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Conformational transitions of protein macromolecules are key elements in 

controlling functionality of proteins by changing structural and functional properties 

of protein molecules. These transitions consist of structural adjustments at spatial 

scales of 10-100 Å, between one to two orders of magnitude larger than a typical 

interatomic distance (2 Å). The difference in temporal scales of atomic motions and 

conformational transitions spans an even larger range. The transition time, 

microseconds to milliseconds, is between six to twelve orders of magnitudes larger 

than typical atomic oscillations (femtoseconds to picoseconds). The atomic resolution 

of studied systems (10 – 100 thousands of atoms) and long range inter-atomic 

interactions dictate the computational cost of simulations. 

This dissertation discusses several strategies to overcome these scaling issues 

in computational studies of conformational transition: the temporal, spatial, and size 

scales. The presented algorithms provide thermodynamics, kinetics and structural 

descriptions of conformational transitions at overall computational costs several orders 

of magnitude lower than the straight forward Molecular Dynamics approach. The 

presented algorithms are based on combination of coarse-graining strategies of (i) 

boundary value approach by an action minimization, (ii) statistical coarse-grained 

potentials, and (iii) Milestoning algorithm with an extension to complex (nonlinear) 

reactions. All presented algorithms are implemented in MOIL molecular modeling 



 

package and are parallelized to run effectively on high performance computing 

clusters.  
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CHAPTER 1 

INTRODUCTION 
  

Proteins are organic macromolecules responsible for most of the biological 

functions in living cells. Proteins are formed as linear chains of chemical subunits 

called amino acids, where most of them are formed of twenty different types of amino 

acid residues. The majority of known proteins form a well-defined three dimensional 

(native) structure by a process called protein folding. The native structure of a protein 

is determined directly by the linear sequence of amino acids, although in some cases 

the folding process of a protein in vivo is assisted by chaperones.  

However, it would be misleading to think about proteins as rigid rocks as it is 

now well established that proteins are in constant motion, sampling an ensemble of 

conformations. Additionally, by undergoing changes between different conformations, 

proteins carryout their biological functions. Understanding the mechanism of 

transitions between different conformations is of major importance to designing 

methods for controlling such transitions, and thereby modulating protein functions. 

However, exploring the transitions between conformations is hard, both 

experimentally and computationally, due to the transient nature of the intermediate 

high energy conformers encountered as the molecule undergoes structural changes. In 

many cases, only the two end structures of a biological process of interest are known 

from experiments. 

These conformational transitions consist of structural rearrangements at spatial 

scales of 10-100 Å, between one to two orders of magnitude larger than a typical 

interatomic distance (2 Å). The difference in temporal scales of atomic motions and 

conformational transitions spans an even larger range. The transition time of 

biologically important conformation rearrangements is in microseconds to 
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milliseconds, what is between six to twelve orders of magnitudes larger than typical 

atomic oscillations (femtoseconds to picoseconds). The detailed atomic resolution of 

studied systems (10 – 100 thousands of atoms) and long range inter-atomic 

interactions result in large computational cost of simulations. Analysis of 

conformational transitions is further complicated by the fact that often the passage 

between the two end points does not involve a single unique pathway, but an ensemble 

of qualitatively different pathways is realized. 

In this dissertation, we address the above obstacles in a computational 

description of conformational transitions of proteins. In Chapter 2 we examine a 

boundary value approach calculating an ensemble of plausible large scale 

conformational transitions in proteins. The plausible trajectories are found by 

minimizing an action as a property of the whole trajectory represented on a coarse 

temporal resolution. Our strategy to scale to systems of large size (hundreds to 

thousands of amino acids) and still maintain feasible computational cost is to perform 

initial (fast) calculations in a coarse-grained model and then refine resulting 

trajectories in an all-atomistic action minimization calculation.  

In Chapter 2, a double–minima generalization of an elastic network model is 

used in coarse-grained calculations. Such a coarse-grained model suits well its purpose 

if the spatial fluctuations of the structure during a conformational transition are small. 

If however, the transition involves significant modifications of the protein structure, a 

more sophisticated coarse-grained model is needed. In Chapter 3, we describe an 

algorithm for the design of differentiable coarse grained force field that reproduces 

thermo-dynamical properties of experimental structures and at the same time performs 

well in native structure recognition.  

Finally, in Chapter 4, we describe an extension of Milestoning algorithm that 

can be used for calculation of quantitative kinetical and thermodynamical entities of 
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complex reactions described for example by multiple possible reaction channels 

obtained by methods from the second chapter. We defer the further introduction of 

topics related to each of the above problems to the introductory subsections of 

particular chapters. 
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CHAPTER 2 

CONFORMATIONAL TRANSITIONS BY A BOUNDARY VALUE SOLVER 

AND COARSE-GRAINING 

 

2.1 Introduction 

 

This chapter is about coarse graining of pathways and trajectories of proteins 

in action. In particular we focus on protein switches that flip between different 

structures; flips that modify their activity. These switches offer another layer of 

control and are of considerable interest in current fields of study such as System 

Biology (Alon 2006). It is the collective behavior and interactions of many protein 

molecules that is the topic of biological networks, and such switches are essential 

components of the functional mechanisms represented by the networks. 

The way we compute and think about trajectories is quite different from the 

widely used Molecular Dynamics approach in which differential equations of motions 

are solved by an initial value method. Instead we have chosen, for reasons that will 

become clearer below, to use a boundary value formulation. Our choice of coarse 

graining and of boundary value calculations to study biological switches requires some 

discussion, so we start with an analogy. 

A useful comparison to the way we compute and analyze molecular paths is a 

web-search for driving-directions. In such a search one specifies the starting and end 

locations of the drive and seeks a path that requires minimal time. A web engine 

analyzes the request and outputs a written description of the driving directions and a 

two-dimensional map of the roads, highlighting the chosen path. Obviously the web 

instructions are only guidelines that do not take into account extra traffic due to 

special events, road works that intervene and require a bypass, and other specific 
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circumstances. In short, the paths proposed are coarse-grained and averaged over 

many actual paths that differ in many details but agree in their overall shape. The 

coarse-grained paths miss many details but are nevertheless very useful when making 

travel plans. Part of their effectiveness is because we understand their limitations and 

operate accordingly. 

Similarly, in molecular biophysics we are frequently provided with starting and 

ending configurations of a protein, captured with experimental techniques. These end 

points are stable for significant periods of time and can be measured with static 

techniques. We call the initial conformation 
i

x  and the final structure 
f

x . For 

example, X-ray crystallography or NMR can determine structures of activated and de-

activated forms of a protein molecule. However, elucidating experimentally the 

“driving” pathway that links the two forms, and determines the time scale of the 

transition is considerably more difficult. Structures “in-between” exist for significantly 

shorter times than the stable end points, and are harder to measure. Computer 

simulations suggest a useful alternative which, in conjunction with partial 

experimental data (such as the change of a few distances as a function of time) can 

provide a comprehensive view of the process. The present chapter is about the 

computations of such transitions. Let us consider some approaches to molecular 

simulations and how they can be used to study biomolecular switches. 

As mentioned earlier, the most widely used technique for atomically detailed 

simulations is Molecular Dynamics (MD). In the MD approach we consider the 

Newton’s equations of motions, =Mx F�� , where M  is the mass matrix, and x  the 

coordinate vector of all the particles that we used to model the system. For proteins, 

the length of x  (the number of degrees of freedom) is typically of order of a few 

thousands. The double dot on top of the vector x  denotes second derivative with 

respect to time, and F  is the force vector. In MD, initial values are used for the 
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integration ( x , the coordinate vector and ≡v x� , are given at an initial time, say 0t = ). 

The numerical solvers of the initial value problem employ numerical integrators such 

as Verlet algorithm (Verlet 1967): 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2
1

2
1

2

2

t
t t t t t t

t
t t t t t t

−

−

∆
+ ∆ = + ∆ +

∆
+ ∆ = + + + ∆

x x v M F

v v M F F

 (2.1) 

The time step is t∆ . Hence, given coordinates and velocities at a particular 

time we can generate the coordinates and the velocities at slightly later times. By 

repeating this process N  times we can generate a trajectory (a path) of length N t⋅ ∆ . 

The final structure ( )N t⋅∆x  is determined by the initial conditions since the 

algorithm described in equations (2.1) is deterministic. However, it is hard to predict 

or to tune with velocity variations the location of ( )N t⋅∆x  before doing the actual 

calculation since the results are very sensitive to the initial value. The hard-to-predict 

final point is a significant difficulty with the application of MD to biomolecular 

switches. Unless “all the roads lead to Rome,” it is not obvious that ( )N t⋅∆x  is the 

final desired configuration of the switch, 
f

x . Hence we may be wasting many cycles 

and computing unsuccessful trajectories while adjusting the initial conditions until 

( )N t⋅∆x  is the desired final coordinate vector. Notably, MD does not use effectively 

all the information at hand (i.e., the structures at the two ends) that could facilitate the 

study of switching mechanisms. It is therefore not surprising that the use of MD is not 

optimal for this problem.  

Even if the two end points are strong attractors (i.e., “all the roads indeed lead 

to Rome”), the transition may require a large number of integration steps (the basic 

integration step t∆  must be small) making the calculation (again) inefficient. Some 

techniques (Dellago, Bolhuis et al. 2002) use initial value formulation, starting 
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somewhere in between, to compute rare short-time trajectories between strong 

attractors. This allows for the sampling of trajectories between states separated by 

large and narrow barriers (activated processes) (Bolhuis, Chandler et al. 2002). 

However these conditions are not satisfied for conformational transitions of the type 

discussed here. An example for a broad barrier that leads to long transitional 

trajectories is the conversion in the Myosin molecule (West and Elber 2010). The time 

scale for Myosin post-recovery (a part of the transition that controls muscle motions) 

is in the milliseconds ( )310 s
−  while the typical size of an integration step in MD is a 

femtosecond ( )1510 s
− .  The number of integration steps with MD required to simulate 

the transition in myosin is hopelessly large ( )1210 . Why is the step so small?  

The reason is that many molecular motions are very rapid (e.g., bond 

vibrations, collisions) so that in order to maintain the numerical stability of an 

algorithm like Verlet the step has to be significantly smaller than the time scale of 

fastest motions in the system. Significant effort was therefore invested (Schlick, Skeel 

et al. 1999) into algorithms that increase the time steps, and into factoring out rapid 

motions. Perhaps the most widely used algorithm that eliminates certain categories of 

rapid motions is SHAKE (Ryckaert, Ciccotti et al. 1977), in which the fast bond 

vibrations are constrained to their ideal values. Typically used for bonds of heavier 

atoms with Hydrogen (x-H), SHAKE allows the increase of the time step by about a 

factor of two, but probably not more. The problem is that other rapid motions (non-

bonded collisions between atoms) remain after the removal of bond vibrations and 

also require small time steps. The latter are much harder to factor out rigorously since 

their internal coordinate representation (the identity and distance between a pair of 

colliding atoms) is changing during the progress of the trajectory. Some atoms that are 

close to each other at a particular time (colliding) may be separated at a later time of 

the process in which other atoms may collide. While a special treatment for collision 
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can be worked out (Ulitsky and Elber 1993; Ulitsky and Elber 1994), the change of 

colliding partners requires complex bookkeeping, which is expensive computationally. 

Nevertheless, the overall success and wide use of the SHAKE algorithm suggests that 

other reductions in the details of the spatial description of the system may be useful. 

There are many approaches to perform spatial coarse-graining to simplify force 

calculations, reduce the number of degrees of freedom, and enable longer time and 

more comprehensive sampling with the simplified spatial description (Voth 2009). 

These reductions are established using a number of physical assumptions and 

approximations, and they do not solve the problem of double-ended trajectories. 

Furthermore, atomically detailed description may be necessary to understand many 

biophysical and biochemical processes. Giving it up with spatial coarse graining may 

lose critical elements of it.  

The approach we discuss in the next section, which we have used for more 

than 10 years now, provides a coarse-grained description of the path (like driving 

directions at different resolution), while keeping a complete description of the atomic 

coordinates of the system. We are able to do it since the boundary value formulation is 

numerically more stable than initial value solvers. The boundary value representation 

makes it possible to use much larger path steps than is possible with initial value 

solvers. One must keep in mind however, that the trajectories so produced are 

approximate.  

 

2.2 Theory of boundary value formulation of pathways and trajectories 

 

Newton’s equations of motion are usually derived in an analytical mechanics 

course (Landau and Lifshitz 1976) from the classical action. The classical action, S , is 

defined as 
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,
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T
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1
2

f

i

t
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= −

∫
x

x

x x x

x Mx x

�

� �

. (2.2) 

Then, Newton’s equations of motion are derived from the condition that the action, 

which is a functional of the trajectory, is stationary with respect to variations in the 

path (Landau and Lifshitz 1976). The variations do not change the end configurations, 

illustrating that a solution of Equation (2.2) is indeed a result of a boundary value 

problem. However such a derivation will not help in the switching problem. A more 

straightforward approach to solve Equation (2.2) is to use a finite difference 

approximation to the integral. For example:  

( )( ) ( ) ( )
1 T

1 1
1

1 2
N

j j j j j

j

S t U t
−

+ +
=

= ∆ − − − ∆∑ x x M x x x . 

The action is now a function (not a functional!) of all the intermediate 

structures
j

x . When the action is stationary with respect to all these coordinates 

( /      2,..., 1
j

S j N∂ ∂ = = −x 0 ) then the sequence of coordinates provides a finite 

difference approximation to a classical trajectory. The approximation is better for 

smaller t∆  but it is stable for any time step. This stability distinguishes the approach 

from initial value solvers that “explode” at time steps that are too large. There are 

however good reasons why finding a stationary solution of the classical action is not a 

popular way of computing trajectories. First the action is not necessarily a minimum 

but a stationary point (e.g. a classical trajectory can be a saddle point of the action). 

Searches for stationary points are numerically more difficult than for a minimum. 

Second, the optimization is of a function of a very large number of variables. If the 

bio-molecular switch is described with K  atoms then the number of degrees of 

freedom for the action optimization is 3 K N× ×  ( K and N  are in the thousands for a 
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typical calculation). Third, time is not a good variable for parameterizing or indexing 

the path. The last surprising statement is in the sense that the parameterization 

determines the density of points along the path, and the time density can be very 

different from the spatial density. Let us return one more time to the driving analogy 

and parameterize the path according to the time of the drive. A realization of this 

parameterization is to draw a dot on the map at constant time intervals (say every 

minute) of the drive. The path may include a segment in which the car is likely to 

move slowly or even stop and a segment on a free road or the highway in which the 

car moves very quickly. If we distribute the dots that describe the path equally in time 

we will have high density at a traffic jam and dilute description of the path on the 

highway. Tracking the path visually under these circumstances is not ideal. A better 

path representation (at least from a visualization perspective) is to have the dots 

equally spaced, say every 200 meters. More precisely, the above suggestions for 

alternative parameterization means to replace the parameterization of the path with 

respect to time ( )tx  by the parameterization ( )lx , where l  is the arc-length of the 

path in mass weighted coordinates, 1/ 2
dl dt= M x� . The classical action as a function 

of length is (Landau and Lifshitz 1976)  

 ( )2
f

i

S E U dl= −∫
x

x

 (2.3) 

 And in a discrete representation  

 
{ } ( ) ( )( )

1

1 , 11

1

, 1 1

1
2 ( ) 2 ( ) ,

2

N

N

j j j j jj

j

j j j j

S E U E U l

l

−

+ +=

=

+ +

  = − + − ∆  

∆ = −

∑x x x

Mx Mx

 (2.4) 



 

11 

A classical trajectory will be obtained when for all intermediate configurations 

we have /
j

S∂ ∂ =x 0 . The parameterization with respect to the arc-length is indeed 

more convenient numerically than with respect to time. However, we are still faced 

with the need to compute a stationary action instead of a minimum. Furthermore, Eq. 

(2.3) is always non-negative; as such it has an undesired minimum at E U=  in which 

the first-order variation is discontinuous. This is the classical turning point (zero 

kinetic energy) in which the trajectory may get stuck.  The derivative is not 

continuous, nor zero for that path so it is not a true classical trajectory. However, 

attempts for direct minimization of S  may pick it up. It is therefore better to work 

with the Gauss action in length (Elber 2006).  

The Gauss action (written originally for the time dependent formulation as 

[ ] ( )
2

0 0/ ( ') 't t

Gauss
S S t dt dU d dtδ δ= = +∫ ∫x Mx x��  (Lanczos 1970)) is trivially 

extended to the length formulation and the finite difference formula as 

1
2 ( / ) ( / )l N T

Gauss j j j
S S S−

=≈ ∂ ∂ ∂ ∂∑ x x  (for explicit formulas of the derivatives of S  see 

Appendix B). A direct minimization of the function l

Gauss
S  will provide an approximate 

classical trajectory as a function of length. We typically perform this minimization 

with simulated annealing (SA). Let y  be the vector of the joint set of all coordinates 

( )1 2, ,...,
N

≡y x x x , then the simulated annealing procedure uses l

Gauss
S  as the potential 

energy and the y  as variables as follows. We integrate the following stochastic 

differential equation for the whole trajectory: /l

Gauss
γ+ + ∂ ∂ =y y S y R�� � , where γ  is the 

friction constant, and R  is a Gaussian random force sampled according to the 

conditions ( )2    2 T tγ δ= =R 0 R I . The temperature, T , is reduced 

monotonically to zero at which point a minimum of the path is recovered. At finite 

temperatures it is possible to sample plausible paths to form a collection of trajectories 

depending on allowed variance in the value of the action (Elber, Meller et al. 1999). 
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A critical advantage of the boundary value calculations compared to MD is 

that the step can be very large while still providing correct qualitative behavior of a 

classical trajectory. The numerical stability of the optimization process is poorer with 

initial value solvers (with the exception of the Backward-Euler algorithm of Peskin 

and Schlick (1989) which is stable for large steps but still cannot be aimed to a desired 

product). For example, in the simulation of the folding of Cytochrome c (Cardenas and 

Elber 2003) we have used 1,000 length slices to provide a coarse grained description 

of the folding pathway; the resulting coarse-grained path was consistent with 

numerous experimental observations, but was of course approximate. Since the time 

scale of folding of Cytochrome C is in milliseconds, about 1210  steps would be 

required with an initial value solver (straightforward MD). This number of steps is 

nine orders of magnitude larger than the number of steps was used in the boundary 

value formulation.  

To start the SA algorithm we need to specify an initial trajectory 0y . The 

simplest initial guess for a trajectory is a Cartesian linear interpolation between the 

two end points. However, the energies of structures along linear paths are usually very 

high since they distort the covalent structure of the protein chain and have significant 

steric overlaps. These initial guesses require substantial optimization that is not always 

successful. The generation of the initial paths can benefit from spatial coarse graining 

which we discuss in Section 2.4. 

In addition to an initial guess for the path, the total energy of the system E  is 

needed for the calculation of the functional. An obvious try would be to use the 

average thermal energy, which is a sum of the average potential, U , and average 

kinetic energy, K , (if we would have computed a large number of trajectories then it 

would make sense to sample from the distribution of these energies instead of using 

the averages). However, our approximate procedure to compute trajectories introduces 
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a subtle complication. The trajectories with large steps in time or in the arc-length do 

not include motions with high frequencies (Olender and Elber 1996) (i.e., bond 

oscillations), and these degrees of freedom do not contribute to the thermal energy. 

The number of fast degrees of freedom is uncertain since the number of the (transient) 

collisions is not known. Since the collision between pairs of particles takes only a 

small fraction of time, the amount of filtering is also uncertain. If we use a lower 

bound for the filtering and consider only the bonds and the angles of the protein 

molecule (the number of bonds or angles is of order K  - the number of atoms), the 

thermal energy of the non-filtered motions is approximately 

(3 2 )( / 2) ( / 2)
B B

E K K k T U K k T U≈ − + = + . This is the energy that we use for the 

functional (2.3). 

 

 2.3 Path constraints 

 

In this section we describe a number of constraints that are imposed during the 

calculations of the path to ensure correctness, given the typical computing 

environments used for molecular modeling and simulations. During simulations of 

large molecules we use Cartesian coordinates for which the equations of motion are 

simple to write and manipulate. However, the Cartesian representation requires a 

reference frame. Changes in the reference frame of one structure along the path affect 

the distance between sequential coordinate sets , 1j j
l +∆ . Therefore, the same reference 

frame must be used for all the coordinate sets along the path. Fixing the reference 

system is achieved by applying the Eckart conditions (Elber 1990): six constraints on 

overall translations and rotations on each of the structures along the path.  

 1,...,6    or 0i

k k k k k i

k k

m m σ == × = =∑ ∑r 0 r r 0 , (2.5) 
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where 
k

m , 
k

r , and i

k
r  are the mass, the position, and the initial position of the kth atom 

respectively. We assume without loss of generality that the initial position of the 

center of mass is zero.  

To ensure that the protein structures in the set are equally spaced along the 

trajectory we also use a harmonic restraint to keep the distances between all the 

structures the same. The variational principle of the action as a function of length 

provides a condition on the motion perpendicular to the path, but it does not explicitly 

constrain the motion along the path. Therefore the constraint has no impact on the 

equations of motion. 

 ( )
1

2

1 , 1 , 1

1

1
   

1

N

j j j j

j j

l l l l
N

η

−

+ +

=

∆ − ∆ ∆ = ∆
−∑ ∑  (2.6)  

The strength of the restraint (2.6) is controlled by 1η , which should be chosen as high 

as possible. It should be kept in mind though that 1η  values that are too high would 

make the equations of motion for the annealing stiff and would require a much smaller 

and less efficient integration step. The same type of constraint was used in the 

calculation of approximate minimum energy paths and in the calculations of the 

steepest descent path (Elber and Karplus 1987; Czerminski and Elber 1990; Jonsson, 

Mills et al. 1998). Another way of implementing the equi-distance constraints is via 

the formulation of Lagrange’s multipliers (E, Ren et al. 2002). The Lagrange 

multiplier approach for dealing with the equi-distance constraints was used also in the 

calculations of minimum energy and minimum free energy paths (E, Ren et al. 2002; 

Weinan, Ren et al. 2005). 

At the beginning of the calculation, we also use the penalty function 

1
2 21/[ ( )]N

j j
E Uη −

= −∑ x , which makes the algorithm more stable by forcing the 

potential energy, U , along the whole trajectory to be smaller than the total energy E.  
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Without this additional term, the terms under the square roots in (2.4) may be negative 

and make the optimization ill-defined when the trajectory is far from optimal and the 

structures are highly distorted. After some annealing, the trajectory converges to a 

neighborhood of a true classical trajectory and the value of 2η  is gradually reduced to 

zero. The optimized trajectory is not sensitive to the initial value of 2η .  

The final target function that is used in the algorithm is  

             ( )
T1 1 1

2

1 , 1 2

2 1 2

1
( )

N N N

j j

j j j
j j j

S S
T l l

E U
η η

− − −

+

= = =

    ∂ ∂ = + ∆ − ∆ +      ∂ ∂ −     
∑ ∑ ∑x x x

. (2.7) 

Stochastic optimization of T  is performed similarly to the procedure described for 

l

Gauss
S , except that the constraints on translations and rotations of the system (2.5) are 

solved explicitly (the constraints are linear – see Appendix of (West, Elber, and 

Shalloway  2007)). We call the optimization of T , an SDEL calculation (Stochastic 

Difference Equation in Length (Elber, Ghosh, and Cardenas 2002)). 

The formulation in Eq. (2.7) is applicable to any type of dynamics between two 

fixed end points that can be described by an action. Another choice of action 

implemented in our molecular dynamics simulation software MOIL (Elber et al. 1995) 

is an action that provides approximate most probable Brownian trajectories and the 

intrinsic reaction coordinate (Steepest Descent Path (Olender and Elber 1997; Elber 

and Shalloway 2000)). Calculating reaction coordinates with boundary value 

formulation and action minimization is intriguing, since local calculations of reaction 

coordinates suffer from similar problems as the calculations of trajectories. For 

example, they are difficult to direct to desired product states. Other global algorithms 

for path optimization are available (Ulitsky and Elber 1990; Jonsson, Mills et al. 1998; 

E, Ren et al. 2002), however, they are not based on a global optimization of an action, 

which makes their calculation less robust. In essence they are similar to the direct 
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optimization of the classical action, which is a saddle point, and equivalent to solving 

a large number of differential equations simultaneously. The advantage of having a 

target function to optimize is the global quality control it provides. As long as the 

function value is reduced, a large step can be accepted. In contrast, solving differential 

equations requires small steps and locally controlled accuracy. The action that we used 

for the approximate Brownian trajectories is  

 
f

i

T

S

dU dU
S H dl

d d

   
= +    

   
∫
x

x
x x

, (2.8) 

where the constant 
S

H  is zero for the calculation of minimum energy path (Elber and 

Shalloway 2000). 

Another interesting feature of the boundary value trajectories is the ability to 

parallelize the code efficiently. This is in contrast to initial value solvers in which only 

the calculations of the forces can be made parallel at considerable communication 

cost. In the boundary value formulation every time (or arc-length) slice can be 

optimized on a different CPU (Zaloj and Elber 2000). For a detailed description of the 

parallelization of the algorithm and recent improvements of the SDEL implementation 

see Appendix A. 

 

2.4 Spatial coarse graining 

 

For proteins with several hundred amino acids, computing an atomically 

detailed trajectory starting from an initial guess (e.g., linear interpolation) far from the 

optimal trajectory can be a formidable task. With the resources available to us we are 

able to perform simulated annealing runs that optimize the initial trajectory locally but 

do not perform global search for alternative pathways. The algorithm puts 
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considerable effort in adjusting local positions of all atoms. It is less effective in 

relaxing collective variables of the transition that extend over significant length scales.  

Similar in spirit to multi-grid methods (Briggs 1987), it is worth separating the 

optimization of path to global and local length relaxations. Otherwise the relaxation of 

global variables will be slowed down by the “noise” of the local variables. In our car 

driving analogy this would correspond to an algorithm that tries to calculate the best 

driving directions by considering all car types and their conditions, experience of the 

driver and his level of knowledge of the neighborhood, and so on, before having a 

general appreciation of the driving route. The additional factors can slow down the 

speed of the calculations considerably, while their benefit is not obvious at the 

beginning of the calculations. Average properties of cars and drivers are simpler to use 

and are providing useful pathways. It makes sense to consider first pathways of 

average properties that will be refined later (if necessary) according to additional 

information available at the time of evaluation. 

We can use a related idea for conformational transitions. First we determine a 

trajectory for a system of reduced dimensionality that we believe captures the global 

characteristics and relaxation of the path. The coarse-grained (CG) trajectory provides 

the backbone on which an atomically detailed trajectory is constructed and refined by 

the SDEL methodology 

Obviously, there are numerous choices of how to coarse grain atomically 

detailed systems, and the choice is far from obvious or unique. Spatially CG models 

have been successfully used for several years to model behavior of complex 

biomolecular systems. In these CG models a molecule is represented by a reduced set 

of representative points, where a point corresponds to at least several atoms. A typical 

reduction of a protein that we use is to keep only the position of the Cα  atom of each 

amino acid. One model potential energy of this reduced representation is (Tirion 1996; 
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Haliloglu, Bahar, and Erman 1997; Xu, Tobi, and Bahar 2003; Lu, Poon, and Ma 

2006) 

 0 2( )
2

ij

ij ij

r C

U r r
κ

<

= −∑ , (2.9) 

where κ is a force constant in Kcal mol-1/m2, C is a distance cutoff, and 0
ij

r ,  and 
ij

r are 

the distances between the Cα  atoms of residues i and j in the native and the current 

conformation respectively.  This is the Anisotropic Network Model (ANM) (Xu, Tobi, 

and Bahar 2003), an extension of the simpler Gaussian Network Model (GNM) 

(Haliloglu, Bahar, and Erman 1997). It has been shown, that even these simple 

potentials provide a very good agreement with X-ray experimental B-factors (see for 

example (Yang et al. 2007)), and therefore may give adequate descriptions of the 

system dynamics in the neighborhood of the native conformation.  

The quadratic functional form of Eq. (2.9) cannot describe multiple minima 

and the barriers separating them. Hence it is not an adequate model to represent 

transitions between stable states. To allow the study of transitions with simplified 

network models Maragakis and Karplus (2005) used the Empirical Valence Bond 

(EVB) theory of Warshel (Aqvist and Warshel 1993) and generalized the simple 

ANM. Two ANM models Ui and Uf are defined for the reactants and the products 

respectively. The EVB computes a new potential U that interpolates between the two 

models 

                ( )
2 21

( ) ( ) ( ( ) ) ( ) ( ( ) ) 4
2 i f i fU U U U Uα α β
 

≡ + − − − − + 
 

x x x x x . (2.10) 

The scalar α is the energy gap between the two minima and β is a coupling constant 

that helps tune the barrier height and smoothness.  
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2.5 Stochastic dynamics 

 

For the coarse grained model we consider Brownian dynamics 

 ( ) ( )U tγ = −∇ +x x R� , (2.11) 

where γ  is a friction constant and ( )tR  is a random force with normal distribution 

( ( )t =R 0  and ( ) ( ) 2 ( )T

i j B i jt t k T t tγ δ= −R R I ). The boundary value formulation in 

Brownian dynamics settings was discussed by Elber and Shalloway (2000). They 

showed that the most probable trajectory in approximate and discrete variant of 

Brownian dynamics minimizes the following action (see also Eq.  (2.8)) 

          

1 2

2 1 1 1

1

S ( , , | , , )

N

BD N i N f s S j j
j

j

UH H

−

− +

=

 ∂= = = + − ∂ ∑x x x x x x x x
x

… .     (2.12) 

The constant HS mimics the energy in classical mechanics and can be chosen 

empirically. If 0SH → , the optimal trajectory that minimizes S
BD

 is the steepest 

descent path. On the other hand, if SH → ∞ , then the linear interpolation between ix  

and fx  (the shortest trajectory) is the optimal path. Varying the parameter HS provides 

a set of optimal CG paths with different thermal energies. The same simulated 

annealing algorithm as applied for all-atom l

GaussS  minimization is used for 

optimization of BDS . Since the CG model is much simpler than an all-atom model, 

path searches can be performed comprehensively. 

 

2.6 Refinement of coarse grained trajectories to atomic scale 

 

Once a set of most probable coarse-grained trajectories is obtained by 

minimization of BDS  for different values of 
s

H , we can return to the initial task of 
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finding approximate long time (arc-length) trajectories for the all-atom representation. 

First, atomically detailed structures are built based on the CG shapes along the 

trajectories. For a given length slice j and residue k, the following reconstruction is 

applied: Let k

jC  be a position of the kth Cα  atom in the jth frame. For each residue, in 

each frame, the rigid body transformations 1Tk

j→ : of 1 1, ,k l k lC C− +
…  to , ,k l k l

j jC C− +
…  and 

Tk

n j→ : of , ,k l k l

n nC C− +
…  to , ,k l k l

j jC C− +
…  are calculated. The parameter l defines the size 

of the local neighborhood. If 0l = , a single Cα  atom is considered at a time and only 

translational transformation can be determined, for 1l =  the local neighborhood is 

defined by a triplet of consecutive Cα  atoms (which are not linear in proteins) and 

both the translation and the rotation can be determined uniquely. In the actual 

implementation, we have used 2l = , which is more stable in capturing the local 

neighborhood. The position of a non- Cα  atom A in the length slice j, belonging to the 

residue k is reconstructed as a linear interpolation of its transformed positions from the 

initial and the final frame: 

 1 1

1
T T

1 1
k k k k k

j j n j n

n j j
A A A

n n
→ →

− −
= +

− −
 (2.13) 

After this interpolation of non- Cα  atoms the intermediate structures along the 

trajectory have unreasonably high potential energies, which must be reduced by 

minimizations before the all-atom SDEL computation can be used for the refinement 

of the path. The minimizations of the structures find local minima in the neighborhood 

of the initial structures and therefore do not change the paths significantly. There are 

three processes of minimization: (i) Minimization with soft (core) potential to 

eliminate truly bad van der Waals contacts, (ii) Minimization with regular Lennard-

Jones potential, and (iii) Short molecular dynamics simulation at 10K with harmonic 

restraints on the positions of the Cα  to escape undesired local minima. Typical 
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numbers of minimization steps for the Glutamate receptor problem described in 

Section 2.7, are 100, 200, and 1000 for each of the three minimization processes 

respectively. With a set of plausible trajectories in atomically detailed representation, 

the SDEL algorithm is executed to obtain physically and energetically sound 

pathways. 

 

2.7 The allosteric transition of mGluR1 receptor 

 

In this section we describe the calculation of the conformational transition in 

the extracellular (ligand binding) region of the metabotropic Glutamate receptor 

(mGluR). The mGluRs are membrane proteins that mediate the transmission of a 

signal into the cell after binding a glutamate molecule in the extracellular domain. 

These receptors belong to  Class C of G protein-coupled receptors (GPCR). There are 

three different subgroups of mGluR’s , termed I, II, and III, which do not differ much 

in their overall molecular architecture. Thus, the mGluR receptor is divided 

structurally into three regions: the extracellular region, the transmembrane region 

composed of a seven helix bundle, and the cytoplasmatic region. The extracellular 

region consists of the ligand-binding region (LBR) and the cysteine-rich domain 

(CRD) ( Muto et al. 2007, Pin and Acher 2002; Pin et al. 2004, 2005) 

 Experimental structures for the two states of the LBR of the extracellular part 

of the mGluR1 (belonging to subgroup I of mGluR) are available (PDB entries 1ewk, 

1ewt) (Kunishima et al. 2000). The receptor functions as a homodimer; consisting of 

980 residues (490 amino acids per monomer). However, not all residues of the LBR 

were resolved by X-ray crystallography and in each monomer a loop of approximately 

30 residues is missing. We found, however, that MD simulations of the PDB construct 

maintain a stable structure in nanosecond-length simulations, indicating that the 
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missing loop segments can be ignored for the present study. The protocol of 

generating the path from the PDB structures is as follows: 

(i) The energy of the two PDB structures is minimized. 

(ii)  The Cα  representation of the molecules is kept and coarse-grained reactive 

trajectories between the two end points are computed with simulated annealing as 

described in section 2.2 for different values of 
S

H  (by minimizing formula (2.12). We 

have used 100 structures distributed along the path to represent the transition. The 

action
BD

S , is minimized with 100K steps of simulated annealing. This requires about 

10 hours on a typical CPU for about 1000 residues. The steepest descent path (a 

minimum of Eq. (2.12) with 0
S

H = ) deviates approximately by a 1.25A/frame root 

mean squared distance (RMSD) from the linearly interpolated (LI) trajectory. Figure 

2.1 shows optimal coarse-grained trajectories for different values of 
S

H . The 

trajectories are projected onto a two-dimensional space with a multidimensional 

scaling technique (Cox and Cox 1994). As predicted by theory, the higher the value of 

S
H , the closer the LI path to the optimal trajectory. The potential energy profiles of 

the optimal trajectories as a function of their arc-lengths are shown in Figure 2.2. 

Figure 2.3 shows that the length of the optimal trajectory varies from 15.5 Å to 13 Å 

for different amounts of thermal energy (
S

H ) of the system. 
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Figure 2.1: The distances between 
optimal coarse-grained trajectories for 
the transition of the extra-cellular 
component of mGluRI. The distances 
are projected onto a two dimensional 
space for better visualization. Each 
number in the plot corresponds to the 
trajectory with the given value of 

S
H  

in multiples of Kκ ( K  is the number 
of residues and κ is the force constant 
from the formula (2.9)). LI represents 
the linearly interpolated path between 
the two known conformations. The 
distance metric, upon which the 
projection is defined, is a sum of 
pairwise Cα -RMSD distances between 
corresponding path structures.  

 

Figure 2.2: The potential energy 
profile of optimal Brownian 
trajectories of a coarse grained model 
for different values of

S
H . The 

transition is of mGluRI. The energy-
increasing curves correspond to the 
optimal trajectories with 

S
H  equal to 

0, 1K, 10K, and linear interpolation 
respectively. The potential and the 
values of 

S
H  are in the multiples of 

Kκ ( K  is the number of residues and 
κ is the force constant from the 
formula (2.9)). 
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Figure 2.3: Arc-length of the optimal trajectory as a function of

S
H . The RMSD 

between the two endpoints is approximately 13Å. 

(iii) Once the optimal CG paths for different values of 
S

H  are found, they are 

refined to atomically detailed trajectories and are locally minimized as discussed in 

Section 2.5. A three-dimensional projection (not shown) indicates that the atomically 

detailed refinement moves the trajectories in a direction perpendicular to the manifold 

defined by 
S

H  (physically it suggests that the refinement focuses on the side chain 

positions, while the locations of the Cα  atoms are not affected appreciably). To 

minimize l

Gauss
S , at least 10K steps of SDEL optimization are required. 

The SDEL calculation takes approximately 100 hours of parallel computation 

on 100 CPUs, thus the SDEL part of the overall calculation is approximately 1000 

times more expensive than the coarse-grained pre-processing part (nevertheless, we do 

believe that the resulting atomically detailed description of the system is important and 

worth the investment).  

The most expensive part of the SDEL calculations for systems of this size in 

our code MOIL (Elber et al. 1995) is the Generalized Born implicit solvation energy. 

It takes approximately 95% of the SDEL’s computation time. The complexity of this 

calculation is likely to be reduced in the future since there is significant room for 
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improving the GB implementation of MOIL - a project that we intend to pursue. The 

SDEL protocol tries to find a minimum in 3 N K× ×  (for this system ≈ 3x106) 

dimensional space, which also adds to the complexity of the calculations. Note, 

however, that the CG dimensionality is smaller by only a factor of 10-100, 

significantly smaller than the factor of 1000 mentioned above, between the 

calculations of the atomically detailed and coarse-grained models.  The dominant 

factor in the latter is the much simpler (smoother) ANM potential compared to 

atomically detailed potentials.  

Even when employing simulated annealing, the path search is in a 

neighborhood of the initial guess trajectory. The 10K SDEL steps modify the 

trajectory of mGluR transition by no more than 0.1Å/frame1, compared to 

1.25Å/frame obtained by the CG preprocessing which is clearly more significant.  

Figure 2.4 shows the potential energy profiles of optimal paths selected by 

SDEL. Only profiles for trajectories that were optimized from the LI path and SDP 

( 0
S

H = ) are shown. The energy profiles of other trajectories refined by SDEL have 

comparable values. The SDEL adds considerable thermal kinetic energy to the SDP 

path, making the SDEL potential energies higher than the SDP potential energies, and 

the SDEL path more appropriate for describing the thermal processes. The energy 

barrier for a trajectory starting from the LI path is somewhat higher than the barrier 

obtained from a path derived from the SDP, suggesting an improvement in the SDEL 

trajectory produced the Steepest Descent Path CG trajectory.   

                                                
1 The 0.1Å RMSD per frame is based on Cα  atoms only. The all atom RMSD is approximately twice 

as large. 
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Figure 2.4: The energy profile of optimized SDEL trajectories for atomically detailed 
model of mGluR1. The horizontal axis shows frame index along the trajectory. The 
vertical axis is the potential energy. The top part shows potential energy profiles for 
trajectories from which SDEL optimization was started. In the bottom part the 
potential energy profiles after the SDEL optimization are shown. Solid lines 
correspond to trajectories optimized from the linear interpolation and dashed lines 
correspond to trajectories starting from the optimal CG trajectory for 0SH = .  

 

 
Figure 2.5: The simulated annealing profile in an SDEL minimization of the target 
function T as a function of the number of minimization steps. The example is for a CG 
trajectory with 0

S
H = . In the right insert we expand the view of the last 2,000 steps. 

The decrease in the target function is rapid at the beginning, but in the last 2,000 steps 
the target function is decreased by only 33%. 
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Figure 2.5 shows the simulated annealing history of an SDEL run. The target 

function, T , is rapidly decreasing in the first thousand steps; however, further 

reduction with more steps is considerably slower. The RMSD changes of the trajectory 

in the last thousand of steps of the minimization are small (order of 210− Å/frame) and 

thus it might not be so important to locate the exact global minimum of T  if the 

structural changes are of prime interest. 

Any substantial differences in the inferences obtained from the SDP and LI 

based paths can be revealed by examining the contacts between the two monomers 

that substantially change during the transition. In Figure 2.6 we examine the distance 

between GLU A 60 (atom OE2) and ARG B 448 (atom NH2). These two atoms are 

not in contact in either of the two end conformations, but are brought together during 

the transition in the optimal path based on SDP, but not in the path based on LI. 

Notably, the formation of an intermediate salt bridge may reduce the barrier height for 

the transition. 

 
Figure 2.6: The distance between GLU A 60 (atom OE2) and ARG B 448 (atom 
NH2) during the transition between the inactive and active conformation of mGluR1. 
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This evolution is represented in the sequence of structures shown in Figure 2.7 

that are taken from points along the path. This sequence illustrates the formation and 

the breaking of the salt bridge along the path. 
 
 

 

      
Figure 2.7: An illustration of the strong coupling between atomically detailed motion 
and large-scale domain opening.  A sequence of events along the transitional pathway 
is shown starting from the upper left corner (structure 1) continuing to the right 
(structure 20) and then down. The length slices are shown from an atomically detailed 
path of 100 slices that was constructed from a coarse-grained model. Only slices 
1,20,50,60 and 100 are shown. The atomically detailed event is the transient formation 

of a salt bridge between a gluamtic acid (Glu60 in chain A of the dimer) and an 
arginine (Arg448 in chain B) (yellow space filling model). There is also a large-scale 
motion that causes a visible separation between the two lobes. The salt bridge is not 
present at the end points. It assists in lowering the transition barrier. Notably, it is not 
present in the linearly interpolated path (see text for more details). 
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2.8 Conclusions 

 

The first chapter was about spatial and temporal coarse-graining of pathways 

and trajectories of proteins. We have shown how the two coarsening strategies 

(temporal and spatial) can be applied together to obtain a qualitative computational 

description of large scale conformational transitions of biomolecular systems. The 

proposed method scales to systems of size of several hundreds to thousands 

aminoacids with large scale (12 Å RMSD) spatial rearrangements of structural 

domains.  

The presented method was tested on a system of conformational transition of 

the extracellular domain of mGluR receptor upon ligand binding.  The overall cost of 

coarse-grained part of the algorithm is negligible (about 0.1%) compared to all 

atomistic refinement. Moreover the algorithm in the coarse-grained mode is 

responsible for about 90% of adjustments to the resulting trajectories (as measured by 

RMSD). 

There are however some limitations of the proposed method. One of them is 

that the computed results are only of qualitative nature with hard to interpret statistical 

properties of each resulting trajectory. Another issue is that the underlying coarse-

grained force field might not be appropriate for large scale conformational 

rearrangements.  We address both of these issues in the following chapters.  

In Chapter 3, we discus an approach to systematically design coarse-grained 

potential consistent with experimental measurements (Xray structures) and in Chapter 

4 we propose a way to calculate accurate quantitative analysis of a transition process. 

Results calculated in this chapter, a set of physically plausible trajectories, enters as 

input for quantitative calculations of thermodynamics and kinetics of the system. 
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CHAPTER 3 

A COARSE-GRAINED POTENTIAL FOR FOLD RECOGNITION AND 

MOLECULAR DYNAMICS SIMULATIONS OF PROTEINS 

 

3.1 Introduction  

 

Hierarchical description of complex systems motivates the creation of coarse 

grained or reduced models with two goals in mind: (i) capture essential features of the 

system with simplified models that can be solved exactly (or almost exactly), and (ii) 

describe quantitatively properties of complex systems with a reduced representation 

computed from detailed experiment or theory. Examples for coarse grained models of 

type (i) are the HP model on a square lattice (Dill 1985), or the Elastic Network Model 

for protein flexibility (Tirion 1996; Haliloglu, Bahar et al. 1997). Examples for type 

(ii) models are detailed folding simulations on lattices (Kolinski and Skolnick 1996), 

or coarse description of membranes (Marrink, Risselada et al. 2007).  Approaches of 

type (ii) attempt to significantly reduce the computational cost and at the same time 

maintain a high level of accuracy that approaches the results of more detailed models. 

The potential we describe in here belongs to class (ii). Our aim was to develop 

an empirical force field with a reduced set of variables for physical simulations of 

proteins in the neighborhood of the native states. Simulations at the coarse level can be 

done more efficiently than atomically detailed calculations. Indeed, we illustrate here 

test simulations with accumulated time length of tens of microseconds that require 

only 12 hours on 500 computer cores. A nanosecond simulation of a medium size 

solvated protein (200 amino acids) can take a few days. The computational saving for 

simulations is about 3 orders of magnitude. We expect that equilibrium distributions 

generated by simulations with the designed potential will show characteristics of 
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atomically detailed simulations. In parallel we require that the potential will recognize 

native folds of proteins as the lowest energy minimum when compared with an 

extensive set of “decoy” structures. 

Our potential is purely empirical and the experimental observables which we 

use to fit the potential parameters are native structures of proteins determined by 

experimental techniques and deposited in the Protein Data Bank (PDB) (Berman, 

Westbrook et al. 2000). These observables are clearly incomplete and a correct energy 

function should reproduce also the thermodynamics and kinetics of the system. 

In the last twenty years many energy functions were estimated from empirical 

structures of proteins using the methodologies initiated by the following studies: 

inverse Boltzmann formula (statistical potentials) (Miyazawa and Jernigan 1985), 

memory associated Hamiltonians (Goldstein, Lutheyschulten et al. 1992), Z score 

optimization (Luthy, Bowie et al. 1992), and Mathematical Programming (Maiorov 

and Crippen 1992). Learning potentials from empirical structures should be contrasted 

with physically based energy functions. The usual design of a physical energy relies 

on experiments (and/or ab-initio calculations) on small model systems (Rizzo and 

Jorgensen 1999; Wang and Kollman 2001; Lagant, Nolde et al. 2004). From a learning 

view-point, an advantage of physical potentials is the separation of types of input (the 

data to learn)) from types of output (the data to predict). On the other hand, potentials 

that are learned from empirical structures recognize correct folds with significantly 

less computational resources compared to physical energies, allowing for more 

extensive exploration of conformation space. The number of degrees of freedom is 

smaller by a factor between three and ten even without explicit solvent. 

The approach described in this chapter is an extension of the usual 

implementation of statistical potentials. We therefore start with a brief discussion of 

statistical potentials. After the introduction of statistical potentials by Miyazawa and 
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Jernigan (1985), a number of groups, including for example, Sippl (1990), Skolnick et 

al. (1997), Betancourt and Thirumalai (1999), Bryant and Lawrence (1993), Hinds and 

Levitt (1994) and others more recently (Xia, Huang et al. 2000; Lu and Skolnick 2001; 

Buchete, Straub et al. 2003; Lu, Dousis et al. 2008) continue to develop this concept 

and to examine the basic algorithm, functional form, and the data sets.  

The basic concept of statistical potentials is similar in spirit to that of the 

potential of mean force (Hill 1956) but important differences remain. Let the complete 

coordinate vector in continuous space representing the system be X , and the subset of 

coordinates that we use to describe the protein be y
i=1,...,n , for example the set of 

backbone torsions or distances between amino acids. The number of reduced degrees 

of freedom is n , while the number of total number of degrees of freedom in the 

system is N . If the probability of a conformation, p X( ), is known we can determine 

the probability of a variable of interest, y
i
, by direct integration 

( ) ( )( )( )
i ii

P X y y X dXp y δ −= ∫ . The delta function matches the value y
i
 with the 

function of the canonical coordinates y
i

X( ). If the probability P X( ) obeys 

Boltzmann statistics ( ( ) ( )( )expP X U Xβ∝ − , U X( ) is the potential energy, and β  

is the inverse temperature) then the probability p y
i( ) is related to a potential of mean 

force (PMF), ( ) ( )( )(1/ ) log
i i i

V y p yβ= − .  

The first assumption made in the derivation of Statistical Potentials (SP) is that 

the Protein Data Bank (PDB) provides a Boltzmann sample of conformations, 

therefore a PMF can be estimated from the observed frequencies of certain degrees of 

freedom ( ) ( )( )(1/ ) log
i i i

V y f yβ= −  (Miyazawa and Jernigan 1985). 

The second assumption made in the calculations of SP is the representation of the total 

potential as a sum of PMF terms. An “energy” of the system is written as 

( ) ( ) ( ) ( )1 2 1 1 2 2, ,..., ...
n n n

U y y y V y V y V y= + + + .  
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The problem with this assumption is easy to illustrate using the definition of 

the PMF. The “energy” in the subspace of y
i=1,...,n  is used to sample conformations in 

the full coordinate space of the protein X . The sampling is in the canonical ensemble 

with β  for inverse temperature and for all degrees of freedom X : 

 ( ) ( ) ( ) ( )( ) ( )( ) ( )1 1exp ... ... ,
i i i n n i i j

j

p y V y V y V y y y X J Y X d dyβ δ = − + + + + ⋅ − Γ  ∏∫ , 

where we plugged in the integral the usual form of the statistical potential, dΓ  is a 

volume element of the remaining coordinates not in y
i
’s, and J Y , X( ) is the Jacobian 

of the transformation from X  to Y . Note that X and Y  are not of the same dimension 

and Γ  denotes the remaining degrees of freedom. 

Instead of the statistical potential we can write a new effective energy that is 

used in the sampling ( ) ( ) ( ) ( )( )1,..., 1 log ,
eff n i i i

V y y V y J X Yβ= −∑ . If the Jacobian 

was a constant then we would trivially recover the probability ( ) ( )( )exp
i i

p y V yβ∝ −  

that we started with. However, for most degrees of freedom used in statistical 

potentials (e.g. distances) this is not the case. We can still seek an effective potential 

( )*
i i

V y  that will make the desired definition of the mean force potential to hold, i.e., 

( ) ( ) ( )( )( ) ( )( )*exp log ,
i i ji i i i jy y X d dyp y V y J X Y δβ − Γ∝ − +∫ ∑ ∏  and at the 

same time p y
i( ) is equal to the PDB distribution p y

i( ). A statistical potential used 

“as is” will not reproduce the PDB distribution if it is implemented in an algorithm 

that generates the canonical distribution. Note that the potential V * y
i( ) and the 

distribution p y
i( ) are no longer related by the inverse Boltzmann relation. The 

algorithm proposed in this chapter attempts to generate such a V * y
i( ). 

Besides the basic difference between PMF and SP pointed above, writing the 

overall potential as a sum of PMFs introduces additional approximations. The first is 

the factorization of the overall probability to a product of probabilities. It suggests lack 

of correlations between the y
i
’s. The use of multiple internal coordinate probabilities 
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(Buchete, Straub et al. 2004; Ngan, Inouye et al. 2006; Feng, Kloczkowski et al. 2007) 

( )i j
p y y  addresses some of the concerns. However, the choice of correlations to focus 

on is not trivial and acquiring appropriate statistics for these higher order interaction 

terms is another challenge. The second approximation is the use of types. It is not 

obvious that probability distribution of type α  (e.g., a contact between phenylalanine 

and valine) will be the same in a different environment (e.g., hydrophobic or polar 

medium).  

SP most frequently aim at the fold recognition problem; i.e., given a set of 

plausible structures that are all protein-like, how to choose a configuration that is the 

closest to the native fold. It typically does not address the problem of direct and 

extensive sampling of configuration space with a potential according to a pre-

determined weight (e.g. canonical). We generate a potential that is consistent with 

both (MD simulations and fold recognition). Not surprisingly new problems emerge. 

One practical problem is that the sampling of coordinate space in the PDB is 

incomplete. As a result MD simulations with straightforward statistical potentials do 

not produce protein-like conformations. 

The problem of generating a single potential, which is optimal for the task of 

fold recognition and of MD simulations, can be solved by additional potential terms 

that take care of interactions poorly sampled in the PDB. The combination of the 

statistical potential and the new terms is not obvious. Once these terms are added to 

“traditional” statistical potentials the simulations with the adjusted energy function no 

longer (necessarily) reproduce the distributions of the y
i
’s extracted from the PDB.  

We address this particular problem by adopting an algorithm from condensed phase 

simulations which is a variant of the generalized ensemble approach (Kinnear, Jarrold 

et al. 2004). It generates iteratively a potential consistent with the PDB distributions of 

internal coordinates and the supplements discussed above.  
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The resulting potential is significantly more complex than the usual form of 

statistical potentials. It is also continuous and differentiable. We emphasize that even 

with these advances we do not address the two basic approximations of statistical 

potentials (factorization of the probability and transferability of parameters). It is 

therefore not surprising that significant deviations from native folds are still observed 

in simulations for a significant number of proteins, even if the design requirements are 

satisfied. Despite the drawbacks, the performance we obtain with the final form of the 

potential is adequate for the usual fold recognition (and it was used in CASP8 

http://predictioncenter.org/casp8/index.cgi), and also for Molecular Dynamics 

simulations. Another continuous and differentiable potential that learns its parameters 

from the PDB with a different technique and can be used for energy minimization and 

simulations was introduced recently (Amir, Kalisman et al. 2008). Bridging potential 

parameters from small molecule data to macromolecular modeling was also pursued 

recently by Z score optimization (Jagielska, Wroblewska et al. 2008). These potentials 

are however designed for all atom models. 
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3.2 Potential functional form  

 

In this section we present the functional form and the parameterization of a 

coarse grained potential which we call FREADY (a potential for Fold REcognition 

And DYnamics). The starting functional form and parameterization of the potential 

were motivated by the simple physical model of the group of Thirumalai (J. D. 

Honeycutt and Thirumalai 1992) and its enhancements by the group of Head-Gordon 

(Brown and Head-Gordon 2004; Yap, Fawzi et al. 2008). However, as we look in 

more detail into the conformation data available in the Protein Data Bank and examine 

structures generated by Molecular Dynamics (MD) simulations (using coarse grained 

potentials), a significantly more complex form becomes necessary.  

The number of degrees of freedom in the complex form remains relatively 

small, only two points per amino acid are used - the position of the Cα atom and the 

side chain center of mass (CM). It was also decided to keep the functional form 

independent of any information about the native structure (e.g. secondary structure or 

native contacts); thus enabling unbiased dynamical studies of biophysical processes 

where the information about the native conformation is not available  or well defined 

(e.g. large conformational transitions). 

The potential employs the functional form (3.1) that includes bond, angular, 

and torsional terms as well as non-bonded interaction and explicit hydrogen bonding. 

Solvent is treated implicitly since the parameters of the potential are learnt from 

statistics of solvated protein. By insisting that solvent induced structures (most 

structures in the PDB are reasonably well solvated) are reproduced in the simulations 

we incorporate some solvent effects. 
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,  

( ) ( , ) ( , ) ( , )

          ( , , ) ( )

B i Bi A i Ai T i i

i bonds i angles i torsions

NB ij i j HB

i j i i dipole centers

U X U r U U

U r U i

φτ θ τ φ τ

τ τ

∈ ∈ ∈

> ∈

= + +

+ +

∑ ∑ ∑

∑ ∑
 (3.1) 

We denote by τ  the type of interactions (for example atom type, or the type of a bond 

between two atoms). Typically, bond and angle interactions in other force fields 

(atomic or coarse-grained) are modeled by quadratic terms with a single minimum; 

however these functions do not give acceptable fits to the statistics of bond lengths 

and angles we extract from the PDB structures (Figure 3.1) and later from MD. The 

reason is that the internal degrees of freedom of side chains and backbone that are 

removed in the coarse representation have internal structure with multiple stable states 

that is reflected in multiple minima of the coarse variables. This observation is 

especially true for covalent terms that include a side chain atom but is also correct for 

angles of three sequential backbone atoms (Cα). Therefore, the bond energy as well as 

the angle energy terms of FREADY, are described with a single, a double, or a triple 

well potential (see Eq. (3.2) and (3.3)). The multiple well potentials we consider in 

this work are 

( )

2

2 2
/ 1 1 2 2

( )                                                                                            if  terms with a single well  

( , ) ( ) , ( ) ,                             
B A

k x x

U x C k x x k x x

τ

τ τ τ τ τ τ

τ τ

τ α β

− ∈

= − − +

( ){ }2 2 2
1 1 2 2 3 3

                  if   terms with a double well

( ) , ( ) , , ( ) , if   terms with a triple wellC C k x x k x x k x xτ τ τ τ τ τ τ τ τ τ

τ

α β α β τ

∈

′ ′− − + − + ∈







(3.2) 

 

                     
  
C(U1,U2 ,β ) =

1
2

U1 + U2 − U1 −U2( )
2

+ β 2





,                              (3.3) 

where  x  denotes a bond length or an angle size and all variables with τ  in the 

subscript are potential parameters to be determined. The parameters 
 
x

τ
 are 

equilibrium positions, 
 
k

τ
are force constants, α

τ
 are relative energy differences 

between the different minima, and β
τ
 are determining the barrier height between two 

wells. The coupling function 
  
C U1,U2 ,β( ) joins the two energy functions   U1

 and   U2
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as in empirical valence bond theory (Aaqvist and Warshel 1993), a form that was used 

in another coarse-grained model (Maragakis and Karplus 2005; Okazaki, Koga et al. 

2006). Triple well terms require multiple parameters α  and β . 

The current model has 22 different types of bonds and 58 different types of 

angles. There are 19 different bonds between Cα and CM particles for each of the 

different amino acid (GLY does not have a CM particle), one bond type for the typical 

Cα-Cα backbone bond, one for a bond between Cα of a proline in a cis-isomer and a 

preceding Cα atom. The last bond type is for modeling the disulfide bridges between 

cysteine residues. 

  The 58 angle types are built from the following three templates Cαi-1-Cαi-

Cαi+1, CMi-Cαi-Cαi-1, and CMi-Cαi-Cαi+1 for each different type of a central (Cαi) 

atom with the exception of GLY. The 20 types of angle templates Cαi-1-Cαi-Cαi+1 are 

all very similar and could be reduced to a single backbone angle type. Since subtle 

differences may have remained we did not merge all these terms in the first version of 

the potential. 

The torsional terms 
  
U

T
φ,τ

φ( ) take as input an angle φ  and a type of the 

torsional angle τ
φ
. The torsional term is modeled as the following sum of cosine and 

sine terms: 

 ( )
5

, ,
1

, cos( ) sin( )T n n

n

U C n S nφ τ τφ τ φ φ
=

= +∑  (3.4) 

We have used five expansion terms for the periodic function. This number of terms is 

probably unnecessary, however, in the present version of the potential they do not 

harm. It is still possible that subtle effects are captured by the high order terms and 

therefore we left these terms “as are” and did not attempt to simplify them further. 

There are almost  4 ⋅ 202 different types of torsional/dihedral angles: A torsion (the 

angle between two planes) is defined by four points. All torsions in our model are 
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along Cαi-Cαi+1 backbone bonds (we do not consider torsions related to CYS-CYS 

bonds). The type of a torsional interaction, τ
φ
, is determined by the residue types of 

the central Cα pair and by the particle types (Cα or CM) of the two remaining points. 

For a given Cα pair there can be up to four different dihedral angles present (Cαi-1-Cαi-

Cαi+1-Cαi+2, CMi-Cαi-Cαi+1-Cαi+2, Cαi-1-Cαi-Cαi+1-CMi+1, and CMi-Cαi-Cαi+1-CMi+1). 

The number of different torsional types is not exactly  4 ⋅ 202  since glycine does not 

have a side chain. 

The function   U NB
(r,τ

1
,τ

2
) , describes non-bonded interactions where  τ1

,  τ
2
 

are the types of the interacting particles and  r  is the distance between them. There are 

39 different particles considered for non-bonded interactions (20 Cα atoms and 19 CM 

particles). Thus we have 39 40 / 2⋅  types of non-bonded interactions in the system. 

The function   U NB
(r,τ

1
,τ

2
)  is continuous and differentiable to the first order and is 

defined below.  

          

1 2 1 2 1 2

1 2

0 6 2

9
0

1 2
0

( )    if  4.2 Å              

( , , ) ( )                           if  4.2 Å,  13.5 Å

0                                                  if  13.5 
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− −
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= + ∈
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∑
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






 (3.5) 

 

 
  
U

NB

0 (r) =
0.6 ⋅107 r−12 − 3⋅103r −6  between CM-CM particles

0.6 ⋅106 r −12                  otherwise                           





 (3.6) 

 

We do not consider a pair of particles for non-bonded interactions if they are 

separated by one or two bonds; if they are separated by three bonds (1-4 interaction) 

we scale the non-bonded interaction down by a factor   f14
. S-S bonds between CYS 

residues are not considered for these exceptions. If a scaling factor   f14
= 1  is used the 

non-bonded energy distorts the local geometry when CMi and CMi+1 are a strongly 

repulsive pair. At the other limit, if   f14
= 0 , some pairs of neighboring sidechains may 
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overlap. The value of   f14
 was set to 0.3 after some experimentation and was found to 

reproduce well the local structure. 

 

 

Figure 3.1: Description of terms entering the calculation of the backbone hydrogen 
bonding term   U HB

(i, j) . The angle  α ij  is defined as an angle between the bonds 

Cαi
− Cαi +1  and Cα j − Cα j +1 . 

Backbone hydrogen bonding potential between residues i and j,   U HB
(i, j) , is 

based on the model developed by Liwo and coworkers (Liwo, Pincus et al. 1993; 

Liwo, Oldziej et al. 2004). These hydrogen bonds are modeled by dipole interactions 

between the peptide centers which are implicitly assumed to be located in the centers 

of Cα-Cα bonds. The explicit functional form of   U HB
(i, j)  is given below 
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3 6
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i j
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, (3.7) 

 

where 
 
r

ij
, 

 
α

ij
, 

 
β

ij
, and 

 
γ

ij
 are the coordinates that determine the geometry of a 

hydrogen bond (Figure 3.1). There are two types of peptide centers ( ){1, 2}
i

τ ∈  
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defined in this work similarly to reference (Liwo, Pincus et al. 1993): a usual peptide 

bond and a proline-type peptide bond. The interaction parameters to be determined are 

0 ,  ,  
i j i j i j

r A Bτ τ τ τ τ τ , and ετ iτ j
. Eq. (3.7) is derived in (Liwo, Pincus et al. 1993) by 

Boltzmann averaging over torsional degrees of freedom of the two interacting dipoles. 

Our initial attempt to model backbone hydrogen bonding by , ( , )
i j HB

U i j∑  follows 

UNRES (Liwo, Pincus et al. 1993; Liwo, Oldziej et al. 2004). However, with other 

terms at hand, simulations with the UNRES potential generate conformations that are 

often too compact and contain unnatural hydrogen bonding patterns. Another 

observation was that typically each residue contributed to the sum , ( , )
i j HB

U i j∑  by 1 

to 5 partners. Five hydrogen bonds per residue are too many compared to the typical 

saturation number of about two that we observed in the PDB. To reduce over bonding 

of the hydrogen bonds within the context of FREADY potential, we retain at most the 

two strongest interactions described by Eq. (3.7) per amino acid. The hydrogen bond 

energy of a site i  is determined as follows. The energies of all the candidates j  for a 

hydrogen bond with i , U
HB

i, j( ), are sorted and the lowest energy, Hbij

(min)  is kept. We 

then examine the possibility of having two (lowest energy) hydrogen bonds to the site 

i . The energy of the two hydrogen bonds depends on their relative orientation φ jik , 

Hbijk

min( ) = min UHB i, j( )+ UHB i, k( )( )⋅ F − cos φ jik( )( ), where 
 
φ

jik
is the angle between the 

dipole centers j, i, and k.  

( ) [ ]
1              if  0.9

( ) 0.3 / 0.6    if  0.3,0.9

0             if  0.3

x

F x x x

x

>


= − ∈
 <

 

The optimal single bond energy is then compared to the optimal two-hydrogen-bond 

energy and the option with the lowest energy is used  

 ( ) ( )min min( ) min ,HB ij ijkU i Hb Hb =   . (3.8) 
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3.3 Learning the potential parameters 

As discussed in the introduction to this chapter the most common approach to 

derive parameters of a statistical potential is based on the assumption of mutual 

independence of different interactions in the protein. Based on statistics collected from 

experimental structures the potential function along a degree of freedom q is obtained 

by Boltzmann inversion formula 

                                       

  

U (q) = −k
B
T ln

P
native

(q)

P
reference

(q)









 ,                                         (3.9) 

where 
 
k

B
 is the Boltzmann constant,  T  is the temperature (300 K), and  Pnative

(q) , 

  
P

reference
(q)  are probability distributions of a variable q in the experimentally solved 

dataset and an expected probability distribution of  q (also known as the reference 

state). Examples for reference states are (i) a state of no interactions between amino 

acids (unfolded protein), and (ii) a state of random interaction between the amino 

acids. A proper choice of the reference state was a topic of much discussion in the 

literature (Betancourt and Thirumalai 1999; Zhou and Zhou 2002). The complete 

potential for a particular protein is given by a sum of 
 
U q( ) terms: 

( ) ( )1 1,..., l

total l i i
U q q U q==∑ . This functional form assumes that the total probability 

of finding these variables factors into a product of probabilities of individual terms.  

We bridge the learning of potentials for fold recognition and potentials for 

Molecular Dynamics simulations by an iterative procedure to recover the native 

distributions of relevant degrees of freedom ( )
native j

P q , where j is an index that goes 

through types considered in Eq. (3.1) (e.g. distance between Cα particles of ALA and 

THR residues). Before the first iteration, the training set of native structures is used to 

calculate ( )
native j

P q  and a zero-order potential ( )0 1, ,
l

U q q…  is chosen. The particular 

choice of 0 ( )U q  is not important and any reasonable initial guess is corrected in the 

following learning iterations. The potential 
  
U

i
q( ) is then used to initiate long 



 

48 
 

Molecular Dynamics trajectories in the CG model producing canonical distribution of 

structures at room temperature (300 K) consistent with 
  
U

i
q( ). These simulations are 

run for 600 picoseconds (with a time step of 3 fs) and for all proteins (4867) in the 

training set. Probability distributions ( )
i j

P q  of bond lengths, angles, torsions, pairwise 

particle distances and hydrogen bond lengths are collected from the final structures of 

simulated trajectories. However, as discussed in the introduction section, canonical 

sampling with statistical potentials does not reproduce the PDB distributions because 

of the Jacobian coupling. An attempt to fix this problem is to consider the ratio of the 

sampled and of the native distributions. The logarithm of the ratio of these 

probabilities will be added to the potential to initiate a new iteration (new Molecular 

Dynamics trajectories with the fixed potential). The formula for the adjustment 

(following Reith and co-workers (Reith, Pütz et al. 2003) and (Sun, Ghosh et al. 

2008)) is 

                                           1

( )
( ) ( ) ln

( )
i

i i B

native

P q
U q U q k T

P q
+

 
= +  

 
.                             (3.10) 

We reiterated the calculations of the potential and Molecular Dynamics 

simulations a number of times until the correction to the potential parameters was 

negligible, in practice this happens in about 20 iterations. It is similar in spirit to a 

generalized ensemble approach that was used extensively by others (see for instance 

(Hansmann, Okamoto et al. 1996)). Reith and co-workers proposed this procedure to 

derive coarse grained potentials for polymers. Atomically detailed simulations were 

used in their work to define 
  
P

native
(q

j
) . Instead of running expensive all-atom MD 

simulations on the whole training set we infer 
  
P

native
(q

j
)  from the structures deposited 

in PDB.  

It is important to emphasize the difference of equation (3.10) from the usual 

statistical potential approach (Miyazawa and Jernigan 1985) which is a one step 
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calculation from probability to potential. The iterative form of equation (3.10) allows 

us to add external terms (external to the probabilities determined from the PDB) and 

use the iterations to merge the different terms such that the original probabilities will 

be recovered in the canonical sampling. Such a potential refinement scheme is new 

and is not part of the “traditional” statistical potential approach. The final distributions 

( )
j

P q  that we obtain are not identically equal to the native PDB distributions. 

However, the deviations are within the usual statistical errors of this type of 

calculation (Figures 3.2 and 3.4) and are due to the discrete representation of the 

distributions and the finite size of the training set. 

Nevertheless, one must keep in mind that even with the iterations the potential 

is approximate. First (as discussed above) the factorization is an approximate 

procedure and only a general 
  
P q1,...,ql( ) is exact. Second, it is assumed that the 

potential is transferable, i.e. that we can have one coarse-grained potential to describe 

many proteins. Third, we assume that the iterative process of running Molecular 

Dynamics trajectories and adjusting the potential as described above converges to a 

stable solution (there is no proof of convergence). With the above mentioned 

approximations, it is perhaps no surprise that the procedure we finally adopt to 

compute all the potential parameters involved considerable heuristic, and that the 

resulting potential is not perfect: (i) it does not recognize native folds as the lowest 

energy in all cases, and (ii) MD simulations sampled with significant probability (for 

some proteins) structures that are far from the native fold.  

As a training set, we used a set of PDB protein structures that forms the 

prediction database for our modeling program LOOPP (http://www.loopp.org, for a 

recent publication see (Vallat, Pillardy et al. 2008)). It includes 9513 native structures 

that have at most 70% sequence identity between any two proteins in the set. This is a 

higher sequence similarity than the similarity used in other studies of statistical 
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potential (about 20%). Our data provides reasonably dense sampling in sequence 

space. At least for fold recognition (after all, we wish to predict protein structure from 

a sequence) we argue that folds with larger sequence capacity (the number of 

sequences that are compatible with a given fold (Meyerguz, Grasso et al. 2004)) 

should have a higher weight than folds that capture only a few sequences. This weight 

might be lost if the selection emphasizes structural diversity instead of sequence 

variations. Another (pragmatic) reason that led us to broaden the set of structures and 

sequences is that of statistics. We need more proteins in order to obtain reliable 

statistics to fit our complex differentiable interaction terms (e.g. we need to sample at 

least 100 times every pair of neighboring residues along the backbone to fit reliably 

each torsional interaction).  

The training set is further refined by removing membrane proteins (Jayasinghe, 

Hristova et al. 2001; Tusnady, Dosztanyi et al. 2004) and proteins complexed with 

polynucleotides (Spirin, Titov et al. 2007). All occurrences of selenomethionines 

(MSE) were replaced by regular MET residues and pyroglutamic acids (PCAs) were 

removed from the C-terminals. Proteins that contain other non-standard amino acids 

were removed from the training set. We used structures that correspond to the 

biological molecules (remarks BIOMT 350 in the PDB files) rather than the units 

determined by crystallography. In the training process we limited ourselves to globular 

proteins, therefore proteins with radius of gyration 15% larger than expected were not 

considered. The formula for expected radius of gyration of globular proteins 

  Rg = 0.395N
3

5 + 7.257  was taken from (Narang, Bhushan et al. 2005; Jayaram, 

Bhushan et al. 2006). Lastly, since MD simulations for larger proteins take longer time 

only proteins with at most 750 residues are used in the training process. The final 

training set contains 4867 proteins. All MD simulations were performed in the MOIL 

molecular modeling package (Elber, Roitberg et al. 1995) 
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(http://clsb.ices.utexas.edu/prebuilt/) and the final version of FREADY is fully 

integrated with other functionalities of the package such as energy minimization or 

visualization. MD calculations conducted with FREADY potential are about 103 faster 

than an all-atom simulation in explicit solvation.  The converged set of FREADY 

potential parameters can be found in the file moil.mop/CG.PROP of the MOIL 

distribution package or is also available in an extended form in the tar file 

http://clsb.ices.utexas.edu/research/group/fready.tgz. 

In practice, distributions   Pi
(q)  and   Pnative

(q)  are represented as discrete sets of 

bins. Bin sizes used in this work are 0.1 Å, 1°, 3°, 0.3 Å, and 0.1 Å for bond, angle, 

torsion, non-bonded, and hydrogen-bonding terms respectively. The discrete 

descriptions of   U i+1
(q)  are then fitted by continuous functions described in Eq. (3.2) - 

(3.8). Fitting of bond and angle parameters has been performed manually, since the 

convergence is reached after one or two iterations. Torsional terms are fitted in a 

straightforward manner by the Discrete Fourier Transform algorithm.  

The parameters ,  ,  and 
i j i j i j

A Bτ τ τ τ τ τε  of the backbone hydrogen bonding term 

  U HB
(i, j)  are not optimized independently in this work, but their ratios are taken from 

(Liwo, Pincus et al. 1993) where they were optimized by fitting restricted free energy 

surfaces of UNRES model to those obtained from all atom simulations. Only the 

overall multiplicative factor of these energy constants and the parameters 0

i j
rτ τ  are 

optimized so that the distribution of hydrogen bond lengths seen in MD simulation in 

the FREADY model matches those seen in the experimental native structures. The 

resulting distributions of angles describing the geometry of hydrogen bonds ( α ,  β,  γ ) 

agree with corresponding native distributions (even the parameters ,  
i j i j

A Bτ τ τ τ  were 

optimized only relatively based on the hydrogen bonds length distribution). 

We can use the hydrogen bonding functional form developed for UNRES since 

the coarsening in FREADY is similar to that in UNRES model. UNRES, same as 
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FREADY, represents each residue by two beads. A difference is that in UNRES 

positions of the peptide centers are considered explicitly and positions of Cα atoms are 

implicitly reconstructed. In FREADY, we explicitly model the Cα particles and the 

centers of the hydrogen bonding groups are assumed to be in the center of the Cα-Cα 

bonds.  Conceptually UNRES relies on chemical physics principles, while the main 

drive of the FREADY model is the requirement that hydrogen bond distribution of 

MD simulations will mimic the hydrogen bond distribution observed in statistics of 

experimentally determined protein structures. The use of a hydrogen bond term is also 

a nice illustration of mixing different potential terms (from different sources) with the 

iterative sampling. 

Fitting of   U NB
(r,τ

1
,τ

2
)  is more complex and has been fully automated. In 

order to speed up convergence of our iterative algorithm it is a good idea to obtain a 

reasonable zero order guess for non bonded interactions. The zero order guess we have 

used is a Lennard Jones like potential between all pairs of CM particles and a 

repulsion   r
−12  term between all other particles which are described by   U NB

0 (r)  in Eq. 

(3.6). For sake of simplicity,   U NB

0 (r)  does not depend on interacting residues’ types 

and residue dependent features of the non-bonded term are recruited throughout the 

iterative learning process. The three adjustable parameters of   U NB

0 (r)  were selected 

such that the average radius of gyration is preserved after 600 ps long MD simulation 

for the structures in the training set.  

For numerical reasons the functions   U NB
(r,τ

1
,τ

2
)  are not fitted along the 

whole range of distances at once. The non bonded interactions are constructed as 

piecewise continuous and differentiable (to the first order) terms. The distances in 

range 4.2 Å,13.5 År ∈  are fitted by least squares (LS) algorithm to nine degree 

polynomials. The optimization is constrained such that the function   U NB
(r,τ

1
,τ

2
)  and 

its first derivative vanish at 13.5 År = . The parameters 
  
A

τ1τ 2
, 

  
B

τ1τ2
,
  
C

τ1τ 2
 (from Eq. 
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(3.5)) of the target functions are fitted against the distributions at distances smaller 

than 4.2 Å with the constraints that   U NB
(r,τ

1
,τ

2
)  has continuous first derivative at 

4.2 År = . The function splitting at 4.2 Å was motivated by steep characteristics of 

  U NB
(r,τ

1
,τ

2
)  at shorter distances and by rather smooth behavior of the non-bonded 

potential at larger separation.  

 

3.4 Results 

 

The iterative algorithm described in the previous section converged to a fixed 

set of parameters for the FREADY potential after about 20 iterations. Covalent local 

interaction terms such as bond lengths converge more rapidly and stabilize after a few 

(up to three) iterations. Figure 3.2 shows typical converged angular and torsional 

interactions. Comparisons of the native distributions to those obtained from the final 

training iteration are also shown. In Figure 3.3 we illustrate how a non-bonded 

interaction term evolves during the training process and Figure 3.4 illustrates how the 

radial distribution functions between these pairs of residues evolved from the initial to 

the final iteration. Overall individual distributions of the variables extracted from the 

PDB are accurately represented by the converged distributions of the final iteration. 

The small deviations from the PDB distribution that are observed in Figure 3.4 are 

typical. 
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Figure 3.2: (a) left: Fit of the angle interaction term defined by Cα i-1, Cα i,CMi for i-
th residue being a TRP obtained by Boltzmann’s inversion of the native distribution 
(gray) and the analytical fit to a double-well function (black, dashed). right: 
Comparison of distributions  for this type of angles seen in the native structures (gray) 
and in  the MD simulations driven by FREADY (black, dashed). (b) same as in (a), 
only for the central residue being VAL. The angle is of triple-well character in this 
case.  (c) left: Fit by Discrete Fourier Transform (black, dashed) to the final version of 
the torsion potential (gray) defined by four consecutive Cα particles (for central two 
residues being TYR, ASN) right: Comparison of this torsion angle distribution in the 
native structures (gray) and in the MD simulations (black, dashed) for this dihedral 
angle type. 

 

 

Figure 3.3: Iterative adjustments to the non-bonded interaction term between (a) LEU 
particle Cα and LYS particle CM; (b) ASP particle Cα and LYS particle CM. The 
interactions are evolving during the training in the order gray-solid (1. iteration), gray-
dashed (3.iteration), dotted (11. iteration), and black-dashed (the final, 20th, iteration). 
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Figure 3.4: Radial distribution functions between pair of particles (a) LEU-Cα and 
LYS-CM (b) ASP-Cα and LYS-CM. The solid line corresponds to the distribution in 
the native structures, gray-dashed line depicts the distribution obtained after the first 
iteration of the training, and the black-dashed one stands for the distribution seen in 
the structures simulated by the final version of FREADY. 

The quality of the final set of FREADY parameters was verified by two 

different tests: a) a stability test of the native protein conformations during MD 

simulations and b) a decoy recognition task. The stability of native conformations in 

FREADY potential was tested on native structures of proteins independent of the 

training set. The set used for the iterative training was based on the non-redundant set 

of protein structures covering the shapes available in PDB as of 6/28/2005. The test set 

for FREADY potential includes non-redundant representation of the protein structures 

deposited to the PDB between 6/28/2005 and 6/13/2006 (Vallat, Pillardy et al. 2008). 

The test set was filtered, as was done for the training set. We remove membrane 

proteins, RNA/DNA complexes, and PCAs (pyroglutamic acids). Group type MSEs 

(selenomethionines) are replaced by MET. Proteins with other non-standard amino 

acids were removed. Only proteins with a typical radius of gyration were kept. Further 

on, we reduced the test set to single chain proteins without any breaks in the backbone 

and limited the size of each protein to up to 500 residues. After all these constraints 

are met the test set consists of 956 native structures. A 21 ns MD simulation of each 

structure from the test set (driven by FREADY potential function) was performed. 

Every simulation begins from the native conformation by a short (200 steps) conjugate 
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gradient minimization. The simulations are initiated with 300 ps linear heating from 1 

K to 300 K followed by 20.7 ns constant temperature simulation (controlled by 

velocity scaling).  

 

Figure 3.5: The distribution of RMSDs from the native fold after 10 ns (gray) or 21 ns 
(black, transparent) long MD simulation initiated from the native conformation.  

Figure 3.5 shows a distribution of the RMSDs of the final structure of each 

MD simulation and the corresponding native conformation. Similarly Figure 3.6 

shows distribution of the TM-score (Zhang and Skolnick 2004), which is measure of 

structural similarity that scales between 0 and 1. It is calculated as  

                                         2
1

0

1 1
TM-score max ,

1

L

i
i

L d

d

=

 
 
 

=  
  +     

∑                            (3.11) 

where L is the protein length, 
i

d  is the distance between i-th pair of residues, 

3
0 1.24 15 1.8d L= − −  is a distance scale, and maximum is taken over all structural 

superpositions. 
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Figure 3.6: The distribution of TM-score between the native fold and structures 
obtained by 10 ns (gray) or 21 ns long (black, transparent) long MD simulation 
starting from the native conformation. 

 In contrast to RMSD the TM score can capture local similarities while the RMSD is 

sensitive to overall changes and to outliers. TM-score is calculated by an algorithm 

described in (Zhang and Skolnick 2004) and available from 

http://zhang.bioinformatics.ku.edu/TM-score/. The mean RMSD and TM-score 

against the native structures after 21 ns MD simulation are 4.95Å or 0.65, respectively. 

Figures 3.5 and 3.6 also show the distributions after 10 ns of MD. Only minor 

differences between the final distributions are observed. This observation suggests that 

most of the structures in the test set reach equilibrium after 10 ns. 

The equilibrated distributions of internal degrees of freedom after 21 ns of MD 

are in good agreement with the distributions obtained from the native folds. 

Nevertheless, as shown on Figure 3.5 and 3.6, even when the target distributions of 

internal coordinates are preserved there are structures that diverge significantly from 

the native fold (RMSD larger than 10 Å or TM-score less than 0.4). This implies that 

the functional form of the potential chosen here (i.e. sum of local, pairwise terms and 
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backbone HB) is not sufficient to fix the average structure in the neighborhood of the 

native fold during room temperature simulations.  

 In Figure 3.7 we show results for three representative medium sized 

structures. Two of these proteins (1ido, 1a3k) remain relatively close to the native 

structure (RMSD of 2.33 Å and 3.42 Å). The third protein shown (1ge6) is an example 

in which the MD simulation drives the structure away from the native structure (9.87 

Å). Figure 3.8 shows a comparison of mean square displacements of Cα particles 

during the last 10 ns of the test simulation with experimental crystallographic B-

factors. The mean square displacements are in weak agreement with the experimental 

values. The location of the large fluctuations along the sequence seems to agree with 

experiment, but not the amplitudes. There are several residues in loop regions and 

close to either N or C terminals that have significantly higher displacements than those 

implied by B-factors. The same figure also shows that many of these overly-flexible 

parts of the structures are predicted as flexible also by Anisotropic Network Model 

(Eyal, Yang et al. 2006). Crystal packing might influence the reduced flexibility in 

some of these regions. Hence, the B factor may not represent the properties of an 

isolated protein molecule in solution. 
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Figure 3.7: Behavior of three proteins 1a3k (an α/β protein, light gray), 1ido (an β 
protein, black), and 1ge6 (an α protein, dark gray) during the testing MD simulation 
driven by FREADY (21 ns). The figure shows from the top to the bottom the potential 
energy, the percentage of native contacts, the RMSD, and the TM-score. 

Structural alignments of the final MD structures with the native conformations 

for these three proteins are given in Figure 3.9 - Figure 3.11. We have not found any 

correlation between stability of the native conformations in FREADY potential and 

the secondary structure content or composition (data not shown). We initially 

attempted to train FREADY without an explicit hydrogen bonding term. However, 

MD simulations of the training set driven by a potential trained without hydrogen 

bonding term resulted in the average deviation of 6.37 Å RMSD from the native 

structures compared  to 4.95 Å obtained with a potential trained with explicit 
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backbone hydrogen bonding term. The reduced accuracy in our initial attempt was 

caused mainly by weak stability of native β  sheets elements. 

 
 

 
Figure 3.8: Comparison of experimental B-factors (light gray) of Cα atoms with mean 
square displacement in FREADY 21 ns MD simulations (black-dashed) and mean 
square displacements as predicted by ANM (Eyal, Yang et al. 2006) from the native 
conformation (dark gray). The values of all methods were scaled to have equal 
average displacements, so only relative displacements are meaningful. The graphs 
correspond from top to bottom to proteins 1a3k, 1ido and 1ge6. The correlation 
coefficients between experimental B-factors and simulation displacements are 0.4, 
0.33, and 0.3 respectively. Secondary structure elements are shown at the lower part of 
the figure. 
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Figure 3.9: Alignment of native structure (blue) of 1ido (an α/β protein) and the 
conformation obtained after 21 ns of MD simulation (green). The RMSD is 2.33Å. 
Protein structures were aligned and visualized with UCSF Chimera tool (Pettersen, 
Goddard et al. 2004). 

 
 

 
Figure 3.10: Alignment of native structure (blue) of 1a3k (a β protein) and the 
conformation obtained after 21 ns of MD simulation (green). The RMSD is 3.42Å. 
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Figure 3.11: Alignment of native structure (blue) of 1ge6 (an α protein) and the 
conformation obtained after 21 ns of MD simulation (green). The RMSD is 9.87Å. 

Better stability of native folds (3.92 Å from native in average) was reported 

recently by Minary and Levitt (Minary and Levitt 2008). They used a 3-bead model 

based on an all-atomistic statistical potential (Summa and Levitt 2007). There are two 

major differences between their approach and the results presented here. More 

extensive conformational search with a combination of parallel tempering and equi-

energy Monte Carlo was performed in their work, whereas we only ran long MD 

simulations. Another important difference is in the number of degrees of freedom. In 

the work of Minary and Levitt secondary structure elements are fixed and the loop 

torsional angles are considered as the only degrees of freedom. Fixing the secondary 

structures in the simulations that uses the FREADY potential reduces the distance 

(RMSD) between the simulated structures and the native conformations in the 21 ns 

MD simulations to 3.04 Å in RMSD. The similarity increases to 0.78 measured with 

the TM-score.  

The FREADY potential was also tested on native and near-native recognition 

from a set of decoy structures. Two datasets of decoys used in this study are “Decoys 
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‘R’ Us“ dataset (Samudrala and Levitt 2000) and the set of decoys used for the 

training of LOOPP (Vallat, Pillardy et al. 2008). Both sets consist of a collection of 

different models generated as possible conformations for protein sequences with 

known structures (targets). “Decoys ‘R’ Us“ dataset includes 34 targets, each target 

having from 500 to 2414 different models including the native structure. In the 

LOOPP dataset, there are 2470 protein targets, each having from 30 to 200 models. 

There is no overlap between the FREADY training set and the set of targets used in 

the LOOPP testing dataset. 

In the decoy recognition task a set of different structures with an identical 

sequence (i.e. the sequence of the target) is provided. The task is to score the structure 

closest to the native (or the native itself, if present in the input set) as the model with 

the lowest energy. To use FREADY for this purpose only the sum of the non-bonded 

interactions and the torsional energies was used. By construction, the structures of the 

decoys have reasonable covalent geometries. Moreover, the local interaction terms of 

the bond and angular stretching are quite sensitive to local modifications in the 

structure and do not provide significant information about the overall quality of the 

three-dimensional shape. Therefore bond and angle terms of FREADY are not helpful 

in differentiating between native and decoy shapes.  

Another type of interaction with a limited contribution is the short-range 

repulsion. The non-bonded interaction term as learned from MD simulations has steep 

repulsion for short distances (see Figure 3.3) which is not desirable for a structure 

recognition task (a single close contact can significantly increase the energy of an 

overall good model), thus the non-bonded interaction term 
 
U

NB
 for short distances 

was reduced through a logarithmic transformation to yield an adjusted value   U NB

'  

                                       ' log( 0.4)
  0.6         if 0.6

10
NB

NB NB

U
U U

+
= + > .                (3.12) 
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The last remaining term, the backbone hydrogen bonding, was not useful in 

recognition, probably because decoys in the datasets were generated with methods that 

optimize backbone hydrogen bonds. 

FREADY performs similarly (see Table 3.1) to other statistical potentials on 

“Decoys ‘R’ Us” dataset. Only OPUS-PSP potential (Lu, Dousis et al. 2008), which 

uses more elaborate representation of side chain packing, performs significantly better 

than FREADY. The detailed performance of FREADY on “Decoys ‘R’ Us” dataset is 

provided in Table 3.2 and the contribution of different energy terms to the recognition 

in threading experiments is shown in Table 3.3. Seven targets from this dataset (1ctf, 

1r69, 2cro, 1nkl, 1trl, 1dtk, 1shf) were present in the FREADY training set. 

On the LOOPP dataset we tested the recognition of “native like targets,” since 

statistical potentials tend to perform well in distinguishing the native structure from 

non-native ones but often fail in recognition of “close to native” conformations. Thus, 

in the case of LOOPP dataset, we ask how well does FREADY recognize native-like 

models (RMSD-wise) from other structures. FREADY ranks the model with the 

lowest RMSD as the lowest energy structure (within the top 5 lowest energy 

structures) in 50% (73%) of all 2470 targets. While clearly not perfect, FREADY 

provides a useful signal for model selection that when combined with other signals 

leads to more accurate prediction. FREADY signals were used in the LOOPP server 

during CASP8 exercise (Vallat, Pillardy et al. 2009).  
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Table 3.1: The comparison of several statistical potentials on “Decoys ‘R’ Us” 

dataset. Results for all potentials (except FREADY) are taken from the reference (Lu, 

Dousis et al. 2008). The second column lists number of targets which a given force 

field ranks as the lowest energy structure versus the total number of targets evaluated 

by that force field. The third column shows the average Z-score, 

  
U − U

native( ) U 2 − U
2

, of native structures. 

                                               Top 1/Total Number              Mean Z-sore 

OPUS-PSP [21] 31/34 5.37 

HPMF [56] 29/32 4.18 

FREADY 28/34 4.62 

DOPE [57] 28/32 - 

MSE [58] 21/23 5.78 

DFIRE [38] 27/32 4.52 

MJ_2005 [59] 27/34 5.93 

DFIRE-SCM [60] 23/32 4.36 

MM-PBSA [61] 23/24 1.95 

DGR [62] 21/25 5.25 

DWL [63] 21/32 3.66 

TE13 [64] 14/25 3.53 

CALSP [65] 15/25 - 

Rosetta [66] 14/32 - 
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Figure 3.12: The difference of FREADY energy normalized by protein length from 
that of the native as a function of the RMSD from the native conformation. Each point 
in the figure corresponds to a model for a structure of a protein. There are 6034 
models (for 338 targets) shown in the figure and only several structures score below 
the native conformations (negative values). On the average the energy seems a linear 
function of the RMS from the native suggesting a broad radius of influence for the 
FREADY potential. 
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Table 3.2: Performance of FREADY potential on “Decoys ‘R’ Us” dataset. The table 
lists for each target its PDB code, size of the decoy set, rank of the native structure in 
the set of decoys based on FREADY energy evaluation and Z-score of the native 
energy. 

 
 

PDB code Decoy set size Rank Z-score 

4state_reduced 

1 1cft 631 1 3.91 
2 1r69 676 1 3.84 
3 1sn3 661 1 3.83 
4 2cro 675 1 3.29 
5 3icb 654 1 2.57 
6 4pti 688 1 4.34 
7 4rxn 678 1 3.14 

fisa 

8 1fc2 501 336 -0.27 
9 1hhd-C 501 1 3.55 
10 2cro 501 1 4.55 
11 4icb 501 1 5.37 

fisa_casp3 

12 1bg8-A 1201 1 3.91 
13 1bl0 972 2 2.83 
14 1eh2 2414 3 2.71 
15 1jwe 1408 1 4.60 
16 smd3 1201 1 6.72 

lattice_ssfit 

17 1beo 2001 1 7.13 
18 1cft 2001 1 8.37 
19 1dkt-A 2001 1 7.71 
20 1fca 2001 1 6.29 
21 1nkl 2001 1 7.22 
22 1pgb 2001 1 9.19 
23 1trl-A 2001 1 4.98 
34 4icb 2001 1 8.74 

lmsd  

25 1b0n-B 498 16 1.62 
26 1bba 501 493 -2.10 
27 1cft 498 1 4.99 
28 1dtk 216 1 3.12 
29 1fc2 501 4 2.74 
30 1igd 501 1 7.02 
31 1shf-A 438 1 6.18 
32 2cro 501 1 6.89 
33 2ovo 348 1 3.57 
34 4pti 344 1 4.48 
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Table 3.3: Contributions of different energy terms to the recognition of native 
structures in “Decoys ‘R’ Us” dataset. For each energy term the number of native 
structures recognize as the lowest energy structure by that term is given in the first 
column and the average Z-score of the native structures is given in the second column. 
Based on this data the sum of non-bonded and torsional energy terms was used for 
final prediction (the last row in the table). 

 Top 1(from 34) Mean Z-score 

Bonds 9 0.55 

Angles 2 0.65 

Torsions 14 2.45 

Nonbonded term 27 4.17 

Hydrogen bonding 2 1.19 

 

It turns out that FREADY performs better in recognition of structures obtained 

by X-ray crystallography than those obtained by NMR. The rate of best model 

recognition for targets solved by NMR drops to 31% (compared to 64% for structures 

solved by X-ray). The performance of FREADY on a subset of LOOPP dataset is 

shown in Figure 3.12. This set contains 338 targets that are single chain proteins, 

solved by X-ray crystallography, not forming biological complexes with other proteins 

or RNA/DNA, and are not membrane proteins. The correlation coefficient for this set 

between ( )/ /
native

E L E L−  and the RMSD from the native conformation is 0.68. As 

seen in the figure, only several models have lower scores than the native (negative 

values on the figure) and most of the native-like models (low RMSD values) do not 

have high scores.  
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3.5 Final remarks 

 

In this chapter we discussed a coarse grained potential that was learned using a 

mix of machine learning arguments and computational statistical mechanics. The 

potential was tested and illustrated to perform adequately at the two extreme limits of 

structural biology: (i) maintaining the structure in the neighborhood of the native fold 

in Molecular Dynamics simulations, and (ii) effectiveness in threading experiments. 

The significantly reduced number of degrees of freedom enables more comprehensive 

sampling for longer times.  The simpler model (compared to all atom representation) 

is also effective in screening efficiently a large number of candidates to the correct 

fold. On the other hand, we do not expect the potential to work in domains it was not 

tuned for (e.g. protein folding). 

We have addressed algorithmically two significant limitations of statistical 

potentials, that is, (i) how to learn a statistical potential that recovers experimental 

statistics in canonical simulations and (ii) how to combine statistical potentials with 

other energy terms that are necessary when comprehensive sampling is desired. 

Specifically in the present study we illustrate that the addition of hard cores and 

hydrogen bonding potentials is straightforward once generalized ensemble approach is 

applied. While hard cores could be added by statistical means (Miyazawa and Jernigan 

1996), the iterative procedure allows for easy combination of different energy terms, 

potentially from different sources calibrated against the PDB distribution.  

Perhaps the most intriguing observations made in this chapter are the 

limitations of the internal coordinate representation and of the assumption of potential 

transferability. We typically assume that a potential can be represented by pair 

interactions between amino acids (keeping the covalent geometry intact). The pair 

interaction is assumed to be transferable from a protein to a protein. Mathematical 
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programming studies illustrated however that the parameters of such a potential do not 

have a feasible solution on typical protein-like decoy sets (Michele and Eytan 1998; 

Tobi and Elber 2000; Tobi, Shafran et al. 2000). It is intriguing that a related 

conclusion is reached in the present work from a different perspective and for more 

general functional form.   

Further studies of plausible functional forms of potentials, building on 

innovative work on modeling many-body potentials (Buchete, Straub et al. 2004; 

Ngan, Inouye et al. 2006; Feng, Kloczkowski et al. 2007), with comprehensive 

sampling and iterative refinement of potential parameters are of considerable interest.  
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CHAPTER 4 

MILESTONING WITHOUT A REACTION COORDINATE  

 

4.1 Introduction 

 

Milestoning (Faradjian and Elber 2004; Shalloway and Faradjian 2006; Elber 

2007; West, Elber et al. 2007; Vanden-Eijnden, Venturoli et al. 2008; Kuczera, Jas et 

al. 2009; Maragliano, Vanden-Eijnden et al. 2009; Vanden-Eijnden and Venturoli 

2009) is a method to calculate kinetics and thermodynamics of molecular systems that 

evolve on long time scales typically not accessible for straightforward Molecular 

Dynamics (MD) simulation. 

Straightforward Molecular Dynamics can be used to compute rate of reactions. 

In these applications coordinates and velocities are initiated in the reactant state and 

the equations of motion are integrated until the product state is reached. While 

considerably promising there are caveats: (i) the numerical integration of a typical 

biomolecular process is computationally demanding and may not be feasible; (ii) 

actual realizations of reactive trajectories are noisy, making their analysis difficult and 

may require significant filtering to recover useful signals.  

In Milestoning, the conformational space between the reactant and the product 

is partitioned by a set of dividing hypersurfaces called Milestones (Fig. 4.1). An 

ensemble of initial conditions is prepared at each Milestone and trajectories are 

simulated from each initial point until another nearby Milestone is reached. These 

trajectories are significantly shorter and trivially parallelized compared to a reactive 

trajectory of the overall process. The efficiency of the algorithm is discussed in (West, 

Elber et al. 2007).  
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Figure 4.1: A schematic arrangement of Milestones (dashed lines) in a two-well 
potential. Also shown is a trajectory (dotted line) starting on a second Milestone and 
terminating on the first one. 

In the original milestoning papers (Faradjian and Elber 2004; West, Elber et al. 

2007), a theory that relates the statistical properties of the short trajectories initiated on 

each Milestone and the overall rate was developed. In the present work we consider a 

variant of the Markovian limit of Milestoning (Shalloway and Faradjian 2006; West, 

Elber et al. 2007), a method that uses only the first moments of local first passage time 

(LFPT) distributions. The advantage of the Markovian limit of Milestoning is that it is 

easier to implement and is statistically more stable. As we will show in Section 4.2.1 it 

calculates the overall mean first passage times (MFPT) accurately, given that certain 

assumptions are met. Milestoning in its complete settings (non-Markovian) provides a 

useful alternative if more detailed understanding of the reaction process is desired, for 

example if the reaction is non-exponential in time. 

In (Vanden-Eijnden, Venturoli et al. 2008) reaction dynamics with 

overdamped Langevin dynamics was considered. It was shown that if Milestones are 

chosen as isocommittor surfaces, i.e. surfaces for which the probability of reaching the 

product state before the reactant is constant, then Milestoning calculation of the MFPT 
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using Brownian dynamics is exact. However, determination of exact isocommittor 

surfaces can be very difficult in practice.  

Other limits in which Milestoning is expected to be accurate are available for 

systems near equilibrium. As outlined in the original Milestoning papers (Faradjian 

and Elber 2004; West, Elber et al. 2007), even when other surfaces are used (surfaces 

that are not isocommittors) Milestoning can still work well. If successive crossing 

events of Milestones are sufficiently separated in time to “lose” velocity memory 

Milestoning was illustrated to provide accurate results. This assumption is achieved in 

practice by placing Milestones sufficiently far from each other such that the average 

termination time of trajectories is at least a few hundred femtoseconds (West, Elber et 

al. 2007).  

In Section 4.2 we propose a variant of Milestoning in the Markovian limit 

which we call Directional Milestoning (DiM) – the dividing hypersurfaces are 

redefined in more than one dimension to capture features of the reaction (e.g. multiple 

reaction channels or multiple collective variables) that at the same time maintain the 

concept of Milestone separation, e.g. trajectories initiated on any Milestone have time 

to “lose memory” before terminating on other Milestones. 

The original Milestoning approach approximates the initial ensemble on each 

hypersurface by an equilibrium distribution. To be exact the initial distribution at a 

Milestone must be the first hitting point distribution (FHPD).  A first hitting point is a 

phase space point on the Milestone crossed for the first time by a trajectory arriving 

from a nearby hypersurface. The distribution of these phase space points is complex 

and a closed form of it is known only for overdamped Langevin dynamics in low 

dimensions (Vanden-Eijnden, Venturoli et al. 2008). 

In recent work (Vanden-Eijnden and Venturoli 2009), Vanden-Eijnden and 

Venturoli proposed a modification of Milestoning that avoids generation of initial 
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ensembles on each of the dividing surfaces. As we discuss later their approach is more 

accurate compared to the original Milestoning for the generation of the FHPD. 

Memory loss, however, is harder to control in the new approach.  To improve the 

accuracy of the original Milestoning approach while retaining some of its advantages 

we propose in Section 4.2.4 another way to approximate FHPD which is better than 

the original Milestoning. 

In Section 4.3 we illustrate the Directional Milestoning (DiM) on a calculation 

of MFPT of a conformational transition of alanine dipeptide, both in vacuum and in 

water and on a calculation of folding kinetics of a pentapeptide. We compare 

Directional Milestoning with exact Molecular Dynamics and with the related method 

Markovian Milestoning with Voronoi Tessellation (MMVT) (Vanden-Eijnden and 

Venturoli 2009). We illustrate that as the complexity of the underlying energy surface 

increases, DiM becomes more effective. Discussions and conclusions are presented in 

Section 4.4.  

 

4.2 Directional Milestoning – theory  

 

4.2.1 Definition of Milestones in higher dimensions  

We discuss below an extension of Milestoning that avoids the use of a reaction 

coordinate. Instead of placing hypersurfaces orthogonal to a one-dimensional curve as 

introduced in the original papers (Faradjian and Elber 2004; West, Elber et al. 2007) 

we define the interfaces (Milestones) based on a set of coordinates (images) that 

sample the conformational space of the biophysical process under consideration. (Two 

of the images define the reactant and the product state.) These images may be obtained 

from long time simulations, high temperature trajectories, replica exchange 

simulations, etc., as discussed later in examples in the article. Having N images 
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1, ,
N

X X…  placed in the conformational space, we intuitively want to arrange 

Milestones as interfaces between the images, which is the approach taken in the 

Voronoi Tessellation of Markovian Milestoning (Vanden-Eijnden and Venturoli 

2009). However, we aim to place the Milestones in conformational space in such a 

way that a trajectory initiated on any Milestone has time and space to “lose memory” 

of its starting point before terminating at a different Milestone. A formal definition of 

“losing memory” will be given in the following section. For each pair of images 
i

X  

and 
j

X  we define the Milestone 
i j

M →  as a set of conformational points on which a 

trajectory enters the region of image 
j

X  from the region of image 
i

X . Formally, the 

above intuitive requirements on Milestone placement can be accomplished in several 

different ways. We define a Milestone 
i j

M →  as follows 

        { }2 2 2| ( , ) ( , )  and ( , ) ( , )i j i j i j kM X d X X d X X k d X X d X X→ ≡ = + ∆ ∀ ≤ ,       (4.1) 

where ( , )d X Y  is a distance function of images X  and Y  and min ( , )
i j i i j

d X X≠∆ = . 

The arrangement (4.1) has a few important properties discussed in detail in Section 

4.2.3. We name some of the properties here, referring the formal proofs to Section 

4.2.3: A Milestone 
i j

M →  is located in the region between the images 
i

X  and 
j

X  and 

is always closer to the image 
j

X .  The Milestone 
i j

M →  does not intersect any of 

i l
M →  Milestones (for )l j≠  and there is a finite separation in conformational space 

between the Milestones 
i j

M →  and 
l i

M → . See Fig. 4.2 for an example of the proposed 

arrangement. As shown in the figure, the outgoing (black) Milestones bound the 

region of the central image and all the incoming (gray) Milestones are located within 

this region with a minimal distance to any of the outgoing Milestones.   
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Figure 4.2: Example of Milestones according to definition (4.1). Conformational 
images are represented as black dots, Milestones related to the central image are 
displayed as dashed lines. A trajectory coming to the central region (gray, dotted) 
terminates on one of the gray Milestones (depending on the previously assigned 
region). A trajectory re-initiated on any of the gray (incoming) Milestones leaves the 
region through one of the black  (outgoing) Milestones. 

The proper selection of the conformational images 1, ,
N

X X…  will be 

explained in more detail in Section 4.2.3; for now we assume their arbitrary 

placement. If 
i

∆  were omitted in the above definition ( 0
i

∆ = ) then the set of 

Milestones 
i j

M →  is reduced to the Voronoi tessellation proposed in ( Vanden-Eijnden 

and Venturoli 2009; Maragliano, Vanden-Eijnden et al. 2009); we refer to this 

arrangement as Markovian Milestoning with Voronoi Tessellation (MMVT) 

throughout this chapter. In the MMVT arrangement, the Milestone 
i j

M →  is equivalent 

to the Milestone 
j i

M →  and the only information they preserve is the identity of last-

crossed Milestone, not the direction of such a crossing. (In a private communication 

Vanden-Eijnden disclosed an extension of MMVT to make the Milestones velocity 

dependent).  

It is important to emphasize that the proposed placements of Milestones is not 

a tessellation. In accord with the definition of the original Milestoning, a trajectory is 
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identified by the last Milestone that it passes and not by its actual current position. A 

memory is carried out in time until the trajectory crosses another interface (Milestone). 

Trajectories from 
i

X  to 
j

X  can be fundamentally different from trajectories from 
j

X  

to 
i

X . To exploit this observation it is useful to make the Milestones dependent on the 

direction. We therefore call Milestones defined according to Eq. (4.1) Directional 

Milestones. The role of the additional flexibility offered by 
i

∆  is to avoid counting 

rapid transitions between interfaces due to spatial proximity of Milestones. As a result, 

the Milestones defined by Eq. (4.1) depend on more than the coordinates alone. This is 

consistent with the notion of a Milestone 
i j

M →  (
k j

M → ) as a state of a trajectory that 

arrives from the region 
i

X  (
k

X ) to the region of image 
j

X . Hence the definition of a 

Milestone is extended to include information about the previous assignment of the 

trajectory. If the system is assigned to a region 
0i

X  at time 0 then by following a 

trajectory of the system one can deterministically identify the sequence of Milestones 

the trajectory has passed through 
0 1 1 2 2 3 1

, , , ,
K Ki i i i i i i i

M M M M
−→ → → →… .  

 

4.2.2 Calculation of the mean first passage times  

In the rest of this chapter we will use Roman subscripts to denote image index 

(as was done in the previous section) and Greek letters to denote Milestones. Consider 

the mean first passage time (MFPT) from any Milestone α  to a given target Milestone 

β . We define it as follows: a trajectory is assigned to a Milestone α  if the last 

Milestone it has passed through is α . One-step transition from a Milestone α  to a 

Milestone β  ( β α≠ ) is a change of assignment of a trajectory from α  to β . This 

step is clearly on a coarse Milestoning level and does not mean a single Molecular 

Dynamics step, which we will call a time-step.  If such an event is possible we say that 

α  connects to β . Note that by definition given in equations (4.1) if α  connects to β , 

the second index of α  (e.g. 
i j

M → ) must be equal to the first index of β  (
j k

M → ). The 
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first hitting point distribution on β , ( )pβρ , is the distribution of phase space points 

(denoted by p) at which an equilibrium trajectory passes through β  numerous times 

while the previous Milestone it passes through was not β . In further discussion only 

the relative weight of trajectories that pass through β  is important so we can choose 

to normalize ( )pβρ  such that ( ) 1p dp
β

ρ =∫ . We denote by ( )pαβτ the mean time of 

all trajectories that start from the phase space point p in α  and terminate on Milestone 

β  (possibly crossing other Milestones on the way). Integrating the last entity over p, 

weighting it by the probability that p is a phase space point at which an equilibrium 

trajectory hits α  for the first time,  ( ) ( )p p dp
αβ α αβτ ρ τ≡∫ , we obtain the MFPT 

from α  to β . 

Let the distribution of one-step transitions from α  to β  be ( , , )T p q tαβ , where 

p is the phase space point at which a trajectory starts in α  and q is the phase space 

point at which the trajectory changes its assignment to β  after time t. ( , , )T p q tαβ  is 

normalized in such a way that if we integrate over t and q we get conditional 

probability of a trajectory reaching β  in one step given that it originates from p in α : 

( , , ) ( | , )T p q t dqdt P pαβ β α=∫ ∫ , or alternatively ( , , ) 1T p q t dqdtβ αβ =∫ ∫∑ . Note 

that by the definition of trajectory assignment, ( , , ) 0T p q tαα =  for all p and q (since a 

trajectory cannot change its assignment from α  to α ). 

Assuming that the phase space point ( )p t dt+  can be determined from ( )p t  

only, as is true for most microscopic dynamics (e.g. Newtonian, or Langevin 

dynamics, but not Generalized Langevin dynamics) we make the following argument: 

The MFPT from α  to β , αβτ , is defined as the weighted average of termination 

times of trajectories from α  to β . Each trajectory, starting at p in α  jumps in one 

step to some other Milestone γ  (γ ≠ α ) at phase point q and then in multiple steps 

(possibly 0, if γ β= ) continues to β . Consider all the trajectories that jump in one-

step from p in α  to q in γ  exactly in time t and then eventually reach β  (in 
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potentially different total time).  Since the microscopic dynamics is Markovian we can 

replace the contribution of these trajectories to αβτ  by ( )( )t qγβτ+  weighted by 

sum of the weights of all of them (which is ( ) ( , , )p T p q tα αγρ ). By doing this for all 

possible combinations of γ  and q we get the following equation:   

                     

( )

( )

( )

( ) ( , , ) ( )

( ) ( , , )

       ( ) ( ) ( , , )

p T p q t t q dpdqdt

p T p q t t dqdt dp

q p T p q t dpdt dq

αβ α αγ γβ
γ

α αγ
γ

γβ α αγ
γ

τ ρ τ

ρ

τ ρ

= +

=

+

∑∫∫∫

∑∫ ∫∫

∑∫ ∫∫

                           (4.2) 

The first term of the above equation can be reduced as 

                        

( )

( )

( )

( ) ( , , )

( , , )
( ) ( , , )

( , , )

( ) ( ) ( | , )

( ) ( ) ( | , )

( ) ( ) ,

p T p q t t dq dt dp

T p q t t dq dt
p T p q t dq dt dp

T p q t dq dt

p t p P p dp

p t p P p dp

p t p dp t

α αγ
γ

αγ

α αγ
γ αγ

α αγ
γ

α αγγ

α α α

ρ

ρ

ρ γ α

ρ γ α

ρ

 
 =
 
 

=

=

= =

∑∫ ∫∫

∫∫∑∫ ∫∫
∫∫

∑∫

∑∫

∫

               (4.3) 

where ( )t pαγ , ( )t pα , and tα  are average times of one-step transitions from 

p α∈  to γ , from p α∈  to any other Milestone, and from α  to any other Milestone 

(averaged over p), respectively. In the second term of equation (4.2) the average time 

from q γ∈  to β  is weighed by a factor depending on the phase space point p α∈ !  

To overcome this problem we use the following assumption: The distribution at which 

any Milestone γ  is hit does not depend on the Milestone to which the trajectory was 

assigned before the hit: 

                                 , : ( ) ( ) ( , , )q p T p q t dp dtγ α αγα γ ρ ρ∀ ∝ ∫ .                        (4.4) 

It is easier to illustrate the properties of equation (4.4) if we consider a one-

dimensional arrangement of Milestones in which the forward and the backward 
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Milestones occupy the same spatial coordinates. Consider a Milestone α  that is 

pointing forward and is therefore denoted for the clarity of this discussion by α + . 

There are two Milestones that initiate trajectories that may terminate at α + . They are 

α − 1( )+  and α − 1( )− . Hence they occupy the same place in space but have their 

velocities pointing in the opposite directions. The assumption of equation (4.4) states 

that it does not matter if we start at α − 1( )+  or at α − 1( )− , both Milestones will 

generate the same hitting point distribution on α + . If the initial direction of the 

velocity de-correlates quickly there should be no difference in the results from 

Milestone α − 1( )+  and α − 1( )− . In this case the assumption formulated in equation 

(4.4) will be satisfied. Indeed, we observed empirically in (West, Elber et al. 2007) 

that even the usual Milestoning works well when the velocity de-correlates. This 

empirical formulation is now formulated mathematically. In higher dimension we will 

also require spatial de-correlation 

 The multiplicative factor in the above equation is determined by the fact that if 

both sides of equation (4.4) are integrated over q the left side equals to 1 and the right 

side to ( | )P γ α ; the conditional probability that if a trajectory changes its assignment 

from α  it changes to γ . Therefore using the above assumption the second term of 

equation (4.2) reduces to ( | )Pγ γβγ α τ∑  and we obtain the final form for the 

MFPT:  

 ( | )t Pαβ α γβ
γ

τ γ α τ= +∑ . (4.5) 

The set of equations (4.5) is extended by boundary conditions 0ββτ = , 

0tβ = , and ( | ) 0Pγ γ β∀ = . It is a set of linear equations for all the ταβ  that can 

be solved by any standard linear solver. The size of the problem (the number of 

Milestones) never exceeded a few hundred in our hands. Equation (4.5) can be directly 

generalized for considering more than a single target Milestone (e.g. all incoming 
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interfaces to the folded state of a peptide). Alternative equations equivalent to equation 

(4.5) were derived in (West, Elber et al. 2007; Vanden-Eijnden, Venturoli et al. 2008). 

These equations are independent of the type of microscopic dynamics that we use (e.g. 

overdamped Langevin or Newtonian as long as it is microscopically Markovian). The 

system of linear equations (4.5) relates the overall rate (τ ‘s) with the local kinetics 

information ( tα  and ( | )P γ α ).  Milestoning collects this local information in a more 

effective way than running an ensemble of trajectories from α  to β . On each 

Milestone α , Nα  phase space points are sampled from the FHPD αρ  (see Section 

4.2.4 for details). As a second step, each of the sampled phase space points is 

propagated in time until a connected Milestone is reached. The termination times of 

these trajectories are typically several orders of magnitude shorter than the overall 

MFPT of the system. Furthermore the trajectories between Milestones are independent 

of each other and thus can be run in parallel. For each Milestone γ  connected to α  

we record Nαγ - the number of trajectories that are initiated on α  and terminated on 

γ . We also record Tα , the mean termination time of all Nα  trajectories regardless of 

their terminal Milestone. The collected information { Nαγ ,Tα } is used to estimate the 

required entities for equation (4.5) as  

                                             ( | ) andP N N t Tαγ α α αγ α ≅ ≅ .                   (4.6) 

In practice instead of using equation (4.6) we employ Bayesian inference on 

the collected data to calculate the MFPT supported by the data as well as an estimate 

of the statistical error due to the finite size of collected data. This procedure is 

described in detail in Appendix D.  
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4.2.3 Properties of Directional Milestones  

The use of equation (4.5) for calculating MFPT depends on validity of the 

assumption expressed in equation (4.4). It has been shown in (Vanden-Eijnden, 

Venturoli et al. 2008) that the assumption formulated in equation (4.4) holds if 

overdamped Langevin dynamics is used and the Milestones are chosen as 

isocommittor surfaces. To our knowledge there is no efficient algorithm that identifies 

exact isocommittor surfaces and scales moderately with system size. However, there 

are other ways of satisfying equation (4.4). Instead we base our strategy on selecting 

Milestones according to equation (4.1), making sure that Milestones are sufficiently 

separated to allow for a memory loss of trajectories as outlined in the arguments of 

reference (West, Elber et al. 2007). Consider a pair of connected Milestones 
i j

M → , 

j k
M →  (defined by coordinate images 

  
X

i
, X

j
, and X

k
). Let 

jk
S  be a hyperplane 

perpendicular to the line segment 
 
X

j
− X

k
 and passing through its midpoint. From 

equation (4.1) that defines 
i j

M →  we know that each point on 
i j

M →  is closer to 
j

X  

than to 
k

X . Thus the Milestone 
i j

M →  lies on the 
j

X ’s side of 
jk

S . It follows from 

Lemmas C.1 and C.2 in Appendix C that 
jk

S  and 
j k

M →  are parallel, 
j k

M →  lies on the 

k
X ’s side of 

jk
S , and that 2( , ) / 2 ( , )

jk j k j j k
d S M d X X→ = ∆ . Therefore 

2( , ) / 2 ( , )
i j j k j j k

d M M d X X→ → ≥ ∆ . This minimal separation of connected Milestones 

is a property of Directional Milestoning that allows for some velocity relaxation to at 

least approximately satisfy the assumption described in equation (4.4).  Note that the 

lower bound for the distance ( , )
i j j k

d M M→ →  is a function of distances between the 

images that we place at will. Minimal separation of any two images places a lower 

bound on 
j

∆ ‘s; additionally if one guarantees for each connected pair 
i j

M → , 
j k

M →  

that ( , )
j k

d X X  is about 
j

∆  then ( , ) / 2
i j j k j

d M M→ → ≈ ∆ . 
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4.2.4 Sampling of the first hitting point distribution 

 The first step of Milestoning is to sample the initial conditions on each 

Milestone α  from the first hitting point distribution ( )pαρ . An analytical expression 

for ( )pαρ  is in general unknown. In (Vanden-Eijnden, Venturoli et al. 2008) the 

authors provided the formula   ( )( ) ( )V xx e q xβ
αρ −∝ ∇  for the case of overdamped 

Langevin dynamics with Milestones being placed as isosurfaces of the committor 

function ( )q x . The last formula includes the gradient of committor function ( )q x∇  

which is difficult to get in high dimensions.  

Instead of computing ( )pαρ  exactly (no exact expression is available for 

Newtonian dynamic), we approximate it. First, phase space points are sampled from 

the equilibrium distribution at Milestone 
i j

M → . It can be done either by running an 

MD simulation constrained to the Milestone (Faradjian and Elber 2004; West, Elber et 

al. 2007) or by employing the Umbrella Sampling technique (see Appendix E and 

(Torrie and Valleau 1977)). The second step involves filtering each of the sampled 

phase points to determine those that are indeed first hitting events of 
i j

M → . Exact 

verification tracks each of the sampled phase space points p back in time and tests 

termination on one of the incoming Milestones to the cell 
i

X  (
k i

M → ) before the 

trajectory intersects any of 
i l

M → . (If 
i j

M →  itself is crossed before any of 
k i

M → , p is 

not the first hitting event of 
i j

M → , it is at least a second hit of 
i j

M → ; if 
i l

M → , l j≠ , is 

crossed before any of 
k i

M →  then the trajectory must have entered to the cell of 
l

X  

before reaching p – therefore p cannot be the first hitting event of 
i j

M → ). Tracking the 

trajectory back in time to any of the Milestones 
k i

M →  is similar in spirit to Transition 

Interface Sampling (Moroni, Bolhuis et al. 2004; Moroni, van Erp et al. 2004; van Erp 

and Bolhuis 2005) (TIS), the difference is that a TIS trajectory is propagated back in 

time until the reactant or the product state is hit. In DiM we perform significantly 

shorter backward verification, applicable only for equilibrium processes. TIS is exact, 
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however it is more expensive since in Milestoning we still exploit the use of trajectory 

fragments. Trajectory fragments are easier to parallelize and they can lead to implicit 

long time trajectories while in TIS long time individual trajectories need to be 

computed explicitly.  

To retain high efficiency we track the trajectory back in time only until it 

reaches an empirical test boundary that is placed at a distance d on the 
i

X ’s side of the 

target Milestone 
i j

M →  (d being smaller than or equal to the minimal distance to any of 

k i
M →  from 

i j
M → ). If the trajectory reaches the checking boundary without re-crossing 

any other Milestone 
i l

M → , we assume that p is a first hitting event. Otherwise we 

reject it. The procedure is schematically illustrated on Fig. 4.3.   

In principle we can follow the trajectory back in time until one of the incoming 

Milestones to 
i

X  (
k i

M → ) or any of the outgoing Milestones from 
i

X  (
i l

M → ) is hit (a 

comment by Giovanni Ciccotti). By performing this complete verification the prepared 

ensemble on each Milestone would be the exact first hitting point distribution. 

However, the complete verification of each of the sampled phase points roughly 

doubles the overall computational cost (assuming reasonable acceptance ratio). The 

result of the more expensive exact verification will be reported elsewhere; in this 

chapter we report results and analysis of the more efficient (but approximate) checking 

protocol. 
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Figure 4.3: Illustration of sampling of the first hitting point distribution of trajectories 
initiated on the lower gray Milestone and terminating on the top (target) Milestone. 
The FHPD on the target Milestone (blue) is centered in the left basin, which is 
different from the equilibrium distribution (red). The FHPD is approximated by 
sampling phase space points from the equilibrium distribution and following each of 
them back in time until it hits the target Milestone on which it was initiated (the point 
is rejected) or the test boundary shown as a dashed gray line (it is accepted). Tracking 
of three phase space points is shown; the algorithm tracks only the black parts of the 
trajectories. Two of the points are accepted; one of them, however, is accepted by a 
mistake. The point is accepted because the test boundary was reached, however if the 
trajectory were checked further on (the red part) it would have been detected that the 
trajectory turns back and is not coming from the lower Milestone. Because of these 
false positive samples the resulting distribution (green) only approximates 

  
ρ

α
( p)  

(blue). As the test boundary approaches the originating Milestone (lower gray) the 
sampled distribution approaches the true FHPD. 
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4.3 Applications of Directional Milestoning 

 
Figure 4.4: Alanine dipeptide. 

4.3.1 Alanine dipeptide solvated in water  

To demonstrate an application of Directional Milestoning we compute the 

MFPT of the transition between α  helix and β  sheet conformations in solvated 

alanine dipeptide (Fig. 4.4). The thermodynamics and kinetics of alanine dipeptide has 

been investigated in several studies (Ensing, De Vivo et al. 2005; Ren, Vanden-

Eijnden et al. 2005; West, Elber et al. 2007; Maragliano and Vanden-Eijnden 2008; 

Maragliano, Vanden-Eijnden et al. 2009). In aqueous solution two dihedral angles, φ  

and ψ , shown in Fig. 4.4 are adequate coarse variables for the dynamics of the 

peptide. We therefore use a 2-norm distance in the reduced space of φ  and ψ  as the 

distance metric in the definition of Milestones (periodicity of the angles was taken into 

account in the calculation of a distance between two torsion angles).  

The new module for Directional Milestoning was created in the program 

MOIL (Elber, Roitberg et al. 1995) and is available at 

https://wiki.ices.utexas.edu/clsb/wiki. The peptide molecule is solvated in a periodic 

box (20 Å)3 of 248 TIP3P water molecules. The OPLS force field (Jorgensen and 

Tirado-Rives 2002) is used with electrostatics real space cutoff of 9 Å augmented with 

Particle Mesh Ewald summation. Van der Waals interactions are cut at a distance of   
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8 Å. All calculations were run in NVT ensemble at temperature of 303 K by 

employing a weak Andersen thermostat that acts only on the center-of-mass motion of 

the water molecules (Juraszek and Bolhuis 2008).  The probability of velocity re-

sampling was set to 45 10−⋅  per fs. For a water box of this size an average of 13 water 

molecules had their velocities re-sampled in a 100 fs interval. This weak coupling 

does not change the transition rate obtained from NVE (Newtonian) simulations (with 

initial conditions sampled from the NVT ensemble). The free energy surface as a 

function of the two dihedral angles ( ,φ ψ ) is shown in Fig. 4.5. It was calculated from 

statistics of a 340 ns long MD simulation. The white region of the map was not visited 

by the trajectory. There are two local free energy minima corresponding to an α  helix 

conformation ( , 100, 40φ ψ = − − ) and to a β  sheet conformation ( , 100,140φ ψ = − ).  

The height of the free energy barrier between the two metastable regions at 

303K is less than 2
B

k T  and the transitions between the metastable states are rapid on 

the trajectory time scale so the MFPTs can be estimated from straightforward MD 

simulations directly. We have performed five independent MD simulations of 68 ns. 

In each of the simulations more than 1000 transitions between the metastable regions 

occurred. The MFPT of α β→  transition is 66.4 ps ( ± 2.7 ps) and that of the opposite 

transition is 53.8 ps ( ± 4.6 ps). We set up the Milestoning calculation by placing six 

images in the conformational space in the positions i, =-100 ,-240 +60
i

iφ ψ � � � , 

( 1, , 6i = … ). The positions of the images were not optimized. They were placed 

equidistantly in the region of conformation space that is accessible to the molecule. 

Table 4.1 shows the results of the Milestoning calculations for this system; it also 

includes the results of Markovian Milestoning with Voronoi Tessellation method 

(Vanden-Eijnden and Venturoli 2009). The MMVT calculation was performed with 

the same settings as for DiM, with the exception of the image placement; images for 
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MMVT calculation were placed at i', '=-100 ,-210 +60  
i

iφ ψ � � �  (for 1, 2, , 6i = … ) so that 

the Milestones are placed in the same positions as in Directional Milestoning.  

 

Table 4.1: Results of the MFPT calculations on alanine dipeptide solvated in water 
with 6 cells placed as shown on Fig. 4.5. Exact MFPTs were calculated by running 
five 68 ns long MD trajectories. The standard deviation of predicted MFPT of DiM 
and MD calculations are given in the brackets. For DiM, standard deviation was 
calculated from a single execution by using Bayesian inference (details in Appendix 
D). The total cost for DiM is given as a sum of the simulation time of all trajectories 
and the simulation time used for preparation of initial distributions. 

Method 
MFPT  [ps], (sd [ps]) 

α β→  / β α→  total cost [ns] 

straightforward MD 66.4 (2.7) / 53.8 (4.6) 68 
DiM, 100 trajectories/Milestone 66.5 (11.1) / 39.0 (4.6) 5.0 + 0.6 = 5.6 
DiM, 250 trajectories/Milestone 57.7 (5.4) / 46.5 (3.6) 12.5 + 1.0=13.5 
DiM, 500 trajectories/Milestone 61.2 (4.2) / 46.8 (2.6) 22.8 + 2.0=24.8 
DiM, 1000 trajectories/Milestone  57.0 (2.7) / 45.2 (1.8) 46.1 + 3.9=50.0 
DiM, 5000 trajectories/Milestone 59.5 (1.3) / 44.2(0.8) 230 + 10.1=240.1 
MMVT, 0.4 ns /cell                 60.2         / 43.9 2.4 
MMVT, 0.8 ns /cell                 57.2         / 43.7 4.8 
MMVT, 1.6 ns /cell                 63.2         / 41.2 9.6 
MMVT, 3.4 ns /cell                 63.4         / 53.2 20.4 
MMVT, 12  ns /cell                 62.4         / 48.3 72.0 

 

Note that the employed dynamics is almost deterministic and thus a trajectory 

reflected from an interface (procedure required in MMVT) would approximately track 

itself back in time. Therefore we have slightly modified the MMVT protocol in a way 

suggested by Vanden-Eijnden in a private communication: instead of reversing the 

velocities of all the degrees of freedom at a cell interface, only the velocities of 

peptide atoms are reversed. This modification should not influence the statistics of 

observed fluxes through the interfaces since only the peptide degrees of freedom are 

used in the definition of cell boundaries. 
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Figure 4.5: Free energy profile of alanine dipeptide as a function of the two dihedral 
angles φ  and ψ . It was calculated from statistics of a 340 ns long MD simulation.  
Images for DiM calculations are placed at the positions of the red numbers and for 
MMVT calculation at the location of the black points. Both algorithms with these 
placement of images infer the Milestones in the positions of the dashed lines, in DiM, 
however there are two directional Milestones for each line.  

Both methods, DiM and MMVT, perform well in this scenario, though MMVT 

is more efficient for this simple system. If enough sampling is done, both techniques 

provide reasonable estimates of MFPTs between the metastable regions, the 

systematic error is lower for MMVT (6 % and 10 %) as compared to our method (10 

% and 18 %). Analysis of MMVT on the same system was performed recently 

(Maragliano, Vanden-Eijnden et al. 2009). A different force field was employed in 

(Maragliano, Vanden-Eijnden et al. 2009) and the MFPT reported differs by a factor 

of two from our calculations; however the relative error of MMVT for the reported 

α β→  transition is about 6%, which is comparable to our result. Results of β α→  

transition were not reported in (Maragliano, Vanden-Eijnden et al. 2009). Table 4.1 

shows that MMVT needs about 2-3 times less CPU time compared to DiM to 

converge. DiM requires more computations in these setting since each interface of 

MMVT is effectively doubled for the two different directions. Furthermore, additional 



 

97 
 

computation is needed in DiM to sample initial phase space points on each interface.  

In this one-dimensional set-up of Milestones with relatively large separation between 

Milestones and low free energy barrier MMVT is more efficient and as accurate as 

DiM. However, we will show below that with smaller separation between the 

interfaces, multi-dimensional arrangement of milestones, and rougher energy 

landscapes, DiM is better. 

Even though previous Milestoning studies calculated accurately MFPTs on 

alanine dipeptide, memory effects in the system are not negligible. First hitting point 

distributions (in terms of φ  angles) for the Milestones 4 5M →  and 6 5M →  are shown on 

Fig. 4.6. There is a noticeable difference between distributions of first hitting points on 

the Milestone 4 5M →  and on the Milestone 6 5M → . As shown on the figure, the 

approximate sampling described in Section 4.2.4 distinguishes the first hitting point 

distributions arriving from different directions to the region of image 5X  reasonably 

well.  

In Table 4.2, we examine the use of directional Milestones on this system. The 

table shows that transitions between the six Milestones (if direction is not part of the 

description) are not Markovian. If no memory effects were present in the system then 

the probability of transiting to Milestone i+1 from Milestone i would not depend on 

the Milestone visited before i, i.e. the second and the forth columns of Table 4.2 would 

be the same within the error bars. We however see differences of up to 21% (for i=5) 

or by a factor of up to 2.2 (for i=1). One can see that the values of these relative 

probabilities estimated by Directional Milestoning (columns 3 and 5 in Table 2) are in 

good agreement with the true values.  
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Table 4.2: This table shows that dynamics of the alanine dipeptide system is not fully 
reducible to a Markov jump process between six hypersurfaces shown on Fig 4.5. The 
probability of jumping to the Milestone 1i +  from the Milestone i  depends on the 
Milestone visited before i . Probabilities (from a long MD trajectory) of jumping from 
i  to 1i +   if the Milestone 1i −  ( 1i + ) was visited before the hypersurface i  are listed 
in the second (fourth) column. The third and fifth columns list these probabilities as 
measured by DiM calculation by starting 1000 trajectories from each Milestone. Note 
that in contrast to DiM, the original Milestoning assumes that 

( 1/ 1 ) ( 1/ 1 )P i i i i P i i i i→ + − → = → + + → . 

i ( 1/ 1 )P i i i i→ + − →  
1 1 1i i i i i iM M M

N N
− → → + − →

 ( 1/ 1 )P i i i i→ + + →   
1 1 1i i i i i iM M M

N N
+ → → + + →

 

1  3.9 3.6 8.6 8.3 

2 82.4 84.8 89.4 92.0 

3 84.9 88.1 91.0 88.0 

4  39.0 37.5 49.0 50.0 

5  39.2 41.4 60.6 50.5 

6  26.3 32.0 35.0 34.1 
 

 

-200 -150 -100 -50

0.000

0.005

0.010

0.015

0.020

D
e

n
s
it
y

 φ  

Figure 4.6:  Distributions of φ  angle of the first hitting point conformations of the 

region of image 5X  (located at 80ψ = � ): distributions observed in a long MD 

simulation for conformations arriving to the hypersurface at 5X  from the hypersurface 

of 4X  (black solid), or from that of 6X  (gray solid). Distributions sampled on the 

Milestone 4 5M →  (black dashed) and the Milestone 6 5M →  (gray dashed). 
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In the second experiment we examine both methods (DiM and MMVT) on the 

same system with Milestones in more than one dimension. This experiment is 

performed to empirically illustrate that placing Milestones in a non-linear arrangement 

does not compromise accuracy of DiM calculations. Images are placed in a two-

dimensional grid covering the accessible space at the target temperature 

(conformations with torsional angle 0φ < ). For DiM, 18 images are placed in the 

positions marked 1, ...,18  on Fig. 4.7a). Each image has 8 incoming Milestones and 8 

outgoing Milestones (displayed in solid and dashed on Fig. 4.7a) respectively). We 

calculated the MFPT from 12 11M →  (or 10 11M → ) to the union of   M10→9
 and   M8→9

 for 

the β α→  transition. The MFPTs from these two Milestones differ from each other 

by about 0.3 ps and we report their average in Table 4.3. The opposite transition 

(α β→ ) was defined in the equivalent way.  
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Figure 4.7: Placement of images on a two dimensional grid. (a) DiM settings: total of 
18 images, located at position of numbers in the plot, are placed in a two dimensional 
grid. For two of the images, 11X  and 14X , the outgoing (dashed) and incoming (solid) 
Milestones are shown. (b) Arrangement for MMVT. 24 images are placed in the 
conformational space so the resulting milestones are in the positions equivalent to 
DiM  
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For MMVT the images were placed in slightly different positions than for DiM 

(see Fig. 4.7b) such that the Milestones inferred by the Voronoi Tessellation are in 

equivalent positions to those used in Directional Milestoning. For the α β→  

transitions, we calculated the MFPT of trajectories starting from the two white 

Milestones in Fig. 4.7b ( 2 3M ↔  and 8 9M ↔ ) and terminating at the union of the red 

Milestones. MFPT of the transitions from these two starting points differ by less than 

0.2 ps so only their average is reported in Table 4.3. The β α→  calculation was 

performed in the equivalent way (from the two central Milestones in the β  sheet 

conformation ( 140ψ = � ) to the union of all the Milestones with 40ψ = − � ).  

The results of both methods are listed in Table 4.3. The accuracy of Directional 

Milestoning is not compromised by multidimensionality; hence DiM works well for 

higher dimensions or higher connectivity of Milestones. The relative error of the 

MMVT method increased to 33 % (31 %). We think that this is mainly due to the 

corners between Milestones in the MMVT arrangement that cause rapid termination 

times between nearby Milestones and unwanted correlations between touching 

Milestones. Evidence of this can be seen in Fig. 4.8.   
 

Table 4.3: Results of the MFPT calculations on alanine dipeptide solvated in water 
with 18 cells placed as on Fig. 4.7a). Standard deviations are in the brackets. Total cost 
for DiM is given as a sum of the simulation time of all trajectories and the simulation 
time used for preparation of the initial ensemble on each Milestone. 

Method 
MFPT  [ps], (sd [ps]) 

α β→  / β α→  total cost [ns] 

straightforward MD 66.4 (2.7) / 53.8 (4.6) 68 
DiM, 100 trajectories/Milestone 68.2 (10.0) / 56.9 (8.9) 10.0 + 2.6 = 12.6 
DiM, 300 trajectories/Milestone 63.5 (4.9) / 56.6 (4.1) 31.1 + 8.7= 39.8 
DiM, 1000 trajectories/Milestone 62.8 (2.5) / 53.2 (1.6) 103 + 26=129 
DiM, 2000 trajectories/Milestone  65.7 (1.6) / 52.2 (1.1) 207 + 52=259 
MMVT, 5 ns / cell                 48.6   /  37.0 120 
MMVT, 10  ns / cell                 44.3   /  37.1 240 
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Figure 4.8: First hitting point distributions related to Fig. 4.7. (a) For DiM, 
distribution of  ψ  torsional angle of conformations arriving to the Milestone 4 10M →  

from the Milestones 9 4M →  (black, solid), 11 4M → (black, dashed), 10 4M → (gray, solid), 

3 4M → (gray, dashed), and 5 4M →  (black, dotted). (b) For MMVT, distribution of  ψ  

torsional angle of conformations arriving to the Milestone 3 9M ↔  from the Milestones 

10 9M ↔  (black, solid), 4 3M ↔  (black, dashed), 8 9M ↔  (gray, solid), 2 3M ↔  (gray, 

dashed), and 15 9M ↔  (gray, dotted).  
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Figure 4.9: The shown landscape is an adiabatic φ , ψ  energy map. The energy is 
minimized while constraining the φ  and ψ  dihedrals to specified values. Placement of 
(a) 24 images, (b) 63 images in the conformational space based on the algorithm 
described in Subsection 4.3.2.1 is shown. Also displayed is the Voronoi Tessellation 
based on the periodic Euclidean metric in the reduced space of φ  and ψ  torsions.  
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4.3.2 Alanine dipeptide in vacuum  

In vacuum there are two stable conformers C7eq and Cax of alanine dipeptide 

(Fig. 4.9). The state C7eq is further split into two sub-states denoted by C7eq and 7eqC′  

(located at 26X  in Fig. 4.9b) separated by a small barrier. We calculate the MFPT of 

transition from C7eq to Cax at two different temperatures, 400 K and 350 K, using 

Langevin dynamics. This is performed by calculating MFPT starting from each of the 

incoming Milestones to C7eq region (green on Fig. 4.9) and considering union of the 

incoming Milestones to the region Cax (red on Fig. 4.9) as the final state. The MFPT is 

not sensitive to exact identity of the starting Milestone (variation of less than 2%) 

therefore an average MFPT from all green Milestones is considered. The friction 

constant of Langevin dynamics was set to 30 ps-1.  

 

4.3.2.1 Image and cell generation 

The images were generated by the following expansion. We start with the set 

of images 1 2{ , }S X X= , where 1X  is a conformation located at Cax and 2X  at C7eq. 

Then we iteratively pick an image X  from the set S  and “expand” it: We launch 

trajectories starting from X  with randomly initiated velocities and run each of these 

trajectories until it departs at least a pre-specified distance δ  from X . Then we 

cluster the set of end points of these trajectories to existing images in S  and 

potentially add new images to the set S  if there are end points that are farther than δ  

from all images of S . We repeat this process until no new images are generated, i.e. 

we have tried launching trajectories from all images in S  and all end coordinates are 

in S . There are three parameters in this algorithm: (i) the distance cutoff δ , (ii) the 

number of expanding trajectories 
e

N , and (iii) the clustering algorithm employed. For 

alanine dipeptide we have used expectation-maximization as a clustering algorithm 

(Hartley 1958), with 
e

N  set to 400 and two different values of δ , 1 0.6 Åδ =  and 
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2 0.4 Åδ = . The root mean squared distance after optimal overlap (RMSD) (Kabsch 

1976) is the distance metric (the RMSD between 1X  and 2X  is 1.25 Å ) for the 

purposes of clustering as well as the distance function in the definition of Milestones 

(4.1). 

  

4.3.2.2 Results for alanine dipeptide in vacuum 

By using different values for δ  we obtained sets of images of size 24 (for 1δ ) 

and 63 (for 2δ ); both are shown on Fig. 4.9. The tessellations shown in black in this 

figure are only approximate since they are based on the Euclidean distance in ( , )φ ψ  

space, where the real interfaces (Milestones) are defined using the RMSD distance. 

The MFPT of the transitions between the metastable conformations are significantly 

longer than those in the solvated peptide due to higher free energy barriers. Tables 4.4 

and 4.5 summarize the results of the Milestoning calculations in this system. At the 

high temperature (400 K) both methods, DiM and MMVT, predict accurate MFPT 

from C7eq to Cax (with systematic error of about 10%). MMVT needs to run about 1.5 

µs MD simulations to obtain converged results, while DiM requires about 2.5 µs. Both 

of them provide significant speed up against straightforward MD simulation, even 

though a rough estimate of MFPT of the C7eq to Cax transition can be obtained by 

running about 11 independent MD simulations (equivalent to 4 µs of the total 

simulation time); however, both MMVT and DiM can be trivially parallelized to 

thousands of CPUs, shortening the actual time to perform the calculation. 
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Table 4.4: Results of the MFPT calculations on alanine dipeptide in vacuum with 24 
cells placed as on Fig. 4.9a) at temperature 400 K. Standard deviations are in the 
brackets. Estimation of the exact MFPT was performed by launching five groups of 
400 trajectories from C7eq state and running them until Cax state is reached (the MFPT 
reported in the table is calculated as the MFPT of all 2000 trajectories; the error is 
estimated by standard deviation of MFPTs calculated from each of the five groups). 
Total cost for DiM is given as a sum of the simulation time of all trajectories and the 
simulation time used for preparation of the initial ensemble on each Milestone. 

method MFPT [ns] total cost [µs] 

straightforward MD at T = 400 K 375 (16) 150 
DiM, 500 trajectories/Milestone 630  (299) 0.13 + 0.09 = 0.22 
DiM, 1K trajectories/Milestone 217 (103) 0.26 + 0.18 = 0.46 
DiM, 3K trajectories/Milestone 306 (76) 0.78 + 0.47 = 1.25 
DiM, 10K trajectories/Milestone  344 (37) 2.6 + 1.6 = 4.2 
DiM, 20K trajectories/Milestone  387 (34) 5.2 + 3.1 = 8.3 
DiM, 30K trajectories/Milestone  352 (31) 7.8 + 4.7 = 12.5 
MMVT, 10 ns /cell                 135    0.24 
MMVT, 20 ns /cell                 289 0.48 
MMVT, 40 ns /cell                 322 0.96 
MMVT, 60 ns /cell                 359 1.5 
MMVT, 130  ns /cell                 351 3.1 
MMVT, 400  ns /cell                 336 9.6 

 

Table 4.5: Results of the MFPT calculations on alanine dipeptide in vacuum with cells 
placed as on Fig. 4.9a/b) at temperature 350 K. DiM was performed with 24 cells, 
MMVT in two different settings: 24 and 63 cells. Standard deviations are in the 
brackets. Estimation of the exact MFPT was performed by launching five groups of 
200 trajectories from C7eq state and running them until Cax state is reached. Standard 
deviation and average of the MFPT calculated from each group are reported in the 
table. Total cost for DiM is given as a sum of the simulation time of all trajectories and 
the simulation time used for preparation of the initial ensemble on each Milestone. 

method MFPT [µs] total cost [µs] 

straightforward MD at T = 350 K 2.05 (0.3) 410 
DiM, 5K trajectories/Milestone 2.78 (0.65) 2.3 + 1.4 = 3.7 
DiM, 10K trajectories/Milestone  1.74 (0.40) 4.7 + 2.8 = 7.5 
DiM, 20K trajectories/Milestone  1.75 (0.33) 9.4 + 5.6 = 15.0 
DiM, 60K trajectories/Milestone  1.77 (0.20) 28 + 16.8 = 44.8 
MMVT, 24 cells, 2.00 µs /cell                 69.7 48 
MMVT, 63 cells, 0.75 µs /cell                 3798 47 
MMVT, 63 cells, 2.25 µs /cell                 855 142 
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When the temperature is lowered to 350 K (see Table 4.5) the C7eq to Cax 

transition is slower with MFPT of about 2.0 µs. As listed in Table 4.5, Directional 

Milestoning calculates the MFPT with systematic error of about 15% with as few as 

7.5 µs of total simulation time. That is a significant speedup compared to 

straightforward MD since DiM can be easily parallelized on thousands of processors. 

MMVT fails to calculate the MFPT accurately. The main reason for this failure is poor 

statistics. An important difference between DiM and MMVT is that DiM allocates 

computational resources to each Milestone, where MMVT allocates the computational 

resources to a cell. If a transition between two specific interfaces in a cell is needed to 

describe the reaction and the transition is significantly less likely than transitions 

between other interfaces of the cell, then sampling this transition using MMVT is 

inefficient. A simple realization of this effect is the existence of a barrier in the middle 

of the cell. In that case MMVT trajectory is likely to be confined to a one minimum, to 

collide with the same interface many times (hits that do not count for the statistics) and 

to record only a few successful transitions to the other minimum. In contrast DiM 

launches a large number of short trajectories. These trajectories terminate quickly, and 

contribute to the statistics. 

In DiM, sampling is done (extensively) at the interfaces, so the probability of 

observing a transition between interfaces of interest is greatly enhanced, since at least 

one end of the transitional event is sampled extensively. A potential problem in DiM is 

a large number of interfaces that may make sampling expensive. To avoid sampling 

irrelevant interfaces (at a given temperature) trajectories are initiated at few initial 

interfaces and only interfaces that are hit at least once during the DiM calculation are 

sampled and launched. We stop the DiM calculation when the process converges (i.e. 

no new interfaces besides those already sampled are reached). 
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For the MMVT calculation with 24 images, many cells cover a relatively large 

part of the conformational space with a rough energy landscape (see for example cell 

6X  on Fig. 4.9a). This arrangement may cause poor statistics for those regions since 

the trajectories spend most of their time in low free energy regions, rarely visiting 

interfaces higher in free energy. To increase the probability of having a double hit at 

the two desired surfaces, we run the same calculation with 63 images as well. But even 

when 63 images are used, the allocation of computational resources is highly 

unbalanced. For example, we consider the frequency of hitting the interfaces 49 47→  

and 33 47→  (displayed in white on Fig. 4.9b) that are both important for the overall 

MFPT. In both, 49 and 33 cells, confined simulations of total time of 2.25 µs hit a cell 

boundary more than 72 10⋅ times. However, the interface 33 47→  is hit only 17 times 

and the interface 49 47→  only 7 times. In contrast DiM allocates equal number of 

starting trajectories to each of the Milestones and transitions from Milestones located 

near the transition states are sampled as well as other Milestones. We have not 

experimented with any selection criterions for allocation of computational resources to 

different cells (in MMVT) or to different Milestones (in DiM) but both methods may 

benefit from selective allocation of resources to “important regions” of conformational 

space.  

 

4.3.3 Folding of a pentapeptide 

We also performed DiM Calculations on a more realistic biophysical system. 

We studied folding thermodynamics and kinetics of a pentatpeptide Ac–WAAAH-

NH2 (wh5) at 300 K, which experimentally exhibits fast folding kinetics to an α -

helical structure (Jas, Hegefeld 2010). The peptide molecule was solvated in a periodic 

box (30 Å)3 of 801 TIP3P water molecules and one Cl- ion. The OPLS force field 

(Jorgensen and Tirado-Rives 2002) is used with the same settings as for alanine 
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dipeptide simulation described in Section 4.3.1. To cover conformational space 

accessible to the peptide by images, a 1 sµ  MD trajectory was executed with a 

structure being saved every ps. The obtained set of one million structures was 

clustered such that the set of clusters covers the conformational space accessed by the 

MD simulation. The distance metric, that is used to differentiate between structures, is 

Euclidean distance (with periodicity) in the ten-dimensional space given by φ  and ψ  

backbone torsional angles of all five residues. A following greedy clustering algorithm 

was used: the fully helical structure is assigned as a center of the first cluster. Then, 

going sequentially along the structures from the MD trajectory, a new structure is 

assigned as a center of a new cluster if its distance from all other cluster centers is 

larger than 3 radians. 153 images were obtained in this way. A fast DiM calculation 

(by limiting each trajectory length to 3 ps) was performed to identify images that 

communicate rapidly. An image was removed from the initial set of images if there 

was a trajectory initiated in the image that terminated in less than 100 fs on a different 

image. This procedure reduced the number of images to ninety. A regular DiM 

calculation with the reduced set of images was performed. In total, there are 6186 

directional Milestones between the images (according to Definition (4.1)) reachable at 

300 K. From each interface, 50 trajectories were initiated, with overall mean 

termination time of a trajectory being 33.8 ps. The total accumulated simulation time 

is 11.8 sµ  (from which 1 sµ  was used for the initial MD sampling and 200 ns were 

used for preparation of the initial configurations on the Milestones). A markovian 

transition matrix Q between the Milestones is build from the collected data. From Q, 

we calculated the equilibrium probability of each Milestone and MFPT to the native 

state. The native state is considered as the union of all incoming Milestones to the α -

helix image (by construction these Milestones are closer to the α -helix image than 
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any other image). The equilibrium probability of the native state defined in this way is 

about 2.5% (for comparison, fully unfolded states add up to 17.3%).  

 
Figure 4.10: Schematic view of folding of wh5. Conformational space is divided to 
different groups by distinguishing state of each residue as helical (1) or non-helical (0) 
according to Ramachandran plot. By FOLDED group we denote images that have at 
most one residue in the non-helical state, by FOLDED those that have at most one 
residue in the helical state. The size of each state codes for its equilibrium weight and 
the width of each directed edge codes for amount of flux to the folding state along that 
edge. 

The MFPT to the native state from all other Milestones weighted by the 

equilibrium probability is 4.0 ns what is in a good agreement with an estimation of 

MFPT from the 1 sµ  MD trajectory (9.3 ns). The value calculated by straightforward 

MD is of qualitative value since the equilibration of the MD trajectory might not be 

reached in 1 sµ . Note that calculation of a long MD trajectory is not required for DiM 

in general. The initial set of images can be obtained by different less expensive 

techniques for example by those discussed in Chapter 2 or those in Section 4.3.2.1. A 
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schematic view of the folding conformational space for wh5 pentapeptide as 

calculated by DiM is shown in Figure 4.10. We calculated MFPT of folding also by 

MMVT with the same set of images and the same total simulation time as in the DiM 

calculation. However, the resulting average MFPT to the folding state as calculated by 

MMVT is of 113 ns, what is more than an order of magnitude larger than the value 

estimated by straightforward MD. 

 

4.4 Discussions and conclusions 

 

In this chapter, we proposed a method to compute dynamics in high 

dimensions called Directional Milestoning. We have shown that the mean first passage 

times between Milestones can be calculated accurately given that the distribution at 

which a Milestone is hit does not depend on the previously assigned Milestone (the 

assumption formulated in Equation (4.4)). Directional Milestoning arranges dividing 

hypersufaces in a special way, aiming to satisfy the above assumption: i) Milestones in 

DiM are made directional, so the local progress of the reaction (going from the region 

of 
i

X  to 
j

X  as opposed to being at the interface between 
i

X  and 
j

X ) is made part of 

the description, ii) the arrangement of Milestones guarantees a lower bound on spatial 

separation of any connected pair of Milestones so trajectories initiated on a Milestone 

have space and time to “lose memory” before terminating on a different Milestone. 

  The algorithm, while based on the trajectory fragments of Milestoning, is a 

step in the direction of Transition Interface Sampling (TIS) (Moroni, Bolhuis et al. 

2004; Moroni, van Erp et al. 2004; van Erp and Bolhuis 2005) and Forward Flux 

Sampling (FFS) methods (Allen, Frenkel et al. 2006; Valeriani, Allen et al. 2007) 

compared to the original Milestoning. Here we use some trajectory tracking. The main 

difference between these methods and Directional Milestoning is that TIS and FFS are 
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tracking trajectories all the way back to the reactant state. This tracking has the 

advantage of not relying on any assumption about the initial ensemble on an interface 

like is done in Milestoning. On the other hand, sampling of trajectories in TIS and FFS 

is computationally more expensive than in Milestoning because every attempted 

trajectory in these methods is tracked back to the reactant state where in (Directional) 

Milestoning a trajectory is tracked only until it reaches a different Milestone. 

Computations of trajectory fragments can be done in Milestoning in a massively 

parallel way. The Partial Path Sampling method uses a conceptually similar approach 

of trajectory fragments (Moroni, Bolhuis et al. 2004). 

An important distinction of Directional Milestoning compared to TIS, FFS, 

and the original Milestoning is that it allows for arbitrary arrangement of Milestones in 

conformational space, not necessarily following a linear arrangement along an order 

parameter or a reaction coordinate. A similar (arbitrary) arrangement of interfaces is 

used in the MMVT method (Vanden-Eijnden and Venturoli 2009), nonequilibrium 

umbrella sampling method (Warmflash, Bhimalapuram et al. 2007; Dickson, 

Warmflash et al. 2009), and Trajectory Parallelization and Tilting method (Vanden-

Eijnden and Venturoli 2009). The last two techniques are using short trajectories in 

cells and balance the fluxes between cells. Recently the non-equilibrium umbrella 

sampling (Dickson, Warmflash et al. 2009) was illustrated to be more efficient than 

FFS (Allen, Frenkel et al. 2006).  The Weighted Ensemble approach was also shown 

recently to work without a reaction coordinate (Zhang, Jasnow et al. 2010). 

We have compared DiM with MMVT and showed that the performance of 

MMVT (in terms of effectiveness and correctness) is comparable to that of DiM in 

some of the examples, but that the correctness and/or effectiveness of MMVT can be 

compromised in systems with high free energy barriers, or in cells with two interfaces 

that are hard to reach. Another problem for straightforward implementation of MMVT 
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is the existence of corners between Milestones along more than one dimension that 

contribute to termination times that are too short. So while DiM is in general 

somewhat slower than MMVT it provides reliable results more consistently, including 

cases in which MMVT fails. 

We also would like to comment on the similarities (and the differences) of our 

approach to the Markov State Model (MSM - for a recent study see (Noe, Schutte et 

al. 2009)). In the applications of MSM that we are aware of, long to very long 

Molecular Dynamics trajectories at normal conditions are used to estimate transition 

times and population of different cells. MMVT and DiM are designed to avoid such 

long trajectories (at the cost of approximate matching of probability densities at the 

interfaces). Once a sample of conformational space is available (which can be done in 

numerous ways, reaction path calculations, replica exchange simulations, or high 

temperature trajectories) only very short Molecular Dynamics trajectories are required 

to estimate the local kinetics. These short trajectories that can be trivially parallelized 

providing profound computational saving compared to straightforward Molecular 

Dynamics simulations. While significant progress has been made in parallelizing a 

single trajectory (Shaw, Deneroff et al. 2008), overhead still remains and special 

hardware that is frequently used is more expensive to buy and to maintain. 
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CHAPTER 5 

CONCLUSIONS 

 

This dissertation discusses three different strategies to reduce the 

computational costs of calculations addressing the large scale conformational 

transitions: action minimization algorithms combined with spatial coarse-graining, a 

systematic design of accurate coarse-grained potentials, and Milestoning algorithm 

generalized to complex processes. As introduced in the previous chapters, there are 

other methods available for calculating quantitative/qualitative descriptions of 

conformational transitions. Most of them, however, fail to scale to moderately sized 

(hundreds of residues) biological systems. To scale to the systems of this size we have 

concentrated on methods that reduce the complexity of the system, both in the spatial 

and the temporal terms. Moreover, the Milestoning method, even after the reductions, 

provides an accurate calculation of thermodynamics and kinetics along with the 

possibility of massive parallelization on a computer cluster.  

Many of the ideas, as calculating the conformational transitions by an action 

minimization, usage of coarse-grained potentials, or Milestoning algorithm itself, have 

been around before the research described in this dissertation has been performed. We 

have, though, extended and combined these methods in ways that make them more 

applicable to practical problems faced in contemporary computational molecular 

biology. The set of methods presented in this dissertation, and implemented in the 

MOIL molecular modeling package, provides a set of tools capable of quantitative 

description of a moderately sized biophysical system.  

There is, however, still room for improvements. The methods, as they stay 

now, are implemented to work on  isolated and solvated protein systems without any 

atypical chemical modifications. Even on such ideal systems, interpretation of results 
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of these methods shall be performed carefully, with testing and verification. There are 

several internal parameters described in detail in the previous chapters that need to be 

set up properly to obtain accurate and statistically converged results. We need to, for 

example, keep in mind that a reduced quality of the employed atomistic force field 

would directly cause incorrectness of Milestoning or the action minimization 

algorithms. It is therefore recommended to verify applicability of the presented 

algorithms on a given system by first testing against available experimental evidence 

and test the stability of the algorithm with respect to its internal parameters, before any 

computational predictions are taken seriously. 

 In biology, moreover, many proteins consist of special residues, have bound 

ligands, or are in an interaction with different organic macromolecules (nucleic acids, 

sugars, or membranes). Significant amount of work is required to extend the methods 

presented in this dissertation to a set of robust tools applicable to such a set of 

biological systems.  

The employed algorithms can be also improved to enable more accurate 

calculations or applications to larger biophysical systems. Here we list several 

suggestions for the future research: The efficiency of the action minimization 

algorithms can be improved significantly by employing more complex global function 

minimizers. The learning algorithm of FREADY potential can be modified to 

incorporate explicitly information about unfolded structures in the learning process 

and thus make the resulting potential applicable for example to protein folding. 

Milestoning algorithm without a reaction coordinate can accommodate several 

improvements: implementation of the exact sampling of the first hitting points instead 

of the approximate one described in Section 4.2.4, consideration of different Milestone 

geometries, or alternative image placement strategies, as in the current form, the 
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number of interfaces can become quite large (as demonstrated on the pentapeptide 

example in Section 4.3.3). 
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APPENDIX  

APPENDIX A: PARALLEL CALCULATIONS OF BOUNDARY VALUE 

PATHWAYS 

 

The calculation of trajectories with the SDEL formulation requires the 

determination of the paths that minimize the action l

Gauss
S , or more precisely minimize 

the target function T as described in (2.7). The simulated annealing procedure requires 

the values of    2,..., 1jT j N∂ ∂ = −x  for a gradient-based move. Let us examine the 

communication and computation required to calculate the jT∂ ∂x ’s. The most 

complex part of the function T is l

Gauss
S  itself. l

Gauss
S is a sum of squared norms 

of jS∂ ∂x ’s which are functions of
j

x , 1j±x , 
j

U∂ ∂x , 1jU ± , and jU . See the exact 

formula in Appendix B. Here we use an abbreviation 

1 1 1 1( , , , , , , )j j j j j j j jS U U U U− + − +∂ ∂ = ∂ ∂x F x x x x , and kF ( )jkS∂ ∂ =x … . After 

substituting jS∂ ∂x  into l

Gauss jm
S x∂ ∂ we get 

 

( ) ( )

( )

2 2 2

1 1 1 1

k 2 1 1 2 1 m 1 1 1 1
1

k 1 1 1 1

2

F , , , , , , F , , , , , ,

2 F , , , , , ,

l

Gauss

kjm j k j k jm jk jk jm j k j k jm

j j j j j j j j j j j j j j

j k

j j j j j j j

S S S S S S S

x x x x x x x x x x

U U U U U U U U
x

U U U U
x

− − + +

− − − − − − + − +

−

− + − +

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂
∂ ∂ ∂ ∂ +

∂

∂
= ∂ ∂

∂

∑
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( )
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1

2 2
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j k
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x
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+
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 
 
 
 
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 
 

∂ ∂ ∂ ∂ ∂
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= ∂ ∂ ∂ ∂ ∂ ∂

∑ x x x x

x x x x x x x x

x x x x x x

   (A.1)  

where G  is a function that takes its listed inputs and returns a vector l

Gauss jS∂ ∂x . In 

order to calculate the derivative of T with respect to jx  we need the position and 
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potential information of five different structures, need to compute forces for three 

different structures, and compute a Hessian matrix for one structure. In previous 

studies the following protocol was used: A trajectory represented by N conformations 

is distributed among P processors, each processor being responsible for updating N/P 

successive conformations. Suppose that a processor p is responsible for conformations 

1, ,m m N P+ −x x… . According to Equation A.1, the processor p requires positions 

2 1, ,m m N P− + +x x…  to update its conformations. However, the positions of 

2 1 1, , ,m m m N P m N P− − + + +x x x x  are modified on different processors, and these 

conformations have to be communicated from the processors responsible for their 

updates. The send and receive communications summed up to 4 3 ptn⋅  floating-point 

numbers per each step of simulated annealing (where ptn  is the number of particles in 

the system). This amount of communication may contribute significantly to the 

computation clock-time. Therefore, the forces 1m
U −∂ ∂x and 

m N P
U +∂ ∂x (together 

with 1,m m N PU U− + ) that are required as an input for the function G  in Equation A.1, are 

recomputed on processor p, after the positions of 1,m m N P− +x x  are received. It is 

recommended to communicate the values of 2mU −  and 1m N PU + +  since on most 

platforms their computation is more expensive than their communication. The 

proposed scheme requires (N/P+2) force computations, N/P Hessian matrix 

computations, and 4 3 ptn≈ ⋅  floating-point numbers received and sent in each step for 

each processor. The scheme provides reasonable scaling, unless the number of 

processors P approaches the number of conformations N.  The last limit is approached 

for large system (like mGluR1) for which we wish to exploit the benefit of 

parallelization to the maximum. In these cases we assign a single structure to each 

processor (P=N), then we require (N/P+2)=3 force calculations per algorithm step. 

The number of the force calculations could be reduced to one per step, if we allow for 

additional communication of 1j
U ±∂ ∂x  from neighboring processors. This reduces the 
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number of forces calculations per step per processor from ( )2N P +  to N P  and 

increases the amount of communication to 6 3 ptn⋅ . The actual algorithm as 

implemented in MOIL uses slightly different reduction of Equation (A.1), which can 

be rewritten as 

 ( )2 2
1 1 1 1, , , , , , ,

l

Gauss
m j j j j j j j j

jm

S
S U U U U U

x
± ± ± ±

∂
′= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
G x x x x x x , (A.2) 

where instead of 2 2,j jU± ±x , derivatives 1jS ±∂ ∂x are used. This solution is in terms of 

computation, memory, and communication equivalent (up to negligible constants) to 

the former one; the advantage is that it can be implemented without requiring extra 

special cases in the code for the first and last processors and the code is more easily 

generalizable for the case mod( , ) 0P N ≠ .  

Additional reduction in the computation time can be obtained by transforming 

the problem of Hessian matrix computation to an additional force computation. This 

can be done because the Hessian 2 2
j

U∂ ∂x  is used in calculation of jT∂ ∂x  only for a 

multiplication with some other vector v .  The following first-order approximate 

reduction can be used to compute the product 2 2
j

U∂ ∂ ⋅x v  (Eric Vanden Eijnden, 

private communication): 

 
2

2
1

jj j

U U U

α
α

+

 ∂ ∂ ∂ ⋅ ≈ −
 ∂ ∂ ∂
 xx x v

v
x x x

, (A.3) 

The expression in Equation (A.3) becomes accurate for a sufficiently small 

scalarα . For the MOIL potential energy function with implicit solvent modeling, the 

calculation of Hessian matrix is approximately 50% more expensive than the 

calculation of the forces. However, the benefit of introducing this approximate 

reduction is not only in those 50% of run time, it also makes the code simpler and 

more understandable, since the formulas for the Hessian calculation is significantly 
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more complex than that for the forces calculation. Derivatives of other terms in 

function T (Equation (2.7)) can be computed from local information kept on each 

processor.  

An Additional piece of global information required on each processor is l∆ , 

which is a slowly varying function of the number of optimization steps. Therefore, it 

suffices to re-compute l∆  every 10 to 20 steps of simulated annealing. The parallel 

computation of l∆  can be done classically in 2log K communication rounds with a 

total number of 2P (single floating-point number) messages passed. 
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APPENDIX  B: EXPLICIT EXPRESIONS FOR THE SDEL ACTION 

 

The exact formulas for SDEL derivatives 
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APPENDIX C:  LEMMAS REGARDING THE MILESTONES GEOMETRY 

 

Xi A Xj

B

MijSij

 

Lemma C.1: Let 
i

X  and 
j

X  be two images in conformation space such that 
i j

M →  

exists. Let A be an intersection of the line segment 
i j

X X  with 
i j

M → . Then a point B  

on the hyperplane perpendicular to 
i j

X X  and passing through A  belongs to 
i j

M →  iff 

( , ) ( , )
k j

k d X B d X B∀ ≥ . 

 

Proof of Lemma C.1: From definition (4.1) of 
i j

M → : 

 2 2 2( , ) ( , )
i j i

d X A d X A− = ∆  

By using the Pythagoras theorem for triangles 
i

X AB  and 
j

X AB : 

 
( ) ( )2 2 2 2 2 2

2 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

                               ( , ) ( , )

i j i j

i j i

d X B d X B d X A d A B d X A d A B

d X A d X A

− = + − +

= − = ∆
 

 

Consequence of Lemma C.1: 
i j

M →  is a hyperplane segment perpendicular to 
i j

X X . 

 

 



 

125 
 

Lemma C.2: Let 
ij

S  be the hyperplane perpendicular to the line segment 
i j

X X  and 

passing though its midpoint. Then 
2

( , )
2 ( , )

i
ij i j

i j

d S M
d X X

→

∆
= . 

Proof of Lemma C.2: Since both 
ij

S  and 
i j

M →  are perpendicular to 
i j

X X  the 

distance ( , )
ij i j

d S M →  is equal to the distance of the 
i j

X X  midpoint, 
ij

P , and the 

intersect of 
i j

M →  with 
ij

X , A . Thus: 

 
( ) ( )

2 2 2

2 2

( , ) ( , ) ( , ) ( , )

( , )
4 ( , ) 2 ( , )

i ij ij i j j ij ij i j i

i i
ij i j

i ij i j

d X P d S M d X P d S M

d S M
d X P d X X

→ →

→

+ − − = ∆

∆ ∆
= =
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APPENDIX D: STATISTICAL REASONING 

 

We describe an estimate of the statistical error of a milestoning calculation 

from a single set of collected data using Bayesian reasoning. As shown in Section 4.2, 

equation (4.5), repeated here as (D.1),  

                                        ( | )t Pαβ α γβ
γ

τ γ α τ= +∑                              (D.1) 

relates MFPTs ( αβτ ) and local kinetics entities ( tα  and ( | )P γ α ). Milestoning 

aims to estimate tα  and ( | )P γ α  by launching Nα  trajectories from each Milestone 

α . Nαγ  of them terminate on the Milestone γ  and the mean incubation time (time to 

termination) of all Nα  trajectories is Tα . In Bayesian inference a statistical model of 

the transitions among Milestones is needed. We closely follow and extend notation 

used in the analysis of Markovian Milestoning with Voronoi Tesselations (Vanden-

Eijnden and Venturoli 2009). The same kinetic formulas (with different notation) are 

also available from (West, Elber et al. 2007). We assume continuous Markov jump 

process between the Milestones controlled by a transition matrix Q defined in the 

following way: Let the probability distribution of the system over all the Milestones be 

1( , , )
N

ρ ρ=ρ … , where αρ  is the probability that the system is assigned to a Milestone 

α . Under continuous Markov jump process ρ  behaves as:  

                                                               Q=ρ ρ� .                                                  (D.2) 

For transition matrix Q, by definition  q qαα β α αβ≠= −∑ and it can be shown by simple 

algebra that ( | ) /P q qβα γ α γα
β α ≠= ∑  and 1/t qα γ α γα≠= ∑  (for derivation see for 

example (Shalloway and Faradjian 2006; West, Elber et al. 2007; Vanden-Eijnden and 

Venturoli 2009)). By plugging the last three identities to the linear system (D.1) it 

reduces to   

                                                            ' ,Q = −τ 1                                              (D.3) 
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where τ  is the row vector ( )1 1 1, , , , ,
T

Nβ β β β β βτ τ τ τ− +… …  and 'Q  is a 

( 1) ( 1)N N− × −  matrix created from Q  by skipping the row and the column related to 

the Milestone β . In order to infer τ  from the collected data, { },N Tαγ α , using Eq. 

(D.3), a relation between { },N Tαγ α  and 'Q  is needed. Following the derivations from 

ref. (Vanden-Eijnden and Venturoli 2009): for a system ruled by (D.2) the probability 

of staying in a state α  for time t and then jumping to a state β  in the time interval 

,t t dt< + >  is 
q t

e q dt
αγγ α

αβ
≠

−∑ . Using this equality, the likelihood of observing the 

collected data, ({ , } | )L N T Qαγ α , is  

 ({ , } | ) N q N T
L N T Q q eαγ αγ α α

αγ α αγ
α γ α

−

≠

= ∏∏ .  (D.4) 

By using the Bayes’ rule the likelihood that the true transition matrix is Q given the 

collected data, ( |{ , })L Q N Tαγ α , is:  

 ( |{ , }) ( )N q N T
L Q N T q e P Qαγ αγ α α

αγ α αγ
α γ α

−

≠

∝ ∏∏ , (D.5) 

where P(Q) is the prior probability distribution of Q without seeing any data (typically 

this is set to uniform if we do not have any prior knowledge about the system). 

Equality (D.5) is typically used in maximum likelihood estimators, e.g. one estimates 

unknown entity Q with Q*, the matrix that maximizes likelihood ( |{ , })L Q N Tαγ α . In 

this particular case, Q
* has form * /[ ]q N N Tαγ αγ α α= , what is in agreement with 

estimators given in equation (4.6) in the main text. Instead of using purely Q
* for 

calculations of MFPTs we can examine whole distribution of transition matrices 

according to equation (D.5) and understand what is the distribution of MFPTs 

consistent with the data collected. Therefore we typically sample number of (typically 

300) transition matrices from distribution (D.5) and look at the variance of MFPTs 

predicted by them. If standard deviation of MFPTs is large it suggests that more data 
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about the system shall be collected. We report standard deviation obtained by this 

algorithm in the results of Section 4.3. 
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APPENDIX E: SAMPLING EQUILIBRIUM DISTRIBUTION ON A MILESTONE  

As described in Section 4.2.4 the equilibrium ensemble from a Milestone 

i j
M →  is used to sample the first hitting point distribution on the Milestone 

i j
M → . The 

Milestone 
i j

M →  is defined in equation (4.1) as 

{ }2 2 2| ( , ) ( , )  and ( , ) ( , )
i j i j i j k

M X d X X d X X k d X X d X X→ ≡ = + ∆ ∀ ≤ , 

where { }1, ,
K

X X…  is a set of images in the conformational space. In practice we 

work with the following approximation of 
i j

M → : 

 
{ }

2 2 2( ) ( , ) ( , )

| , ( , ) ( , ) ( ) 0

ij j i i

i j k j ij

d X d X X d X X

M X k d X X d X X d Xλ→

≡ − + ∆

′ ≡ ∀ ≥ ∧ − ≤ ≤
 (E.1) 

Clearly as 0λ → , 
i j

M →
′  converges to 

i j
M → . We have used 0.5λ = �  or 0.01 Åλ =  

for the calculations on alanine dipeptide. 

To sample conformations in 
i j

M →
′  from equilibrium distribution the following 

Umbrella Sampling protocol is employed. We run NVT trajectory of the system (using 

Andersen thermostat) with a modified potential function U and examine a 

conformation every few steps (every 100 – 400 fs for examples described in this 

chapter). If an examined conformation belongs to 
i j

M →
′  it is saved; otherwise it is 

discarded. If conformation is saved, corresponding velocities are sampled from 

Boltzmann distribution. The potential function U is modified to bias the system 

towards the region 
i j

M →
′  in the following way: 
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( )

( )

1 2

2
1

21
1

2

1 2

'( ) ( ) ( ) ( )

( )            if ( ) 0 

( ) ( )   if ( )

0                   otherwise

( , ) ( , )   if ( , ) ( , )
( )

0                     other

ij ij

ij ij

ij ij ij

k j k j
ij

U X U X U X U X

K d X d X

U X K d X d X

K d X X d X X d X X d X X
U X

λ λ

= + +

 >


= − < −



− <
=

wise





 

By definition for 
i j

X M →
′∈ , ( ) ( )U X U X′ =  and therefore saved points from 

i j
M →

′  

are sampled with the true equilibrium probabilities. If on the other hand NVT 
trajectory of the system is outside of the region 

i j
M →

′ , the terms 1
ij

U  and/or 2
ij

U  force 

the system to return back to 
i j

M →
′ , the strength of this bias is controlled by force 

constants 1K  and 2K (both are set to 103 Kcal mol-1 rad-2 or 104 Kcal mol-1 Å-2 for 
alanine dipeptide system). 


