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The scope of this dissertation is to discuss the concept and design considerations

of a micro-scale mass manufacturable opto-mechanical gyroscope, as well as the

considerable fabrication challenges faced in creating a mass manufacturable hemi-

spherical shell resonator that meets all required design constraints. Intensive stud-

ies of HNA isotropic etching of Si, and alternative masking schemes were under-

taken to reduce anisotropy and roughness. Dopant Enhanced Oxidation schemes

are discussed, and toroidal-lip silicon oxide devices for improved optical quality

factor are fabricated. Optical sensing of mechanical resonances is seen in air, and

verified with Laser Doppler Vibrometry (LDV).
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CHAPTER 1

MOTIVATION

In the following chapter I will introduce some of the basic concepts necessary to

understand the motivation and design of an opto-mechanical gyroscope.

1.1 Gyroscopes

Put simply, a gyroscope is a device that measures how much rotation the device it

is mounted on has experienced. Historically, gyroscopes consisted of large, gimbal-

mounted rotors which made use of angular momentum to allow them to maintain

their orientation without heeding the rotation of the system they were mounted

on. The measurement of the system could then be determine by the movement

of the gimbals with respect to the rotor. In fact, this is the method that French

scientist Jean Bernard Leon Foucault used in 1852 to confirm the 24-hour period

of rotation for the earth, and it was Foucault who coined the term gyroscope.

However, gyroscopes of this type require that there be no external torque (i.e.

frictionless bearings) in order for angular momentum to be conserved. For large

rotors, such an approximation can be used, but eventually the friction losses will

win out and the rotor will be unable to maintain its orientation. Foucault ran

into this issue while attempting to measure the rotation of the Earth with his

gyroscope, and as an alternate means of making this measurement, came up with

what is now known as the Foucault pendulum.

This is merely a large mass placed on the end of a very long string or wire. If

the mass is set swinging, conservation of linear momentum will keep the pendulum

1



Figure 1.1: Image of a typical gimbal-mounted gyroscope. Taken from
http://www.answers.com/gimbal

swinging in the same plane it started in while the earth rotates underneath it.

Intuitively, this concept makes sense. However, the mathematics can become quite

complicated due to the coordinate system of the earth moving in relation to the

pendulum. Systems of this nature are more easily described mathematically by

using fictitious forces. Fictitious forces are those forces which are defined to explain

the observed behavior of an object in a secondary frame of reference from the point

of view of the first. In particular, we can use the Coriolis force:

Fc = −2Ω×mv (1.1)

This force describes the apparent force seen by an observer on a reference frame

undergoing a rotation Ω on an object moving with linear momentum mv. A more

in depth derivation of the Coriolis force can be found in Appendix A.

Using the Coriolis force, the system equation for the Foucault pendulum can

be written:

mr̈ = mg + T− 2mΩ× ṙ (1.2)

where m is approximated as the large mass (the mass of the string is assumed

2



Figure 1.2: Free-body diagram for Foucault’s Pendulum.

negligible), T is the vector giving the tension due to the string, and r is the vector

giving the position of the (center) of the mass, with coordinates as shown in Fig.

1.2.

We see from Eq. 1.2 that if there is a rotation counterclockwise about the z

axis, a Coriolis force will be seen which is directed out of the page when r is directed

to the right and into the page when r is directed to the left. For a system in which

the rotation speed is only slightly slower than the cycle of the pendulum’s swing,

the path traced out by the mass, when viewed from above, would be something

like Fig. 1.3 [1].

Of course the period of rotation for the Earth is much longer than the period of

the pendulum’s swing for any realistically sized pendulum. Additionally, we must

remember that, unless we are at the North or South poles the axes of the gravity

vector and the rotation vector for the Earth’s rotation do not actually align, so

the rotation through which the pendulum will precess in one day will not be 360◦,

3



Figure 1.3: Path of a Foucault pendulum for a system rotating counterclock-
wise, where the period of rotation is longer than period of pen-
dulum swing. The mass is released from (1,0), shown by the dot.
Reprinted from [1].

Φ

Zpend

Zrot

Figure 1.4: Depending on the latitude of the pendulum, it may not precess
through 360◦ in one day, due to gravity and the axis of rotation
not being coaxial.
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but instead 360◦ × cos Φ, as defined in Fig. 1.4.

The Foucault pendulum is a fascinating experiment in basic physics, but as a

gyroscope it is rather pointless: it would be almost impossible to measure rotation

in any system in which the gravity vector does not stay fixed with respect to the

axis of rotation. So what are some realistic gyroscope structures?

1.1.1 Mechanical Gyroscopes

As mentioned previously, gyroscopes of this type use angular momentum as the

basis for measuring rotation. There are then two ways to measure the rotation: (1)

by allowing the rotor to move freely and measure the rotation through the relative

position of the rotor to the system, or (2) to constrain, or ‘strapdown’, the rotor

to move with the rotating object and measure the torque applied to the rotor to

achieve this.

In the second case, the gyroscope is free to move in the two orthogonal axes

perpendicular to the axis of rotation. Then, a rotation about one of these axes

(the ‘input’ axis) will result in a torque in the other (sense axis), due to the cross

product shown below:

τ =
dL

dt
=
d(IΩrot)

dt
= Ωinput × L (1.3)

τ is the torque, L is the angular momentum, I is the moment of inertia, Ωrot the

angular velocity of the rotor and Ωinput is the input rotation. Since the axes of

L and Ωinput are orthogonal, the τ produced is seen on the sense axis. Then the

movement of the sense axis is measured, and a signal is sent to a motor in the input

axis to apply a counteracting torque to the input to cancel the precession. Since

5



torque is proportional to angular acceleration, by applying a known torque over a

known time interval, the angular rate of the input rotation can be found. From

that point, the rate must be integrated to find the actual rotation experienced by

the system.

These type of gyroscopes can be quite accurate, and aren’t as sensitive to shock

or vibration as other gyroscopes we will look at, but they simply don’t scale down

in size. As size is reduced, angular momentum reduces much faster than the friction

forces in the bearings, and the actual machining of such a system would be an art

form.

1.1.2 Optical Gyroscopes

In addition to the mechanical phenomena of angular momentum or Coriolis force,

there is an optical effect called the Sagnac effect which has been used to make

optical gyroscopes. In a Sagnac effect based gyro, a coherent light beam is split to

propagate in opposite directions along a path that then loops back to the splitter,

where both light signals are sent to a detector. If the system is undergoing a

rotation, a phase difference between the two signals will result in interference

fringes seen at the detector. Such a system is shown in Fig. 1.5.

This phenomena is easiest to understand by looking at a circular path as shown

in Fig. 1.6. For a system undergoing a rotation Ωrot, in the time that it takes the

light to travel around the loop and back to the beam splitter, the beam splitter

itself will have moved a distance ∆L. The light that is traveling in the same

direction as the rotation will see the beam splitter move away, and will therefore

take a longer time to return. Similarly, the light traveling in the opposite direction

6



Figure 1.5: Diagram of a Ring Laser Gyroscope, which makes use of the
Sagnac effect to determine rotation.

Ωrot

Figure 1.6: Diagram explaining Sacnac effect. Ωrot is the rotation rate of the
system, ∆L the arclength traveled by the beam splitter in the
time it takes for the light to travel the length of the loop.
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will take less time to return. For a circular loop of radius R:

tccw =
2πR + ∆L

c
(1.4a)

tcw =
2πR−∆L

c
(1.4b)

where ∆L is defined as RΩrottccw for Eq. 1.4a and RΩrottcw for Eq. 1.4b. Sub-

stituting these values and solving for tccw and tcw, we can find the time difference

between the arrivals of each light wave as:

∆ttotal = tccw −∆tcw =
4πR2Ωrot

c2 −R2Ω2
rot

(1.5)

Since, for most cases, the tangential speed of the beam splitter as it rotates is much

smaller than the speed of light (RΩrot � c), this is reduced to:

∆ttotal =
4πR2Ωrot

c2
=

4AΩrot

c2
(1.6)

This time difference will result in a phase shift which will be shown as interference

fringes at the detector.

∆p =
2πc∆ttotal

λ
=

8πcAΩrot

c2λ
(1.7)

where λ is the wavelength of the light.

As shown in Fig. 1.5, some implementations of optical gyros use mirrors and

free space optics in their design. However, these Ring Laser gyroscopes, or RLGs,

tend to be expensive, heavy, require precision machining and have high power

consumption.

Alternate designs using optical fiber for the optical path, such as the Fiber Op-

tical Gyroscope (FOG) shown in Fig. 1.7, are lower cost, lighter, last longer, can

be made more compact, and digital forms are even able to increase the dynamic

range and improve scale factor corrections. However, increasing sensitivity in these
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Figure 1.7: Diagram of a Fiber Optic Gyroscope. The gyroscope can easily
be made more sensitive by adding more length to the path in the
form of more coils of fiber. Effectively, A = N ∗ A in Eq. 1.6,
where N is the number of loops.

gyros requires longer cavities, which are by nature more sensitive to temperature

variation and vibration, and even the best FOGs are several orders of magnitude

behind the top RLGs in performance. From the point of view of integration with

electronics, however, these gyros simply cannot be made small enough while re-

taining the necessary path length, nevermind the required additional light source

and detector.

1.1.3 Vibratory Gyroscopes

The term vibratory gyroscope refers to those gyroscopes which make use of a

vibrating body to generate Coriolis force and measure rotation. Since the mass of

the gyroscope must have some linear velocity for the Coriolis force to be generated,

the easiest way to achieve this is to set the mass vibrating. To understand vibratory

gyroscopes, let us first define a basic resonance model, as in Fig. 1.8. For a mass,

M , which is connected to it’s rotating frame by a spring with spring constant k

9



Figure 1.8: Diagram of a basic resonance model. In many cases electrostatic
gap-closing actuation is used to induce motion.

and damping b, we have:

Mẍ+ bẋ+ kx = −ω2Mx− jωbx+ kx = F (t) (1.8)

where F (t) is the forcing function. As this equation suggests, spectral analysis will

show that at a resonance frequency defined by ωn =
√
k/m the displacement will

be maximum for a given force, or conversely, the force required is minimized for a

given displacement. Fig. 1.9 shows that at lower frequencies we are dominated by

the spring constant, limited by the Q at resonance, and then fall off at -40dB/dec

after resonance, as expected from our −ω2M term. This -40dB/dec roll-off means

that any attempts to force the mass at frequencies much higher than resonance

result in very little displacement. Once in vibration, the gyroscope can be operated

in one of two modes: Whole Angle (Rate Integrating) Mode, or Rate Mode. Those

gyroscopes which directly measure an angular rotation are called whole angle, rate-

integrating, or Type I gyroscopes. Those that measure angular rate, which then

10
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Figure 1.9: Spectral analysis of a basic resonance model, plotted for both
constant force and constant displacement.

11



X

Y

X

Ya) b)

ΔΘin Ωin = dΘ/dt

-kΔΘin Fy ∝ Ωin

Figure 1.10: Graphs of the motion of a vibrating mass for a) whole angle
gyros and b) rate gyros.

must be integrated to find the rotation angle that has been passed through, are

called rate or Type II gyroscopes. These two types are visually summarized in Fig.

1.10. It can be seen clearly from this figure that for whole angle gyros the energy,

U = KE + PE, is kept constant, while for rate gyros one axis is forced to keep

it’s displacement, x, constant.

Equations of Motion

Let’s take a quick look at the physics of a vibratory gyroscope. Let us assume that

we have a mass, m, which is vibrating in the x axis with some speed ~v, as shown

in Fig. 1.11. If the vibrating mass then undergoes some rotation, ~Ωz, the Coriolis

effect will result in a force in the negative y direction. As we derived in Appendix

A, a mass rotating at a constant angular velocity can be described in it’s rotating

coordinate system by:

m
d ∗2 r

dt2
= F−mΩ× (Ω× r)− 2mΩ× d ∗ r

dt
(1.9)
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Figure 1.11: Working principle of a vibratory gyro.

Looking at each axis separately, we can use this general equation to find the equa-

tions of motion in the XY plane.

mẍ̂i = Fx̂i−mΩ2x̂i + 2mΩẋ̂j (1.10a)

mÿ̂j = Fy ĵ−mΩ2ŷj− 2mΩẏ̂i (1.10b)

Let us then assume that there is some spring with spring constant kx,y in each

axis which supports the vibratory motion with some damping factor cx,y, and that

an external force is inducing motion in each axis. Rearranging the terms of Eqns

1.10a and 1.10b to look at the motional dynamics in each axis, we get:

mẍ = −bxẋ− kxx+m(Ω2x+ 2Ωẏ) + Fext,x (1.11a)

mÿ = −byẏ − kyy +m(Ω2y − 2Ωẋ) + Fext,y (1.11b)

Often it is easier to describe systems in terms of resonance frequency and the

quality factor of the resonance; defining ωx =
√
kx/m, ωy =

√
ky/m and Qx =

13



ωx/bx, Qy = ωy/by, we can rewrite Eqns 1.11a and 1.11b as:

ẍ+
ωx
Q
ẋ+ (ω2

x − Ω2)x− 2Ωẏ =
Fext,x
m

(1.12a)

ÿ +
ωy
Q
ẏ + (ω2

y − Ω2)y + 2Ωẋ =
Fext,y
m

(1.12b)

We can now modify Eqns 1.12a and 1.12b for whole angle or rate mode operation.

Whole Angle Operation In the case of whole angle operation, it is assumed

that the damping factor is very small such that without any external forces being

applied, the mass will vibrate for a long time (this time will determine the operation

time of the gyro, after which it will effectively need to be ‘reset’). For this case,

the equations of motion become:

ẍ+ (ω2
x − Ω2)x− 2Ωẏ = 0 (1.13a)

ÿ +
ωy
Q
ẏ + (ω2

y − Ω2)y + 2Ωẋ =
Fext,y
m

(1.13b)

The quality factors of the mechanical resonance need to be very high in order

for the gyro to have a long ring down time, and any finite ring down time will

require the gyroscope to be ‘re-pinged’ periodically. One possible solution to avoid

this would be to use a parametric excitation to pump energy into the system to

counteract any losses. As long as this excitation can be achieved isotropically, the

apparent phase between the x and y axes (and thus the reading of the angle the

gyro has passed through) will not be affected by the addition of energy to the

system.

However, in both these cases, the stiffness and damping of the mass must be

isotropic at all angles of rotation. In the case that it is not, the mass will not

precess linearly with an input rotation, but will instead be a function of each

of these parameters at each angle. Novel designs such as that of the Quadruple
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Mass Gyroscope (QMG)[2] use multiple masses vibrating in orthogonal axes with

levers to synchronize the phase in order to achieve the required isotropy using

conventional 2D micro-fabrication techniques. More complex control systems, such

as that demonstrated in [3] use PLLs and separate frequency tuning and damping

compensation channels for each resonance mode to allow operation as a whole

angle gyro.

Rate Operation There are multiple modes of operation for a rate gyro: open-

loop, partially closed-loop, force-to-rebalance, and frequency or phase modulation.

However the defining characteristic of vibratory rate gyros is that they designate

one axis as the drive and one axis as the sense. Thus, for an open-loop system,

a periodic forcing function is applied to the drive, and the resulting amplitude of

displacement in the sense axis is used to determine the Coriolis force, and thus

angular rate, experienced. The system equations, assuming the x-axis to be the

drive and y-axis to be the sense for a rotation in the z-axis are written:

ẍ+
ωx
Q
ẋ+ (ω2

x − Ω2)x− 2Ωẏ =
f sin(ωdt)

m
(1.14a)

ÿ +
ωy
Q
ẏ + (ω2

y − Ω2)y + 2Ωẋ = 0 (1.14b)

Assuming x-axis velocity of the mass is known, the amplitude of the displacement

in the y-axis will give the angular rate. However, manufacturing inconsistencies

and operational conditions such as temperature can affect the drive-mode velocity

through various phenomena.

This is why many gyros employ closed-loop operation for the drive-mode using

automated gain control. Using a PLL to lock the frequency of oscillations in the

drive and automated gain control to set the amplitude of displacement for the

15



drive simplifies Eq. 1.14a to:

x = sin(ωdt) (1.15a)

ÿ +
ωy
Q
ẏ + (ω2

y − Ω2)y + 2Ωẋ = 0 (1.15b)

With the displacement and frequency constrained, the velocity of the drive mode

is completely determined. Some systems do use direct measurement and control

of the velocity signal, and though this voids the need for a PLL, jitter and noise

are typically increased[4].

The force-to-rebalance mode of operation is very similar to the operation of the

strap-down angular momentum gyro. In the case of the strap-down gyro, a closed

loop system was used keep the angular momentum vector of the mass pointed

the same direction while measurement of the torque applied to do so lead to the

angular rate. In the same way, force-to-rebalance vibratory gyros apply a force

to keep the velocity vector pointing in the same direction and use the measure of

this force to determine the angular rate from the Coriolis force equation. (Though

in this case the force is applied directly at the sense axis, since vibrating masses

are at highest velocity when the restoring force is zero, and thus the sense axis

displacement is by definition 90◦ out of phase with drive signal.)

The last mode of operation for rate gyros is frequency modulation, such as

that shown in [5]. Though most of the cases discussed above worked under the

assumption that either the resonant frequency was fixed through a PLL based

control or that Ω was negligibly small compared to ωx or ωy, FM based gyros take

the centrifugal force and cross-axis coupling into account when determining the

frequency of the resonator under rotation. In the case where the axes are initially
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mode matched (ωx = ωyforΩ = 0), this leads to:

ωx = ω0 + Ω (1.16a)

ωy = ω0 − Ω (1.16b)

Thus the rotation rate can be found simply from the differential of the dynamic

resonant frequencies of each axis. This phenomena can be attributed to the dy-

namic cross-coupling of the Coriolis force: if the x-axis is driven to resonance, and

then set to rotate, it will transfer energy to the y-axis. The y-axis in vibration

will then lead to a force term in the -x direction, reducing the force and appearing

as spring stiffening, or resonance increase. (It is important to note that which

axis increases in frequency and which reduces will depend not only on the rotation

direction, but also the phase relationship between the defined x and y directions.

The above equations are valid for the standard Ω× x = y defined axes, where Ω

is defined as a positive rotation.)

The above equations can be arrived at in a simplified derivation for the mode-

matched case by looking at the motion equations where both Coriolis and centrifu-

gal forces are taken into account. It is quite easy to see that for a non-coupled

system with centrifugal force, the resonance is found to be ω0 =
√
ω2
n − Ω2 where

ωn is the natural resonance frequency of the mass given by
√
k/m by finding the

solution of:

ẍ+
(
ω2
n − Ω2

)
x = 0 (1.17)

Then for the coupled equations

ẍ+ ω2
0x = 2Ωẏ (1.18a)

ÿ + ω2
0y = −2Ωẋ (1.18b)

the solution can be found

β = Ω±
√
ω2

0 + Ω2 (1.19)
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In the case that ω2
0 = ω2

n − Ω2 this simplifies to Eq. 1.16.

Specifications and Figures of Merit

To understand the constraints in the fabrication of a vibratory gyroscope, the

specs and FOMs must be clearly defined. The typical specifications designated for

a gyroscope are:

· Scale Factor, Scale Factor Stability

· Noise Floor, Resolution

· Dynamic Range, Bandwidth, Linearity

· Bias Drift/Stability

· Angle Random Walk/Rate Random Walk

Scale Factor, Scale Factor Stability This is simply the output response for

a given input. For a whole angle gyro, it would be the sensed angle, Θout (most

likely in the form of the ratio of displacements between two sensors), for a given

input rotation angle, Θin. The scale factor of a rate gyro it is typically given as

the displacement in the sense axis for a given input rate. For example:

SF =
xs
Ω

=
2ωdxdmH

ks
=

2xdωdH
ω2
s

(1.20)

where H is the spectral transfer function from drive to sense. This brings to light

an important aspect of the design of a gyroscope: mode-matching. Fig. 1.12 shows

in the case in which the resonance frequencies of the drive and sense modes are

not matched: thus even for a large displacement on the drive, the mass will not

move very much on the sense axis, reducing the sensitivity of the gyro. However,

it is sometimes desirable to trade off this sensitivity for the bandwidth, fabrication
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Figure 1.12: Frequency spectra of amplitude response for non-mode matched
drive and sense. The black dot represents the value of the trans-
fer function as specified by H in Eq. 1.20.

tolerance, and thermal stability gained by intentionally offsetting the resonances.

Scale factor stability refers to the ability of the gyro scale factor to stay the same

under various operating conditions, and over time. Temperature compensation

especially can be important in keeping the scale factor stable.

Noise Floor, Resolution The noise floor in combination with the scale factor

will determine the resolution of the gyroscope. Though in the past amplifier noise

was the dominant noise source, as electronics have improved, sensor noise is com-

monly dominant. If we assume that brownian motion - the white noise motion

caused by random impinging of gas molecules on the structure - is the dominant

noise source, and that the brownian noise force is given by:

F̄bn =
√

4kBTbs �
√
BW (1.21)

For a rate gyro, we are limited by the linearity of the sensor to small input rates,

and thus assume that any brownian noise on the drive axis would not be significant
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Figure 1.13: Random walk of integrated signals. For the case of the rate
gyros, this leads an important FOM: Angle Random Walk.

compared to the noise coming directly from the sense axis. Our Coriolis force is

given by

FCor = 2mωdxdΩin (1.22)

Setting these two equal, we can find the minimum detectable signal, or resolution,

of the sensor:

Ωmin√
BW

=
1

xd

√
kBTωs
mω2

dQs

(1.23)

Clearly, higher Q’s, more mass, and more drive displacement will all lead to a lower

minimum detectable signal, but they also lead to non-linear regimes. Increasing the

resonant frequency does not cause this problem, but it will reduce the displacement

of the sensor. However, it is important to note that we are only detecting the

angular rate here; the signal needs to be integrated to see the angle that has been

rotated through. Integration of the signal means that both sensor and electronic

noise will be integrated as well, leading to a random ‘walking’ of the detected angle
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away from it’s actual value.

What about the whole angle case? This is slightly different, in that we will

need to figure out the actual displacement caused by the brownian noise and refer

it back to the calculation of the angle. Assuming that there are two sensors,

one on the x-axis and one on the y-axis, the rotation angle can be calculated from

tanφ = x
y
. However, the sensitivity of the tan−1 function to variations in each of the

displacements will change based on the angle the mass is currently resonating at.

For instance, if the mass is mostly resonating along the x-axis, the tan−1 function

is at it’s minimum slope, and the minimum detectable signal would be lowest.

However, when it is vibrating mostly along the y-axis, the tan−1 slope is essentially

maximum. Assuming at smart circuit designer would flip his definition of the angle

being read when the orbital passes 45◦, the minimum detectable signal can be found

by looking at the effect of brownian noise displacement on the angle read out when

the mass is resonating along the 45◦axis. Additionally, since the calculation of the

angle is based on a ratio of displacements, it is pointless to look at a system where

there is only brownian noise; in that case brownian noise could dictate any angle,

rather than some small noise equivalent rate as seen above. Instead, we must

determine the minimum detectable angle for a given displacement. For example,

for the case in which the free vibrations of the mass are only twice the brownian

noise displacement, the minimum detectable signal would be given by:

tanφ =
x+ x̄n
y − ȳn

=
3

1
⇒ φ = 71.565◦ (1.24)

This is a pretty bad number! Let us now look at the case in which the free

vibrations are 100 times the brownian noise displacement:

tanφ =
x+ x̄n
y − ȳn

=
101

99
⇒ φ = 45.573◦ (1.25)

A ratio of 1000/1 improves to 45.057◦.
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Dynamic Range, Bandwidth, Linearity Dynamic range is defined as the

ratio of the maximum value of the measurand to meet a given accuracy spec

divided by the minimum measurable value. For a rate gyro, as we have talked

about previously, maintaining linearity in the device will limit the input rotation

rate, while the minimum measurable value will be given by the noise floor. The

BW of a rate gyro is typically given as ωn

2Q
, and will determine the time it takes for

the rate gyro to settle on the expected output value. Rate gyros with very high Q,

and thus a very low noise floor will have very small BW, and can take as much as

minutes to settle on the expected output value for high resolution systems. Whole

angle gyros, on the other hand, due to free precession, have essentially unlimited

bandwidth, and as long as Ω � ωn, the rotation angle will be measurable.

Bias Drift/Stability The bias of a gyro is the angle that is output for a zero

input rotation rate or angle. Systematic errors, such as fabrication imperfections

that cause the drive axis forcing function to induce motion in the sense axis (known

as quadrature error), as well as operational conditions such as temperature can

affect this. Quadrature error, known as such because it is 90◦out of phase with

the sensed Coriolis signal, can be detected and compensated for via it’s phase.

Temperature compensation or matching of the drive and sense thermal response

is often put into affect to account for thermal changes. Oftentimes, the startup

of a gyro will have a certain heating/settling time, and the term bias drift can

refer specifically to that. Bias stability, on the other hand, is a spec that refers to

the minimum achievable signal variance assuming averaging over an optimal time

period. This value is found using an analysis technique called Allan variance, or

Allan deviation, which I will talk about more in the next section.
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Angle Random Walk/Rate Random Walk Angle random walk (ARW) is a

term that was coined for rate gyros, and refers to the fact that as white noise in

integrated over time, as must be done to find the rotated angle from the angular

rate, the output measured angle will have a tendency to randomly ‘walk off’ in

different directions, causing either positive or negative angle error values whose

statistical variance increases with time. Since this is a white noise issue, averaging

will help, but at some point bias drift errors, which are more long term, will begin

to dominate. This is the point designated by the bias stability term, and deter-

mines the integration period of averaging. Meanwhile, the inherent mechanical

integration of whole angle gyros allows for a natural averaging of brownian noise

effects and no electronic integration need be performed.

Rate random walk refers to noise sources which are even more long term than

bias drift, and directly affect the rate being read out. Just as the bias drift is

defined by an output angle for zero input rate, rate random walk refers to drift

in the output rate for a given input rate. This is then doubly integrated, leading

to a noise source whose PSD has a 1/f 2 dependence, and meaning that while we

want to average over as long a period as possible to get rid of white noise errors,

if we average for too long, drift in the rate itself will dominate the variance of the

signal.

Bias drift, angle random walk, rate random walk, not to mention quantization

noise are all terms that will affect the best usage of a gyro, and their characteriza-

tion is important for setting the averaging parameters used. A statistical method

of analyzing the effect of various noise sources on the variance of the output angle,

called the Allan variance, is used to do this.

Allan deviation, σ(τ), is effectively the average variance between successive
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Figure 1.14: Allan deviation of a rate gyro. The variance of the output angle
term is shown on the σ(τ) axis. τ is the averaging integration
time, or binning time.

chunks, or bins, of averaged data, defined by:

σ2(τ) =
1

2(n− 1)

∑
i

(aθ(τ)i+1 − aθ(τ)i)
2 (1.26)

To understand the impact of a given noise source, it may be more illustrative to

look at the affect of frequency dependence of a noise source on the slope of the

Allan deviation. If the order of the frequency dependence for the PSD of a noise

source is given by α, then:

PSD(f) ∝ fα (1.27a)

σ(τ) ∝ τ−(α+1)/2 (1.27b)

We see from the above set of equations that the slopes shown in Fig. 1.14 match

up for:
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Table 1.1: PSD and Allan Deviation of various noise sources

Noise Source PSD ∝ fα σ(τ) ∝ τ−(α+1)/2

Quantization Noise ∝ f 1 ∝ τ−1

White Noise ∝ f 0 ∝ τ−1/2

Bias Stability ∝ f−1 ∝ τ 0

Rate Random Walk ∝ f−2 ∝ τ 1/2

Rate Ramp ∝ f−3 ∝ τ 1

The rate ramp value given in the table and in Fig. 1.14 is a deterministic noise

source with 1
f3

frequency behavior[6].

Hemispherical Resonator Gyroscope

Among vibratory gyroscopes available today, there is one structure which stands

out in terms of performance: the Hemispherical Resonator Gyroscope. We will

take a quick look at the operating principle of that device.

Fig. 1.15 shows a Hemispherical Resonator Gyroscope (HRG) produced by

Northrop Grumman. These gyroscopes not only have very high performance, but

are also low noise, relatively small, have long lifetimes, and are naturally radiation

hard. It is for these reasons that HRGs are often chosen for the guidance systems

of spacecraft and satellites, and Northrop Grumman boasts that its HRG has over

25 million hours in space without a single mission failure [7].

The operating principle behind the HRG is based off a paper written in 1890

by Mr. G.H. Bryan called ‘On the beats in the vibrations of a revolving cylinder

or bell’. Mr. Bryan explained the observed affect of beats heard when rotating
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Figure 1.15: The Hemispherical Resonator Gyroscope by Northrop Grum-
man. The tines on the edge of the device are for frequency
tuning/balancing of the gyro.

a ringing wineglass, or when the observer them self is rotating with a ringing

wineglass. The fact that beats are heard in both cases indicates that whatever

acoustic mode causes the initial ringing does rotate, but not at the same angular

rate as the rotation.

If we think about the acoustic mode set up in the wineglass structure as shown

in Fig. 1.16 having some momentum, then it makes sense that the acoustic wave

would want stay stationary in the inertial frame of reference. This would explain

the case of some one rotating with a ringing wineglass hearing beats. However, the

case of hearing beats when only the wineglass is rotating infers that the acoustic

wave does rotate as the wineglass does. A simplified explanation of why the wine-

glass mode does not stay fixed is that not all of the momentum of the resonating

mode is translational; the portion that is rotational has its vector component along

the same axis as the rotation, and thus the Coriolis force term yields no force on

these nodal portions of the structure[8]. As the wave transfers around the wine-

glass, it will end up traveling at a speed proportional to the ratio of angular to
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Figure 1.16: Response of wineglass modes of vibration to input rotation. The
scale factor between the angular rate of rotation of the acoustic
wave and the rate of the rotation is defined as the Bryan’s factor,
BF.
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translational kinetic energy, defining the Bryan’s factor:

BF =
angular rate of acoustic wave

angular rate of structure
∝ KErot

KEtrans

(1.28)

For a hemispherical shell, BF ≈ 0.3. As we saw previously, for the Foucault

pendulum, BF = 1, which we would expect from the fact that all momentum is

translational.

The HRG uses a hemispherical shell resonator formed out of quartz, with indi-

vidual precision trimming for balancing and frequency matching, and can be run

either in whole angle or rate gyro mode. However, it costs upwards of $10,000 for

a single axis gyro, and is still quite large.

1.2 Target Device

The previous sections were quite a long introduction to gyroscopes, especially

considering this dissertation’s topic is on the fabrication of a gyroscope structure

rather than the actual gyroscope characterization itself. However, in addition

to being an introduction to terms, I hope that the preceding information has

impressed upon you 1) that vibratory gyroscopes are the prime candidate for micro-

scale gyros, and 2) that whole angle operation of a high Q, mode-matched gyro is

advantageous.

The criteria used in the design process for our target device were these:

· Micro-scale

· Mass manufacturable

· Capable of whole angle operation

· Navigation grade
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Figure 1.17: Design flow for target structure.

By following these design criteria, we hope to create a chip-scale integrable gyro

which has the capability of being used for inertial navigation systems, an ideal

desirable to both industry and military applications.

Fig. 1.17 shows the choices made in the design of the target structure.

Application As mentioned previously, neither the low friction bearings nor the

necessary path length required for angular momentum or Sagnac effect based gyros

scale well to the chip-scale level. For this reason, a vibratory gyroscope is chosen.

29



Design Style Some gyros are designed to measure not only one axis, but by

using multiple masses with coupled behavior or a mass which ‘swings’ in its plane

of motion, dual-axis rotation measurements can be made. However, accomplishing

such dual-axis measurement while in a whole angle measurement mode would

require freedom of motion along all three axes, as well as sensing in 3 dimensions.

To simplify the gyro and computing power necessary to run it, our gyro is designed

for a single axis measurement.

We have already stated that operation as a whole angle gyro is one of our design

criteria, though seeing as the difference between whole angle and rate operation

as explained thus far seems to be only in the forcing conditions, it is unclear as

to how such a criteria affects the sensor design. However, up until this point

we have been assuming the ability to perfectly match the resonance frequencies

and damping of orthogonal axes at any point along the precession of the mass.

Due to fabrication inconsistancies and lithographic limitations this is actually very

difficult to achieve. Locking of the mode frequency requires continuous forcing,

and thus most vibratory gyros are rate gyros. However, the improvements in BW,

angle random walk, and relaxing of the tradeoff between high Q and linearity make

whole angle operation ideal.

We have mentioned the QMG, which makes use of multiple masses to achieve

whole angle operation. This is certainly a viable option, and fits all of the design

criteria we have specified above. However, the sensitivity of devices such as the

QMG to shock, vibration, and linear accelerations has not been published; such

parameters are essential to the gyro, particularly for military applications. Wine-

glass modes, which often use 3 dimensional rather than planar geometries, tend to

be more resistant to out of plane shocks.
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Such planar responses to shock are reduced for 3D geometries, and thus we

exclude the idea of using a ring for our structure. Cylinder shapes tend to have large

anchor losses and are also removed. Fully spherical shapes, such as those fabricated

in [9] are novel, but it is difficult to reduce anchor size without distorting the shape,

and [9] shows an improved Q for spheres that have been cut into hemispherical

shell resonators in any case. The birdbath resonator shown in the same reference

achieves a small stem, but individual release of each device with a 3D laser ablation

system would not meet the mass manufacturability requirement. Thus we choose

the hemispherical shell resonator for our structure.

MEMS Technology The various fabrication techniques for MEMS devices tend

to fall into two categories: bulk micro-machined or surface micro-machined. Bulk

micro-machined are those where the structure is built out of the wafer material.

Surface micro-machining uses the wafer as a holder and builds upon the surface.

Obviously, building up a hemispherical shape would be very difficult to do with

standard fabrication processes. However, using bulk manufacturing, a hemispher-

ical shape can be etched out in the wafer surface, and the device layer can then

be grown or deposited within that mold. Alternative fabrication such as the glass-

blowing techniques shown in [9] show low frequency splitting between modes and

good smoothness, but again, reduction of stem size is difficult to achieve.

Actuation Mechanism Up until this point I have largely ignored considerations

of the actual actuation mechanism, merely assuming that force can be applied

directionally to the mass. Almost all vibratory gyroscopes use electrostatic, or

capacitive transduction. This is the transduction type shown in the basic resonance

model of Fig. 1.8. There are also other electrostatic actuation mechanisms, such
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as comb drives, which use interdigitated fingers and energy minimization principles

to actuate. However, electrostatic actuation assumes the ability to control the

voltage on the mass, thus limiting usable device materials and requiring routing

electrical lines to the mass. Such routing can be especially difficult for 3D devices,

and any metals laid onto vibrating portions of the structure will lead to extra

damping that cannot be afforded. Dielectric transduction [10] makes use of the

fact that a dielectric in an inhomogenous field will be pulled toward the higher

intensity. Though the force of such a system is not strong, it allows dielectric

materials, which typically have better mechanical properties, to be used. However,

such a system requires extensive routing and decoupling of the drive and sense for

an all dielectric transduction scheme requires the drive to parametrically pump the

system - great for a whole angle gyro case, but rate operation would be limited.

Opto-mechanical actuation through the gradient force works on basically the same

principle, but since wavelengths do not interact with each other, the drive and sense

can be decoupled simply through use of different wavelengths of light. A diagram

of radiation pressure vs. optical gradient forces is shown in Fig. 1.18. Optical

actuation allows us to use both at once. Radiation pressure relies on momentum

being imparted by photons impinging on the cavity walls, and since one photon

will impart the same momentum for one lap around a small radius as around a

large, this force falls off as 1/R for a circular cavity. Optical gradient force is the

photonic equivalent of the dielectric transduction method mentioned earlier, and

will actually have a slightly increased interaction area for larger radius devices.

Combined with the fact that the spring stiffness for a hemispherical shell falls off

as 1/R2, we expect gradient force effects to dominate a large radius hemispherical

shell actuated by opto-mechanical force.
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a)

b)

Figure 1.18: Radiation pressure and optical gradient opto-mechanical forces.
Radiation pressure (a) allows parametric pumping while gradi-
ent forces (b) can be used to induce directional forces.
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Coriolis Sensor In the same way, we choose opto-mechanics for the sensing

mechanism. We must now answer the question of how we will apply the force and

where we will sense the displacement. Obviously, the most integrated approach,

and the end goal of the design for an opto-mechanical gyro is to use waveguides

that are co-fabricated with the sensor. However, at this point the focus is on the

sensor design, and the additional fabrication of waveguides would cause unneces-

sary complexity in our study, and unduly increase the fabrication time for each

process run. Instead, we can make use of an optical taper, a heated and thinned

length of optical fiber as in [11]. This allows for fast prototyping while at the same

time providing a platform for the actuation of the sensor. Laser doppler vibrom-

etry, which is a technique that uses free space lasers to measure the velocity of a

resonating device via relative doppler shifts in reflected light, is a commonly used

prototyping technique. However, it does not provide the necessary infrastructure

for the actuation, and instead would require a piezoelectric to be glued to the base

of the sample to actuate motion.
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Figure 1.19: The target structure for this dissertation: the GOBLiT.

1.2.1 GOBLiT

With all our design decisions made, we present the structure shown in Fig. 1.19

as the target structure for this dissertation. We call this structure the GOBLiT:

G iant

O pto-mechanical

B ulk-machined

Li ght

T ransducer

Giant refers to the fact that in designing for use as a gyroscope, we want to

maximize mass, and thus optimize for a large device. Before we move on to the

fabrication of such a device, let us look at a last few considerations of our design

choices.
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Table 1.2: Expected HRG scaling performance[12]

Specification Scaling Law

Natural frequency, ωn ∝ t
R2

Quality factor, Q ∝ ωnR
2 ∝ t

Damping time constant, τ ∝ R2

Q mismatch, ∆ (1/Q) ∝ 1
ωnR3 ∝ 1

Rt

Damping nonuniformity drift, Ωd ∝ ∆ (1/τ) ∝ 1
R3

Structure Scaling

The device structure we have chosen is essentially a scaled-down version of the

HRG, with the exception of transduction method. The HRG has proven excellent

performance, but what type of performance can we expect as the hemispherical

shell resonator is reduced? Researchers at Northrop Grumman have done a study

of the expected scaling effects with the results shown in Table 1.2, where R refers

to the radius of the hemisphere and t to the height. Noticeably missing from this

table are the expected scaling effects on frequency mismatch. Though the ideal

perfectly hemispherical shell would resonate degenerately, i.e. at the same fre-

quency along any rotation about the z axis, any imperfection will cause a splitting

of the frequencies of the eigenmodes solved for in finding the resonance. The modal

separation will be defined by the azimuthal wave number of the wineglass mode,

m, as 90◦/m. The degree of this separation is largely fabrication dependent, and

will directly affect the ability of the wineglass mode to linearly precess about the

hemispherical shell. Northrup Grumman gets around this issue by balancing the

HRG, incrementally removing small amounts of material until the frequencies have

regained degeneracy, but this negates mass manufacturability and skyrockets cost.
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Figure 1.20: Diagram for opto-mechanical modeling.

We see from Table 1.2 that we want a thick device with large radius - i.e. we

don’t really want to scale down. Essentially, we want to make the largest wafer

manufacturable hemispherical shell resonator possible.

Optical Considerations

What is the impact of opto-mechanical actuation and sensing on the fabrication

of our device? To answer that question, let us take a closer look at the physics of

such a transduction scheme.

For an optical cavity such as that shown in Fig. 1.20, we can define the rate of
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change of the intracavity field as:

dap
dt

= (−i∆p −
Γtp
2

)ap − igOMxap + iγ|ap|2ap + i
√

ΓepAp (1.29)

It will be clearer for reference to explain each of these terms in a list:

ap The light field inside the cavity, where the intracavity energy is given by

Up = |ap|2.

∆p The detuning between the frequency of the input light and the resonance

frequency of the optical cavity, defined as ∆p = ωp0−ωp, where ω0p is the

frequency of the optical resonance of interest and ωp is the frequency of

the input light.

Γtp The photon decay rate of the loaded cavity for optical resonance of interest,

defined as Γtp = ω0p

Qopt
.

gOM The optomechanical coupling factor, defined as dω0p/dx. This effectively

states how sensitive the optical resonance frequency is to mechanical dis-

placements, and will vary for different mechanical modes of resonance.

x The mechanical displacement of the cavity structure, a function of time.

γ A term describing the self-phase modulation introduced by the Kerr non-

linearity of silicon dioxide. Please see [13] for more information. We will

assume it negligible for our device in comparison to other terms.√
Γep The photon escape rate of the external field (i.e. the escape rate from the

taper or waveguide).

Ap The input field of the light wave, which is traveling in the taper or waveg-

uide, and for which the power of the field is given by Pp = |Ap|2.
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Figure 1.21: Optical spectrum for various Qopt. Clear optical spring effect is
seen. Height differences between the first two peaks are due to
Matlab plot resolution, not optical effects.

What are these terms really saying? The ∆p term characterizes the field build up

for a given detuning between input and cavity resonance wavelengths. The Γtp

term gives the decay of the field due to total optical losses. The gOM term explains

how the intracavity field changes due to mechanical motion of the structure. The

last term characterizes the intracavity field increase due to coupling from the taper.

Thus we see that opto-mechanical transduction gives us a major displacement

boost due to high optical quality factors. However, just as electrostatic transducers

have an electrical spring effect, optical cavities have an optical spring effect. Un-

fortunately for us, though the electrostatic spring is a softening effect, as we derive

in Appendix B, the optical spring effect leads to stiffening. However, considering

that the displacement over which optical actuation and sensing can interact with

the sensor is extremely limited compared to electrostatic schemes, this may be

beneficial. Indeed, adding mass to the structure in such a way as to significantly

increase the stiffness without substantially losing momentum, and thus sensitiv-
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Figure 1.22: Optical spectrum for various Qmech. Qmech displacement en-
hancement is preserved in the optical model.

ity, may be a beneficial trade off in an optically transduced gyro. One way to do

this would be to add a planar lip to the hemispherical shell shape, which gives

the additional benefits of providing a well defined optical cavity to the device and

reducing fabrication complexity, though at the expense of adding parasitic modes.

Fig. 1.21 shows the optical spring effect for various values of Qopt.

Process Flow

A basic process flow for the GOBLiT is shown in Fig. 1.23. After laying down a

masking layer and patterning etch windows, an isotropic etch results in the device

mold. After removing the masking layer and depositing the device layer, the rim

of the lip is patterned and etched. The last step is to perform a second isotropic

etch to release the device and create the stem.

Now we come to the real question: What is possible with current fabrication

40



1) 2)

3) 4)

Figure 1.23: Basic GOBLiT process flow.

technology?
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Part I

Fabrication Considerations
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CHAPTER 2

BULK ETCHING

Our designed process flow requires the initial isotropic etch to be very isotropic

and very smooth. The three candidates we have for isotropic etching of a silicon

wafer are HNA, XeF2, and SF6. The XeF2 and SF6 etches are dry etches, while

HNA is a wet etch. Dry etches would be preferable for fabrication uniformity

considerations, but both XeF2 and SF6 are known to be rather rough etches.

Additionally, the etching conditions required for an isotropic SF6 etch were not

available to us at the CNF, though an appropriate ICP etcher is shortly to be

installed.

XeF2 is a gas phase etch which isotropically etches Si with extremely high

selectivity to oxide, and good selectivity to nitride. The reaction equation is given

by:

XeF2 + Si→ 2Xe+ SiF4 (2.1)

XeF2 etching roughness can be improved by reducing the XeF2 gas pressure, or

adding N2 buffer gas, but at the cost of significant reduction in etch rates.

HNA is short for HF, Nitric, Ascetic, and refers to the three acids typically

mixed to create this isotropic Si wet etch. Since CNF does not allow the mixing

of these three acids due to waste disposal issues, we instead replace the ascetic

acid with deionized water. Such etch mixtures have been studied, and the main

difference is due to the larger dielectric constant of water causing more dissociation

of the nitric species in the HNW mixture. From this point on in the text, we will

refer to the HNW mixture as HNA. The main components of the etch are the HF

and Nitric acid. Nitric acid is a very strong oxidizer, and thus the first part of the
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Figure 2.1: Anisotropy archetypes of isotropic etches

HNA reaction proceeds as:

3Si+ 4HNO3 → 3SiO2 + 4NO + 2H2O (2.2)

HF is then used to etch away the silicon dioxide that has been formed as:

3SiO2 + 18HF → 3H2SiF6 + 6H2O (2.3)

Though it seems straightforward, HNA is actually a quite complex etch, which

exothermic, temperature dependent, and has autocatalytic. References such as

[14] have done studies of the effects of etch volume, etch mass, and etchant volume

on HNA etch rates, chemistry papers still debate the exact nature of the reaction.

It is clear that optimization of the device geometry will depend largely on the

isotropic mold etch. Fig. 2.1 shows archetypes of common anisotropic patterns

seen in isotropic etching. I shows an isotropic etch, II an etch with what we will

refer to as XY anisotropy, and III shows Z anisotropy. XY anisotropy will have

major effects on the frequency splitting, and is thus the main anisotropy addressed.

Z anisotropy will have some effect on shock and acceleration rejection, as well as

anchor loss. Smoothness of the etch will directly affect the mechanical quality

factor, and thus the ring down time, of the gyro.

For verification of the smoothness achievable with XeF2 and HNA, we per-

formed some initial test etches. Figs. 2.2 and 2.3 show the results of those etches.
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Figure 2.2: SEM of HNA anisotropy. FIB was used to define a perfect circle,
which accentuates the XY anisotropy.

Though neither was spectacularly smooth or isotropic, the HNA etch showed more

promise in that it was smoother and the shallowing of the etch in the Z direc-

tion could be avoided by agitation during the etch. Literature also suggested that

regimes could be found where much smoother etches were possible[15]. Some at-

tempts by other researchers have been made to improve smoothness of rough etches

by oxidizing and removing the oxide layers or using very smooth HNA etches af-

ter rougher XeF2 or SF6 etches, but these were always limited by larger feature

roughness [ref?].

The anisotropy of an HNA etch had been well documented for the <100> and

<110> silicon case in [16]. However, we theorized the <111> may have better

HNA etching anisotropy, since the crystallographic planes of the slowest to fastest

etching directions form a hexagon in the XY plane, which better approximates a
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Figure 2.3: SEM of XeF2 etched mold. Though anisotropy is improved, shal-
lowing and roughness are unacceptable.
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<100> <111>

Figure 2.4: Optical profilometer data showing anisotropy of HNA etch for
<100> and <111> Si. Radii for defining preferential etching are
shown.

circle. However, a study on the HNA etching of <111> Si had not been performed.

The intial etches performed, shown in Fig. 2.4 show the expected XY anisotropy.

SEMs of <111> and <100> Si etched with and without agitation of the sample

are shown in Fig. 2.5. The <111> samples do seem to show a small z anisotropy

on the left hand side.
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Figure 2.5: SEMs of HNA profiles with cross-sectional cut performed on
FIB. Top(a,b): without agitation, Bottom(c,d): ultrasonic bath;
Left(a,c): <111> Si, Right(b,d): <100> Si.
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2.1 HNA Etching Design of Experiment

A full study of the side-by-side HNA etching of <100> and <111> single crystal

silicon was performed, with the following etch parameters:

Si orientation <100>, <111>

Etch window, d 20µm, 30µm, 40µm, 50µm

Chemical ratio 1:2:0, 1:1:0, 2:1:0, 3:1:0, 4:1:0, 2:1:1, 2:1:2, 2:1:4, 4:2:1, 8:2:1

(HF : HNO3 : H2O)

Agitation None, random (by hand), ultrasonic bath

Temperature RT, 40◦C, 50◦C, 60◦C

This is obviously an enormous variable space. It was somewhat reduced by first

performing the etch experiment without the temperature variable. The second

design space, with the temperature variable was then performed for only hand

agitated samples, and without the 2:1:2 and 2:1:4 chemical ratio etches, which

were to slow to show any appreciable etching in the previous stage. The chemical

ratios tested are showing in Fig. 2.6 by the red dots.

The etching experiments were carried out by first depositing a LPCVD stoichio-

metric nitride mask on <100> and <111> single crystal silicon wafers, patterning

etch windows and dicing the wafers into equally sized samples. One large batch

of each chemical ratio mixture was then made up, and samples of each orienta-

tion were duly agitated in new batches of 100mL of etchant for each sample for 2

minutes etching time.

When the heating of the etchant was characterized some additional changes

were made. Automated stirring of the solution was included for etchant uniformity
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Figure 2.6: HNA etch chemical ratios. Dotted lines show iso-etch curves
(constant etch rate paths), red dots are chemical ratios tested.
Innermost curve represents highest etch rates.
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and thicker nitride masking layers of ≈350nm were used. Since HF obviously

cannot be contained in a Pyrex vessel, and putting Teflon directly on a hot plate

would be an extremely bad idea, heating of the etchant was accomplished by

heating a bath of DI water on a hot plate and submersing a Teflon container in

the bath.

2.1.1 Results

Results of the etches, in terms of anisotropy and roughness were measured using

optical profilometry and SEM respectively. The radii defined in Fig. 2.4 were used

to determine a percent preferential etching:

%PE =

(
R′

Ravg

− 1

)
× 100 (2.4)

Fig. 2.7 shows the %PE for increasing nitric acid concentration at room tempera-

ture. Not only do we clearly see better isotropy for <111> Si, but we see that the

high HF concentration etchants have less preferential etching.

Fig. 2.8 shows a trend where increasing size of the etched mold shows less

anisotropy. Since all etches were done for 2 minutes, this suggests that more

diffusion limited etches have higher anisotropy.

We saw that some of the etched samples, particularly those without stirring,

had random samples that etched much faster than the others, experiencing ‘run-

away’ etching due to the autocatalytic nature of the etch as noted in [14]. Thus,

we look at the preferential etching trend for the etched radius (measured average

diameter - etch window diameter divided by 2) normalized by etch window di-

ameter. We see that the ‘runaway’ etch samples tend to have lower preferential
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Figure 2.7: Anisotropy Vs. Chemical Ratio for HNA on <100> and <111>
Silicon. Preferential etching, %PE defined as in Eq. 2.4.
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(average diameter - etch window diameter)/2

52



0.0

5.0

10.0

15.0

0 0.5 1 1.5 2

%
PE

Etched radius/Etch window diameter

Trends in Preferential Etching with Size

<111>, ~9 um
<111>, ~12 um
<111>, ~24 um
<111>, ~30 um
<111>, ~34 um
<100>, ~10 um
<100>, ~13 um
<100>, ~22 um
<100>, ~34 um

Figure 2.9: Anisotropy vs. etched radius normalized by window size

etching, and that more of these samples were seen in <111> Si. This likely has to

do with the bonds seen on the different crystal planes and the required activation

energy of the etch in starting the autocatalytic process. Both this and Fig. 2.7

seem to suggest less preferential etching for faster etch rates. The spread of these

normalized etched radius values demonstrates the range of etch rates that we are

seeing at this size scale.

Finally, temperature dependence of the etch rate was characterized in Fig. 2.10.

Though mostly linear, some non-linearity was seen in the 1:2 HF : HNO3 etch.

However, the variance of these values is not far enough outside the expected range

to be statistically significant, due to non-uniformity of the HNA etch rate over a

sample.

SEMs focusing on the roughness of the HNA etch are shown in Fig. 2.11.

The discrepancies between the etch window sizes and etched radii show samples

that have ‘runaway’, and these samples show much smoother etching. This may

partially be due to the very small etch windows used in these initial test etches

severely limiting the propagation of etchant species to the etching surface.
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Figure 2.10: Etched radius vs. temperature on <111> Si samples, for
etchants B-E as shown on Fig. 2.6.

54



2um

3um

5um

10um

Runaway

46um

62um

50um

65um

211um 18um

4um

7um

25um

4um

Figure 2.11: SEMs of etch roughness. Left-most dimension is etch window
diameter, middle is etched radius, right is approx. width of
right-hand image.
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2.1.2 Masking Issues

Figure 2.12: Picture of 100mm wafer with severe cracking after HNA etch.

As we moved up to doing HNA etching of entire wafers, rather than small samples,

we began to see extreme cracking of the nitride mask during HNA etching, as

shown in Fig. 2.12. The high tensile stress of stoichiometric silicon nitride is well

Figure 2.13: SEM of large radius etch profile. Masking selectivity and crack-
ing issues limit depth.
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known, and some nitride recipes do relieve stress, but they accomplish this by

increasing the ratio of silicon to nitrogen in the LPCVD deposition. These silicon-

rich nitride layers have much lower selectivity to silicon in HNA etches, and will

limit the depth achievable on larger radius hemispherical molds, as shown in Fig.

2.13.

One method we implemented to get around this was to pattern trenches in the

nitride mask layer around the perimeter of each sample, as shown in Fig. 2.14.

This way, not only was the nitride tensile stress somewhat locally relieved by the

break, but any cracks that do occur will not propagate across the entire wafer.

Not only does cracking limit the etch time, but also the finite etch rate of

stoichiometric silicon nitride in HNA. The selectivity of the etch based on chemical

ratio was tested by depositing a nitride layer on a test wafer and measuring the

initial film thickness using spectral reflectometry. The nitrided wafer was then

diced into equal size samples along with a plain Si wafer. After using calipers to

measure the initial thickness of the plain silicon pieces, the nitrided and plain pieces

were etched together in each of the etchant solutions, with varying number of plain

silicon ‘catalyst’ pieces. The nitride and silicon thicknesses were then measured

again, resulting in the selectivities shown in Fig. 2.15. A clear improvement in

selectivity is seen for high HF content etchants. Though it might be assumed that

the single Si catalyst piece would be the most analogous to samples being etched

with small etching windows, and thus small exposed Si surfaces, the heating of

etchant in this case will occur largely locally constrained to the etch window, and

assuming a lower selectivity may be more appropriate.
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Figure 2.14: Mask trench layout for relieving nitride cracking.

0

1000

2000

3000

4000

5000

6000

7000

2:1:0.5 1:1:0.333 1:2:0.5 1:4:0.8343 1:1:1

Se
le

cti
vi

ty
, S

iN
/S

i

HNA Chemical Ratios, HF:HNO3:DI Water

Nitride Etch Selectivity

1

2

3

Figure 2.15: Nitride selectivity for various chemical ratios. Numbers in leg-
end refer to number of silicon pieces co-etched with nitride
masked sample.

58



2.2 Conclusion

In this chapter we attempted to find the smoothest and most hemispherical mold

we could make based on optimization of the hemispherical mold etchant. Removing

other etchants from the running for not being smooth enough, <111> Si was found

to give the most isotropic hemispherical mold for HNA etchant. It also has the

additional advantage of having odd-order azimuthal anisotropy, leading to small

frequency splits for the desired m = 2 mode shape. However, the limits of HNA

were found, and selectivity and cracking constraints require additional engineering

to reach larger radii.
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CHAPTER 3

ETCH MASKING

We saw in the previous chapter that we want an HNA etch which has a relatively

high HF : HNO3 ratio to improve selectivity to the nitride mask, as well as

increasing etch rate and having improved anisotropy. However, anisotropy is still

significant and poor masking selectivity compared to the amount of material we

need to etch, as well as mask cracking, is limiting the etch depths we are able to

achieve.

The fact that etch chemistries with faster etch rates tend to have lower XY

anisotropy supports the idea that diffusion-limited etch regimes significantly in-

crease preferential etching. If we can find a way to extend the amount of time we

spend in the reaction-rate limited regime, we theorize that we can improve both

anisotropy and smoothness. The specific nature of the HNA etch allows us to use

what we have deemed ‘Dynamic Masking’.

3.1 Dynamic Masking

Dynamic masking makes use of two aspects of HNA etching: 1) that it is a wet

etch, and 2) that H2 gas is a by-product of the etching reaction. By fabricating

concentric rings which are successively undercut by the progression of the etch,

and subsequently ‘pop-off’ due to H2 gas pressure, we can widen the etch windows

to increase etchant diffusion and stay in the reaction-rate limited regime. This

process is shown in Fig. 3.1. The continuous release of H2 from the etch window

openings ensures that released rings will not land back inside a mold.
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Figure 3.1: Progression of dynamic masking etch. As the silicon is etched,
the undercut rings pop-off due to the H2 gas byproduct of the
etch.
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Another way to think of this process is as a way to change the initial conditions

of the etch. For a circular window opened on a planar surface to etch a hemispher-

ical mold, we are attempting to approximate that planar circle to a point, and

assume the depth of the etch behaves as:

lim
r

rew
→+∞

r

d
= 1 (3.1)

where r is the radius of the etch, rew the radius of the etch window, and d is the

depth of the etch. In reality, such a model is oversimplified, and fluid dynamics

of the etchant and average diffusion path statistics will lead to faster vertical etch

rates and a lowering of hemisphere equator into the bulk of the silicon. However, in

the case of release rings, we can view the etching before a given ring is released as a

pre-etch to modify the topology of the etch surface such that the initial shape after

the ring is released more closely approximates a point, as shown in Fig. 3.2. Thus

we are essentially making the etch window more closely resemble a pinpoint while

simultaneously increasing etch rate and reducing anisotropy. Fig. 3.3 shows some

examples of release ring designs. Due to the complexity of the HNA etch, it would

be very difficult to calculate a best design based on diffusion lengths; instead we

experimentally find the best design through an iterative process of test variables

including the number of rings, the center etch window size, the ring width, and

the gap width. This idea assumes that the etch rate in the center of the design is

much higher than the ring gaps, and thus we suspect that a design with a large

central etch window and small gap widths will be optimal.
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Figure 3.2: Point approximation for initial topology.
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1) 2) 3)

Figure 3.3: Various release ring layouts. If 1) designates a standard layout,
we investigate 2) gap variations and 3) ring width variations, as
well as the effect of the number of rings.

3.1.1 Results

Fig. 3.4 shows SEMs of dynamic masking (top) vs. the standard circular etch

windows (bottom). We see that even though the dynamic etches were much larger,

they show markedly less anisotropy and are very smooth. Unfortunately, with the

designs we tried we were unable to achieve good depth, and the etches remained

quite shallow. If we look at Fig. 3.5, we can see that the ring gaps used here

are not limiting the etch rate enough, and thus the etch is moving laterally too

quickly. This design is using 2µm gaps, which is fairly close to the resolution of

the lithographic tool being used. Though the diffusion dependence might change

if we use a slower etch, we will just end up trading off selectivity. If we use smaller

outer radius ring designs, and etch longer after the final ring is released we may

achieve depth, but will be going back into the diffusion-limited regime, and return

to XY anisotropy issues. Instead, we will look at another masking technique which

we call compensation masking.
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a) b)

c) d) 295um

2mm

Figure 3.4: SEMs comparing dynamic and regular masking. a) and b) show
dynamic maksing results, c) and d) show standard circular mask
etch results.

Figure 3.5: SEM of dynamic masking for 2 minute etch in 1:9 HF : HNO3.
Release ring design used shown in upper right.
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3.2 Compensation Masking

The anisotropy of the HNA etch is dependent on the crystallographic planes, and

thus is a deterministic error. If we know what the end anisotropy will be, we can

remove it by compensating for it in the mask design.

Circle DiamondStar

Plus1 Plus2 Plus3

Figure 3.6: Initial designs for compensation masking. Circular masks in-
cluded for baselining.

By finding and aligning our mask to the crystallographic planes in the wafer,

creating mask designs such as those shown in Fig. 3.6, we can find a mask which

will give an isotropically circular XY etch profile for a given radius. The contin-

ued effect of the mask shape on the diffusion lengths will tend to counteract the

preferential etch rates and relax the determination of the appropriate etch radius

for a given mask design.

3.2.1 Orientation Alignment Marks

Aligning to the crystallographic planes is a simple process of growing an oxide

mask, etching successively rotated rectangles along the edge of the wafer, and then
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[110]

Figure 3.7: Diagram of orientation alignment mark concept. Yellow areas
denote undercut oxide mask.

Figure 3.8: Orientation alignment marks after 20 minute KOH etch at 78◦C.
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etching in KOH. The set of rectangles with the smallest etched footprint will then

denote the [100] axis, as shown in Fig. 3.7. An example of such etched alignment

marks is shown in Fig. 3.8. We see that the difference between successively rotated

rectangles is rather difficult to derive. Though the difference in rotation angles for

this case is only 0.0625◦, a non-zero aligned underetch made it impossible to de-

termine the crystallographic orientation down to such a degree, and the resolution

was instead limited to approximately 0.25◦. This could be improved by use of a

differential scheme, such as that used in [17]. While this process is not compatible

with <111> Si due to the inability to etch the orientation alignment marks, this

is no loss since the XY anisotropy is removed anyway and <100> Si has better Z

anisotropy.

3.2.2 Results

Fig. 3.9 shows the etching results for the initial compensation mask designs from

Fig. 3.6. We see that the nitride tensile stress is again causing issues, and as

we would expect, cracking was an issue for any mask which had smaller positive

radius of curvature than negative.

Using this to design the next group of compensation mask designs, we were able

to achieve masking with a 0% incidence of critical mask cracking over 18 samples,

each with 5 etch windows. Optical profilometer measurements of these designs are

shown in Fig. 3.10.
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Circle Star Diamond

Plus1 Plus2 Plus3

Figure 3.9: Resulting compensation masking etches. Green areas denote ar-
eas of undercut nitride mask.

Figure 3.10: Resulting compensation masking etches for the final mask itera-
tion measured with optical profilometer. White circles are used
to elucidate anisotropy.
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3.3 Conclusion

In this chapter we looked at methods of modifying our mask design to improve

achievable radius and isotropicity of the hemispherical mold etched with HNA.

Dynamic masking allowed us to get small improvements in the size of devices cre-

ated and their XY anisotropy, but leads to a natural trade off between depth and

anisotropy. Compensation masking allows us to get very isotropic hemispherical

molds, and by designing masks which relieve the tensile stress of the nitride mask-

ing material, very smooth, very isotropic molds for radii up to, and not limited to,

180µm have been etched.
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CHAPTER 4

DEVICE FABRICATION

We now have a hemispherical mold with low anisotropy and good smoothness. The

next step is to deposit our device material, pattern the lip and release our device.

Our initial choice for the device material was another LPCVD deposition of

stoichiometric silicon nitride. It has both excellent mechanical and optical prop-

erties, and is readily available in most fabs. Our initial devices, those of small

radius as shown in Fig. 4.1, were successfully fabricated, and were some of the

first ever microfabricated hemispherical shell resonators. However, there were two

main reasons that we migrated to a new material: 1) as the radius of the shell

increased, we began to see cracking inside the shell, as in Fig. 4.2, and 2) more

fundamentally, the HF component of the HNA etch used to release the devices de-

graded the optical properties of the nitride in proportion to the etch time. Other

release etches were tried, such as XeF2 or KOH, but the selectivity was not high

enough to nitride.

The smaller hemispherical shell devices were tested, as covered in the following

chapter on experimental results, but these devices were more a proof of concept

than our goal; we still needed larger radius devices with lower resonance frequen-

cies. We thus switched to a thermal oxide device layer. These device have excep-

tionally high selectivity to XeF2, and though optical and mechanical properties

are not quite as high as stoichiometric silicon nitride, they are still higher than

polysilicon or other competing materials.

Initial oxide devices still had some issues obtaining a high enough optical quality

factor; theorizing that it was related to the roughness of the etch on the rim of
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Figure 4.1: SEM of first GOBLiT. Device diameter is ≈ 20µm, platform is
for taper stabilization.

Figure 4.2: SEM of cracked nitride GOBLiT. Device diameter is ≈ 1000µm.
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Figure 4.3: Optical Qs for BOE etched oxide GOBLiTs. R ≈ 150 µm
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the device where the optical mode sits, a BOE smoothing etch was performed on

devices for 2 and 3 minutes before releasing them in XeF2; the resulting improved

Qopt is shown in Fig. 4.3.

This improvement was not as radical as we might hope, and as mentioned

before in relation to the smoothing of rough hemispherical molds, a limit will

be reached beyond which little improvement is seen with successive etch times.

Thus we began to think about other fabrication techniques that might allow us to

improve the surface smoothness of the GOBLiT lip.

4.1 Dopant Enhanced Oxidation Structures - DEOS

Our initial idea was to use a concept called dopant enhanced oxidation. This is a

technique which allows the oxidation rate of silicon to be increased by as much as

a factor of 3 by highly doping the silicon and then performing a thermal oxidation.

The impurities and defects caused by the extreme high doping create vacancy

pairs which allow the oxygen atoms to diffuse more quickly through the silicon.

The oxidation rate is then increased as:

x2
0

B
+

x0

B/A
= t+ τ (4.1)

where x0 is the oxide thickness, B is the parabolic rate constant, B/A is the linear

rate constant, t is the oxidation time, and τ is simply a term to correct t for an

initial oxide film thickness. It is the B/A term which shows a dependence on

Si/SiO2 interface reaction rate and leads to the increased oxidation rate[18].

To improve the smoothness of our lip, we proposed to use the DEO effect to

define a cavity for the optical signal; by using the process flow shown in Fig. 4.6,
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Figure 4.4: DEO simulation of oxide thickness variations in Silvaco
ATHENA. Top: 900◦C, Bottom: 1000◦C.
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Figure 4.5: DEO simulation of 2 stage doping in Silvaco ATHENA. Stage 1:
3e16P, 1100◦C, 20min Stage 2: 1e16P, 900◦C, 80min

Figure 4.6: DEOS process flow. a) Spin-on dopant source, b) Heat in fur-
nace, c) Remove dopant source, d) Remove glass by-product,
e) Deposit LPCVD nitride, f) Pattern nitride for hemispherical
mold etch, g) HNA isotropic etch, h) Oxidize i) Remove nitride
mask, j) Release in XeF2.
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we can achieve an optical cavity which is define by a diffusion process, and thus

very smooth. However, modeling of the dopant enhanced oxidation in Silvaco

process modeling software showed that the parabolic rate constant dominates the

enhanced oxidation rate of the linear rate constant for any oxide growth thicker

than a few hundred nanometers, Fig. 4.4. Additionally, the nitride oxidation mask

needed to keep the entire surface from oxidizing requires ≈ 800◦C temperatures for

deposition. This means that any sharp doping profile attempted will diffuse during

the nitridization, reducing the ability to contain the optical mode in the lip. Some

success was found in overcoming this by using a two step doping process: 1) a

first very high concentration doping is performed and then annealed such that the

first few microns of the silicon surface are doped just below the onset of oxidation

enhancement, and 2) a second sharply profiled ion implantation is performed, after

which the nitride layer is deposited. This method reduces the diffusion gradient,

and thus the spread of the doping profile to achieve oxide profiles such as that

shown in Fig. 4.5.

Though this process flow has merit, and may work well with some extensive

tweaking of parameters, we decided to pursue a different process flow with more

guaranteed feasibility and quicker turnaround time: the Toroidal-Lip GOBLiT.

4.2 Toroidal-Lip GOBLiT

This process is quite simple, and one of the advantages to using an oxide device

layer. Since common CO2 lasers operate at wavelengths for which oxide is highly

absorptive, researchers have been able to undercut oxide disks and then lase them

with a defocused CO2 laser melt the rim into a toroidal shape[19]. This provides
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a)

b)

c)

d)

e)

f)

Figure 4.7: Process flow for toroidal-lip GOBLiTs. Modification to basic
process flow are steps d) partial release, e) laser reflow

a very smooth surface with low scattering losses into which to couple the optical

signal.

We can apply the same process to our GOBLiTs, shown in the process flow in

Fig. 4.7. By undercutting up to the edge of the bowl, we can melt the toroid down

close to edge of the bowl, and then further release the GOBLiT using a second

XeF2 etch. We experimentally found that allowing the undercut to progress all the

way to the vertical walls of the bowl is inadvised; the melting of the toroidal shape

is very sensitive to any changes in thermal path length, and any slight misalignment

between the centering of the bowl and the lip to be melted can cause large thermal

path length differences. This results in an unevenly melted lip, and low optical

quality factor. The best achieved toroid is shown in Fig. 4.8.
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Figure 4.8: SEM of toroidal-lip GOBLiT. Inset shows very smooth lip.

One aspect of this process flow to consider is the achievable radius - even melting

of the toroid requires defocusing the laser to evenly heat and melt the oxide. As

the radius of the oxide device increases, the laser must be more defocused to avoid

local heating. At the same time, longer path lengths around the lip for the same

lip width mean that the area to be melted is much less thermally coupled, and

local heating is more likely.

Looking at the device from a mechanical point of view, the melting will occur

very isotropically, and will increase the stiffness of the lip out of plane. It is possible

that this may actually increase frequency splitting of degenerate wineglass modes

for a given anisotropy, but will need to be verified.

4.3 Conclusion

In this chapter we showed the resulting devices created from the molds optimized

in the first two chapters. The need to move to oxide devices was seen due to degra-

dation of the optical properties of nitride during the release etch. Improvement
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of optical quality factors after smoothing etches in BOE lead to the attempt to

modify the fabrication process to improve lip smoothness. Though simulations of a

dopant enhanced oxidation based structure were not reaching the desired shape, an

alternative method of smoothing the lip through laser reflow of the oxide was pro-

posed. These toroidal-lipped GOBLiTs were successfully fabricated, and further

studied in the following chapters.
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Part II

Device Considerations
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CHAPTER 5

SIMULATION

In most theses, the simulation chapter is placed prior to any fabrication, and is

the basis for the fabricated design. However, in our case, the basic mechanical

and optical models were well known and the fabrication challenges had to be

overcome before structural design parameters could be controlled to the desired

design parameters. A collaborative effort on the part of Prof. David Bindel and

his student Erdal Yilmaz provided simulations on the effects of known fabrication

tolerances for our devices, and thus the simulations shown here will be mainly

those used to gain intuition into the details of the fabricated devices.

5.1 Mechanical Modeling

We will first take a look at the modeling of our structure as a mechanical resonator.

5.1.1 Basic Shape

The basic shape we are looking to achieve is a hemispherical shell: the analytical

eigenfrequency calculations of such a geometry has been a topic of interest since

the 1940’s and 50’s when it was investigate by Lord Rayleigh, Love-Federhofer-

Naghdi, and Mushtari-Vlasov[20]. The particular modes of vibration that we are

interested in are the wineglass modes; they are given in [21] as:

ω2
m =

2

3
m2
(
m2 − 1

)2 E

2(1 + ν)ρ
t2R4 I(m)

J(m)
(5.1)
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with

I(m) =

∫ φf

φa

tan2m (φ/2)

sin3 φ
dφ (5.2a)

J(m) =

∫ φf

φa

(
m2 + 1 + sin2 φ+ 2m cosφ

)
sinφ tan2m (φ/2) dφ (5.2b)

where

ωm mechanical resonance frequency [rad/s]

m azimuthal wavenumber

E Young’s modulus

ν Poisson ratio

ρ density

t thickness of shell

R radius of shell

φa longitudinal angle denoting anchor point (edge of stem)

φf longitudinal angle denoting top edge of hemispherical shell

There is clear intuition gained from this equation in terms of the effect of geometric

and material parameters on the frequency. Further, the 1
R2 dependence of frequency

makes it clear why the focus of fabrication work was on perfecting the etching of a

hemispherical mold: even small radial differences can lead to significant frequency

splits with such a dependence.

The above equation is quite simple, and while good for providing intuition,

the more complex Niordson[22] analysis of thin spherical shells was the basis for

a Matlab scripted calculation of the resonance frequency, as well as calculation of
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Figure 5.1: Displacement map of HSR for eigenfrequency with azimuthal
wavenumber 2 as simulated in COMSOL. Finite element size
leads to non-degenerate eigenfrequencies, with spacing of nodal
positions = 45◦, or 90◦/m, and frequency spacing dependent on
mesh element size and geometry.

the Bryan’s factor, provided by our collaborators in the Bindel group. As a third

check, finite element modeling (FEM) was done in COMSOL to check the validity

of our basic analyses.

Maps of the displacement of the shell in the m = 2 and m = 3 wineglass modes

as generated by COMSOL are shown in Figs. 5.1 and 5.2. It is interesting to note

that finite element size of the mesh will lead to splitting of frequency values for

the eigenfrequencies of a given wineglass mode. In the case of the m = 2 wineglass

mode, this will lead to a second eigenfrequency with a nodal pattern shifted by

45◦, or 90◦/m, around the rim of the hemisphere. Similarly the degenerate mode

for the m = 3 wineglass mode will be shifted by 90◦/3 = 30◦.

Fig. 5.3 shows the difference in eigenfrequency values between the COMSOL

FEM simulation and the two theoretical models used. Radii were varied as plotted,
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Figure 5.2: Displacement map of HSR for eigenfrequency with azimuthal
wavenumber 3 as simulated in COMSOL. Finite element size
leads to non-degenerate eigenfrequencies, with spacing of nodal
positions= 30◦, or 90◦/m, and frequency spacing dependent on
mesh element size and geometry.
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Figure 5.3: Plot of eigenfrequency differences between FEM and Niordson
shell analysis (black) and between FEM and analytical expression
given in Eqn. 5.1 (red) for various radii. FEM eigenfrequency is
determined as the average of modeled degenerate modes.
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Figure 5.4: Plot of eigenfrequency differences between FEM and Niordson
model for the first three wineglass modes normalized by average
eigenfrequency for various radii. FEM eigenfrequency is deter-
mined as the average of the modeled degenerate modes.

while shell thickness remained 250nm: it is clear from this chart that the analytical

expression given in Eqn. 5.1 breaks down at higher thickness:radius ratios, due to

a thin shell approximation. The Niordson based analysis shows a better correla-

tion to the FEM simulation, though Fig. 5.4 shows the deviation from FEM as

radius is increased. This is due to decreasing resolution of the FEM simulation as

computation constraints required rougher meshing.

However, this basic HSR model does not account for the lip of the GOBLiT.

The lip will add mass loading and increase stiffness at the rim of the hemisphere,

and needs to be simulated using FEM. Simulations of the first three wineglass

modes for a GOBLiT are shown in Fig. 5.5.

The bending mode of a beam is known to have an x1.5 dependence on the

dimension in the plane of bending, and a square root dependence on the perpen-
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Figure 5.5: First three wineglass modes for a GOBLiT with a planar lip.
Isometric view shows there is some vertical displacement of the
lip as well as horizontal.
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Figure 5.6: Frequency shift from a basic HSR for GOBLiTs with R=250µm,
t=2.5µm, for silicon dioxide.
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Figure 5.7: Frequency shift from a basic HSR for GOBLiTs with R=250µm,
w=10µm, for silicon dioxide.
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Figure 5.8: Plot of the natural log of frequency for various lip thicknesses and
widths for power series analysis. Blue stars show points where
the simulated geometry is the same. Green triangles show where
data points where thickness and width of the lip are equal.
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Figure 5.9: Plot of the natural log of frequency for various lip width:thickness
ratios for power series analysis. Blue stars show points where the
simulated geometry is the same. Green triangles show where data
points where thickness and width of the lip are equal.

dicular dimension. We can approximate the lip of the GOBLiT to zeroth order

to be a beam undergoing bending in the XY plane; thus if the lip is dominating

the eigenfrequency calculation we expect the frequency of the GOBLiT to have

an x1.5 dependence on the width and square root dependence on the thickness of

the lip. Fig. 5.6 shows the simulated frequency for various lip widths when the

radius is 250 µm and the thickness is 2.5 µm. Likewise, the effect of lip thickness

is shown in Fig. 5.7, which shows the trend in resonant frequency for various lip

thicknesses when the width is 10um.

To analyze the frequency dependence on both the width and thickness of the

lip, we have to take both terms into account. By plotting the natural log of

the frequency vs. the varied dimension we can see the exponential dependence

as the slope of the plot, as shown in Fig. 5.8. The red line shows the case

where width was varied; in this case, thickness was constant at 2.5µm. The slope
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is lower in the regime where thickness is greater than width, and increases as

width becomes the dominant variable. Likewise, the black line shows the effect

of varied thickness plotted with width constant at 10µm, with higher slope in

width dominated regimes. The green triangles show data points where thickness

and width are equal; the blue stars show points where the geometry was the same

(thickness = 2.5µm, width = 10µm). In the case where thickness was varied (black

line), the slope hits an asymptote earlier on; this can be attributed to the fact that

there is bending motion outside of the Z plane as well. The same data is plotted

as width:thickness ratios in Fig. 5.9.

Both Figs. 5.6 and 5.7 also have plots of Q; these were calculated using a

matched layer simulation such as that referenced in [23]. The matched layer

method assumes that a substrate exists which is essentially infinite. In cases where

the acoustic wavelength of the resonance is small in comparison to the actual sub-

strate size, this is an acceptable modeling assumption to make. However, in the

case of low frequency resonators such as we are modeling, the actual substrate is

on the same order, or possibly smaller in some dimensions than a full acoustic

wavelength. Thus the anchor loss simulations shown here are to be taken with a

grain of salt. Professor Bindel, of Cornell, who has collaborated on simulations

on this project is in the process of writing code which will be able to infer when

this limit is reached, and until what point simulated data is still a viable source of

intuition.

An observation of interest to the fabrication of wineglass mode resonators is

the interaction between the azimuthal symmetry of anisotropy and the order of

the wineglass mode resonance. An in depth paper on the topic has been submitted

for review by Erdal Yilmaz ([24]), and the particular case of the effect of oxidation
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rate anisotropy on frequency split in hemispherical shell resonators is studied in

[21]. Put simply, devices with even order azimuthal anisotropy will have very small

frequency split between odd order degenerate wineglass modes, and vice versa for

odd order azimuthal anisotropy. Since we see even order anisotropy for HNA etch-

ing of <100> Si and odd order for <111> Si, we should be able to choose our

Si substrate depending on which wineglass mode we want to use. However, the

hexagonal shapes observed in <111> Si are not completely symmetrical, and a

finite frequency split will be observed. The anisotropy in <100> Si is symmetri-

cal, but since this shape will reduce m = 3 wineglass mode frequency split, and

we expect greater displacement for the lower frequency m = 2 wineglass mode,

we needed to explore the fabrication tools to reduce frequency splits for m = 2

wineglass modes.

5.1.2 Toroidal Lip Shape

The toroidal lip GOBLiT was a structure motivated by improving optical Q factors.

However, intuition would tell us that it will also have some interesting effects on

mechanical behavior of the device. By melting the lip down to a toroidal shape, rim

width, and thus frequency, will be reduced. At the same time, increased stiffness

with regards to Z axis motion of the lip should be increased. This allows us to have

more effective mass at the lip, with fewer parasitic lip modes and lower frequency,

which is important for gyroscope operation. SEM was used to measure the exact

dimensions of a fabricated toroidal lip GOBLiT, as in Fig. 5.10. Simulating and

plotting the spectrum of the eigenmodes found resulted in the initial spectrum

shown in Fig. 5.11.

The desired wineglass modes in Fig. 5.11 are clearly spaced quite closely with
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Figure 5.10: SEM of Toroidal Lip GOBLiT (TorLiT) with dimensions used
for COMSOL simulation.

Figure 5.11: Simulated spectrum of fabricated TorLiT. Mode shapes were
found using LDV, as is described in the Experimental Results
section, and dimensional variables were then modified within
the SEM measurement error range to match.
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Figure 5.12: Simulated spectrums as lip width is reduced from the fabricated
TorLiT value. Parasitic lip modes are force to much higher
frequencies as wineglass mode frequencies are reduced. Stem
size was held constant at 12µm.

Figure 5.13: Simulated spectrums as stem size is reduced from the fabricated
TorLiT value, assuming rim width is 5µm. Wineglass modes
show very little interaction with stem size, but radial and bowl
tilting or extensional modes can be easily moved in relation.
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other modes - parasitic lip flapping modes and bowl extensional modes. These

modes, and their spacing to the desired wineglass modes, should be adjustable by

changing the lip width (i.e. melting the toroid further), or the anchor stem width.

Simulation studies of the effects of changing these parameters were performed,

shown in Figs. 5.12 and 5.13. It is clear that the two parameters, lip width and

stem size, can be used to easily adjust the mechanical spectra of the device.

5.2 Optical Modeling

Simulations were also performed to see the affect of structural parameters on the

optical modes and coupling to the device. The variables of interest were the radius

of the GOBLiT structure, and the thickness and width of the lip. Fig. 5.14 shows

how the mode varies over radius and lip thickness. As radius is increased, the angle

of incidence of the light as it reflects off the lip edge becomes more oblique. This

results in spreading of the optical mode, further into the lip and away from the

lip edge. If the lip width is not large enough, this can result in the optical mode

spreading into the bowl of the GOBLiT, as shown in Fig. 5.15.

Figure 5.14: Simulated optical mode cross-sections for various GOBLiT radii
and lip thicknesses. Lip width was adjusted as necessary to
retain the mode in the lip.
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Figure 5.15: Simulated optical mode cross-section for a device structure in
which the lip is not wide enough to contain the mode. 550µm
radius, 300nm thickness, 6µm width.

Figure 5.16: Simulated optical mode cross-sections for optical fiber taper and
eventual integrated waveguides. A GOBLiT optical mode with
good index matching is shown at bottom.
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Lip thickness controls the proportion of optical mode which is squeezed outside

the oxide lip structure, and thus shows a strong correlation to effective index of the

mode. As noted in [25], the propagation constants between taper and the optical

mode of the device need to match to achieve efficient excitation of the optical mode.

For a system in which the losses are as yet unquantified, this means matching

indices of refraction. Fig. 5.16 shows simulated optical mode cross-sections for an

optical fiber taper and a waveguide structure. A possible lip geometry for a 550µm

radius device which matches well to the taper is also shown.

5.3 Conclusion

In this chapter, both mechanical and optical simulation was covered. For the

mechanical model, verification of the analytical equations and collaborators code

was performed on the basic hemispherical shell resonator shape using COMSOL.

The effect of lip geometry on the resonance frequency was also looked at, as well as

the lip width and stem size effects on the toroidal-lipped GOBLiT. It was shown

that melting the lip as much as possible to reduce the lip width will help remove

parasitic lip flapping resonance modes from the desired wineglass mode spectrum.

In optical simulations we saw that larger radius devices will have more spread out

optical modes, and changing the shape of the lip is required to keep the optical

mode at the edge of the lip where it is easily accessible by taper, as is achieved by

the toroidal-lipped GOBLiT structure.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Optical Transmission

The first step to characterization of a structure for use as an opto-mechanical

device is to look at the optical transmission. Picking the wavelengths at which

to pump and at which probe the device require knowledge of the optical quality

factors and extinction ratios of the optical modes for a given input power.

Optical transmission of fabricated devices was tested using a setup as shown in

Fig. 6.1. Polarization of the optical signal is controlled using the polarizer, while

the two attenuators allow the power at the device to be changed while maintaining

full-scale output at the photodetector (PD). Variable wavelength semiconductor

lasers in the range of 1300 and 1550 nms were used. The light sent through the

optical fiber interacts with the device by using a taper fiber scheme, such as that

described in [25].

To create the fiber taper as shown in Figs.6.2 and 6.3, the plastic casing is first

removed from a short length of single mode optical fiber and clamped onto two

Figure 6.1: Coherent light from a semiconductor laser source is sent via opti-
cal fiber through a polarizer and attenuator to interact with the
device via evanescent coupling from a tapered fiber section. The
modified signal is then attenuated as needed for full scale detec-
tion at the avalanche photodiode, and detected via oscilloscope.
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Figure 6.2: Diagram of a tapered fiber interacting with an optical device.

Figure 6.3: Picture of a pulled taper fiber, in the vicinity of GOBLiT devices.
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Figure 6.4: Transmission measurement of a R = 42.5µm device measured
with a 1065nm wavelength laser by collaborators at Army Re-
search Labs. Quality factors were in the range of 850,000.

motor stages. A CW laser light is sent through the fiber and monitored via oscillo-

scope. Heating via a hydrogen torch and pulling via the motor stages are applied

simultaneously. As the fiber stretches, it enters a multimode regime, seen on the

oscilloscope as modulation of the transmission signal with increasing frequency as

the taper is pulled. Once the taper again reaches single mode transmission, the

pulling and heating are stopped. The motors are finally jogged in small steps to

make the fiber taut.

The initial nitride devices fabricated showed fairly high optical Q’s, though not

extremely high due to roughness at the GOBLiT lip edge due to the RIE etch that

defined the lip. Additionally, as device radius increased, optical quality factors

dropped substantially due to prolonged exposure to HF during the release etch, as

mentioned in the fabrication section.

Some of the smaller (R = 42.5µm) nitride devices were tested by collaborators
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Figure 6.5: Optical Q measurement of 53.6e6 for an oxide GOBLiT of radius
1000µm.

at the Army Research Laboratory (ARL) while the setup at Cornell was not yet

complete. These resulted in quality factors in the range of 850,000, as shown in

Fig. 6.4. Cofabricated devices were later tested on the Cornell setup which showed

much lower optical quality factors. This disparity was due to differences in the

point at which the device was interrogated, as well as differences in coupling due

to different taper geometries. (The ARL lab used a dimpled taper configuration,

as in [26], which tend to ease integration with vacuum systems.)

A similar spatial dependence of coupling was found in the tested larger oxide

GOBLiTs. When measured at the lip, these devices showed no discernible optical

resonances. However, with careful coupling from under the lip, very high Q optical

resonances were seen, such as that in Fig. 6.5. This is likely due to optical squeezing

of the mode, causing it to move away from the edge of the lip, and is one of the

reasons to move to a toroidal lip GOBLIT structure. The optical Q of a typical

optical resonance mode of the fabricated TorLiT is shown in Fig. 6.6. It was such

a mode that was then used to pick off the mechanical resonances of the device as
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Figure 6.6: Optical Q measurement of a Toroidal Lipped GOBLiT of radius
60µm with 20µm lip and 2.5µm toroid minor radius.

shown in the section on Opto-Mechanical Pick-off.

One note must be made about the optical quality factors quoted in this section.

All measurements here simply made use of the timestamp of the oscilloscope and

an assumed relationship between the voltage and piezo modulation of the laser

wavelength. Thus the values quoted are somewhat rough, and very large quality

factors in particular may vary from the quoted values quite a bit. They are merely

quantized in this instance as an idea of the optical quality factors achieved. To

verify these measurements, a Mach-Zender Interferometer should be used.

6.2 Pump-probe

The small nitride GOBLiTs tested at ARL were also tested using a pump-probe

setup. In such a scheme, two different wavelength laser sources are used to achieve

both driving and sensing of the mechanical modes of the device. By amplitude
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Figure 6.7: Diagram of setup for pump-probe measurements performed at
ARL. The DUT was under 0.1 mTorr vacuum, and a dimpled
optical taper was used for interrogation.

modulating one light source, gradient optical forces can be duly modulated to excite

mechanical motion at the frequency of the amplitude modulation. By filtering out

the amplitude modulated wavelength, the power at the photodetector will be due

only to the sense wavelength. The modulation of the transmitted power of the

sense wavelength, biased on the blue-detuned slope of an optical resonance, will

then show the mechanical resonances. Fig. 6.7 shows the setup used to performed

pump-probe measurements at ARL. The devices tested were kept at 0.1 mTorr

pressure during testing.
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Figure 6.8: Pump-probe measurement of m = 2 wineglass mode of 42.5µm
radius nitride GOBLiT, with mold formed on <111> Si.

Figure 6.9: Pump-probe measurement of m = 3 wineglass mode of 42.5µm
radius nitride GOBLiT, with mold formed on <111> Si.
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Figs. 6.8 and 6.9 show the measured mechanical modes from the nitride GOB-

LiT. One point of interest is the difference in frequency splitting between m =

2 and m = 3 wineglass modes. The measured resonator was formed from molds

created using <111> silicon wafers, which would be expected to have hexagonal

shaped anisotropy in the surface plane of the wafer. The fact that this leads to large

splits in odd-order wineglass modes and small splits in even-order modes supports

the assertions made in [24]. In cases where the angular separation of degenerate

modes, 90◦/m, matches the angular separation of perturbations, frequency splits

are large; in cases where they do not match, frequency splits are small. The

mechanical quality factor and frequency data for each of these measurements is

summarized in Table 6.1.

Table 6.1: Summary of Pump-Probe Data

m = 2 m = 3

Peak 1 Peak 2 Peak 1 Peak 2

Frequency, f [kHz] 113.008 113.066 367 372

Frequency split, ∆f [Hz] 58 5k

Quality factor, Q 565,320 566,804 230,450 3,620,000

104



6.3 LDV

One standard method of measuring mechanical resonances is the use of Laser

Doppler Vibrometry. This technique uses the doppler shift of reflected coherent

light to measure the velocity of the surface it is reflected off. For devices for which

the integration of sensing elements is difficult, it is a good way to determine both

the spectral response and mode shapes of mechanical resonances. The mechanical

resonances are excited via a PZT thickness mode resonator glued to the bottom of

the device substrate, as shown in Fig. 6.10. By focusing on one point and scanning

the frequency of the PZT excitation, the mechanical resonance spectrum can be

found. The mode shape of each of these resonances can then be determined by

setting the PZT excitation at the resonance frequency and scanning the point of

interrogation over the device surface.
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Figure 6.10: Diagram of LDV setup.

6.3.1 Air vs. Vacuum

Fig. 6.11 shows measurements of the same device taken in vacuum and air. The

spectra shown are rather different, which has more to do with the actual point

interrogated on the device than the pressure. Since the amplitude of the signal is

proportional to the velocity of the surface the light is reflecting off, spectra can

look very different depending on the point of interrogation.
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Figure 6.11: LDV measurements of oxide GOBLiT with R = 120µm formed
from SF6 etched molds in vacuum and air.

Fig. 6.12 shows measurements in air and vacuum taken from the same point.

The similarity in mechanical quality factor between the two shows that we are

not limited by gaseous damping at this point. Such high mechanical energy losses

are likely due to either anchor losses or roughness of the mold etch, which in this

case was SF6. Since the device was already glued to the PZT sample, which had

soldered on lead wires, and could not be put back in the XeF2 etcher, further

etching of the stem was not possible. However, devices with larger stem sizes as

compared to device radius showed similar mechanical quality factors, leading to

the belief that it was etch mold roughness that limited the mechanical Q. Fig. 6.13

shows an SEM of an SF6 etch mold based device. The roughness on the bowl is

very large, and could well be the reason for such low mechanical quality factors.

An LDV spectrum scan was also performed for the TorLiT device, shown in

Fig. 6.14. There are clearly many closely spaced modes, and SEM measurements

of dimensions are not precise enough to use simulation to determine which modes
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Figure 6.12: LDV measurements of oxide GOBLiT at same interrogation
point in vacuum and air.

Figure 6.13: SEM showing the roughness of devices made using SF6 etched
molds. This could likely cause the low mechanical quality fac-
tors seen in measured devices.
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Figure 6.14: LDV spectrum for the TorLiT device, measured in vacuum.
Clipping occured due to higher sensitivity setting on LDV
equiptment.

correspond to which resonances. Thus a way to determine the mode shape for a

given resonance is necessary.

6.3.2 2D Maps

Fig. 6.11 showed how the spectral response can vary based on the interrogation

point; this can be used to identify mechanical resonance modes. By setting the

PZT excitation frequency based on peaks found in the spectral response, and then

scanning the interrogation point over the structure, a map of the mechanical mode

can be made. Such 2D maps were used to identify the modes of the TorLiT

structure. Figs. 6.15 and 6.16 show the m = 2 and m = 3 wineglass modes,

found at 2.445 and 6.240 MHz respectively. Other modes, such as the n = 3 and

n = 4 lip flapping modes shown in Figs. 6.17 and 6.18 were also found.

6.4 Opto-Mechanical Pick-off
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Figure 6.15: 2D LDV scan of m = 2 wineglass mode at 2.445MHz for Toroidal
Lipped GOBLiT structure, used to identify mechanical modes
within a crowded spectral response.

Figure 6.16: 2D LDV scan of m = 3 wineglass mode at 6.240MHz for Toroidal
Lipped GOBLiT structure, used to identify mechanical modes
within a crowded spectral response.
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Figure 6.17: 2D LDV scan of m = 3 lip flapping mode at 2.14MHz for
Toroidal Lipped GOBLiT structure.

Figure 6.18: 2D LDV scan of m = 4 lip flapping mode at 3.145MHz for
Toroidal Lipped GOBLiT structure.
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Pick off of mechanical modes is also possible using an optical fiber taper, as

shown in the pump-probe measurements performed at ARL. However, integration

of optical fiber tapers with vacuum can be quite difficult, and requires decently

large vacuum chambers to accommodate all the piezo stages needed to align the

device with the taper. Since we did not have such a setup, we could not achieve

sufficient opto-mechanical force to overcome damping for pump-probe techniques

at atmospheric pressure.

Instead, we made use of the PZT already glued to the TorLiT sample for LDV

measurements to excite motion, which was read off optically, as shown in the setup

schematic in Fig. 6.19. The results of this measurement are shown in Fig. 6.20. It

is particularly interesting to compare the LDV spectrum of the TorLiT structure

with the opto-mechanical measurement made of the same device, as in Fig. 6.21.

The two match quite well, showing that at the power levels used there is very little

optical spring stiffening. The large opto-mechanical peak around 1 MHz which is

not present in the LDV spectrum is the fundamental radial mode; this mode will

have the strongest modulation of the optical transmission, but will not show up

at all in the LDV measurement since it does not induce any significant velocity

in the direction measured (normal to the XY plane). We saw that there was very

Figure 6.19: Schematic of setup for opto-mechanical measurements of the
TorLiT structure. The PZT used for LDV measurements was
used to excite motion.
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Figure 6.20: Opto-mechanical measurement for TorLiT structure. 1 denotes
the m = 2 wineglass mode, and 2 denotes the m = 3 wineglass
mode, as identified using 2D LDV scans.

Figure 6.21: Comparison of mechanical measurements for the TorLiT struc-
ture. Blue is the LDV measurement, with light reflecting per-
pendicularly off the top surface of the lip, red is the opto-
mechanical measurement, made at the edge of the toroidal lip.
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little displacement of the rim in m = 3 wineglass mode from the 2D LDV plot, and

we do not see a resonance at that frequency in the opto-mechanical measurement.

However, this could also be due to interrogating at a nodal point in the m = 3

wineglass mode, assuming the frequency split between degenerate modes is large

enough to push the other m = 3 wineglass mode into another peak (which is quite

possible due to the use of <111> wafers for these devices). Simulation showed

much cleaner spectra for TorLiT structures when the lip is further melted; such

devices were created, measured and show the expected results. However, those

results are part of an unpublished joint effort with Ajay Bhat, and will not be

shown here. Please look for a future jointly authored work for details.

6.5 Conclusion

In this chapter, measurements were presented of some of the basic parameters

of interest for using the GOBLiT and TorLiT structures for an opto-mechanical

gyroscope. Transmission measurements showed optical quality factors as high as

53.6e6 with careful coupling, albeit with several caveats as mentioned regarding the

method of calculation for Q. The measured pump-probe results show the viability

of an all optical transduction scheme, and also support the claims made as to the

relationship between azimuthal order of perturbation and resonance mode. LDV

results showed the limitation of mechanical quality factor due to roughness in the

case of SF6 etched mold devices, and in the case of the TorLiT structure, acted

as both a spectral and mode-mapping tool. Opto-mechanical pick off of resonance

modes was also shown for the TorLiT with piezo-actuation, and correlated well to

results from LDV. The spectra of the TorLiT was crowded with parasitic modes,

but devices with much cleaner spectra have been fabricated and will be presented
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in a later co-authored paper. Verification of the optical and mechanical parameters

required for the structure of an opto-mechanical gyroscope is performed.

115



CHAPTER 7

FUTURE WORK

7.1 Fabrication Work

One of the most obvious fabrication steps forward from this work is to reduce the

thickness, and thus the frequency of the TorLiT structure. In fact, this has already

been accomplished, and will be part of a future jointly authored work between the

author and Ajay Bhat. The initial device thickness was chosen due to known laser

melting power at 1.5µm; for showing proof of concept it was easiest to maintain

some known variables. The DEOS fabrication process also still shows promise,

and with some work on the optimization of implantation doses and annealing and

oxidation temperatures, could lead to some very promising structures with more

evenly distributed mass. In terms of the feasibility of an OMG, the top priority

of future work would be to integrate waveguides into the process flow. This is

difficult enough for any 3D process, but the changing radius of the TorLiT makes

it especially difficult. It may require fabricating waveguides on moveable platforms

which can then be locked into place, or other such complexities. Eventual industrial

application would also require a much more thorough study of the HNA etch

uniformity over the whole wafer; tanks and stirring equiptment to hold temperature

and agitation variables constant would be necessary, as well as fine control of

chemical mixtures.
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7.2 Device Work

From a device standpoint, building up an optical taper setup in vacuum would be

the next logical step. Such a system would take some time to build from avail-

able components, but is vital to pump-probe measurements. Once such a system

is built, gyroscopic measurements would then require integration of the vacuum

chamber with a rate table, which would need to be quite large to accommodate the

entire optical portion of the setup. To truly measure the gyroscopic performance

would also require more than one interaction point, and thus either optical tapers

that could be independently positioned with respect to the DUT, or integrated

waveguides as mentioned previously. Collaboration with Prof. Mukund Vengalat-

tore to combine the GOBLiT or TorLiT structures with Bose-Einstein Condensate

based atom interferometer gyroscopes has already begun, and hopes to combine

the fast startup time of the OMG with the sensitivity and accuracy of the BEC

gyro via shared optical modes. Please look forward to future publications on the

topic from the OxideMEMS and Vengalattore groups.
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APPENDIX A

CORIOLIS FORCE DERIVATION

This is an appendix covering the derivation of the Coriolis Force, for which I

have borrowed heavily from [27]. Coriolis force is one of the so-called fictitious

forces, together with centrifugal force, and is derived from translational physics by

looking at them in a rotating frame of reference. From this point on we will use

the convention of notating a term that is defined from a rotating frame of reference

using ∗. Then, for any force as seen from an inertial frame of reference:

F = ma = ma∗ +mafic (A.1)

To derive the Coriolis force, we first look at how to define one point from both

a rotating and an inertial frame of reference. For some point P as shown in Fig.

A.1, we define a vector from the origin of the inertial frame of reference as r and a

vector from the origin of the rotating frame of reference as r∗. These two vectors

are then related by:

r = r∗ + h (A.2)

If O∗ rotates with time, r∗ will change (h will not since the origin stays in the

same point). Taking the derivative of each side of Eq. A.2 with respect to time,

O(â,b̂,ĉ)

r r*

h

P

O*(1,2,3)

Figure A.1: We start by defining a point in both inertial and rotating frames
of reference.
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we find:

dr

dt
=
dr∗

dt
+
dh

dt
=
d(r∗11̂ + r∗22̂ + r∗33̂)

dt
+
dh

dt
(A.3)

We simplify this equation for further manipulation by rewriting the terms of the

axes of O∗ with the generalized notation î.

dr

dt
=
dr∗i
dt

î + r∗i
d̂i

dt
+
dh

dt
(A.4)

Taking the derivative again, we arrive at:

d2r

dt2
=

d

dt

[
dr∗i
dt

î + r∗i
d̂i

dt

]
+
d2h

dt2
(A.5)

Expanding all terms:

d2r

dt2
=
d2r∗i
dt2

î + 2
dr∗i
dt

d̂i

dt
+ r∗i

d̂i

dt
+ r∗i

d2̂i

dt2
+
d2h

dt2
(A.6)

Here we have an equation describing the acceleration of a point as seen from both

inertial and rotating coordinate frames in terms of vectors from their origins. The

left-hand side of the equation describes the acceleration as seen from the inertial

frame of reference. The right-hand side terms can be explained as follows:

First The acceleration of the point as seen from the rotating coordinate frame.

Second The velocity of the point as seen from the rotating coordinate frame

times the velocity of the rotating coordinate frame as seen from the

inertial frame.

Third The position of the point as seen from the rotating frame times the

acceleration of the frame as seen from the inertial frame.

Fourth Any translational acceleration of the origin of the rotating frame itself.

Eq. A.6 describes the general case of relating the acceleration of a point in an

inertial versus a non-inertial frame of reference; we will now look at the particular

case where the non-inertial frame is rotating with some angular velocity ω.
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For some vector B at rest in O∗ and rotating with angular velocity ω in O, the

velocity of the vector as seen from the inertial frame is given by:

dB

dt
= ω ×B (A.7)

This makes intuitive sense: for a vector that is rotating such that its base does not

move and its tip describes a circle at some rate ω, we would describe the tangential

speed of the tip as the distance from the center times the angular velocity, pointing

in the direction defined by their cross product.

If we now take B to be the axes of O∗, we can define how O relates to O∗:

d̂i

dt
= ω × î (A.8)

Additionally, let use define ω = ωn̂. Then Eq. A.6 becomes:

d2r

dt2
=
d2r∗i
dt2

î + 2
dr∗i
dt

ω × î + r∗iω × (ω × î) + r∗i
dω

dt
n̂× î +

d2h

dt2
(A.9)

Assuming that the origin of O∗ is not moving and that there is no angular accel-

eration, we can drop the last two terms. Rewriting in terms of accelerations and

velocities, and multiplying through by the mass, we arrive at our force equation:

F = ma∗i î + 2mω × vîi +mω × (ω × r∗i î) (A.10)

In this case, F is the force as seen from the inertial frame, O. However, in the

case of gyroscopes, the observer is rotating with the mass; therefore it is more

illuminating to look at the force as seen from the rotating coordinate system.

ma∗i î = F− 2mω × vîi−mω × (ω × r∗i î) (A.11)

Now we finally see the Coriolis (2nd) and centrifugal (3rd) force terms that we

expect.
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APPENDIX B

OPTICAL SPRING EFFECT

This is an appendix covering the derivation of the optical spring effect. This

derivation is based heavily on the supplementary section provided by J. Rosenberg

in [13].

We begin this derivation by defining the rate of change of intracavity field for

a given optical cavity:

dap
dt

= (−i∆p −
Γtp
2

)ap − igOMxap + iγ|ap|2ap + i
√

ΓepAp (B.1)

It will be clearer for reference to explain each of these terms in a list:

ap The light field inside the cavity.

∆p The detuning between the frequency of the input light and the resonance

frequency of the optical cavity, defined as ∆p = ωp0 − ωp where ω0p is the

frequency of the optical resonance of interest and ωp is the frequency of

the input light.

Γtp The photon decay rate of the loaded cavity for optical resonance of interest.

gOM The optomechanical coupling factor, defined as dω0p/dx. This effectively

states how sensitive the optical resonance frequency is to mechanical dis-

placements, and will vary for different mechanical modes of resonance.

x The mechanical displacement of the cavity structure, a function of time.

γ A term describing the self-phase modulation introduced by the Kerr non-

linearity of silicon dioxide. Please see [13] for more information.√
Γep The photon escape rate of the external field (i.e. the escape rate from the

taper or waveguide).
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Ap The input field of the light wave, which is traveling in the taper or waveg-

uide.

For our derivation we will assume the opto-mechanical effect to be dominant, such

that the self-modulation due to the Kerr nonlinear effect can be ignored.

We now assume that the input light wave consists of a large constant field with

a small modulated signal on top, Ap = Ap0 + δAp(t). The intracavity field will

then likewise be given by ap = ap0 + δap(t), and the equation for the intracavity

field can be broken up into:

dap0
dt

= (−i∆p −
Γtp
2

)ap0 + i
√

ΓepAp0 (B.2a)

dδap
dt

= (−i∆p −
Γtp
2

)δap − igOMxap0 + i
√

ΓepδAp0 (B.2b)

Setting the left-hand side of Eq. B.2a equal to zero, we find a steady-state solution

for the non-time varying portion of the intracavity field:

ap0 =
i
√

ΓepAp0
Γtp

2
+ i∆p

(B.3)

Since a photodetector actually measures power, not the field intensity, let us

determine what the average power dropped into the cavity, Ppd, will be. We define:

Ppd = Γop|ap0|2 (B.4)

where |ap0|2 is the average intracavity energy and Γop is the intrinsic photon decay

rate of the optical mode (i.e. non-loaded). However, since we have no easy way

of measuring that power directly, we expand this equation to find the average

dropped power in terms of the average input power, Pp0 = |Ap0|2. Multiplying ap0

and a∗p0 we obtain:

Ppd =
ΓopPp0Γep

∆2
p +

(
Γtp

2

)2 (B.5)
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Looking at this equation, we can say, to the zeroth order, that the ratio of modu-

lated power to DC power dropped into the cavity is equal to the ratio of the input

modulated power to input DC power:

δPpd(t)

Ppd
=
δPp(t)

Pp0
(B.6)

where δPp = A∗p0δAp + Ap0δA
∗
p is the input modulated power.

Going back to Eq. B.2b, we can take the Fourier transform to find the modu-

lated intracavity field in the frequency domain. Using

F

[
dδap
dt

]
= (iΩ)δãp (B.7)

we derive

(iΩ)δãp =

(
−i∆p −

Γtp
2

)
δãp − igOMap0x̃+ i

√
ΓepδÃp (B.8)

Rearranging terms we gain the equation

δãp =
igOMap0x̃− i

√
ΓepδÃp

−i
(

∆p + Ω

)
− Γtp

2

(B.9)

In [13], there are some sign differences due to a different definition of the Fourier

transform being used. This is to make the physical phenomena of blue detuning

the laser with respect to the optical resonance lead to heating of the cavity, when

∆p is defined as ωp − ωp0. However, in our case, flipping the sign in the definition

of ∆p has allowed us to use the standard definition of the Fourier transform.

We now have an equation that describes the spectral response of the cavity

based on the spectrum of the input power and mechanical displacement of the

structure. To determine the displacement of the structure, we will first have to

take a look at the forces acting on the structure. For our device we will assume

that the dominant force acting on the structure is the optical gradient force. The
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optical gradient force, Fog, can be derived from the change in intracavity energy as

the coupling to the cavity changes, as in [28]. If we define the intracavity energy

to be Up = |ap0|2 = N~ωp, where N is the number of photons in the cavity, ~ is

the energy of each photon, and ωp is their energy, we find:

Fog = −dUp
dx

∣∣∣∣
k

= −d(N~ωp)
dx

∣∣∣∣
k

= −N~dωp
dx

∣∣∣∣
k

= − 1

ωp

dωp
dx

∣∣∣∣
k

Up = −gOMUp
ωp

(B.10)

Of course, we already know that there will be a portion of the intracavity field

that is modulated, and similarly, we can break the optical gradient force into DC

and modulated components: Fog = Fog0 + δFog(t), where we define:

Fog0 = −gOMUp0
ωp

, Up0 = |ap0|2 (B.11a)

δFog(t) = −gOMδUp
ωp

= −gOM
ωp

[
a∗p0δap(t) + ap0δa

∗
p(t)
]

(B.11b)

We define δUp(t) this way by assigning to it the time varying terms of the expansion

of (ap0 + δap)(a
∗
p0 + δa∗p). The small constant term δapδa

∗
p is ignored as negligible

in the definition of Up0.

We can now put Eq. B.9 into Eq. B.11b to find the modulated optical gradient

force in terms of the structure’s displacment, x̃. After much manipulation, this

results in:

δF̃og =
2g2

OM |ap0|2∆p

ωp


(

Γtp

2

)2

+ ∆2
p − Ω2 − iΓtpΩ[(

Γtp

2

)2

+ (∆p − Ω)2

] [(
Γtp

2

)2

+ (∆p + Ω)2

]
 x̃

+ i
gOM
ωp

√
Γep

[
a∗p0δÃp(Ω)

−i(∆p + Ω)− Γtp

2

+
ap0δÃ

∗
p(−Ω)

−i(∆p − Ω) + Γtp

2

] (B.12)

The first term of Eq. B.12 is the mechanical induced back-action, the second term

gives the direct input modulation of the force.
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We can describe the mechanical motion of the structure as:

d2x

dt2
+ Γm

dx

dt
+ Ω2

mx =
1

meff

(Fog + FT ) =
1

meff

(Fog0 + δFog + FT ) (B.13)

where Γm is the mechanical damping, Ωm is the mechanical resonance frequency,

and meff is the effective mass for the mechanical resonance mode under consider-

ation. FT refers to the thermal Langevin force responsible for brownian motion,

the correlation function of which is given by:

〈FT (t)FT (t+ τ)〉 = 2meffΓmkBTδ(τ) (B.14)

Returning to Eq. B.13, we can neglect all non-DC terms to find the static dis-

placement of the structure, which we can determine in terms of the power dropped

into the cavity using Eqns. B.11a and B.4.

x0 =
|Fog0|
meffΩ2

m

=
gOMUp0
kmωp

=
gOMPpd
kmωpΓop

(B.15)

where km = meffΩ
2
m is the mechanical spring constant. It is clear from this

equation that we can tune the static displacement using the average power dropped

into the cavity. This in turn can be used to tune the cavity optical resonance.

At this point, we will define some new terms to reduce the length of our equa-

tions. The first of these is fog(Ω)x̃, which we will define as the mechanically induced

backaction term of Eq. B.12:

fog(Ω)x̃ =
2g2

OM |ap0|2∆p

ωp


(

Γtp

2

)2

+ ∆2
p − Ω2 − iΓtpΩ[(

Γtp

2

)2

+ (∆p − Ω)2

] [(
Γtp

2

)2

+ (∆p + Ω)2

]
 x̃
(B.16)

Then we can look at Eq. B.13 in the frequency spectrum by taking the Fourier

transform of each term to get:

−Ω2x̃− iΓmΩx̃+ Ω2
mx̃ =

1

meff

(
δF̃og + F̃T

)
(B.17)
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If we define δF̃og = fog(Ω)x̃ + f̃input where f̃input is the direct input modulation

(second term of Eq. B.12), we can rearrange terms to arrive at:

x̃

(
Ω2
m − Ω2 − iΓmΩ− 1

meff

fog(Ω)

)
=
f̃input + F̃T

meff

(B.18)

We will lump all the frequency terms on the left-hand side of Eq. B.18 into one

term for ease of reference:

L(Ω) =

(
Ω2
m − Ω2 − iΓmΩ− 1

meff

fog(Ω)

)
(B.19)

So we now have:

x̃ =
F̃T + f̃input
meffL(Ω)

(B.20)

Eq. B.19 shows us clearly how the mechanically induced back-action term of

the optical gradient force creates an optical spring stiffening/softening effect: by

incorporating the real and imaginary terms of fog(Ω) with Ωm and Γm respectively

we find:

L(Ω) = (Ω′m)
2 − Ω2 − iΓ′mΩ (B.21)

What makes the optical spring effect truly interesting is that it leads not only

to spring stiffening/softening, but also modifies the mechanical damping of the

structure.

Let us now expand the F̃T term. We already defined the autocorrelation func-

tion in Eq. B.14, but we want to find the PSD of the thermal mechanical displace-

ment from that. We can use the relationship between the autocorrelation function

and the PSD of a function to find this. For the autocorrelation of a function f

given as Rx(τ), it’s PSD, Sx(Ω) is defined as:

F [Rx(τ)] = Sx(Ω) (B.22)

Then if we have Rx(τ) = 〈FT (t)FT (t+ τ)〉, the PSD of FT is given by:

Sx(Ω) =

∫ ∞
−∞

2meffΓmkBTδ(τ)e−2πiΩτdτ = 2meffΓmkBT (B.23)
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However, this is the PSD of the Langevin force, not the displacement. We find the

displacement PSD by shaping Eq. B.23 with the transfer function H(Ω) = 1
meffL(Ω)

as:

Sx(Ω) = |H(Ω)|2Sx(Ω) =
2ΓmkBT

meff |L(Ω)|2
(B.24)
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