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This work comprises two parts. Part I focuses on the convex feasibility problem

(finding or approximating a point in the intersection of finitely many closed convex

sets). We avoid the need for orthogonal projections by using radial projections,

introduced by Renegar[23]. The main requirement is that an interior point is

known in each of the sets considered. By developing Renegar’s theory, we obtain

a family of radial projection-based algorithms for the convex feasibility problem

which recover the linear convergence rates of orthogonal projection-based meth-

ods. Through studying different assumptions on the emptiness of the interior of

the intersection set in the convex feasibility problem, we also exhibit how radial

projections can be applied to solve constrained optimization problems when certain

conditions are met.

Part II can be seen as an application of the theory of radial projections de-

veloped in Part I. Here, we revisit the notion of maximal-margin classifiers, from

around 2000, but now from a general perspective – the intersections of generic

closed convex cones, not just half-spaces (i.e., the perceptron). This requires ex-

tending concepts and establishing more general theory of the margin function,

which is achieved by applying and refining the results in Part I in the conic case.

Even more interestingly, we are led to the first Õ(1/ϵ) first-order method for ap-

proximating, within relative error ϵ, the margin-maximizer of the intersection cone.

Previous results, only in the case of the perceptron, were O(1/ϵ2), making our re-



sult a notable improvement even in the most basic of cases.
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CHAPTER 1

INTRODUCTION

Given a finite collection of closed convex sets with nonempty intersection, the

convex feasibility problem concerns approximating (or finding) a point in the in-

tersection set. Traditionally, convex feasibility problems are solved via orthogonal

projections onto the individual sets (see, e.g., [1, 2, 4, 11, 30]).

Orthogonal projections onto generic closed convex sets are difficult to compute,

even in the case of ellipsoids (see [7, 16]). In this work, to avoid the need for orthog-

onal projections, we introduce radial projections and the γ function by assuming

a known interior point (used as the reference point) in each of the individual sets,

and develop algorithms for the convex feasibility problem accordingly.

The idea of radial projections and the γ function for a single closed convex cone

were considered by Renegar in [23]. In Chapter 2, we generalize some previous

results to generic closed convex sets and propose new ones, with an emphasis on

the connection between orthogonal and radial projections. In order to apply the

technique to convex feasibility problems, we develop the theory for multiple closed

convex sets in Chapter 3. Our discussion features the function γ0, which is defined

to be the maximum of the γ functions of the individual sets. The analysis includes

Theorem 3.1, a linear regularity result for generic closed convex sets when the

intersection has non-empty interior, which is of independent interest. Chapter 4

briefly goes over the case where the convex feasibility problem involves an affine

subspace, while the reference points do not necessary lie in that affine subspace.

With the theory in place, we propose and analyze two radial projection-based

algorithms for the convex feasibility problem in Chapter 5. Both methods are
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subgradient methods whose step sizes follow Polyak’s rule [21]. By assuming an

intersection with non-empty interior, both algorithms approximate the intersection

set at linear rates, similar to orthogonal projection-based methods1. The first

algorithm has γ0 as its objective function, while the second algorithm cycles over

the γ functions of the individual sets. This chapter concludes with numerical

performances of these two algorithms applied to the feasibility problem of randomly

generated ellipsoids.

Chapter 6 presents a stochastic algorithm for the convex feasibility problem,

which is essentially an application of the methodology developed by Renegar and

Zhou in [25]. While the methods presented in Chapter 5 and 6 only approximate

the intersection, in Chapter 7, we discuss an algorithm which finds a feasible point

in the intersection and terminates in finitely many iterations. The finiteness of the

algorithm is achieved via sequential estimates of the minimum of γ0.

The results in Chapter 5-7 all posit intersection sets with non-empty interior.

In Chapter 8, when the normal cones to the individual sets at their intersection

possess certain structures (see Assumption 8.1), we show that the convex feasibility

problem can still be solved at a linear rate. By adopting the parallel scheme

proposed by Renegar and Grimmer[24], a similar assumption, i.e., Assumption 9.1,

allows us to tackle constrained optimization problems via radial projections, which

is the subject of Chapter 9.

1See the discussion around (5.3) and the paragraph following the proof of Theorem 5.1 for
more detailed comparisons of the canonical orthogonal projection-based algorithm and its radial
projection-based counterpart.
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CHAPTER 2

DEFINITION AND PROPERTIES OF THE γ FUNCTION FOR A

SINGLE SET

Let E denote a finite-dimensional Euclidean space endowed with an inner prod-

uct ⟨·, ·⟩ and the induced norm ∥ · ∥. Consider a closed, convex set S ⊂ E . We

assume that S has nonempty interior, and a reference point e ∈ int(S) is given.

For any x ∈ E and λ > 0, let

x(λ) := e+ λ(x− e). (2.1)

Define nonnegative functions

α(x) := sup{λ > 0 | x(λ) ∈ S} (2.2)

and

γ(x) := 1/α(x) = inf{λ−1 | x(λ) ∈ S, λ > 0}. (2.3)

Since e ∈ int(S), we have α(x) > 0 for all x ∈ E . When α(x) = ∞, let γ(x) = 0.

Then we have

γ(x) = 0 ⇐⇒ x− e ∈ recc(S − e), (2.4)

where recc(S − e) := {d ∈ E | λd ∈ S − e,∀λ > 0} denotes the recession cone of

the set S − e.

For any x ∈ E and λ > 0, we see that

γ(x(λ)) = inf
{
µ−1 | e+ µ(x(λ)− e) ∈ S, µ > 0

}
= inf

{
µ−1 | e+ µλ(x− e) ∈ S, µ > 0

}
= λ inf

{
µ−1 | e+ µ(x− e) ∈ S, µ > 0

}
= λγ(x).

(2.5)
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Therefore, γ is a positively homogeneous function if we replace the origin with e.

For x ∈ E such that γ(x) > 0 (i.e., α(x) < ∞), define

πS(x) := x(α(x)) = e+ α(x)(x− e) = e+
x− e

γ(x)
. (2.6)

Since S is closed and convex, by the definition of α(x), we immediately see that

S ∩ {x(λ) | λ > 0} = (e, e+ α(x)(x− e)] = (e, πS(x)]. (2.7)

When x ̸∈ S, we refer to πS(x) as the radial projection of x onto S. It should be

noted that by (2.5), πS(x(λ)) remains unchanged for all λ > 0:

πS(x(λ)) = e+
x(λ)− e

γ(x(λ))
= e+

λ(x− e)

λγ(x)
= e+

x− e

γ(x)
= πS(x). (2.8)

The α function defined in (2.2) is basically equivalent to the α1 function con-

sidered by Renegar in [23]. The purpose of [23] is to develop a set of “projected”

subgradient methods, with radial projections replacing the traditional orthogonal

projections. Renegar also considered the λmin function, which can be seen as the

γ function for convex cones.

For general closed convex sets, the value of γ(x) cannot be computed exactly.

In [23], the author discussed the approximation of the α1 function in detail. Simi-

larly, in our case, the value of γ(x) can also be approximated accurately. All that

is required is a bisection on the half-line {x(λ) | λ > 0} for accurately approxi-

mating where this half-line intersects the boundary of S. If such intersection does

not exist, then γ(x) = 0, and the bisection halves its estimate of γ(x) at each

iteration. Otherwise, the bisection approximates the position of πS(x) (i.e., where

the half-line intersects the boundary) and γ(x) can be estimated accordingly. For

most closed convex sets, this can be accomplished far more easily than traditional

orthogonal projections.
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In what follows, we assume γ(x) can be computed exactly.

In the rest of this chapter, we develop some properties of the γ function for

generic closed convex sets, while emphasizing its connection with the distance

function. We start with some immediate observations:

Lemma 2.1. For any x ∈ E, we have
γ(x) < 1 ⇐⇒ x ∈ int(S);

γ(x) = 1 ⇐⇒ x ∈ bdy(S) ⇐⇒ πS(x) = x;

γ(x) > 1 ⇐⇒ x ̸∈ S,

and S is the 1-sublevel set of γ.

Proof. Since e ∈ int(S), there exists r > 0 such that B(e, r) ⊆ int(S). Here B(e, r)

denotes the open ball centered at e with radius r.

• When γ(x) = 0, we have x − e ∈ recc(S − e). According to Lemma A.1 in

Appendix A.1, for any w ∈ B(e, r) ⊂ S, x − e ∈ recc(S − w) ⊆ (S − w).

Hence

x ∈ B(x, r) = B(e, r) + (x− e) ⊆ S,

and x ∈ int(S).

• When γ(x) ∈ (0, 1), note that πS(x) ∈ S and

x = (1− γ(x))e+ γ(x)

(
e+

(x− e)

γ(x)

)
= (1− γ(x))e+ γ(x)πS(x),

we get

x ∈ B(x, (1− γ(x))r) = (1− γ(x))B(e, r) + γ(x)πS(x) ⊂ int(S),

and x ∈ int(S).
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• When γ(x) = 1, we immediately get x ∈ bdy(S) by the definition of γ(x).

• When γ(x) > 1, then x ̸∈ (e, πS(x)]. By (2.7), we see that x ̸∈ S.

Lemma 2.1 shows that the 1-sublevel set of γ is S. To study generic sublevel

sets of γ, for any t ≥ 0, let

S(t) := {x ∈ E | γ(x) ≤ t} (2.9)

denote the t-sublevel set of γ. Then by the definition of γ and the closedness of S,

for any t > 0, we have

γ(x) ≤ t ⇐⇒ e+
x− e

t
∈ S ⇐⇒ x ∈ e+ t(S − e).

Hence when t > 0,

S(t) = e+ t(S − e). (2.10)

Moreover, by (2.10) and Lemma 2.1, for all t > 0, we get

int(S(t)) = int(e+ t(S − e))

= e+ t · int(S − e)

= {e+ t(x− e) | γ(x) < 1}

= {x ∈ E | γ(x) < t}.

(2.11)

We close this part with the following result:

Lemma 2.2. The function γ is convex.

Proof. Consider any x, y ∈ E and λ ∈ (0, 1). We wish to show

γ(λx+ (1− λ)y) ≤ λγ(x) + (1− λ)γ(y). (2.12)
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If γ(x) = γ(y) = 0, then (2.4) gives x− e, y− e ∈ recc(S− e). By the convexity

of recc(S − e), we get

(λx+ (1− λ)y)− e = λ(x− e) + (1− λ)(y − e) ∈ recc(S − e),

and γ(λx+ (1− λ)y) = 0. Hence (2.12) holds.

Now assume γ(x) > 0. According to (2.5), by rescaling x and y with respect to

e if necessary, we may assume γ(x) = 1 and x ∈ bdy(S). Let t = λ+(1−λ)γ(y) in

(2.10), we see that (2.12) is true if and only if λx+ (1− λ)y ∈ S(λ+ (1− λ)γ(y)).

• If γ(y) = 0, then y − e ∈ recc(S − e). Using (2.5), we see that γ(x(λ)) =

λγ(x) = λ. Hence by (2.10) and (2.4),

λx+ (1− λ)y = x(λ) + (1− λ)(y − e)

∈ (e+ λ(S − e)) + recc(S − e) = e+ λ(S − e) = S(λ),

and the statement holds.

• If γ(y) > 0, then y = e+ γ(y)(πS(y)− e). Hence

λx+ (1− λ)y

= λ(e+ (x− e)) + (1− λ) (e+ γ(y)(πS(y)− e))

= e+ (λ+ (1− λ)γ(y))

((
λx

λ+ (1− λ)γ(y)
+

((1− λ)γ(y))πS(y)

λ+ (1− λ)γ(y)

)
− e

)
∈ e+ (λ+ (1− λ)γ(y)) (S − e)

= S(λ+ (1− λ)γ(y)),

where the last but one line follows from the fact that x and πS(y) are both

in the convex set S, and the last equality is due to (2.10).
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2.1 The γ function and the distance function

Recall that the distance between a vector x and a closed convex set S can be

defined as

dist(x, S) := ∥x− PS(x)∥,

where PS(x) := argminz∈S ∥z − x∥ is the orthogonal projection of x onto S. One

immediately sees that PS(x) = x whenever x ∈ S. For generic closed convex sets,

orthogonal projections are nontrivial to compute (e.g., [7] and [16] are dedicated

to iterative methods for orthogonal projections onto ellipsoids).

In contrast, when a reference point e ∈ int(S) is known, for x ̸∈ S, we can

compute the radial projection πS(x) ∈ bdy(S) by evaluating γ(x).1 The purpose of

this section is to look into the connection between radial projections and orthogonal

projections (i.e., γ(x) v.s. dist(x, S)) when x ̸∈ S.

We start by studying the subgradients of γ. For any z ∈ S, let

NS(z) := {d ∈ E | ⟨z, d⟩ ≥ ⟨x, d⟩, ∀x ∈ S}

denote the normal cone to S at z. Recall that when x ̸∈ S, we have the following

characterization of the subgradients of the distance function:

∂xdist(x, S) = {d ∈ E | d ∈ NS(PS(x)) and ∥d∥ = 1} . (2.13)

The subgradients of γ admit a similar formula, with πS(x) playing the role of PS(x)

in (2.13):

Proposition 2.1. Given x ∈ E, when γ(x) > 0, we have

∂γ(x) = {d ∈ E | d ∈ NS(πS(x)) and ⟨πS(x)− e, d⟩ = 1} .
1See the remark following Proposition 2.1 for discussions on a first-order oracle for γ.
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Remark. When γ(x) > 0, to get a subgradient of γ at x, it suffices to have an

oracle which generates non-zero normal vectors to S at its boundary points.

Proof. Given λ > 0, for any x, g ∈ E , we have

g ∈ ∂γ(x) ⇐⇒ γ(x) + ⟨y − x, g⟩ ≤ γ(y), ∀y ∈ E

⇐⇒ λγ(x) + λ⟨y − x, g⟩ ≤ λγ(y), ∀y ∈ E
(2.5)⇐⇒ γ(x(λ)) + ⟨y(λ)− x(λ), g⟩ ≤ γ(y(λ)), ∀y ∈ E

⇐⇒ g ∈ ∂γ(x(λ)).

When γ(x) > 0, let λ = 1/γ(x), we get

∂γ(x) = ∂γ(πS(x)). (2.14)

Consequently, by Lemma 2.1, we may assume x ∈ bdy(S) for the rest of this proof.

Consider any d ∈ NS(x). Since e ∈ int(S), we have ⟨x−e, d⟩ > 0 for all non-zero

d ∈ NS(x). Thus the set considered on right-hand side of Proposition 2.1 is non-

empty (due to rescaling). Now pick any d ∈ NS(πS(x)) satisfying ⟨x − e, d⟩ = 1.

For any y ∈ E , we have

γ(x) + ⟨y − x, d⟩ = 1 + ⟨y − x, d⟩ = ⟨x− e, d⟩+ ⟨y − x, d⟩ = ⟨y − e, d⟩.

Here the first equality follows from Lemma 2.1. Thus〈
e+

y − e

γ(x) + ⟨y − x, d⟩
, d

〉
=

〈
e+

y − e

⟨y − e, d⟩
, d

〉
= ⟨e, d⟩+ 1 = ⟨e, d⟩+ ⟨x− e, d⟩ = ⟨x, d⟩.

Since d ∈ NS(x), we see that

e+
y − e

γ(x) + ⟨y − x, d⟩
̸∈ int(S).

10



Hence by (2.5) and Lemma 2.1,

γ(y)

γ(x) + ⟨y − x, d⟩
= γ

(
e+

y − e

γ(x) + ⟨y − x, d⟩

)
≥ 1,

and we conclude that d ∈ ∂γ(x).

On the other hand, first note that for any g ̸∈ NS(x), there exists y′ ∈ S such

that ⟨x, g⟩ < ⟨y′, g⟩. By Lemma 2.1, we get

γ(y′) ≤ 1 = γ(x) < γ(x) + ⟨y′ − x, g⟩.

Hence g ̸∈ ∂γ(x), and we conclude that ∂γ(x) ⊆ NS(x).

When g ∈ NS(x) but ⟨x− e, g⟩ > 1, by (2.5), we have

2 = γ(x(2)) ≥ γ(x) + ⟨(x(2)− x, g⟩ = γ(x) + ⟨x− e, g⟩ > 2,

which is a contradiction. When ⟨x−e, g⟩ < 1, we can obtain a similar contradiction

by studying x(1
2
). Hence we get ⟨x− e, g⟩ = 1 for all g ∈ ∂γ(x).

For any x ∈ S, define

rS(x) := max{r ≥ 0 | B(x, r) ⊆ S}. (2.15)

Then e ∈ int(S) implies rS(e) > 0. The next result is a consequence of Proposi-

tion 2.1:

Lemma 2.3. For all x ∈ E satisfying γ(x) > 0, we have

∂γ(x) ⊂ B(⃗0, 1/rS(e)).

Consequently, γ is 1/rS(e)-Lipschitz.
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Proof. For any x ̸∈ S(0), consider any g ∈ ∂γ(x). By Proposition 2.1, we have

g ̸= 0⃗. Due to the definition of rS(e), we see that

e+
rS(e)

∥g∥
g ∈ B(⃗0, rS(e)) ⊆ S.

Again by Proposition 2.1, we get g ∈ NS(πS(x)) and

⟨e, g⟩+ 1 = ⟨πS(x), g⟩ ≥
〈
e+

rS(e)

∥g∥
g, g

〉
= ⟨e, g⟩+ rS(e)∥g∥.

Hence ∥g∥ ≤ 1/rS(e). For all y ∈ E satisfying γ(y) ≤ γ(x), we have

|γ(x)− γ(y)| = γ(x)− γ(y) ≤ ⟨x− y, g⟩ ≤ ∥x− y∥
rS(e)

.

As for y ∈ E such that γ(y) > γ(x), we can show a similar inequality by studying

the subgradients of γ at y, and the Lipschitzness of γ follows.

On the other hand, we also have the following lower bound on the growth rate

of γ outside of S:

Lemma 2.4. When x ̸∈ S, we have

γ(x)− 1

dist(x, S)
≥ 1

∥πS(x)− e∥
≥ 1

∥PS(x)− e∥
≥ 1

∥x− e∥
.

Proof. When x ̸∈ S, by Lemma 2.1, we have γ(x) > 1 and πS(x) ∈ (e, x). Since

πS(x) ∈ S,

γ(x)− 1 =
∥x− e∥

∥πS(x)− e∥
− 1 =

∥x− πS(e)∥
∥πS(x)− e∥

≥ dist(x, S)

∥πS(x)− e∥
. (2.16)

By the triangle inequality, we get

∥x− πS(x)∥+ ∥πS(x)− e∥ = ∥x− e∥ ≤ ∥x− PS(x)∥+ ∥PS(x)− e∥.
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Also note that by the definition of PS(x), we have ∥x − πS(x)∥ ≥ ∥x − PS(x)∥.

Hence

∥πS(x)− e∥ ≤ (∥x− PS(x)∥+ ∥PS(x)− e∥)− ∥x− πS(x)∥

≤ ∥x− PS(x)∥+ ∥PS(x)− e∥ − ∥x− PS(x)∥

= ∥PS(x)− e∥.

(2.17)

Combined with (2.16), we get

γ(x)− 1 ≥ dist(x, S)

∥πS(x)− e∥
≥ dist(x, S)

∥PS(x)− e∥
≥ dist(x, S)

∥x− e∥
.

For any x ̸∈ S, combining Lemma 2.3 and Lemma 2.4 yields

1

∥πS(x)− e∥
≤ γ(x)− 1

dist(x, S)
≤ 1

rS(e)
. (2.18)

When S is bounded, let RS(e) := max{∥z − e∥ | z ∈ S}. Then for x ̸∈ S, we have

1

RS(e)
≤ γ(x)− 1

dist(x, S)
≤ 1

rS(e)
.

By (2.18), when x ̸∈ S, the quantity γ(x)−1 can be seen as an approximation of

a scalar multiple of dist(x, S), and the condition number ∥πS(x)−e∥
rS(e)

characterizes the

tightness of the approximation at x. It is straightforward to see that ∥πS(x)−e∥
rS(e)

≥ 1.

2.2 The γ function and support functions

The condition number deduced from (2.18) relies on the vector x. In this section,

by referring to support functions, we develop another characterization of the γ

function, which leads to another condition number of γ in terms of the centrality

of the reference point e.
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Given a closed convex set S ⊂ E , consider the set

ΩS := {d | ∥d∥ = 1, ∃z ∈ bdy(S) and d ∈ NS(z)},

i.e., the set of unit vectors in the normal cones to S.

For any d ∈ ΩS, define the support function

fS(d) := sup{⟨x, d⟩ | x ∈ S}.

We immediately see that for any z ∈ bdy(S) and d ∈ ΩS,

⟨z, d⟩ = fS(d) ⇐⇒ d ∈ NS(z). (2.19)

Since e ∈ int(S), we also have

⟨e, d⟩ < fS(d), ∀d ∈ ΩS. (2.20)

Let us denote the supporting hyperplanes of S and the corresponding half-

spaces by

H(S, d) := {x ∈ E | ⟨x, d⟩ = fS(d)}, H−(S, d) := {x ∈ E | ⟨x, d⟩ ≤ fS(d)}.

For any d ∈ ΩS, since ∥d∥ = 1, by (2.20), we get

dist(e,H(S, d)) = |fS(d)− ⟨e, d⟩| = fS(d)− ⟨e, d⟩. (2.21)

Since S is closed and convex, by a standard application of the Hahn-Banach The-

orem, one can show that

S = ∩d∈ΩS
{x ∈ E | ⟨x, d⟩ ≤ fS(d)} = ∩d∈ΩS

H−(S, d). (2.22)

Consequently, for any x ̸∈ S and d ∈ ΩS, we have PS(x) ∈ S ⊆ H−(S, d).

Hence

dist(x,H−(S, d)) ≤ ∥x− PS(x)∥ = dist(x, S).
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On the other hand, dist
(
x,H−

(
S, x−PS(x)

∥x−PS(x)∥

))
= ∥x− PS(x)∥ = dist(x, S). Thus

we conclude that

Lemma 2.5. When x ̸∈ S, we have

dist(x, S) = max
d∈ΩS

dist(x,H−(S, d)).

We next show how the γ function can be written in terms of support functions:

Proposition 2.2. For any x ∈ E, we have

γ(x) =

(
max
d∈ΩS

{
⟨x− e, d⟩

fS(d)− ⟨e, d⟩

})
+

.

Proof. When γ(x) = 0 and x− e ∈ recc(S − e), we have x(λ) = e + λ(x− e) ∈ S

for all λ > 0. Hence for any d ∈ ΩS, according to the definition of the support

function, we have

⟨e, d⟩+ λ⟨x− e, d⟩ = ⟨x(λ), d⟩ ≤ fS(d) < ∞.

Let λ ↗ ∞, we get ⟨x− e, d⟩ ≤ 0 = γ(x).

Now consider x ∈ E such that γ(x) > 0. For any d ∈ ΩS, since πS(x) ∈ S, by

the definition of the support function, we have ⟨πS(x)−e, d⟩ ≤ fS(d)−⟨e, d⟩. Also

note that fS(d)− ⟨e, d⟩ > 0, we get

γ(x) ≥ γ(x)

(
⟨πS(x)− e, d⟩
fS(d)− ⟨e, d⟩

)
=

γ(x)⟨πS(x)− e, d⟩
fS(d)− ⟨e, d⟩

=
⟨x− e, d⟩

fS(d)− ⟨e, d⟩
,

where the last equality follows from

x− e = γ(x)(πS(x)− e).

On the other hand, for any unit vector d′ ∈ NS(πS(x)), by (2.19), we have

⟨πS(x), d
′⟩ = fS(d

′) and

⟨x− e, d′⟩ = γ(x)⟨πS(x)− e, d′⟩ = γ(x)(fS(d
′)− ⟨e, d′⟩).
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Hence

γ(x) = max
d∈ΩS

{
⟨x− e, d⟩

fS(d)− ⟨e, d⟩

}
,

and the maximum is attainable.

Corollary 2.1. When x ̸∈ S, we have

γ(x)− 1 = max
d∈ΩS

{
dist(x,H−(S, d))

dist(e,H(S, d))

}
.

Proof. If x ̸∈ S, then γ(x) > 1. By Proposition 2.2, we get

γ(x) = max
d∈ΩS

{
⟨x− e, d⟩

fS(d)− ⟨e, d⟩

}
= max

d∈ΩS

{
1 +

⟨x, d⟩ − fS(d)

fS(d)− ⟨e, d⟩

}
= 1 +max

d∈ΩS

{
⟨x, d⟩ − fS(d)

fS(d)− ⟨e, d⟩

}
.

Suppose d′ ∈ ΩS obtains the maximum here. Since γ(x) > 1, we see that

0 < ⟨x, d′⟩ − fS(d
′) = dist(x,H−(S, d′)).

The final step of the proof follows immediately from (2.21).

Given a reference point e ∈ int(S), define

gS(e) := min
d∈ΩS

dist (e,H(S, d)) , 2 hS(e) := sup
d∈ΩS

dist (e,H(S, d)) .

When x ̸∈ S, recall that Lemma 2.5 states dist(x, S) = maxd∈ΩS
dist(x,H−(S, d)).

Compared with Corollary 2.1, we immediately see that

1

hS(e)
≤ γ(x)− 1

dist(x, S)
≤ 1

gS(e)
. (2.23)

Let d′ be any unit vector in NS(πS(x)), then ⟨πS(x)− e, d′⟩ > 0. Noting that the

three points e, πS(x), x are on the same line, we have

γ(x)− 1 =
∥x− πS(x)∥
∥πS(x)− e∥

=
⟨x− πS(x), d

′⟩
⟨πS(x)− e, d′⟩

=
dist(x,H−(S, d′))

dist(e,H(S, d′))
. (2.24)

2In Lemma 8.1, we show that the minimum here is obtainable.
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Hence either side of (2.23) is tight only when πS(x) = PS(x) and d̃ = x−PS(x)
∥x−PS(x)∥

∈

NS(πS(x)) achieves the extreme values in hS(e) or gS(e).

By (2.23), the centrality of e with respect to S, defined as

τ(S,e) :=
hS(e)

gS(e)
,

also provides a condition number of γ with respect to S. The definition of centrality

implies that τ(S,e) ≥ 1. When τ(S,e) is small, (γ(x) − 1)+ is a good proxy for the

distance function.

Sandwich inequalities (2.18) and (2.23) both provide condition numbers of

(γ(x) − 1)+ as an approximation of a scalar multiple of the distance function

dist(x, S). It should be noted that both inequalities share the same upper bound

(i.e., rS(e) = gS(e)).
3 While the lower bound in (2.23) depends on x, the lower

bound in (2.23) only involves e. When additional information regarding the posi-

tions of the points of interest is available (for instance, iterates of the algorithms

introduced in Chapter 5), (2.18) could be very useful. In other cases where τ(S,e)

is bounded (e.g., when S is polyhedral), (2.23) could be more helpful, since it does

not depend on the position of x. The following example is a case where (2.23)

leads to a better bound than (2.18):

Example 2.1. Consider the set

S = {(x, y) | xy ≥ 1, x > 0}

and a reference point e = (2, 2). We can show that gS(e) =
√
2 (obtained when the

normal vector d = (−
√

1/2,−
√

1/2)) and hS(e) = 2 (obtained when the normal

vectors tend to (0, -1) or (-1, 0)). Hence τ(S,e) =
√
2.

3Again, see Lemma 8.1.
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In contrast, consider the points {xn}n∈N where xn = (n, 0). As n → ∞, we

have ∥πS(xn)− e∥ → ∞, and the left-hand side of (2.18) tends to 0.
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CHAPTER 3

DEFINITION AND PROPERTIES OF THE γ FUNCTION FOR

MULTIPLE SETS

Now consider a finite number of closed convex sets {S1, . . . , Sm} ⊆ E , where

m > 1. For any Si, assume a reference point ei ∈ int(Si) is given. Let γi : E →

[0,∞) be the γ function defined with respect to Si and ei. Define

S0 := ∩i∈[m]Si (3.1)

and

γ0(x) := max
i∈[m]

γi(x). (3.2)

Since γi : E → [0,∞) is convex for all i ∈ [m], we see that γ0 : E → [0,∞) is also

convex.

In this chapter, we assume

int(S0) ̸= ∅. (3.3)

By Lemma 2.1, this implies

γ⋆
0 := inf

x∈E
γ0(x) < 1.

Recall that by (2.18) and (2.23), for any i ∈ [m], γi(x) and dist(x, Si) are closely

connected via ei. We would like to establish a similar sandwich inequality between

γ0(x) and dist(x, S0). In order to do this, let us take a brief detour and dig into

the relationship between dist(x, S0) and maxi∈[m] dist(x, Si).
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3.1 Linear regularity for closed convex sets

For a closed convex cone K ̸= E with nonempty interior, the inradius of K[10] is

inrad(K) := max{rK(v) | v ∈ K and ∥v∥ = 1}

= max

{
rK(v)

∥v∥

∣∣∣∣v ∈ K and ∥v∥ ≠ 0

}
,

(3.4)

i.e., the largest radius of balls which are subsets of K and centered at unit vectors.

By the definition of inrad(K), we immediately have

inrad(K) ≤ 1.

The quantity defined in (3.4) is also referred to as the “width” of the cone K

in the perceptron literature [8, 20]. Here we adopt the name inradius because our

analysis in the following chapters often involve lower bounds on the radii of balls.

We rely on a related notion for the intersection K ∩ L, where L is a subspace

intersecting the interior of K:

inradL(K) := max{rK(v) | v ∈ K ∩ L and ∥v∥ = 1}.

Although the vectors v in the definition of inradL(K) are restricted to the subspace,

still the radius refers to balls that are full-dimensional and contained in K. Hence

we have

inradL(K) ≤ inrad(K) ≤ 1. (3.5)

For z ∈ S0, the tangent cone for S0 at z is the closed convex cone

TS0(z) = cl{t(x− z) | x ∈ S0 and t > 0},

where “cl” denotes closure. The tangent cone is the smallest closed convex cone

K for which S0 ⊆ z+K. We have the following characterization of inradL(TS0(z):
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Lemma 3.1. For any z ∈ bdy(S0) such that int(S0) ∩ (z + L) ̸= ∅,

inradL(TS0(z)) = sup

{
rS0(w)

∥w − z∥
| w ∈ int(S0) ∩ (z + L)

}
. (3.6)

In particular, when L = E, we get

inrad(TS0(z)) = sup

{
rS0(w)

∥w − z∥
| w ∈ int(S0)

}
. (3.7)

Remark. See Example A.1 in Appendix A.2 for an instance where the supremum

on the right-hand side of Lemma 3.1 is not obtainable.

Proof. By the definition of TS0(z)), we have S ⊆ z + TS0(z)). Hence for any

w ∈ int(S0) ∩ (z + L),

inrad(TS0(z)) ≥
rS0(w)

∥w − z∥
.

On the other hand, note that for any compact convex set T ,

T ⊂ int(TS0(z)) =⇒ ∃t′ > 0 for which z + t′ · T ⊂ S0.
1 (3.8)

Now assume v ∈ TS0(z) satisfies ∥v∥ = 1 and rTS0
(z)(v) = inrad(TS0(z)). Then for

any r < inrad(TS0(z)), we have

B(v, r) ⊂ int(TS0(z)).

By (3.8), there exists t′ > 0 such that

z + t′(B(v, r)) = B(z + t′v, t′r) ⊂ S0

and

rS0(z + t′v)

∥(z + t′v)− z∥
=

rS0(z + t′v)

∥t′v∥
≥ ∥t′r∥

∥t′v∥
= r.

Let r ↗ inrad(TS0(z)), we get

inrad(TS0(z)) ≤ sup

{
rS0(w)

∥w − z∥
| w ∈ int(S0)

}
. (3.9)

1See the proof in Appendix A.2.
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The purpose of this part is to establish and discuss the following theorem. The

theorem is significant in its own regard, as we clarify following the proof. On a first

reading, we recommend assuming L = E , in which case “S0 ∩ (x + L)” becomes

simply “S0”, and “ distL ” and “ inradL ” become “dist” and “ inrad ”, respectively.

Theorem 3.1. Assume x ̸∈ S0 and int(S0) ∩ (x + L) ̸= ∅, where L is a subspace

(possibly L = E). Let z = PS0∩(x+L)(x) and I := {i ∈ [m] | z ∈ bdy(Si)}. Then

distL(x, S0) := dist(x, S0 ∩ (x+ L)) = ∥x− z∥ ≤ maxi∈I dist(x, Si)

inradL(TS0(z))
. (3.10)

Remark. We make two remarks to facilitate readers’ understanding of Theorem 3.1:

1. To understand that (3.10) cannot in general be strengthened, assume L = E

(then inradL TS0(z) = inrad(TS0(z))), and bdy(S0) is a smooth manifold in a

neighborhood of z, in which case TS0(z) is a half-space so inrad(TS0(z)) = 1.

Consequently (3.10) gives dist(x, S0) ≤ maxi∈I dist(x, Si). Since we always

have dist(x, S0) ≥ maxi∈[m] dist(x, Si), it follows that

dist(x, S0) = max
i∈I

dist(x, Si) = max
i∈[m]

dist(x, Si),

a bound on dist(x, S0) which is impossible to improve. See Example A.2 in

Appendix A.2 for another example.

2. The reason for introducing a subspace L is that we allow convex feasibility

problems which include linear equations, Ax = b, in which case L will be the

null-space of A. The iterates of our algorithms will satisfy the linear equa-

tions. Consequently, in analyzing improvements over the course of iterations,

we need “ distL ” on the left of (3.10), not “dist”. However, to avoid making

the strong assumption that the points ei are solutions to the linear equations

in addition to being interior points of the sets Si, on the right we need “dist”

rather than “ distL ”.
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Proof. Consider any w ∈ int(S) ∩ (x+ L). Since z is the orthogonal projection of

x onto S0 ∩ (x+ L), we have

x− z ∈ NS0∩(x+L)(z) = cl

(∑
i∈I

NSi
(z) + L⊥

)
=
∑
i∈I

NSi
(z) + L⊥.

The last equality is a consequence to the assumption int(S0) ∩ (x + L) ̸= ∅ (c.f.,

Theorem 6.42 in [27]). Hence we can write

x− z =
∑
i∈I

λidi + v, where λi ≥ 0, di ∈ NSi
(z), ∥di∥ = 1, v ∈ L⊥. (3.11)

Since B(w, rS0(w)) ⊂ S0, we have w+rS0(w)di ∈ Si for all i ∈ I. Thus, because

di ∈ NSi
(z) and ∥di∥ = 1, we find

⟨z, di⟩ ≥ ⟨w + rS0(w)di, di⟩ = ⟨w, di⟩+ rS0(w).

That is, ⟨di, z − w⟩ ≥ rS0(w). Consequently,

⟨x− z, z − w⟩ =

〈∑
i∈I

λidi + v, z − w

〉
=
∑
i∈I

λi⟨di, z − w⟩ ≥ rS0(w)
∑
i∈I

λi,

where we have made use of z − w ∈ L and v ∈ L⊥. Hence, by Cauchy-Schwartz,

∥x− z∥ ≥

(∑
i∈I

λi

)
rS0(w)

∥w − z∥
. (3.12)

On the other hand, note that x− z ∈ L and v ∈ L⊥,

⟨x−z, x−z⟩ =

〈∑
i∈I

λidi + v, x− z

〉
=
∑
i∈I

λi⟨di, x−z⟩ ≤

(∑
i∈I

λi

)
max
i∈I

⟨di, x−z⟩.

(3.13)

For any i ∈ [m], note that ∥di∥ = 1 and di ∈ NSi
(z), by Lemma 2.5, we have

⟨x− z, di⟩ ≤ (⟨x− z, di⟩)+ = dist(x,H−(Si, di)) ≤ dist(x, Si).

Substituting into (3.13) yields

∥x− z∥2 ≤

(∑
i∈I

λi

)
max
i∈I

dist(x, Si). (3.14)
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Combining the lower bound on ∥x − z∥ given by (3.12) and and the upper

bound on ∥x− z∥2 given by (3.14), for any w ∈ int(S0) ∩ (x+ L), we get

∥x− z∥ =
∥x− z∥2

∥x− z∥
≤
(∑

i∈I λi

)
maxi∈I dist(x, Si)(∑
i∈I λi

) rS0
(w)

∥w−z∥

=
maxi∈I dist(x, Si)

rS0
(w)

∥w−z∥

.

Note that z ∈ (x+L), we get z +L = x+L. Taking the supremum of
rS0

(w)

∥w−z∥ over

all w ∈ int(S) ∩ (x+ L), by Lemma 3.1, we see that

∥x− z∥ ≤ maxi∈I dist(x, Si)

sup
{

rS0
(w)

∥w−z∥ | w ∈ int(S0) ∩ (x+ L)
} =

maxi∈I dist(x, Si)

inradL(TS0(z))
.

Given a convex feasibility problem of finding (or approximating) a point in

S0 = ∩i∈[m]Si, let κ(x) > 0 satisfy

dist(x, S0) = κ(x)max
i∈[m]

dist(x, Si) (3.15)

for all x ̸∈ S. If supx ̸∈S κ(x) < ∞, then the problem is linearly regular [3]. Oth-

erwise, if κ(x) is upper bounded for x restricted to any bounded regions in E , we

say that the convex feasibility problem exhibits bounded linear regularity.

(Bounded) linear regularity is usually essential to establishing the linear con-

vergence rate of projection algorithms for convex feasibility problems (see, e.g.,

[1, 2, 4, 10, 11]). Hoffman’s lemma [13] shows the linear regularity of the feasibil-

ity problem where S0 ̸= ∅ and Si’s are half spaces.

As for convex feasibility problems involving generic closed convex sets, fix x ̸∈

S0 and let z = PS0(x). Assume int(S0) ̸= ∅, and pick any w ∈ int(S0). In

Theorem 7 of [3], Bauschke, Borwein and Li showed ∥z−w∥
rS0

(w)

∑
i∈[m] dist(x, Si) ≥

dist(x, S0), which implies κ(x) ≤ m
rS0

(w)/∥z−w∥ . Similar results involving m, the

number of sets considered, have been discovered by Beck and Teboulle [4] (where
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κ(x) ≤ 2
√
m+1/∥x−w∥

rS0
(w)/∥x−w∥ ) and Bolte et al. [6] (where κ(x) ≤ ( 2+1/∥x−w∥

rS0
(w)/∥z−w∥)

m−1). In

[19], Nedić’s analysis led to κ(x) ≤ ∥x−w∥
rS0

(w)
. All these results imply bounded linear

regularity.

In the proof of Theorem 3.1, we essentially showed

κ(x) ≤ ∥z − w∥
rS0(w)

, (3.16)

which is independent of m.

When Si’s are half-spaces and S0 is a polyhedral cone, let x be a vector in the

polar cone of S0 (i.e., ⟨x,w⟩ ≤ 0 for all w ∈ S0). Then z = 0⃗, and Theorem 3.1

recovers Theorem 3.5.2 in [10] by Goffin, which was derived with proof techniques

similar to those used for Theorem 3.1.

3.2 First-order properties of γ function for multiple sets

We now study the properties of γ0. Recall that γ0(x) = maxi∈[m] γi(x). By Propo-

sition 2.1, we immediately obtain the following characterization of the subgradients

of γ0:

Lemma 3.2. Given x ∈ E, when γ0(x) > 0,

∂γ0(x) = conv({d ∈ ∂γi(x) | γi(x) = γ0(x)})

= conv({d ∈ E | γi(x) = γ0(x), d ∈ NSi
(πSi

(x)) and ⟨πSi
(x)− ei, d⟩ = 1}).

Let

r0 := min
i∈[m]

ri, ri := rSi
(ei), ∀i ∈ [m].

By Lemma 3.2 and Lemma 2.3, we get
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Lemma 3.3. Given x ∈ E such that γ0(x) > 0,

∂γ0(x) ⊂ B(0, 1/r0).

Consequently, the function γ0 is 1/r0-Lipschitz.

When int(S0) ̸= ∅ and x ̸∈ S0, let z = PS0(x). By taking L = E in Theorem 3.1,

with the growth rate of γi(x) − 1 in Lemma 2.4, we obtain the following growth

rate of γ0(x)− 1 with respect to dist(x, S0):

γ0(x)− 1

dist(x, S0)
=

maxγi(x)>1(γi(x)− 1)

dist(x, S0)

≥
maxγi(x)>1 (dist(x, Si)/∥πSi

(x)− ei∥)
dist(x, S0)

≥ max
i∈[m]

{
dist(x, Si)

dist(x, S0)

}
1

maxγi(x)>1 ∥πSi
(x)− ei∥

≥ inrad(TS0(z))

maxγi(x)>1 ∥πSi
(x)− ei∥

.

By (2.17), we get

Proposition 3.1. Assume S0 ̸= ∅ and x ̸∈ S0. Let z = PS0(x). We have

γ0(x)− 1

dist(x, S0)
≥ inrad(TS0(z))

maxγi(x)>1 ∥πSi
(x)− e∥

≥ inrad(TS0(z))

maxγi(x)>1 ∥PSi
(x)− e∥

≥ inrad(TS0(z))

maxγi(x)>1 ∥x− ei∥
.

Given a finite number of closed convex sets and the corresponding reference

points, define the centrality of the reference points by

τ{(Si,ei)}i∈[m]
:=

maxi∈[m] hSi
(ei)

mini∈[m] gSi
(ei)

. (3.17)

Then we get

max
i∈[m]

τ(Si,ei) = max
i∈[m]

{
hSi

(e)

gSi
(e)

}
≤

maxi∈[m] hSi
(ei)

mini∈[m] gSi
(ei)

= τ{(Si,ei)}i∈[m]
. (3.18)
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For any x ̸∈ S0 ̸= ∅, let z = PS0(x). Since ri = gSi
(ei),

2 we can combine

Lemma 3.3 and Proposition 3.1 to get

inrad(TS0(z))

maxi∈[m] hSi
(ei)

≤ γ0(x)− 1

dist(x, S0)
≤ 1

mini∈[m] gSi
(ei)

=
1

r0
. (3.19)

Hence a condition number of γ0 (with respect to S0) is

inrad(TS0(z))
−1τ{(Si,ei)}i∈[m]

. (3.20)

Consequently, for generic x ̸∈ S0, we see that the condition number of γ0 is de-

termined by the geometry of S0 and the centrality of {ei}i∈[m] with respect to

{Si}i∈[m].

We close this chapter by showing the connection between rS0(x) and γ0(x):

Lemma 3.4. When x ∈ S0, then γ0(x) ≤ 1 and we have

rS0(x) ≥ (1− γ0(x))r0.

Proof. For any i ∈ [m], if γi(x) = 0, then by (2.4) and Lemma A.1 in Appendix A.1,

we have

B(x, ri) = B(e, ri) + (x− e) ⊂ Si.

When γi(x) > 0, by (2.7), we get πSi
(x) ∈ Si. Since x ∈ S0 ⊆ Si, we have γi(x) ≤ 1

and x ∈ (e, πSi
(x)]. Hence

B(x, (1− γi(x))ri) = (1− γi(x))B(e, ri) + γi(x)πSi
(x) ⊂ Si.

Consequently, rSi
(x) ≥ (1− γi(x))ri. The rest of the proof follows from the defini-

tion of γ0 and r0.

2See Lemma 8.1.
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CHAPTER 4

THE γ FUNCTION ON AN AFFINE SUBSPACE

In Section 3.1, we developed a linear regularity result involving distL and

inradL. As alluded to in the remarks following Theorem 3.1, in this chapter, we

study the properties of the γ function when restricted to an affine subspace of E .

This allows us to consider convex feasibility problems including linear equations,

Ax = b. Let L denote the null-space of A, and assume u ∈ E satisfies Au = b.

Then the solutions to the linear equations are u+ L.

Given a collection of closed convex sets {Si}i∈[m], if our reference points {ei}i∈[m]

satisfy {ei}i∈[S] ⊂ (u + L), then the previous results are immediately applicable

by replacing the full-dimensional space E with u + L. Consequently, the purpose

of this chapter is to explore the properties of the γ function without assuming

{ei}i∈[m] ⊂ (u+ L).

Given a closed convex S and e ∈ int(S), let

r(S,L)(e) := max{r > 0 | (B(e, r) ∩ (e+ L)) ⊆ (S ∩ (e+ L)}.

By the definition of rS(e), we have

B(e, rS(e)) ∩ (e+ L) ⊆ S ∩ (e+ L).

Hence r(S,L)(e) ≥ rS(e). The γ function defined with respect to S and e has the

following Lipschitz continuity when restricted to affine subspaces:

Lemma 4.1. For any x, y ∈ E such that x− y ∈ L, we have

|γ(x)− γ(y)| ≤ ∥x− y∥
r(S,L)(e)

.
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Proof. The result holds trivially when γ(x) = γ(y) = 0, so let us assume γ(x) > 0.

First assume r(S,L)(e) = ∞. Then (e+ L) ⊆ S. Consequently,

y − x ∈ L ⊆ recc(S − e) = recc(S − πS(x)),

where the equality follows from Lemma A.1 in Appendix A.1. Hence πS(x) + (y−

x)/γ(x) ∈ S, and

y

(
1

γ(x)

)
= e+

y − e

γ(x)
=

(
e+

x− e

γ(x)

)
+

y − x

γ(x)
= πS(x) +

y − x

γ(x)
∈ S.

By (2.5) and Lemma 2.1, we get

γ(y)

γ(x)
= γ

(
y

(
1

γ(x)

))
≤ 1. (4.1)

Now note that (e+ L) ⊆ S implies L ⊆ recc(S − e). If γ(y) = 0, then

x− e = (x− y) + (y − e) ∈ L+ recc(S − e) = recc(S − e),

which implies γ(x) = 0, a contradiction. Hence γ(y) > 0, and we can show

γ(x) ≤ γ(y) by a argument similar to that of (4.1).

Now assume r(S,L)(e) < ∞. For any g ∈ ∂γ(x), we have PL(g) ∈ L. According

to the definition of r(S,L)(e),

e+
r(S,L)(e)

∥PL(g)∥
PL(g) ∈ S ∩ (e+ L) ⊂ S.

Recall that Proposition 2.1 implies ⟨πS(x)− e, g⟩ = 1 and g ∈ NS(πS(x)). Hence

⟨e, g⟩+ 1 = ⟨πS(x), g⟩

≥
〈
e+

r(S,L)(e)

∥PL(g)∥
PL(g), g

〉
= ⟨e, g⟩+

r(S,L)(e)

∥PL(g)∥
⟨PL(g), g⟩

= ⟨e, g⟩+ r(S,L)(e)∥PL(g)∥.
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Thus ∥PL(g)∥ ≤ 1/r(S,L)(e), and the rest of the proof is similar to that of

Lemma 2.3.

In (2.23), we established the growth rate of γ(x) with respect to dist(x, S).

When the convex feasibility problem of interest includes linear equations, γ(x) has

the following growth rate with respect to distL(x, S):

Lemma 4.2. Assume x ̸∈ S and S ∩ (x+ L) ̸= ∅. Let z = PS∩(x+L)(x). Then we

have

γ(x)− 1

distL(x, S)
≥ inradL(TS(z))

∥πS(x)− e∥
.

Remark. When restricted to an affine subspace, both the Lipschitz constant

(Lemma 4.1) and growth rate (Lemma 4.2) become smaller than the corresponding

results for the full space E .

Proof. By Lemma 2.4,

γ(x)− 1

distL(x, S)
=

γ(x)− 1

dist(x, S)

dist(x, S)

distL(x, S)
≥ 1

∥πS(x)− e∥
dist(x, S)

distL(x, S)
.

By Theorem 3.1, we have

dist(x, S)

distL(x, S)
≥ inradL(TS(z)),

and the statement is true.

Now consider a finite number of closed convex sets {S1, . . . , Sm} ⊆ E , and S0 =

∩i∈[m]Si satisfying S0 ̸= ∅. Following arguments similar to those in Section 3.2,1

we can show the Lipschitzness and growth rate of γ0 when restricted to an affine

subspace. It is worth noting that both bounds become smaller when restricted to

affine subspaces.

1See Appendix A.3 for the proofs.
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Lemma 4.3. For any x, y ∈ E such that x− y ∈ L, we have

|γ0(x)− γ0(y)|
∥x− y∥

≤ 1

mini∈[m] r(Si,L)(ei)
.

Lemma 4.4. Assume x ̸∈ S0 and S0 ∩ (x + L) ̸= ∅. Let z = PS0∩(x+L)(x). Then

we have

γ0(x)− 1

distL(x, S0)
≥ inradL(TS0(z))

maxγi(x)>1 ∥πSi
(x)− ei∥

≥ inradL(TS0(z))

maxγi(x)>1 ∥PSi
(x)− ei∥

≥ inradL(TS0(z))

maxγi(x)>1 ∥x− ei∥
.
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CHAPTER 5

DETERMINISTIC ALGORITHMS FOR THE CONVEX

FEASIBILITY PROBLEM

In this chapter, we discuss two radial projection-based deterministic algorithms

for the convex feasibility problem (approximating the set S0).

For any closed convex set S ⊂ E , when x ̸∈ S, the vector x − PS(x) plays a

dual role in a first-order oracle of the distance function dist(x, S):

• dist(x, S) = ∥x− PS(x)∥;

• x−PS(x)
∥x−PS(x)∥

∈ ∂xdist(x, S).

Consequently, the orthogonal projection x 7→ PS(x) can be seen as a subgradient

update of the distance function, with the step size being dist(x, S).

By Lemma 3.3 and Proposition 3.1, for any x ̸∈ S0, we have

inrad TS0(z)

maxγi(xk)>1 ∥πSi
(x)− ei∥

≤ γ0(x)− 1

dist(x, S0)
≤ 1

r0
, (5.1)

where z = PS0(x). If we can lower bound the left-hand side of (5.1) by a positive

constant at all the x of interest, then (γ0(x)− 1)+ becomes a proxy for dist(x, S0).

In this chapter, under the assumption int(S0) ̸= ∅, we discuss two subgradient

algorithms that solve the convex feasibility problem by minimizing (γ0(x)− 1)+.

Before proceeding to the algorithms, let us recall a fundamental result in the

subgradient method literature:

Lemma 5.1. Given a convex function f : E → R, consider any x ∈ E and

g ∈ ∂f(x). Define x+ := x − ag, where a ≥ 0 is a step size. Then for any z ∈ E
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such that f(z) ≤ f(x), we have

∥x+ − z∥ ≤ ∥x− z∥, ∀a ∈ [0, (2f(x)− f(z))/∥g∥2].

Proof. By the definition of subgradients,

∥x+ − z∥2 = ∥x− z∥2 + a(a∥g∥2 + 2⟨z − x, g⟩)

≤ ∥x− z∥2 + a(a∥g∥2 + 2(f(z)− f(x))).

(5.2)

The statement follows immediately.

5.1 Polyak’s rule

Algorithm 1 is a direct application of Polyak’s rule [21]:

Algorithm 1: Subgradient Method with Polyak’s Rule

input : target accuracy ϵ > 0 and an initial iterate x0 ∈ E

output: a point x̄ ∈ E satisfying γ0(x̄) ≤ 1 + ϵ

initialization: let k = 0

while γ0(xk) > 1 + ϵ do

let ik ∈ argmaxi∈[m] γi(xk);

compute gk ∈ ∂γik(xk) ⊆ ∂γ0(xk);

xk+1 := xk − γ0(xk)−1
∥gk∥2

gk;

compute γ0(xk+1) = maxi∈[m] γ0(xk+1) ;

k = k + 1;

return x̄ := xk

In Algorithm 1, when xk ̸∈ S0, by Proposition 2.1, we have ⟨πSik
(xk)−eik , gk⟩ =

1. Noting that the three points xk, πSik
(xk) and eik are on the same line, we get

γ0(xk)− 1 =
∥xk − πSik

(xk)∥
∥πSik

(xk)− eik∥
=

⟨xk − πSik
(xk), gk⟩

⟨πSik
(xk)− eik , gk⟩

= ⟨xk − πSik
(xk), gk⟩,
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and

⟨xk+1, gk⟩ = ⟨xk, gk⟩ −
γ0(xk)− 1

∥gk∥2
⟨gk, gk⟩

= ⟨xk, gk⟩ − ⟨xk − πSik
(xk), gk⟩

= ⟨πSik
(xk), gk⟩.

Since gk ∈ NSik
(πSik

(xk)) (by Proposition 2.1), we have ⟨πSik
(xk), gk⟩ = fSik

(gk)

and

xk+1 = PH−(Sik
,gk)(xk). (5.3)

Consequently, in each iteration of Algorithm 1, we orthogonally project the current

iterate onto a supporting half-space of one of the individual sets to which the

current iterate does not belong.

In contrast, in the method of orthogonal projections where each iterate is or-

thogonally projected onto the farthest set (see, e.g., [1, 11]), by Lemma 2.5, one

is essentially projecting onto the farthest supporting half-space of the individual

sets. Hence when orthogonal projections onto the individual sets are available, this

method makes more progress per iteration than Algorithm 1.

Theorem 5.1. When int(S0) ̸= ∅, for any xk in Algorithm 1, let µk > 0 satisfy

γ0(xk)− 1 = µk · dist(xk, S0).

Then for any ϵ > 0, when

k ≥ 2

(
1

r0mink′≤k µk′

)2

log2

(
dist(x0, S0)

ϵr0

)
,

we must have mink′≤k γ0(xk′) ≤ 1 + ϵ.

Remark. For any k ∈ N, by (3.19), we have

1

r0µk

≤ 1

r0

maxi∈[m] hSi
(ei)

inrad(TS0(zk))
= inrad(TS0(zk))

−1τ{(Si,ei)}i∈[m]
. (5.4)
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Let zk = PS0(xk). Then by the left-hand side of (5.1), we also have

µk ≥ inrad TS0(zk)

(
1

maxγi(xk)>1 ∥πSi
(xk)− ei∥

)
. (5.5)

In Section 5.1.1, we discuss ways to lower bound µk via (5.5).

Proof. In Algorithm 1, when γ0(xk) ≥ 1 + ϵ, let zk = PS0(xk). By (5.2), we have

dist(xk+1, S0)
2 ≤ ∥xk+1 − zk∥2

≤ ∥xk − zk∥2 +
γ0(xk)− 1

∥gk∥2

(
γ0(xk)− 1

∥gk∥2
∥gk∥2 + 2(1− γ0(xk))

)
= dist(xk, S0)

2 −
(
γ0(xk)− 1

∥gk∥

)2

.

(5.6)

According to Lemma 3.3, we see that γ0 is 1/r0-Lipschitz. Hence

dist(xk+1, S0)
2 ≤ (1− (r0µk)

2)dist(xk, S0)
2. (5.7)

By induction, if Algorithm 1 does not terminate after the first k iterations, then

by the Lipschitzness of γ0, we have

γ0(xk+1)− 1 ≤ dist(xk+1, S0)

r0
≤

√∏
k′≤k(1− (r0µk′)2)dist(x0, S0)

r0
.

The rest of the analysis is standard to the subgradient method literature, and is

deferred to Appendix A.4.

In (5.5), the first term depends on the geometry of S0 near zk, whereas the

second term is affected by the positions of the reference points. For an algorithm

where iterates are orthogonally projected onto the farthest set in each iteration,

we can drop the second terms in (5.4) and (5.5) and obtain a faster rate.
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5.1.1 Lower bounds on µk

The bound in Theorem 5.1 relies on mink′≤k µk, which can be lower bounded by a

strictly positive constant involving x0, {Si}i∈[m] and {ei}i∈[m]:

Lemma 5.2. Consider any w ∈ int(S0). Given an initial iterate x0, let z0 :=

PS0(x0). If Algorithm 1 does not terminate after the first k iteration, then we have

inrad TS0(zk) ≥
rS0(w)

∥x0 − w∥

and

max
γi(x)>1

∥πSi
(xk)− ei∥ ≤ ∥x0 − z0∥+max

i∈[m]
∥z0 − ei∥.

Hence by (5.5),

µk ≥
rS0(w)

∥x0 − w∥(∥x0 − z0∥+maxi∈[m] ∥z0 − ei∥)
.

Remark. In the proof of Lemma 5.2, we only make use of the fact that z0 ∈ S0.

Hence the statements remain true when we replace z0 with any z ∈ S0.

Proof. Let zk := PS0(xk). Note that we have γ0(w) < 1 < γ0(xk′) for all k
′ ≤ k.

Substituting xk′ and w into Lemma 5.1, by induction, we get

∥zk − w∥ < ∥xk − w∥ ≤ ∥xk−1 − w∥ ≤ · · · ≤ ∥x0 − w∥.

Due to the characterization of inrad TS0(zk) in (3.7), we get inrad TS0(zk) ≥
rS0

(w)

∥x0−w∥ .

Similarly, we have ∥xk − z0∥ ≤ ∥x0 − z0∥. For all i ∈ [m] such that γi(xk) > 1,

we have πSi
(xk) ∈ (ei, xk]. Hence

max
γi(xk)>1

∥πSi
(xk)− ei∥ ≤ max

γi(xk)>1
∥xk − ei∥

≤ ∥xk − z0∥+ max
γi(xk)>1

∥z0 − ei∥

≤ ∥x0 − z0∥+max
i∈[m]

∥z0 − ei∥.
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The position of the initial iterate x0 plays an important role in Lemma 5.2.

To get some insight into how the choice of x0 could affect the lower bounds in

Lemma 5.2, let us define

D(x) := max
i∈[m]

∥x− ei∥.

Then D(x) measures the distance between x and the farthest reference point. So

long as the reference points do not coincide, we have D(x) > 0 for all x ∈ E . Also

let

z̄ := argmin
z∈S0

D(z).

In some sense, D(z̄) characterizes the distance between S0 and the reference points

{ei}i∈[m], and higher values of D(z̄) signify more difficult feasibility problems.

For any w ∈ S0, define

β(w) :=
rS0(w)

D(w)
.

The convex feasibility problem is trivial when any of the reference points lie in S0.

Hence we may assume

β⋆ := sup
w∈S0

β(w) < 1.

For points in S0, the function β provides an upper bound on γ0:

Lemma 5.3. For any w ∈ S0, we have γ0(w) ≤ 1
1+β(w)

.

Proof. For any i ∈ [m], we have ∥w − ei∥ ≤ D(w) and

w + rS0(w)
w − ei
D(w)

∈ B(w, rS0(w)) ⊆ Si.

Hence

γi(w) ≤
∥w − ei∥∥∥∥(w + rS0(w)

w−ei
D(w)

)
− ei

∥∥∥ =
1

1 +
rS0

(w)

D(w)

=
1

1 + β(w)
.

By the definition of γ0, we see that the statement is true.
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The next lemma shows that there exist points that have relatively high β values

while not being too far from the reference points:

Lemma 5.4. There exists w ∈ S0 such that β(w) ≥ β⋆/2, while D(w) ≤ 2D(z̄).

Proof. Given any y ∈ S0 and λ ∈ [2,∞), we will show that there exists ỹ ∈ S0

such that β(ỹ) ≥ β(y)/λ while D(ỹ) ≤ λ
λ−1

D(z̄), and the statement follows from

taking λ = 2.

For any t ∈ [0, 1], define y(t) := z̄ + t(y − z̄). For any i ∈ [m], consider the

function fi(t) := ∥y(t)−ei∥. When t ∈ [0, 1], by the convexity of fi and the triangle

inequality, we have

∥y(t)− ei∥ = fi(t) ≤ f(0) + t(f(1)− fi(0))

= ∥z̄ − ei∥+ t(∥y − ei∥ − ∥z̄ − ei∥)

≤ D(z̄) + tD(y).

In particular, consider

t′ =
D(z̄)

(λ− 1)D(y)
≤ D(z̄)

D(y)
≤ 1.

then

D(y(t′)) = max
i∈[m]

∥y(t′)− ei∥ ≤ D(z̄) +
D(z̄)D(y)

(λ− 1)D(y)
=

λ

λ− 1
D(z̄). (5.8)

On the other hand, note that

B(y(t′), t′rS0(y)) = t′B(y, rS0(y)) + (1− t′)z̄ ⊆ S0.

Hence rS0(y(t
′)) ≥ t′rS0(y), by (5.8), this yields

β(y(t′)) =
rS0(y(t

′))

D
(
y(t′)

) ≥ t′(λ− 1)rS0(y)

λD(z̄)
=

rS0(y)

λD(y)
=

β(y)

λ
.
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Let

ē :=

∑
i∈[m] ei

m
,

and consider w̄ ∈ S0 satisfying the conditions in Lemma 5.4. Then we have

∥ē− z̄∥ ≤ D(z̄) and

rS0(w̄)

∥ē− z̄∥+maxi∈[m] ∥z̄ − ei∥
≥ rS0(w̄)

2D(z̄)
≥ β⋆

4
.

Also note that

∥ē− w̄∥ ≤ max
i∈[m]

∥ei − w̄∥ ≤ 2D(z̄).

Replace z0 by z̄ and let w = w̄ in Lemma 5.2. By the remark following the lemma,

we get

µk ≥
1

∥ē− w̄∥
· rS0(w̄)

∥ē− z̄∥+maxi∈[m] ∥z̄ − ei∥
≥ β⋆

8D(z̄)
. (5.9)

Consequently, when no further information is available, ē is a good candidate for

the initial iterate.

5.2 The cyclic scheme

In each iteration of Algorithm 1, in order to evaluate γ0(xk) and get gk ∈ ∂γ0(xk),

we need to compute the individual γi(xk) for all i ∈ [m]. By evaluating one γi(x)

at a time (and making subgradient updates accordingly) and iterating through all

i ∈ [m], we obtain the following cyclic algorithm:
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Algorithm 2: Cyclic Subgradient Method with Polyak’s Rule

input : an initial iterate x0 ∈ E

initialization: let k = 0 and x1
0 = x0

repeat

let i = 1; // loop through i ∈ [m]

while i ≤ m do

compute γi(x
i
k);

if γi(x
i
k) > 1 then

compute gik ∈ ∂γi(x
i
k);

xi+1
k := xi

k −
γi(x

i
k)−1

∥gik∥2
gik;

else

xi+1
k = xi

k ;

i = i+ 1;

x1
k+1 = xm+1

k ;

k = k + 1;

Remark. In Algorithm 2, one can evaluate γ0(x
1
k+1) at the end of each loop at the

cost of doubling the total number of oracle calls of the individual γ functions per

loop.

As we will see in the proof of Theorem 5.2, in a loop of Algorithm 2, it is crucial

to go through all the functions {γi}i∈[m], but the order in which the functions are

visited does not affect the analysis. Hence one could go through different orders

in every iteration, and the rate in Theorem 5.2 would remain unchanged.

As its name suggests, during each loop in Algorithm 2, we apply subgradient

updates (if necessary) according to {γi}i∈[m] in a cyclic fashion. This can be seen

as a generalization of the idea behind the alternating projection algorithm by John

40



von Neumann [30], who considered the convex feasibility problem of two sets.

Theorem 5.2. When int(S0) ̸= ∅, for any k ∈ N in Algorithm 2, let zk = PS0(x
1
k)

and

νk :=
inrad TS0(zk)√

2
min

{
1√

m− 1
, min
γi(xk)>1

(
ri

∥πSi
(xi

k)− e∥

)}
. (5.10)

Then for any ϵ > 0, when

k ≥ 1

(mink′≤k νk′)2
log2

(
dist(x0, S0)

ϵr0

)
,

we must have mink′≤k γ0(x
1
k′) ≤ 1 + ϵ.

Remark. Similar to the remarks following Theorem 5.1, the statement remains true

if we replace νk with

inrad TS0(zk)√
2

·min

{
1√

m− 1
,

1

maxi∈[m] τ(Si,ei)

}
. (5.11)

Proof. When x1
k ̸∈ S0, the vector zk serves as the basis of our analysis. For any

i ∈ [m], we have

∥xi+1
k − xi

k∥2 =
(
(γi(x

i
k)− 1)+
∥gk∥

)2

.

Since zk ∈ S0 ⊆ Si, we get γi(zk) ≤ 1. Hence substituting xi
k and zk into

Lemma 5.1, we find

∥xi+1
k −zk∥2 ≤ ∥xi

k−zk∥2−
(
(γi(x

i
k)− 1)+
∥gk∥

)2

= ∥xi
k−zk∥2−∥xi+1

k −xi
k∥2. (5.12)

Let ik be the index satisfying dist(x1
k, Sik) = maxi∈[m] dist(x

1
k, Si). Telescoping

yields

∥x1
k+1 − zk∥2 ≤ ∥x1

k − zk∥2 −
m∑
i=1

∥xi+1
k − xi

k∥2

(a)

≤ ∥x1
k − zk∥2 −

ik∑
i=1

∥xi+1
k − xi

k∥2

= dist(xk, S0)
2 −

(
ik−1∑
i=1

∥xi+1
k − xi

k∥2 + ∥xik+1
k − xik

k ∥
2

)
.

(5.13)
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By the Cauchy-Schwartz inequality and the triangle inequality, we get

ik−1∑
i=1

∥xi+1
k − xi

k∥2 ≥

(∑ik−1
i=1 ∥xi+1

k − xi
k∥
)2

ik − 1
≥ ∥x1

k − xik
k ∥2

ik − 1
≥ ∥x1

k − xik
k ∥2

m− 1
. (5.14)

Also note that by the sandwich inequality (2.18), we have

∥xik+1
k − xik

k ∥ =
(γik+1(x

ik
k )− 1)+

∥gikk ∥
≥ rik

∥πSi
(xik

k )− e∥
dist(xik

k , Sik).

Combining the last two inequalities, again by Cauchy-Schwartz and the triangle

inequality, we have

ik−1∑
i=1

∥xi+1
k − xi

k∥2 + ∥xik+1
k − xik

k ∥
2

≥ 1

2
min

{
1

m− 1
,

(
rik

∥πSi
(xik

k )− e∥

)2
}(

∥x1
k − xik

k ∥+ dist(xik
k , Sik)

)2
≥ 1

2
min

{
1

m− 1
,

(
rik

∥πSi
(xik

k )− e∥

)2
}
dist(x1

k, Sik)
2.

Substituting into (5.13) yields

∥x1
k+1 − zk∥2 ≤ dist(xk, S0)

2 − 1

2
min

{
1

m− 1
,

(
rik

∥πSi
(xik

k )− e∥

)2
}
dist(x1

k, Sik)
2.

Recall that dist(x1
k, Sik) = maxi∈[m] dist(x

1
k, Si). By Theorem 3.1, we have

dist
(
x1
k+1, S0

)2
≤ dist(x1

k, S0)
2 − inrad TS0(zk)

2

2
min

{
1

m− 1
,

(
rik

∥πSi
(xik

k )− e∥

)2
}
dist(x1

k, S0)
2

≤ (1− ν2
k)dist

(
x1
k, S0

)2
.

The rest of the proof is similar to that of Theorem 5.1.

5.3 Polyak’s rule vs. the cyclic scheme

In a loop of Algorithm 2, an oracle of each γi is called exactly once, which is also

the case for one iteration of Algorithm 1. Consequently, it is reasonable to compare
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the number of iterations required by Algorithm 1 and loops required by Algorithm

2 to reach the same accuracy. One should also bear in mind the while a loop of

Algorithm 2 requires a first-order oracle call of all the γi, an iteration of Algorithm

1 only needs to call the the first-order oracle of the maximal γi and zeroth-order

oracles of the individual γ functions.

As shown by (5.4) and (5.11), the comparison between Algorithm 1 and 2 boils

down to

τ{(Si,ei)}i∈[m]
vs. max

{√
m− 1,max

i∈[m]
τ(Si,ei)

}
,

where a smaller quantity signifies a faster algorithm.1

To see why the convergence rates of the two algorithms involve different con-

dition numbers, consider any x ̸∈ S0. Let i′ ∈ argmaxi∈[m] γi(x) and i′′ ∈

argmaxi∈[m] dist(x, Si). Then for any g ∈ ∂γi′(x), by (2.23), we have

γ0(x)− 1

∥g∥
=

γi′(x)− 1

∥g∥
≥ gSi′

(ei′)(γi′(x)− 1)

≥ gSi′
(ei′)(γi′′(x)− 1)

≥
gSi′

(ei′)

hSi′′
(ei′′)

dist(x, Si′′)

=
gSi′

(ei′)

hSi′′
(ei′′)

·max
i∈[m]

dist(x, Si).

Consequently, in the analysis of Algorithm 1, we need to compare the Lipschitz

constant and growth rate of different γ functions, leading to τ{(Si,ei)}i∈[m]
.

In contrast, for Algorithm 2, our analysis only concerns an

ik ∈ argmax
i∈[m]

dist(x1
k, Si).

Hence it is the condition numbers of the individual γ functions that matter.

1Recall that by (3.18), we have τ{(Si,ei)}i∈[m]
≥ maxi∈[m] τ(Si,ei).
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Also note that when γi(x
i
k) > 1 for most of i ∈ [m], the Cauchy-Schwartz

inequality in (5.14) could be very loose. Part (a) of the inequality (5.13) is also

very conservative, since in the loop studied, the progress made after encountering

γik is not accounted for. Consequently, our analysis of Algorithm 2 could be very

pessimistic in practice, as we will see in the experiments.

5.4 Intersection of ellipsoids

Computing orthogonal projections onto ellipsoids in Rn is non-trivial, and some

papers were dedicated to this task [7, 16]. Methods to compute orthogonal projec-

tions onto the intersection of ellipsoids have also been studied by [14, 17]. However,

the residuals of ADMM-based method in [14] does not converge at a linear con-

vergence rate, while the algorithm proposed in [17] posits a feasible initial iterate,

i.e., x0 ∈ S0, and applies the interior point method at each iteration.

Consider m ellipsoids in Rn of the form

Si := {x | ∥Bi(x− ci)∥ ≤ ai}, (5.15)

where Bi ∈ Rn×n, ci ∈ Rn and ai > 0. For each Si, we define the γ function for Si

by taking ci as the reference point. One can see that

τ(Si,ci) = κ(Bi),

where κ(Bi) denotes the condition number of Bi.

In our experiments, the directions of centers of the ellipsoids are generated by

the uniform distribution over the unit sphere in Rn. The eigenvectors of {Bi}i∈[m]

are drawn from the Haar measure on orthogonal group O(n). For any r > 0, we
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set

ai = ∥Bici∥+ ∥Bi∥r, (5.16)

where ∥Bi∥ denotes the operator norm of Bi. Hence 0⃗ ∈ S0 and rS0 (⃗0) ≥ r. We

can control the width of S0 via r.

We apply Algorithm 1 and 2 to solve the feasibility problem of such ellipsoids.

The convergence behavior is presented in Figure 5.1 and Figure 5.2. In these

experiments, we let the initial iterate x0 be a random vector in R100 satisfying

∥x0∥ = 100.2 Both algorithms exhibit linear convergence rates.

0 250 500 750 1000 1250 1500 1750
Iterations

10 4

10 3

10 2

10 1

100

0(
x)

1

Polyak Scheme
r=0.01
r=0.02
r=0.05
r=0.1

0 10 20 30 40
Loops

10 4

10 3

10 2

10 1

100
Cyclic Scheme

r=0.01
r=0.02
r=0.05
r=0.1

Figure 5.1: Algorithm 1 and 2 applied to the problem of the intersection of 100
ellipsoids in R100. For any i, we let ∥ci∥ = 100 and ∥Bi∥ = κ(Bi) = 10.

In Figure 5.1, by only changing r in (5.16) ({ci}i∈[m] and {Bi}i∈[m] remain

unchanged across the experiment), we examine how the width of the intersection

affects the convergence rate of the algorithms. As our theory predicts, when r

increases, the intersections get bigger, and both algorithms converge faster.

In Figure 5.2, by including more ellipsoids in the problem, we examine how the

2Note that by the setup of our experiments, Eci = 0⃗ ∈ S0. Hence we take a random initial
iterate (instead of the average of the centers) to better present the convergence behavior of the
algorithms. Check Appendix A.4.1 for an experiment initialized at the average of the centers.
Relatively speaking, the setup here better demonstrates how the width of the intersection affects
convergence rates.
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Figure 5.2: Algorithm 1 and 2 applied to the problem of the intersection of m
ellipsoids in R100. For any i, we let ∥ci∥ = 100 and ∥Bi∥ = κ(Bi) = 10.

number of ellipsoids involved affects the convergence rate. As our theory predicts,

Algorithm 1 does not necessarily slow down (in terms of iteration counts) as the

number of sets increases (compare the cases where m = 500 and m = 1000).

In both experiments, to reach the same accuracy, the number of loops taken

by the cyclic scheme is much less than the number of iterations taken by Polyak’s

rule. As explained in Section 5.3, this could partially be explained by the fact that

our analysis of the cyclic scheme could be very loose in practice.

More interestingly, although the convergence result in Theorem 5.2 includes

the number of sets considered, in Figure 5.2, the number of sets does not have

an obvious impact on the convergence rate of Algorithm 2. To understand this

phenomenon intuitively, note that as the problem gets more complicated with the

introduction of more ellipsoids, each loop of the cyclic scheme also makes more

progress, as it gets to visit more sets (and make more progress) in a single loop.
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CHAPTER 6

A STOCHASTIC ALGORITHM

Consider a probability triple (Ω,F , P ) and a system of convex inequality con-

straints

fω(x) ≤ 0, ω ∈ Ω. (6.1)

Beginning with Polyak [22] (and more recently, Necoara and Nedić [18]), under

mild assumptions, the functional feasibility problem (6.1) has been tackled by

considering

min
x∈E

E[f+
ω (x)],

where f+
ω (x) := max{0, fω(x)}.

When the intersection S0 = ∩i∈[m]Si is non-empty, finding a point x ∈ S0 is

equivalent to computing x ∈ E such that

γi(x)− 1 ≤ 0, ∀i ∈ [m]. (6.2)

Consequently, if (Ω,F , P ) is a distribution over [m] such that P(ω = i) > 0 for all

i ∈ [m], then we can solve the convex feasibility problem (approximating a point

x ∈ S0) by considering the functional problem

min
x∈E

E[(γω(x)− 1)+], (6.3)

with 0 being its optimal value.

In this chapter, we solve the functional feasibility problem from a different

perspective: Instead of considering the expected value of γω as in (6.3), in each

iteration of our algorithm, we sample γω several times (more precisely, in Algorithm

3, we sample γω without replacement) and update using a subgradient of the

maximal sampled function. This approach leads to the guarantees in Theorem 6.1.
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The methodology discussed in this chapter can be applied to the general context

of convex functional constraints equipped with a probability triple. We refer the

readers to [25] by Renegar and Zhou for the full discussion.

Algorithm 3: Stochastic Subgradient Method with Polyak’s Rule

input: target accuracy ϵ > 0, an initial iterate x0 ∈ E and integer L > 0
(size of minibatch)

initialization: let k = 0

repeat
draw L indexes ω(k,1), . . . , ω(k,L) from the uniform distribution over [m]
without replacement ;
select i(k) ∈ argmaxi=ω(k,1),...,ω(k,L)

γi(xk) ;

if γi(k)(xk) > 1 + ϵ then
compute gk ∈ ∂γi(k)(xk) ;

let xk+1 := xk −
γi(k)(xk)−1

∥gk∥2
gk

Remark. Algorithm 3 essentially becomes Algorithm 1 when L = m. Here we

consider the uniform distribution over the indexes. Other distributions satisfy-

ing P(ω = i) > 0 for all i ∈ [m] can also be used, and would lead to different

convergence guarantees.

Given an initial iterate x0 and a minibatch size L, it is straightforward to see

that the lower bounds on the growth rate of γ0 outside S0 in Section 5.1.1 are also

applicable to the iterates encountered in Algorithm 3 with minor adjustments. In

the rest of this chapter, we let µ > 0 denote the largest number such that

γ0(xk)− 1 ≥ µ · dist(xk, S0)

for all possible xk encountered in Algorithm 3.

Given a target accuracy ϵ > 0, define

K := 2

(
1

r0µ

)2

log2

(
dist(x0, S0)

ϵr0

)
.

Algorithm 3 has the following convergence guarantee:
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Theorem 6.1. Algorithm 3 finds an iterate satisfying γ0(x) ≤ 1 + ϵ within an

expected number of iterations not exceeding (m
L
)K.

Moreover, for any k ≥ (m
L
)K, we have

P
(
min
k′≤k

xk > 1 + ϵ

)
≤ exp

(
−
k( L

m
− K

k
)2

2

)
.

Proof. In Algorithm 3, for any k ∈ N, if γi(k)(xk) > 1 + ϵ, then by substituting xk

for x and PS0(xk) for z in (5.2), we get

dist(xk+1, S0)
2 ≤ ∥xk − PS0(xk)∥2 −

(
γi(k)(xk)− 1

∥gk∥

)2

≤ dist(xk, S0)
2. (6.4)

Moreover, if

{ω(k,1), . . . , ω(k,L)} ∩ argmax
i∈[m]

γi(xk) ̸= ∅, (6.5)

then i(k) ∈ argmaxi∈[m] γi(xk) and γi(k)(xk) = γ0(xk). Thus when γ0(xk) > 1 + ϵ

and (6.5) holds, similar to (5.7) in the analysis of Algorithm 1, we have

dist(xk+1, S0)
2 = dist(xk, S0)

2−
(
γ0(xk)− 1

∥gk∥

)2

≤
(
1− (r0µ)

2
)
dist(xk, S0)

2. (6.6)

Now for any k ∈ N, define

Xk =


1, when (6.5) holds;

0, otherwise.

(6.7)

Since the indexes in Algorithm 3 are sampled from the uniform distribution over

[m] without replacement, we see that

P (Xk = 1 | γ0(xk) > 1 + ϵ) ≥ L

m
.

Note that the indexes in different iterations are generated independently, we

can lower bound {Xk}k∈N by {Yk}k∈N, a series of i.i.d. Bernoulli distribution which
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takes the value 1 with probability L
m
. By (6.4), the sequence {dist(xk, S0)}k∈N is de-

creasing. The expected number of iterations required to reach the target accuracy

follows from (6.6), the proof of Theorem 5.1, and a straightforward application of

the Ward’s equation on {Yk}k∈N..

By Hoeffding’s inequality, for any k ∈ N+ and t > 0, we have

P
(∑

k′<k Yk′

k
≤ L

m
− t

)
≤ exp

(
−kt2

2

)
.

Thus for all k ≥ (m
L
)K, we get

P

(∑
k′<k

Yk′ ≤ K

)
= P

(∑
k′<k Yk′

k
≤ K

k

)
≤ exp

(
−
k( L

m
− K

k
)2

2

)
.
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CHAPTER 7

A FINITE ALGORITHM FOR THE CONVEX FEASIBILITY

PROBLEM

Recall that when int(S0) ̸= ∅, we have γ⋆
0 = infx∈E γ0(x) < 1. Now consider an

iterative method applying Polyak’s rule with a “target” value t ∈ (γ⋆
0 , 1), i.e.,

xk+1 := xk −
γ0(xk)− t

∥gk∥2
gk. (7.1)

If its iterates converge to the t-sublevel set of γ0, then we can find an point in S0

when the accuracy ϵ = 1− t is reached after finitely many iterations.

Recall that our analysis of the Polyak’s rule in Section 5.1 relies on the growth

rate of γ0 with respect to S0, the 1-sublevel set of γ0. In order to propose a finite

algorithm based on updates like (7.1), let us first study the growth rate of γ0 with

respect to generic sublevel sets which are nonempty:

7.1 Growth rate of γ0 with respect to generic sublevel sets

Consider a single closed convex set S and the corresponding γ function.

For any t > 0, if x ̸∈ S(t), then γ(x(1/t)) = γ(e+ (x− e)/t) = γ(x)/t > 1 and

x(1/t) ̸∈ S. (7.2)

By (2.5), we have

γ(x)− t

t
=

γ(x)

t
− 1 = γ(x(1/t))− 1 > 0.
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Also note that (2.10) implies

dist(x, S(t))

t
=

dist(e+ (x− e), e+ t(S − e))

t

= dist

(
e+

x− e

t
, e+ (S − e)

)
= dist(x(1/t), S).

Consequently,

γ(x)− t

dist(x, S(t))
=

γ(x(1/t))− 1

dist(x(1/t), S)
. (7.3)

Recall that (2.8) implies πS(x(1/t)) = πS(x). By (7.2) and Lemma 2.4, we get

Lemma 7.1. For any t > 0, when x ̸∈ S(t) ̸= ∅, we have 1

γ(x)− t

dist(x, S(t))
≥ 1

∥πS(x)− e∥
≥ t

∥PS(t)(x)− e∥
≥ t

∥x− e∥
.

Consequently, for any t > 0 and x ̸∈ S(t), we get

1

∥πS(x)− e∥
≤ γ(x)− t

dist(x, S(t))
≤ 1

rS(e)
. (7.4)

Similarly, we can show that τ(S,e) can also serve as a condition number of γ with

respect to all t-sublevel set:

Lemma 7.2. Assume t > 0 and x ̸∈ S(t). We have

1

hS(e)
≤ γ(x)− t

dist(x, S(t))
≤ 1

gS(e)
.

Proof. By (7.2), (7.3) and Corollary 2.1, we get

γ(x)− t

dist(x, S(t))
=

γ(x(1/t))− 1

dist(x(1/t), S)
= max

d∈ΩS

{
dist(x(1/t), H−(S, d))

dist(e,H(S, d))

}
.

The rest of the proof follows from the definitions of gS(e) and hS(e) and substituting

x(1/t) for x in Lemma 2.5, i.e.,

dist(x(1/t), S) = max
d∈ΩS

dist
(
x(1/t), H−(S, d)

)
.

1The proof of the last two inequalities also relies on (2.10), and is deferred to Appendix A.5.
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For any t ≥ 0, let us denote the t-sublevel set of γ0 by

S0(t) := {x ∈ E | γ0(x) ≤ t} = ∩i∈[m]Si(t) = ∩i∈[m]{ei + t(Si − ei)}. (7.5)

Here the last equality follows from (2.10). In particular, we have S0 = S0(1).

Proposition 7.1. Assume t > 0, x ̸∈ S0(t) and int(S0(t)) ̸= ∅. Let z = PS0(t)(x).

We have

γ0(x)− t

dist(x, S0(t))
≥

inrad(TS0(t)(z))

maxγi(x)>t ∥πSi
(x)− e∥

≥
t · inrad(TS0(t)(z))

maxγi(x)>t ∥PSi(t)(x)− e∥

≥
t · inrad(TS0(t)(z))

maxγi(x)>t ∥x− ei∥

(7.6)

and

γ0(x)− t

dist(x, S0(t))
≥

inrad(TS0(t)(z))

maxi∈[m] hSi
(ei)

. (7.7)

Proof. The statements follows from Lemma 7.1 and Lemma 7.2, and the applica-

tion of Theorem 3.1 to S0(t) = ∩i∈[m]Si(t).

Consequently, a condition number of γ0 with respect to non-empty S0(t) is

inrad(TS0(t)(z))
−1τ{(Si,ei)}i∈[m]

, (7.8)

which is a generalization of (3.20), a condition number of γ0 with respect to S0.

We close this section by showing how the growth the growth rates of γ0 with

respect to different sublevel sets are connected:

Lemma 7.3. Given any x ∈ E and t, t′ ∈ R such that γ⋆
0 < t < t′ < γ0(x), we

have

γ0(x)− t

dist(x, S0(t))
≤ γ0(x)− t′

dist(x, S0(t′))
.

Hence γ0 grows faster with respect to sublevel sets of higher values.
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Proof. Let z = PS0(t)(x) and w = x + γ0(x)−t′

γ0(x)−t
(z − x). Then z ∈ bdy(S0(t)) and

γ0(z) = t. Due to the convexity of γ0, we have

γ0(w) ≤
(γ0(x)− t′)γ0(z) + (t′ − t)γ0(x)

γ0(x)− t
=

(γ0(x)− t′)t+ (t′ − t)γ0(x)

γ0(x)− t
= t′.

Consequently, w ∈ S0(t
′), and

γ0(x)− t

dist(x, S0(t))
=

γ0(x)− t

∥x− z∥
=

γ0(x)− t′

∥x− w∥
≤ γ0(x)− t′

dist(x, S0(t′))
.

7.2 A finite algorithm

In the Polyak’s update rule (7.1), setting the target t ∈ (γ⋆
0 , 1) is crucial to ob-

taining a finite algorithm: If t = 1 (as in Algorithm 1), then by (5.3), we have

xk+1 = PH−(Sik
,gk)(xk), where the definitions of Sik and gk follows from Algorithm

1. Hence xk+1 ̸∈ S0 unless

dist(xk, H
−(Sik , gk)) = dist(xk, Sik) = dist(xk, S0),

which is generally not true. Consequently, for generic convex feasibility problems,

Algorithm 1 does not generate iterates in S0. When t > 1, we even have xk+1 ̸∈

Sik ⊇ S0.

On the other hand, if we work with a target t < γ⋆
0 , then the step-size is

outside the interval provided in Lemma 5.1 for any z ∈ S0, and the algorithm is

not guaranteed to converge.

In practice, however, we do not know γ⋆
0 a priori. To tackle this, we present

Algorithm 4, an algorithm which proceeds by making sequential estimates of γ⋆
0 .
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Algorithm 4: Finite Method with the Polyak’s Rule

input : an initial iterate x0 ∈ E
output: a point x̄ ∈ E satisfying γ0(x̄) ≤ 1
initialization: let x0

0 = x0, J = 0, k0 = 0 and ∆0 = 0

repeat
for j ∈ [J ] do

if γ0(x
j
kj
) ≤ 1 then

return x̄ = xj
kj

else

compute gjkj ∈ ∂γ0(x
j
kj
) ;

xj
kj+1 := xj

kj
−

γ0(x
j
kj

)−(1−∆j)

∥gjkj ∥
2

gjkj ;

kj = kj + 1

j′ = argminj∈[J ] γ0(x
j
kj
), x̄ = argmin

{
γ(xj′

kj′
), γ(x̄)

}
;

while γ0(x
′) ≤ 1 + 2−(J+1) do

if J = 0 or k⌈
√
J⌉ ≥ 2⌈

√
J⌉ then

J = J + 1;
let kJ = 0, ∆J = 2−J and xJ

0 = x̄ ; // initiate copy J

In an iteration of Algorithm 4, we update J +1 different copies in parallel. For

each integer j such that 1 ≤ j ≤ J , we update the current iterate according to

Polyak’s rule, with the target being 1−∆j = 1−2−j, while the copy 0 is essentially

running Algorithm 1. Once initiated, different copies do not communicate with

each other. According to our analysis in Section 5.1, the objective values in copy

0 converge to 1.

For j ≥ 1, a copy with target 1 − ∆j is initiated when both of these criteria

are met:

1. The algorithm has encountered an iterate satisfying xj′

k′j
≤ 1 +∆j. Since the

objective values in copy 0 converge to 1, this condition will be satisfied after

finitely many iterations.

2. Enough iterations of the algorithm has elapsed. This prevents us from work-
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ing with too many copies simultaneously (and hence slowing down the algo-

rithm).

In order to analyze Algorithm 4, for any j ∈ N , let µ(j) > 0 be the biggest

number satisfying

γ0(x
j
kj
)− (1−∆j) ≥ µ(j) · dist

(
xj
kj
, S0(1−∆j)

)
for all the iterates generated by copy j in Algorithm 4. Then µ(0) = mink∈N µk,

where µk is defined as in Theorem 5.1, and the lower bounds in Section 5.1.1 are

applicable to µ(0).

For any j ∈ N+ such that 1−∆j > γ⋆
0 , since γ0 is Lipschitz-continuous, we see

that int(S0(1−∆j)) ̸= ∅. According to Proposition 7.1, we can lower bound µ(j)

with the results in Section 5.1.1 by substituting S0(1−∆j) for S0 when necessary.

We next discuss the time required for the initiation of a copy in Algorithm 4:

Lemma 7.4. For any j ≥ 1, if Algorithm 4 does note terminate after making

2

(
1

r0µ(0)

)2

log2

(
dist(x0, S0)

r0∆j

)
+ 2⌈

√
j⌉+1. (7.9)

updates of copy 0, then copy j must have been initiated.

Proof. By Theorem 5.1, we see that mink′≤k γ0(x
0
k′) ≤ 1 + ∆j when

k ≥ 2

(
1

r0µ(0)

)2

log2

(
dist(x0, S0)

r0∆j

)
.

Hence within additional ∑
1≤j′≤⌈

√
j⌉

2j
′
= 2⌈

√
j⌉+1 − 1 ≤ 2⌈

√
j⌉+1

updates of copy 0, either the algorithm terminates, or copies 1 through j are

initiated.
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Lemma 7.5. For any j ≥ 1 such that 1 − ∆j = 1 − 2−j ∈ (γ⋆
0 , 1), if copy j is

initiated in Algorithm 4, then when

kj ≥ ξ(k) := 2

(
1

r0µ(j)

)2

log2

(
2

r0µ(j)

)
,

we must have mink′≤kj γ0(x
j
k′) ≤ 1.

Proof. By the construction of Algorithm 4, we have γ0(x
j
0) ≤ 1 + ∆j. Due to the

definition of µ(j), we have

dist
(
xj
0, S0(1−∆j)

)
≤ γ0(x

j
0)− (1−∆j)

µ(j)
≤ 2∆j

µ(j)
.

Substitute S0(1 −∆j) for S0, µ(j) for mink≤k′ µk and let ϵ = ∆j in Theorem 5.1,

we get mink′≤kj γ0(x
j
k′) ≤ 1 when

kj ≥ 2

(
1

r0µ(j)

)2

log2

(
dist

(
xj
0, S0(1−∆j)

)
r0∆j

)
= 2

(
1

r0µ(j)

)2

log2

(
2

r0µ(j)

)
.

Let

j := −⌈log2(1− γ⋆
0)⌉ − 1. (7.10)

Then 2j ∈ [
1−γ⋆

0

2
, 1 − γ⋆

0). Combining Lemma 7.4 and Lemma 7.5 produces the

following result:

Theorem 7.1. Algorithm 4 terminates with copy 0 making no more than

2

(
1

r0µ(0)

)2

log2

(
dist(x0, S0)

r0∆j

)
+ 2

(
1

r0µ(j)

)2

log2

(
2

r0µ(j)

)
+ 2⌈

√
j⌉+1

updates and making no more than(
max {j, log2(ξ(j))}

2 + 1
)(

2

(
1

r0µ(0)

)2

log2

(
dist(x0, S0)

r0∆j

)

+2

(
1

r0µ(j)

)2

log2

(
2

r0µ(j)

)
+ 2⌈

√
j⌉+1

)
first-order oracle calls of γ0.
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Remark. When the optimal value γ⋆
0 is known, we can remove the terms

(max {j, log2(ξ(j))}
2 + 1) and 2⌈

√
j⌉+1 in Theorem 7.1. The first terms is due to

the number of copies run in parallel, and the second term follows from our second

condition when initiating new copies. To get an rough idea of the magnitude of

these two terms, we note that log2(10
8)2 ≈ 706 and 2−

√
log2(10

−8) ≈ 36.

Proof. The first statement follows immediately from Lemma 7.4 and Lemma 7.5.

To see the second statement, note that by Lemma 7.5, the algorithm terminates

before copy j makes more than ξ(j) updates. Thus when the algorithm terminates,

copies with indexes greater than or equal to j have iteration counts less than or

equal ξ(j). By the second condition for the initiation of new copies in Algorithm

4, we get J ≤ max {j, log2(ξ(j))}
2.

7.3 Demonstration on the intersection of ellipsoids

In Figure 7.1, we generate random ellipsoids as in Section 5.4, and apply Algorithm

4 to compute a point in the intersection of 100 ellipsoids.
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= 1/2
= 1/4
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= 1/16
= 1/32
= 1/64
= 1/128
= 1/256

Figure 7.1: For any i, we let ∥ci∥ = 100 and ∥Bi∥ = κ(Bi) = 10. In this experiment,
the copy with target 1− 1

64
(the dotted line) generates a point in S0, while copies

with target less than 1− 1
16

do not converge, indicating γ⋆
0 > 15

16
.
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CHAPTER 8

THE γ FUNCTION FOR MULTIPLE SETS WHEN THE

INTERSECTION HAS EMPTY INTERIOR

Recall that for a convex feasibility problem involving closed convex sets

{Si}i∈[m], its linear regularity concerns upper bounding the ratio dist(x,S0)
maxi∈[m] dist(x,Si)

at x ̸∈ S0 = ∩i∈[m]Si.

Fix z ∈ bdy(S0). When int(S0) ̸= ∅, for any x ̸∈ S0 satisfying PS0(x) = z,

Theorem 3.1 upper bounds the linear regularity at x by a finite positive number

inrad(TS0(z))
−1. In contrast, if int(S0) = ∅, then such an upper bound may not

exist even for points in a bounded region:

Example 8.1. Consider two closed convex sets in R2:

S1 = {(x, y) | (x+ 1)2 + y2 ≤ 1} ∪ {(x, y) | x ∈ [−2, 0] and y ∈ [−1, 0]}

and

S2 = {(x, y) | (x− 1)2 + y2 ≤ 1} ∪ {(x, y) | x ∈ [0, 2] and y ∈ [−1, 0]}.

Then S0 = {(0, y) | y ∈ [−1, 0]}, which is a set with empty interior. For any y > 0,

we have

PS0((0, y)) = (0, 0)

and

dist((0, y), S0)

max{dist((0, y), S1), dist((0, y), S2)}
=

y√
y2 + 1− 1

=

√
y2 + 1 + 1

y
,

which tends to ∞ when y ↘ 0.

Recall that the proof of Theorem 3.1 relies on a pair of polar cones, TS0(z) and

NS0(z). When int(S0) = ∅, however, both cones exhibit different properties:
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• Since rS0(w) = 0 for all w ∈ S0, we have inrad(TS0(z)) = 0 at all z ∈ bdy(S0).

• While the equality NS1(z) + · · · + NSm(z) ⊆ NS0(z) always holds, without

any additional assumptions, the equality

NS1(z) + · · ·+NSm(z) = NS0(z)

could fail, preventing us from writing normal vectors to S0 in terms of normal

vectors to the individual sets.

For instance, in Example 8.1, let z = (0, 0). Then NS1(z) = R+ × {0},

NS2(z) = R−×{0} and NS1(z)+NS2(z) = R×{0}, while NS0(z) = R×R+.

In order to establish a linear regularity result when the interior of S0 is empty, let

us introduce the following assumption:

Assumption 8.1. For closed convex sets {Si}i∈[m], assume S0 = ∩i∈[m]Si ̸= ∅ and

NS1(z) + · · ·+NSm(z) = NS0(z). (8.1)

at all z ∈ bdy(S0).

In Chapter 9, we introduce Assumption 9.1, which can be seen as an analogy

of Assumption 8.1 in the setting of constrained optimization.

Example 8.2 (Example 8.1 Continued). Let us consider an extra set in Example 8.1:

S3 = {(x, y) | x2 + (y + 0.5)2 ≤ 0.25}.

Obviously, we still have S0 = ∩i∈[3]Si = {(0, y) | y ∈ [−1, 0]}. All three sets are

active at z = (0, 0). Since NS3(z) = {0} × R+, we get

NS1(z) +NS2(z) +NS3(z) = R× R+ = NS0(z).
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Moreover, for any y ≥ 0, we have

max
i∈[3]

dist((0, y), Si) = dist((0, y), S3) = y = dist((0, y), S0).

One can go on to check that Assumption 8.1 holds for this new problem.

For z ∈ bdy(S0), let

I := {i ∈ [m] | z ∈ bdy(Si)} (8.2)

denote the sets active at z. Define the set

P{Si}i∈[m]
(z) : = conv

(
{d | d ∈ NSi

(z), ∥d∥ = 1}i∈I ∪ {⃗0}}
)

= conv ({d | d ∈ NSi
(z), ∥d∥ ≤ 1}i∈I) .

(8.3)

Then

P{Si}i∈[m]
(z) ⊆ B(⃗0, 1) ∩ (NS1(z) + · · ·+NSm(z)) ⊆ B(⃗0, 1) ∩NS0(z). (8.4)

We also measure the reach of P{Si}i∈[m]
(z) by

reach{Si}i∈[m]
(z) := max

{
r ≥ 0 |

(
B(⃗0, r) ∩NS0(z)

)
⊆ P{Si}i∈[m]

(z)
}
.

By (8.4), reach{Si}i∈[m]
(z) ≤ 1. In particular, when S0 is a singleton, we have

NS0(z) = E and1

reach{Si}i∈[m]
(z) = rP{Si}i∈[m]

(z)(⃗0). (8.5)

Theorem 8.2. Fix z ∈ bdy(S0). If Assumption 8.1 holds, then

reach{Si}i∈[m]
(z) > 0

Moreover, for any x ̸∈ S0 satisfying z = PS0(x), we have

dist(x, S0) = ∥x− z∥ ≤ maxi∈I dist(x, Si)

reach{Si}i∈[m]
(z)

≤
maxi∈[m] dist(x, Si)

reach{Si}i∈[m]
(z)

. (8.6)

1For the definition of rP{Si}i∈[m]
(z)(⃗0), see (2.15).
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Remark. Compare Theorem 8.2 and Theorem 3.1. We see that in Theorem 8.2,

reach{Si}i∈[m]
(z) essentially plays the role of inrad(TS0)(z) in Theorem 3.1. When

int(S0) ̸= ∅, Assumption 8.1 holds automatically (c.f., Theorem 6.42 in [27]).

For any unit vector d ∈ NS0(z), we have z + d ̸∈ S0 and PS0(z + d) = z.

Consider x = z + d in the proof of Theorem 3.1, then2

max
di∈NSi

(z), ∥di∥=1, i∈I
⟨d, di⟩ ≥ inrad(TS0)(z) · ∥(z + d)− z∥ = inrad(TS0)(z). (8.7)

Now take the minimum over the unit vectors in NS0(z). Combined with (8.16) (in

the proof of Theorem 8.2), we have3

reach{Si}i∈[m]
(z) = min

d∈NS0
(z), ∥d∥=1

{
max

di∈NSi
(z), ∥di∥=1, i∈I

⟨d, di⟩
}

≥ inrad(TS0)(z).

Hence Theorem 8.2 is both a generalization and an improvement of Theorem 3.1.

See Example A.3 in Appendix A.6 for an example where int(S0) ̸= ∅ and

reach{Si}i∈[m]
(z) > inrad(TS0)(z) > 0.

Before proving Theorem 8.2, let us take a brief detour and study the connection

between the functions gS and rS for generic closed convex sets in E .4 Due to (8.5),

Lemma 8.1 can serve as a simplified special case of (8.14), a key step in the proof

of Theorem 8.2:

Lemma 8.1. For any closed convex set S ⊂ E and e ∈ int(S) ̸= ∅, we have

gS(e) = rS(e). (8.8)

Moreover, if w ∈ bdy(S) satisfies ∥w − e∥ = rS(e), then

NS(w) = {t · (w − e) | t ≥ 0}, (8.9)

and d = w−e
∥w−e∥ ∈ NS(w) reaches the minimum in gS(e).

2Inequality (8.7) can be shown by using (3.13) instead of (3.14) in the last few steps of the
proof of Theorem 3.1.

3Recall that f is the support function, defined in Section 2.2.
4The function gS and the set ΩS are defined in Section 2.2.

63



Proof. For any w ∈ bdy(S) and unit vector d ∈ NS0(w), since w ∈ H(S, d), we get

dist(e,H(S, d)) ≤ ∥w − e∥. (8.10)

Hence

rS(e) = min
w∈bdy(S)

∥w − e∥ ≥ min
w∈bdy(S)

{
min

d∈NS(w),∥d∥=1
dist(e,H(S, d))

}
= min

d∈ΩS

dist(e,H(S, d))

= gS(e).

On the other hand, for any d ∈ ΩS, we have S ⊆ H−(S, d). Thus

rS(e) ≤ dist(e, bdy(H−(S, d))) = dist(e,H(S, d)).

Taking the infimum over d ∈ ΩS, we get rS(e) ≤ gS(e). Thus (8.8) holds.

Now assume that w′ ∈ bdy(S) satisfies ∥w′ − e∥ = rS(e). Then for any unit

vector d′ ∈ NS(w
′), by (8.10), we have

gS(e) ≤ dist(e,H(S, d′)) ≤ ∥w′ − e∥ = rS(e) = gS(e).

Hence w′ = PH(S,d′)(e), and d′ = w′−e
∥w′−e∥ .

Proof of Theorem 8.2. Let us first study the support functions of P{Si}i∈[m]
(z).

Since P{Si}i∈[m]
(z) is a compact set, for any unit vector d ∈ E , there exists

w ∈ P{Si}i∈[m]
(z) such that

⟨w, d⟩ = max
w∈P{Si}i∈[m]

(z)
⟨w, d⟩ = fP{Si}i∈[m]

(z)(d).

Hence fP{Si}i∈[m]
(z) is finite at any unit vector. Now consider any two vectors d and

d′. Then for any w ∈ P{Si}i∈[m]
(z), we have

⟨w, d⟩ − ⟨w, d′⟩ ≤ ∥w∥∥d− d′∥ ≤ ∥d− d′∥,
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where the last inequality follows from the fact that P{Si}i∈[m]
(z) is a subset of the

unit ball. Consequently,

fP{Si}i∈[m]
(z)(d) = max

w∈P{Si}i∈[m]
(z)
⟨w, d⟩

≤ max
w∈P{Si}i∈[m]

(z)
{⟨w, d′⟩+ ∥d− d′∥}

= fP{Si}i∈[m]
(z)(d

′) + ∥d− d′∥.

Similarly, fP{Si}i∈[m]
(z)(d

′) ≤ fP{Si}i∈[m]
(z)(d) + ∥d − d′∥, and we conclude that the

support function of P{Si}i∈[m]
(z) is 1-Lipschitz.

Thus there exists a unit vector d′ ∈ NS0(z) such that d′ is the minimizer of

fP{Si}i∈[m]
(z)(d

′) over the compact set NS0(z) ∩ bdy
(
B(⃗0, 1)

)
. By Assumption 8.1,

we can write

d′ =
∑
i∈I

λidi, where λi ≥ 0,
∑
i∈I

λi > 0, di ∈ NSi
(z), ∥di∥ = 1.

Hence by the definition of P{Si}i∈[m]
(z),

d′∑
i∈I λi

=
∑
i∈I

λi∑
i∈I λi

di ∈ P{Si}i∈[m]
(z),

and

min
d∈NS0

(z), ∥d∥=1
fP{Si}i∈[m]

(z)(d) = fP{Si}i∈I
(d′) ≥

〈
d′,

d′∑
i∈I λi

〉
=

1∑
i∈I λi

> 0.

(8.11)

For any unit vector w ∈ NS0(z), define

w̄ := t · w, t ≥ 0 is the maximal number such that t · w ∈ P{Si}i∈[m]
(z).

Since 0⃗ ∈ P{Si}i∈[m]
(z) ⊆ B(⃗0, 1), we get 0 < ∥w̄∥ ≤ 1. Note that w̄ ∈

bdy
(
P{Si}i∈[m]

(z)
)
. The definition of reach{Si}i∈[m]

(z) implies

reach{Si}i∈[m]
(z) = min

w∈NS0
(z), ∥w∥=1

∥w̄∥. (8.12)
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Noting that

P{Si}i∈[m]
(z) ⊂ NS0(z),

by (8.11), for any unit vector d ∈ NS0(z), one can easily show that there exists

unit vector w ∈ NS0(z) such that

fP{Si}i∈I
(d) = ⟨w̄, d⟩ > 0. (8.13)

With a proof similar to that of Lemma 8.1 (deferred to Appendix A.6) and (8.11),

we have

reach{Si}i∈[m]
(z) = min

d∈NS0
(z), ∥d∥=1

fP{Si}i∈[m]
(z)(d) > 0. (8.14)

Recall that P{Si}i∈[m]
(z) is the convex hull of the set {d | d ∈ NSi

(z), ∥d∥ =

1}i∈I ∪ {⃗0}}. For any unit vector d ∈ NS0(z), by (8.11) and the convexity of the

function ⟨d, ·⟩, we see that

⟨d, 0⃗⟩ < max
w∈P{Si}i∈[m]

(z)
⟨d, w⟩ = max

di∈NSi
(z), ∥di∥=1, i∈I

⟨d, di⟩. (8.15)

Hence by (8.14),

reach{Si}i∈[m]
(z) = min

d∈NS0
(z), ∥d∥=1

fP{Si}i∈[m]
(z)(d)

= min
d∈NS0

(z), ∥d∥=1

{
max

w∈P{Si}i∈[m]
(z)
⟨d, w⟩

}

= min
d∈NS0

(z), ∥d∥=1

{
max

di∈NSi
(z), ∥di∥=1, i∈I

⟨d, di⟩
}
.

(8.16)

Now consider any x ̸∈ S0 such that PS0(x) = z. For any i ∈ I and di ∈ NSi
(z)

such that ∥di∥ = 1, by Lemma 2.5, we have

⟨x− z, di⟩ ≤ (⟨x− z, di⟩)+ = dist(x,H−(Si, di)) ≤ dist(x, Si).
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Hence

max
i∈I

dist(x, Si) ≥ max
i∈I

{
max

∥di∥=1,di∈NSi
(z)
⟨x− z, di⟩

}
= ∥x− z∥

{
max
i∈I

{
max

∥di∥=1,di∈NSi
(z)

〈
x− z

∥x− z∥
, di

〉}}
≥ reach{Si}i∈[m]

(z)∥x− z∥,

(8.17)

where the last inequality follows from x− z ∈ NS0(z) and (8.16).

Proposition 8.1. Fix z ∈ bdy(S0). If Assumption 8.1 holds, then for any x ̸∈ S0

satisfying z = PS0(x), we have

γ0(x)− 1 ≥
reach{Si}i∈[m]

(z)

maxi∈I ∥z − ei∥
dist(x, S0) ≥

reach{Si}i∈[m]
(z)

maxi∈[m] ∥z − ei∥
dist(x, S0).

Proof. For i ∈ I, consider any unit vector d ∈ NSi
(z). Then ⟨z, d⟩ = fSi

(d) and

0 < fSi
(d)− ⟨ei, d⟩ = ⟨z − ei, d⟩ ≤ ∥z − ei∥.

By Proposition 2.2, we have

γi(x)− 1 =

(
max
d∈ΩSi

{
⟨x− ei, d⟩

fSi
(d)− ⟨ei, d⟩

})
+

− 1

≥ max
d∈NSi

(z),∥d∥=1

{
⟨x− ei, d⟩

fSi
(d)− ⟨ei, d⟩

− 1

}
= max

d∈NSi
(z),∥d∥=1

{
⟨x− z, d⟩

fSi
(d)− ⟨e, d⟩

}
≥ max

d∈NSi
(z),∥d∥=1

{
⟨x− z, d⟩
∥z − ei∥

}
,

(8.18)

where the second equality follows from fSi
(d) = ⟨z, d⟩.
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Since x− z ∈ NS0(z), taking the maximum over i ∈ I, we get

γ0(x)− 1 ≥ max
i∈I

{γi(x)− 1}

≥ max
i∈I

{
max

d∈NSi
(z),∥d∥=1

{
⟨x− z, d⟩
∥z − ei∥

}}
(a)

≥
maxi∈I{max∥di∥=1,di∈NSi

(z)⟨x− z, di⟩}
maxi∈I ∥z − ei∥

(b)

≥
reach{Si}i∈[m]

(z)∥x− z∥
maxi∈I ∥z − ei∥

,

where inequality (a) follows from the fact that maxi∈I{max∥di∥=1,di∈NSi
(z)⟨x −

z, di⟩} ≥ 0, and inequality (b) is due to the last inequality in (8.17).

Consequently, when Assumption 8.1 holds, γ0 grows linearly outside S0, and we

can apply the algorithms discussed in Chapter 5 and 6 to solve the convex feasibility

problem. To get the convergence rates of the algorithms, replace inrad(TS0(zk)) by

reach{Si}i∈[m]
(zk) in Theorem 5.1, Theorem 5.2 and Theorem 6.1.

68



CHAPTER 9

SOLVING CONSTRAINED OPTIMIZATION PROBLEMS VIA

RADIAL PROJECTIONS

Consider the constrained optimization problem

min f(x)

s.t. x ∈ Si, ∀i ∈ [m],
(C-Opt)

where f : E → R is an M -Lipschitz convex function, and {Si}i∈[m] ⊂ E are closed

convex sets such that S0 = ∩i∈[m]Si ̸= ∅. We also assume that for each constraint

set Si, an interior point ei ∈ int(Si) is available, and the γ functions are defined

accordingly.

In [23], Renegar proposed radially projected subgradient methods for convex

optimization problems with a single constraint. In contrast, (C-Opt) involves

multiple constraints, and requires a different treatment.

Denote the set of optimal solutions to (C-Opt) by X⋆. Then X⋆ is a closed

convex set. Let us introduce the following assumption:

Assumption 9.1. Given an constrained optimization problem (C-Opt), assume

X⋆ ̸= ∅ and

NS1(x
⋆) + · · ·+NSm(x

⋆) + cone (∂f(x⋆)) = NX⋆(x⋆). (9.1)

at all x⋆ ∈ bdy(X⋆).

Remark. One can easily see that

NS1(x
⋆) + · · ·+NSm(x

⋆) + cone (∂f(x⋆)) ⊆ NX⋆(x⋆)

always holds.
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Fix x⋆ ∈ X⋆. We immediately see that Assumption 9.1 is quite similar to

Assumption 8.1, except that the new assumption also involves the subgradients of

f at x⋆. Again, let I := {i ∈ [m] | x⋆ ∈ bdy(Si)} denote the set of constraints

active at x⋆. Define the set

Q(C−Opt)(x
⋆) := conv

({
d | d ∈ NSi

(x⋆), ∥d∥ =
1

∥x⋆ − ei∥

}
i∈I

∪ ∂f(x⋆) ∪
{
0⃗
})
(9.2)

and its reach

reach(C−Opt)(x
⋆) := max

{
r ≥ 0 |

(
B(⃗0, r) ∩NX⋆(x⋆)

)
⊆ Q(C−Opt)(x

⋆)
}
. (9.3)

Let f ⋆ := f(x⋆) and

F (x) := {max{γ0(x)− 1, f(x)− f ⋆}} . (9.4)

Then we have the following result:1

Proposition 9.1. Fix x⋆ ∈ bdy(X⋆). If Assumption 9.1 holds, then

0 < reach(C−Opt)(x
⋆).

Moreover, for any x ̸∈ X⋆ satisfying x⋆ = PX⋆(x), we have

F (x) ≥ reach(C−Opt)(x
⋆)∥x− x⋆∥. (9.5)

Consider the constrained optimization problem

min 0

s.t. x ∈ Si, ∀i ∈ [m].
(9.6)

Then ∂f(x⋆) = {⃗0}, and (9.6) is equivalent to the convex feasibility problem of

finding x ∈ S0 = ∩i∈[m]Si. Let x⋆ denote the feasible solution considered in

1Proposition 9.1 can be seen as a combination of Theorem 8.2 and Proposition 8.1 in the case
of constrained optimization. Its derivation is also quite similar to the previous results, and is
deferred to Appendix A.7.
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Assumption 8.1. We immediately see that Assumption 8.1 and Assumption 9.1

are equivalent. Moreover, by the definition of Q(C−Opt)(x
⋆), we have

min
i∈I

∥x⋆−ei∥·reach(C−Opt)(x
⋆) ≤ reach{Si}i∈[m]

(x⋆) ≤ max
i∈I

∥x⋆−ei∥·reach(C−Opt)(x
⋆)

(9.7)

when the assumptions hold. Consequently, (9.5) can be seen as a strengthened

(i.e., tighter) extension of Proposition 8.1.

9.1 Radial projection-based Polyak’s rule when the opti-

mal value is known

When the optimal value f ⋆ is known, (C-Opt) is equivalent to

min
x∈E

F (x) = {max{γ0(x)− 1, f(x)− f ⋆}} . (Radial-Opt)

Algorithm 5 applies Polyak’s rule to solve (Radial-Opt).

Algorithm 5: Polyak’s Rule via Radial Projections with Known Optimal
Value
input : target accuracy ϵ > 0, the optimal value f ⋆ and an initial iterate

x0 ∈ E
output: a point x̄ ∈ E satisfying γ0(x̄)− 1 ≤ ϵ and f(x)− f ⋆ ≤ ϵ
initialization: let k = 0

while F (x) > ϵ do
if γ0(xk)− 1 > f(xk)− f ⋆ then

compute gk ∈ ∂γ0(xk) ;

xk+1 := xk − γ0(xk)−1
∥gk∥2

gk ;

else
compute gk ∈ ∂f(xk) ;

xk+1 := xk − f(xk)−f⋆

∥gk∥2
gk ;

return x̄ := xk
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When S0 ̸= ∅ (which implies f ⋆ < ∞), by applying the standard one-step

analysis (5.2) repeatedly, one can show that Algorithm 5 terminates in(
max{1/r0,M} · dist(x0, X

⋆)

ϵ

)2

iterations. Improved bounds can be obtained when Assumption 9.1 holds:

Theorem 9.2. For (C-Opt), if Assumption 9.1 holds and the optimal value f ⋆ is

known, then Algorithm 5 terminates in

2

(
max{1/r0,M}

minx⋆∈X⋆ reach(C−Opt)(x⋆)

)2

log2

(
∥x0 − x⋆∥max{1/r0,M}

ϵ

)
iterations.

Remark. It is easy to see that in Theorem 9.2, one only needs to consider the reaches

at the orthogonal projections of the iterates (instead of the entire boundary of X⋆).

The same observation also applies to Theorem 9.2’ and Theorem 9.3.

Proof. It is easy to see that F is (max{1/r0,M})-Lipschitz. Combined with its

linear growth rate in (9.5), the proof follows from a standard subgradient method

analysis similar to that of Theorem 5.1.

In Algorithm 5, the objective function f and γ0 share the same target accuracy

ϵ. To allow different target accuracies for γ0 and f , define

Fη(x) := max{γ0(x)− 1, η(f(x)− f ⋆)}. (9.8)

for η > 0. For any ϵ0 > 0 and ϵ > 0, by replacing F (x) with F( ϵ0
ϵ )

in Algorithm 5,

we obtain an algorithm which allows users to set different target accuracies for γ0

and f :
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Algorithm 5’: Polyak’s Rule via Radial Projections with Known Optimal

Value and Different Targets

input : target accuracies ϵ0 > 0, ϵ > 0, the optimal value f ⋆ and an

initial iterate x0 ∈ E

output: a point x̄ ∈ E satisfying γ0(x̄)− 1 ≤ ϵ0 and f(x)− f ⋆ ≤ ϵ

initialization: let k = 0

while F( ϵ0
ϵ )
(xk) > ϵ0 do

if γ0(xk)− 1 > ( ϵ0
ϵ
)(f(xk)− f ⋆) then

. . .

else
· · ·

return x̄ := xk

In order to analyze the convergence rate of Algorithm 5’, for any η > 0, define

Q(C−Opt,η)(x
⋆) :=

conv

({
d | d ∈ NSi

(x⋆), ∥d∥ =
1

∥x⋆ − ei∥

}
i∈I

∪ {η · g | g ∈ ∂f(x⋆)} ∪
{
0⃗
})

and

reach(C−Opt,η)(x
⋆) := max

{
r ≥ 0 |

(
B(⃗0, r) ∩NX⋆(x⋆)

)
⊆ Q(C−Opt,η)(x

⋆)
}
.

(9.9)

When Assumption 9.1 holds, for any 0 < η1 < η2, we have

reach(C−Opt,η1)(x
⋆) ≤ reach(C−Opt,η2)(x

⋆) ≤
(
η2
η1

)
reach(C−Opt,η1)(x

⋆).

Similar to (9.5), we can show that for all x ̸∈ X⋆ such that PX⋆(x) = x⋆,

Fη(x) ≥ reach(C−Opt,η)(x
⋆)∥x− x⋆∥. (9.10)

Also note that by the definition of fη, it is max
{

1
r0
, ηM

}
-Lipschitz. Like Theo-

rem 9.2, we can show that
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Theorem 9.2’. For (C-Opt), if Assumption 9.1 holds and the optimal value f ⋆

is known, then Algorithm 5’ terminates in

2

 max
{

1
r0
, ( ϵ0

ϵ
)M
}

minx⋆∈X⋆ reach(C−Opt,
ϵ0
ϵ
)(x

⋆)

2

log2

(
∥x0 − x⋆∥ ·max

{
1

ϵ0r0
,
M

ϵ

})
iterations.

Remark. Note that for the function Fη, neither its growth rate (i.e.,

reach(C−Opt,η)(x
⋆)) nor its Lipschitz constant (i.e., max{ 1

r0
, ηM}) changes linearly

in η. Hence Theorem 9.2’ does not necessarily produce a larger iteration count if

we fix ϵ0 and decrease ϵ in Algorithm 5’.

9.2 Radial projection-based Polyak’s rule when the opti-

mal value is unknown

In practice, the optimal value f ⋆ is usually unknown to the users. In this case, we

can apply the idea of the parallel scheme introduced by Renegar and Grimmer in

[24].2 As its name suggests, the parallel scheme runs copies of subgradient methods

with different step sizes in parallel.

For any η > 0 and c ∈ R, define

F(η,c)(x) := max{γ0(x)− 1, η(f(x)− c)}. (9.11)

When f ⋆ is unknown, we can only work with F(η,c) (instead of Fη), where c is an

estimate of f ⋆. Before introducing a paralleled version of Algorithm 5’, let us first

establish some properties of F(η,c):

2The analysis in [24] is not immediately applicable here, since the estimates of f⋆ enter our
objective function (see (9.11)), which is not covered in [24].
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Lemma 9.1. When Assumption 9.1 holds, consider η > 0 and c ∈ R such that

c− f ⋆ ∈ [0, 3η−1ϵ0). Then for any x ∈ E satisfying F(η,c)(x) > ϵ0, we have

F(η,c)(x) >
Fη(x)

4
> 0. (9.12)

Moreover, let L−1(η, c) denote the 0-sublevel set of F(η,c), then for x ̸∈ L−1(η, c),

we have

F(η,c)(x) ≥
(
minx⋆∈X⋆ reach(C−Opt,η)(x

⋆)

4

)
dist

(
x, L−1(η, c)

)
. (9.13)

Proof. Since c ≥ f ⋆, we have

η(f(x)− f ⋆) = η(f(x)− c) + η(c− f ⋆)

≤ max{γ0(x)− 1, η(f(x)− c)}+ η(c− f ⋆)

= F(η,c)(x) + η(c− f ⋆).

Hence

Fη(x)

F(η,c)(x)
≤ 1 +

η(c− f ⋆)

F(η,c)(x)
< 1 +

3ϵ0
ϵ0

= 4.

Let x⋆ = PX⋆(x⋆). Note that the optimality of x⋆ implies x⋆ ∈ L−1(η, c). By (9.12)

and (9.10), we get

F(η,c)(x)

dist (x, L−1(η, c))
≥

F(η,c)(x)

∥x− x⋆∥
≥ Fη(x)/4

∥x− x⋆∥
≥

minx⋆∈X⋆ reach(C−Opt,η)(x
⋆)

4
.

We refer the readers to Chapter 5 (if int(S0) ̸= ∅) and Chapter 8 (if int(S0) = ∅)

for the time required by Algorithm 6 to compute xinit. In the remainder of this

section, we focus on the analysis of the algorithm after xinit has been obtained.

After computing xinit, Algorithm 6 essentially run N + 1 copies of Algorithm

5’ with different estimates of f ⋆ in parallel. Note that the copies in Algorithm 6
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Algorithm 6: Parallel Polyak’s Rule via Radial Projections

input : target accuracies ϵ0 > 0, ϵ > 0, an initial iterate x0 ∈ E and
integer N ≥ 0 (number of copies)

initialization: let kn = 0 for all integer n such that −1 ≤ n ≤ N ;

run Algorithm 1 with target accuracy ϵ0 and initial iterate x0 to get xinit ;
// γ0(xinit) ≤ 1 + ϵ0

let x̄ = xinit, f̃
⋆ = f(xinit) ; // the current candidate iterate and

value

for −1 ≤ n ≤ N do
xn
0 = xinit, fn = f(xinit)− 2 · 2nϵ ; // initiate copy n with xinit

repeat
for −1 ≤ n ≤ N do

if F(
ϵ0
2nϵ

,fn)(x) > ϵ0 then // update the iterate

if γ0(x
n
kn
)− 1 > ( ϵ0

2nϵ
)(f(xn

kn
)− fn) then

compute gk ∈ ∂γ0(x
n
kn
) ;

xn
kn+1 = xn

kn
− γ0(xn

kn
)−1

∥gk∥2
gk ;

else
compute gk ∈ ∂f(xn

kn
) ;

xn
kn+1 = xn

kn
− f(xn

kn
)−fn

∥gk∥2
gk ;

kn = kn + 1 ;

else
xn
0 = xn

kn
, fn = f(xn

kn
)− 2 · 2nϵ, kn = 0 ; // restart copy n

with xn
kn

if f(xn
kn
) < f̃ ⋆ then

x̄ = xn
kn
, f̃ ⋆ = f(xn

kn
) ; // update the candidate iterate

and value

for −1 ≤ n ≤ N do

if f̃ ⋆ − fn ≤ 2nϵ then

xn
0 = x̄, fn = f̃ ⋆ − 2 · 2nϵ, kn = 0 ; // restart copy n with x̄
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are always restarted (or initiated) at x ∈ E satisfying γ0(x)− 1 ≤ ϵ0. Moreover, if

copy n is restarted with an iterate x, then

f(x) ≤ fn +

(
2nϵ

ϵ0

)
ϵ0 = fn + 2nϵ = f(xn

0 )− 2nϵ.

Hence after each restart, copy n improves the objective value by at least 2nϵ (which

is also the task given to copy n in the parallel scheme in [24]), while also satisfying

the requirement on feasibility imposed by γ0.

In order to apply the analysis of the parallel scheme from [24], we need to

provide an upper bound on the number of updates required by each copy to restart

(c.f. Lemma 1 in [24]):

Lemma 9.2. In Algorithm 6, if Assumption 9.1 holds and copy n is initiated or

restarted at xn
0 satisfying γ0(x

n
0 ) − 1 ≤ ϵ0 and f(xn

0 ) − f ⋆ ∈ [2 · 2nϵ, 5 · 2nϵ), then

copy n will be restarted after at most

2

 max
{

1
r0
,M( ϵ0

2nϵ
)
}

minx⋆∈X⋆ reach(C−Opt,
ϵ0
2nϵ

)(x
⋆)

2

· log2

(
8

minx⋆∈X⋆ reach(C−Opt,
ϵ0
2nϵ

)(x
⋆)

·max

{
1

ϵ0r0
,
M

2nϵ

})
additional updates.

Remark. It should be noted that while Lemma 1 in [24] does not require

f(xn
0 )− f ⋆ < 5 · 2nϵ, (9.14)

in the proof of Corollary 8 in [24], a copy only enters the analysis of the parallel

scheme if it is restarted at xn
0 ∈ E satisfying (9.14). Hence Lemma 9.2 is sufficient

for our purpose here.

Proof. When xn
0 satisfies the conditions, we get

fn − f ⋆ = (f(xn
0 )− f ⋆)− 2 · 2nϵ ∈ [0, 3 · 2nϵ). (9.15)
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Let η = ϵ0
2nϵ

and c = fn in (9.13), we see that F( ϵ0
2nϵ

,fn) has a growth rate

of
(
minx⋆∈X⋆ reach(C−Opt,

ϵ0
2nϵ

)(x
⋆)/4

)
outside its 0-sublevel set. Also note that

F( ϵ0
2nϵ

,fn)(x) is max{ 1
r0
,M( ϵ0

2nϵ
)}-Lipschitz. The proof of this result follows from

a standard subgradient method analysis similar to that of Theorem 5.1.

We next present Theorem 9.3, which is essentially an application of Theorem

2 in [24]. We refer the readers to [24] for the ideas and details of its derivation.

Theorem 9.3. For (C-Opt), if Assumption 9.1 holds and f(xinit)− f ⋆ < 5 · 2Nϵ,

then after xinit has been computed, Algorithm 6 produces x̄ ∈ E satisfying γ0(x̄)−

1 ≤ ϵ0 and f(x̄)− f ⋆ < 2 · ϵ with at most

(N0 + 1)+3

N0∑
n=−1

2

 max
{

1
r0
,M( ϵ0

2nϵ
)
}

minx⋆∈X⋆ reach(C−Opt,
ϵ0
2nϵ

)(x
⋆)

2

· log2

(
8

minx⋆∈X⋆ reach(C−Opt,
ϵ0
2nϵ

)(x
⋆)

·max

{
1

ϵ0r0
,
M

2nϵ

})

first-order oracle calls of γ0, where N0 is the smallest integer satisfying both f(x̄)−

f ⋆ < 5 · 2N0ϵ and N0 ≥ −1.

Similar to the remark following Theorem 9.2’, without further knowledge re-

garding the structure of the problem, there is no straightforward comparison be-

tween the rate in Theorem 9.3 (which involves F(
ϵ0
2nϵ

), where −1 ≤ n ≤ N0) and

the rate in Theorem 9.2’ (which only involves F(
ϵ0
ϵ
)).
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Part II

Margin Maximization of the

Intersection of Convex Cones
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CHAPTER 10

INTRODUCTION

Part II applies many results in Part I to the conic setting. For completeness,

we prove everything from scratch in this part, which could lead to repetition in

some cases, especially in the earlier chapters.

Given finitely many closed convex cones, let K0 denote their intersection. The

margin maximization problem concerns finding points with large margins in K0.

Consider the perceptron problem [28], which studies the intersection of finitely

many half-spaces. Let {ei}i∈[m] denote normal vectors of the half-spaces with unit-

norm. Define the margin function ω0(x) := mini∈[m]⟨x, ei⟩. In the perceptron

setting, the margin maximization problem is to solve

max
x∈E

ω0(x)

∥x∥
. (10.1)

where ∥ · ∥ is the Euclidean norm. Note that given any c > 0, (10.1) is equivalent

to

min 1
2
∥x∥2

s.t. ⟨x, ei⟩ ≥ c, ∀i ∈ [m].

Hence in the perceptron setting, (10.1) can be seen as the support vector ma-

chine problem without intercepts. A plethora of (primal-)dual methods involving

quadratic programs have been proposed for the support vector machine problem.

See [29] for a review.

Primal first-order methods for (10.1) been studied by Gentile [9] and Kowalczyk

[15]. For a relative accuracy ϵ, the Approximate Large Margin Algorithm (ALMA)

proposed by Gentile terminates after at most

O

((
1

ϵ inrad(K0)

)2
)
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supgradient oracle calls of ω0, where the inradius of K0 measures the width of K0.

Kowalczyk [15] proposed another method with the same convergence rate. Both

algorithms are first-order methods, and came out around 2000.

In the next two chapters, we first generalize the margin function to the the

intersection of generic closed convex cones. Some useful properties of the margin

function are introduced. Surprisingly, even for the intersection of generic closed

convex cones, we have that the margin function decreases “sharply” with respect

to its suplevel sets. After showing that the decerease rate becomes quadratic when

restricted to the unit ball, we present a two-stage algorithm to solve the margin

maximization problem. The first stage is a generalized modification of the ALMA

algorithm in [9], while the second stage is an application of the parallel scheme

proposed by Renegar and Grimmer [24]. This new algorithm finds an ϵ-optimal

solution with at most

O

(
1

ϵ
log

(
1

ϵ

)(
1

r0 inrad(K0)

)2
)

supgradient oracle calls of the margin function.

Our algorithm relies on reference points in the interior of the individual convex

cones, and r0 measures the centrality of these reference points with respect to the

cones. In the perceptron case, by taking the normal vector with unit-norm as

the reference point for each half-space considered, we get r0 = 1, and the new

algorithm improves the existing results.

It should be noted that while ALMA terminates with an output satisfying the

desired relative accuracy, our new algorithm never terminates by itself.

We close this paper with two numerical examples. In the first example, we

demonstrate how the new algorithm improves the convergence rate of the ALMA
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in the perceptron setting. The second example studies the intersection of second-

order cones, which is not covered by the existing literature.
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CHAPTER 11

DEFINITION AND PROPERTIES OF ω FOR A SINGLE SET

Let E denote a finite-dimensional Euclidean space endowed with an inner product

⟨·, ·⟩ and the induced norm ∥·∥. Consider a closed convex cone K ⊂ E . We assume

K has nonempty interior, and a vector e ∈ int(K) is given. By rescaling, we may

assume

∥e∥ = 1.

For all x ∈ E , define the margin function

ω(x) := max{t | x ∈ K + t · e} = max{t | x− t · e ∈ K}.

The margin function ω can be evaluated with high precision using a line-search.

For more details, see the remark following Proposition 11.5.

In [23], Renegar defined a function λmin, which is basically equivalent to ω. We

adopt a different notation in this work, since later ω will be extended to multiple

cones. While the Lipschitz continuity and characterization of its supgradients

have been studied in [23], here we study the geometry of the suplevel sets of ω

(Proposition 11.1) and discover the linear decrease of ω with respect to distances

to those sets (Lemma 11.2). These results leads to the decrease rate of the ω

function for multiple cones (Corollary 12.1) in the next chapter, which is an entirely

novel addition to the literature. We include the study of the Lipschitzness and

supgradient of ω for completeness.

The following result shows that the suplevel sets of ω are simply translations

of K:

Proposition 11.1. The margin function ω is finite for all x ∈ E. For any t ∈ R,
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we have

ω(x) ≥ t ⇐⇒ x ∈ K(t) := K + t · e.

Consequently, we get

x ∈ bdy(K(ω(x))). (11.1)

for all x ∈ E.

Remark. For general closed convex cones, the value of ω(x) cannot be computed

exactly. However, similar to the function λmin in [23], the value of ω(x) can be

approximated accurately. All that is required is accurately approximating where

the line {x− t · e | t ∈ R} intersects the boundary of K. To do so, one can perform

bisection on the half-lines {x − t · e | t ≤ 0} and {x − t · e | t ≥ 0} to find out

(whether and) where they intersect the boundary of K. Since ω(x) ∈ R, at least

one of the two half-lines will intersect the boundary of K, and the value of ω can

be estimated accordingly. For most closed convex cones, this can be accomplished

far more easily than traditional orthogonal projections.

As for special cones such as half-spaces and second-order cones, the margin

function can be evaluated exactly by utilizing the properties of these cones. See

the numerical chapter for some brief examples.

In what follows, we assume ω(x) can be computed exactly.

Proof. Since e ∈ int(K), we have −e ∈ int(K◦), where K◦ := {y ∈ E | ⟨y, x⟩ ≤

0, ∀x ∈ E} denotes the polar cone of K. Consequently, for any x ∈ E , we have

lim
t→∞

x− t · e
∥x− t · e∥

→ −e ∈ int(K◦), lim
t→−∞

x− t · e
∥x− t · e∥

→ e ∈ int(K).

Hence there exists ∞ > t1 > t2 > −∞ such that

x− t1 · e ∈ K◦, x− t2 · e ∈ K,
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and ω(x) ∈ (t2, t1) ⊂ R. The attainability of the maximization in the definition of

ω(x) also follows from the closedness of K.

Thus x− ω(x) · e ∈ K for all x ∈ E . Since K is a convex cone and x ∈ K, for

any t ≤ ω(x), we get

x− t · e = (x− ω(x) · e) + (ω(x)− t) · e ∈ K.

Hence x ∈ K(t) for all t ≤ ω(x).

By Proposition 11.1,K = K(0), and we have that x ∈ K if and only if ω(x) ≥ 0.

In general, we see that the higher the value of ω(x), the more internally x is placed

in K with respect to e. The margin function ω is closely related to the Minkowski

functional (gauge):

Proposition 11.2. Let

p(e,K)(x) := inf{r > 0 | x ∈ e+ r(K − e)}

denote the Minkowski functional of K with e replacing the origin. For any x

satisfying ω(x) ≤ 1, we have

ω(x) = 1− p(e,K)(x).

Remark. Note that p(e,K)(x) = 0 for all x ∈ K(1), while ω(K(1)) = [1,∞). We see

that the margin function ω is in fact a refinement of the Minkowski functional.

Proof. When ω(x) = 1, by Proposition 11.1, we have

x ∈ K(1) ⊂ K(1− r) = K + (1− r)e = e+ r(K − e)

for all r > 0. Hence

p(e,K)(x) = 0 = 1− ω(x).
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When ω(x) < 1, since K is a cone, we have

x ∈ e+ r(K − e) ⇐⇒ x ∈ K + (1− r)e ⇐⇒ x ∈ K(1− r)

for all r > 0. The rest of the proof follows from Proposition 11.1 and the definition

of ω and p(e,K).

For any z ∈ K, define

rK(z) := max
{
r ≥ 0 | B(z, r) ⊂ K

}
.

Then ω(z) leads to a lower bound on rK(z) for all z ∈ K:

Proposition 11.3. For all z ∈ K, we have

rK(z) ≥ ω(z)rK(e).

Proof. For all z ∈ K, by Proposition 11.1, we have ω(x) ≥ 0 and x ∈ K +ω(x) · e.

Hence for all v ∈ B(⃗0, rK(e)),

x+ ω(x) · v ∈ (K + ω(x) · e) + ω(x) · v

= K + ω(x)(e+ v)

⊆ K + ω(x) ·B(e, rK(e)).

By the definition of rK and the fact that K is a convex cone, we get

x+ ω(x) · v ∈ K + ω(x) ·B(e, rK(e)) ⊆ K + ω(x) ·K = K,

and B(x, ω(x)rK(e)) ⊆ K.

Before discussing the first-order properties of ω, let us introduce another char-

acterization of the margin function:
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Proposition 11.4. For any x ∈ E, we have

ω(x) = min {⟨x, d⟩ | d ∈ K⋆, ⟨e, d⟩ = 1} ,

where K⋆ := {y ∈ E | ⟨y, x⟩ ≥ 0, ∀x ∈ E} denotes the dual cone of K. (Hence ω

is a positively homogeneous concave function.)

Proof. For any non-zero vector d, since e ∈ int(K), we have

e− rK(e)

∥d∥
· d ∈ K.

Thus if d ∈ K⋆,

⟨e, d⟩ =
〈
e− rK(e)

∥d∥
· d, d

〉
+

rK(e)

∥d∥
⟨d, d⟩ ≥ rK(e)∥d∥. (11.2)

Since K⋆⋆ = K, we have

x ∈ K ⇐⇒ ⟨x, d⟩ ≥ 0, ∀d ∈ K⋆

⇐⇒
〈
x,

d

⟨e, d⟩

〉
≥ 0, ∀d ∈ K⋆, d ̸= 0⃗

⇐⇒ ⟨x, d⟩ ≥ 0, ∀d ∈ K⋆, ⟨e, d⟩ = 1. (11.3)

Note that for any t ∈ R, x ∈ E and d ∈ K⋆ such that ⟨e, d⟩ = 1, we have

⟨x− t · e, d⟩ = ⟨x, d⟩ − t⟨e, d⟩ = ⟨x, d⟩ − t.

By (11.3), we have

x− t · e ∈ K ⇐⇒ ⟨x, d⟩ ≥ t, ∀d ∈ K⋆, ⟨e, d⟩ = 1.

Taking the minimum over all eligible dual vectors on the right-hand side, the

statement follows from the definition of ω.

The supgradient sets of ω have the following characterizations:
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Proposition 11.5. For any x ∈ E, let ∂ω(x) denote the set of supgradients of ω

at x. Then we have

∂ω(x) = {d | ⟨x, d⟩ = ω(x), d ∈ K⋆, ⟨e, d⟩ = 1}

=
{
d | d ∈ −NK(ω(x))(x), ⟨e, d⟩ = 1

}
= {d | d ∈ −NK(x− ω(x) · e), ⟨e, d⟩ = 1} ,

where NK(ω(y))(y) denotes the set of normal vectors of K(ω(y)) at y.

Remark. To get a subgradient of γ(x), it suffices to have an oracle which generates

non-zero normal vectors to K at its boundary points.

Proof. Let D := {d | d ∈ K⋆, ⟨e, d⟩ = 1} denote the set of vectors considered in

the right-hand side of Proposition 11.4. Then by by (11.2), we get

∥d∥ ≤ ⟨e, d⟩
∥rK(e)∥

=
1

rK(e)
(11.4)

for all d ∈ D. Hence D is a bounded set. Moreover, since the Euclidean space E

is finite-dimensional and D = K⋆ ∩ {d | ⟨e, d⟩ = 1}, we see that D is a compact

convex set. Hence for any x ∈ E , the set Dx := {d | ⟨x, d⟩ = ω(x), d ∈ D} is

nonempty.

To show the first equation in the statement, first consider any d′ ∈ Dx. By

Proposition 11.4, for any y ∈ E , we have

ω(y)− ω(x) = min {⟨y, d⟩ | d ∈ D} − ⟨x, d′⟩ ≤ ⟨y, d′⟩ − ⟨x, d′⟩ = ⟨y − x, d′⟩,

and d′ ∈ ∂ω(x). On the other hand, first note that by the convexity and compact-

ness of D and the Hahn-Banach Theorem, for any d̃ ̸∈ D, there exists x′ ∈ E such

that 〈
x′, d̃

〉
< min{⟨x′, d⟩ | d ∈ D} = ω(x′).
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Also note that by the homogeneity and concavity of ω, we have

ω(x+ x′)− ω(x) = 2ω

(
x+ x′

2

)
− ω(x) ≥ (ω(x) + ω(x′))− ω(x) = ω(x′).

Hence 〈
x+ x′, d̃

〉
−
〈
x, d̃
〉
=
〈
x′, d̃

〉
< ω(x+ x′)− ω(x),

and we get ∂ω(x) ⊆ D. For any d′′ ∈ D \ Dx, we have ⟨x, d′′⟩ > ω(x). By the

homogeneity of ω, we get

ω
(x
2

)
− ω(x) = −ω(x)

2
>
〈
−x

2
, d′′
〉
=
〈x
2
− x, d′′

〉
,

and d′′ ̸∈ ∂ω(x). We conclude that ∂ω(x) ⊆ Dx.

To prove the second equation in the statement, let g ∈ ∂ω(x). Then for all

y ∈ K(ω(x)), we have

⟨g, y − x⟩ ≥ ω(y)− ω(x) ≥ 0.

Hence g ∈ −NK(ω(x)). On the other hand, since K(ω(x)) = K + ω(x) · e, when

d′ ∈ −NK(ω(x))(x) ⊆ K⋆, we get

d′ ∈ −NK(ω(x))(x) = −NK(x− ω(x) · e).

Since K is a cone, we have1

⟨x− ω(x) · e, d′⟩ = 0.

If d′ also satisfies ⟨e, d′⟩ = 1, we get

⟨x, d′⟩ = ⟨x− ω(x) · e, d′⟩+ ω(x)⟨e, d′⟩ = ω(x).

Hence the second equation in the statement also holds. The last equation in the

statement follows from K(ω(x)) = K + ω(x) · e.
1To see this, first note that d′ ∈ K⋆ implies ⟨x−ω(x) · e, d′⟩ ≥ 0. If ⟨x−ω(x) · e, d′⟩ > 0, then

⟨x − ω(x) · e, d′⟩ > 0 = ⟨⃗0, e⟩, contradicting our assumption d′ ∈ −NK(x − ω(x) · e). Hence we
conclude that ⟨x− ω(x) · e, d′⟩ = 0.
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Lemma 11.1. The margin function ω is 1
rK(e)

-Lipschitz.

Proof. For any x, y ∈ E , consider g ∈ ∂ω(x). Then by (11.4), we get ∥g∥ ≤ 1
rK(e)

.

Hence

ω(y)− ω(x) ≤ ⟨y − x, g⟩ ≤ ∥y − x∥
rK(e)

.

One can also prove ω(x)− ω(y) ≤ ∥y−x∥
rK(x)

with a similar argument.

Lemma 11.2. For any x ∈ E and t ≥ ω(x), we have

t− ω(x) ≥ dist(x,K(t)).

Proof. By Proposition 11.1, we have

K(t) = K(ω(x)) + (t− ω(x)) · e.

Since x ∈ K(ω(x)), we get x+ (t− ω(x)) · e ∈ K(t). Since ∥e∥ = 1, we have

dist(x,K(t)) ≤ ∥(t− ω(x)) · e∥ = (t− ω(x))∥e∥ = t− ω(x).

By assuming ∥e∥ = 1, we always have rK(e) ≤ 1. Combining Lemma 11.1 and

Lemma 11.2, we see that for any x ∈ E and t ≥ ω(x),

dist(K(t), x)

rK(e)
≥ t− ω(x) ≥ dist(K(t), x). (11.5)

Hence t − ω(x) is an approximation of dist(K(t), x), and a bigger value of rK(e)

leads to a better approximation. This motivates us to introduce the notion of

inradius [11] (also called the width of K in the perceptron literature [5, 20]):

Given any closed convex cone K ⊆ E , define

inrad(K) := max
z∈K\{0⃗}

rK(z)

∥z∥
(11.6)

= max
z∈K, ∥z∥≤1

rK(z). (11.7)
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Then

inrad(K) ≤ 1

for all K ⊂ E . The unique optimal solution to (11.7) is called the center of K.

The center of K is the best reference point for defining the ω function, in order to

make the left inequality in (11.5) as tight as possible.

As an example, for d ∈ E \ {⃗0}, consider the half-space

{x | ⟨x, d⟩ ≥ 0}.

It is easy to see that the center of this half-space is the unit-vector d/∥d∥.
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CHAPTER 12

DEFINITION AND PROPERTIES OF ω FOR MULTIPLE SETS

Now consider a finite number of sets {Ki}i∈[m], where m > 1 and Ki ⊂ E . For

i ∈ [m], assume ei is a known interior point of Ki satisfying ∥ei∥ = 1. Let ωi

denote the ω function defined with respect to Ki and ei. Define

K0 := ∩i∈[m]Ki

and the margin function

ω0(x) : = min
i∈[m]

ωi(x)

= min {⟨x, d⟩ | d ∈ K⋆
i , ⟨ei, d⟩ = 1, i ∈ [m]} . (12.1)

Here the second inequality follows from Proposition 11.4. Clearly, ω0 is a positively

homogeneous concave function. Throughout the rest of this work, we assume

int(K0) ̸= ∅. (12.2)

Let

ri := rKi
(ei), ∀i ∈ [m], r0 := mini∈[m] ri.

By Proposition 11.3, we get

rK0(z) ≥ min
i∈[m]

ωi(z)ri ≥ ω(z)r0 (12.3)

for all z ∈ K0. Since ωi is 1/ri-Lipschitz continuous for all i ∈ [m] (Lemma 11.1),

by the definition of ω0 and r0, we have that ω0 is 1/r0-Lipschitz continuous. By

(12.1), we also have

∂ωi(x) ⊆ ∂ω0(x) (12.4)

for all x ∈ E and i ∈ [m] such that ωi(x) = ω0(x).
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When

Ki = {x | ⟨x, ei⟩ ≥ 0}, ∥ei∥ = 1, ∀i ∈ [m],

K0 is the intersection of a collection of half-spaces, and we recover the perceptron

setting. In this case, K⋆
i = {tei | t ≥ 0} and

ω0(x) = min{⟨x, ei⟩ | i ∈ [m]} = rK0(x) (12.5)

for all x ∈ K0. Hence in the perceptron setting, ω0 reflects the “centrality” of a

point in K0 by measuring its distance to the boundary of K0. For the intersection

of generic closed convex cones, ω0 can be thought of as the margin function of K0

defined with respect to reference points {ei}i∈[m].

For any t ∈ R and i ∈ [m], we let Ki(t) := Ki + t · ei. Also define

K0(t) := ∩i∈[m]Ki(t) = {x | ω0(x) ≥ t},

where the second equation follows from Proposition 11.1. Then K0 = K0(0).

Proposition 12.1. When int(K0) ̸= ∅, we have K0(t) ̸= ∅ for all t ∈ R.

Proof. Let z ∈ int(K0). For any i ∈ [m], since z ∈ int(Ki) we get ωi(z) > 0 by

Proposition 11.1. Hence ω0(z) = mini∈[m] ωi(z) > 0 . Note that ω0 is positively

homogeneous, we have ω0(s · z) = sω(z) for all s ≥ 0. Consequently,

lim
s→∞

ω0(s · z) = ∞,

and K0(t) ̸= ∅ for all t ∈ R.

Lemma 11.2 establishes lower bounds on the decrease rate of the ω function for

a single cone with respect to its suplevel sets. In order to derive a similar result

for the ω0 function for multiple cones, we first present the following result:
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Proposition 12.2. For any x ∈ E and t ∈ R satisfying t ≥ ω0(x), we have

dist(x,K0(t)) ≤
maxi∈[m] dist(x,Ki(t))

inrad(K0)
.

Proof. Given x ∈ E and t ∈ R satisfying t ≥ ω0(x), let z = PK0(t)(x) denote the

orthogonal projection of x onto K0(t). Then by Corollary 23.8.1 in [26], we have

x− z ∈ NK0(t)(z) =
∑
i∈[m]

NKi(t)(z).

Hence we can write

x− z =
∑

i∈[m] λidi, where λi ≥ 0, di ∈ NKi(t)(z), ∥di∥ = 1.

Consequently,

∥x− z∥2 =

〈
x− z,

∑
i∈[m]

λidi

〉
=
∑
i∈[m]

λi⟨x− z, di⟩. (12.6)

For any i ∈ [m], since di ∈ NKi(t)(z), we get

Ki(t) ⊆ H−(z, di) := {w | ⟨w, di⟩ ≤ ⟨z, di⟩} .

Since ∥di∥ = 1 and di is the normal vector of the half-space H−(z, di), we have

⟨x− z, di⟩ = dist(x,H−(z, d)) ≥ dist(x,Ki(t)). (12.7)

Now note that λi ≥ 0 for all i ∈ [m], we get

dist(x,K0(t))

maxi∈[m] dist(x,Ki(t))
≤
∑

i∈[m] λidist(x,K0(t))∑
i∈[m] λidist(x,Ki(t))

(12.7)

≤
∑

i∈[m] λi∥x− z∥∑
i∈[m] λi⟨x− z, di⟩

(12.6)
=

∥x− z∥
∑

i∈[m] λi

∥x− z∥2

=

∑
i∈[m] λi

∥x− z∥
. (12.8)
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On the other hand, let w⋆ denote the center of K0. Similar to (12.6), we can

show

⟨−w⋆, x− z⟩ =

〈
−w⋆,

∑
i∈[m]

λidi

〉
=
∑
i∈[m]

λi⟨−w⋆, di⟩. (12.9)

For any i ∈ [m], since di ∈ NKi(t)(z) ⊆ −K⋆
i and ω⋆ is the center of K0, we have

⟨−w⋆, di⟩ = ⟨w⋆,−di⟩ ≥ rKi
(w⋆) ≥ rK0(w

⋆) = inrad(K0). (12.10)

Note that ∥w⋆∥ = 1, we get

∥x− z∥ = ∥w⋆∥∥x− z∥

≥ ⟨−w⋆, x− z⟩ (12.9)
=

∑
i∈[m]

λi⟨−w⋆, di⟩

(12.10)

≥ inrad(K0)
∑
i∈[m]

λi.

(12.11)

Combining (12.8) and (12.11), we see that

dist(x,K0(t))

maxi∈[m] dist(x,Ki(t))
≤
∑

i∈[m] λi

∥x− z∥
≤ 1

inrad(K0)
.

Corollary 12.1. For any x ∈ E and t ≥ ω0(x), we have

t− ω0(x) ≥ inrad(K0)dist(x,K0(t)).

Proof. By Lemma 11.2, we have t−ωi(x) ≥ dist(x,Ki(t) for all i ∈ [m]. Combined

with Proposition 12.2, we get

t− ω0(x) = t− min
i∈[m]

ωi(x) = max
i∈[m]

{t− ωi(x)}

≥ max
i∈[m]

dist(x,Ki(t)) ≥ inrad(K0)dist(x,K0(t)).

Since ω0 is 1/r0-Lipschitz continuous, by Corollary 12.1, we get

dist(x,K0(t))

r0
≥ t− ω0(x) ≥ inrad(K0)dist(x,K0(t)). (12.12)
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CHAPTER 13

THE APPROXIMATE MARGIN MAXIMIZATION ALGORITHM

By (12.1), ω0 is a positively homogeneous function. We can find rays with large

margin with respect to K0 by solving

max ω0(x)

s.t. ∥x∥ ≤ 1.
(13.1)

Let ω⋆
0 and z⋆ denote the optimal value and optimal solution to (13.1). The

existence of z⋆ follows from the continuity of ω0 and compactness of the unit ball

in E . In the perceptron setting, when the centers of the half-spaces are used as

reference points, we have ω⋆
0 = inradK0 and z⋆ is the center of K0.

Since ω0 is concave, (13.1) is a convex optimization problem. For any ϵ ∈ (0, 1),

we call x an ϵ-relative optimal solution to (13.1) when x satisfies

∥x∥ ≤ 1, ω0(x) ≥ (1− ϵ)ω⋆
0.

We have the following results for ω⋆
0 and z⋆:

Lemma 13.1. The optimal value and optimal solution to (13.1) satisfy

ω⋆
0 ≥ inrad(K0), ∥z⋆∥ = 1, z⋆ = PK0(ω⋆

0)
(⃗0),

and the optimal solution z⋆ is unique.

Proof. Let x = 0⃗ and t = inrad(K0) in Corollary 12.1, we get

dist(⃗0, K0(inrad(K0))) ≤
inrad(K0)

inrad(K0)
= 1.

Hence there exists x ∈ B(⃗0, 1) such that ω0(x) = inrad(K0), and thus,

ω⋆
0 ≥ inrad(K0).
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By the positive homogeneity of ω0, we have

ω0

(
z⋆

∥z⋆∥

)
=

ω0(z
⋆)

∥z⋆∥
.

Due to the optimality of z⋆ over B(⃗0, 1), we get ∥z⋆∥ = 1. To further characterize

z⋆, let z′ := PK0(ω⋆
0)
(⃗0). Since ω0(z

⋆) = ω⋆
0, we have ∥z′∥ ≤ ∥z⋆∥ = 1. If z′ ̸= z⋆,

let u = (z⋆ + z′)/2. Then

∥u∥ =

∥∥∥∥z⋆ + z′

2

∥∥∥∥ <
∥z⋆∥+ ∥z′∥

2
≤ 1

and u ∈ B(⃗0, 1). Also note that the concavity of ω0 implies ω0(u) ≥ ω⋆
0. Hence

ω0

(
u

∥u∥

)
=

ω0(u)

∥u∥
> ω⋆

0,

contradicting the optimality of z⋆ over the unit ball. Thus we get z⋆ = z′ =

PK0(ω⋆
0)
(⃗0).

The following lemma is crucial to the analysis of our algorithms:

Proposition 13.1. For all x ∈ B(⃗0, 1), we have

ω⋆
0 − ω0(x) ≥

inrad(K0)∥x− z⋆∥2

2
.

Proof. By Lemma 13.1, z⋆ is the closest point in K0(ω
⋆) to 0⃗. Hence the half-space

{z | ⟨z− z⋆, z⋆⟩ ≥ 0} contains K0(ω
⋆). Hence by Lemma 13.1, for any z ∈ K0(ω

⋆),

we have

1 = ⟨z⋆, z⋆⟩ ≤ ⟨z, z⋆⟩. (13.2)

Now consider any x ∈ B(⃗0, 1). We have

∥x− z⋆∥2 = (∥x∥2 + ∥z⋆∥2)− 2⟨x, z⋆⟩ ≤ 2(1− ⟨x, z⋆⟩). (13.3)

97



Now let z = PK0(ω⋆
0)
(x) in (13.2) and substitute for 1 in (13.3), we get

∥x− z⋆∥2 ≤ 2
(〈
PK0(ω⋆

0)
(x), z⋆

〉
− ⟨x, z⋆⟩

)
= 2

〈
PK0(ω⋆

0)
(x)− x, z⋆

〉
≤ 2

∥∥PK0(ω⋆
0)
(x)− x

∥∥
= 2dist (x,K0(ω

⋆
0)) .

Consequently, by Corollary 12.1, for all x ∈ B(⃗0, 1), we have

ω⋆
0 − ω0(x) ≥ inrad(K0)dist (x,K0(ω

⋆
0)) ≥

inrad(K0)∥x− z⋆∥2

2
.

The next result extends the {z⋆} in Proposition 13.1 to generic suplevel sets of

ω0 over the unit ball:

Corollary 13.1. For any x ∈ B(⃗0, 1) and t ∈ [ω0(x), ω
⋆
0], we have

t− ω0(x) ≥
inrad(K0)dist

(
x,K0(t) ∩B(⃗0, 1)

)2
2

.

Proof. For any x ∈ B(⃗0, 1) and s ∈ [0, 1], define

x(s) = z⋆ + s(x− z⋆), f(s) = ω⋆
0 − ω0(x(s)).

Then f is a convex function, and

f(0) = ω⋆
0 − ω0(z

⋆) = 0, f(1) = ω⋆
0 − ω0(x).

Since

ω⋆
0 − (t− ω0(x)) ∈ [ω0(x), ω

⋆
0],

due to the continuity of ω0, there exists s ∈ [0, 1] such that

ω0(x(s)) = ω⋆
0 − (t− ω0(x)), f(s) = ω⋆

0 − ω0(x(s)) = t− ω0(x).
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Using Proposition 13.1, we get

s∥x− z⋆∥ = ∥x(s)− z⋆∥ ≤

√
2(ω⋆

0 − ω0(x(s)))

inrad(K0)
=

√
2(t− ω0(x))

inrad(K0)
.

By the convexity of f , we have

f(s)

s
=

f(s)− f(0)

s
≤ f(1)− f(0)

1
≤ f(1)− f(1− s)

s
.

Thus

f(1− s) ≤ f(1)− f(s) = (ω⋆
0 − ω0(x))− (t− ω0(x)) = ω⋆

0 − t,

and

ω0(x(1− s)) = ω⋆
0 − f(1− s) ≥ t.

By the convexity of the unit ball, we conclude that

x(1− s) ∈ K0(t) ∩B(⃗0, 1),

and

dist
(
x,K0(t) ∩B(⃗0, 1)

)
≤ ∥x− x(1− s)∥ = s∥x− z⋆∥ ≤

√
2(t− ω0(x))

inrad(K0)
.

By Corollary 12.1 and Proposition 13.1, we see that when restricted to the

unit ball, ω0 is a Lipschitz continuous function with quadratic decrease rate with

respect to its maximizer z⋆. In [24], the authors proposed an scheme which pro-

duces algorithms with near-optimal (with respect to the growth rate of the convex

objective) convergence rates when a good estimate of the optimal value of the

Lipschitz-continuous convex objective function is available. We next present the

Approximate Margin Maximization Algorithm (AMMA), a two-stage algorithm,

for solving (13.1). The first stage of AMMA, a modified extension of the Approx-

imate Large Margin Algorithm in [9] designed for maximal margin perceptrons,

produces an estimate of ω⋆
0, which is then taken as an input to the second stage,

an application of the parallel scheme introduced in [24].
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13.1 First stage

We now present the first stage algorithm as Algorithm 7, a modified version of the

Approximate Large Margin Algorithm [9] generalized from the perceptron setting

to the intersection of generic closed convex cones:

Algorithm 7: Approximate Margin Maximization Algorithm-First Stage

input : target tolerance ϵ ∈
(
1
2
, 1
)

output: a point x̄ ∈ E satisfying ∥x̄∥ = 1 and ω0(x̄) ≥ (1− ϵ)ω⋆
0

initialization: let k = 0, α = 1−ϵ
2ϵ−1

, β = 1
2ϵ−1

, R0 = 0 and x0 = 0⃗ ∈ E

repeat
compute ωi(xk) for all i ∈ [m] and let ik ∈ argmini∈[m] ωi(xk);

let ω0(xk) = ωik (xk) ;
if k > 0 and ω0(xk) ≥ α

Rk
then

return x̄ := xk

else
compute gk ∈ ∂ωik(xk);
if k = 0 then

xk+1 :=
1√

β∥gk∥
gk ;

else
x̂k+1 := xk +

1
Rk∥gk∥2

gk;

xk+1 := P
B(0⃗,1)

(x̂k+1);

Rk+1 :=
√

R2
k +

β
∥gk∥2

;

k = k + 1;

Remark. In the analysis of Algorithm 7 (Proposition 13.2), we need

α = (1− ϵ)β, β = 2α + 1. (13.4)

Solving this system gives α = 1−ϵ
2ϵ−1

and β = 1
2ϵ−1

. Since the algorithm terminates

when ω0(xk) ≥ α
Rk

, to have a reasonable stopping criterion, we have to have α > 0,

which limits our choice of ϵ to (1
2
, 1). It should be noted that when α > 0, we have

β > 1 and ∥x1∥ = 1/
√
β < 1, and x1 is also in the unit ball.

Remark. In the perceptron case, we always have ∥gk∥ = 1. One recovers the
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Approximate Large Margin Algorithm (ALMA) in [9] by setting

α′ =
2− 2ϵ

ϵ
, β′ =

1

2
.

in Algorithm 7. By choosing different α and β in Algorithm 7, we are able to

simplify the convergence analysis of the algorithm. One significant drawback of

Algorithm 7, however, is a much more restricted range of the relative accuracy

ϵ ((1
2
, 1)) v.s. (0, 1)). We will extend the range of target accuracy to (0, 1) in

Algorithm 8.

For notational brevity, let z̄ = z⋆/ω⋆
0. Then by Lemma 13.1 and the positive

homogeneity of ω, we have

ω0(z̄) = 1, ∥z̄∥ =
1

ω⋆
0

, z̄ = PK0(1)(⃗0). (13.5)

Moreover, note that for any gk in Algorithm 7, by Proposition 11.5, we have

gk ∈
{
d | d ∈ K⋆

ik
, ⟨eik , d⟩ = 1

}
.

Let x = z̄ in (12.1), we get

⟨gk, z̄⟩ ≥ min {⟨z̄, d⟩ | d ∈ K⋆
i , ⟨ei, d⟩ = 1, i ∈ [m]} = ω0(z̄) = 1. (13.6)

Proposition 13.2. For any ϵ ∈
(
1
2
, 1
)
, if Algorithm 7 does not terminate at the

kth iteration, then

⟨xk+1, z̄⟩ ≥
Rk+1

β
. (13.7)

Consequently, by the construction of Algorithm 7 and (13.5), we have

Rk+1 ≤ β∥xk+1∥∥z̄∥ ≤ β

ω⋆
0

=
α

(1− ϵ)ω⋆
0

. (13.8)

Proof. For any k ∈ N , let sk = ∥gk∥−1. Since R1 =
√
βs0, by (13.6), we have

⟨x1, z̄⟩ =
s0√
β
⟨g0, z̄⟩ ≥

s0√
β
=

R1

β
=

Rk+1

β
,
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and (13.7) holds for k = 0. We now proceed by induction.

Now suppose (13.7) holds for k = k0 − 1 ∈ N and Algorithm 7 does not

terminate at the k0th iteration. Then

⟨xk0 , gk0⟩ = ωik0
(xk0) = ω0(xk0) <

α

Rk0

.

Consequently, we have

∥x̂k0+1∥2 =
∥∥∥∥xk0 +

s2k0
Rk0

gk0

∥∥∥∥2 = ∥xk0∥2 +
s2k0(1 + 2Rk0⟨xk0 , gk0⟩)

R2
k0

< 1 +
s2k0(1 + 2α)

R2
k0

.

Since β = 1 + 2α (see (13.4)), by the definition of Rk0+1, we get

∥x̂k0+1∥2 < 1 +
s2k0(1 + 2α)

R2
k0

=
R2

k0
+ βs2k0
R2

k0

=
R2

k0+1

R2
k0

. (13.9)

On the other hand, by (13.6), we have

⟨x̂k0+1, z̄⟩ = ⟨xk0 , z̄⟩+
s2k0
Rk0

⟨gk0 , z̄⟩ ≥ ⟨xk0 , z̄⟩+
s2k0
Rk0

. (13.10)

Note that (13.9) implies ∥x̂k0+1∥ < Rk0+1/Rk0 , by the definition of xk0+1, we have

⟨xk0+1, z̄⟩ =
⟨x̂k0+1, z̄⟩

min{∥x̂k0+1∥, 1}
≥ ⟨x̂k0+1, z̄⟩

∥x̂k0+1∥
≥ Rk0⟨x̂k0+1, z̄⟩

Rk0+1

.

Combined with (13.10) and our induction assumption ⟨xk0 , z̄⟩ ≥ Rk0/β, we get

⟨xk0+1, z̄⟩ >
Rk0⟨xk0 , z̄⟩+ s2k0

Rk0+1

≥
R2

k0
+ βs2k0

βRk0+1

=
R2

k0+1

βRk0+1

=
Rk0+1

β
. (13.11)

We conclude that (13.7) holds for all k ∈ N .

Theorem 13.1. For any ϵ ∈
(
1
2
, 1
)
, Algorithm 7 terminates in at most(
1

2ϵ− 1

)(
1

r0ω⋆
0

)2

iterations, and its output x̄ satisfies

ω0(x̄) ≥ (1− ϵ)ω⋆
0.
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Proof. By Lemma 11.1, for any k ∈ N , the margin function ωik is (1/rik)-Lipschitz

continuous. Consequently, assuming the algorithm has not terminated before iter-

ation k + 1, we have

R2
k+1 =

k∑
j=0

β

∥gj∥2
≥ β

k∑
j=0

r2ik ≥ (k + 1)βr20.

Hence by (13.8), we get

k + 1 ≤
R2

k+1

βr20
=

β

r20

(
Rk+1

β

)2

≤
(

1

2ϵ− 1

)(
1

r0ω⋆
0

)2

.

By our construction of Algorithm 7 and Proposition 13.2, x̄, the output of Algo-

rithm 7, satisfies

ω0(x̄) ≥
α

Rk

≥ (1− ϵ)ω⋆
0.

13.2 Second stage

In Algorithm 7, the range of relative accuracy (1
2
, 1) is very restrictive. However,

unlike many first-order methods, Algorithm 7 terminates with an output x̄ satis-

fying the required relative accuracy ϵ0 ∈ (1
2
, 1), i.e.,

ω⋆
0 ≥ ω0(x̄) ≥ (1− ϵ)ω⋆

0.

This provides a good estimate of ω⋆
0. Based on the output from Algorithm 7, we

next present Algorithm 8, the second stage algorithm that extends the range of

tolerance to (0, 1).

Algorithm 8 can be thought of as an application of the parallel scheme proposed

by [24]. Based on its input ϵ0 and x0, Algorithm 8 first generates a series of step
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Algorithm 8: Approximate Margin Maximization Algorithm-Second
Stage

input : initial tolerance ϵ0 ∈ (0, 1), a point x0 satisfying
ω0(x0) ≥ (1− ϵ0)ω

⋆
0 and the target tolerance ϵ ∈ (0, ϵ0)

initialization: let k = 0 and J =
⌈
log 3

2

(
ϵ0

ϵ(1−ϵ0)

)⌉
− 1, compute

g0 ∈ ∂ω0(x0) and for all j ∈ [J ], let xj
0 = x0, g

j
0 = g0,

∆j =
ϵ0·ω0(x0)

3(3/2)j(1−ϵ0)
and cj0 = ω0(x0) + ∆j;

repeat
for 0 ≤ j ≤ J do

x̂j
k+1 = xj

k +
∆j

∥gjk∥2
gjk;

xj
k+1 = P

B(⃗0,1)

(
x̂j
k+1

)
;

compute ωi

(
xj
k+1

)
for all i ∈ [m] and let

ijk+1 ∈ argmini∈[m] ωi

(
xj
k+1

)
;

let ω0

(
xj
k+1

)
= ωijk+1

(
xj
k+1

)
and compute gjk+1 ∈ ∂ωijk+1

(
xj
k+1

)
;

let j(k + 1) = argmaxj∈[J ] ω0

(
xj
k+1

)
;

for 0 ≤ j ≤ J do

if ω0

(
xj(k + 1)k+1

)
> cjk then

let xj
k+1 = x

j(k+1)
k+1 , gjk+1 = g

j(k+1)
k+1 and cjk+1 = ω0

(
x
j(k+1)
k+1

)
+∆j ;

// restart copy j

else

let cjk+1 = cjk ;

k = k + 1;

sizes {∆j}j∈[J ] and targets {cj}j∈[J ]. Then the algorithm executes the projected

subgradient method on the unit ball with different step sizes and targets in parallel.

In every iteration, we find the copies whose targets are reached, and restart these

copies with new targets. It should be noted that Algorithm 8 never terminates by

itself.

We next conduct the convergence analysis of Algorithm 8. The result can be

seen as a corollary to Theorem 2 in [24] up to a constant factor. In the generic

parallel scheme proposed in [24], a given copy of the parallel scheme can be relevant

for multiple times. As for Algorithm 8, since the input ω0(x0) of Algorithm 8
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provides an upper bound on ω⋆
0, we do not need to rely on assumptions on the

suboptimality of the initial iterate as in Theorem 2 in [24]. Utilizing this upper

bound, we will identify the “relevant” copies in Algorithm 8, where the notion of

relevance will be defined in (13.14).

As mentioned previously, in Algorithm 8, our choice of step sizes are based on

estimates of ω⋆
0 and the suboptimality of x0:

Lemma 13.2. In Algorithm 8, we have

ω⋆
0 − ω0(x0) ≤ 3∆0 (13.12)

and

ϵω⋆
0 ∈ [2∆J , 3∆0). (13.13)

Proof. Since ω0(x0) ≥ (1− ϵ0)ω
⋆
0, we have

ω⋆
0 − ω0(x0) ≤ ϵ0ω

⋆
0 ≤ ϵ0ω0(x0)

1− ϵ0
= 3∆0.

We also get

ϵω⋆
0 < ϵ0ω

⋆
0 ≤ 3∆0.

On the other hand, since ω0(x) ≤ ω⋆
0, our definition of J gives

2∆J =
2∆0

(3/2)J
≤ ϵ0ω0(x0)

(3/2)J+1(1− ϵ0)
≤ ϵω0(x0) ≤ ϵω⋆

0.

By the construction of Algorithm 8, we see that the targets {cjk}k∈N are in-

creasing for all j ∈ [J ]. The next result indicates how restarts and the objective

values are connected:
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Lemma 13.3. For any j ∈ [J ] and k ∈ N , if copy j is restarted in the kth iteration

of Algorithm 8, then

ω0

(
xj
k+1

)
> max

j′∈[J ],k′<k
ω0

(
xj′

k′

)
.

Proof. If copy j is restarted in iteration k, then ω0

(
xj
k+1

)
> cjk. Suppose for

contradiction that there exists j′ ≤ J and k′ ≤ k such that ω0

(
xj′

k′

)
≥ ω0

(
xj
k

)
.

Then by the definition of j(k′), we have

ω0

(
x
j(k′)
k′

)
≥ ω0

(
xj′

k′

)
≥ ω0

(
xj
k+1

)
> cjk ≥ cjk′ .

However, by the construction of Algorithm 8, we immediately have

ω0

(
x
j(k′)
k′

)
= max

j∈[J ]
ω0

(
xj
k′

)
≤ cjk′ .

Thus we arrive at a contradiction and conclude that the statement is true.

For any iteration k of Algorithm 8, we let j̃(k) denote the “relevant” copy,

which has the largest index j satisfying

cjk ∈ [ω⋆
0 − 3∆j, ω

⋆
0 −∆j). (13.14)

The next result shows that the step size of the relevant copy is closely related to

the largest objective value encountered in Algorithm 8 so far:

Lemma 13.4. For any k ∈ N , if there exists a relevant copy j̃(k), then we have

max
j∈[J ],k′∈[k]

ω0

(
xj
k′

)
∈
[
ω⋆
0 − 4∆j̃(k), ω

⋆
0 −∆j̃(k)

)
.

Proof. Note that by the construction of Algorithm 8, we have ω0

(
xj
k′

)
< c

j̃(k)
k′ for

all k′ ≤ k and j ∈ [J ]. Hence by the definition of relevance in (13.14), we get

max
j∈[J ],k′∈[k]

ω0

(
xj
k′

)
< max

k′∈[k]
c
j̃(k)
k′ ≤ c

j̃(k)
k < ω⋆

0 −∆j̃(k).
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On the other hand, by the construction of Algorithm 8, there exists k̇ ≤ k such

that

c
j̃(k)
k = ω0

(
x
j̃(k)

k̇

)
+∆j̃(k).

Hence

max
j∈[J ],k′∈[k]

ω0

(
xj
k′

)
≥ ω0

(
x
j̃(k)

k̇

)
≥ c

j̃(k)
k −∆j̃(k) ≥ ω⋆

0 − 4∆j̃(k).

Relevant copies are crucial to our analysis of Algorithm 8, and the next result

characterizes some important properties of the relevant copies:

Proposition 13.3. In Algorithm 8, for any k ∈ N , if

max
j∈[J ],k′∈[k]

ω0

(
xj
k′

)
< (1− ϵ)ω⋆

0, (13.15)

then there exists a relevant copy j̃(k). Moreover, when (13.15) holds, the sequence

of relevant copies
{
j̃(k′)

}
k′∈[k] is increasing.

Proof. We first consider the base case where k = 0. For any j ∈ [J ], since cj0 =

ω0(x0) + ∆j, we have cj0 satisfies (13.14) if and only if

ω⋆
0 − ω0(x0) = ω⋆

0 −
(
cj0 −∆j

)
∈ (2∆j, 4∆j]. (13.16)

If there is no relevant copy j̃(0), then ω⋆
0 − ω0(x0) ̸∈ ∪j∈[J ](2∆j, 4∆j]. Thus

ω⋆
0 − ω0(x0) ̸∈ ∪j∈[J ](2∆j, 3∆j] = (2∆J , 3∆0].

Here the last equation follows from our construction of {∆j}j∈[J ]. However, (13.12)

implies ω⋆
0 − ω0(x0) ≤ 3∆0. Thus by (13.13), we have

ω⋆
0 − ω0(x0) ≤ 2∆J ≤ ϵω⋆

0,
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and (13.15) does not hold. Consequently, when (13.15) holds, there exists a relevant

copy j̃(0) such that

ω⋆
0 − ω0

(
x
j(k0+1)
k0+1

)
∈ (2∆j̃(0), 3∆j̃(0)], (13.17)

and the statements hold when k = 0. We now proceed by induction.

Suppose the statements hold for k = k0. We will show that they remain true

for k = k0 + 1:

Case 1. If there is no relevant copy in iteration k0, then we have encountered an iterate

satisfying the desired accuracy, and (13.15) does not hold for k = k0 + 1.

Case 2. If the relevant copy j̃(k0) is not restarted in iteration k0, then we have

c
j̃(k0)
k0+1 = c

j̃(k0)
k0

∈ [ω⋆
0 − 3∆

j̃(k0)
, ω⋆

0 −∆
j̃(k0)

).

Hence c
j̃(k0)
k0+1 satisfies (13.14), and j̃(k0 + 1) ≥ j̃(k0).

Case 3. If the relevant copy j̃(k0) is restarted in iteration k0, then by the construction

of Algorithm 8,

ω0

(
x
j(k0+1)
k0+1

)
= ω0

(
x
j̃(k0)
k0+1

)
> c

j̃(k0)
k0

≥ ω⋆
0 − 3∆

j̃(k0)
. (13.18)

(a) If

ω0

(
x
j(k0+1)
k0+1

)
∈ [ω⋆

0 − 3∆
j̃(k0)

, ω⋆
0 − 2∆

j̃(k0)
),

then

c
j̃(k0)
k0+1 = ω0

(
x
j(k0+1)
k0+1

)
+∆j̃(k0)

∈ [ω⋆
0 − 2∆

j̃(k0)
, ω⋆

0 −∆
j̃(k0)

).

Thus c
j̃(k0)
k0+1 also satisfies (13.14). There exists a relevant copy j̃(k0 +1),

and j̃(k0 + 1) ≥ j̃(k0).
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(b) Consider the case where

ω0

(
x
j(k0+1)
k0+1

)
≥ ω⋆

0 − 2∆j̃(k0)
. (13.19)

i. If j̃(k0) = J , then by (13.19) and Lemma 13.2, we have

ω0

(
x
j(k0+1)
k0+1

)
≥ ω⋆

0 − 2∆j̃(k0)
= ω⋆

0 − 2∆J ≥ (1− ϵ)ω⋆
0,

and (13.15) does not hold when k = k0 + 1.

ii. If j̃(k0) < J , then by (13.19), we get

ω⋆
0 − ω0

(
x
j(k0+1)
k0+1

)
≤ 2∆j̃(k0)

≤ 3∆k̃0+1. (13.20)

Replacing x0 with x
j(k0+1)
k0+1 , similar to the discussion for the case

where k = 0, by (13.20), (13.13) and the construction of Algorithm

8, we can show that either x
j(k0+1)
k0+1 satisfies the desired accuracy and

(13.15) does not hold for k = k0+1, or there exists j̃(k0)+1 ≤ j ≤ J

such that

ω⋆
0 − ω0

(
x
j(k0+1)
k0+1

)
∈ (2∆j, 3∆j]. (13.21)

A. If copy j is restarted in iteration k0, then

cjk0+1 = ω0

(
x
j(k0+1)
k0+1

)
+∆j ∈ [ω⋆

0 − 2∆j, ω
⋆
0 −∆j).

B. Otherwise, we have

cjk0+1 = cjk0 ≥ ω0

(
x
j(k0+1)
k0+1

)
≥ ω⋆

0 − 3∆j̃(k0)
.

Also note that by the construction of Algorithm 8, there exists

k′ < k0 such that

cjk0 = ω0

(
xj
k′

)
+∆j.

Due to Lemma 13.3, we get

cjk0+1 = ω0

(
xj
k′

)
+∆j < ω0

(
x
j(k0+1)
k0+1

)
+∆j < ω⋆

0 −∆j.
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In both cases, we can conclude that copy j satisfies (13.14). Hence

j̃(k0 + 1) exists, and j̃(k0 + 1) ≥ j > j̃(k0).

Hence the statements hold for k = k0 + 1, and we conclude that they are true for

all k ∈ N .

Now we are ready to analyze the convergence rate of Algorithm 8:

Proposition 13.4. In Algorithm 8, there exists j ∈ [J ] and

k ≤ 36

ϵ

(
1

r20 inrad(K0)ω0(x0)

)
such that

ω0

(
xj
k

)
≥ (1− ϵ)ω⋆

0.

Remark. By Lemma 13.1, we have inrad(K0) ≤ ω⋆
0 and

36

ϵ

(
1

r20 inrad(K0)ω0(x0)

)
≤ 36

ϵ

(
1

(1− ϵ0)r20 inrad(K0)ω⋆
0

)
≤ 36

ϵ

(
1

1− ϵ0

)(
1

r0 inrad(K0)

)2

.

(13.22)

Proof. By Proposition 13.3, if in an iteration of Algorithm 8, none of the copies are

relevant, then we must have encountered an iterate satisfying the desired target.

Hence we proceed by showing an upper bound on the number of iterations during

which relevant copies exist.

We next bound the number of iterations it takes for a relevant copy to restart.

Assume copy j is relevant in iteration k. Then there exists k′ ≤ k such that

cjk = ω0(x
j
k′) + ∆j.
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By the quadratic decrease rate of ω0 over the unit ball with respect to its sublevel

sets (Corollary 13.1), we get

dist
(
x,K0

(
cjk
)
∩B(⃗0, 1)

)2
≤

2
(
cjk − ω0

(
xj
k′

))
inrad(K0)

≤ 2∆j

inrad(K0)
. (13.23)

If copy j is not restarted in iteration k, then we have ω0(x
j
k) ≤ cjk. By the definition

of relevance, we get

ω⋆
0 − ω0

(
xj
k

)
≥ ω⋆

0 − cjk > ω⋆
0 − (ω⋆

0 −∆j) = ∆j. (13.24)

Since gjk ∈ ∂ω0

(
xj
k

)
, we have

⟨xj
k − z⋆, gjk⟩ ≤ ω0

(
xj
k

)
− ω⋆

0 < ∆j, (13.25)

and ∥∥xj
k+1 − z⋆

∥∥2 ≤ ∥∥x̂j
k+1 − z⋆

∥∥2
=

∥∥∥∥∥xj
k +

∆j

∥gjk∥2
gjk − z⋆

∥∥∥∥∥
2

=
∥∥xj

k − z⋆
∥∥2 + ∆j

∥gjk∥2

(
∆j

∥gjk∥2
∥gjk∥

2 + 2⟨xj
k − z⋆, g⟩

)
(13.25)

≤
∥∥xj

k − z⋆
∥∥2 + ∆j

∥gjk∥2

(
∆j

∥gjk∥2
∥gjk∥

2 + 2
(
ω0

(
xj
k

)
− ω⋆

0

))
(13.24)
<

∥∥xj
k − z⋆

∥∥2 −( ∆j

∥gjk∥

)2

≤
∥∥xj

k − z⋆
∥∥2 − (r0∆j)

2 . (13.26)

Here the first inequality follows from the definition of xj
k+1, and the last inequality

is due to (11.4) and the definition of r0. Consequently, by (13.23) and (13.26),

after iteration k, copy j must be restarted within(
2∆j

inrad(K0)

)(
1

r20∆
2
j

)
=

(
2

r20 inrad(K0)

)(
1

∆j

)
=

(
3

2

)j (
6

r20 inrad(K0)

)(
1− ϵ0

ϵ0ω0(x0)

) (13.27)
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iterations.

For any j ∈ [J ], assume that j̃(k′) = j, then

cjk′ ≥ ω⋆
0 − 3∆j.

After each restart, the target cjk is increased by at least ∆j. Hence copy j can be

relevant and go through up to two restarts before cjk′ ≥ ω⋆
0 − ∆j and it becomes

irrelevant forever. Using (13.27), we see that after

2
∑
j∈[J ]

(
3

2

)j (
6

r20 inrad(K0)

)(
1− ϵ0

ϵ0ω0(x0)

)

=

((
3

2

)J+1

− 1

)(
24

r20 inrad(K0)

)(
1− ϵ0

ϵ0ω0(x0)

)
<

(
3ϵ0

2ϵ(1− ϵ0)
− 1

)(
24

r20 inrad(K0)

)(
1− ϵ0

ϵ0ω0(x0)

)
=

36

ϵ

(
1

r20 inrad(K0)ω0(x0)

)
iterations, the relevant copy can no longer be restarted. Since we have seen that

relevant copies must be restarted within finitely many iterations, this implies that

there is no relevant copy. By Proposition 13.3, we conclude that the algorithm

must have generated an iterate satisfying the target relative accuracy of ϵ.

Theorem 13.2. Since Algorithm 8 makes at most
⌈
log 3

2

(
ϵ0

ϵ(1−ϵ0)

)⌉
+1 supgradient

oracle calls per iteration, it produces an ϵ-relatively optimal solution after making

at most

36

ϵ

(
log 3

2

(
ϵ0

ϵ(1− ϵ0)

)
+ 1

)(
1

r20 inrad(K0)ω0(x0)

)
supgradient oracle calls.
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13.3 Approximate Margin Maximization Algorithm

Combining Algorithm 7 and 8, we get the Approximate Maximization Algorithm:

Algorithm 9: Approximate Margin Maximization Algorithm

input : target tolerance ϵ ∈ (0, 1)
output: a point x̄ ∈ E satisfying ∥x̄∥ = 1 and ω0(x̄) ≥ (1− ϵ)ω⋆

0

run Algorithm 7 with ϵ = 2
3
to obtain x0 ;

run Algorithm 8 with x0, ϵ0 =
2
3
and ϵ to obtain x̄;

Remark. It should be noted that here our choice of ϵ0 is somewhat arbitrary.

According to Theorem 13.1, any choice of ϵ ∈ (1
2
, 1) that is not too close to 1

2

should suffice.

Combining Theorem 13.1 and (13.22), we obtain the follow convergence rate

for Algorithm 9:

Theorem 13.3. For any ϵ ∈ (0, 1), Algorithm 9 terminates after making at most

36

ϵ

(
log 3

2

(
1

ϵ

)
+ 3

)(
1

r0 inrad(K0)

)2

first-order oracles of ω0, and its output x̄ satisfies

ω0(x̄) ≥ (1− ϵ)ω⋆
0.

113



CHAPTER 14

NUMERICAL EXPERIMENTS

In this chapter, we present numerical experiments to demonstrate the results

in Theorem 13.3.

14.1 Intersection of half-Spaces

We consider a perceptron problem with m centers in Rn such that

ei =
(
e1i , . . . , e

n−1
i , ρ

)
, ∥ei∥ = 1. (14.1)

and

0⃗ ∈ conv
(
{(e11, . . . , en−1

1 ), · · · , (e1m, . . . , en−1
m )}

)
⊂ Rn−1. (14.2)

Lemma 14.1. 1Given {ei}i∈[m] satisfying (14.1) and (14.2), K0, the intersection

of the half-spaces Ki := {x | ⟨x, ei⟩ ≥ 0}, has (0, . . . , 0, 1) ∈ Rn as its center and

satisfies inrad(K0) = ρ.

Inspired by Lemma 14.1, we construct m centers for a given inradius

inrad(K0) ∈ (0, 1) with Algorithm 11 in Appendix B. The reference points {ei}i∈[m]

satisfy (14.1) and (14.2), with the first n − 1 entries of the first m − 1 reference

points generated from the standard normal distribution in Rn−1.

14.2 Intersection of second-order cones

Note that in the perceptron setting, we always have r0 = 1. In order to demonstrate

the effect of r0 on the convergence rate of Algorithm 9, we study the intersection

1See the proof in Appendix B.
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Figure 14.1: Convergence of the proposed Approximate Margin Maximization Al-
gorithm and the Approximate Large Margin Algorithm from [9] when applied to
a perceptron problem in R100 with 100 centers and inrad(K0) = 0.1. The target
relative accuracy is ϵ = 0.001. The y-axes in the plots show the reciprocal of the
relative suboptimality of the iterates. One sees that the AMMA needs much fewer
first-order oracle calls to reach the target relative accuracy. Moreover, the ALMA
algorithm clearly demonstrates a O( 1

ϵ2
) convergence rate, while the convergence

rate of AMMA is closer to a linear one in O(1
ϵ
).

of second-order cones of the form

Ki :=

{
x
∣∣∣∥x− ⟨x, ei⟩ei∥ ≤ r0√

1− r20
⟨x, ei⟩

}
. (14.3)

Lemma 14.2. 2For second-order cones defined by (14.3), we have

ωi(x) = ⟨x, ei⟩ −
√

1− r20
r0

∥x− ⟨x, ei⟩ei∥, ∂ωi(x) = ei −
√

1− r20
r0

x− ⟨x, ei⟩ei
∥x− ⟨x, ei⟩ei∥

and

ri(x) = r0⟨x, ei⟩ −
√
1− r20∥x− ⟨x, ei⟩ei∥.

We generate second-order cone examples with the following procedure, which

relies on Algorithm 11 in Appendix B:

Corollary 14.1. 3For {ei}i∈[m] generated by Algorithm 10 and Ki defined by

(14.3), we have

ri(ei) = r0, ∀i ∈ [m].

2See the proof in Appendix B.
3See the proof in Appendix B.
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Algorithm 10: Second-Order Cone Generation for Margin Maximization

input : target number of centers m, dimension n, inradius of the
individual cones r0 ∈ (0, 1) and inradius of the intersection cone
ρ ∈ (0, r0).

output: a set of centers {ei}i∈[m] such that ∥ei∥ = 1 for all i ∈ [m].

compute ζ :=
√
(1− r20)(1− ρ2) + r0ρ;

run Algorithm 11 with m, n and ρ = ζ to obtain {ei}i∈[m].

Moreover, the intersection cone K0 := ∩i∈[m]Ki has (0, . . . , 0, 1) ∈ Rn as its center,

and

inrad(K0) = ρ.
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Figure 14.2: Convergence of the AMMA when applied to second-order cone prob-
lems in R100 with different r0 and inrad(K0). Each problem has 100 second-order
cones. The target relative accuracy ϵ = 0.01. Similar to Figure 14.1, the y-axes in
Figure 14.2 show the reciprocal of the relative suboptimality of the iterates. One
can see that the AMMA demonstrates an Õ(1

ϵ
) rate, which is affected by both r0

(compare the plots on the top) and inrad(K0) (compare the top left plot and the
bottom plot).
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APPENDIX A

ADDITIONAL PROOFS IN PART I

A.1 Additional proofs in Chapter 2

Lemma A.1. Given a closed convex set S ⊂ E, for any x, y ∈ S, we have recc(S−

x) = recc(S − y).

Proof. Consider any d ∈ recc(S − x). We wish to show y + λd ∈ S for all λ > 0.

Due to the convexity of S, we have x + nλd ∈ S for all n ∈ N. Hence by the

convexity of S, for all n ∈ N, we see that

y(n) :=
ny

n+ 1
+

x+ nλd

n+ 1
=

n(y + λd)

n+ 1
+

x

n+ 1
∈ S.

Since y(n) → y+λd as n → ∞, by the closedness of S, we conclude that y+λd ∈ S.

Hence recc(S−x) ⊆ recc(S−y). The reversed inclusion can be shown similarly.

A.2 Additional proofs in Chapter 3

Proof of (3.8). Assume T is a compact convex subset of int(TS0(z)). Since for any

compact convex set T and ϵ > 0, there exists a polytope P satisfying

T ⊆ P ⊆ {x | dist(x, T ) ≤ ϵ},

we may assume

T ⊆ P ⊂ int(TS0(z))

for a polytope P with vertices vj for j in a finite index set J . By definition of

the tangent cone, there exists scalars tj > 0 such that z + tvj ∈ int(S0) for all
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0 < t ≤ tj. Thus, letting t′ = minj∈J tj, we have

z + t′ · P ⊂ S0,

and consequently,

z + t′ · T ⊂ S0.

Example A.1. To see why the sup on the right-hand side of (3.6) might not be

obtainable, consider two circles in R2:

S1 := {(x, y) | (x− 1)2 + y2 ≤ 1}, S2 := {(x, y) | x2 + (y − 1)2 ≤ 1}.

Then S0 = S1 ∩ S2 has nonempty interior. Now let z = (0, 0) ∈ S0. We can show

graphically that

TS0(z) = {(d1, d2) | d1 ≤ 0, d2 ≤ 0}.

Then inrad(TS0(z)) = 1√
2
, which is obtained by considering v = (1

2
, 1
2
) in the

definition of inrad(TS0(z)).

Now consider any w = (w1, w2) ∈ S0 such that w ̸= z. Then we have w1 > 0

and w2 > 0. Thus

(0− 1)2 + w2
2 = 1 + w2

2 > 1 =⇒ (0, w2) ̸∈ S1 ⊂ S.

Similarly, We can show (w1, 0) ̸∈ S2. Hence rS0(w) < min{w1, w2}, and

rS0(w)

∥w − z∥
<

min{w1, w2}√
w2

1 + w2
2

≤ 1√
2
= inrad(TS0(z)).

Example A.2. To see why (3.10) cannot be strengthened in general, consider two

sets in R2:

S1 := {(x, y) | x ≥ 0, x2 + y2 ≤ 1} ∪ {(x, y) | x ≤ 0, |x| ≤ 1, |y| ≤ 1},
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S2 := {(x, y) | x ≤ 0, x2 + y2 ≤ 1} ∪ {(x, y) | x ≥ 0, |x| ≤ 1, |y| ≤ 1}.

Then

S0 = S1 ∩ S2 = {(x, y) | x2 + y2 ≤ 1}.

By considering w = (0, 0) on the right-hand side of (3.7), we see that

inrad(TS0(z)) = 1 for all z ∈ bdy(S0). For any x = (x1, x2) ̸∈ S, when x1 ≥ 0, we

see that

dist(x, S0) = ∥x∥ − 1 = dist(x, S1).

Similarly, when x1 ≤ 0, we have dist(x, S0) = dist(x, S2). Hence for any x ̸∈ S0,

dist(x, S0) = max{dist(x, S1), dist(x, S2)}

= inrad(TS0(PS0(x)))max{dist(x, S1), dist(x, S2)}.

A.3 Additional proofs in Chapter 4

Proof of Lemma 4.3. By Lemma 4.1, we have

γ0(x) = max
i∈[m]

γi(x)

≤ max
i∈[m]

{
γi(y) +

∥x− y∥
r(Si,L)(ei)

}
≤
(
max
i∈[m]

γi(y)

)
+

∥x− y∥
mini∈[m] r(Si,L)(ei)

= γ0(y) +
∥x− y∥

mini∈[m] r(Si,L)(ei)
.

The reversed inequality can be shown similarly.

120



Proof of Lemma 4.4. By Lemma 2.4 and Theorem 3.1, we can write

γ0(x)− 1

distL(x, S0)
=

maxγi(x)>1(γi(x)− 1)

distL(x, S0)

≥
maxγi(x)>1 (dist(x, Si)/∥πSi

(x)− ei∥)
distL(x, S0)

≥ max
i∈[m]

{
dist(x, Si)

distL(x, S0)

}
1

maxγi(x)>1 ∥πSi
(x)− ei∥

≥ inradL(TS0(z))

maxγi(x)>1 ∥πSi
(x)− ei∥

.

The rest of the proof follows from (2.17).

A.4 Additional proofs in Chapter 5

Finishing the proof of Theorem 5.1. For u ∈ R, define

f(u) := 2u − (1 + u).

Then f is convex. Note that f(0) = f(1) = 0, for any u ∈ [0, 1], we have f(u) ≤ 0

and

1 + u ≥ 2u.

Let µ := mink′≤k µk′ . Note that γ0 is 1/r0-Lipshcitz, we get r0µ ∈ (0, 1) and

1 + (r0µ)
2 ≥ 2(r0µ)

2
.

Consequently, when

k ≥ 2

(
1

r0µ

)2

log2

(
dist(x0, S0)

ϵr0

)
,

we get

γ0(xk)− 1 ≤ (1− (r0µ)
2)

k
2
dist(x0, S0)

r0
≤ 1

(1 + (r0µ)2)
k
2

dist(x0, S0)

r0

≤ 1

2k(r0µ)2
dist(x0, S0)

r0

≤ ϵ.
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A.4.1 Ellipsoid experiments initialized at the mean of the

centers

In the experiments presented in Figure A.1, we let ci ∼ 1000(X/∥X∥) +

100(Xi/∥Xi∥), where X ∼ N (⃗0, 1) and Xi ∼ N (⃗0, 1). Consequently, we have

Eci = 1000X. The average of the center is away from S0 and can be used to

initialize the algorithms. As can be seen from Figure A.1, the convergence rates

of the algorithms are not affected too much by the value of r. This is because

S0 ̸= ∅ even when r is set at 0, and increasing r does not make the intersection

much bigger.
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Figure A.1: Algorithm 1 and 2 applied to the problem of the intersection of 100
ellipsoids in R100. For any i, we let ∥Bi∥ = κ(Bi) = 10.
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A.5 Additional proofs in Chapter 7

Proof of Lemma 7.1. By (2.10), we get

∥PS(t)(x)− e∥
t

=
∥Pe+t(S−e)(e+ (x− e))− e∥

t

=

∥∥∥∥Pe+(S−e)

(
e+

x− e

t

)
− e

∥∥∥∥
= ∥PS(x(1/t))− e∥.

Substitute x(1/t) into (2.17), we get

γ(x)− t

dist(x, S(t))
≥ 1

∥πS(x(1/t))− e∥
≥ 1

∥PS(x(1/t))− e∥
=

t

∥PS(t)(x)− e∥
.

A.6 Additional proofs in Chapter 8

Example A.3. Consider three sets in R2: S1 = {(x, y) | (x + 1)2 + (y + 1)2 ≤ 2},

S2 = {(x, y) | (x− 1)2 + (y + 1)2 ≤ 2} and S3 = {(x, y) | x2 + (y + 1)2 ≤ 1}. Then

int(S0) ̸= ∅ and z = (0, 0) ∈ bdy(S0). We have

NS1(z) = {(t, t) | t ≥ 0}, NS2(z) = {(−t, t) | t ≥ 0}, NS3(z) = {0} × R+.

One can show that

reach{Si}i∈[m]
(z) = cos

(π
8

)
> sin

(π
4

)
= inrad(TS0)(z).

Proof of (8.14). For unit vector w ∈ NS0(z) and unit vector d ∈ NP{Si}i∈[m]
(z)(w̄),

since

w̄ ∈ H(P{Si}i∈[m]
(z), d),
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we get

fP{Si}i∈[m]
(z)(d) = dist

(
0⃗, H

(
P{Si}i∈[m]

(z), d
))

≤ ∥w̄∥. (A.1)

Hence by (8.12),

reach{Si}i∈[m]
(z) = min

w∈NS0
, ∥w∥=1

∥w̄∥

≥ min
w∈NS0

(z), ∥w∥=1,

d∈NP{Si}i∈[m]
(z)(w̄), ∥d∥=1

fP{Si}i∈[m]
(z)(d).

On the other hand, note that

P{Si}i∈[m]
(z) ⊆ H−(P{Si}i∈[m]

(z), d).

We have

reach{Si}i∈[m]
(z) ≤ dist

(
0⃗, bdy

(
H−

(
P{Si}i∈[m]

(z), d
)))

= fP{Si}i∈[m]
(z)(d).

Taking the infimum over w and d, we get

reach{Si}i∈[m]
(z) ≤ min

w∈NS0
(z), ∥w∥=1,

d∈NP{Si}i∈[m]
(z)(w̄), ∥d∥=1

fP{Si}i∈[m]
(z)(d),

and conclude that

reach{Si}i∈[m]
(z) = min

w∈NS0
(z), ∥w∥=1,

d∈NP{Si}i∈[m]
(z)(w̄), ∥d∥=1

fP{Si}i∈[m]
(z)(d).

Now assume the unit vector w⋆ ∈ NS0(z) satisfies ∥w̄⋆∥ = reach{Si}i∈[m]
(z).

Then for any unit vector

d′ ∈ NP{Si}i∈[m]
(z)(w̄

⋆),
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by (A.1), we have

min
w∈NS0

(z), ∥w∥=1,

d∈NP{Si}i∈[m]
(z)(w̄), ∥d∥=1

fP{Si}i∈[m]
(z)(d) ≤ fP{Si}i∈[m]

(z)(d
′)

≤ ∥w̄⋆∥

= reach{Si}i∈[m]
(z)

= min
w∈NS0

(z), ∥w∥=1,

d∈NP{Si}i∈[m]
(z)(w̄), ∥d∥=1

fP{Si}i∈[m]
(z)(d).

Hence fP{Si}i∈[m]
(z)(d

′) = ∥w̄⋆∥, which implies w̄⋆ = PH(P{Si}i∈[m]
(z),d′)(⃗0) and

d′ = w⋆ ∈ NS0(z). (A.2)

Note that for any unit vector d ∈ NS0(z), by (8.13), there exists a unit vector

w ∈ NS0(z) such that d ∈ NP{Si}i∈[m]
(z)(w̄). Consequently,

reach{Si}i∈[m]
(z) = min

w∈NS0
(z), ∥w∥=1,

d∈NP{Si}i∈[m]
(z)(w̄), ∥d∥=1

fP{Si}i∈[m]
(z)(d)

≤ min
d∈NS0

(z), ∥d∥=1
fP{Si}i∈[m]

(z)(d)

≤ fP{Si}i∈[m]
(z)(d

′)

= reach{Si}i∈[m]
(z),

and (8.14) holds.

A.7 Additional proofs in Chapter 9

Proof of Proposition 9.1. By the definition of Q(C−Opt)(x
⋆), we have

Q(C−Opt)(x
⋆) ⊆ max

{
1

mini∈I ∥x⋆ − ei∥
,M

}
·B(⃗0, 1).
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Hence following the proof of Theorem 8.2, we can show that fQ(C−Opt)(x
⋆) is finite

at all unit vectors in NX⋆(x⋆) and

min
d∈NX⋆ (x⋆), ∥d∥=1

fQ(C−Opt)(x
⋆)(d) > 0.

Similar to (8.14), we can show that

reach(C−Opt)(x
⋆) = min

d∈NX⋆ (x⋆), ∥d∥=1
fQ(C−Opt)(x

⋆)(d). (A.3)

For any d ∈ E , like (8.15), we have

fQ(C−Opt)(x
⋆)(d) =

max

{
max
i∈I

{
⟨d, di⟩ | di ∈ NSi

(x⋆), ∥di∥ =
1

∥x⋆ − ei∥

}
,max{⟨d, g⟩ | g ∈ ∂f(x⋆)}

}
(A.4)

Consider x ̸= x⋆, then by (8.18),

γ0(x)− 1 ≥ max
i∈I

{γi(x)− 1} ≥ max
i∈I

{
max

d∈NSi
(x⋆),∥d∥=1

{
⟨x− x⋆, d⟩
∥x⋆ − ei∥

}}
.

Also note that

f(x)− f(x⋆) ≥ max{⟨x− x⋆, g⟩ | g ∈ ∂f(x⋆)}.

Let d = x−x⋆

x−x⋆ in (A.4), then x− x⋆ ∈ NX⋆(x⋆), and we see that

max {γ0(x)− 1, f(x)− f(x⋆)} ≥ fQ(C−Opt)(x
⋆)(x− x⋆)

= ∥x− x⋆∥ · fQ(C−Opt)(x
⋆)

(
x− x⋆

∥x− x⋆∥

)
(A.3)

≥ reach(C−Opt)(x
⋆)∥x− x⋆∥.
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APPENDIX B

ADDITIONAL PROOFS AND ALGORITHMS IN PART II

Proof of Lemma 14.1. Since 0⃗ ∈ conv
(
{(e11, . . . , en−1

1 ), · · · , (e1m, . . . , en−1
m )}

)
, there

exists convex multipliers {λi}i∈[m] such that

∑
i∈[m]

λi

(
e1i , . . . , e

n−1
i

)
= 0⃗ ∈ Rn−1.

Consequently, for any x ∈ Rn, we get

min
i∈[m]

⟨x, ei⟩ ≤
∑
i∈[m]

λi⟨x, ei⟩

=

〈(
x1, . . . , xn−1

)
,
∑
i∈[m]

λi

(
e1i , . . . , e

n−1
i

)〉
+ ρxn

= ρxn.

Hence (0, . . . , 0, 1) is the center of K0, and inrad(K0) = ρ.

Remark. In our experiments, we use the Gurobi package [12] to compute the pro-

jection of 0⃗ onto conv
(
{e′i}i∈[m−1]

)
. One can see that the centers generated by

Algorithm 11 satisfy (14.1) and (14.2).

Proof of Lemma 14.2. In order to study the properties of the second-order cones

whose centers are generated by Algorithm 10, first note that the dual cones of the

second-order cones defined in (14.3) take the form

K⋆
i :=

{
x
∣∣∣∥x− ⟨x, ei⟩ei∥ ≤

√
1− r20
r0

⟨x, ei⟩

}
. (B.1)

Consequently, for any y ∈ K⋆ such that ⟨y, ei⟩ = 1, we can write y = ei+u, where

⟨u, ei⟩ = 0, ∥u∥ ≤
√

1− r20
r0

.
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Algorithm 11: Half-Space Generation for Margin Maximization

input : target number of centers m, dimension n and the shared inradius
of all the intersection cone ρ ∈ (0, 1).

output: a set of centers {ei}i∈[m] such that ∥ei∥ = 1 for all i ∈ [m].

for i ∈ [m− 1] do
generate vector ẽi following the standard normal distribution in Rn−1;

compute e′i =
ẽi

∥ẽi∥ ;

compute u = P
conv

(
{e′i}i∈[m−1]

) (0⃗);
if u = 0⃗ then

generate vector ẽm following the standard normal distribution in Rn−1;
compute e′m = ẽm

∥ẽm∥ ;

else
let e′m = − u

∥u∥ ;

for i ∈ [m] do

let ei =
(√

1− ρ2e′1i , . . . ,
√

1− ρ2e′n−1
i , ρ

)
.

Now for any x ∈ Rn, define

v(x) := ⟨x, ei⟩ei, w(x) := x− v(x).

Then ⟨w(x), ei⟩ = 0, and

min {⟨x, y⟩ | y ∈ K⋆, ⟨y, ei⟩ = 1}

= min

{
⟨v(x) + w(x), ei + u⟩

∣∣∣⟨u, ei⟩ = 0, ∥u∥ ≤
√

1− r20
r0

}

= min {⟨x, ei⟩+ ⟨w(x), ei⟩+ ⟨x, ei⟩⟨ei, u⟩+ ⟨w(x), u⟩ |

⟨u, ei⟩ = 0, ∥u∥ ≤
√

1− r20
r0

}

= ⟨x, ei⟩ −
√
1− r20
r0

∥w(x)∥,

and the minimum is obtained when

u =

√
1− r20
r0

w(x)

∥w(x)∥
.
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Since Ki is a cone, we have

ri(x) = min {⟨x, y⟩ | y ∈ K⋆
i , ⟨y, ei⟩ = 1}

= min {⟨v(x) + w(x), v(y) + w(y)⟩ | y ∈ K⋆
i , ⟨y, ei⟩ = 1}

= min {⟨v(x), v(y)⟩+ ⟨w(x), w(y)⟩ | y ∈ K⋆
i , ⟨y, ei⟩ = 1} . (B.2)

When

v(y) = r0ei, w(y) = −
√

1− r20
w(x)

∥w(x)∥
,

the right-hand side of Theorem 13.3 obtains its minimum

r0∥v(x)∥ −
√

1− r20∥w(x)∥.

for all x ∈ Ki.

Proof of Corollary 14.1. The first claim follows immediately from Lemma 14.2. To

show the second claim, let a ∈ [0, π/2) satisfy sin(a) = r0. For any x such that

∥x∥ = 1, let bi(x) ∈ [0, π) satisfy

cos(bi(x)) = ⟨x, ei⟩, sin(bi(x)) = ∥x− ⟨x, ei⟩ei∥.

Then we get

ri(x) = sin(a) cos(bi(x))− cos(a) sin(bi(x)) = sin(a− bi(x)).

Similar to Lemma 14.1, we have

min
i∈[m]

cos(bi(x)) ≤ ζxn

for any x ∈ Rn such that ∥x∥ = 1. Note that

ζ = cos(a− arcsin(ρ)),
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we have

inrad(K0) = max
x∈Rn,∥x∥=1

min
i∈[m]

ri(x)

≤ sin(a− arccos(ζ))

= sin(a− (a− arcsin(ρ)))

= sin(arcsin(ρ))

= ρ,

and the maximum is obtained when x = (0, . . . , 0, 1) ∈ Rn.
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