Z) ∼= Z` × Z/kZ

H4(M) ∼= Z H4(M ;Z) ∼= Z.

The generators for H1(M) ∼= H3(M ;Z) are the loops α1, . . . , α` lifted from

π1(M/T ) along with the loop β in the torus fiber in the case that N/NX is non-

trivial. The generators of H2(M) ∼= H2(M ;Z) are the m− 2 spiders and the 2`− t

tori. The generators of H3(M) ∼= H1(M ;Z) are the ` lens spaces Li = q−1(Fi)

corresponding to the ` folded facets F1, . . . , F` which are not part of the spanning

tree for M/T .

Some of the intersections are easy. L1, . . . , L` are pairwise disjoint and thus

have no intersections. Taking q−1(Fi) of two parallel non-intersecting copies of Fi
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for any single facet that shows that [Li] ^ [Li] is also zero. Thus [Li] ^ [Lj] = 0

for all i and j. Thus the cup product between any two classes in H1(M ;Z) is 0.

The cup product on H3(M ;Z)×H1(M ;Z) is given by

[αi] ^ [Lj] =


1, i = j

0, i 6= j.

This is because by definition the loop αi passes through the lens space Li

exactly once in the positive direction, and passes through none of the other Lj.

The intersection [β] · [Lj] = 0 because a representative of [β] can be chosen in a

generic fiber away from Lj.

The intersection on H2(M ;Z) × H1(M ;Z) is non-trivial but straightforward.

Let [s] ∈ H2(M ;Z) be dual to one of the spider classes s ∈ X which generate

H2(M). Let [Lj] ∈ H1(M ;Z) be dual to one of the ` lens spaces generating

H3(M). The spider classes in X are constructed to only intersect the lens spaces

corresponding to edges in the spanning tree of the template graph. The generators

L1, . . . , L` of H3(M) are the lens spaces corresponding to edges not in the spanning

tree. Therefore s ∩ Lj = ∅ for all j and so [s] ^ [Lj] = 0.

On the other hand, let [αix], [αiy] ∈ H2(M) be dual to the tori αix and αiy,

respectively. Then since αi intersects Lj exactly once when i = j, and since the

fibers above points in the facet corresponding to Lj are full torus orbits, we get

that αix ∩ Li = x and αiy ∩ Li = y, where x ∈ H1(M) is the (1, 0) loop in the

torus fiber and y ∈ H1(M) is the (0, 1) loop. Therefore

[αix] ^ [Lj] =


[x], i = j,

0, i 6= j,

[αiy] ^ [Lj] =


[y], i = j,

0, i 6= j,
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where [x] ∈ H3(M ;Z) is dual to x and [y] ∈ H3(M ;Z) is dual to y. Notice that x

and y live in the N/NX portion of H1(M). In the case where N = NX (for example

if there are any fixed points of the torus action), we have x = y = 0 and therefore

[x] = [y] = 0. In this case it follows that the cup product on H2(M ;Z)×H1(M ;Z)

is trivial.

This leaves the cup product on H2(M ;Z) × H2(M ;Z), i.e. the intersection

form of M . We need to figure out how to calculate intersections between spiders,

between tori and between a spider and a torus. This is tricky because it requires

careful tracking of orientations.

We start with understanding how to intersect two spiders. By moving the

spiders bodies away from each other, it is sufficient to understand how to intersect

the spiders legs. By ensuring only two legs intersect above any point in M/T , the

leg intersections can be calculated 2 legs at a time and then summed.

To calculate the intersection of a leg γ0 × ν0 with a leg γ1 × ν1, first homotope

γ0 and γ1 so that γ0 is in the x0 direction and γ1 is in the x1 direction, switching

the labels 0 and 1 if that makes it easier. Thus we assume γ0 has tangent direction

(−1)ε0dx0 and γ1 has tangent direction (−1)ε1dx1 where ε0, ε1 ∈ {0, 1}.

Let ν0 be the curve (a, b) and let ν1 be the curve (c, d) in the torus fiber. Then

there are |det(ν0, ν1)| = |ad− bc| points of intersection between the two ν0 and ν1

in the torus fiber. The sign on each of those points of intersection is given by the

sign for the oriented basis for γ0 × ν0 wedged with the oriented basis for γ1 × ν1

which is

[(−1)ε0 dx0 ∧ (a dt0 + b dt1)] ∧ [(−1)ε1 dx1 ∧ (c dt0 + d dt1)]

= (−1)ε0(−1)ε1(ad− bd) dx0dt0dx1dt1.
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Let ε2 = 0 if the intersection is occurring in M+ and ε2 = 1 if the intersection is

occurring in M−. Then the intersection number of γ0 × ν0 with γ1 × ν1 where γ0

is in the x0 direction and γ1 is in the s1 direction is (−1)ε0+ε1+ε2 det(ν0, ν1).

Unfortunately there is not yet a formula that computes the intersection number

of two spiders based only on the linear relations defining them. At this time it

is still required to actually draw the spiders in M/T , figure out where all the leg

intersections are, and then carefully determine orientations by hand. We will do

this in an example in Section 4.6.

Since the tori αix and αiy are topologically just like legs, their intersections

are computed similarly. The pairwise intersection and self-intersection of any two

tori generators will be zero by taking disjoint paths in M/T representing them.

However, the intersection of a torus with a spider will be computed as though the

torus were a leg of the spider.

When M is toric symplectic the intersection form computed using the spiders

will be dual to the usual intersection form computed using the facet spheres.

To recap the results:

Theorem 4.5.1. For a compact, orientable, 4-dimensional, toric origami mani-

fold M , the loops α1, . . . , α`, β generate H1(M), the spiders s1, . . . , sm−2 and tori

α1x, α1y, . . . , α`x, α`y generate H2(M), and the lens spaces L1, . . . , L` generate

H3(M). The dual classes in H∗(M ;Z) generate H∗(M ;Z) and allow for the com-

putation of cup product. In particular, the cup product is dual to the oriented

intersections of the embedded homology representatives. In general:

• The cup product H1(M ;Z)×H1(M ;Z)
^−→ H2(M ;Z) is trivial.

71



• The cup product H2(M ;Z) × H1(M ;Z)
^−→ H3(M ;Z) is trivial except for

[αix] ^ [Li] = [x] and [αiy] ^ [Li] = [y] for 1 ≤ i ≤ `.

• The cup product H3(M ;Z)×H1(M ;Z)
^−→ H4(M ;Z) is trivial except [αi] ^

[Li] = 1 for 1 ≤ i ≤ `.

• The cup product H2(M ;Z) × H2(M ;Z)
^−→ H4(M ;Z) is trivial when both

classes are tori. The cup product of a spider with a torus or a spider with a

spider requires carefully drawing out the images of the classes in M/T , and

calculating the oriented intersections of each leg with each leg or torus.

4.6 A Worked Example

Let M be a toric origami manifold with template graph G two vertices connected

by three edges. Let P1 and P2 be the Delzant polytopes corresponding to vertex

v1 and v2 respectively. Suppose that P1 = P2 is the same Delzant polytope, with

normal vectors as given in Figure 4.11, and dashed facets marked for folding.

Folding together P1 and P2 gives the orbit space M/T which is drawn topo-

logically in Figure 4.12. The normal vectors to the 1-skeleton components are

labeled.

We can flatten the view of M/T topologically, and simply remember the normal

vectors associated to each 1-skeleton component. This will make it easier to draw

spiders and tori in M/T . See Figure 4.13 for the flat view of M/T .

There are four 1-skeleton component, so there should be 4 − 2 = 2 linear

relations amongst the normal vectors. In particular, two linearly independent
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Figure 4.11: The Delzant polytope P1 = P2. Solid facets will be unfolded, dashed
facets will be folded. (
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Figure 4.12: The orbit space M/T .

linear relations are given by

2 · (1, 3)− 3 · (1, 2) + (1, 0) = 0,

(1, 0) + (−1, 0) = 0.

Let [s1] be the spider representing the first relation and let [s2] be the spider

representing the second relation. The images of the spiders in M/T are drawn in

Figure 4.14.
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Figure 4.13: A flat view of M/T .
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Figure 4.14: The spiders [s1] and [s2].

The fundamental group of M/T is free on two generators. Let α1 and α2 be

those generators, oriented as shown in Figure 4.15. Then α1 is the loop corre-

sponding to the torus component with normal vector (1, 0) and the loop α1 − α2

corresponds to the torus component with normal vector (−1, 0). Therefore the two

relations induced on our four generators are α1x = 0 and −(α1 − α2)x = 0. The
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second relation reduces to α2x = α1x, so both are in fact trivial. Thus α1y and

α2y are the only tori generators needed to span H2(M).

(
1
3

)(
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2

) (
1
0

) (
−1
0

)α1α2

Figure 4.15: The images of the tori α1y and α2y in M/T .

Then to understand the intersection form on H2(M) we need to do some calcu-

lations of intersections. The spiders [s1] and [s2] do not intersect so [s1] · [s2] = 0.

The tori have [α1y] · [α2y] = 0, [α1y] · [α1y] = 0, and [α2y] · [α2y] = 0 because

the curves α1 and α2 don’t intersect and have disjoint parallel copies of them-

selves. The interesting intersections are between the spiders and tori, and spider

self-intersections. In Figure 4.16, the images of [s1], [s2], [α1], and [α2] are drawn

in P1 ⊆M+. We can therefore do some calculations.

First, [s1] and [α1y] have a single leg intersection along the (0, 1) leg of [s1].

In the drawing we have [s1] in the horizontal coordinate with positive direction

(ε0 = 0), and curve (1, 0) above it. We have [α1y] in the vertical coordinate with

negative direction (ε1 = 1), and curve (1, 0) above it. Therefore we get that

[s1] · [α1y] = (−1)ε0+ε1+ε2 det((1, 0), (0, 1)) = (−1)0+1+0(1) = −1.
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Figure 4.16: The intersections of the spiders and tori in P1.

The intersection of [s1] with [α2y] is the identical calculation. Therefore [s1] ·

[α2y] = −1.

The leg of [s2] which intersects [α1y] is identical to the leg of [s1] which was used

in the previous calculations. Thus [s2] · [α1y] = −1. Since [s2] does not intersect

[α2y] we have that [s2] · [α2y] = 0.

Finally, we need the spider self-intersections. Two parallel copies of the spider

[s2] do not intersect, so [s2] · [s2] = 0. However, the self-intersection of [s1] is more

interesting. See Figure 4.17.

There are three points of intersection, with the horizontal paths in the negative

direction (ε0 = 1) having the loop (1, 2) above them. The vertical paths are also

in the negative direction (ε1 = 1) and have the loop (1, 0) above them. The

intersections take place in M+ so ε2 = 0. Thus the contribution of each point of

intersection in M/T is

(−1)ε0+ε1+ε2 det((1, 2), (1, 0)) = (−1)1+1+0(−2) = −2.

There are three such points of intersection, so the total self-intersection number is
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Figure 4.17: The self-intersection [s1] · [s1].

[s1] · [s1] = −6.

Finally, we can write down the intersection form. Let the ordered basis for

H2(M) be {[s1], [s2], [α1y], [α2y]}. Then the corresponding matrix Q for the inter-

section form is

Q =



−6 0 −1 −1

0 0 −1 0

−1 −1 0 0

−1 0 0 0


.
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