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Summary. An interval extension of the recursive formulation for the likelihood function of the simplest Markov 
model of DNA evolution on unrooted phylogenetic trees with a fixed topology is used to obtain rigorous enclo­
sure(s) of the global maximum likelihood. Validated global maximizer(s) inside any compact set of the parameter 
space which is the set of all branch lengths of the tree are thus obtained. The algorithm is an adaptation of a 
widely applied global optimization method using interval analysis for the phylogenetic context. The method is 
applied to enclose the maximizer(s) and the global maximum for the simplest DNA model evolving on trees with 
2, 3, and 4 taxa. The method is also applicable to larger trees. 

1. INTRODUCTION 

When one is given a homologous set of distinct deoxyriobnucleic acid (DNA) sequences of length v from s 
species and asked for an estimate of their inter-relationships back throught time under some model of DNA 
evolution, a phylogenetic tree estimation problem arises. This problem is two-fold. First, one has to estimate 
the shape or topology of the tree, which captures the set of "who is related to whom and in what order? 
and whose ancestors are related to whose and in what order?" questions. Second, one has to estimate the 
lengths of the branches when given a particular topology. The branch lengths of a tree usually represent 
a scaled product of mutation rate and number of generations between the nodes. The 8 extant species are 
represented by the external nodes or leaves and their ancestors are represented by the internal nodes of the 
tree. A rooted tree always has a bifurcation at the root, typically the most recent common ancestor of all 
8 leaves, where as, an unrooted tree has m-furcations at all internal nodes with m ~ 3. This work focusses 
on the second problem, namely, estimating the branch lenghts for a given topology in a maximum likelihood 
framework. 

When statistical inference is conducted in a maximum likelihood framework, one is interested in the 
global maximum of the likelihood function over the parameter space. Explicit analytical solutions for the 
maximum likelihood estimates of the branch lengths for a specified unrooted topology with more than 2 
leaves are not available even for the simplest model of DNA evolution due to Jukes and Cantor (1969) 
without assuming a molecular clock. See 5.(b) of Yang (2000) for results on clocked 3-leaved rooted trees. 
Results are known for models with two character states superimposed on 3-leaved trees (Yang, 2000), as well 
as for specific observations on 4-leaved trees (Chor, 2000). In practice one settles for a local optimization 
algorithm to numerically approximate the global solution. 

However, statistical inference procedures that rely on having found some global optimum through any 
numerical approach may suffer from at least five major sources of errors. They are undirected rounding and 
catastrophic cancellation (Cuyt et al., 2001; Loh and Walster, 2002), discretization of a problem originally 
posed in the continuum, conversion from the decimal format to a non-decimal floating-point format, ill-posed 
statistical experiment or model (unknown nonidentifiable parameter subspaces, for example), and finite pre­
cision in measurement of relevant empirical observations. Furthermore, traditional nonlinear programming 
techniques that use local information, such as, clustering methods, generalized ascent methods, and other 
stochastic search methods, including MCMC and simulated annealing, start from some approximate trial 
point(s) and iterate by sampling only finitely many points. Therefore, they can neither validate that the 
objective function has not soared between the sampled points, nor guarantee escape from a local maximum, 
albeit they can be made to increase the probability of such desired events. Methods that use local informa­
tion at finitely many points and do not account for all five major sources of errors, cannot be expected to 
yield anything more than a possible, approximate, and local solution. 
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Controversy exists over the nonrigorous nature of such a numerically-based statistical inference procedure, 
especially in parameter-rich models that have not been shown to be identifiable and/or are adorned with 
multiple local optima. In some problems, a local approximate solution may be sufficient, but in others one 
may base statistical decisions that address a real biological problem on an incorrect solution. Unfortunately, 
it currently seems impossible to know this difference apriori. This paper shows an existing method toward 
such knowledge and applies it to enclose the maximum likelihood value as well as the estimate of the most 
likely unrooted multifurcating four taxa tree for any given data set of four homologous DNA sequences that 
are assumed to evolve according to the Jukes and Cantor model (Jukes and Cantor, 1969). 

The global optimization method sketched below rigorously encloses the global maximum of the likelihood 
function through interval analysis. Such interval methods evaluate the likelihood function over a continuum of 
points including those that are not machine-representable and account for the five sources of errors described 
earlier. Thus, in contrast to local search methods, interval methods can enclose the global optimum with 
guaranteed accuracy by exhaustive search within any compact set of the parameter space. However, interval 
methods applied to phylogenetic inference are much slower on currently available hardware optimized for 
floating-point operations. 

Section 2 contains a brief introduction to various enclosure arithmetics. For a recent introduction to such 
arithmetics see (Kulisch et al., 2001). Section 3 describes a problem that arises in phylogenetic inference 
through maximum likelihood. Section 4 gives the basic global optimization algorithm based on Hansen's 
method (Hansen, 1980, 1992) with Ratz's modifications (Ratz, 1992) as implemented in Hammer et al. (1995) 
with further extensions that account for non-stationary maxima at the boundaries and increase computational 
efficiency. Assuming the simplest model of DNA evolution, the method is applied in section 5 to rigorously 
estimate trees, with two, three, and four leaves, based on primate mitochondrial DNA sequences (Brown 
et al., 1982). 

2. PRELIMINARIES 

2. 1. Interval arithmetic 
Lower case letters denote real numbers, e.g. x E lR, the set of real numbers. Upper case letters represent 
bounded and closed (compact) real intervals, e.g. X = [~, x] = [inf(X), sup( X)]. Any compact interval 
X E ][]~ := {[a, b] : a ~ b, a, b E 1~.}, the set of all compact real intervals. The diameter and the midpoint 
of X are d(X) := x- !!i. and m(X) := (~ + x)/2, respectively. The smallest and largest absolute value of an 
interval X are real numbers given by (X) := min{lxl : x EX} = min{l~l, lxl} and lXI := max{ixl : x EX} = 
max{l!!i.l, lxl}, respectively, while the absolute value of an interval X is lXI[ 1 := {lxl : x E X} = [(X), lXI]. 
The relative diameter of an interval X, denoted by drel is the diameter d(X) itself if 0 E X, and d(X) /(X), 
otherwise. An interval X with zero diameter is called a thin interval with ~ = x = x. The hull of two 
intervals is X!J.Y := [min{;[,y},min{x,y}]. By the notation X @ Y, it is meant that X is completely 
contained in Y, i.e., !!i. > y and x < y. No notational distinction is made between a real number x E IR 
and a real vector x = (x;,-: · · , Xn)T E !Rn and between a real interval X and a real interval vector or box 
X = (X1 , · · · , Xn)T E ][JRn, i.e. X; = ~' x;] = [inf(X;), sup( X;)] E JrlR, where, i = 1, · · · , n. The dimension 
n should be clear from the context. For an interval vector X, the diameter, relative diameter, midpoint, 
and hull operations are defined component-wise to yield vectors, while the maximum over its components 
is taken to obtain the maximal diameter and the maximal relative diameter, d00 (X) = m!lX d(X;) and 

1::;.::;n 
drel 00 (X) = max dret(X;), respectively. 

' l<i<n 

It can be s;e~ that ][JR under the metric~' given by ~(X, Y) :=max{ I~- yi, lx- ?JI}, is a complete metric 
space. Convergence of a sequence of intervals {X(i)} to an interval X und;r the metric ~ is equivalent to 
the sequence ~(X(i), X) approaching 0 as i approaches oo, which in turn is equivalent to both ~(i) -t ~and 
x(il -t x. Contuinity and differentiability of a function f: ][JRn -t ][JRk are defined in the usual way. 

A real arithmetic operation x o y, where o E { +, -, ·, /} and x, y E lR, is a continuous function x o y := 
o(x,y) : IR x IR -t lR, except when y = 0 under/ operation. An interval arithmetic operation X o Y := 
{x o y : x E X,y E Y} thus yields the set that contains the result of the operation done for every real 
pair ( x, y) E (X, Y). This definition of interval operation leads to the property of inclusion isotony which 
stipulates that X o Y contain VoW provided V ~X and W ~ Y. Since X andY are simply connected 
compact intervals, so is their product X x Y. On such a domain X x Y, the continuity of o(x,y) (except 
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when o = I and 0 E Y) ensures the attainment of a minimum, a maximum and all intermediate values. In 
other words, with the exception of the case when o = I and 0 E Y, the range X o Y has an interval form 
[min ( x o y) , max ( x o y)], where the min and max are taken over all pairs ( x, y) E X x Y. The particular 
forms of X o Y for the elementary operations are, 

X + Y = ~ + .1!.• x + y], 

X- Y = [~-y,x-u], and 

X· Y = [min{~,;g},XJL,XY},max{~Ji.,~Y,XJi.,XY}], 
X/Y = X · [1/y, 1/Ji.], 0 ¢ Y. 

The identity elements of + and · are the thin intervals [0, OJ and [1,1], respectively. Multiplicative and 
additive inverses do not exist except when X is also thin, since [0, 0] ~ X -X, and [1, 1] ~ X I X. Although 
the commutative and associative laws are satisfied by + and · , only a weaker notion of distributivity called 
subdistributivity, i.e., X· (Y + Z) ~ (X· Y) +(X· Z), is satisfied. 

For any real function f(x) : JRn -+ lR and some box X E liJRn, let the range off over X be denoted 
by f(X) := {f(x) : x E X}. Inclusion isotony also holds for interval evaluations that are compositions of 
arithmetic expressions and the elementary functions. When real variables and operations in f are replaced 
by their interval counterparts one obtains F(X) : lR -+ lR, the natural interval extension of f. Guaranteed 
enclosures of the range f(X) are obtained by F(X), since inclusion isotony holds for F, i.e, if X~ Y, then 
F(X) ~ F(Y), and in particular, the inclusion property that x EX =? f(x) E F(X) holds. The natural 
interval extension F(X) often overestimates f(X), but can be shown under mild conditions to linearly 
approach the range as the maximal diameter of the box X goes to zero, i.e., ~(F(X), f(X)) ::::; a· d00 (X) for 
some a 2: 0. This implies that a partition of X into smaller boxes { X1, · · · , X m}, as done in section 4, gives 
better enclosures of f(X) through the union U~1 F(Xi). Let \lF(x) and \j2F(x) represent the interval 
extensions of \j f(x) and \j2 f(x), the gradient and Hessian of f. A better enclosure of f(X) is possible for 
an f with the centered form, 

f(x) =/(c)+ Vf(b) · (x- c) E /(c)+ \1 f(X) · (x- c)~ Fc(X) :=/(c)+ VF(X) ·(X- c), 

where, b, c, x E X with b between c and x. Fc(X) is the interval extension of the centered form of f 
with center c and decays quadratically to f(X) as the maximal diameter of X -+ 0. Finally, some interval 
extensions of f are better than others. Recall the implications of subdistributivity of interval arithmetic, for 
instance. 

2.2. Differentiation Arithmetic 
When it becomes too cumbersome or impossible to explicitly compute the derivative of a function f : JRn -+ lR, 
or when f itself is only available as an algorithm, one may employ a differentiation arithmetic, often known 
as automatic differentiation (see for e.g. Griewank. and Corliss (1991)) to obtain any \Jk f, the kth-order 
derivative of f. This approach circumvents the computation of a formal expression for f by defining a 
differentiation arithmetic on the ordered k-tuples (f(x), \J f(x), \72 f(x), · · · , \Jk f(x)) (Berz, 1991). A brief 
sketch of such an arithmetic is given for the case when k = 2 as it will be used in section 4. 

Consider a twice-continuously differentiable function f : JRn -+ lR with the gradient vector and Hessian 
matrix given by \7 f(x) := (8f(x)l8xt, .. · , 8f(x)l8xn)T E JR1l, and 'V2 f(x) := ((82 f(x)l8xi8Xj))i,j={l, ... ,n} E 
JRnxn,respectively. Forevery,J(x): JRn-+ lR, consideritscorrespondingorderedtriple(f(x), 'Vf(x), \j2 f(x)). 
The ordered triples corresponding to a constant function, c(x) = c : JRn -+ lR, and a component identifying 
function (or variable), Ij(x) = Xj: JRn-+ lR, are (c, 0, 0) and (xj, e<il, 0), respectively, where, e<il is the 
j-th unit vector and the O's are additive identities in their appropriate spaces. To perform an elementary 
operation o E { +, -,·,I} with a pair of such triples to obtain another, the rules of calculus apply as follows: 

(h(x), vh(x), V 2h(x)) := (f(x), vf(x), \12 /(x)) 0 (g(x), vg(x), V 2g(x)) 

= (f(x) o g(x), \1 f(x) o \lg(x), \7 2 f(x) o V 2g(x) ), if o E { +,-} 
= ( f(x). g(x), f(x). \lg(x) + g(x). vf(x), 

g(x) · \l2 f(x) + \lf(x) · \lg(x)T + \lg(x) · \lf(x)T + f(x) · \7 2g(x)), if o = · 
= ( f(x)fg(x), 1/g(x). {v f(x)- h(x). vg(x)}, 

1/g(x) · {\12 f(x) · \lh(x) · \lh(x)T- \lg(x) · \lh(x)T- h(x) · \7 2 h(x)}, if 0 = /, g(x) # 0 

The arithmetic for composition of functions, such as, h(x) = r(f(x)) : lR -+ lR, with the first and second 
derivative of r given by r' and r", on their corresponding triples, given by, 

(h(x), \lh(x), \72h(x)) = (r{f(x)), r'(f(x)) · \lf(x), r"(f(x)) · \lf(x) · \lf(x)T + r'{f(x)) · \1 2 /(x) ), 
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yields the triples for the elementary functions, exp(x) and ln(x), which are used to compute the likelihood 
in section 3. 

For dyadic reasons, the differentiation arithmetic has been explained above only in terms of reals. By 
replacing the real x's above by interval X's and performing all operations in the real interval arithmetic with 
the interval extension F of I, as discussed in section 2.1, one can rigorously enclose the components of the 
interval triple (F(X), \]F(X), \]2F(X)) through interval differentiation arithmetic, such that, for every 
x EX E ][JRn, l(x) E F(X) E ][IR, \ll(x) E \]F(X) E ][JRn, and \J2 I(x) E \]2F(X) E ][JRnxn. 

2.3. Extended interval Newton method 
By including two ideal points +oo and -oo to lR, it becomes possible to extend interval arithmetic to 
J[JR* := ][JR U {( -oo, x] : x E IR} U {[~, +oo) : ~ E IR} U ( -oo, +oo), the set of intervals with end points in 
the complete lattice IR* := lR U { +oo} U { -oo }, with respect to the ordering relation :5. Since, division is 
the inverse operation of multiplication, obtaining any xfy E XJY := {xfy : x E X, y E Y} is equivalent to 
solving the equation y · 8 = x for 8, i.e., X/Y := {8: y · 8 = x,x E X,y E Y}. Let []denote the empty 
interval. With the following rules, division by intervals containing 0 becomes possible. 

X/Y:= 

(-oo, +oo) 

[ l 
[x/1l_,+oo) 
[~17.+oo) 
(-oo,x/77] 
(-oo,~/1l.l 

(-oo,x/17] u [x/1l_,+oo) 
( -oo, ~/1l.l U [~/17, +oo) 

ifO EX, or Y = [0,0] 

ifO ¢X, andY= [0,0] 

if x ~ 0, and 17 = 0 

ifO~~. and0=1!.<17 
if x ~ 0, and 0 = 1l < 17 
if 0 ~ ~. and 1l. < 17 = 0 
if x ~ 0, and [0, 0] tS Y 

if 0 ~ ~. and [0, OJ tS Y 

When X is a thin interval with x = ~ = x and Y has +oo or -oo as one of its bounds, then extended 
interval subtraction is also necessary for the following interval Newton algorithm, and is defined as follows, 

{
(-oo,+oo) ifY = (-oo,+oo) 

[~,x]-Y:= (-oo,x-1l_] ifY=(J[,+oo) 
[x-17,+oo) ifY=(-oo,17] 

The analog of the Newton method that approximates a zero of a continuously differentiable scalar-valued 
real function I is the extended interval Newton method that encloses all the zeros ofF, an interval extension 
of I, in any given interval X. The method sketched below uses the extended interval arithmetic described 
above and is a variant of the method based on Hansen and Sengupta (1981) with Ratz's modifications 
(Ratz, 1992) as implemented in Hammer et al. (1995). Due to the mean value theorem, l(m(X))- l(x*) = 
\] l(c) ·(m(X) -x*), for some c,x* EX. Interest in the solution x*, such that, l(x*) = 0, yields the following 
relations. 

f(m(X)) = \1 f(c) · (m(X)- x*) 

x• = m(X)- ( \J f(c) )- 1 · f(m(X)), provided V '1 f(c) is invertible 

E m(X)- (Vf(X) )- 1 • f(m(X)) 

f; m(X)- ( VF(X) )-1 · F(m(X)) =: .N(X) 

f; .N(X) nx 

An iteration scheme X(i+l} := N(X(j}) n X(i}, where j = 0, 1, · · · , and X(o} := X, will enclose the zeros 
of I contained in the interval X. To relax the assumption that every matrix in \] F(X) be invertible, the 
inverse of the midpoint of \]F(X), i.e., (m(\]F(X)))- 1 =: p E !Rnxn, is used as a matrix preconditioner. 
The extended interval Gauss-Seidel iteration is used to solve the preconditioned interval linear equation, 

p · f(m(X)) = p · Vf(X) · (m(X)- x*) 
a = G · (c- x• ), where, a E A := p · F(m(X)), G := p · '1 f(X), and, c := m(X). 
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Thus, the solution setS:= {x EX: g · (c- x) =a, Vg E G} of the interval linear equation a= G · (c- x) 
has the component-wise solution set si ={xi E ~Y:i: z::;=l (gi,j. (cj- Xj)) = ai, \fg E G}, ViE {1, ... ,n}. 
Now, set Y =X, and solve the ith equation for the ith variable, iteratively for each i, as follows: 

Yi = Ci - ~ (ai + t ( Yi,j · (Yi - Cj) )) E (Ci - ;.. (Ai + t ( Gi,j · (Yj - Cj) )) ) n Yi 
g.. j=l,j#i " j=l,j#i 

The interval vector(s) Y obtained at the end of such an iteration is the set, N(X), resulting from one 
extended interval Newton Gauss-Seidel step, such that, S ~ N(X) ~X. Every 0 off that lies in X also 
lies in N(X). If N(X) =[],the empty interval, then f has no solution in X. If N(X) <EX, then f has a 
unique solution in X. For proofs of the above three statements see Hansen (1992). 

Note that when X contains two or more roots off, the enclosure of its derivative \jF(X), computed by 
differentiation arithmetic of section 2.2, will contain at least one zero, since it is the superset of all slopes 
of tangents to f(x) over the interval X. Thus, one may obtain disjoint finite intervals subsequent to the 
Newton operator N(X) over X, that is obtained through extended interval arithmetic, being intersected 
with the finite interval X. In such cases, the iteration is applied to each resulting sub-intervaL See Kulisch 
(2001) for a geometric interpretation of the interval Newton method. 

2.4. Machine interval arithmetic 
All interval arithmetic was done above with real intervals. However, there are only finitely many floating­
point numbers available on a computing machine. Let R be this set of floating-point numbers. A machine 
interval is a real interval with floating-point bounds. Thus, on a computer, one works with l!R := {X E 
l!R: g;_,x E R}, the set of all machine intervals. Inspite of the finiteness of ll'R., the strength of interval 
arithmetic lies in a machine interval X being able to eclose the entire continuum of reals between its machine­
representable boundaries. Through rounding controlled floating-point arithmetic provided by the IEEE 
arithmetic standard, operations with real intervals can be tightly enclosed by the rounding directed operations 
with the smallest machine intervals containing them. See Kulisch (2001) for a recent description of machine 
interval arithmetic. The errors resulting from converting a decimal number, usually a constant or input data, 
which in general does not have a finite binary representation, to a binary floating-point number is controlled 
by passing the decimal numbers as strings and then converting it to the floating-point number by proper 
rounding. The program is written in C++ using the C-XSC class libraries. The differentiation arithmetic 
of section 2.2 is implemented using the hess.ari module provided in Hammer et al. (1995). 

3. A PHYLOGENETIC PROBLEM 

Let D denote a homologous set of distinct DNA sequences of length v from s species. The objective of this 
paper is to find the maximum likelihood estimates of branch lengths for the best tree under a particular 
topology. Recall that the branch lengths usually represent a scaled product of mutation rate and number of 
generations. Let b denote the number of branches and n denote the number of nodes of a tree with topology 
r. For an s-leaved unrooted tree of a given topology, there are at most 2s- 3 branches, i.e., b:::; 2s- 3. Since 
the number of topologies for multifurcating unrooted trees grows as a fai::torial of the number of leaves, it 
is difficult to exhaustively search through all possible topologies to find the most likely tree even when the 
number of leaves is reasonably small. For example, there are 12,818,912 topologies when s = 10. See chapter 
3 of Felsenstein (2003) to appreciate this problem. However, one can find the most likely tree among a small 
set of specified topologies, by first computing the most likely tree under each topology of interest and then 
choosing the tree with the highest likelihood. 

Thus, for a given unrooted topology T with s leaves and b branches, the unknown parameter () = 
( ()1 , · · · , ()b ) is the real vector of branch lengths in the positive orthant, where each positive branch length 
Bq E [()0 , R] -t ll4, as ()0 -t 0 and R -t oo. An explicit model of DNA evolution is needed to construct 
the likelihood function which gives the probability of observing data D as a function of the parameter (). 
The simplest such continuous time Markov chain model ( J C69) on the state space S : = {A, G, C, T} is due 
to Jukes and Cantor (1969) with the rate of mutation between nucleotides i and j given by Qi,J = 1/3, if 
i-:/= j, and -1, otherwise. Its stationary distribution 1r = (1/4, 1/4,1/4, 1/4), and Pi,j(t), the probability 
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of transition from ito j in timet is, 1/4 + 3/4exp(-4t/3) if i = j, and 1/4 -1/4exp(-4t/3), otherwise. 
Felsenstein's algorithm (Felsenstcin, 1981) to compute £(k)(B), the likelihood at site k E {1,·· · ,v}, is the 
following postorder traversal: 

(a) Associate with each node q E {1, · · · , n} a real vector lq := (£:, lf, f!/, .e'f) E r, and let the length of 
the branch leading to its ancestor be Oq. 

(b) For a leaf node q with nucleotide i, set l~ = 1 and£~ = 0 for all j =1- i. For any internal node q, set 
lq := (1, 1, 1, 1). 

(c) For an internal node q with descendants s1. s2 , · • • , Sm, 

e-q- { nit • p,. . (() ) . ojo • n. . (9 ) . 
.(,:81 ,,Jt 81 .(..82 .r~,J2 82 • f_im • p, . (9 ) } 

Sm. t,]m. Bm 

(d) Compute lq for each sub-terminal node q, then those of their ancestors recursively to finally compute 
lr for the root node r and obtain f_(k) (0) = .E;es (1r; -£~) for each site k. 

Assuming independence across sites one obtains the likelihood function for the entire sequence by multiplying 
the site-specific likelihoods together. The problem of finding the global maximum of this likelihood function 
is equivalent to finding the global minimum of l(O), the negative of the natural logarithm of the likelihood 
function given by, 

11 

l(9) =- ~::)n£(k}(()). 
k=1 

l(8) is of interest because algorithms in the optimization literature are usually addressed in terms of min­
imization. Replacing (), a positive real vector of branch lengths, in the above algorithm by a positive real 
interval vector or box e and all real operations by their interval counterparts, yields L( e), the natural inter­
val extension of the negative log likelihood function l(8) over e. Since \JL(B) and '\12 L(e), the enclosures of 
the gradient and the Hessian of l(9) over e, respectively, are needed in Section 4, one may use the constant 
triples, (C,O,O), variable triples, (e3,e<i),O), appropriate triples for the elementary functions, expand ln, 
and perform all operations in the interval differentiation arithmetic of Section 2.2, in order to obtain the 
negative log likelihood triple (L(e), \JL(e), \J2L(e) ). 

4. GLOBAL OPTIMIZATION 

4. 1. Branch-and-bound 
The most basic strategy in global optimization through enclosure methods is to employ rigorous branch­
and-bound techniques. Such techniques recursively partition (branch) the original compact space of interest 
into compact subspaces and discard (bound) those subspaces that are guaranteed to not contain the global 
optimizer(s). For the real scalar-valued multi-dimensional objective function l(O), the interval branch-and­
bound technique can be applied to its natural interval extension £(6) to obtain an interval enclosure L* of 
the global minimum value l* as well as the set of minimizer(s) to a specified accuracy f. Note that this set 
of minimizer(s) of L(9) is the set of maximizer(s) of the likelihood function for the observed data D. The 
strength of such methods arises from the algorithmic ability to discard large sub-boxes from the original 
search region, 

e <o> - ( e<o> . . . e<o> ) ·- ( [9 co> -o co>] . . . [9 co> 8 co>]) c ll!Rb - 1 , , b .- -1 , 1 , , -b , b , 

that are not candidates for global minimizer(s). Four tests that help discard sub-regions are described below. 
Let .C denote a list of ordered pairs of the form ( eCi} ,L.ec•> ), where, B(i) ~ eCo), and L.ec•> :=min ( L(eCi))) 
is a lower bound for the range of the negative log likelihood function l over eCi). Let l be an upper bound 
for l* and vL(eCi))k denote the k-th interval of the gradient box \JL(eCi)). If no information is available 
for i, then i = oo. 

(a) Midpoint Cut-off test: The basic idea of the midpoint cut-off test is to discard sub-boxes of the search 
space eCo) with the lower bound for their range enclosures above i, the current best estimate of an upper 
bound for l*. Figure 1 shows a multi-modall as a function of a scalar valued 9 over e<0> = uf=1 eCi). 
For this illustrative example, l is set as the upper bound of the range enclosure of l over the smallest 
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~~----~------~----~------~-----+------+------+------+-----~~ 9 

9{2) e<•> e<a> 

Fig. 1. Midpoint Cv.t-ojj test 

machine interval containing the midpoint of 6(8)' the interval with the smallest lower bound of its 
range enclosure. The midpoint cut-off test would discard the intervals 6C1l, 6C2l, 6(5), 6(6), 6C7l, and 
6(9) corresponding to the shaded boxes as the lower bound of their range enclosures is strictly above 
the current best estimate for an upper bound of l*. 

• Given a list .C and l 
• Choose an element j of£, such that, j = argminld.e<•>, since 6Cil is likely to contain a minimizer. 

i 

• Find its midpoint c = m(6Cil) and let C be the smallest machine interval containing c. 

• Compute a possibly improved l =min {l,Lc}, where, Lc := max(L(C)) 

• Discard any i-th element of .C for which ld.e<•> > l ~ l* 
(b) M onotonicity test: For a continuously differentiable function l ( fJ), the monotonicity test determines 

whether l(fJ) is strictly monotone over an entire sub-box 6(i) c 6(0). If l is strictly monotone over 
6(i}, then a global minimizer cannot lie in the interior of 6(il. Therefore, 6Cil can only contain 
a global minimizer as a boundary point if this point also lies in the boundary of 6(o). Figure 2 
illustrates the monotonicity test for the one-dimensional case. In this example the search space of 
interest, 6C0l = [~(o), 0(0)] = uy=1 6(i), can be reduced considerably. One may delete 6(2), 6<3l, 6C5l, 
6(7}, and 6(8) since l(fJ) is monotone over them and they belong to the interior of 6(o). Since l(fJ) is 
monotonically increaSing over 6(9) one can also deleted it since we are only interested in minimization. 
6(1) may be pruned to its left boundary point fJC1l = ~(o) due to the strictly decreasing nature of l(fJ) 
over it. Thus, the monotonicity test has pruned 6(0) to the smaller candidate set { ~(o), 6C4l, 6C6l} for 
a global minimizer. 

• Given 6(0), 6(i), and 'V L(6Cil) 

• Iterate fork= 1, · · · , b 

- If 0 E "VL(6Ci))k, then leave 6~i) unchanged, as it may contain a stationary point of l. 
- Otherwise, 0 f. "VL(6Cil)k· This implies that 6(i) can be pruned, since l* f. 6(i) except 

possibly at the boundary points, as follows: 

(i) if min(" L(6Cil) ) > 0 and fJ (o) = fJ (i) then 6(i) = [0 (i) fJ (i)] 
v k -k -k ' k -k '-k ' 
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I 1(8) 

~------~----~~----~------~----~------~-----+------+------+~ 8 

6 c2> 6 ca> 6 c4> 6 cs> 6 cB> eCS) 

Fig. 2. M onotonicity test 

(ii) Else ifmax(\7L(0(il)k) < 0 and 0~0) = (J~il, then 0~i) = [B~il,(J~il]. 
(iii) Else, delete the i-th element of£ and stop the iteration. 

(c) Concavity test: Given 0(i) (S 0(0l, and the diagonal elements (\72 L(0(il))kk of \72L(0(il), note 
that if min (( \72 L(0(il) )kk) < 0 for some k, then, \72 L(0(il) cannot be positive semidefinite, and 
therefore l(B) cannot be convex over 0(i) and thus cannot contain a minimum in its interior. In the 
one-dimensional example shown in Figure 2, an application of the concavity test to the candidate set 
{ ~(o), 0(4), 0(6) } for a global minimizer returned by the monotonocity test, would result in the deletion 
of 0(4) due to the concavity of l(B) over it. 

• Given 0(il (S 0(0l and \72 L(0Cil) 

• If min (( \72 L(0(i)) )kk) < 0 for any k E {1, · · ·, b}, then delete the i-th element of£. 

(d) Interval Newton test: Given 0(il (S 0(0l, and \7L(0(il), attempt to solve the system, \7L(B) = 0, in 
terms of(} E 0(i). 

• Apply one extended interval Newton Gauss-Seidel step of Section 2.3 to the linear interval equa­
tion a = G · (c- B), where, a := p · L(m(0(il)), G .- p · \72 L(0(il), c := m(0(il), and 
p := (m(\72F(X)))-I, in order to obtain N'(0(il). 

• One of the following can happen, 

(i) If N'(8(i)) is empty, then discard 0(il. 
(ii) If N'(0(il) (S 0(il, then replace 0Cil by the contraction N'(e(il) n 0(il. 

(iii) If 0 E Gii' and the extended interval division splits 0Ji) into a non-empty union of 0Ji),l and 

0]i),2 ' then the iteration is continued on 0y),l' while 0Y)'2 ' if non-empty, is stored in £ for 
future processing. Thus, one extended interval Newton Gauss-Seidel step can add at most 
b + 1 sub-boxes to £. 

4.2. Verification 
Given a collection of sub-boxes, { 0(1), · · · , 0(n) }, each of width :::; €, that could not be discarded by the 
tests in Section 4.1, one can attempt to verify the existence and uniqueness of a local minimizer within each 
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sub-box O(i) by checking whether the conditions of the following two theorems are satisfied. For proof of 
these two theorems see Hansen {1992) and P..atz {1992}. 

(a) If N'(0(i)) <E G(i), then there exists a unique stationary point of L, i.e., a unique zero of \j L exists in 
0 ci>. 

(b) If (I+~· (V2 L(G(i)))) · Z <E Z, where (\72 L(G(i)))d,oo::; K- E lR, for some Z E llffi.n, then, the spectral 
radius p(s) < 1 for all s E (I-*· (\72 L(G(i))) ), and all symmetric matrices in \j2 L(0(i)) are positive 
definite. 

If the conditions of the above two theorems are satisfied by some eCi), then a unique stationary point 
exists in G(i) and this stationary point is a local minimizer. Therefore, if exactly one candiate sub-box 
for minimizer(s) remained after pruning the search box eCo) with the tests in Section 4.1, and if this sub­
box satisfies the above two conditions for the existence of a unique local minimizer within it, then one has 
rigorously enclosed the global minimizer in the search interval. On the other hand, if there are two or 
more sub-boxes in our candidate list for minimizer(s) that satisfy the above two conditions, then one may 
conclude that each sub-box contains a candidate for a global minimizer which may not necessarily be unique 
(disconnected sub-boxes, for example). Observe that failure to verify the uniqueness of a local minimizer 
in a sub-box can occur if it contains two or more points or even a continuum of points that are stationary 
(nonidentifiable manifolds in the sub-box, for example). 

4.3. Algorithm 
• Initialization: 

(a) Let the search region be a single box eCo) or a collection of not necessarily connected, but pair-wise 
disjoint boxes, G(i), i E {1, · · · , r }. 

(b) Initialize the list .C which may just contain one element ( eCo), 1e<o> ) or several elements 

{ ( e(l> ,16 <1> }, ( 0(2) ,16 <2> }, · · · , ( eCr} ,Le<~>) }. 

(c) Let~: be a specified tolerance. 
(d) Let max.c be the maximal length allowed for list .C. 
(e) Set the noninformative lower bound for l*, i.e., l = oo 

• Iteration: 

(a) (i) Improve l = min{l, max(L(m(eU>))) }, where j = argmin{Le<•>l· 
i 

(ii) Perform the midpoint cut-off test to .C. 
(iii} Set L* = [Le<n,l]. 

(b) Bisect 0(j) along its longest side k, i.e., d(0~)) = d~(eU>), to obtain sub-boxes eU.), q E {1, 2}. 
(c) For each sub-box eU.>, evaluate its triple ( L(GU•>), \jL(eU.>), \72 L(0Ci•)) ), and do the follow­

ing: 

(i) 
(ii} 

Perform monotonicity test to possibly discard eU.>. 
Centered form cut-off test: 
Improve the range enclosure of L(0U•>) by replacing it with its centered form Lc(GU•>), 

and then discarding eU.>, iff< Leu.>. 
(iii) Perform concavity test to possibly discard eU.>. 
(iv) Apply an extended interval Newton Gauss-Seidel step to eU.>, in order to either entirely 

discard it or shrink it into v sub-sub-boxes, where vis at most 2s- 2. 
(v) For each one of these sub-sub-boxes eU.,u), u E {1, · · · , v} 
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Fig. 3. For a pair of homologous sequences of 600 nucleotides out of which 280 sites are polymorphic, the non identifi­
able subspace of minimizers l'h + 82 = ~ log ( 45 /17) = 0. 730087 of the negative log likelihood function under the JC69 
model evolving on a rooted two-leaved tree is enclosed by a union of upto 30,000 boxes. The larger grey, and smaller 
black boxes have tolerances of " = 1.0 x 10-4 and " = 1.0 x 10-6 , respectively. The 10 pairs of colored circles are the 
initial and final points of 1 0 BFGS searches with random initializations. 

A. Perform monotonicity test to possibly discard e(j.,,.J. 
B. Try to disc;u-d e(j.,,.J by applying the centered form cut-off test in cii to it. 
C. Append ( eu .... l ,L.9 ci .... >) to .C if e<i .... l could not be discarded by steps c(v)A and c(v)B. 

• Termination: 

(a) Terminate iteration if drel,oo(eUl) < f, or drel,oo(L*) < f, or .Cis empty, or Length(.C) > max.c 
(b) Verify uniqueness of minimizer(s) in the final list .C by applying algorithm of section 4.2 to each 

of its elements. 

5. APPLICATIONS 

5. 1. Enclosing nonidentifiable subspaces 

For time reversible Markov chains, such as JC69, evolving on a rooted tree, only the sum of the branch 
lengths emanating from the root is identifiable. Identifiability is a prerequisite for statistical consistency 
of estimators. To demonstrate the ability of interval methods, unlike the local search methods, to enclose 
the nonidentifiable ridge along 81 + 82, in the simplest case of a 2-leaved tree, a nonidentifiable negative log 
likelihood function l ( 8) is formulated and its global minimizers along 81 + 82 = ! log ( 45 /17) = 0. 730087 are 
enclosed as shown in Figure 3 for a fictitious dataset for which 280 out of 600 sites were polymorphic. Observe 
that the basin of attraction for each point on (h + 82 = 0. 730087 under the BFGS local search algorithm 
is the line running orthogonal to it. This trivial example is only chosen for pedantic reasons. Enclosing 
possibly nonidentifiable submanifolds, that may not even be simply connected, within any compact subset 
of higher dimensional parameter spaces, may be accomplished, at least partly, by studying the rates of decay 
of the hyper-volume of the union of all pending boxes as the algorithm progresses, for instance. 
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Table 1. Enclosures of the Maximum log likelihood and their corresponding parameter estimates 
for 3 taxa tree relating Chimpanzee, Gorilla, and Orangutan. 

Tree e<o) 8* ::>f)* -L(El*) ::> -l(O*) 

star (1.0 X 10-ll, 1.0 X 109]18) 3 5.98162213845 X 10-2 

5.41674167945 X 10-2 

,~'@ 
0.25 

1.3299089685~ X 10-l -2.150318065856~ X 103 

0.133 

0.132 

Fig. 4. Progress of the algorithm as it prunes [0.001, 10.0]0 3. 

5.2. Unrooted 3-/eaved Tree 
The global maximum of the log likelihood function for the JC69 model of DNA evolution on the three taxa 
unrooted tree with data from the mitochondria of Chimpanzee, Gorilla, and Orangutan (Brown et al., 1982) 
is enclosed. There is only one unrooted multifurcating topology for three species with all three branches 
emanating from the root like a star. The data set for this problem can be summarized by the following 29 
data patterns: 

PATTERN COUNTS 
232 71 229 168 13 31 16 18 9 20 1 8 22 3 10 8 7 1 9 2 4 2 1 2 1 1 2 1 3 
PATTERNS: 
agctatcacccatctgccgtactaagcgt 
agctgttatcaacacgcaaaatccggtat 
agctaccgttcccataataataaagcgca 

The parameter space is three dimensional corresponding to the three branch lengths of the 3-leaved tree. 
The algorithm is given a large search box E>(o). The results are summarized in Table 1. The notation x~ 
means the interval [xa, xb], for e.g. 5.98162213845 x 10-2 = [5.98162213840 x 10-2 ,5.98162213842 x 10-2]. 

Figure 4 shows the the parameter space being rigorously pruned as the algorithm progresses according to 
section 4. 
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Fig. 5. The four different topologies, n, 72, 73 , and 74 with 4 leaves. The four leaves 1, 2, 3, and 4 denote the four 
primates Chimpanzee, Gorilla, Orangutan, and Gibbon, respectively. 

5.3. Four Unroofed 4-/eaved Trees 
By adding the homologous mitochondrial sequence from Gibbon to the previous problem, one has the simplest 
phylogeny estimation problem with the following 61 data patterns: 

PATTERN COUNTS : 
209 71 192 157 28 5 11 20 2 10 10 15 5 15 1 5 1 2 15 3 14 3 4 2 5 4 5 
4 9 2 4 5 1 1 7 6 3 1 1 4 2 3 3 1 1 2 3 1 1 1 4 1 1 1 1 1 1 1 1 2 1 
PATTERNS: 
agctccatatcacctacaaatccatatctgtccgggattacccctatttacgcgtcgcttc 
agctccgtgttatctaaaaacatacacctgccaaagaatactttcccatgcgtattacctt 
agctccacaccgttcaccaacatctccctatataaagattaccaaacatgtcgcagattaa 
agcttaacgtcaccactcgtcatgcatgcgtcctaagtgaatacaaaaactgaaagcaata 

Four topologies are considered for a tree with four leaves (Figure 5). The star tree 7 1 has all four lineages 
coalescing at the same time, while the other three trees have an additional parameter 05 representing the 
only internal branch length. They differ due to the order in which the leaves relate to one another as shown 
in Figure 5. The parameter space is four dimensional for the star topology 7 1 , and five dimensional for each 
of the unrooted topologies 72, 73, and 74. 

Observe that 7 1 is really a special case of the other three trees, 72 , 7 3 , and 74, as their internal branch ()5 

vanishes. Since we assume that the branches are ~ 00 > 0, and let 00 -+ 0 on a sequence of floating-point 
numbers, it is convenient to treat the star tree 7 1 separately. The algorithm is given a large search box eCo) 
for each topology and the results are summarized in Table refT:4runs. 

Within each one of the four topologies there exists a unique global maximum. However, the global 
maximizer over all five topologies falls under topology 7 2 with the global maximum -l* contained in the 
interval - L * = -2.6569364 70946~ x 103 . 

6. CONCLUSIONS 

A general procedure has been provided to rigorously enclose the maximum likelihood value, as well as the 
most likely branch lengths of a tree (with a specified topology) upon which the simplest Markov model of 
DNA evolution is superimposed. The global optimization algorithm is general and can be used by frequentists 
to conduct rigorous numerical inference in a likelihood framework when the statistical experiment is indexed 
by a compact subset of a finite dimensional continuum. This procedure is not suceptible to errors caused by 
undirected rounding, catastrophic cancellation, discretization, conversion, and ill-posed model. Modifications 
of this algorithm are also applicable to Markov models with unknown parameters. For models that have 
parameter constraints, several constrained global optimization algorithms already exist (Hansen, 1992). 
When analytical spectral decompositions are not available for more complicated Markov models, one may 
use one of several rigorous eigensystem solvers (e.g. Mayer (1994)) to compute the transition probabilities. 
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Table 2. Enclosures of the Maximum log likelihood and their corresponding parameter esti-
mates for 4 taxa trees relating Chimpanzee, Gorilla, Orangutan, and Gibbon. 

Tree e<ol 9* :J 8* -L(S*) :J -l(8*) 

Tl (1.0 X 10-11
1 1.0 X 109]® 4 6.57882493333~ X 10-2 

6.236162512403~ X 10-2 

1.324874902248~ X 10-1 

1.635912562476~ X 10-1 -2.7027434501964~ X 103 

T2 (1.0 X 10-11
1 1.0 X 109]® 5 4.96281934326~ X 10-2 

5.89926424690~ X 10-2 

5.51849077387~ X 10-2 

9.09714007596~ X 10-2 

1.231516018310~ X 10-1 -2.656936470946~ X 103 

T3 (1.0 X 10-11
1 1.0 X 109]® 5 9.0717704~ X 10-3 

6.14239111~ X 10-2 

1.296383822~ X 10-1 

5.650692181g X 10-2 

1.60005431656r X 10-1 -2.69987813617g X 103 

T4 (1.0 X 10-11
1 1.0 X 109]® 5 1.149516430296~ X 10-2 

5.82580613431~ X 10-2 

1.588816609252f X 10-1 

5.706958180199~ X 10-2 

1.293214169489& X 10-1 -2.6985586285405~ X 103 

The extended interval Newton method in combination with the midpoint cv.t-off, monotonicity, and con­
cavity tests may be used to study the shape of the likelihood surface itself. For instance, one could rigorously 
enclose all the local maxima, or fish for nonidentifiable subspaces, above a given level-set of the likelihood 
function within any compact subset of the parameter space. Several efficiency increasing steps could be taken. 
Pre-enclosing the transition probabilities and accessing them through hash functions can save computational 
effort. Asynchronous par~lelization of the algorithm across 6 processors is also observed to increase the 
rate of convergence to the global maximum. It also provides a natural framework to manage the memory 
requirements for larger trees through partial likelihood evaluations for non-overlapping subtrees in parallel 
prior to obtaining the full likelihood. 

Finally, it is worth noting that inclusion isotony does indeed hold by the continuity of the likelihood 
function in the CAT(O) space of trees (Biller a et al., 2004), and thus in conjunction with interval analysis may 
be made to provide a rigorous numerical framework for global maximizaton of the likelihood over compact 
sets containing distinct topologies. Preliminary results indicate that efficiency increases when one starts with 
a disjoint union of compact subsets of branch lengths from finitely many topologies, i.e, e<0l = uie(o,T;) and 
simultaneously prunes away sub-boxes from distinct e<o,T;) with a variant of the above algorithm that allows 
for compact sets contained in each e<o,T;) with its corresponding Ti-specific post-order traversal to specify 
its topology-specific likelihood function. Thus, interval methods may be able to enclose the global maximum 
more efficiently when several topologies are considered simultaneously than when the global maximum is 
enclosed for each member of a finite set of topologies, one at a time, and finally compared. 
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