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We consider data dissemination from a single transmitter to multiple receivers

with side information, which is possibly due to prior transmissions. Side infor-

mation at receivers can be utilized to reduce the broadcasting rate at the trans-

mitter. How to accomplish this is the main focus of this dissertation. We address

this problem in three parts from an information theoretic point of view.

First we model the source as uniform vector of bits and each side informa-

tion is an arbitrary subset of the source. Known as index coding problem [1],

we approach this problem as a special case of rate-distortion with multiple re-

ceivers, each with side information. Specifically, using techniques developed

for the rate-distortion problem, we provide two upper bounds and one lower

bound on the optimal index coding rate. The upper bounds are based on specific

choices of the auxiliary random variables in the best existing scheme for the rate-

distortion problem [2], which is shown invalid for the general rate-distortion

problem and improved in our work [3] later. The lower bound is based on a new

lower bound for the general rate-distortion problem. The bounds are shown to

coincide for a number of (groupcast) index coding instances, including all in-

stances for which the number of decoders does not exceed three.

Then we consider rate-distortion with two decoders, each with distinct side

information. This problem is well understood when the side information at the

various decoders satisfies a certain degradedness condition. We consider cases



in which this degradedness condition is violated but the source and the side

information consist of jointly Gaussian vectors. We provide a hierarchy of four

lower bounds on the optimal rate. These bounds are then used to determine the

optimal rate for several classes of instances.

Lastly, we consider a rate distortion problem with side information at mul-

tiple decoders. We provide an upper bound for general instances of this prob-

lem by utilizing random binning and simultaneous decoding techniques [4] and

compare it with the existing bounds. Also, we provide a lower bound for the

general problem, which was inspired by a linear-programming lower bound for

index coding, and show that it subsumes most of the lower bounds in literature

including the ones we used for the index coding and rate distortion with two

decoders problems. Using these upper and lower bounds, we explicitly charac-

terize the rate distortion function of a problem which can be seen as a Gaussian

analogue of the “odd-cycle” index coding problem.
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CHAPTER 1

INTRODUCTION

With the increase on the number of smart mobile devices, mobile data traffic has

been increasing and this trend is expected to continue in near future [7]. How to

satisfy this increasing demand on data using the available resources effectively

is a very broad question. One aspect of this question we consider is how to

disseminate the data from a single transmitter to multiple receivers with side

information. This side information can occur if users cached prior transmis-

sions from the transmitter when media is distributed over a rate-constrained

downlink.

One can utilize the side information at receivers to reduce the broadcast-

ing rate at the transmitter. We can illustrate this on the following toy example.

There are two receivers demanding the same file and suppose that first receiver

is already downloaded the first half of the file, denoted as A, whereas second

receiver has the second half of the file, denoted as B, on its cache. Instead of

sending A and B separately, transmitter can send A ⊕ B to receivers by reduc-

ing the required rate to satisfy their demands. Motivated by this, the goal of

this thesis is to investigate the fundamental limits of lossy data compression

with side information at receivers in the framework of information theory. Our

contributions are on the following three problems.

1



1.1 Prior Work and Overview of the Contributions

Index Coding

First we consider a general version of the index coding problem, in which a sin-

gle encoder observes a vector-valued source, the components of which are i.i.d.,

uniformly-distributed, binary random variables. There are several decoders,

each of which has a subset of the source components as side information, and

seeks to losslessly reproduce a disjoint subset of source components. The en-

coder must broadcast a single message to all of the decoders, which allows all

of them to reproduce their desired source components. We seek to understand

what rate is required of the encoder’s message when the encoder may code over

many i.i.d. realizations of the source vector. Specifically, we seek estimates of the

minimal rate that are both efficiently computable and provably close to the true

minimal rate, at least under some conditions.

The index coding problem has attracted considerable attention since it was

introduced (e.g., [1, 8, 9, 10, 11, 12, 13, 14]). The formulations studied for index

coding vary along at least three different axis. First, one can impose structure

on the demands and the side information. Birk and Kol’s paper [1] introducing

the problem focused on the case in which each source bit is demanded by ex-

actly one decoder, and if Decoder i has Decoder j’s demand as side information

then Decoder j must have Decoder i’s demand as side information. The prob-

lem instance can then be represented as an undirected graph, with the nodes

representing the source bits (or equivalently, the decoders) and the edges rep-

resenting the side information pattern. Slightly more generally, one can relax

the symmetry assumption to obtain a directed, instead of undirected, graph.
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Shanmugam et al. [10] call this unicast index coding. We shall consider here the

more general version in which each decoder can demand any number of source

components and the demands may be overlapping among the decoders. Shan-

mugam et al. call this groupcast index coding; we shall simply call it index coding.

A second independent axis along which index coding formulations vary is

whether one allows for coding over time (vector codes) or whether the code

must operate on each time instant separately (scalar codes). We shall focus on

the former here, due to its intrinsic importance and its connection with rate-

distortion theory. Furthermore, block coding can yield improved rates when

compared to scalar codes [15].

Third, and finally, some works require the decoders to reproduce their de-

mands with zero error [8, 10, 11, 12, 16] while others require that the block-error

probability vanish [13, 14]. Yet another possibility is to require that the bit-error

probability vanish. This work shall focus on the latter two.

Irrespective of the formulation, most work on index coding views the prob-

lem graph-theoretically [9, 10, 16], as in Birk and Kol’s original paper. One can

then lower and upper bound the optimal rate using graph-theoretic quantities

such as the independence number, the clique-cover number, fractional clique-

cover number (e.g. [11]), the min-rank [8] and others [9, 10, 16]. This approach

has proven to be successful for showing the utility of coding over blocks for

this problem [15], and for showing the utility of nonlinear codes [17]. Many of

these graph-theoretic quantities are known to be NP-hard to compute, however,

and for the others there is no apparent polynomial-time algorithm. Thus these

bounds are only useful theoretically or when numerically solving small exam-

ples. A noteworthy exception is Theorem 2 of Blasiak et al., which provides a

3



polynomial-time-computable bound that is within a nontrivial factor of the op-

timal rate for arbitrary instances. The factor in question is quite large, however.

We approach index coding as a special case of the problem of lossy com-

pression with a single encoder and multiple decoders, each with side informa-

tion. This more general problem was introduced by Heegard-Berger [18] (but

see Kaspi [19]) and is sometimes referred to as the Heegard-Berger problem. In-

dex coding can be viewed as the special case in which the source, at each time,

is a vector of i.i.d. uniform bits, the side information of each decoder consists

of a subset of the source bits, and the distortion measure for Decoder i is the

Hamming distortion between the subset of the source bits that Decoder i seeks

to reproduce and Decoder i’s reproduction of that subset. We then consider the

minimum rate possible so that all of the decoders can achieve zero distortion.

Viewing the problem in this way allows us to apply tools from network infor-

mation theory, such as random coding techniques, binning, the use of auxiliary

random variables, etc. Using this approach, we prove two achievable bounds

and an impossibility (or “converse”) bound [20]. Furthermore, we characterize

the optimal rate explicitly for the special case in which each source bit is present

at either all of the decoders, none of the decoders, all but one of the decoders, or

all but two of the decoders and other special cases [20, 21, 22], which we shall

present in Chapter 2.

Vector Gaussian Rate Distortion with Side Information

In index coding problem, we model the source as an i.i.d. vector of uniform

bits. Treating the source like this is appropriate if the source is first compressed
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by an optimal rate-distortion encoder. Thus index coding implicitly assumes

a separation-based architecture in which lossy compression is performed first

and then the broadcasting with side information is performed at the bit level.

Ideally, one would perform both types of coding jointly. Indeed when we con-

sider the index coding problem we do not fully exploit benefits network infor-

mation theoretic tools. One of the advantages of these tools is that it allows

one to consider the problems of lossy compression and coding for side infor-

mation together, by allowing for a richer class of source models and distortion

constraints.

Hence as a second problem, we consider a special case of the Heegard-Berger

problem. We shall focus on the case in which the source and the side informa-

tion at the decoders are all jointly Gaussian vectors. This class of instances is

important in applications, since vector Gaussian sources are natural stepping

stones on the path from discrete memoryless sources to more sophisticated

models of multimedia. The vector Gaussian setup can also be motivated the-

oretically since, like index coding, it is one of the simplest classes of instances

that does not have degraded side information structure in general. 1 We shall

focus on the case of two decoders; unlike index coding, for vector Gaussian

problems even the two-decoder case is nontrivial.

In Chapter 3, we provide a hierarchy of four lower bounds on the optimal

rate for this problem. For three separate special cases, we show that at least one

of the lower bounds matches the achievable rate [2, 18], thereby determining

the optimal rate [23, 24, 25].

1The problem is well understood when it is degraded, i.e., the side information at one of the
decoders is stochastically degraded with respect to the other’s [18].
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General Rate Distortion with Side Information

Now we consider the Heegard-Berger [18] problem, which is essentially the

multiple-decoder extension of the Wyner-Ziv [26] problem. As we briefly men-

tion in the index coding problem, in Heegard-Berger problem, an encoder with

access to a source of interest broadcasts a single message to multiple decoders,

each endowed with side information about the source. Each decoder then seeks

to reproduce the source subject to a distortion constraint.

Even for two decoders, characterization of the rate-distortion function is a

long-standing open problem. The rate-distortion function has been determined

in several special cases, however, including when the side information at the

various decoders can be ordered according to stochastic degradedness [18],

when there are two decoders whose side information is “mismatch degraded”

[5], when there are two decoders and the side information at decoder 2 is “con-

ditionally less noisy” than the side information at decoder 1 and decoder 1 seeks

to losslessly reproduce a deterministic function of the source [6]. Also, instead of

imposing some degraded structure on side information, Benammar et al. con-

siders degraded reconstruction sets at two decoders and characterize the rate

distortion function when one component of the source is reconstructed at both

decoders with vanishing block error probability and the other component of

the source is only reconstructed at a single decoder [27]. Furthermore, vari-

ous vector Gaussian instances of the problem [23, 24], shown in Chapter 3, are

solved. Several important instances of the index coding problem have also been

solved (e.g., [8, 11, 20]).

As a main contribution, we present new linear programming (LP) type up-

per bound and lower bound to the general instances of rate distortion problem
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with side information at multiple decoders by utilizing various tools such as

random binning and simultaneous decoding. We also compare these bounds

with the existing bounds and provide optimality results for several special cases

of the problem [28, 29, 3] in Chapter 4.

1.2 Outline of the Dissertation

The dissertation is outlined as follows. In Chapter 2 we consider general index

coding problem from a rate distortion point of view. Section 2.2 and 2.4 present

problem formulations while in the remaining sections in Chapter 2 we present

our main results. Chapter 3 considers vector Gaussian rate-distortion problem

with side information at decoders. In section 3.3, we introduce the four lower

bounds and section 3.4 presents main optimality results. Lastly, in Chapter 4 we

focus on Heegard-Berger problem with multiple decoders. Section 4.3 and 4.3.1

contain the achievability (upper bound) results. In Section 4.4 we introduce the

LP type lower bound. The remaining sections include the comparison of new

bounds with the existing bounds and optimality results obtained by using these

new bounds.
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CHAPTER 2

A RATE-DISTORTION APPROACH TO INDEX CODING

2.1 Introduction

Here, we view the index coding problem as a special case of the rate distortion

function with side information at decoders. First we provide two upper bounds

to the optimal rate for the index coding problem. Both of the achievable bounds

are built upon the achievable bound for the Heegard-Berger problem, which is

due to Timo et al. [2]. The Timo et al. scheme involves an optimization over the

joint distribution of a large number of auxiliary random variables; we provide

two methods for selecting this distribution, the first of which is polynomial-time

computable but only yields integer rate bounds, while the second is more com-

plex but can yield fractional rates. The achievability results in this work are thus

unusual in that the emphasis is on algorithms for selecting the joint distribution

of auxiliary random variables rather than proving new coding theorems per se.

It is worth noting that the Timo et al. result is representative of many achiev-

ability results in network information theory that take the form of optimization

problems over the joint distribution of auxiliary random variables (e.g., [4]). The

task of solving these optimization problems has received little attention in the

literature.1

Our impossibility result is related to the “degraded-same-marginals” (DSM)

impossibility result for broadcast channels [31, 32]. The idea is that the opti-

mal rate can be computed exactly when the source S and the side information

1Indeed, the prospect that some of these “single-letter” optimization problems might be in-
trinsically hard to compute is intriguing and seemingly unexplored (though see Arikan [30]).
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variables Y1, . . . ,Ym can be coupled in such a way that

S ↔ Yσ(1) ↔ Yσ(2) ↔ · · · ↔ Yσ(m),

meaning that the random variables form a Markov chain in this order, where

σ(·) is an arbitrary permutation [2]. We call such an instance one with degraded

side information. One may then lower bound a given problem by providing (for

example), Y1 to Decoder 2, Y1 and Y2 to Decoder 3, etc., to form a degraded

instance whose optimal rate is only lower than that of the original problem. We

provide a lower bound in this spirit for the general Heegard-Berger problem

that improves somewhat on that obtained via a direct application of the above

technique. We shall call it the Maximin Lower Bound, abbreviated as MLB. When

applied to the index coding problem, the MLB provides the same conclusion as

a lower bound due to Blasiak et al., although under slightly weaker hypotheses.

We use the MLB to show that our low-complexity achievable bound equals

the optimal rate for any number of source components, so long as the number of

decoders does not exceed three.2 In fact, we show the more general result that

the achievable bound equals the optimal rate for any number of source compo-

nents and any number of decoders so long as each source component is present

as side information at all of the decoders, none of the decoders, all but one of the

decoders, or all but two of the decoders. It is apparent that every problem with

three or fewer decoders must be of this form. We also show that the achievable

bound coincides with the optimal rate when none of the source components are

“excess,” a concept that plays an important role in our achievable scheme and

that shall be defined later.

The virtue of our low-complexity scheme is that its performance is
2Recall that we allow each decoder to demand more than one source component and each

source component to be demanded by more than one decoder.
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polynomial-time computable, whereas the relevant graph-theoretic perfor-

mance characterizations are not apparently so, even when they are finite-

blocklength. Our low-complexity achievable scheme bears some resemblance

to the partition multicast scheme of Tehrani, Dimakis, and Neely [12]. For a

comparison of partition multicast and other graph theoretic quantities such as

hyperclique cover, local hyperclique cover etc., one can see [10]. Although our

scheme does not subsume partition multicast (which is NP-hard to compute [12]),

we do show that it is optimal in all explicit instances of the problem for which

Tehrani, Dimakis, and Neely show that partition multicast is optimal.3

Although we are focused mainly on index coding, the results herein also

have some significance for the Heegard-Berger problem. The MLB, mentioned

earlier, is the best general lower bound for this problem; however, we will

introduce lower bounds subsuming MLB in Chapter 3 and 4. Our conclu-

sive results for the index problem represent some of the few nondegraded in-

stances of the Heegard-Berger problem for which the optimal rate is known

(see [5, 33, 23, 34, 35, 36] others). This work is also the first work that considers

algorithms for selecting the distribution of the auxiliary random variables in the

Timo et al. scheme.

As noted earlier, this work differs from much of the literature on index cod-

ing by approaching the problem as one of rate-distortion, or source coding.

Some recent works have also approached the problem as one of channel cod-

ing [13, 14], and in particular, interference alignment. One of the advantages of

the source coding approach espoused here is that it can readily accommodate

richer source models and distortion constraints, including sources with mem-

3Tehrani et al. also show that partition multicast is optimal for the implicitly-defined class of
instances for which clique cover is optimal.
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ory, lossy reconstruction of analog sources, etc. The very formulation of index

coding presumes that the sources have already been compressed down to i.i.d.

uniform bits. Thus the index coding is “separated” from the underlying com-

pression, when in fact there might be some advantage to combining the two, a

topic that we shall consider in subsequent work. See the discussion after Corol-

lary 1 for additional differentiation between this work and above approaches.

Also, we will investigate rate distortion function with side information more in

Chapter 3 and 4.

This chapter is outlined as follows. Section 2.2 formulates the Heegard-

Berger problem and Section 2.3 provides the MLB for it. Section 2.4 formu-

lates the index coding problem. Section 2.5 and 2.6 provide a lower bound and

an upper bound for the problem respectively. Section 2.7 describes our first

scheme of index coding, and Section 2.8 provides several optimality results for

this scheme, including our results for three decoders. Section 2.9 describes our

second scheme.

2.2 Problem Definition

We begin by considering the general form of the Heegard-Berger problem, as

opposed to the index-coding problem in particular. There is a single encoder

with source S and there are m decoders. Decoder i has a side information Yi that

in general depends on S . The encoder sends a message at rate R to the decoders,

and Decoder i wishes to reconstruct the source with a given distortion constraint

Di. The objective is to find the rate distortion tradeoff for this problem setup.

This is made precise via the following definitions.
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Definition 1. An (n,M,D1, . . . ,Dm) code consists of mappings

f : Sn → {1, . . . ,M}

g1 : {1, . . . ,M} × Yn
1 → Ŝ

n
1

g2 : {1, . . . ,M} × Yn
2 → Ŝ

n
2

...

gm : {1, . . . ,M} × Yn
m → Ŝ

n
m,

E
1
n

n∑
k=1

d(S k, Ŝ (i)k)

 ≤ Di, ∀i ∈ [m]

where S denotes the source alphabet, Y1, . . . ,Ym denote the side information alphabets

at Decoder 1 through m and Ŝn
1, . . . , Ŝ

n
m denote the reconstruction alphabets at Decoder 1

through m and d(., .) ∈ [0∞) denotes a distortion measure and [m] = {1, . . . ,m}. Lastly,

we call f the encoding function at the encoder and gi the decoding function at

Decoder i where i ∈ [m].

Definition 2. A rate distortion pair (R,D), where D = (D1, . . . ,Dm) is achievable if

for every ε > 0, there exists an (n,M,D1+ε, . . . ,Dm+ε) code such that n−1 log M ≤ R+ε.

Definition 3. The rate distortion function R(D) is defined as

R(D) = inf{R|(R,D) is achievable}.

Finding a computable characterization R(D) is a long-standing open problem

in network information theory. Currently, such a characterization is only avail-

able for a few special cases. Heegard and Berger themselves [18] provided one

when the side information at the decoders is degraded. Watanabe [5] provided

one for the case that the source consists of two independent components, the

distortion constraints for both decoders are decoupled across the two compo-

nents, and the side information at the two decoders is degraded “in mismatched
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order” (see [5] for the precise setup). Sgarro’s result [34] implies a characteriza-

tion for the problem in which two decoders both wish to reproduce the source

losslessly, without any assumption on their side information (see also [35]).

Timo et al. [36] provide a characterization for the two-decoder case when one

decoder’s side information is “conditionally less noisy” than the other’s and

the weaker decoder seeks to losslessly reproduce a deterministic function of the

source. Timo et al. [33] solve various two-decoder cases in which the source con-

sists of two components, say (X,Y), and one decoder has X as side information

and wants to reconstruct Y while the other has Y as side information and wants

to reconstruct X. The present authors determined the rate distortion region for

the two-decoder problem with vector Gaussian sources and side information,

subject to a constraint on the error covariance matrices at the two decoders [23].

Several (nondegraded) special cases in which both decoders wish to losslessly

reproduce a function of the source have been solved by Laich and Wigger [37].

Of course, several instances of index coding that are not degraded have also

been solved.

A general achievable result, i.e., an upper bound on R(D), was provided by

Heegard and Berger [18], which was corrected and extended by Timo et al. [2].

Later in Chapter 4, we propose a new general achievable scheme and show

that scheme by Timo et al. is not correct for the general case either. Additional

conditions on the messages are required to make the scheme valid. However,

we would like to point out that versions of the scheme by Timo et al. that we

utilize or base on in this thesis are all valid achievable schemes. We provide a

computable lower bound on R(D) for general instances of the problem in this

section. This lower bound will be used later in Chapter 2 to solve several index

coding instances.

13



2.3 Lower Bound for a Rate Distortion Function

We start our analysis by providing a lower bound to the general rate distortion

problem.

Theorem 1 ( Maximin Lower Bound, MLB). Let the pmf’s P(S ,Yi) for all i ∈ [m] be

given. R(D) is lower bounded by

RMLB(D) = sup
P̄

max
σ

R̄σ(D) (2.1)

where

R̄σ(D) = min
U1,...,Um

[
I(S ; Uσ(1)|Yσ(1)) + I(S ; Uσ(2)|Uσ(1),Yσ(1),Yσ(2)) + · · · (2.2)

+ I(S ; Uσ(m)|Uσ(1), . . . ,Uσ(m−1),Yσ(1), . . . ,Yσ(m))
]

and

1) σ(.) denotes a permutation on integers [m]

2) P̄ = {P(S ,Y1, . . . ,Ym)|
∑

Y j: j,i P(S ,Y1, . . . ,Ym) = P(S ,Yi),∀i ∈ [m]}

3) (U1, . . . ,Um) is jointly distributed with S ,Y1, . . . ,Ym such that

(Y1, . . . ,Ym)↔ S ↔ (U1, . . . ,Um)

and

4) there exist functions g1, . . . , gm such that

E[d(S , gσ(i)(Uσ(i),Yσ(i)))] ≤ Dσ(i)∀i ∈ [m], (2.3)

5) |Uσ(i)| ≤ |S|
∏i−1

j=1 |Uσ( j)| + (m + 2 − i) for all i ∈ [m].

Proof of Theorem 1. The proof is given in Appendix 5.1
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The idea behind the proof was described in the introduction. Note that since

the optimal rate only depends on the source and side information through the

“marginals”

(S ,Yi) i ∈ [m],

we may couple the Yi variables to form a joint distribution P̄(S ,Y1, . . . ,Ym) as

we please, leading to the outer optimization in (2.1). Also note that a direct

application of the DSM idea would yield the weaker bound in which ∪ j≤iYσ( j)

appears as an argument to gσ(i) in (2.3).

Remark 1. Since the proof constructs the Ui variables in a way that the joint distribu-

tion of (U1, . . . ,Um) does not depend on the permutation σ(·), one could state the bound

with the minimum over U1, . . . ,Um outside the maximum over σ(·). This complicates

the proof of the cardinality bounds in 5), however, and the maximin form of the bound is

sufficient for the purposes of this chapter, so we shall defer consideration of this potential

strengthening to later chapters.

Next, we turn our focus to the index coding problem which can be viewed as

a special case of the Heegard-Berger problem.

2.4 Index coding : Problem Formulation

For the m user index coding problem, each decoder α wants to reconstruct

fα, which is an arbitrary subset of the source S, that is, a collection of i.i.d.

Bernoulli(1
2 ) bits at the encoder. There may be overlapping demands, i.e., more

than one decoder may demand the same bit. Also, each Decoder α has side

information Yα consisting of an arbitrary subset of the source. We assume that
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decoders do not demand a component of their own side information since they

already have it, and we assume that Yα , Yβ, for all α , β since we can combine

two decoders if they have the same side information. We may also assume that

every source bit is demanded by at least one decoder, for otherwise that bit may

be completely purged from the system.

Let SJ denote the part of the source which each decoder in a subset J of [m]

does not have and all decoders in [m]\J have as side information. If J = {α}, i.e.,

a singleton, then for ease of notation we use Sα instead of S{α}. Since there are m

decoders, we group the elements of S into 2m disjoint sets such that S = ∪J⊆[m]SJ.

Note that each SJ may be empty, may consist of a single bit, or may consist of

multiple bits.

Let G0 = S[m] denote the elements of the source that none of the decoders

have, Gm = S∅ denote the elements all decoders have, Gm−1 = ∪α∈[m]Sα denote

elements that m − 1 of the decoders have, Gm−2 = ∪
{α, β} ⊆ [m]

α , β

S{α,β} denote elements

that m − 2 of the decoders have and so on. To ease the notation for the rest of

the chapter, whenever we write a set {α, β}, we assume α , β unless otherwise

stated. Then S can be represented as S = {G0,Gm,Gm−1, . . . ,G1}, as shown in

Fig. 2.1.

The demand fα at Decoder α can be written in terms of components SJ of S.

For this, we introduce the following notation.

Let fIJ denote the demand that is a subset of source SJ and is required by

each decoder in a subset I of [m] and by no decoders in [m]\I. If I = {α}, then for

ease of notation we use fαJ instead of f{α}J. We will generally assume that I ⊆ J

since only decoders in J may have a demand about SJ and decoders in [m]\J
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Figure 2.1: Index coding with m users.

already have SJ as side information. If I * J, fIJ is empty. Also, fIJ and fKJ are

independent (i.e., fIJ ⊥ fKJ) for all possible choices of I, K and J with I , K since

fIJ ∩ fKJ = ∅ unless I = K. Lastly, each fIJ may be empty, a single bit or may

consist of multiple bits.

We have written the source as S = {G0,Gm,Gm−1, . . . ,G1} and the demands in

terms of SJ’s. From now on, we consider an ordered set structure on S which

naturally induces orders on SJ’s. Then each demand fIJ is also an ordered set

that can also be viewed as a vector. In fact, we shall find it convenient to view

fIJ, S, and other similar quantities at times as sets and at times as vectors.

Since this problem can be considered as a special case of the Heegard-Berger

problem, we use a similar definition for the code except for the distortion.

Specifically, we consider block error probabilities instead of the distortion con-

straints stated in Definition 1. Hence, we use the following definitions for the

code, error and optimal rate.
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Definition 4. Let S denote the alphabet of S. An (n,M) code consists of mappings

f : Sn → {1, . . . ,M}

g1 : {1, . . . ,M} × Yn
1 → F

n
1

g2 : {1, . . . ,M} × Yn
2 → F

n
2

...

gm : {1, . . . ,M} × Yn
m → F

n
m ,

where f denotes the encoding function at the encoder, gα denotes the decoding function

at Decoder α where α ∈ [m], and Fα denotes the reconstruction alphabet at Decoder α.

Definition 5. The probability of error for a given code is defined as

Pe = Pr{g1( f (Sn),Yn
1),fn

1 (Sn) ∪ g2( f (Sn),Yn
2),fn

2 (Sn), . . . ,∪gm( f (Sn),Yn
m),fn

m(Sn)},

where fn
i (Sn) ⊆ Sn is the demand of decoder i that decoder i wants to reconstruct, i ∈ [m].

Then achievability and optimal rate can be defined as follows.

Definition 6. The rate R is achievable if there exists a sequence of (n,M) codes with

rate n−1 log M ≤ R such that the probability of error, Pe, tends to zero as n tends to

infinity.

Definition 7. The optimal rate Ropt is defined as

Ropt = inf{R|R is achievable}.

We shall call the problem defined in this section index coding, although most

existing work on index coding requires the code to achieve zero, as opposed

to vanishing, block error [10, 11, 12]. For index coding problem β is also used

to denote the optimal rate [11],[15]. In support of the definitions adopted here,

see [13, 14] for works that use vanishing block error probability and [38] for

results connecting the two formulations.
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2.5 Lower Bound for Index Coding

The next theorem gives a lower bound to the index coding problem using the

MLB from Section 2.3.

Theorem 2. The optimal rate of the index coding problem is lower bounded by

RMLB = max
σ

[
H(fσ(1)|Yσ(1)) + H(fσ(2)|fσ(1),Yσ(1),Yσ(2)) + · · ·+

H(fσ(m)|fσ(1), . . . , fσ(m−1),Yσ(1), . . . ,Yσ(m))
]

(2.4)

where σ(.) denotes a permutation on integers [m].

Proof of Theorem 2. We will use the lower bound in Theorem 1 to prove the the-

orem. Note that this lower bound is for per-letter distortion constraints but it

can be adapted to handle block error probabilities in the following way. Van-

ishing error probability, Pe, for index coding problem implies vanishing block

error probability for each Decoder i, i.e., Pr(gi( f (Sn),Yn
i ),fn

i (Sn)), which implies

vanishing distortion with respect to Hamming distortion measure for Decoder

i. Also, note that lower bound in Theorem 1 is continuous from right by Lemma

12. Hence, the optimal rate for the index coding problem, Ropt, is lower bounded

by

Ropt ≥ max
σ

min
U1,...,Um

[
I(S; Uσ(1)|Yσ(1)) + I(S; Uσ(2)|Uσ(1),Yσ(1),Yσ(2)) + · · ·

+ I(S; Uσ(m)|Uσ(1), . . . ,Uσ(m−1),Yσ(1), . . . ,Yσ(m))
]

such that

1) σ(.) denotes a permutation on integers [m]

2) (U1, . . . ,Um) jointly distributed with S,Y1, . . . ,Ym such that

(U1, . . . ,Um)↔ S↔ (Y1, . . . ,Ym)
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and

E
[
d(fσ(i), gσ(i)(Uσ(i),Yσ(i)))

]
= 0,∀i ∈ [m],

where d(·, ·) is Hamming distortion measure, giving

H(fσ(i)|Uσ(i),Yσ(i)) = 0,∀i ∈ [m]. (2.5)

Note that since Yi ⊆ S for all i ∈ [m], there is only one possible joint distri-

bution of (S,Y1, . . . ,Ym). Hence, the maximum over P̄ in (2.1) is degenerate for

index coding. First we consider the permutation σ(i) = i for all i ∈ [m]. Then we

have,

Ropt ≥ min
U1,...,Um

[
I(S; U1|Y1) + I(S; U2|U1,Y1,Y2) + · · ·+

I(S; Um|U1, . . . ,Um−1,Y1, . . . ,Ym)
]

(2.6)

To find an explicit expression for (2.6), we use the following lemma.

Lemma 1. For j ∈ [m] we define

K j =

j−1∑
i=1

I(fi; U i
1|Y

i
1, f

i−1
1 ) + I(S; U j

1|Y
j
1, f

j−1
1 ) +

m∑
i= j+1

I(S; Ui|Yi
1,U

i−1
1 ),

where f i
1 = (f1, . . . , fi) and likewise for U i

1 etc. Then K1 ≥ K2 ≥ . . . ≥ Km.

Proof of Lemma 1. We fix any j ∈ [m − 1] and write,

K j − K j+1

= −I(fj; U j
1|Y

j
1, f

j−1
1 ) + I(S; U j

1|Y
j
1, f

j−1
1 ) − I(S; U j+1

1 |Y
j+1
1 , fj

1) + I(S; U j+1|Yj+1
1 ,U j

1)

a
= I(S; U j

1|Y
j
1, f

j
1) − I(S; U j+1

1 |Y
j+1
1 , fj

1) + I(S; U j+1|Yj+1
1 ,U j

1)

=I(S; U j
1|Y

j
1, f

j
1) − I(S; U j

1|Y
j+1
1 , fj

1) − I(S; U j+1|Yj+1
1 , fj

1,U
j
1) + I(S; U j+1|Yj+1

1 ,U j
1)

b
≥ 0,
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where

a: is due to the chain rule and reconstructions being subsets of the source, S.

b: is due to the side information and reconstructions being subsets of the source,

S, and (U1, . . . ,Um)↔ S↔ (Y1, . . . ,Ym).

Then (2.6) becomes,

Ropt

≥ K1

≥ Km, by Lemma 1

=

m−1∑
i=1

I(fi; U i
1|Y

i
1, f

i−1
1 ) + I(S; Um

1 |Y
m
1 , f

m−1
1 )

≥

m∑
i=1

I(fi; U i
1|Y

i
1, f

i−1
1 )

=

m∑
i=1

H(fi|Yi
1, f

i−1
1 ) − H(fi|U i

1,Y
i
1, f

i−1
1 )

=

m∑
i=1

H(fi|Yi
1, f

i−1
1 ), from (2.5). (2.7)

We can apply the same procedure to all m! permutations which gives the result.

Remark 2. Evidently the proof shows that the conclusion holds even if one only requires

that the bit-error probability, as opposed to the block-error probability, vanish.

Remark 3. Let us consider one of the m! expressions of the lower bound in Theorem 2,

say the one in (2.7). We can rewrite it as4

H(f1 \ Y1) + H(f2 \ {f1 ∪ Y1 ∪ Y2}) + · · · + H(fm \ {Ym,∪
m−1
i=1 {Yi, fi}}) (2.8)

= |f1 \ Y1| + |f2 \ {f1 ∪ Y1 ∪ Y2}| + · · · + |fm \ {Ym,∪
m−1
i=1 {Yi, fi}}|.

4Recall that we assume an ordered set structure on S which naturally induces orders on SJ’s
and demands fi’s.
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Blasiak et al. [11] define an expanding sequence of decoders as one for which each

decoder in the sequence demands a bit that is not contained in the union of the demands

and the side information of the decoders that appear earlier in the sequence. Blasiak et

al. prove that the size of a largest expanding sequence is a lower bound on the optimal

rate. Writing the above bound as in (2.8) shows that it coincides with the Blasiak et

al. bound when each decoder demands a single bit. Of course, the more general case

in which a decoder may demand multiple bits can be obtained from the Blasiak et al.

result by replacing each such decoder with multiple decoders that each demand a single

bit. The Blasiak et al. result does not quite imply Theorem 2, however, since the former

assumes a zero-error formulation (though one could appeal to a result of Langberg and

Effros [38] to relate the two formulations).

2.6 Achievable Scheme for Index Coding

For our achievable scheme for index coding, we rely on an achievability result

of Timo et al. [2], mentioned earlier, for the general Heegard-Berger problem

(see also Heegard and Berger [18]). Since the Timo et al. scheme is rather com-

plicated, we shall state it in a substantially weakened form that will be sufficient

for our purposes.

Proposition 1. (cf. [2, Theorem 2]) The optimal rate Ropt of an index coding problem is

upper bounded by

min
∑
I⊆[m]

[
max

i∈I
H(UI |Yi)

]
(2.9)

where the minimization is over the set of all random variables UI jointly distributed

with S such that

1) There exist functions
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g1(∪I:1∈IUI ,Y1),. . ., gm(∪I:m∈IUI ,Ym) such that

gi(∪I:i∈IUI ,Yi) = fi(S), for all i ∈ [m].

2) Each UI is a (possibly empty) vector of bits, each of which is the mod-2 sum of a set

(possibly singleton) of source components.

The full-strength version of Timo et al.’s result omits the condition 2) but re-

places the rate expression in (2.9) with one that is more complex. Under the

condition 2), however, their expression is upper bounded by (2.9). Also Timo et

al. state their result as an upper bound on R(D) defined in Section 2.2, as op-

posed to Ropt as defined in Section 2.4. That is, they provide a guarantee on the

expected time-average distortion, instead of on the block error probability that

we use to define index coding. Their proof technique can be used to bound the

block error probability with minimal modification, however.

One way of interpreting UI is that it is a “message” that is “sent” to all De-

coders i such that i ∈ I. That is, UI includes some information about the source

that is decoded by all of the decoders in I but is not available to any of the

decoders in Ic. The contribution of UI to the overall rate in (2.9) is simply the

rate needed to send UI to all of the decoders in I using standard binning argu-

ments (and relying on the fact that UI is a deterministic function of the source S).

Specifically, consider encoding and decoding a message UI for a given I ⊆ [m].

We randomly bin the different realizations of UI . The encoder then broadcasts

the index of the bin containing the observed realization to all of the decoders.

The decoders in I then identify the correct realization within the bin using typ-

icality considerations [39, Section 15]. The required rate for sending UI to de-

coder i, i ∈ I is H(UI |Yi). Since UI needs to be obtained by all decoder i’s where

i ∈ I, the resulting rate for UI to be successfully transmitted to all decoder i’s,
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i ∈ I, is maxi∈I H(UI |Yi). The other messages are handled similarly and decoder i

then reconstructs its demand fi(S) using messages ∪I:i∈IUI and its side informa-

tion Yi.

Evaluating this upper bound requires finding the optimal joint distribution

of the UI auxiliary random variables. Since each UI is a deterministic function of

S, this is equivalent to finding the optimal such functions. Such an optimization

problem is evidently quite complicated. We shall provide a polynomial-time

heuristic for finding a feasible choice of the UIs. Of the many different index

coding schemes that have been proposed (e.g., [10, 8, 12, 13, 14] ), ours most

closely resembles the partition multicast of Tehrani, Dimakis, and Neely [12]. In

the language of our setup, their scheme amounts to finding the optimal choice

of the UI subject to the constraint that each UI must be a vector consisting of

a (possibly empty) subset of the source components. Tehrani et al. show that

finding this optimal choice is NP-hard [12]. Our scheme, in contrast, consists

of three steps, the first two of which amount to a polynomial-time heuristic for

finding a reasonable and feasible (but not necessarily optimal) choice of auxil-

iary random variables subject to the constraint that each UI must be a vector

consisting of a subset of the source components. Thus the output of the sec-

ond step of our heuristic is a feasible solution to the optimization problem for

which partition multicast is optimal. Our third step, however, replaces some

of the UI variables with ones that are more general functions of source, i.e., not

just subsets of the source variables. Due to the similarity between our heuristic

and partition multicast, we call our heuristic coded approximate partition multicast

(CAPM). Although CAPM is not guaranteed to be never worse than partition

multicast, we shall show that it is optimal for all of the explicit scenarios for

which Tehrani et al. show that partition multicast is optimal as well as some
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other, more general scenarios.

2.7 CAPM: Selection of UI’s in the Achievable Scheme for In-

dex Coding

CAPM is a method for choosing a feasible choice of the auxiliary random vari-

ables UI for I ⊆ [m]. Note that the number of auxiliary random variables is

exponential in the number of decoders, although in typical instances most of

these random variables will be null. To minimize the worst-case complexity of

CAPM, therefore, we shall work with a linked list of the auxiliary random vari-

ables that are not null, which shall begin empty. We shall call all UI auxiliary

random variables for which |I| = i “level i messages.”

Step 1 : Beginning with an empty linked list of auxiliary random variables,

we sequence through the vector of source bits. Any given bit must be in fKJ for

some K ⊆ J ⊆ [m]. So long as J , [m], we seek to include this bit in UK∪Jc : if

UK∪Jc does not exist in our linked list of auxiliary random variables, then we add

it to the list and set it equal to the source bit in question. If it already exists in

the list, then we locate it, and we set UK∪Jc to be a vector of bits consisting of all

source bits that were included previously along with this newly included source

bit. For a source bit in fKJ where J = [m], we include the bit in the auxiliary

random variable U[m], i.e., the auxiliary random variable that is decoded by all

of the decoders. This process is repeated until all of the source bits have been

included in an auxiliary random variable. Note that each nonvoid auxiliary

random variable is then simply a vector of source bits. Also note that each

source bit will be included in exactly one auxiliary random variable.
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We now sort the linked list so that all level-2 messages appear first, fol-

lowed by all level-3 messages, etc. Note that all level-1 messages are necessarily

empty (assuming there is more than one decoder), by virtue of the fact that ev-

ery source bit is assumed to be demanded by at least one decoder, and source

bits that no decoder has as side information are placed in U[m]. The complexity

of Step 1 is at most O(s2 · m), where s = |S|.

Remark 4. See Proposition 3 to follow for a justification of this particular approach to

allocating the source components among the different auxiliary random variables.

Step 2 : Let UI denote the first auxiliary random variable in the linked list. If

I = [m], i.e., this first auxiliary random variable is decoded by all of the decoders,

then this UI must be the only non-null auxiliary random variable (since they are

sorted by level), in which case we skip Step 2 and proceed to Step 3. Suppose

instead that |I| < m. Note that UI’s contribution to the overall rate is

max
i∈I

H(UI |Yi).

In many cases H(UI |Yi) will not be constant over i ∈ I. That is, some decoders

in I will require a higher rate to decode UI than others. When this happens we

move some of the source bits in UI to a higher-level message. Define the two

decoder indices

i∗ = min{i : H(UI |Yi) = min
l∈I

H(UI |Yl)} (2.10)

and

j∗ = min{ j : H(UI |Yj) = max
l∈I

H(UI |Yl)}. (2.11)

If H(UI |Yi∗) < H(UI |Yj∗), then there must exist a source bit in UI that is con-

tained in Yi∗ but not in Yj∗ . We select the lowest-index source bit with this prop-

erty and move it from UI to some UJ such that I ⊂ J and |J| = |I|+ 1. If |I| < m−1,

26



then there are many such choices of J; J can be chosen arbitrarily, but for con-

creteness we shall assume the following. First we look for nonempty UJ’s such

that I ⊂ J and |J| = |I| + 1. If we can find such a message or messages, we select

the J with the lowest index that is not already in I. If that is not the case, J is

obtained by adding to I the lowest index that is not already in I. We call the bit

that is moved leftover or excess. We then recompute i∗ and j∗ according to (2.10)

and (2.11), respectively, and move an additional bit to a higher-level message if

necessary, repeating this process until UI is such that H(UI |Yi∗) = H(UI |Yj∗). Note

that this condition must eventually be satisfied, since after sufficiently many it-

erations, UI will become null. Once this condition is satisfied for UI , we apply

the same procedure to the next auxiliary random variable in the linked list, and

so on until this procedure has been applied to every variable in the linked list.

It is possible that some auxiliary random variables in the linked list are made

null through this procedure, in which case they are removed from the linked

list. The complexity of Step 2 is O(m2 · s3).

Remark 5. The rationale for moving source bits up to higher-level messages is as fol-

lows. A bit that is excess contributes to the maximum

max
l∈I

H(UI |Yl), (2.12)

which is UI’s contribution to the overall rate. Thus removing this bit from UI has the

potential to reduce UI’s contribution to the rate (although it will not necessarily do so, if

there are multiple l that achieve the maximum in (2.12); see the next remark). Of course,

including this bit in a higher-level message, UJ, will tend to increase UJ’s contribution

to the rate. But it will only do so the source bit in question is not in the side information

of one of the decoders l that achieve the maximum in

max
l∈J

H(UI |YJ).
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Thus moving the bit up one level often yields a rate reduction, and even if it does

not, it may yield a rate reduction upon being elevated again during a later iteration.

Remark 6. If there exists a unique j ∈ I such that H(UI |Yj) = maxl H(UI |Yl), then

moving an excess bit to a higher-level message cannot increase the overall rate, and in

some cases it may strictly decrease the rate. If the decoder with maximum rate is not

unique, then moving an excess bit to a higher-level message can increase the rate, as in

Example 1 to follow, although this increase is sometimes offset during later movements

of excess bits, or during Step 3 (again as in Example 1). For this reason we move excess

bits according to the procedure outlined in Step 2 even when such movements have the

immediate effect of increasing the overall rate.

Remark 7. Finding the feasible allocation of source components among the various UI

variables that minimizes the rate in (2.9) is NP-hard, as shown by Tehrani et al. [12].

Step 3 : In the final step, we exclusive-OR (XOR) some of the bits included

in the auxiliary random variables. Let UI denote the first auxiliary random vari-

able in the linked list, and suppose that V1, . . . ,Vl denote the excess source bits

that are included in UI . Recall that bits placed in U[m] during Step 1 are not

considered excess. For each i, let Ni denote the set of decoders that need (i.e.,

demand) Vi and let Hi denote the set of decoders that have Vi has side informa-

tion. We search for a pair of components Vi and V j such that Ni ⊂ H j, N j ⊂ Hi, and

Vi and V j were included in the same auxiliary random variable in Step 1 (that is,

Ni ∪ Hi = N j ∪ H j). If there are no such Vi and V j then we proceed to the next U

variable in the linked list. Otherwise, we delete V j from UI , we replace Vi in UI

with Vi ⊕V j, we replace Ni with Ni ∪ N j and Hi with Hi ∩H j. Since both Vi and V j

were placed in the same auxiliary random variable in Step 1, we view the new

Vi as also being placed in that variable in Step 1, although of course the auxiliary

28



random variables constructed in Step 1 did not involve taking the XOR of any

of the source components. We then repeat this process, again looking for Vi and

V j such that Ni ⊂ H j, N j ⊂ Hi, and Vi and V j were included in the same auxiliary

random variable in Step 1. If we find such a pair, we replace them with their

exclusive-OR. We repeat this process until there are no such pairs remaining.

We then apply this procedure to all of the other auxiliary random variables in

the linked list. The complexity of Step 3 is O(m · s3).

Remark 8. Evidently Step 3 will never increase the rate. Moreover, one could certainly

exclusive-OR bits Vi and V j satisfying Ni ⊂ H j and N j ⊂ Hi but for which Vi and V j

are not included in the same auxiliary random variable in Step 1 or for which either Vi

or V j are not excess bits. Choosing to exclusive-OR certain pairs of bits can foreclose

other such choices, however, and the latter choices may ultimately lead to lower rates.

The restriction that we only exclusive-OR bits that are excess and that originated in the

same auxiliary random variable in Step 1 is intended to guide the process toward the

most productive exclusive-OR choices. Of course, once the above process exhausts all

of its exclusive-OR possibilities, one could look for exclusive-OR opportunities among

bits that are not excess or that did not originate in the same auxiliary random variable.

We shall not include this step in the heuristic, however, since it is not necessary in any

of our optimality results or any of our examples.

One can verify that this selection procedure provides a feasible choice of the

UI variables as follows. First note that the choice will be feasible after each step

1. This is because each source component is included in a UI variable that is de-

coded by all of the decoders that demand it. Thus condition 1) in Proposition 1

is satisfied. Condition 2) is satisfied because each UI consists of a subset of the

source components. Step 2 only moves source components from a UI to a UJ for

which I ⊆ J, so it is evident that conditions 1) and 2) continue to hold. Finally,
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the exclusive-OR operation applied in Step 3 evidently never violates condition

2), and the specific conditions under which the exclusive-OR operation is ap-

plied ensures that condition 1) continues to hold.

Notation 1. The achievable rate provided by CAPM is denoted by RCAPM.

Remark 9. Note that CAPM specifies that each message UI consists of a subset of the

source components and possibly bits obtained by applying exclusive-OR to the source

components, all of which are i.i.d Bernoulli random variables. Since each side informa-

tion Yi is a subset of the source S, after applying CAPM, the resulting H(UI |Yi) end up

being the entropy of set of independent Bernoulli random variables. Then, CAPM can

only give integer rates since the entropy of set of i.i.d Bernoulli random variables must

be an integer.

To illustrate CAPM, we provide three examples.

Example 1. Consider the 4-decoder index coding problem instance with demands

f12c , f32c , f3{1,2}c , f1{2,3}c , f4[4], f2[4] where each demand is one bit and ac = [m] \ {a}. Now

we show each step of CAPM.

Step 1: At the end of this step we have

U12 = f12c ,U23 = f32c ,

U123 = f3{1,2}c , f1{2,3}c ,

U1234 = f4[4], f2[4].

Step 2: We start with level-2 messages. The first level-2 message is U12. f12c in U12

is an excess bit and since we already have level-3 message U123 which f12c can be placed

we move f12c to U123. The next message is U23. f32c in U23 is an excess bit and it is also

placed to U123. The messages at this point are

U123 = f3{1,2}c , f1{2,3}c , f12c , f32c ,
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U1234 = f4[4], f2[4]

and we move on to level-3 messages. Note that there is only one level-3 message, U123.

All demands in it are excess bits since H(U123|Y2) = 0. We move all excess bits to U1234,

which is the only one level-4 message. This completes the Step 2 and we have

U1234 = f4[4], f2[4], f3{1,2}c , f1{2,3}c , f12c , f32c

at the end of this step.

Step 3: Note that ( f3{1,2}c , f1{2,3}c) are the only excess bits that were in the same mes-

sage at Step 1 and f3{1,2}c ⊕ f1{2,3}c is decodable at the respective decoders. Hence at the

end of Step 3, selection of the messages is the following:

U1234 = f4[4], f2[4], f3{1,2}c ⊕ f1{2,3}c , f12c , f32c

and all others are empty.

Note that after Step 2 the total rate is 6 bits, whereas after Step 3 the rate is 5

bits. The lower bound in Theorem 2 also gives 5 bits, showing that CAPM achieves the

optimal rate for this example.

Remark 10. Let Ra be a rate obtained by placing fIJ’s in messages (UK’s) by apply-

ing Step 1. Let R∗a be a rate obtained such that fIJ’s are placed in messages (U∗K’s) by

following the Step 1, and applying the Step 2 only for level- 2 messages.

Note that UK = U∗K , for all level-i messages where i > 3. Also, each possible excess

bit (or bits) which we will denote by f ∗IJ ⊆ fIJ, coming from a level-2 message U∗K is such

that either I = {α} or I = {β} where K = {α, β}. Then, when level-2 messages UK and
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U∗K , where K = {α, β}, are not the same, we can write U∗K ∪ f ∗IJ = UK and

max
i∈K
{H(UK |Yi)} = max

i∈K
{H(U∗K ∪ f ∗IJ |Yi)}

= max
i∈K
{H(U∗K |Yi) + H( f ∗IJ |Yi)}

a
= H(U∗K |Yi) + max

i∈K
{H( f ∗IJ |Yi)}

b
= H(U∗K |Yi) + H( f ∗IJ) (2.13)

a: Since all H(U∗K |Yi) for i ∈ K are the same.

b: Since f ∗IJ is such that either I = {α} or I = {β}.

Hence, we can write Ra − R∗a as∑
|I|=3

max
i∈I
{H(UI |Yi)} −

∑
|I|=3

max
i∈I
{H(U∗I |Yi)}


+

∑
|K|=2

max
i∈K
{H(UK |Yi)} −

∑
|K|=2

max
i∈K
{H(U∗K |Yi)}

 ,
which is equal to∑

|I|=3

max
i∈I
{H(UI |Yi)} −

∑
|I|=3

max
i∈I
{H(U∗I |Yi)}

 +
∑

f ∗IJ

H( f ∗IJ), from (2.13).

Since U∗I = UI ∪ f ∗I where f ∗I denotes all of the excess bits in U∗I and

max
i∈I
{H(UI ∪ f ∗I |Yi)} ≤ max

i∈I
{H(UI |Yi)} + H( f ∗I ),

we can write

Ra − R∗a ≥ −
∑
|I|=3

H( f ∗I ) +
∑

f ∗IJ

H( f ∗IJ) = 0.

Note that since we apply Step 2 once to the level-2 messages, the leftover bits

that we get are unique, i.e., independent of the sorted demand sequence given

at the beginning of Step 1 and different leftover bits coming from previous lev-

els (since there is no leftover bit coming to level-2 messages). However, if we
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apply CAPM for an arbitrary instance of an index coding problem, this may not

be the case. In other words, at Step 2 of the CAPM, we may get different excess

bits due to differently sorted demand sequence given at the beginning of Step 1

or different leftover bits coming from previous levels and this may affect the re-

sulting rate. Also, when there are multiple options for leftover bits to be moved,

one may get different rates due to the selection of different next level messages

to move the leftover bits. Lastly, there may be instances of index coding prob-

lem where not moving the bits to the next level gives a lower rate. We would

like to point out that for our optimality results given in the next section, these

issues either do not occur at all or do not affect the rate obtained by applying

CAPM. To illustrate some of these issues, however, we provide the following

examples. For the examples, f a
IJ\UK denotes the leftover bits (a bits) of fIJ from

UK . If all fIJ are leftover bits then we remove the superscript a.

Example 2. Consider the 4-decoder index coding problem instance with demands

f12c , f23c , f31c , f3{1,2}c , f4[4] where f12c , f23c are two bits and the rest are one bit. Now,

we explain each step of the CAPM for this example.

Step 1: At the end of this step we have

U12 = f12c , U23 = f23c , U13 = f31c ,

U123 = f3{1,2}c , U1234 = f4[4].

Step 2: We begin with level-2 messages. Note that all demands at level-2 messages

are excess bits and can be moved to level-3 message, U123. Then we have,

U123 = f3{1,2}c , f12c , f23c , f31c ,

U1234 = f4[4].

We move on to level-3 messages. There is only one level-3 message, U123, and one

bit of f12c , denoted as f 1
12c , is an excess bit. Then we move it to U1234, concluding Step 2.

33



Hence, messages at the end of this step are

U123 = f3{1,2}c , f 1
12c , f23c , f31c ,

U1234 = f4[4], f 1
12c .

Step 3: Since there is no ⊕ opportunity as described in Step 3, the messages at the

end of Step 2 remains the same, giving a total rate of 5 bits.

Note that without loss of generality we can label Decoder 3 as 1 and Decoder 1 as

3. Then, if we apply CAPM with this relabeling we get the following messages at each

step.

Step 1: At the end of this step we have

U32 = f32c , U12 = f21c , U13 = f13c ,

U123 = f1{2,3}c , U1234 = f4[4].

Step 2: We begin with level-2 messages. Similar to previous case all demands at

level-2 messages are excess bits and moved to U123. Then we have,

U123 = f1{2,3}c , f32c , f21c , f13c ,

U1234 = f4[4].

We move on to level-3 messages. As in the previous case, there is only one level-3

message, U123. However, now the excess bits of U123 are f1{2,3}c , f 1
21c , f 1

32c . Then we move

these to U1234, concluding Step 2. Hence, messages at the end of this step are

U123 = f 1
32c , f 1

21c , f13c ,

U1234 = f4[4], f1{2,3}c , f 1
21c , f 1

32c ,

Step 3: Since there is no ⊕ opportunity as described in Step 3, the messages at the

end of Step 2 remains the same, giving a total rate of 6 bits. Thus rate achieved by the

heuristic depends on the indexing of the decoders.
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Example 3. Consider the 5-decoder index coding problem instance with demands

f1[5], f5[5], f2{1,4}c , f3{1,2}c , f4{1,3}c where each demand is one bit. Now we show each step

of the CAPM.

Step 1: At the end of this step we have,

U124 = f2{1,4}c , U123 = f3{1,2}c , U134 = f4{1,3}c ,

U12345 = f1[5], f5[5].

Step 2: We begin with the lowest level, i.e., level-3 for this example. Note that all of

the demands in level-3 messages are excess bits and they are moved to U1234. Then we

have

U1234 = f2{1,4}c , f3{1,2}c , f4{1,3}c ,

U12345 = f1[5], f5[5].

Note that total rate is 4 bits at this state. We move on to level-4 messages. There is only

one level-4 message, U1234. Since H(U1234|Y1) = 0, all demands in U1234 are excess bits

and they are moved to U12345. Then we have

U12345 = f1[5], f5[5], f2{1,4}c , f3{1,2}c , f4{1,3}c , where the total rate is 5 bits.

Step 3: Since there is no ⊕ opportunity as described in Step 3, the messages at the

end of Step 2 remains the same and total rate is 5 bits. Note that if we did not move the

excess bits at level-4 message, the total rate would be 4 bits.

In the next section, we show that applying CAPM gives us the optimal rate

for several specific cases of the index coding problem.
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Figure 2.2: Index coding instance which is also called ”directed cycle”

2.8 Optimality Results for Index Coding

We shall show that CAPM yields the optimal rate for several scenarios. Since

the partition multicast scheme of Tehrani et al. [12] is the most direct antecedent

of CAPM, we begin by showing that CAPM coincides with the MLB, and is

thus optimal, for all of the explicit scenarios for which Tehrani et al. show that

partition multicast is optimal.

First, consider the case depicted in Fig. 2.2, in which there are m decoders,

m source bits, and Decoder k demands source bit k and has source bit k + 1 as

side information, for k ∈ {1, . . . ,m − 1}. Decoder m demands source bit m and

has the first source bit as side information. Such an instance is typically called a

“directed cycle” after its graph-theoretic description.

Proposition 2. For the instance depicted in Fig. 2.2, the achievable rate provided by
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Figure 2.3: Bipartite graph representation of index coding example with
m = 3 and S = {S 1, S 2, S 3}. Circle nodes represent users while
square nodes denote source bits.

CAPM and the lower bound provided by the MLB coincide. In fact

RCAPM = RMLB = m − 1.

Proof of Proposition 2. First we show that RCAPM = m − 1. After Step 1 of CAPM,

the messages are U{i,i+1} = S i+1 for all i ∈ [m − 1] and U{1,m} = S 1. Observe that at

any point of the algorithm, for any non-empty message UI where |UI | = k, there

exists Yj ∈ I such that H(UI |Yj) = k − 1 and k ≥ H(UI |Yi) ≥ k − 1 for all i ∈ I.

Hence after Step 2 of CAPM, H(UI |Yj) will be equal to k − 1 for all j ∈ I for any

nonempty message UI . Now we show that for any non-empty message UI with

|UI | = k, H(UI |Yj) = k − 1 for all j ∈ I if and only if |UI | = m. This will imply

that RCAPM ≤ m − 1. Consider a UI such that |UI | = k and H(UI |Yj) = k − 1 for all

j ∈ I. Let i = min{ j : S j ∈ UI}. Then by virtue of Steps 1) and 2) of CAPM, we

must have i ∈ I. Since H(UI |Yi) = k − 1, we must have S (i+1) ∈ UI as well, where

( j) = (( j − 1) mod m) + 1. Likewise, (i + 1) ∈ I, which implies that (i + 2) ∈ I, etc.

It follows, then, that |I| = |UI | = m.

Conversely, selecting the permutation σ(i) = m − i + 1 in Theorem 2 shows

that RMLB ≥ m − 1.
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We can represent any (groupcast) index coding problem as a bipartite graph

G = (M,S, E) where M, S, and E denote the set of user nodes, the set of source

bit nodes and the set of edges respectively [12]. There is a directed edge (mi, S i),

mi ∈ M, S i ∈ S if and only if mi has S i as side information (i.e., S i ∈ Ymi) and

there is a directed edge (S i,mi), S i ∈ S, mi ∈ M if and only if mi demands S i (i.e.,

S i ∈ fmi and see Figure 2.3 for an example).

Second, we consider an index coding instance represented by a directed

acyclic graph (DAG). Tehrani et al. [12] show that partition multicast achieves

the optimal rate for DAGs and the optimal rate equals to total number of de-

manded bits, s = |S|. Note that for any given instance of an index coding prob-

lem, the rate achieved by CAPM cannot be more than the number of demanded

bits. Thus it suffices to show that the rate s is optimal. Tehrani et al. show

this under the zero-error formulation. Using the MLB, one can show that the

optimal rate is also s under the vanishing block error probability assumption.

Lemma 2. For an instance of the index coding problem represented by a DAG, there

exists a permutation, σ(·), on [m] such that

Yσ(i) ⊆ ∪
i−1
j=1fσ(j), for all i ∈ [m]. (2.14)

Proof of Lemma 2. We follow Neely et al. [40]. Observe that every index coding

problem represented by a DAG must have a node in the graph with no outgo-

ing edges. This node must represent some decoder ` since every source bit is

assumed to be demanded by at least one decoder (see Section 2.4). Decoder `

must then have no side information. Let σ(1) = `.

We then proceed by induction. Suppose the containment in (2.14) holds for

all i in [k] with k < m. Consider the modified index coding instance in which
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we delete Decoders σ(1), . . . , σ(k) and all of their incoming and outgoing edges

in the graph. We also delete any source components that are left with no edges.

This instance must again be a DAG, and since k < m it must have at least one

decoder node, so there must be a decoder ν that has no side information. It

follows that in the original instance, Yν ⊂ ∪
k
j=1fσ( j). We then set σ(k + 1) = ν.

Proposition 3. For DAGs, RCAPM = RMLB = s.

Proof of Proposition 3. By Lemma 2, we have that the Maximin lower bound RMLB

is greater than or equal to

H(fσ(1)|Yσ(1)) + H(fσ(2)|fσ(1),Yσ(1),Yσ(2)) + · · ·

+ H(fσ(m)|fσ(1), . . . , fσ(m−1),Yσ(1), . . . ,Yσ(m))

= H(fσ(1)) + H(fσ(2)|fσ(1)) + · · · + H(fσ(m)|fσ(1), . . . , fσ(m−1)),

giving RMLB ≥ s. Since the rate achieved by CAPM cannot be more than s, it

gives the optimal rate for DAGs.

Finally, Tehrani et al. [12] show that partition multicast achieves the optimal

rate when each decoder demands a single bit and has as side information all of

the other source bits. Note that under these assumptions one may, without loss

of generality, assume that each source bit is demanded by at most one decoder;

two decoders that demand the same source bit must have the same side infor-

mation and therefore one of the two can be deleted without affecting the rate.

Then each source component must be present as side information at either all

or all but one of the decoders.

We shall prove that CAPM is optimal for the more general scenario in which

each source bit is present at none of the decoders, all of the decoders, all but
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one, or all but two. That is, S consists of {G0,Gm,Gm−1,Gm−2}. We do not assume

that each decoder demands a single bit or that each bit is demanded by at most

one decoder.

Theorem 3. The optimal rate, Ropt, for the index coding problem where S =

{G0,Gm,Gm−1,Gm−2} is

Ropt = max{R1, . . . ,Rm} (2.15)

where

Ri =H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fi−1\{∪{i−1,β}⊆[m] fi−1{i−1,β}},

fi, fi+1\{∪{i+1,β}⊆[m] fi+1{i+1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}|Yi) + max
j, j∈[m]\i

f j{i, j}, (2.16)

and is achieved by CAPM.

Proof of Theorem 3. The proof is given in Appendix.

Corollary 1. For any index coding problem with three or fewer decoders, the optimal

rate is given by (2.15), and is achieved by CAPM.

Proof of Corollary 1. Any index coding problem with three or fewer decoders

must have the property that each source component is present as side infor-

mation at either all of the decoders, none of the decoders, all but one, or all but

two.

Note that since CAPM and the MLB only give integer-valued bounds, it fol-

lows that the optimal rate is integer-valued for the scenario described in Theo-

rem 3, and in particular, in Corollary 1. Moreover, Corollary 1 solves the index

coding problem with three decoders and any number of source components. In
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contrast, Arbabjolfaei et al. [14] solve the index coding problem with up to five

source components and any number of decoders. Evidently neither of these

results implies the other, even if one ignores slight differences in the problem

formulation between the two works. It is also worth noting that the Arbabjol-

faei et al. result is numerical while Corollary 1 is analytical. Now we move on

to the proof of Theorem 3.

The following result illustrates the importance of excess bits.

Proposition 4. If the demands of the m-user index coding problem are such that there

are no excess bits after Step 1 of CAPM then the rate obtained by following only Step 1

is optimal. The optimal rate R∗ can be written as

R∗ = max
π
{H(fπ(1)|Yπ(1)) + H(fπ(2)|fπ(1),Yπ(1),Yπ(2))

+ · · ·+

H(fπ(m)|fπ(1),Yπ(1), . . . , fπ(m−1),Yπ(m−1),Yπ(m))} (2.17)

where π(.) denotes the following m permutations on [m]:

(1, 2, . . . ,m), (2, 1, 3, . . . ,m), . . . , (m, 1, . . . ,m − 1).

Proof of Proposition 4. First we show that the achievable rate we get by applying

Step 1 of CAPM gives the expression in (2.17). We begin with the following three

observations. Firstly, all demands of each Decoder i, fi, are in ∪i∈IUI . Secondly,

since the demands are such that there are no excess bits after Step 1, H(UI |Yi) =

H(UI |Yj), for all i, j ∈ I ⊂ [m]. Lastly, demands placed in U[m] at Step 1 cannot

be excess bits since U[m] is the highest level message. Hence H(U[m]|Yi) does not

have to be equal for all i ∈ [m].

41



We can write the achievable rate RCAPM as

RCAPM = max{R1, . . . ,Rm},where

Ri = H(U[m]|Yi) +
∑
I⊂[m]

max
j∈I
{H(UI |Yj)}

a
= H(U[m]|Yi) +

∑
I⊂[m]

H(UI |YiI), (2.18)

where iI is an arbitrary element of I and a is due to the assumption that

H(UI |Yi) = H(UI |Yj), for all i, j ∈ I ⊂ [m].

Let us focus on R1. From (2.18), we can write R1 as

R1 =
∑
C1

H(UI |Y1) +
∑
C2

H(UI |Y2) + · · · +
∑
Cm

H(UI |Ym)

where C1 = {I ⊆ [m]|1 ∈ I}, C2 = {I ⊆ [m]|2 ∈ I, 1 < I}, . . ., Cm = {I ⊆ [m]|m ∈ I,

1 < I, . . . ,m − 1 < I}.

Since all UI’s are independent, and for all collections of subsets J1, . . . J j,

K1, . . .Kk, L1, . . . , Ll, and all subsets {i1, . . . , ip} ⊆ [m], we have that (UJ1 , . . . ,UJ j)

and (UK1 , . . . ,UKk) are conditionally independent given (UL1 , . . . ,ULl), and

(Yi1 , . . . ,Yip), provided that the collections J1, . . . J j and K1, . . .Kk are disjoint, R1

equals

H(∪C1UI |Y1) + H(∪C2UI |Y2) + · · · + H(∪CmUI |Ym)

=H(U1|Y1) + H(U2 \ U1|Y2) + · · · + H(Um \ {U1, . . . ,Um−1}|Ym),

where Ui is defined as ∪I⊆[m]:i∈IUI . By Step 1, no decoder in Ic can demand any

source bit in UI or have it as side information. Then we can write R1 as

R1 = H(U1|Y1) + H(U2 \ U1|Y1,Y2) + · · · + H(Um \ {U1, . . . ,Um−1}|Y1, . . . ,Ym).

(2.19)
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Also, by Step 1, each UI consists of those source bits such that, for each de-

coder i in I, Decoder i either demands the bit or has it as side information. Then

(2.19) becomes

H(f1|Y1) + H(f2 \ f1|Y1,Y2) + · · · + H(fm \ {f1, . . . , fm−1}|Y1, . . . ,Ym)

= H(f1|Y1) + H(f2|f1,Y1,Y2) + · · · + H(fm|f1, . . . , fm−1,Y1, . . . ,Ym). (2.20)

Note that the expression for R1 in (2.20) is equivalent to first expression of the

R∗. Applying the procedure above to the other Ri’s similarly, we see that RCAPM

gives the expression in (2.17). Evidently this expression cannot exceed the lower

bound in Theorem 2, so the proof is complete.

The coded caching problem, which was introduced by Maddah-Ali and

Niesen [41], is closely related to the index coding problem. The coded caching

problem consists of two phases, called the cache allocation phase and the delivery

phase. During the cache allocation phase, the server can decide how to populate

the caches of the various users. Each user then selects some content to demand,

and during the delivery phase the server must broadcast a common message to

all of the clients that allows each one to meet its demand, given its cache con-

tents. Thus the delivery phase of the coded caching problem can be viewed as

an index coding problem.

If we perform the cache allocation as in [42] and each user demands a dif-

ferent file at the delivery phase, then the instance of the index coding problem

that results during the delivery phase satisfies the conditions in Proposition 4

in a certain asymptotic sense. Therefore, CAPM gives the optimal rate for the

delivery phase in this case.
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2.9 S-CAPM: A Heuristic Achieving Fractional Rates

Recall from Remark 9 that CAPM gives only integer rates. However, some in-

stances of the index coding problem are known to have non-integer optimal

rates. We next show how CAPM can be modified to give non-integer rate

bounds, and this modification performs strictly better than CAPM in some ex-

amples. The extension is not polynomial-time computable, however. The fol-

lowing multi-letter extension of Proposition 1 is necessary.

Proposition 5. Let t be a positive integer. The optimal rate Ropt of an index coding

problem is upper bounded by

min
1
t

∑
I⊆[m]

[
max

i∈I
H(U t

I |Y
t
i)
]

where the minimization is over the set of all random variables U t
I jointly distributed

with St such that

1) There exist functions

g1(∪I:1∈IU t
I ,Y

t
1),. . ., gm(∪I:m∈IU t

I ,Y
t
m) such that

gi(∪I:i∈IU t
I ,Y

t
i) = ft

i (S), for all i ∈ [m].

2) Each U t
I is a (possibly empty) vector of bits, each of which is the mod-2 sum of a set

(possibly singleton) of the bits in St.

Proposition 1 can evidently be recovered from Proposition 5 by taking t = 1.

Similar to Proposition 1, Proposition 5 can also be obtained from an achievabil-

ity result of Timo et al. [2]. In this case, we consider a revised setup where each

t consecutive symbols is taken as a single symbol. Then we apply Proposition 1

to this revised setup in order to obtain Proposition 5.
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Now we provide a heuristic, which we call Split Coded Approximate Parti-

tion Multicast (S-CAPM), for selecting the auxiliary random variables in Propo-

sition 5. The steps for S-CAPM are very similar to the ones for CAPM in Sec-

tion 2.7 except for the placement of leftover bits.

Step 1 (Initialization) : This step is exactly the same as in CAPM, except that

we shall parametrize the solution differently. For each k ∈ {1, . . . , |S|} and each

subset I ⊆ [m], let θ(I, k) denote a variable in the interval [0, 1]. We shall interpret

θ(I, k) as the “fraction” of source bit S k that is allocated to the auxiliary random

variable UI . All such variables are initially zero.

For each source component k we set θ(K∪Jc, k) = 1, where K and J are chosen

so that S k is in fKJ. This is assuming that J , [m]. As in CAPM, if J = [m] then

we set θ([m], k) = 1. Note that after this has been done for each k, we have

∑
I⊂[m]

θ(I, k) = 1

for each k. This equality will remain true after Step 2.

Step 2 : As with CAPM, the goal of Step 2 is to promote “excess bits” to

a higher-level message. Since each auxiliary random variable now stores frac-

tional bits, however, both the notion of “excess” and the promotion process are

more involved.

Given the variables {θ(I, k)}, let us define the “conditional entropy” of UI

given Yj as

H(UI |Yj) =
∑

k:S k<Yj

θ(I, k). (2.21)

Note that if θ(I, k) ∈ {0, 1} for all I and k, then this reduces to the conditional

entropy examined in Step 2 of CAPM. We shall be most interested in H(UI |Yj)
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when j ∈ I, although the definition in (2.21) does not require this.

We then perform the following procedure for each subset I. The order in

which we process the different subsets I is not specified by the heuristic, except

that if |I1| < |I2| then I1 must be processed prior to I2. For a given subset I, we

define

i∗ = min{i : H(UI |Yi) = min
l∈I

H(UI |Yl)} (2.22)

and

j∗ = min{ j : H(UI |Yj) = max
l∈I

H(UI |Yl)}. (2.23)

If H(UI |Yi∗) = H(UI |Yj∗) the we are done with this subset and may move to

the next one. If H(UI |Yi∗) < H(UI |Yj∗), then let E denote the set of source bits that

are “excess”

E = {k : θ(I, k) > 0 and S k ∈ Yi∗ but S k < Yj∗}.

We then select a source bit in E to promote to higher-level messages. Con-

sider the set

{k ∈ E : θ(I, k) ≤ H(UI |Yj∗) − H(UI |Yi∗)}. (2.24)

If this set is nonempty, then there is at least one source bit that is “entirely

excess.” We shall select one such bit to promote. Choose an arbitrary

k∗ ∈ arg max{θ(I, k) : k ∈ E and θ(I, k) ≤ H(UI |Y∗j ) − H(UI |Y∗i )}.

We then set θ(I, k∗) = 0 and we increment θ(I′, k∗) for all I′ such that I ⊆ I′ and

|I′| = |I| + 1 by the amount
θ(I, k∗)
|Ic|

.
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In words, we view θ(I, k∗) as an amount of fluid that is removed from UI and

divided equally among the Ic sets I′.

If there are no bits that are entirely excess, i.e., the set in (2.24) is empty, then

choose an arbitrary

k∗ ∈ arg min{θ(I, k) : k ∈ E}.

We then promote only the portion of θ(I, k) that is excess. That is, we replace

θ(I, k) with

H(UI |Y∗j ) − H(UI |Y∗i )

and divide the remaining part,

θ(I, k) − (H(UI |Y∗j ) − H(UI |Y∗i ))

equally among all of the sets I′ such that I ⊂ I′ and |I′| = |I| + 1. Observe that

since θ(I, k) must be rational for all I and k, the process will eventually terminate.

Step 3 : As in CAPM, we now look for opportunities to exclusive-OR source

bits included in the same auxiliary random variable. First we convert the frac-

tional bits described by the θ(·, ·) variables to an integral number by increasing

the parameter t. Observe that θ(I, k) must be rational for each I and k; let t denote

the smallest positive integer so that θ(I, k) · t is an integer for all I and k. Next

recall that for each k ∑
I⊆[m]

θ(I, k) · t = t.

We then divide the block of t bits corresponding to source component k

among the UI variables so that the number of bits that UI receives is θ(I, k)·t. One

can verify that the resulting UI variables satisfy conditions 1) and 2) in Proposi-

tion 5. For each UI variable, we then look for exclusive-OR opportunities as in

Step 3 of CAPM, resulting in revised UI variables that remain feasible.
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Figure 2.4: Index coding example with 4 users

We next illustrate S-CAPM with two examples.

Example 4. In this case, there are 4 decoders with side information and demands as

shown in Fig. 2.4, where f{2,3,4}1c = (S 1, S 2), f21c = (S 3, S 4), f31c = (S 5, S 6), f42c =

(S 7, S 8), f43c = (S 9, S 10), f{1,2,3}4c = (S 11, S 12) and f14c = S 13. By using S-CAPM, we

determine the messages and t of the achievable scheme.

Step 1 : At the end of this step, all of the following θ(I, k)’s are unity:

θ({1, 4}, 13), θ({1, 2}, 3), θ({1, 2}, 4), θ({1, 3}, 5), θ({1, 3}, 6),

θ({2, 4}, 7), θ({2, 4}, 8), θ({3, 4}, 9), θ({3, 4}, 10),

θ([4], 1), θ([4], 2), θ([4], 11), θ([4], 12).

Step 2: We start with level-2 messages. Note that all demands in level-2 messages

are excess bits. Since there are two possible level-3 messages that each demand can move,
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we set all the corresponding θ(I, k)s to 0.5. At this point the nonzero θ(I, k)’s are

θ({1, 2, 4}, 13), θ({1, 2, 4}, 7), θ({1, 2, 4}, 8), θ({1, 2, 4}, 3),

θ({1, 2, 4}, 4),

θ({1, 3, 4}, 13), θ({1, 3, 4}, 9), θ({1, 3, 4}, 10), θ({1, 3, 4}, 5),

θ({1, 3, 4}, 6),

θ({1, 2, 3}, 5), θ({1, 2, 3}, 6), θ({1, 2, 3}, 3), θ({1, 2, 3}, 4),

θ({2, 3, 4}, 7), θ({2, 3, 4}, 8), θ({2, 3, 4}, 9), θ({2, 3, 4}, 10),

θ([4], 1), θ([4], 2), θ([4], 11), θ([4], 12),

where θ(I, k) = 0.5 for all |I| = 3 and θ(I, k) = 1 for all |I| = 4. Now we move on

to level-3 messages. Since there is only one level-4 message, U1234, all possible excess

bits at this stage will be moved to U1234. We start with U124. Since H(U124|Y1) = 1.5,

H(U124|Y2) = 1.5, H(U124|Y4) = 2, we have i∗ = 1, j∗ = 4. We declare, say, S 3 to be

excess and we move all of θ({1, 2, 4}, 3) to U1234. Then we recalculate H(U124|Yi), for

i ∈ {1, 2, 4}. Now i∗ = 2, j∗ = 1 and the fraction of S 7, i.e., θ({1, 2, 4}, 7), becomes an

excess bit. We recalculate H(U124|Yi), for i ∈ {1, 2, 4} and all are equal. Hence we move

on to another level-3 message, say U134. For this message fraction of S 5 and S 9 become

excess bits and are moved to U1234. Lastly, all demands in U123, U234 are excess bits and

moved to U1234. This concludes Step 2.

Step 3: Since there is no XOR opportunities as described in this step, we only require t

to be 2. Then the nonzero θ(I, k)’s are

θ({1, 2, 4}, 13), θ({1, 2, 4}, 8), θ({1, 2, 4}, 4),

θ({1, 3, 4}, 13), θ({1, 3, 4}, 10), θ({1, 3, 4}, 6),

θ([4], 1), θ([4], 2), θ([4], 11), θ([4], 12), θ([4], 3), θ([4], 7),

θ([4], 5), θ([4], 9), θ([4], 6), θ([4], 4), θ([4], 8), θ([4], 10),
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Figure 2.5: Index coding example with 5 users

where θ(I, k) = 0.5 for k ∈ {4, 6, 8, 10, 13} and the rest are 1. As a result, the rate coming

from level-3 and level-4 messages are 2 and 8.5 bits respectively and the total rate for

this problem is 10.5 bits.

From the linear programming lower bound5 stated in [11], we get 10.5 bits showing

that S-CAPM is optimal.

Example 5. We consider the “5-cycle” index coding problem shown in Fig. 2.5. Its

optimal rate is found in [11]. When we apply S-CAPM, we determine the messages and

t as follows:

Step 1 : After this step we have the following nonzero θ(I, k)’s.

θ({1, 2, 5}, 1), θ({1, 2, 3}, 2), θ({2, 3, 4}, 3), θ({3, 4, 5}, 4), θ({1, 4, 5}, 5), where all θ(I, k) =

5This lower bound is for the zero-error setting. However, it can be modified to handle van-
ishing block error probabilities.
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1 for all k ∈ [5].

Step 2 : We start with level-3 messages. Note that all demands in level-3 messages

are excess bits to be moved to level-4 messages. Since each leftover bit has two possible

level-4 messages to go, θ(I, k) = 0.5 for all k ∈ [5]. Then the nonzero θ(I, k)’s are

θ({1, 2, 3, 5}, 1), θ({1, 2, 3, 5}, 2),

θ({1, 2, 4, 5}, 1), θ({1, 2, 4, 5}, 5),

θ({1, 2, 3, 4}, 2), θ({1, 2, 3, 4}, 3),

θ({1, 3, 4, 5}, 4), θ({1, 3, 4, 5}, 5),

θ({2, 3, 4, 5}, 3), θ({2, 3, 4, 5}, 4).

Now, we move on to level-4 messages. Since there are no leftover bits at level-4

messages and all nonzero θ(I, k) = 0.5, we set t = 2 concluding S-CAPM. Hence, the

total rate becomes 2.5 bits which is the optimal rate.
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CHAPTER 3

VECTOR GAUSSIAN RATE-DISTORTION WITH VARIABLE SIDE

INFORMATION

3.1 Introduction

We investigate the special case of Heegard-Berger problem by considering two

decoders. We also take source and side information as jointly Gaussian random

vectors. We obtain four lower bounds using variations on the following argu-

ment. Since the rate-distortion function is known when the side information is

degraded [18], a natural approach to proving lower bounds is to enhance the side

information of one encoder or the other in order to make the problem degraded.

The optimal rate for the newly-obtained instance is thus known and provides a

lower bound on the optimal rate for the original instance. This idea can be ap-

plied several ways, leading to lower bounds of varying strength and usability.

The weakest of these bounds is quite weak but also quite simple. The strongest,

on the other hand, is quite strong but also difficult to apply. The intermediate

bounds attempt to provide the best attributes of both.

We consider three different distortion constraints, all phrased as constraints

on the error covariance matrices, averaged over the block, at the two decoders.

The first stipulates an upper bound on the mean square error of the reproduc-

tion of each component of the source; this can be viewed as constraints on the

diagonal elements of the time-average error covariance matrix. The second re-

quires that the average error covariance matrix itself must be dominated, in a

positive definite sense, by a given scaled identity matrix. In the final case, we re-

quire the trace of the average error covariance matrix to be upper bounded by a
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constant. For each of the three distortion measures, we solve a class of instances

using the lower bounds developed in this chapter. The necessary achievability

arguments are standard, although our analysis does provide insight into how

the auxiliary random variables therein should be chosen. Specifically, we show

how to divide the signal space into “regions,” in which the side information at

one decoder is “stronger” than that of the other. We then show that it is optimal

for certain auxiliary random variables to live in certain of these regions.

The balance of the chapter is organized as follows. The next two sections

provide the problem formulation and the four lower bounds on the optimal rate

and a discussion of how they interrelate, respectively. Section 3.4 contains state-

ment of the main results. All of the achievability analysis is presented in Section

3.5. Section 3.6 contains the proofs of our main results. Section 3.7 contains a

brief epilogue describing a conjectured difference among the lower bounds.

3.2 Problem Definition

Let X,Y1,Y2
1 be correlated vector Gaussian sources 2 of size k × 1, k1 × 1 and

k2×1 respectively where X is the source to be compressed at the encoder and Y1

and Y2 comprise the side information at Decoder 1 and Decoder 2, respectively.

We assume that conditional covariance matrix of X given Yi, KX|Yi , i ∈ {1, 2}

are invertible matrices. Both Decoder 1 and 2 want to reconstruct X subject to

given distortion constraints. The objective is to characterize the rate distortion

function for this setting. The following definitions are used to formulate the

problem precisely.

1We use bold letters to denote vectors.
2Unless otherwise is stated, we assume that all Gaussian random variables are zero mean.
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Definition 8. Γi, i ∈ {1, 2} is defined as a mapping from the set of all k × k positive

semi-definite (PSD) matrices to the set of k0 × k0 PSD matrices such that

1) Γi(·) is linear,

2) A � B3 implies that Γi(A) � Γi(B).

Definition 9. An (n,M,D1,D2) code where D1 and D2 are positive definite matrices,

is composed of

• an encoding function

f : Rkn → {1, ...,M}

• and decoding functions

g1 : {1, ...,M} × Rk1n → Rkn

g2 : {1, ...,M} × Rk2n → Rkn

satisfying the distortion constraints

E

1
n

n∑
k=1

Γi

(
(Xk − X̂ik)(Xk − X̂ik)T

) � Di, i ∈ {1, 2}

where X̂n
1 = g1( f (Xn),Yn

1), and X̂n
2 = g2( f (Xn),Yn

2). We call n the block length and M

the message size of the code.

Definition 10. A rate R is (D1,D2)-achievable if for every ε > 0, there exists an

(n,M,D1 + εI,D2 + εI) code such that n−1 log M ≤ R + ε .

Definition 11. The rate-distortion function is defined as

R(D) = inf{R : R is D-achievable},

where D = (D1,D2).
3A � B means that B − A is a positive semidefinite matrix.
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We shall prove our lower bounds for arbitrary distortion measures Γ satis-

fying the requirements of Definition 8. We conclude this section by introducing

the following notations used in rest of this chapter.

Notation 2. Let X be a k×1 vector where k = l1 + l2. Then (X)l1 denotes the l1×1 vector

consisting of the first l1 × 1 components of X and [X]l2 denotes the remaining part of X.

Notation 3. Let E be a p × p matrix. Then (E)i j denotes the element of E which is in

ith row and jth column of E.

Notation 4. Let E and F be p× p and r×r matrices where p ≥ l1 and r ≥ l2. Then (E)l1

denotes upper-left l1 × l1 submatrix of E and [F]l2 denotes lower-right l2 × l2 submatrix

of F.

Notation 5. Let E and F be p × p and r × r matrices where p ≥ l1 and r ≥ l2. Then

(E)diag denotes p × p diagonal matrix whose diagonal elements are the same as that of

E. Also, (E)l1diag denotes l1 × l1 diagonal matrix whose diagonal elements are the same

as that of upper-left l1 × l1 submatrix of E and [F]l2diag denotes l2 × l2 diagonal matrix

whose diagonal elements are the same as that of lower-right l2 × l2 submatrix of F.

Notation 6. Let E and F be p× p diagonal matrices. Then min{E, F} denotes the p× p

diagonal matrix whose each diagonal entry is the minimum of corresponding diagonal

entries of E and F.

Notation 7. Let (X,Y,Z) be a random vector. Then X ⊥ Y|Z denotes that X and Y are

independent given Z, X↔ Y↔ Z denotes that X, Y and Z forms a Markov chain, and

KX denotes the covariance matrix of X.
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3.3 Lower Bounds

We turn to lower bounds on the optimal rate. We shall provide four such

bounds. In order of strongest (largest) to weakest (smallest), these are

1. The Minimax bound (mLB);

2. The Maximin bound (MLB);

3. The Enhanced Enhancement bound (Enhanced ELB);

4. The Enhancement bound (ELB).

Although the Maximin bound, the Enhanced Enhancement bound, and the

Enhancement bound are never larger than the Minimax bound, they are useful

in that they are simpler to work with in some respects. We begin with the sim-

plest, and weakest, of the bounds. This bound is folklore, and it turns out to be

quite weak indeed.

3.3.1 Enhancement Lower Bound

If the side information at the decoders is degraded, meaning that we can find a

joint distribution of (X,Y1,Y2) such that

X↔ Yσ(1) ↔ Yσ(2) (3.1)

for some permutation σ(.), then the rate distortion function is known [18, 2].

Hence a natural way to obtain a lower bound to R(D) is to create degraded prob-

lems by providing extra side information to one decoder so that the problem
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becomes degraded. We call this lower bound enhancement lower bound, abbrevi-

ated as ELB, due to its similarity to the converse results for broadcast channels

[31]. Proposition 6 states this lower bound.

Proposition 6. The rate distortion function R(D) is lower bounded by

RELB(D) = max{sup
S G

inf
C̃l1(D)

Rlo1, sup
S G

inf
C̃l2(D)

Rlo2}, (3.2)

where

Rlo1 = I(X; W,U|Y1) + I(X; V|W,U,Y), (3.3)

Rlo2 = I(X; W,V|Y2) + I(X; U|W,V,Y), (3.4)

S G = {Y jointly Gaussian with (X,Y1,Y2)|X↔ Y↔ (Y1,Y2)}, and

C̃l1(D) is the set of (W,U,V) such that C̃l2(D) is the set of (W,U,V) such that

(W,U,V)↔ X↔ (Y,Y1,Y2) (W,U,V)↔ X↔ (Y,Y1,Y2)

Γ1
(
KX|W,U,Y1

)
� D1, Γ2

(
KX|W,U,V,Y

)
� D2 Γ1

(
KX|W,U,V,Y

)
� D1, Γ2

(
KX|W,V,Y2

)
� D2.

The ELB is quite weak. Consider, for example, what is arguably the sim-

plest nontrivial instance of the problem: the source X is bivariate, KX, KX|Y1 , and

KX|Y2 are all diagonal, and reconstructions at decoders are subject to component-

wise MSE distortion constraint. This is essentially the parallel scalar Gaussian

version of the problem. If the overall problem is degraded then the ELB is of

course tight. But if one of the two components is degraded in one direction and

the other component is degraded in the other, then Watanabe [5] has shown that

the ELB is not tight, at least for the natural choice of Y that has

KX|Y = min
(
KX|Y1 ,KX|Y2

)
.

Comparing the ELB against the achievable bound in Theorem 8, one sees

several potential sources of looseness. We shall see that the culprit is that the
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distortion constraints

Γ1
(
KX|W,U,Y1

)
� D1

Γ2
(
KX|W,V,Y2

)
� D2

in the achievable bound in Theorem 8 have been weakened to

Γ1
(
KX|W,U,V,Y

)
� D1

Γ2
(
KX|W,U,V,Y

)
� D2

here. Weakening the constraints in this way allows less informative (W,U,V)

to be feasible, because one can make use of the enhanced side information Y

for estimation purposes. We shall make this intuition precise by showing that

the Maximin and Enhanced Enhancement lower bound, which differ from the

ELB only in the distortion constraints, are tight for this problem. For reasons

of expeditiousness, we shall state and prove the Minimax lower bound first,

and then weaken it to obtain the Maximin and Enhanced Enhancement lower

bound.

3.3.2 Minimax Lower Bound

Theorem 4 states the Minimax lower bound, abbreviated as mLB, to the rate dis-

tortion problem.

Theorem 4. The rate distortion function, R(D), is lower bounded by

RmLB(D) = sup
S

inf
Cl(D)

max{Rlo1,Rlo2} (3.5)
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where Rlo1 and Rlo2 are as in (3.3) and (3.4), and

S = {Y|X↔ Y↔ (Y1,Y2)}

Cl(D): the set of (W,U,V) such that

(W,U,V)↔ X↔ (Y1,Y2,Y)

Γ1
(
KX|W,U,Y1

)
� D1,Γ2

(
KX|W,V,Y2

)
� D2.

Proof of Theorem 4 . By definition, for any D−achievable rate, R, and for all ε > 0,

we can find a (n, 2n(R+ε),D + ε(I, I)) code. Let ε > 0 be given and J denote the

output of the encoder. Also let Y be an auxiliary source in S . Then, we can write

n(R + ε) ≥ H(J)

≥ I(Xn,Yn
1,Y

n; J)

a
= I(Yn

1; J) + I(Yn; J|Yn
1) + I(Xn; J|Yn

1,Y
n)

≥ I(Yn; J|Yn
1) + I(Xn; J|Yn

1,Y
n)

b
≥

n∑
i=1

[
I(Yi; J,Y1i|Y1i) + I(Xi; J,Y1i,Yi|Y1i,Yi)

]
(3.6)

where Y1i denotes all Yn
1 except Y1i and a is due to the chain rule, and b is due

to the chain rule and that conditioning reduces entropy. Then if we apply chain

rule to the last term above, the right hand side of (3.6) equals

n∑
i=1

[
I(Yi; J,Y1i|Y1i) + I(Xi; J,Y1i|Y1i,Yi) + I(Xi; Yi|J,Y1i,Y1i,Yi)

]
(3.7)

=

n∑
i=1

[
I(Xi,Yi; J,Y1i|Y1i) + I(Xi; Yi|J,Y1i,Y1i,Yi)

]
≥

n∑
i=1

[
I(Xi; J,Y1i|Y1i) + I(Xi; Yi|J,Y1i,Y1i,Yi)

]
. (3.8)
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Also, since X↔ Y↔ (Y1,Y2) the right hand side of (3.8) is equal to

n∑
i=1

[
I(Xi; J,Y1i|Y1i) + I(Xi; Yi|J,Y1i,Yi)

]
≥

n∑
i=1

[
I(Xi; J,Y1i|Y1i) + I(Xi; Y2i|J,Y1i,Yi)

]
=

n∑
i=1

[
I(Xi; W′

i,U′i|Y1i) + I(Xi; V′i|W′
i,U′i,Yi)

]
(3.9)

where W′
i = J, U′i = Y1i and V′i = Y2i. Note that (W′

i,U′i,V′i) ↔ Xi ↔

(Y1i,Y2i,Yi) for all i ∈ [n]. Let T be a random variable uniformly distributed

on [n] and independentthe source, side information and all (W′
i ,U

′
i ,V

′
i), i ∈ [n].

Then we can write the right hand side of (3.9) as

n∑
i=1

[
I(Xi; W′

i,U′i|Y1i,T = i) + I(Xi; V′i|W′
i,U′i,Yi,T = i)

]
= n

[
I(X; W′,U′,T |Y1) + I(X; V′,T |W′,U′,T,Y)

]
= nRlo1, by denoting (W′,T ), (U′,T ), (V′,T ) as W, U, V respectively. (3.10)

If we swap the role of Y1 and Y2 and apply the same procedure above, we

can get

R + ε ≥ I(X; W,V|Y2) + I(X; U|W,V,Y)

= Rlo2. (3.11)

Note that since (W′
i,U′i,V′i) ↔ Xi ↔ (Y1i,Y2i,Yi) for all i ∈ [n], we have

(W,U,V) ↔ X ↔ (Y1,Y2,Y). Moreover since (W′
i,U′i,Y1i) = (J,Yn

1) and

(W′
i,V′i,Y2i) = (J,Yn

2), given (W′
i,U′i,Y1i) Decoder 1 can reconstruct the source,

Xi, subject to its distortion constraint. Similarly, Decoder 2 can reconstruct the

source, Xi given (W′
i,V′i,Y2i). Hence, (W,U,V) ∈ Cl(D + ε(I, I)) and we have

R(D) ≥ inf
Cl(D+ε(I,I))

max{Rlo1,Rlo2} − ε. (3.12)
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Let R′lo(D + ε(I, I),Y) denote the right hand side of (3.12). Note that (3.12)

holds for any Y ∈ S , where S as in Theorem 4. Hence we can write

R(D) ≥ sup
S

R′lo(D + ε(I, I),Y) − ε. (3.13)

Note that from Lemma 16 in Appendix 6.2, R′lo(D,Y) is convex in D. Since

0 ≺ Di, i ∈ {1, 2} we can find δ(D1,D2) > 0 such that 0 ≺ Di − δ(D1,D2)I for

i ∈ {1, 2}. Hence R′lo(D + γ(I, I),Y) is also convex in γ, where γ ≥ −δ(D1,D2). Note

that supS R′lo(D + ε(I, I),Y) is also convex since supremum of convex functions

is convex. Then, we can conclude that supS R′lo(D + ε(I, I),Y) is continuous at

ε = 0 since a convex function on an open set is continuous. Lastly, since ε was

arbitrary, letting ε → 0 gives the result.

It is worth noting that one can prove a bound similar to mLB for non-

Gaussian sources and general additive distortion constraints. Although the mLB

is quite powerful, it can be difficult to apply. In particular, it is not clear that it

is sufficient to consider (W,U,V) that are jointly Gaussian with (X,Y1,Y2). Sim-

ilarly, when considering the analogous form of this bound for discrete memo-

ryless sources, it it not clear how to obtain cardinality bounds on the auxiliary

random variables (W,U,V). As such, it is not clear how to compute this bound

in general. We shall therefore consider a slightly weakened form of the bound

that is easier to apply. It turns out that simply swapping the min and the max in

the objective and adding that Y is jointly Gaussian with (X,Y1,Y2) to S yields a

bound that is significantly more tractable.
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3.3.3 Maximin Lower Bound

Next proposition gives us Maximin lower bound, abbreviated as MLB.

Proposition 7. The rate distortion function, R(D), is lower bounded by

RMLB(D) = max{sup
S G

inf
Cl1(D)

Rlo1, sup
S G

inf
Cl2(D)

Rlo2}, (3.14)

where Rlo1 and Rlo2 are as in (3.3) and (3.4) respectively, S G as in Proposition 6, and

Cl1(D) : the set of (W,U,V) such that Cl2(D) : the set of (W,U,V) such that

(W,U,V)↔ X↔ (Y1,Y2,Y) (W,U,V)↔ X↔ (Y1,Y2,Y)

Γ1
(
KX|W,U,Y1

)
� D1, Γ2

(
KX|W,V,Y2

)
� D2 Γ1

(
KX|W,U,Y1

)
� D1, Γ2

(
KX|W,V,Y2

)
� D2.

Proof. This follows directly from the mLB, Theorem 4, by moving the inf in the

objective inside the maximization over the bounds in (3.3) and (3.4) and replac-

ing the set S with S G.

Although numerical evidence suggests that the MLB can be strictly weaker

than the mLB (see the discussion in Section 3.7 to follow), the MLB does have

certain advantages. For the analogous bound for discrete memoryless sources

with additive distortion measures, one can obtain cardinality bounds on the

alphabets of W, U, and V using straightforward techniques [43]. And we shall

show that, for the Gaussian form examined here, one may restrict attention to

W, U, and V that are jointly Gaussian with (X,Y1,Y2,Y).

Evidently the MLB differs from the ELB in Proposition 6 only in that the dis-

tortion constraints are replaced with those that appear in the achievable upper

bound presented in Theorem 8, Section 3.5. In Section 3.6, we shall see that this

improvement suffices to make the bound tight for the rate distortion problem
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with MSE distortion constraints stated in Section 3.4. Now, we consider the

fourth and final lower bound.

3.3.4 Enhanced Enhancement Lower Bound

Proposition 8. The rate distortion function, R(D), is lower bounded by

RE2LB(D) = max{sup
S G

inf
C̄l1(D)

Rlo1, sup
S G

inf
C̄l2(D)

Rlo2}, (3.15)

where Rlo1 and Rlo2 are as in (3.3) and (3.4) respectively, S G as in Proposition 6, and

C̄l1(D) : the set of (W,U,V) such that C̄l2(D) : the set of (W,U,V) such that

(W,U,V)↔ X↔ (Y1,Y2,Y) (W,U,V)↔ X↔ (Y1,Y2,Y)

Γ1
(
KX|W,U,Y1

)
� D1, Γ1

(
(K−1

X|W,U,V,Y − K̂)−1
)
� D1,

Γ2

(
(K−1

X|W,U,V,Y − K̃)−1
)
� D2 Γ2

(
KX|W,V,Y2

)
� D2

and K̃ = K−1
X|Y − K−1

X|Y2
, K̂ = K−1

X|Y − K−1
X|Y1

.

Proof. Note that only difference between MLB and Enhanced ELB is the op-

timization sets where the infima are taken. Hence it is enough to show that

Cli(D) ⊆ C̄li(D) for i ∈ {1, 2}. Let (W,U,V) ∈ Cl1(D). Then (W,U,V) sat-

isfy the Markov chain condition (W,U,V) ↔ X ↔ (Y1,Y2,Y) and we have

Γ1
(
KX|W,U,Y1

)
� D1. Also, the inequalities KX|W,U,V,Y2 � KX|W,V,Y2 and K−1

X|W,U,V,Y2
�

K−1
X|W,U,V,Y − K̃ imply, by the Gaussian variance-drop lemma (Lemma 14 in Ap-

pendix 6.1), that Γ2

(
(K−1

X|W,U,V,Y − K̃)−1
)
� D2. Hence (W,U,V) is also in C̄l1(D),

giving Cl1(D) ⊆ C̄l1(D). We can apply similar procedure to get Cl2(D) ⊆ C̄l2(D),

which concludes the proof.
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Comparing the Enhanced ELB against the ELB in (3.2) shows that the dif-

ferences lie entirely in the distortion constraints. The ELB effectively allows the

decoders to use their “enhanced” side information for the purposes of estimat-

ing the source. The achievable bound, by contrast, does not. The Enhanced ELB

allows the decoders to use their enhanced side information, but it also tightens

the constraint to account for this extra information, as justified by the Gaussian

variance-drop lemma. We shall see in the next subsection that the Enhanced

ELB actually coincides with the MLB for all of the problems considered in this

chapter. We mention the Enhanced ELB only because the idea of using the Gaus-

sian variance-drop lemma to tighten the distortion constraints at decoders that

are provided with improved side information may prove useful in other con-

texts.

3.3.5 Properties of the Lower Bounds

It is evident from the proofs in this section that the four lower bounds can be

ordered as follows

RELB(D) ≤ RE2LB(D) ≤ RMLB(D) ≤ RmLB(D).

We shall show that Gaussian auxiliary random variables are optimal for

MLB, Enhanced ELB, and ELB, and that the MLB and Enhanced ELB are in

fact equal. We begin by showing that Gaussian auxiliary random variables are

optimal for the ELB and Enhanced ELB.

Lemma 3. One may add the constraint that (W,U,V) is jointly Gaussian with

(X,Y1,Y2,Y) to the optimization problem in the ELB in (3.2) and the Enhanced ELB

in (3.15) without affecting the optimal value.
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Proof. See Appendix 6.1.

Proposition 9. The Maximin bound and Enhanced ELB in Proposition 7 and 8, re-

spectively, coincide:

RMLB(D) = RE2LB(D). (3.16)

Proof. It suffices to show that

RMLB(D) ≤ RE2LB(D)

By Lemma 3, (W,U,V) in C̄l1(D) or C̄l2(D) can be restricted to vector Gaussian

random variables without loss of optimality. Furthermore, any U ∈ C̄l1 can be

lumped into W ∈ C̄l1(D), i.e. U is deterministic, without loss of optimality since

W and U always appear together both in the objective and the conditions. The

same argument holds when we swap the roles of U and V in C̄l2(D). Hence, with

those additional conditions we can write the optimizing sets, C̄l1(D) and C̄l2(D),

as

C̄l1(D) : C̄l1(D) :

(W,U,V)↔ X↔ (Y1,Y2,Y) (W,U,V)↔ X↔ (Y1,Y2,Y)

(W,U,V,X,Y1,Y2,Y) jointly Gaussian (W,U,V,X,Y1,Y2,Y) jointly Gaussian

U = ∅ V = ∅

KX|W,Y1 � D1, KX|W,V,Y2 � D2 KX|W,U,Y1 � D1, KX|W,Y2 � D2

Then any such (W,U,V) ∈ C̄l1(D) (or (W,U,V) ∈ C̄l2(D)) is also in Cl1(D) (or

Cl2(D)). Hence, RMLB(D) ≤ RE2LB(D).

It follows from the two previous results that Gaussian auxiliary random vari-

ables are optimal for the MLB. To see this, let RG
E2LB

(D) denote the Enhanced
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ELB with the auxiliary random variables constrained to be jointly Gaussian with

(X,Y1,Y2). Define RG
MLB(D) likewise. Then we have

RG
MLB(D) ≥ RMLB(D)

a
= RE2LB(D)

b
= RG

E2LB(D)

c
= RG

MLB(D),

where a follows from Proposition 9, b follows from Lemma 3, and c is straight-

forward to verify.

We now proceed to state our main results, characterization of rate distortion

functions subject to three different distortion constraints.

3.4 Main Results

We shall determine the optimal rate only for the following choices of Γ1, Γ2, D1,

and D2:

1. Mean square error (MSE): Γ1 and Γ2 are chosen as

Γi(K) = (K)diag i ∈ {1, 2}, (3.17)

and D1 and D2 are diagonal matrices satisfying

D1 � KX|Y1 and D2 � KX|Y2 . (3.18)

2. Error covariance matrix: Γ1 and Γ2 are chosen as

Γi(K) = K i ∈ {1, 2} (3.19)
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and D1 and D2 are scaled identity matrices satisfying

D1 � KX|Y1 and D2 � KX|Y2 . (3.20)

Note that scaled identity matrix constraints on the error covariance matrix

enable us to bound the MSE of the reconstruction vector uniformly from

all directions.

3. Trace of the error covariance matrix: Γ1 and Γ2 are chosen as

Γi(K) = Tr(K) i ∈ {1, 2}, (3.21)

and D1 and D2 are scalars satisfying

D1I � KX|Y1 and D2I � KX|Y2 . (3.22)

Most of the prior work on Heegard-Berger problem assumes some sort of

degradedness structure between the source and the side information at the two

decoders (e.g. [18, 5, 6]). Watanabe [5], in particular, assumes that the source and

the side information all consist of two components, and the first components of

all three variables are independent of the second components of all three vari-

ables. The two components are “mismatched degraded,” i.e., each component is

individually degraded, but the two components are degraded in opposite order.

Although we do not assume any degradedness structure, we shall reduce our

problem to one that resembles Watanabe’s. Specifically, we shall decompose the

signal space into “regions,” one of which is such that the side information at De-

coder 1 is “stronger” than that of Decoder 2 and one such that the reverse is true.

Many such candidate decompositions are possible; we shall use the following

approach.
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Recall that we assume that KX|Yi , i ∈ {1, 2} are invertible matrices.4 Now

consider the matrix K−1
X|Y2
−K−1

X|Y1
. Since it is symmetric we can find an orthogonal

matrix Q1 such that Q1(K−1
X|Y2
− K−1

X|Y1
)QT

1 is diagonal. Furthermore, we can find

another orthogonal matrix Q2 such that Q2Q1(K−1
X|Y2
− K−1

X|Y1
)QT

1 QT
2 is of the form

K =

 A 0

0 B

 (3.23)

where A � 0 is an l1 × l1 diagonal matrix, B ≺ 0 is an l2 × l2 diagonal matrix and

l1 + l2 = k.

Let Q = Q2Q1. Note that QDQT = D when D is a scaled identity matrix and

distortion measure in (3.21) is invariant under (X, X̂i)→ (QX,QX̂i).

Note that MSE distortion measure is not invariant under (X, X̂i)→ (QX,QX̂i).

Then for MSE and any Γi such that it is not invariant under (X, X̂i)→ (QX,QX̂i),

we restrict our attention to the source X and side information Yi such that

K−1
X|Y2
− K−1

X|Y1
= K.

Therefore, the rate-distortion problems where QX is the source, Yi is side

information at Decoder i subject to the distortion constraints Di, i ∈ {1, 2} are

equivalent to the problems that we defined at the beginning. For the rest of the

chapter, we assume that QX is the source and we relabel QX as X for the ease of

notation, Y1 and Y2 are side information and D1 and D2 distortion constraints

for Decoder 1 and 2 respectively as shown in Figure 3.1. Note that we have not

entirely reduced the problem to that of Watanabe because the components of X

may be dependent.

4Distortion constraints in (3.20), (3.22), and (3.18) also imply that KX|Y1 and KX|Y2 are positive
definite matrices.
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Figure 3.1: Problem Setup

From now on we use the abbreviation RDS I for the problem of finding

the rate distortion function where reconstructions at decoders are subjected to

error covariance distortion constraints that are scaled identity matrices as in

(3.20) and denote the corresponding rate distortion function as RS c(D), where

D = (D1,D2). Also RDTr and RDmse denote the rate distortion problems where

decoders have distortion constraints as in (3.22) on the trace of error covariance

matrices and (3.18) componentwise MSE constraints respectively. Correspond-

ing rate distortion functions of RDTr and RDmse are denoted by RTr(D) and

RMS E(D) respectively.

Remark 11. Notice that

K−1
X|Y2
− K−1

X|Y1
= K. (3.24)

Since (K−1
X|Y2

)l1 � (K−1
X|Y1

)l1 , we say that Y2 is “stronger” than Y1 in the “region”

involving upper left part of the inverse covariance matrices. Similarly Y1 is “stronger”

than Y2 in lower right part of the inverse covariance matrices since [K−1
X|Y2

]l2 � [K−1
X|Y1

]l2 .

Now we are ready to state our main results.
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Theorem 5. Let KX|Yi , i ∈ {1, 2} be diagonal matrices. Then the rate distortion function

of RDmse, RMS E(D), can be written as

RMS E(D) = max{RMS E
1 (D),RMS E

2 (D)},

where

RMS E
1 (D) =

1
2

log
|KX|Y1 |

|(D1)l1 ||min{[D1]l2 , [D̃2]l2}|
+

1
2

log
|(D̂1)l1 |

|min{(D̂1)l1 , (D2)l1}|
(3.25)

RMS E
2 (D) =

1
2

log
|KX|Y2 |

|[D2]l2 ||min{(D̂1)l1 , (D2)l1}|
+

1
2

log
|[D̃2]l2 |

|min{[D1]l2 , [D̃2]l2}|
, (3.26)

and5 D̂1 = (D−1
1 + K)−1, D̃2 = (D−1

2 − K)−1.

To prove Theorem 5, first we find an upper bound based on the achievable

scheme in [2] in Section 3.5 and then we utilize Enhanced ELB in the previous

section, matching the upper bound.

Remark 12. Theorem 5 subsumes the Gaussian version of Watanabe’s result [5] by

allowing for X to have dimension exceeding two. Watanabe points out that the rate-

distortion for his problem, and thus for ours, does not in general equal the sum of the

individual rate-distortion functions across the components of X, even though they are

independent, independent given either side information vector, and subject to separate

distortion constraints. Thus, even in this case, it is necessary to code across the different

components of X.

Theorem 6. The rate-distortion function for RDS I, RS c(D), can be expressed as

RS c(D) = max{RS c
1 (D),RS c

2 (D)},

5Note that D̂1 and D̃2 are positive definite since D−1
1 � K−1

X|Y1
� 0, D−1

2 � K−1
X|Y2

� 0, and
K−1

X|Y2
= K−1

X|Y1
+ K.
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where

RS c
1 (D) =

1
2

log
|KX|Y1 |

|(D1)l1 ||min{[D1]l2 , [D̃2]l2}|
+

1
2

log
|(D̂1)l1 |

|min{(D̂1)l1 , (D2)l1}|
(3.27)

RS c
2 (D) =

1
2

log
|KX|Y2 |

|[D2]l2 ||min{(D̂1)l1 , (D2)l1}|
+

1
2

log
|[D̃2]l2 |

|min{[D1]l2 , [D̃2]l2}|
, (3.28)

and6 D̂1 = (D−1
1 + K)−1, D̃2 = (D−1

2 − K)−1.

For the direct part of the proof of Theorem 6, we utilize the achievable

scheme in Section 3.5. For the converse result presented in Section 3.6, we use

Enhanced ELB.

Theorem 7. The rate distortion function for RDTr, RTr(D), can be characterized as

RTr(D) = min
CTr(D)

max{RTr
1 (D),RTr

2 (D)}

where

RTr
1 (D) =

1
2

log
|KX|Y1 |

|I + A(KX|W,Y1)l1 |
+

1
2

log
1

|(KX|W,V,Y2)l1 ||[KX|W,U,Y1]l2 |
, (3.29)

RTr
2 (D) =

1
2

log
|KX|Y2 |

|I − B[KX|W,Y2]l2 |
+

1
2

log
1

|(KX|W,V,Y2)l1 ||[KX|W,U,Y1]l2 |
(3.30)

and CTr(D) denotes

(W,U,V) jointly Gaussian with (X,Y1,Y2) (3.31)

(W,U,V)↔ X↔ (Y1,Y2) (3.32)

U ⊥ (X)l1 |(W,Y1), V ⊥ [X]l2 |(W,Y2) (3.33)

KX|W,Y1 ,KX|W,Y2 ,KX|W,U,Y1 ,KX|W,V,Y2 , diagonal (3.34)

Tr((KX|W,Y1)l1) + Tr([KX|W,U,Y1]l2) ≤ D1 (3.35)

Tr((KX|W,V,Y2)l1) + Tr([KX|W,Y2]l2) ≤ D2 (3.36)
6Note that D̂1 and D̃2 are positive definite due to similar reasoning in Theorem 5.
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Remark 13. Let W be jointly Gaussian with (X,Y1,Y2) such that W↔ X↔ (Y1,Y2).

Due to (3.24), KX|W,Y1 is a diagonal matrix if and only if KX|W,Y2 is diagonal.

Similar to the proof of Theorem 6 and 5, we begin with proving the direct

part using the same achievable scheme for RDS I by changing the distortion

measure. For the converse part; however, we utilize mLB that is better than the

Enhanced ELB in general.

3.5 Achievable Scheme

Here, we utilize the random coding arguments similar to [2, 18] to obtain the

following achievable rate.

Theorem 8. Rate distortion function, R(D), is upper bounded by

Rach(D) = inf
Cu(D)

max{I(X; W,U|Y1) + I(X; V|W,Y2), I(X; W,V|Y2) + I(X; U|W,Y1)}

(3.37)

where

Cu(D) : set of (W,U,V) such that

(W,U,V) jointly Gaussian with (X,Y1,Y2)

(W,U,V)↔ X↔ (Y1,Y2)

Γ1
(
KX|W,U,Y1

)
� D1,Γ2

(
KX|W,V,Y2

)
� D2,

and Γi can be equal to one of the mappings in (3.17), (3.19), and (3.21) and the corre-

sponding distortion constraints are as in (3.18), (3.20), and (3.22) respectively.
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Note that since feasible (W,U,V) should be jointly Gaussian with (X,Y1,Y2)

in (3.37), we can write Rach(D) as

Rach(D) = inf
Cu(D)

max{R1,R2}

where

R1 =
1
2

log
|KX|Y1 |

|KX|W,U,Y1 |

|KX|W,Y2 |

|KX|W,V,Y2 |
, (3.38)

R2 =
1
2

log
|KX|Y2 |

|KX|W,V,Y2 |

|KX|W,Y1 |

|KX|W,U,Y1 |
. (3.39)

Here W can be viewed as a common message to both decoders, and U and V

are private messages for Decoder 1 and 2 respectively. The encoder first creates

W via vector quantization with a given Gaussian test channel and then gener-

ates U and V with respect to the source and W. Then W is sent to both decoders

and U and V are sent to Decoder 1 and Decoder 2, respectively. At the Decoder

side, Decoder 1 decodes W and U by using its side information Y1. Similarly,

Decoder 2 decodes W and V using Y2.

To get an explicit expression for the upper bounds we need to specify the

properties of the auxiliary random variables. Next three propositions give an

explicit upper bound on the RMS E(D), RS c(D), and properties of (W,U,V) in the

optimizing set Cu(D) for trace distortion constraints.

Proposition 10. RMS E(D) is upper bounded by

RMS E
u (D) = max{RMS E

1 (D),RMS E
2 (D)}

where RMS E
1 (D) and RMS E

2 (D) are as in (3.25) and (3.26) respectively.

Proof. We start the proof by showing that

G =

 (D̂1)l1 0

0 [D2]l2

 ,
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where D̂1 as in Theorem 5, is dominated by KX|Y2 . Since KX|Y2 and G are diagonal

matrices and D2 � KX|Y2 , it is enough to show that (D̂1)l1 � (KX|Y2)l1 . Note that

D̂1 = (D−1
1 + K)−1 � KX|Y2 since D1 � KX|Y1 . Thus, (D̂1)l1 � (KX|Y2)l1 and G � KX|Y2 .

Then we can select W such that it is jointly Gaussian with X and KX|W,Y2 = G.

This implies

KX|W,Y1 = (K−1
X|W,Y2

− K)−1

= (G−1 − K)−1

=

 (D1)l1 0

0 [D̃2]l2

 ,
where D̃2 is as in Theorem 5.

Lastly, we select U and V jointly Gaussian with X and W such that

KX|W,V,Y2 =

 min{(D̂1)l1 , (D2)l1} 0

0 [D2]l2

 ,
KX|W,U,Y1 =

 (D1)l1 0

0 min{[D1]l2 , [D̃2]l2}

 ,
satisfying the distortion constraints. Evaluating R1 and R2 for this choice of

(W,U,V) gives us RMS E
1 (D) and RMS E

2 (D).

If we take a closer look on the selection of “common” and “private” mes-

sages, we can make the following observation. “common” message is used to

hit the distortion constraint of each decoder with equality on the region where it

is “weaker” in the scheme for RDmse. On the other hand, using both the “com-

mon” and “private” messages, each decoder may undershoot its distortion con-

straint where it is “stronger” depending on D1, D2 and K. Now, we provide the

following proposition which gives an explicit upper bound on RS c(D).
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Proposition 11. RS c(D) is upper bounded by

RS c
u (D) = max{RS c

1 (D),RS c
2 (D)}

where RS c
1 (D) and RS c

2 (D) are as in (3.27) and (3.28) respectively.

Proof. We follow similar approach in the proof of Proposition 10. We take a

particular feasible choice of (W,U,V) in Rach(D) to get an explicit upper bound on

the rate-distortion function, RS c(D). We would like to choose W jointly Gaussian

with X so that KX|W,Y2 is equal to

G =

 (D̂1)l1 0

0 [D2]l2

 .
This is possible if and only if G is dominated by KX|Y2 . To see that this is the

case, note that K−1
X|Y1
� D−1

1 so we have K−1
X|Y1

+ K � D−1
1 + K, where K is in (3.24).

This implies that K−1
X|Y2
� D̂−1

1 since D−1
1 + K = D̂−1

1 .

Now since D1 and D2 are scaled identity matrices, we must have either D1 �

D2 or D1 � D2. We shall show that we have K−1
X|Y2
� G−1 in both cases.

Case 1: D1 � D2.

Note that (D̂−1
1 )l1 � (D−1

1 )l1 � (D−1
2 )l1 . Then

G−1 − D−1
2 =

 (D̂−1
1 )l1 − (D−1

2 )l1 0

0 0


� 0.

So G−1 � D−1
2 � K−1

X|Y2
.

Case 2: D1 � D2.
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Note that [D̂−1
1 ]l2 � [D−1

1 ]l2 � [D−1
2 ]l2 . Then

G−1 − D̂−1
1 =

 0 0

0 [D−1
2 ]l2 − [D̂−1

1 ]l2


� 0.

So G−1 � D̂−1
1 � K−1

X|Y2
. This shows that KX|Y2 � G as desired. Hence we can select

KX|W,Y2 = G.

Now for any W that is jointly Gaussian with X and has the specified KX|W,Y2 ,

we will have

KX|W,Y1 = (K−1
X|W,Y2

− K)−1

=


 (D̂−1

1 )l1 0

0 [D−1
2 ]l2

 −
 A 0

0 B



−1

=

 (D1)l1 0

0 [D̃2]l2

 .
Then select U and V jointly Gaussian with X and W so that

KX|W,V,Y2 =

 min{(D̂1)l1 , (D2)l1} 0

0 [D2]l2

 ,
KX|W,U,Y1 =

 (D1)l1 0

0 min{[D1]l2 , [D̃2]l2}

 .
Note that KX|W,U,Y1 � D1 and KX|W,V,Y2 � D2 as required. Evaluating R1 and R2

for this choice of (W,U,V) gives us RS c
1 (D) and RS c

2 (D).

As in achievable scheme for RDmse in Proposition 10, each decoder hits its

own distortion constraint with equality on the region where it is “weaker” while
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each may undershoot its distortion constraint where it is “stronger” depending

on D1, D2 and K. Now, we provide the following proposition giving additional

constraints on the optimizers in the optimization set Cu(D) when we have trace

distortion constraints.

Proposition 12. RTr(D) is upper bounded by

RTr
u (D) = min

CTr(D)
max{RTr

1 (D),RTr
2 (D)} (3.40)

where RTr
1 (D), RTr

2 (D) and CTr(D) as in Theorem 7.

Proof. Notice that we can include the conditions

U ⊥ (X)l1 |(W,Y1), V ⊥ [X]l2 |(W,Y2) (3.41)

KX|W,Y1 ,KX|W,Y2 ,KX|W,U,Y1 ,KX|W,V,Y2 diagonal (3.42)

to Cu(D) of Rach(D), which gives the result.

3.6 Converse Results

3.6.1 Converse for RDmse and RDS I

It turns out that the Enhancement ELB is sufficient for the RDmse and RDS I, so

we will use that bound. We start our analysis by selecting Y in Enhancement

ELB with properties stated in Lemma 4 below.

Lemma 4. Let joint distribution of source and side information pairs (X,Yi), i ∈ {1, 2}

be given. We can find a random vector, Y, jointly Gaussian with (X,Y1,Y2) such that

X↔ Y↔ (Y1,Y2) (3.43)
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and

K−1
X|Y = K−1

X|Y1
+ K̂ (3.44)

= K−1
X|Y2

+ K̃ (3.45)

where K̂ =

 A 0

0 0

 and K̃ =

 0 0

0 −B

.
Proof. Observe that if (X,Y,Yi) can be coupled so that X ↔ Y ↔ Yi holds for

i ∈ {1, 2} and (X,Y) has the same distribution under both couplings then it is

possible to couple all four variables such that X↔ Y↔ (Y1,Y2) holds.

Next note that the matrix K−1
X|Y1
− K−1

X + K̂ = K−1
X|Y2
− K−1

X + K̃ is positive

semidefinite. Thus, we can find a matrix M such that MT M = K−1
X|Y1
− K−1

X + K̂ =

K−1
X|Y2
− K−1

X + K̃. Then, let N be a Gaussian random vector, independent of X,

with covariance matrix KN = I and let Y = MX + N. Then, K−1
X|Y = K−1

X + MT M =

K−1
X|Y1

+ K̂ = K−1
X|Y2

+ K̃. Since we have KX|Y � KX|Yi , i ∈ {1, 2}, we can couple

(X,Y,Yi) so that X↔ Y↔ Yi.

Let Y be selected as in Lemma 4. By Lemma 3 we can add the condition that

(W,U,V) is jointly Gaussian with the source and side information at decoders to

optimization sets C̄l1 and C̄l2 in Enhanced ELB. Then we can write Rlo1 in (3.15)

as

Rlo1 =
1
2

log
|KX|Y1 |

|KX|W,U,Y1 |

|KX|W,U,Y|

|KX|W,U,V,Y|
.

Likewise, Rlo2 in (3.15) can be written as

Rlo2 =
1
2

log
|KX|Y2 |

|KX|W,V,Y2 |

|KX|W,V,Y|

|KX|W,U,V,Y|
.
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We can further write,

Rlo1 =
1
2

log
|KX|Y1 |

|K−1
X|W,U,Y1

+ K̂|

|K−1
X|W,U,Y1

|

|KX|W,U,V,Y|

=
1
2

log
|KX|Y1 |

|I + K̂KX|W,U,Y1 |

1
|KX|W,U,V,Y|

≥
1
2

log
|KX|Y1 |∏l1+l2

i=1 (1 + (K̂)ii(KX|W,U,Y1)ii)

1∏l1+l2
i=1 (KX|W,U,V,Y)ii

, (3.46)

Now we focus on RDmse where KX|Yi , i ∈ {1, 2} are diagonal matrices and Di,

i ∈ {1, 2} are as in (3.18). Since (W,U,V) is jointly Gaussian with (X,Y1,Y2,Y),

we can write K−1
X|W,U,V,Y2

= K−1
X|W,U,V,Y − K̂, where K̂ as in Lemma 4. Then we can

write (KX|W,U,Y1)diag � D1 and ((K−1
X|W,U,V,Y − K̂)−1)diag � D2, the constraints at C̄l1, as

(KX|W,U,Y1)diag � D1 and (KX|W,U,V,Y2)diag � D2.

The following lemma will be useful for matching the distortion constraints

in the achievable scheme and the Enhanced ELB.

Lemma 5. Let A � 0 be a m × m diagonal matrix, M � 0 be a m × m matrix and Mdiag

denote (M)diag. Then [(Mdiag)−1 + A]−1 � ([M−1 + A]−1)diag.

Proof. See Appendix 6.3.

From (KX|W,U,Y1)diag � D1 and (KX|W,U,V,Y2)diag � D2, the constraints at C̄l1, and

by Lemma 5 we can get

(KX|W,U,Y)diag � (D−1
1 + K̂)−1

(KX|W,U,V,Y)diag � (D−1
2 + K̃)−1

which implies

(KX|W,U,V,Y)diag � min((D−1
1 + K̂)−1, (D−1

2 + K̃)−1).
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Let D̂1 and D̃2 be as in Theorem 5. Note that ((D−1
1 + K̂)−1)l1 = (D̂1)l1 and

[(D−1
1 + K̂)−1]l2 = [D1]l2 Also, ((D−1

2 + K̃)−1)l1 = (D2)l1 and [(D−1
2 + K̃)−1]l2 = [D̃2]l2 .

Then the right hand side of (3.46) is lower bounded by

1
2

log
|KX|Y1 |

|I + A(D1)l1 |

1

|min((D̂1)l1 , (D2)l1)|

1

|min([D1]l2 , [D̃2]l2)|
.

Since

1
2

log
|KX|Y1 |

|I + A(D1)l1 |
=

1
2

log
|KX|Y1 | · |(D̂1)l1 |

|(D1)l1 |
,

we have Rlo1 ≥ RMS E
1 (D). If we follow a similar procedure for Rlo2, we obtain

Rlo2 =
1
2

log
|KX|Y2 |

|I + K̃KX|W,V,Y2 |

1
|KX|W,U,V,Y|

≥
1
2

log
|KX|Y2 |∏l1+l2

i=1 (1 + (K̃)ii(KX|W,V,Y2)ii)

1∏l1+l2
i=1 (KX|W,U,V,Y)ii

≥
1
2

log
|KX|Y2 |

|I − B[D2]l2 |

1

|min((D̂1)l1 , (D2)l1)|

1

|min([D1]l2 , [D̃2]l2)|
.

Since 1
2 log

|KX|Y2 |

|I−B[D2]l2 |
= 1

2 log
|KX|Y2 |·|[D̃2]l2 |

|[D2]l2 |
, we have Rlo2 ≥ RMS E

2 (D). Hence together

with Proposition 10, this proves Theorem 5.

Note that for RDS I we can lower bound the right hand side of (3.46) by

1
2

log
|KX|Y1 |

|I + A(D1)l1 |

1

|min((D̂1)l1 , (D2)l1)|

1

|min([D1]l2 , [D̃2]l2)|
,

where Di, i ∈ {1, 2}, D̂1 and D̃2 are as in Theorem 6. Since

1
2

log
|KX|Y1 |

|I + A(D1)l1 |
=

1
2

log
|KX|Y1 | · |(D̂1)l1 |

|(D1)l1 |
,

we have Rlo1 ≥ RS c
1 (D). If we follow a similar procedure for Rlo2, we obtain

Rlo2 =
1
2

log
|KX|Y2 |

|I + K̃KX|W,V,Y2 |

1
|KX|W,U,V,Y|

≥
1
2

log
|KX|Y2 |∏l1+l2

i=1 (1 + (K̃)ii(KX|W,V,Y2)ii)

1∏l1+l2
i=1 (KX|W,U,V,Y)ii

≥
1
2

log
|KX|Y2 |

|I − B[D2]l2 |

1

|min((D̂1)l1 , (D2)l1)|

1

|min([D1]l2 , [D̃2]l2)|
.
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Since 1
2 log

|KX|Y2 |

|I−B[D2]l2 |
= 1

2 log
|KX|Y2 |·|[D̃2]l2 |

|[D2]l2 |
, we have R̄lo2 ≥ RS c

2 (D). Hence together

with Proposition 11, this proves Theorem 6.

3.6.2 Converse for RDTr

For RDTr, we utilize the mLB. Similar to the converse of RDmse and RDS I, Let

Y in mLB be selected as in Lemma 4. Then, by Lemma 15 in Appendix 6.1 we

can create a Ŷi, i ∈ {1, 2} so that (X,Y,Y1, Ŷi) jointly Gaussian, Ŷi ↔ X ↔ Yi and

E[X|Yi, Ŷi] = E[X|Yi,Y] almost surely. Since Ŷi ↔ X↔ Yi, we can write

Ŷi = AŶi
X + NŶi

, i ∈ {1, 2},

where NŶi
is independent of X and Yi.

Then,

K−1
X|Ŷi,Yi

= K−1
X|Yi

+ AT
Ŷi

K−1
NŶi

AŶi
. (3.47)

Also, since E[X|Yi, Ŷi] = E[X|Yi,Y] almost surely K−1
X|Y = K−1

X|Y,Yi
= K−1

X|Ŷi,Yi
.

Then, from (3.47), K−1
X|Y − K−1

X|Y1
= K̂ and K−1

X|Y − K−1
X|Y2

= K̃,

AT
Ŷ1

K−1
NŶ1

AŶ1
= K̂. (3.48)

AT
Ŷ2

K−1
NŶ2

AŶ2
= K̃. (3.49)

Now, we consider any feasible variable satisfying the constraints in the opti-

mization of Rlo(D) in Theorem 4. We can rewrite Rlo1 in (3.3) as

Rlo1 = I(X; W,U|Y1) + I(X; V|W,U,Y)

= h(X|Y1) − h(X|W,U,Y1) + h(X|W,U,Y) − h(X|W,U,V,Y)

= h(X|Y1) − h(X|W,U,Y1) + h(X|W,U,Y1,Y) − h(X|W,U,V,Y),
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since X ↔ Y ↔ Y1. Furthermore, since X ↔ E[X|Y1,Y] ↔ (Y1,Y) and

X ↔ (Y1,Y) ↔ E[X|Y1,Y], h(X|W,U,Y1,Y) = h(X|W,U, E[X|Y,Y1]). Fur-

thermore, we can write h(X|W,U, E[X|Y,Y1]) = h(X|W,U, E[X|Y1, Ŷ1]), since

E[X|Y1, Ŷ1] = E[X|Y1,Y] almost surely. Then we can write

Rlo1 = h(X|Y1) − h(X|W,U,Y1) + h(X|W,U,Y1, Ŷ1) − h(X|W,U,V,Y)

= h(X|Y1) − I(X; Ŷ1|W,U,Y1) − h(X|W,U,V,Y)

= h(X|Y1) + h(Ŷ1|X,Y1) − h(Ŷ1|W,U,Y1) − h(X|W,U,V,Y)

≥
1
2

log
|KX|Y1 |

|KŶ1 |W,U,Y1
|

|KŶ1 |X,Y1
|

|KX|W,U,V,Y|
(3.50)

with equality if (W,U,V) is Gaussian achieving the given covariance matrices.

Now, let us focus on the ratio
|KŶ1 |X,Y1

|

|KŶ1 |W,U,Y1
|
. Since Ŷ1 ↔ X↔ Y1 we can write

|KŶ1 |X,Y1
|

|KŶ1 |W,U,Y1
|

=
|KNŶ1

|

|KNŶ1
+ AŶ1

KX|W,U,Y1 AT
Ŷ1
|
.

Since KNŶ1
is positive definite we can write it as S Ŷ1

S Ŷ1
where S Ŷ1

is an invertible

matrix. Then we can write,

|KŶ1 |X,Y1
|

|KŶ1 |W,U,Y1
|

=
1

|I + S −1
Ŷ1

AŶ1
KX|W,U,Y1 AT

Ŷ1
S −1

Ŷ1
|

=
1

|I + KX|W,U,Y1 AT
Ŷ1

S −1
Ŷ1

S −1
Ŷ1

AŶ1
|
, by Sylvester’s determinant identity

=
1

|I + KX|W,U,Y1 AT
Ŷ1

K−1
NŶ1

AŶ1
|

=
1

|I + KX|W,U,Y1

 A 0

0 0

 |
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where the last equality is due to (3.48). Then we can write (3.50) as

Rlo1 ≥
1
2

log
|KX|Y1 |

|I + KX|W,U,Y1

 A 0

0 0

 |
1

|KX|W,U,V,Y|

=
1
2

log
|KX|Y1 |

|

 I + (KX|W,U,Y1)l1 A 0

(K[X]l2 (X)l1 |W,U,Y1)l1 A I

 |
1

|KX|W,U,V,Y|

=
1
2

log
|KX|Y1 |

|I + (KX|W,U,Y1)l1 A|
1

|KX|W,U,V,Y|

≥
1
2

log
|KX|Y1 |∏l1

i=1(1 + (KX|W,U,Y1)ii(A)ii)

1∏k
i=1(KX|W,U,V,Y)ii

, by Hadamard inequality,

with equality if (KX|W,U,Y1)l1 and KX|W,U,V,Y are diagonal matrices. Since

KX|W,U,V,Y � KX|W,U,Y and KX|W,U,V,Y � KX|W,V,Y imply (KX|W,U,V,Y)ii ≤

min{(KX|W,U,Y)ii, (KX|W,V,Y)ii} for all i ∈ [k], we can further write

Rlo1 ≥
1
2

log
|KX|Y1 |∏l1

i=1(1 + (KX|W,U,Y1)ii(A)ii)
+

1
2

log
1∏k

i=1 min{(KX|W,U,Y)ii, (KX|W,V,Y)ii}
.

(3.51)

By applying the same procedure as above for the Rlo2 we can get

Rlo2 ≥
1
2

log
|KX|Y2 |∏l2

i=1(1 − ([KX|W,V,Y2]l2)ii(B)ii)
+

1
2

log
1∏k

i=1 min{(KX|W,U,Y)ii, (KX|W,V,Y)ii}
.

(3.52)

We denote right hand sides of (3.51) and (3.52) as R̂lo1 and R̂lo2 respectively.

Next proposition gives a tight lower bound to RTr(d) by specifying the proper-

ties of the optimizers in mLB.

Proposition 13. Rate distortion function of RDTr, RTr(D), is lower bounded by

min
CTr(D)

max{RTr
1 (D),RTr

2 (D)} (3.53)
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where CTr(D), RTr
1 (D) and RTr

2 (D) are as in Theorem 7.

The proof follows from the next 4 lemmas. At each lemma, we show that

without loss of optimality we can add a constrain to the optimization set, Cl(D)

of Theorem 4 for the trace constraints. With those additional constraints Cl(D)

becomes CTr(D) and R̂loi = RTr
i (D) for i ∈ {1, 2}.

Lemma 6. There exist a feasible (WG,UG,VG) for Rlo(D) such that (WG,UG,VG) are

jointly Gaussian with (X,Y,Y1,Y2). Furthermore, such (WG,UG,VG) do not increase

R̂lo1 and R̂lo2.

Proof. Let (WG,UG,VG) be jointly Gaussian with (X,Y,Y1,Y2) such that

(WG,UG,VG)↔ X↔ (Y,Y1,Y2),

KX|WG,UG,Y1 = KX|W,U,Y1 ,

KX|WG,VG,Y2 = KX|W,V,Y2 .

By Lemma 14, we have KX|W,U,Y � KX|WG,UG,Y and KX|W,V,Y � KX|WG,VG,Y. This

implies

min{(KX|W,U,Y)ii, (KX|W,V,Y)ii} ≤ min{(KX|WG,UG,Y)ii, (KX|WG,VG,Y)ii} for all i ∈ [k].

Hence, we can conclude that (WG,UG,VG) is feasible for Rlo(D) and replacing

the (W,U,V) with (WG,UG,VG) on (3.51) and (3.52) does not increase R̂lo1 and

R̂lo2.

Then by Lemma 6 we can write the lower bound

Rlo(D) ≥ R̂lo(D) (3.54)
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where

R̂lo(D) = inf
Ĉl(D)

max{R̂lo1, R̂lo2}

and Ĉl(D) = {(W,U,V) ∈ Cl(D)|(W,U,V) jointly Gaussian with (X,Y,Y1,Y2)}.

The following lemmas show that without loss of optimality we

can add the conditions U ⊥ (X)l1 |(W,Y1), V ⊥ [X]l2 |(W,Y2), and

KX|W,Y1 ,KX|W,U,Y1 ,KX|W,V,Y2 diagonal matrices to Ĉl(D).

Lemma 7. One can add the constraint that KX|W,U,Y1 ,KX|W,V,Y2 are diagonal matrices

to Ĉl(D) without increasing the optimal value, R̂lo(D).

Proof. Note that for each feasible (W,U,V) in Ĉl(D), we can find a (W′,U′,V′)

jointly Gaussian with (X,Y,Y1,Y2) and (W′,U′,V′)↔ X↔ (Y1,Y2,Y) such that

KX|W′,U′,Y1 = (KX|W,U,Y1)diag

KX|W′,V′,Y2 = (KX|W,V,Y2)diag

since KX|W′,U′,Yi � DiI � KX|Yi for i ∈ {1, 2}. Also notice that (W′,U′,V′) sat-

isfies the corresponding distortion constraints. Lastly we need to check that

(KX|W′,U′,Y)diag � (KX|W,U,Y)diag and (KX|W′,V′,Y)diag � (KX|W,V,Y)diag. Since

KX|W′,U′,Y = [K−1
X|W′,U′,Y1

+

 A 0

0 0

]−1

= [((KX|W,U,Y1)diag)−1 +

 A 0

0 0

 , ]−1.

from Lemma 5 we have KX|W′,U′,Y � (KX|W,U,Y)diag and similarly KX|W′,V′,Y �

(KX|W,V,Y)diag. Hence, without loss of optimality we can add the condition that

KX|W,U,Y1 ,KX|W,V,Y2 are diagonal matrices to Ĉl(D).
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By Lemma 7, we can write

R̂lo(D) = inf̂̂Cl(D)

max{R̂lo1, R̂lo2} (3.55)

where ̂̂Cl(D) = {(W,U,V) ∈ Ĉl(D)|KX|W,U,Y1 ,KX|W,V,Y2 are diagonal }.

Lemma 8. One may add the constraints

U ⊥ (X)l1 |W,Y1, (3.56)

V ⊥ [X]l2 |W,Y2, (3.57)

KX|WG,Y1 ,KX|WG,Y2 are diagonal matrices. (3.58)

to the optimization set ̂̂Cl(D) without increasing the optimal value, R̂lo(D).

Proof. Let (W,U,V) be feasible for R̂lo(D), i.e (W,U,V) ∈ ̂̂Cl(D). From these, we

shall construct (W̃, Ũ, Ṽ) that are feasible for R̂lo(D) and also satisfy the condi-

tions in (3.56), (3.57), (3.58) and for which the objective is only lower.

First suppose that d2 ≤ d1. Then note that (KX|W,U,Y1)
−1
l1

0

0 [KX|W,V,Y2]
−1
l2
− B

 �
 d−1

1 I 0

0 d−1
2 I − B


� d−1

1 I

� K−1
X|Y1

,

Then we may choose W̃ such that

K−1
X|W̃,Y1

=

 (KX|W,U,Y1)
−1
l1

0

0 [KX|W,V,Y2]
−1
l2
− B

 (3.59)

in which case we have

K−1
X|W̃,Y2

= K−1
X|W̃,Y1

+ K =

 (KX|W,U,Y1)
−1
l1

+ A 0

0 [KX|W,V,Y2]
−1
l2

 . (3.60)
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Likewise, if d1 < d2, we have (KX|W,U,Y1)
−1
l1

+ A 0

0 [KX|W,V,Y2]
−1
l2

 �
 d−1

1 I + A 0

0 d−1
2 I


� d−1

2 I

� K−1
X|Y2

.

Hence we may choose W̃ such that

K−1
X|W̃,Y2

=

 (KX|W,U,Y1)
−1
l1

+ A 0

0 [KX|W,V,Y2]
−1
l2


in which case

K−1
X|W̃,Y1

= K−1
X|W̃,Y2

− K =

 (KX|W,U,Y1)
−1
l1

0

0 [KX|W,V,Y2]
−1
l2
− B

 .
Thus either way, we may choose W̃ such that (3.59) and (3.60) hold, and so

KX|W̃,Y1
and KX|W̃,Y2

are both diagonal.

Next we choose Ũ and Ṽ such that (W̃, Ũ, Ṽ)↔ X↔ (Y,Y1,Y2) and

KX|W̃,Ũ,Y1
=

 (KX|W̃,Y1
)l1 0

0 min{[KX|W̃,Y1
]l2 , [KX|W,U,Y1]l2}


=

 (KX|W,U,Y1)l1 0

0 min{[KX|W̃,Y1
]l2 , [KX|W,U,Y1]l2}

 (3.61)

and

KX|W̃,Ṽ,Y2
=

 min{(KX|W̃,Y2
)l1 , (KX|W,V,Y2)l1} 0

0 [KX|W̃,Y2
]l2


=

 min{(KX|W̃,Y2
)l1 , (KX|W,V,Y2)l1} 0

0 [KX|W,V,Y2]l2

 . (3.62)
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Evidently we have Ũ ⊥ (X)l1 |W̃,Y1 and Ṽ ⊥ [X]l2 |W̃,Y2, and (W̃, Ũ, Ṽ) satisfy

the distortion constraints.

Finally, from (3.59) we have

K−1
X|W̃,Y

= K−1
X|W̃,Y1

+

 A 0

0 0


=

 (K−1
X|W,U,Y1

)l1 + A 0

0 [K−1
X|W,V,Y2

]l2 − B


=

 (K−1
X|W,U,Y)l1 0

0 [K−1
X|W,V,Y]l2

 . (3.63)

Similarly,

K−1
X|W̃,Ũ,Y

= K−1
X|W̃,Ũ,Y1

+

 A 0

0 0

 .
Substituting (3.61) into this equation gives,

KX|W̃,Ũ,Y =

 (KX|W,U,Y)l1 0

0 min{[KX|W,U,Y]l2 , [KX|W,V,Y]l2}

 . (3.64)

Likewise,

KX|W̃,Ṽ,Y =

 min{(KX|W,U,Y)l1 , (KX|W,V,Y)l1} 0

0 [KX|W,V,Y]l2

 . (3.65)

From (3.61), (3.62), (3.64) and (3.65), we see that the objective for (W̃, Ũ, Ṽ) is

equal to the objective for (W,U,V).

By Lemma 8, we can conclude that R̂lo(D) is equal to RTr
u (D).
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3.7 Concluding Remarks

Recall that we used the Enhanced ELB to prove the converse for the RDmse the

RDS I problems, while for the RDTr problem we used the mLB. It appears that

the other lower bounds are in fact insufficient for the RDTr problem.

Conjecture 1. There exists an instance of the RDTr such that Minimax lower bound

is strictly greater than the Maximin lower bound (and hence the Enhanced ELB and

ELB).

To support this conjecture, one can apply the same arguments in the proof

of Proposition 13 to the each minimization in the MLB separately. This way we

obtain a lower bound, which is the same as in (3.53) except that the minimization

and maximization are swapped. Consider the case where the vectors X, Y1, Y2

are bivariate Gaussian random vectors such that

KX|Y1 =


4
9 0

0 4
9

 , KX|Y2 =


4

17 0

0 4
5


and the distortion constraints are d1 = d2 = 0.15. When we use CVX, a package

for solving convex programs [44, 45], and the sqp function of Octave [46] to solve

for the minimum rate using Theorem 7 we get a solution of 1.7808784 while we

get 1.7802127 when we swap the min and max in (3.53) from both solvers. Thus

it appears that there are instances for which the added strength provided by the

mLB is necessary.
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CHAPTER 4

LP LOWER AND UPPER BOUNDS FOR RATE-DISTORTION WITH

VARIABLE SIDE INFORMATION

4.1 Introduction

Characterizing the rate distortion function can be divided into two main parts,

namely finding an upper bound and a lower bound. Random binning idea is

commonly used as the main ingredient of finding an upper bound (achievable

scheme) and in most of the existing achievable schemes, the encoder encodes

the messages in a certain order and each decoder decodes its received mes-

sages with the help of side information in the same order that they are encoded

[18],[5],[2]. Simultaneous decoding used in some of the channel coding prob-

lems [4] and it decodes the received messages altogether, without imposing any

order on decoding. We adopt this simultaneous decoding idea to rate distortion

problem. Our first main contribution is to provide such an achievable scheme.

An upper bound to the general rate distortion problem was provided by

Heegard et al. in [18] which is proven wrong by Timo et al. by providing a

counter example for 3 decoder case [2]. In the same paper, Timo et al. introduced

another achievable scheme for the general case and it was believed to be the

state of the art scheme for the general rate distortion problem. However, as we

discuss in Section 4.5, this upper bound is not correct for the general case either.

We also compare our scheme with the one introduced by Timo et al. [2] (for

the cases that it gives a valid upper bound) and discuss the advantage of our

scheme over this scheme.
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One natural way of obtaining a lower bound; on the other hand, is to con-

sider a relaxed instance of the problem in which the side information at some

of the decoders is improved in such a way that the problem becomes stochas-

tically degraded. Indeed, most existing lower bounds adopt this approach in

some form [20, 24]. For the special case of index coding, Blasiak et al. [11] pro-

vide a lower bound that takes the form of a linear program (LP), the constraints

for which are derived from properties of the entropy functional, such as sub-

modularity. This raises the question of whether a similar-style bound can be

obtained for more general instances of the problem. The second main contri-

bution of this work is such a bound. It is obtained by introducing a notion of

“generalized side information” and capturing the properties of mutual informa-

tion in the form of a linear program. We show that this lower bound subsumes

several existing lower bounds.

To demonstrate the efficacy of the upper and lower bounds that we intro-

duced, we consider a rate distortion problem obtained by extending the odd-

cycle index coding problem to Gaussian sources with mean squared error (MSE)

distortion constraints. We find an explicit expression for its rate distortion func-

tion.

The outline of this chapter is as follows. Section 4.2 formulates the general

rate distortion problem. Section 4.3 presents the LP-type upper bound based on

simultaneous decoding while Section 4.3.1 provides the extension of this upper

bound to Gaussian sources. In Section 4.4, we provide the LP type lower bound

and in Section 4.5 we show that the LP-type upper and lower bounds subsume

several existing lower bounds. We conclude the chapter by finding the explicit

characterization of odd-cycle Gaussian index coding problem utilizing our up-
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per and lower bounds in Section 4.6.

4.2 Problem Description

Let X denote the source at the encoder and X denote the source alphabet. Also,

Yl ∈ Yl, l ∈ [m] denotes the side information at decoder l and Yl is jointly dis-

tributed with the source, X. Lastly, X̂l ∈ X̂l denotes the reconstruction of the X at

decoder l and Dl denotes the corresponding distortion constraint. Each decoder

wants to reconstruct the source, X, subject to its distortion constraint and we

assume initially that the source alphabet, X, the side information’ alphabets, Yl,

l ∈ [m], and the reconstruction alphabets X̂l, l ∈ [m], are finite. For the sake of

completeness, we state the following definitions to formulate the problem as we

did in Chapter 2.

Definition 12. An (n,M,D) code where n denotes the block length and M denotes the

message size and D = (D1, . . . ,Dm) is composed of

• an encoding function

f : Xn → {1, ...,M}

• and decoding functions

g1 : {1, ...,M} × Yn
1 → X̂

n
1

...

gm : {1, ...,M} × Yn
m → X̂

n
m
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satisfying the distortion constraints

E

1
n

n∑
k=1

dl(Xk, X̂lk)

 ≤ Dl, for l ∈ [m]

where

X̂n
l = gl( f (Xn),Yn

l ), for l ∈ [m]

and dl(·, ·) ∈ [0,∞) is the distortion measure for decoder l.

Definition 13. A rate R is D-achievable, if for every ε > 0 there exists an (n,M,D +

ε1) (where 1 is the all-ones vector) code such that for sufficiently large n, we have

n−1 log M ≤ R + ε.

We define the rate-distortion function as

R(D) = inf{R : R is D-achievable}.

4.3 Simultaneous Decoding Based Upper Bound to R(D)

Here, we present our first main result of this chapter, an upper bound to rate

distortion function R(D). The following notation, which is similar to that in [2],

will be useful to represent the results.

Notation 8. Let (X,Y,Z) be a random vector. Then X ⊥ Y denotes that X and Y are

independent, X ⊥ Y |Z denotes that X and Y are independent given Z, and X ↔ Y ↔ Z

denotes that X, Y and Z forms a Markov chain.

Notation 9. v = S1, . . . ,S2m−1 denotes a list of all possible nonempty subsets of [m],

where each Si denotes a different subset. V denotes the set of all possible such v.
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Notation 10. Let v ∈ V be fixed. US1 ,. . ., US2m−1 denote finite-alphabet random vari-

ables US1 ,. . ., US2m−1 respectively. Pv denotes the set of all distributions onU∗v ×X×Y∗

whereU∗v = US1 × · · · × US2m−1 and Y∗ = Y1 × · · · × Ym.

Notation 11. Let U = {US1 ,US2 , . . . ,US2m−1}, Dl = {Si| l ∈ Si}, and D ′l be a

nonempty subset of Dl. Then we define

UD ′l
=

{
USi ∈ U |Si ∈ D ′l

}
,

U−S j
=

{
USi ∈ U | i < j

}
U−S j,D ′l

=
{
USi ∈ U−S j

|Si ∈ D ′l
}
.

Theorem 9. The rate distortion function, R(D), is upper bounded by

Rach(D) = min
v∈V

inf
Cach,v(D)

inf
CLP

ach

2m−1∑
j=1

RS j (4.1)

where

Cach,v(D) : p ∈Pv, such that

1)p(x, y1, . . . , ym) equals to joint distribution of (X,Y1, . . . ,Ym)

2)U ↔ X ↔ (Y1, . . . ,Ym)

3) There exist functions gl(UDl ,Yl) such that

E
[
dl(X, gl(UDl ,Yl))

]
≤ Dl for all l ∈ [m],

and

CLP
ach :RS j ,R

′
S j
, where S j ∈ v, such that

1)RS j ≥ 0,R′S j
≥ 0 for all j ∈ [2m − 1]

2)RS j ≥ I
(
X,U−S j

; US j

)
− R′S j

for all j ∈ [2m − 1]

3) For each decoder l, l ∈ [m],∑
S j∈D ′l

R′S j
≤

( ∑
S j∈D ′l

H(US j)
)
− H(UD ′l

|UDl\D ′l
,Yl), for all D ′l ⊆ Dl.
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Proof of Theorem 9. See Appendix 7.1.

Remark 14. Using the chain rule, we can rewrite the condition 3) of CLP
ach in Theorem

9 as

for each decoder l, l ∈ [m],∑
S j∈D ′l

R′S j
≤

∑
S j∈D ′l

I
(
US j; U−S j,D ′l

,UDl\D ′l
,Yl

)
, for all D ′l ⊆ Dl. (4.2)

This representation will become useful when we consider rate distortion problems with

continuous sources. Hence, from now on we consider the condition 3) of CLP
ach in the

form of (4.2).

Remark 15. Result of Theorem 9 can be generalized to the case where the source and

side information are random vectors and distortion constraints are component-wise dis-

tortion constraints.

Remark 16. Since Rach(D) is an upper bound to the rate distortion function, R(D), we

can obtain a computable upper bound to R(D) by imposing cardinality bounds on the

alphabets of auxiliary random variables US j in Theorem 9.

Overall scheme can be described as follows. Each US j in Theorem 9 can

be considered as a message for decoder i, i ∈ S j. The encoder encodes each

message US j with respect to the order v ∈ V , using random binning argument.

Here, RS j and R′S j
can be interpreted as the number of bins in the codebook of

message US j and the number of codewords per bin respectively. Then each de-

coder i decodes its messages using simultaneous decoding and reconstructs the

source using these messages and side information Yi subject to its own distor-

tion constraint.
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4.3.1 Rate-Distortion Function with Gaussian Source and Side

Information

Here, we extend the achievable scheme in Theorem 9 to the rate distortion prob-

lem with vector Gaussian sources. More specifically, we are interested in the

following rate distortion problem. Source and side information at decoders,

(X,Y1, . . . ,Ym), are zero mean jointly Gaussian vectors. Source X = (X1, . . . , Xk)

has length k and length of Yi is ki, i ∈ [m].

Notation 12. Let v and w be k×1 vectors. v is lower than or equal to w, v ≤ w, denotes

that ith component of v, denoted by vi, is lower than or equal to wi for all i ∈ [k].

Notation 13. Let M be m × m matrix. (M)d denotes the vector where ith component of

(M)d is equal to ith diagonal element of M, i ∈ [m].

Notation 14. KX denotes the covariance matrix of X. KX|Y is conditional covariance

matrix of X conditioned on Y.

Let Di > 0 for all i ∈ [m]. Distortion constraints are1
n

n∑
k=1

E
[
(Xk − X̂ik)(Xk − X̂ik)T

]
d

≤ Di, for all i ∈ [m], (4.3)

i.e., component-wise mean square error (MS E) distortion constraints. Since we

have MS E distortion constraints, without loss of generality we can take the re-

construction at each decoder as conditional expectation of source given the out-

put of the encoder and the corresponding side information. From now on, we

denote the rate distortion function of this problem as RMS E(D). Now that we

have the necessary definitions and notations, we are ready to state our achiev-

ability result.
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Theorem 10. Let joint distribution of (X,Yi), i ∈ [m] be given. Then rate distortion

function, RMS E(D) is upper bounded by

RG
ach(D) = min

v∈V
RG

ach,v(D) (4.4)

where

RG
ach,v(D) = inf

CG
ach,v(D)

inf
CLP

ach

2m−1∑
j=1

RS j

CG
ach,v(D) : p ∈Pv, such that

1)p(x, y1, . . . , ym) equals to joint distribution of (X,Y1, . . . ,Ym)

2)T is a discrete random variable over [τ] for some positive integer τ

such that T ⊥ (X,Y1, . . . ,Ym).

3)U ↔ X↔ (Y1, . . . ,Ym)

4)KX|UDl ,Yl ≤ Dl for all l ∈ [m]

5)US j = (US j,t,T ) such that US j = US j,t if T = t and all US j,t

jointly Gaussian with (X,Y1, . . . ,Ym),

and I(US j; USi ,X) < ∞ for all S j ∈ [2m − 1],Si ∈ [2m − 1] and i , j,

and CLP
ach is the set of conditions obtained by replacing each X, Yi, and US j in the condi-

tions of CLP
ach in Theorem 9 by X, Yi, and US j respectively.

Remark 17. Since all feasible messages US j in (4.4) are Gaussian mixtures and source

and side information are jointly Gaussian, minimum mean square error (MMSE) esti-

mator becomes linear MMSE estimator. In other words, we can write X̂l = Al,tUDl +

Bl,tYl if T = t, where value of Al,t and Bl,t are determined by the joint distribution

p ∈ CG
ach,v(D).

Proof of Theorem 10. The argument is based on a quantization of source and mes-

sages similar to the procedure in [4, Section 3]. First we quantize the source, all
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messages and side information. Then we apply the achievable scheme in the

proof of Theorem 9 to these quantized variables and show that the rate in (4.4)

is D-achievable for our problem.

Let v ∈ V be fixed and ε > 0 be given. Also let (X,U ,Y1, . . . ,Ym) be such that

joint distribution of it, denoted by p, is in CG
ach,v(D). Note that we can represent

each message US j = AS j,tX + NS j,t, S j ∈ v, if T = t where NS j,t ⊥ (Y1, . . . ,Ym) and

represent side information Yl = BlX + Nl, l ∈ [m] where Nl ⊥ (U ,X). Now we

quantize X and all Yl, l ∈ [m], and we use X notation to denote the quantized

version of X. We do the quantization such that

E
[
(Xi − Xi)2

]
≤ δ(ε) min

l∈[m]
Dli for all i ∈ [k] (4.5)

E
[
(Xi − X̂li)2

]
≤ Dli + δ(ε)Dli for all l ∈ [m] and i ∈ [k], (4.6)

|I
(
X,U−S j

; US j

)
− I

(
X,U

−

S j
; US j

)
| ≤ δ(ε), for all S j ∈ [2m − 1] (4.7)

|
∑

S j∈D ′l

I
(
US j; U−S j,D ′l

,UDl\D ′l
,Yl

)
−

∑
S j∈D ′l

I
(
US j; U

−

S j,D ′l
,UDl\D ′l

,Yl
)
| ≤ δ(ε), (4.8)

for all l ∈ [m] and D ′l ⊆ Dl, where δ(ε) > 0 be specified later, and

U ↔ X↔ X↔ (Y1, . . . ,Ym)↔ (Y1, . . . ,Ym).

Let p denote the joint distribution of (U ,X,Y1, . . . ,Ym). Now, we form a

new problem where the source is X, side information at decoder i is Yi, i ∈ [m],

and distortion constraints are as in (4.6). Note that for this problem, p is in

Cach,v((1 + δ(ε))D) in (4.1). Then we can apply the achievable scheme in the proof

Theorem 9 to the new problem.

Let RLP((1 + δ(ε))D, p) denote the result of the linear program infCLP
ach

∑2m−1
j=1 RS j

in Theorem 9 when joint distribution is p. Then from Theorem 1, rate RLP((1 +
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δ(ε))D, p) is (1 + δ(ε))D-achievable for the new problem. In other words, we can

find a (n,M, (1 + δ(ε))D + ε′1), ε′(ε) > 0 (specified later), code with rate

RLP ((1 + δ(ε))D, p) + ε′(ε) (4.9)

and 1
n

n∑
j=1

E
[
(X j − X̂i j)(X j − X̂i j)T

]
d

≤ (1 + δ(ε))Di + ε′1 for all i ∈ [m], (4.10)

when blocklength, n is sufficiently large.

For our original problem, first we quantize the source, side information and

all the messages distributed by p as described above and then we apply the

(n,M, (1 + δ(ε))D + ε′1) code with rate (4.9) to these quantized variables, joint

distribution of which is p̄. Let RG
LP(D, p) denote the result of the linear program

infCLP
ach

∑2m−1
j=1 RS j in Theorem 10 when joint distribution is p. Note that the linear

programs defining both RLP ((1 + δ(ε))D, p) and RG
LP(D, p) are finite. Thus by (4.7),

(4.8) and standard results on the continuity of linear programs [47], we have that

|RG
LP(D, p) − RLP ((1 + δ(ε))D, p) | ≤ γ(ε),

where γ(ε) → 0 as δ(ε) → 0. Lastly utilizing the Cauchy and Jensen inequalities

and using (4.5) and (4.10) as in [4, Section 3], we can obtain1

1
n

n∑
j=1

E
[
(X j − X̂i j)(X j − X̂i j)T

]
d

≤ δ(ε)Di + (1 + δ(ε))Di + ε′1 + 2
√

(δ(ε))Di((1 + δ(ε))Di + ε′1)

= Di + 2δ(ε)Di + ε′1 + 2
√

(δ(ε))Di((1 + δ(ε))Di + ε′1) for all i ∈ [m], (4.11)

for sufficiently large n.

1When v, w are k × 1 vectors, u = vw is also k × 1 vector such that ui = viwi, i ∈ [k].
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Thus for all sufficiently large n, there exists a code whose rate does not ex-

ceed

RG
LP(D, p) + ε′(ε) + γ(ε)

and whose distortion at the decoder i is dominated by the expression in (4.11).

It follows that RG
LP(D, p) is D-achievable.

4.4 An LP Lower Bound to R(D)

We present our second main result, namely a lower bound with a LP structure

to rate distortion function R(D) of the problem where source X and side infor-

mation Yi are random vectors and the distortion constraint for each decoder i

is di(X, X̂i) ≤ Di. Same definitions for the scalar case are used to formulate this

problem by replacing the scalar source, side information and distortion con-

straints by the vector ones given above. We utilize the following definitions to

represent our results.

Definition 14. [6] B is conditionally less noisy than A given C, denoted as (B �

A|C), if I(W; B|C) ≥ I(W; A|C) for all W such that W↔ (X,C)↔ (A,B).

Definition 15. Given a random vector W, C(W) denotes the set of joint distributions

over two vectors where the first vector has the same marginal distribution as W.

We informally refer to C(W) as the “set of random vectors coupled to W”

and we sometimes write V ∈ C(W) to denote such a random vector.

Definition 16. Given V ∈ C(X) and a mapping U· : C(X) → C(X,V), let RLP
lb (ε)

denote the infinite dimensional LP in Table 4.1, where K(·) varies over all maps from
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Table 4.1: LP for Rate Distortion Problem

inf K(∅) − ε subject to

K(X) = 0 (initialize)

K(A) ≥ 0, for all A (non-negativity)

K(B) + I(B; V,UB|A) ≥ K(A), for all (A,B) couplings : A↔ B↔ X (slope)

K((A,C)) ≥ K((B,C)), for all (A,B) couplings : (B � A|C) (monotonicity)

K(A) ≥ K(B) + I(B; V,UA|A), for all (A,B) couplings : A ↔ B ↔

X (monotonicity+)

K(A)+ K(B) ≥ K(C)+ K((A,B)), for all (A,B,C) couplings : B↔ C↔ A and C =

f1(A) or C = f2(B) (submodularity)

C(X) to [0,∞), f1(·) and f2(·) are deterministic functions. K(·) assign the same number

to all deterministic random variables and K(∅) denotes this common number. Also

whenever (UA,V,X,A,B) appear together, their joint distribution satisfies (UA,V) ↔

X↔ (A,B).

Theorem 11. For any ε > 0, R(D) is lower bounded by

Rlb(D + ε1) = inf
V∈C(X)

inf
U·:C(X)→C(X,V)

RLP
lb (ε) (4.12)

where V and U· in the infima must satisfy

1) For all B ∈ C(X), UB is independent of X;

2) If {B, A1, . . . , As} are all elements of C(X) and can be coupled so that X ↔ B ↔

(A1, . . . , As) then it must be possible to couple UB and (UA1 , . . . ,UAs) to (X,V) such that

X↔ (V,UB)↔ (UA1 , . . . ,UAs).

3) There exists functions g1(V,UY1 ,Y1),. . .,gm(V,UYm ,Ym) such that

E[di(X, gi(V,UYi ,Yi))] ≤ Di + ε1, for all i ∈ [m].

Proof. Let R be a D-achievable rate, ε > 0, p(x) be given and p(yi|x), i ∈ [m] be
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fixed. Then there exists a (n,M,D + ε1) code for some n such that H(I0) ≤ n(R + ε),

where I0 is the output of the encoder. Also, let K(A) =
I(Xn;I0 |An)

n , where A is a

random vector with pmf
∑

x∈X p(a|x)p(x), i.e., A ∈ C(X). We call such A generalized

side information. Lastly, let V′i = I0, U′Ai = (A−i,A+
i), where A−i = (A1, . . . ,Ai−1)

and A+
i = (Ai+1, . . . ,An) for i ∈ [n], and let T denote a random variable that

is uniformly distributed on [n] such that it is independent of the source X, all

generalized side information A, U′Ai, and V′i. Define UA = (U′A,T ), V = (V′,T ).

Note that we have

R + ε ≥ K(∅).

Also, we can write I(Xn; I0|Xn) = 0 and I(Xn; I0|An) ≥ 0, for all A, giving the

(initialize) and (non-negativity) conditions in the LP.

Let A↔ B↔ X. For any such A and B we can write n(K(A) − K(B)) as

I(Bn; I0|An) =

n∑
i=1

I(Bi; I0,B−i,A−i,A+
i|Ai)

≤

n∑
i=1

I(Bi; I0,B−i,B+
i|Ai)

=

n∑
i=1

I(Bi; V′i,U′Bi|Ai).

Since T is independent of X,V′, all generalized side information A and all

U′B, we can write

n(K(A) − K(B)) ≤
n∑

i=1

I(Bi; V′i,U′Bi|Ai,T = i)

= nI(B; V′,U′B|A,T )

= nI(B; V,UB|A),

which gives the (slope) constraints in the LP.
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Let (B � A|C). Then for each such coupling of (B,A,C), n(K((A,C)) −

K((B,C))) is equal to

H(I0|An,Cn) − H(I0|Bn,Cn) ≥ 0, by [6, Lemma 1],

giving the (monotonicity) constraints in the LP.

Now we obtain the monotonicity+ conditions in the LP. Let A ↔ B ↔ X. By

utilizing the chain rule again, we can write n(K(A) − K(B)) as

I(Bn; I0|An) ≥
n∑

i=1

I(Bi; I0,A−i,A+
i|Ai)

=

n∑
i=1

I(Bi; V′i,U′Ai|Ai)

= nI(B; V,UA|A), (4.13)

giving (monotonicity+) conditions.

Let A,B,C be such that A ↔ C ↔ B and C = f1(A) for some deterministic

mapping f1(·). By the chain rule, n(K(A) + K(B)) is equal to

I(Bn; I0|An) + I(Xn; I0|Bn,An) + I(Xn; I0|Bn)

≥ I(Bn; I0|Cn) + I(Xn; I0|Bn,An) + I(Xn; I0|Bn)

≥ I(Bn; I0|Cn) + I(Xn; I0|Bn,An) + I(Xn; I0|Bn,Cn)

= I(Xn,Bn; I0|Cn) + I(Xn; I0|Bn,An)

= I(Xn; I0|Cn) + I(Xn; I0|Bn,An),

By setting C = f2(B) and swapping the role of A and B in the procedure above,

we get the (submodularity) conditions.

Now we find the properties of V and UA that give us the conditions 1)–

3) in Theorem 11 and the Markov chain property in Definition 5. Let A,
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Ā = (A1, . . . , As) for some s be such that X ↔ A ↔ (A1, . . . , As). Firstly, since

any set of U′Ai is independent of Xi and of any set of generalized side infor-

mation Ai’s, all UA’s are independent of X and all A’s. Secondly, note that

Xi ↔ (V′i,U′Ai)↔ (V′i,U′A1i, . . .U′Asi) since

H(V′i,U′Āi|V′i,U′Ai,Xi) = H(Ā−i , Ā
+
i |I0,A−i,A+

i,Xi)

= H(Ā−i , Ā
+
i |I0,A−i,A+

i).

Then X ↔ (V′,U′A) ↔ (V′,U′A1 , . . .U
′
As) implies X ↔ (V,UA) ↔

(V,UA1 , . . .UAs). Furthermore, given (V,UYi) and Yi, i ∈ [m], decoder i can re-

construct the source subject to its own distortion constraint. Lastly, (V,UA) ↔

X↔ (A,B) since (V′i,U′Ai)↔ Xi ↔ (Ai,Bi) for all i ∈ [n].

We can interpret K(A) in the LP as the amount of information that a hypo-

thetical decoder with side information A receives about X from the broadcasted

message. We can also view UA as a quantized representation of the source that

the hypothetical decoder can extract from the message with the help of its side

information A and V as a common message to all decoders.

The (submodularity) condition is so named for the following reason. Let X =

(X1, . . . , Xk), where Xi’s are all independent random variables and let A ⊆ X,

B ⊆ X 2. Then we can write the (submodularity) condition for such A and B as

K(A) + K(B) ≥ K(A ∩ B) + K(A ∪ B).

Remark 18. The lower bound in Theorem 11 can be generalized to continuous

sources with well behaved distortion constraints such as Gaussian sources subject to

component-wise mean square error (MSE) distortion constraints.

2Although X is a vector, we can consider it as an ordered set which also induces an ordered
set structure on the subsets. Hence, we can use the set notation whenever it is convenient.
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The lower bound in Theorem 11 is not evidently computable, since the in-

fimum over K(·) is subject to a continuum of constraints and there are no car-

dinality bounds on the V and U· variables. We next provide a weakened lower

bound that is computable. For this we need the following notation.

Notation 15. Let A ↔ B ↔ X and DA = {Di|Yi ↔ A ↔ X}. Then R(DA) denotes the

result of the following optimization problem:

min
CA

I(B; V|A)

where

CA :V ∈ C(X) such that

there exists functions gi(V,Yi) such that E[di(X, gi(V,Yi))] ≤ Di for all Di ∈ DA.

Theorem 12. Let S A be a finite set of generalized side information variables A ∈ C(X)

and impose K(A) on the elements of S A. For any ε > 0, Rlb(D + ε1) is lower bounded by

R′lb(D + ε1) where R′lb(D + ε1) is equal to

inf K(∅) − ε, (4.14)

where the infimum is over all K(·) : S A → [0,∞) such that

K(X) = 0 (initialize)

K(A) ≥ 0, for all A (non-negativity)

K((A,C)) ≥ K((B,C)), for all (A,B) : (B � A|C) (monotonicity)

K(A) ≥ K(B) + R(DA + ε1), for all (A,B) : A↔ B↔ X (monotonicity+)

K(A) + K(B) ≥ K(C) + K((A,B)), for all (A,B,C) couplings : B ↔ C ↔ A and C =

f1(A) or C = f2(B) (submodularity)

Proof of Theorem 12. Let ε > 0 and V ∈ C(X), and U. : C(X) → C(X,V) satisfying

the conditions 1)–3) in Theorem 11 be given. Also, let LP1 be the linear program
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in Table 4.1 when A, B and C are in S A and solution of LP1 is denoted by R̄LP
lb (ε).

Then RLP
lb (ε) in Theorem 11 is lower bounded by R̄LP

lb (ε). Therefore it is enough

to show R̄LP
lb (ε) ≥ R′lb(D + ε1). Note that the conditions of LP1 and that of the LP

in Theorem 12, denoted by LP2, are the same except the monotonicity+ condition

and that there is no slope condition in LP2. Furthermore, for any A ↔ B ↔ X

the monotonicity+ condition in LP1 implies the monotonicity+ condition in LP2

since I(B; V,UA|A) ≥ R(DA + ε1) by condition 2) and 3) in Theorem 11. Hence,

R̄LP
lb (ε) ≥ R′lb(D + ε1).

Note that R′lb(D+ε1) is computable since we have finite number of conditions

in LP and each R(DA) can be computed by finding the cardinality constraints on

auxiliary random variables V,UA using standard techniques [43].

4.5 Comparison with Other Bounds

4.5.1 Upper Bound

Although there are several achievable schemes for various forms of rate distor-

tion with side information (e.g. [5],[20],[2],[18]), most are for special cases of

the problem. The two exceptions, both of which purport to provide achievable

schemes for the general problem considered here, are Heegard and Berger [18]

and Timo et al. [2]. Heegard and Berger’s achievable result was shown to be

incorrect via a counterexample by Timo et al., who also to provided a corrected

scheme. In fact, the proof of Timo et al.’s achievable result contains an error that

is similar to that of Heegard and Berger. To see this, let us state Timo et al.’s
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achievable result.3

Notation 16. v̄ = S1, . . . ,S2m−1 denotes a list of all possible nonempty subsets of [m],

where each Si denotes a different subset such that |Si| ≥ |S j| for all i < j. V̄ denotes

the set of all possible such v̄.

Notation 17.

U−
′

S j
=

{
USi ∈ U | i < j, Si + S j

}
,

U⊃S j
=

{
USi ∈ U |Si ⊃ S j

}
,

U+
S j

=
{
USk ∈ U | k > j, Sk ∩S j , ∅

}
,

U†S j
=

USi ∈ U−
′

S j
|
∃USk ∈ U+

S j
,

Si ∩Sk , ∅

 , and

U‡S j,l
=

{
USi ∈ U†S j

: Si 3 l
}

when l ∈ S j.

Claim 1 ( Theorem 2,[2]). The rate distortion function R(D) is upper bounded by

RT
ach(D) = min

v̄∈V̄
inf

Cach,v(D)
inf
CLP

T

2m−1∑
j=1

RS j , (4.15)

where Cach,v̄(D) is as in Theorem 9 and

CLP
T : 1)RS j ≥ 0,R′S j

≥ 0 for all j ∈ [2m − 1]

2)RS j ≥ I
(
X,U†S j

,U⊃S j
; US j

)
− R′S j

for all j ∈ [2m − 1]

3)R′S j
≤ min

l∈S j
I
(
US j; U‡S j,l

,U⊃S j
,Yl

)
for all j ∈ [2m − 1].

The proof given by Timo et al. begins as follows. Let v̄ ∈ V̄ be given. The

codebook generation is the same as in the proof of Theorem 9. Encoding is

almost the same except that at each stage j, we select the codeword that it is

3This problem also afflicts Theorem 1 in Timo et al., although we shall focus our discussion on
Theorem 2 of that paper, which is simpler and directly comparable to Theorem 9 in the present.
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jointly typical with only those already-selected codewords that correspond to

the messages U†S j
,U⊃S j

and the source, instead of messages U−S j
and the source

as in Theorem 9. This creates an issue, however, because if the encoding pro-

ceeds in this fashion then there is no guarantee that the variables U†S j
,U⊃S j

are

themselves jointly typical.

To illustrate this, consider the case in which there are six decoders and sup-

pose that v̄ = [6], . . . , {1, 2}, {5, 6}, {3, 4}, {2, 3}, {4, 5}, {6}, {5}, {4}, {3}, {2}, {1}. Choose

U such that all US j = ∅ except U{i,i+1}, for i ∈ [5]. Then the encoding order

of the nontrivial messages is (U{1,2},U{5,6},U{3,4},U{2,3},U{4,5}). When the message

U{3,4} is encoded, the encoder selects a codeword that is jointly typical with the

codewords related to messages U†
{3,4} = (U{1,2},U{5,6}) and the source (note that

U⊃
{3,4} = ∅). However, in previous stages U{1,2} and U{5,6} were not selected in

a way that guarantees that they are jointly typical, since U{1,2} < {U
†

{5,6} ∪ U⊃
{5,6}}

and U{5,6} < {U
†

{1,2} ∪ U⊃
{1,2}}. The rate analysis in Timo et al., specifically the use

of Lemma 3 in that paper, presumes that the codewords corresponding to U{1,2}

and U{5,6} are jointly typical when the codeword for U{3,4} is chosen. This error is

similar to the one in Heegard and Berger [18].4 For the two-decoder case, this

issue does not arise, and the Timo et al. rate is indeed achievable, as is that of

Heegard and Berger.

This error could be fixed in several ways. Our scheme in Theorem 9 avoids

this issue by requiring that each codeword be jointly typical with all of the

previously-selected codewords. If a certain pair of auxiliary random variables

never appear together in any of the mutual information expressions, then one

can impose a conditional independence condition between them without loss

4Unlike the Heegard-Berger result, however, the rate promised by Timo et al.’s achievable
result is not known to be unachievable in general at this point.
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of generality, which is tantamout, from a rate perspective, to not requiring that

they be chosen in a way that ensures their joint typicality.

Our scheme in Theorem 9 differs from the achievable scheme in [2] in two

other respects as well. We do not require that the sets in v be ordered so that

their cardinalities are nonincreasing. Arguably the most notable difference is

in the decoding. While in [2], each decoder decodes its messages sequentially

in the same order that they are encoded, in our scheme we apply simultaneous

decoding, i.e., we decode all messages for decoder i together. We shall see later,

when discussing the odd-cycle index coding problem in Section 4.6, that for a

given class of auxiliary random variables, simultaneous decoding can yield a

strict rate improvement.

We conclude this subsection by showing that for the two-decoder case in

which Claim 1 is valid, the upper bound in [2] is no worse than that of Theo-

rem 9.

Lemma 9. When there are two decoders, Rach(D) is upper bounded by

RT (D) = min
Cach,v(D)

max
i∈{1,2}
{I(X; U{1,2}|Yi)} + I(X; U{1}|U{1,2},Y1) + I(X; U{2}|U{1,2},Y2), (4.16)

where Cach,v(D) is in Theorem 9.

Proof of Lemma 9. Firstly notice that U{1} and U{2} never appear together on the

right-hand side of (4.16). Hence without loss of optimality we can add the

condition U{1} ⊥ U{2}|X,U{1,2} to Cach,v(D) in the right-hand side of (4.16). Let

v = {{1, 2}, {1}, {2}} and US j ∈ Cach,v(D) with U{1} ⊥ U{2}|X,U{1,2}. From the LP
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conditions in Theorem 9, we can write

R{1,2} + R′{1,2} ≥ I(X; U{1,2}) (4.17)

R{1} + R′{1} ≥ I(X,U{1,2}; U{1}) (4.18)

R{2} + R′{2} ≥ I(X,U{1,2},U{1}; U{2}) (4.19)

R′{i} ≤ I(U{i}; U{1,2},Yi), for all i ∈ {1, 2} (4.20)

R′{1,2} ≤ min
i∈{1,2}
{I(U{1,2}; U{i},Yi)} (4.21)

R′{1,2} + R′{i} ≤ I(U{1,2}; Yi) + I(U{i}; U{1,2},Yi), for all i ∈ {1, 2} (4.22)

Then, R′
{1,2} = mini∈{1,2}{I(U{1,2}; Yi)}, R′

{i} = I(U{i}; U{1,2},Yi), R{1,2} + R′
{1,2} = I(X; U{1,2}),

R{1} + R′
{1} = I(X,U{1,2}; U{1}), and R{2} + R′

{2} = I(X,U{1,2},U{1}; U{2}) are feasible and

we can upper bound infCLP
ach

∑3
j=1 RS j in (4.1) by

max
i∈{1,2}
{I(X; U{1,2}|Yi)} + I(X; U{1}|U{1,2},Y1) + I(X; U{2}|U{1,2},Y2) + I(U{1}; U{2}|X,U{1,2}),

(4.23)

which is equal to the mutual information expression in Lemma 9 when U{1} ⊥

U{2}|X,U{1,2}. Therefore, RT (D) ≥ Rach(D).

4.5.2 Lower Bounds

minimax-type Lower Bound

First we compare the general lower bound, Rlb(D+ε1), with the minimax version

of the lower bound in [20]. For completeness, we state the minimax version of

the theorem below.

Theorem 13. Let the pmf’s p(X,Yi) for all i ∈ [m] be given. Then R(D) is lower bounded
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by

Rm
lb(D + ε1) = sup

P̄
inf

C̄
R̄lb − ε, (4.24)

where R̄lb = max
σ

[
I(X; V,UYσ(1)|Yσ(1))

+ I(X; UYσ(2)|V,UYσ(1),Yσ(1),Yσ(2)) + · · ·

+ I(X; UYσ(m)|V,UYσ(1), . . . ,UYσ(m−1),Y)
]
, (4.25)

and Y = (Yσ(1), . . . ,Yσ(m)), and

1) P̄ = {p(X,Y1, . . . ,Ym)|
∑

Y j: j,i p(X,Y1, . . . ,Ym) = p(X,Yi),∀i ∈ [m]}.

2) C̄ denotes the set of (V,UY1 , . . . ,UYm) jointly distributed with X,Y1, . . . ,Ym such that

(Y1, . . . ,Ym) ↔ X ↔ (V,UY1 , . . . ,UYm) and there exists functions g1, . . . , gm with the

property that

E[di(X, gi(V,UYi ,Yi))] ≤ Di + ε,∀i ∈ [m].

3) σ(.) denotes a permutation on integers [m].

The minimax lower bound in Theorem 13 is the state of the art for the general

rate distortion problem with side information at multiple decoders. Note that

in Theorem 13, one can absorb V into UYi , i ∈ [m] without loss of optimality. For

the ease of comparison with Rlb(D + ε1) we do not combine V with UYi , i ∈ [m],

however.

Theorem 14. Rlb(D + ε1) ≥ Rm
lb(D + ε1), where ε > 0.

Proof. Consider Rlb(D + ε1). Note that LP constraints of Rlb(D + ε1) is for all

couplings of the random variables in the Rlb(D + ε1). Hence, we can write,

Rlb(D + ε1) ≥ sup
P̄

inf
V∈C(X)

inf
U·:C(X)→C(X,V)

RLP
lb (ε) (4.26)

where P̄ is as in Theorem 13, and V and U in the infima satisfy the conditions

1)–3) in Theorem 11 for a fixed coupling of the random variables. Now we find
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a lower bound to the RLP
lb (ε) in (4.26) by utilizing the monotonicity and mono-

tonicity+ constraints of the LP in Table 4.1. We can write the following series of

inequalities:

K(∅) ≥ K(Y1) by (monotonicity) (4.27)

K(Y1) ≥ K(Y1,Y2) + I(Y2; V,UY1 |Y1) (4.28)

...

K(Y1, . . . ,Ym) ≥ K(Y1, . . . ,Ym, X) + I(X; V,UY1 , . . . ,UYm |Y1, . . . ,Ym) (4.29)

K(Y1, . . . ,Ym, X) = 0. (4.30)

where (4.28) is from monotonicity+ and (4.29) is from monotonicity+ and

(Y1, . . . ,Ym)↔ X ↔ (V,UY1...Ym)↔ (V,UY1 , . . . ,UYm). If we add all these inequalities

side by side we obtain

K(∅) ≥ I(Y2; V,UY1 |Y1) + · · ·

+ I(Ym; V,UY1 , . . . ,UYm−1 |Y1, . . . ,Ym−1)

+ I(X; V,UY1 , . . . ,UYm |Y1, . . . ,Ym). (4.31)

By applying a series of chain rules and combining terms, we can write the right

hand side of (4.31) as

I(X; V,UY1 |Y1) + · · · + I(X; UY2 |V,UY1 ,Y1,Y2)

+ I(X; UYm |V,UY1 , . . . ,UYm−1 ,Y1, . . . ,Ym)

Let us define

Γk =

k∑
i=2

I(Yi; V,UY1 , . . . ,UYi−1 |Y1, . . . ,Yi−1)+

+ I(X; V,UY1 , . . . ,UYk |Y1, . . . ,Yk)

+

m∑
i=k+1

I(X; UYi |V,UY1 , . . . ,UYi−1 ,Y1, . . . ,Yi)
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for k ∈ [m] where “empty” sums are zero. Note that Γm is equal to right hand

side of (4.31). One can show that Γ1 = Γ2 = . . . = Γm. Hence K(∅) ≥ Γ1.

Also since there are m decoders, we can get m! lower bounds on K(∅) by

considering all possible permutations on integers [m]. Hence, we have K(∅) ≥

R̄lb, and from (4.26) we can write

Rlb(D + ε1) ≥ sup
P̄

inf
V∈C(X)

inf
U·:C(X)→C(X,V)

R̄lb − ε (4.32)

≥ sup
P̄

inf
C̄

R̄lb − ε, (4.33)

where C̄ as in Theorem 13. Lastly, we have (4.33) since each feasible set of ran-

dom variables in the infima (4.32) is also feasible for C̄. Hence, Rlb(D + ε1) ≥

Rm
lb(D + ε1).

LP Lower Bound for the Index Coding Problem

We next compare the general lower bound, Rlb(D + ε1) with the linear program-

ming lower bound in [11] for the index coding problem [8]. In the index coding

problem, the source X = (X1, . . . , Xk) is such that Xi, i ∈ [k] are independent and

identically distributed (i.i.d) Bernoulli
(

1
2

)
random variables and each side in-

formation Yi at decoder i is an arbitrary subset5 of the source X. Each decoder

i wants to reconstruct an arbitrary subset of the source, X̂i ⊆ X \ Yi. The recon-

structions can either be required to be zero error [11] or such that the block error

probability vanishes [20]. Both formulations are more stringent than consider-

ing the problem with Hamming distortion in the limit in which the distortion

goes to zero, so Rlb(ε1) is a valid lower bound to the index coding problem in

all three cases. We first state the LP lower bound in [11], originally stated for
5Although X is a vector, we can consider it as an ordered set which also induces an ordered

set structure on the subsets. Hence, we can use the set notation whenever it is convenient.
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Table 4.2: LP Bound for Index Coding Problem

min K̂(∅) subject to

K̂(X) ≥ |X| (initialize)

K̂(A) + |B \ A| ≥ K̂(B), for all A ⊆ B ⊆ X (slope)

K̂(B) ≥ K̂(A), for all A ⊆ B ⊆ X (monotonicity)

K̂(A) = K̂(B), for all A,B ⊆ X : A B (decode)

K̂(A) + K̂(B) ≥ K̂(A ∩ B) + K̂(A ∪ B),

for all A,B ⊆ X (submodularity).

the zero-error form of the problem. Then we show that limε→0 Rlb(ε1) is equal

to this bound when we restrict the generalized side information, A, in Rlb(ε1)

to be subset of the source, X. From now on we denote this weakened form of

Rlb(ε1) obtained by restricting the generalized side information to be subset of

the source by RI
lb(ε1).

Notation 18. A  B denotes “A decodes B,” meaning that A ⊆ B and for every

source component Xi ∈ B \A there is a decoder j who reconstructs Xi and Yj ⊆ A. Also

S (A) = {Xi| decoder j reconstructs Xi ∈ X and Yj ⊆ A}

Theorem 15 (LP lower bound [11]). The optimal value for the linear program in

Table 4.2 6, denoted by R̂LP
lb , is a lower bound to the index coding problem.

Following two lemmas will be useful to prove weakened lower bound RI
lb(ε1)

is equal to the LP lower bound in Theorem 15.

Lemma 10. Without loss of optimality we can replace the (initialize) and (slope)

6The statement of the result in [11] does not contain the (monotonicity) condition, although
it is clear from the proof that it was intended to be included. The condition is present in the
preprint version of the paper [48].
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conditions to the LP in Table 4.2 with

K̂(X) = |X| (initialize*)

K̂(A) + |B \ {S (A) ∪ A}| ≥ K̂(B), for all A ⊆ B ⊆ X (slope*)

respectively.

Proof. First we show without loss of optimality we can add the initialize* and

slope* conditions to the LP in Table 4.2. Since they are more stringent than

initialize and slope conditions, the result follows. We begin with initialize* con-

dition. Let K̂(A), A ⊆ X be feasible to the LP in Table 4.2 such that K̂(X) > |X|.

Then there exists ε > 0 such that K̂(X) = |X| + ε. Note that K̂(A) − ε, A ⊆ X is also

feasible to the LP in Table 4.2 giving lower objective K̂(∅) − ε. Hence, without

loss of optimality we can insert initialize* condition to the LP in Table 4.2. Now

we show that slope and decode conditions of the LP in Table 4.2 imply the slope*

condition. Let A ⊆ B ⊆ X. If B ∩ S (A) = ∅ then slope and slope* conditions are

equivalent. Otherwise, i.e. if B ∩ S (A) = C , ∅, from decode and slope conditions

we have

K̂(C ∪ A) = K̂(A),

K̂(C ∪ A) + |B \ {C ∪ A}| ≥ K̂(B)

respectively. Since B \ {C∪A} = B \ {S (A)∪A}, decode and slope conditions imply

slope* condition.

Lemma 11. Let ε > 0 and R̄LP
lb (ε1) be optimal value of the LP in Table 4.3. Then

RI
lb(ε1) ≥ R̄LP

lb (ε1) and limε→0 RI
lb(ε1) = R̄LP

lb (0).

Proof. Since the random variables A,B in RI
lb(ε1) are such that A,B ⊆ X, Markov

chain A ↔ B ↔ X is equivalent to A ⊆ B ⊆ X. Then the slope constraints of the
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Table 4.3: Relaxation of the LP in Table 4.1

min K(∅) − ε subject to

K(X) = 0 (initialize)

K(A) ≥ 0, for all A ⊆ X (non-negativity)

K(B) + H(B|A) ≥ K(A), for all A ⊆ B ⊆ X (slope)

K(A) ≥ K(B), for all A ⊆ B ⊆ X (monotonicity)

K(A) ≥ K(B) + H(B|A) − H(B|S (A),A) − ε log |S (A)|, for all A ⊆ B ⊆

X (monotonicity+)

K(A) + K(B) ≥ K(A ∩ B) + K(A ∪ B),

for all A,B ⊆ X (submodularity).

LP in RI
lb(ε1) imply the slope constraints of R̄LP

lb (ε1), since H(B|A) ≥ I(B; V,UB|A).

Furthermore, using Fano’s inequality, it can be seen that monotonicity+ condi-

tions of the LP in RI
lb(ε1) are the same as monotonicity+ conditions of R̄LP

lb (ε1) as

well as the rest of the conditions. Hence, we have RI
lb(ε1) ≥ R̄LP

lb (ε1). Now we

select V = Z where Z is a vector of i.i.d Bernoulli(1
2 ) bits of the same length as X,

Z ⊥ X, and we select UA = (S (A),A)⊕Z,7 A ⊆ X. Note that this selection of V and

UA satisfy the conditions 1)–3) in Theorem 11. Then the solution of the resulting

LP is equal to LP in Table 4.3 where ε log |S (A)| = 0, giving R̄LP
lb (0) − ε ≥ RI

lb(ε1).

Since R̄LP
lb (ε1) is right continuous at ε = 0 [47], letting ε → 0 gives the result.

Theorem 16. limε→0 RI
lb(ε1) = R̂LP

lb .

Proof. Let LP1 and LP2 denote the LPs in Theorem 15 and Table 4.3 with ε = 0,

respectively. By Lemma 10, without loss of optimality we can add initialize* and

slope* conditions in Lemma 10 to LP1 and consider LP1 of this form. Notice that

7a ⊕ b denotes componentwise exclusive-OR operation where the shorter vector is zero
padded.
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R̄LP
lb (0) is the solution of LP2 and from Lemma 11, limε→0 RI

lb(ε1) = R̄LP
lb (0). Hence,

it is enough to show that R̂LP
lb = R̄LP

lb (0). We show it by reparametrizing the LP2

in terms of K̂(A) where K̂(A) = K(A) + H(A). Note that K̂(∅) = K(∅). Hence, the

objective of LP2 is K̂(∅) same as the objective of LP1. Now we show that the

conditions of LP2 and the conditions of LP1 are the same. We can rewrite the

initialize and non-negativity conditions of LP2 as

K̂(X) = H(X)

K̂(A) ≥ H(A) respectively. Together those two conditions are equivalent to ini-

tialize* and slope conditions of LP1.

When we rewrite slope condition of LP2, we get

K̂(B) ≥ K̂(A), monotonicity condition of LP1.

When we rewrite monotonicity and monotonicity+ conditions of LP2, we get

K̂(A) + H(B|A) ≥ K̂(B)

K̂(A) + H(B|S (A),A) ≥ K̂(B) respectively and they are equivalent to slope and

slope* conditions of LP1.

Also, combining submodularity condition of LP2 and H(A) + H(B) = H(B ∩

A) + H(B ∪ A) we can get the same submodularity condition of LP1.

Lastly, from monotonicity+ and slope conditions of LP2, we can obtain K(A) +

H(A) = K(B) + H(B|A) + H(A) for all A  B, which is the decode condition of

LP1. Hence, each condition (or combinations) of LP2 corresponds to a condition

of LP1 and vice versa. Since objective of LP1 and LP2 are the same, we can

conclude that R̂LP
lb = R̄LP

lb (0).

117



4.6 Optimality Results

The LP upper and lower bounds are tight in several instances8. We begin with

two classes of instances for which the rate-distortion function is already known.

Then we continue with odd-cycle index coding problem, which can be consid-

ered as a special case of Heegard-Berger problem. We conclude this section by

finding the explicit characterization of the odd-cycle “Gaussian index coding”

problem using the upper and lower bounds in Theorem 9 and 12 respectively.

4.6.1 Rate Distortion Function with Mismatched Side Informa-

tion at Decoders [5]

In this problem, there is one encoder with source X = (X1, X2) and two decoders

with side information Y1 = (Y11,Y12) and Y2 = (Y21,Y22), respectively. The source

and side information satisfy the following relation

(X1,Y11,Y21) ⊥ (X2,Y12,Y22) (4.34)

X1 ↔ Y11 ↔ Y21 and X2 ↔ Y22 ↔ Y12 (4.35)

8In a recent work [27], rate distortion problem with two decoders having a degraded re-
construction sets is considered and the corresponding rate distortion function is characterized.
Slightly different from our problem setting, one component of the source is reconstructed at
both decoders with vanishing block error probability and the other component of the source is
only reconstructed at a single decoder. The construction of auxiliary random variables in the
converse result of Benammar et al. [27] is crafted for this specific problem setting and not di-
rectly extendable to multiple decoders whereas our LP lower bound is for general rate distortion
problem with side information at multiple decoders. An interesting future direction would be
to investigate whether the LP lower bound subsumes this lower bound too.
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and the reconstructions at decoders, X̂1 = (X̂11, X̂12) and X̂2 = (X̂21, X̂22), are such

that

E[d1i(X1, X̂1i)] ≤ D1i (4.36)

E[d2i(X2, X̂2i)] ≤ D2i for i ∈ [2]. (4.37)

We denote the rate distortion function of this problem as RM(D). Theorem

18 shows that the minimax lower bound in Theorem 13 is greater than or equal

to RM(D), the rate distortion function characterized by Watanabe [5]. Hence, it

implies that lower bounds in both Theorems 13 and 11 are tight for this problem.

Theorem 17 ([5]). Rate distortion function, RM(D), is

RM(D) = min[max{RM
1 ,R

M
2 }], where

RM
1 = I(X1; W1|Y11) + I(X2; W2|Y12) + I(X1; U1|Y11,W1) + I(X2; U2|Y22,W2)

RM
2 = I(X1; W1|Y21) + I(X2; W2|Y22) + I(X1; U1|Y11,W1) + I(X2; U2|Y22,W2),

and the minimization is taken over all auxiliary random variables W1,W2,U1,U2 satis-

fying the following:

1) (Wi,Ui)↔ Xi ↔ (Y1i,Y2i) for i = 1, 2.

2) (W1,U1, X1,Y11,Y21) and (W2,U2, X2,Y12,Y22) are independent of each other.

3) There exist functions g11(W1,U1,Y11) = X̂11, g12(W2,Y12) = X̂12, g21(W1,Y21) = X̂21,

and g22(W2,U2,Y22) = X̂22 such that they satisfy (4.36) and (4.37).

4) |Wi| ≤ |Xi| + 3 and |Ui| ≤ |Xi| · (|Xi| + 3) + 1 for i = 1, 2, where Wi and Ui are

alphabets of Wi and Ui respectively.

Theorem 18. lim infε→0 Rm
lb(D + ε1) ≥ RM(D) and Rach(D) ≤ RM(D).

Proof. We select the joint distribution of (X,Y1,Y2) such that it satisfies (4.35).

First we show lim infε→0 Rm
lb(D + ε1) ≥ RM(D). Let UY = (V,UY1) and UZ = (V,UY2).
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Then R̄lb in Theorem 13 can be written as9 R̄lb = max{R̄lb1, R̄lb2},

R̄lb1 = I(X; UY |Y1) + I(X; UZ |UY ,Y1,Y2)

R̄lb2 = I(X; UZ |Y2) + I(X; UY |UZ,Y1,Y2).

By the chain rule and using (4.35), Rlb1 can be rewritten as

I(X2; UY ,Y11|Y12) + I(X1; UY ,Y12, X2|Y11)

+ I(X2; UZ |UY ,Y11,Y22) + I(X1; UZ |UY ,Y22, X2,Y11)

a
= I(X2; UY ,Y11|Y12) + I(X1; UY ,Y22, X2|Y11)

+ I(X2; UZ |UY ,Y11,Y22) + I(X1; UZ |UY ,Y22, X2,Y11)

b
= I(X2; UY ,Y11|Y12) + I(X1; UY ,Y22, X2,UZ |Y11) + I(X2; UZ |UY ,Y11,Y22)

≥ I(X2; UY ,Y11|Y12) + I(X1; UY ,Y22,UZ |Y11) + I(X2; UZ |UY ,Y11,Y22),

which equals to I(X2; W2|Y12) + I(X1; W1,U1|Y11) + I(X2; U2|W2,Y22) = RM
1 , where

W2 = (V,UY1 ,Y11), W1 = (V,UY2 ,Y22), U1 = UY1 and U2 = UY2 .

a: since I(X1; Y12,Y22|X2,UY ,UZ,Y11) = 0.

b: combining the second and last term

Similarly we have, R̄lb2 ≥ RM
2 .

Note that (UY ,UZ) ↔ (X1, X2) ↔ (Y11,Y12,Y21,Y22) implies the first condition

of the minimization in Theorem 17. Also, distortion constraints of Rm
lb(D + ε1)

implies the third condition of the minimization with ε added to distortion con-

straints in Theorem 17. Hence, we can write

Rm
lb(D + ε1) ≥ inf[max{RM

1 ,R
M
2 }] − ε, (4.38)

where the minimization is over (W1,U1,W2,U2) such that they satisfy first and

third conditions of the minimization in Theorem 17. Also, since (W1,U1) and
9Note that Theorem 13 can be applied to vector valued source and side information at de-

coders.
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(W2,U2) do not appear together, we can add the condition 2) in Theorem 17 to

the minimization in (4.38). Lastly cardinality bounds on (W1,W2,U1,U2) can be

obtained as in RM(D) and right hand side of (4.38) can be shown to be continuous

in ε using the same procedure as in [5].

Now we show that Rach(D) ≤ RM(D). In [5], RT (D) in Lemma 9 is used to

obtain RM(D). Hence, from Lemma 9, we have Rach(D) ≤ RM(D).

4.6.2 Rate Distortion Function with Conditionally Less Noisy

Side Information [6]

There are two decoders, and the distortion measure at decoder 1, d1(., .), is such

that d1(X, X̂) = 0 if X̂ = a(X) and d1(X, X̂) = 1 otherwise, where a(X) is a determin-

istic map. Also the allowable distortion at decoder 1, D1, is taken as zero. Timo

et al. [6] show that their lower bound for this problem is tight if Y2 is condition-

ally less noisy than Y1, i.e., (Y2 � Y1|a(X)), and H(a(X)|Y1) ≥ H(a(X)|Y2). Although

whether the minimax lower bound in Theorem 13 is tight for this problem is not

known, the next theorem shows that Rlb(D + ε1) subsumes the lower bound in

[6] when (Y2 � Y1|a(X)).

Theorem 19. lim infε→0 Rlb(D + ε1) ≥ RLN(D) and Rach(D) ≤ RLN(D) where

RLN(D) =H(a(X)|Y1) + min
W↔X↔(a(X),Y2)

E[d2(X,g2(W,a(X),Y2))]≤D2
|W|≤|X|+1,

I(X; W |a(X),Y2)

is the lower bound in [6, Lemma 5] when (Y2 � Y1|a(X)).

Proof. We begin with showing lim infε→0 Rlb(D + ε1). Similar to proof of Theorem

13, first we consider Rlb(D + ε1). Note that LP constraints of Rlb(D + ε1) is for
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all couplings of the random variables and we can include any valid generalized

side information to the optimization. Hence for a given ε > 0 we can write,

Rlb(D + ε1) ≥ inf
V∈C(X)

inf
U·:C(X)→C(X,V)

RLP
lb (ε) (4.39)

where the LP constraints for the random variables (X, a(X),Y1,Y2), are as in the

problem description. Now we find a lower bound to the RLP
lb (ε) in (4.39) by uti-

lizing some of the LP constraints. Note that we can write

K(∅) ≥ K(Y1) by (monotonicity)

K(Y1) ≥ K(a(X),Y1) + H(a(X)|Y1) − δ(ε), by (monotonicity+),

Fano’s inequality, and δ(ε) > 0,

K(a(X),Y1) ≥ K(a(X),Y2) by (monotonicity),

K(a(X),Y2) ≥ I(X; V,Ua(X)Y2 |a(X),Y2) by (monotonicity+) and K(X, a(X),Y2) = 0.

Hence, Rlb(D + ε1) is lower bounded by

inf
V∈C(X)

inf
U·:C(X)→C(X,V)

H(a(X)|Y1) + I(X; V,Ua(X)Y2 |a(X),Y2) − δ(ε).

By finding the cardinality constraint on (V,Ua(X)Y2) and letting ε → 0, we have

the result.

Now we show that Rach(D) ≤ RLN(D). By selecting the auxiliary random vari-

ables U{1,2} = a(X), U{1} = ∅ and U{2} = W in Lemma 9 and imposing cardinality

bound constraint |W| ≤ |X| + 1, we have Rach(D) ≤ RLN(D).

4.6.3 Odd-cycle Index Coding Problem

The source X = (X1, . . . , Xm), where m ≥ 5 is an odd number, is i.i.d Bernoulli ( 1
2 )

bits. The side information at decoder i, i ∈ [m] is Yi = (Xi−1, Xi+1), where + and

122



− in subscripts are modulo-m operations, and decoder i wishes to reconstruct Xi

with a vanishing block error probability.

Although the achievability result Theorem 9 is for per-letter distortion con-

straints, it can be modified to handle block error probabilities. Let v ∈ V be

as follows. When we sort the elements Si and S j in increasing order, the re-

sulting number obtained by concatenating the sorted elements of Si is greater

than that of S j for all i < j. To illustrate, let us consider three decoder case.

Then v = {{1, 2, 3}, {2, 3}, {1, 3}, {1, 2}, {3}, {2}, {1}}. Then we select the messages US j ,

S j ∈ v such that

U jk = (X j, Xk) for j ∈ [m], k ≡ j + 1 mod m (4.40)

and all the other messages USj = ∅. 10 Let j ∈ [m], i ≡ j − 1 mod m, k ≡ j + 1

mod m, l ≡ k + 1 mod m. Then from the conditions in CLP
ach, we can write

R jk ≥ I
(
X; U jk

)
− R′jk, from condition 2) of CLP

ach

= 2 − R′jk,

R′jk ≤ min{I
(
U jk; Ui j,Yj

)
, I

(
U jk; Ukl,Yk

)
}, from condition 3) of CLP

ach

= 2,

R′i j + R′jk ≤ I
(
Ui j; Yj

)
+ I

(
U jk; Ui j,Yj

)
, from condition 3) of CLP

ach

= 3. (4.41)

Then selecting R′jk = 3
2 and R jk = 1

2 satisfies the conditions of CLP
ach. Hence, rate m

2

is achievable. Also, in [11] it is shown that LP lower bound in Theorem 15 gives

m
2 for the zero error case. From Theorem 16, we can conclude that RI

lb lower

bound also gives m
2 which is the optimal rate for this problem.

10We represent U{ j,k} as U jk for ease of notation.
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4.6.4 Odd-cycle Gaussian Rate Distortion Problem

We finish with an instance that seems not to be solvable with using existing

lower bounds discussed in Section 4.5. The problem setting we consider is

analogous to the odd-cycle index coding problem [11], by taking each source

component as an independent Gaussian random variable instead of uniform

binary bits and considering mean square error (MSE) distortion constraint on

reconstructions. Hence, we call it the odd-cycle Gaussian problem from now on.

Specifically, the source X = (X1, . . . , Xm), where m ≥ 5 is an odd number, is a

vector Gaussian such that each component is independent of others with unit

variance. The side information at decoder i, i ∈ [m] is Yi = (Xi−1, Xi+1), where

+ and − in subscripts are modulo-m operations, and decoder i wishes to recon-

struct Xi subject to MSE distortion constraints, i.e. E[(Xi− X̂i)2] ≤ D for all i ∈ [m].

Theorem 20. The rate distortion function, RIG(D), is

RIG(D) =
m
4

log
1
D
. (4.42)

Proof of Theorem 20. Achievability: The achievability argument is obtained by us-

ing Theorem 10. Let v ∈ V be as in odd-cycle index coding problem subsection

of Section 4.3. We select the messages US j such that

U jk = (X j + N j, Xk + N̄k) for j ∈ [m], k ≡ j + 1 mod m (4.43)

and all the other messages US j are degenerate.11 Here (Ni, N̄i), i ∈ [m] are Gaus-

sian random variables with variance KNi = KN̄i = 2D
1−D and all Ni, N̄i’s are indepen-

dent of each other and the source X. All US j satisfy conditions 1), 2) and 3) of

CG
ach,v(D) as well as condition 4) of CG

ach,v(D) since KX j |U jk ,Ui j,Yj = (K−1
X j

+K−1
N j

+K−1
N̄ j

)−1 =

11We represent U{ j,k} as U jk for ease of notation.
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D, where i = j− 1 mod m. Let j ∈ [m], i ≡ j− 1 mod m, k ≡ j + 1 mod m, l ≡ k + 1

mod m. Then from the conditions in CLP
ach, we can write

R jk ≥ I
(
X; U jk

)
− R′jk, from condition 2) of CLP

ach (4.44)

and since any disjoint sets of US j are conditionaly independent of each other

given X.

R′jk ≤ min{I
(
U jk; Ui j,Yj

)
, I

(
U jk; Ukl,Yk

)
}, (4.45)

from condition 3) of CLP
ach.

R′i j + R′jk ≤ I
(
Ui j; Yj

)
+ I

(
U jk; Ui j,Yj

)
, by condition 3) of CLP

ach. (4.46)

Note that the terms inside the minimum in (4.45) are equal to each other and

also the encoding order of the messages does not affect the right hand side of

(4.46). Then using the chain rule, mutual information terms in (4.44)–(4.46) can

be written as

I(X; U jk) = I(X j; X j + N j) + I(Xk; Xk + N̄k)

= log
1 + D

2D
.

I
(
U jk; Ui j,Yj

)
= I

(
U jk; Ui j, Xi, Xk

)
= I(Xk + N̄k; Xk) + I

(
X j + N j; X j + N̄ j

)
=

1
2

log
1 + D

2D
+

1
2

log
(1 + D)2

4D
.

I
(
Ui j; Yj

)
+ I

(
U jk; Ui j,Yj

)
= I

(
Ui j; Xi, Xk

)
+ I

(
U jk; Ui j,Yj

)
=

1
2

log
1 + D

2D
+

1
2

log
1 + D

2D
+

1
2

log
(1 + D)2

4D
.

Then selecting R′jk = 1
2 log 1+D

2D + 1
4 log (1+D)2

4D and R jk = log 1+D
2D − R′jk, j ∈ [m],

k = j + 1 mod m satisfies (4.44)–(4.46) and we take all other rates RS j ,R
′
S j

as 0.
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Hence, the achievable rate is
m∑

i=1

Ri j = m
(
log

1 + D
2D

−
1
2

log
1 + D

2D
−

1
4

log
(1 + D)2

4D

)
=

m
4

(
2 log

1 + D
2D

− log
(1 + D)2

4D

)
=

m
4

log
1
D
.

Converse: We utilize the computable relaxation of Rlb(D + ε1) in Theorem 12.

Similar to the proof of [11, Theorem 5.1] we define the ordered sets:

O = {Xi : i ≡ 1 mod 2, i , m}, O+ = {Xi : i ≤ m − 2}

E = {Xi : i ≡ 0 mod 2}, E+ = {Xi : 2 ≤ i ≤ m − 1}

M = {Xi : 2 ≤ i ≤ m−2}, and S = X\ (M∪Xm). Note that (O+ \O)∩ (E+ \E) = ∅ and

M = (O+ \ O) ∪ (E+ \ E). Also, define R(D) = 1
2 log 1

D . Then using the conditions

of the LP in Theorem 12 we can get the following inequalities

K(∅) ≥ K(O) by (monotonicity) (4.47)

K(∅) ≥ K(E) by (monotonicity) (4.48)

K(∅) ≥ K(Xm) by (monotonicity) (4.49)

K(O) ≥ K(O+) +
∑

Xi∈O+\O

R(D + ε) (4.50)

K(E) ≥ K(E+) +
∑

Xi∈E+\E

R(D + ε) (4.51)

K(O+) + K(E+) ≥ K(M) + K(X) + R(D + ε) (4.52)

K(M) + K(Xm) ≥ K(∅) + K(X) +
∑
Xi∈S

R(D + ε) (4.53)

where (4.50) is due to monotonicity+ (i.e, K(O) ≥ K(O+)+R(DO+ε)) and R(DO+ε) =∑
Xi∈O+\O R(D + ε). Also (4.51) is due to monotonicity+ (4.52) and (4.53) are due to

submodularity and monotonicity+. If we add inequalities (4.47) - (4.53) side by

side, we obtain 2K(∅) ≥ mR(D + ε). Taking ε → 0 gives the result.
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CHAPTER 5

CHAPTER 2 OF APPENDIX

5.1

Proof of Theorem 1. Let P(S ,Yi) for all i ∈ [m] be given and let permutation σ(i) = i

for all i ∈ [m]. Let (R,D) be an achievable rate distortion pair and ε > 0. Then

there exists a (n,M,D1 + ε, . . . ,Dm + ε) code for some n such that log M ≤ n(R + ε).

We can write,

n(R + ε) ≥ H(J)

≥ I(S n,Yn
1 , . . . ,Y

n
m; J) (5.1)

where J is the output of the encoder, Yn
1 = (Y11, . . . ,Y1n) (for the ease of nota-

tion we drop the parentheses around the index of the random variable unless

it causes ambiguity), Y−1i denotes (Y11, . . . ,Y1(i−1)), and Y1i denotes all Yn
1 but Y1i.

Then if we apply the chain rule to I(S n,Yn
1 , . . . ,Y

n
m; J), right hand side of (5.1)
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equals

I(Yn
1 ; J) + I(Yn

2 ; J|Yn
1 ) + · · · + I(Yn

m; J|Yn
1 , . . . ,Y

n
m−1) + I(S n; J|Yn

1 , . . . ,Y
n
m) (5.2)

≥ I(Yn
2 ; J|Yn

1 ) + · · · + I(Yn
m; J|Yn

1 , . . . ,Y
n
m−1) + I(S n; J|Yn

1 , . . . ,Y
n
m)

a
=

n∑
i=1

[
I(Y2i; J|Y1i,Y

−
2i,Y1i) + · · · + I(Ymi; J|Y1i, . . . ,Y(m−1)i,Y

−
mi,Y1i, . . . ,Y(m−1)i)

+ I(S i; J|Y1i, . . . ,Ymi, S
−
i ,Y1i, . . . ,Ymi)

]
(5.3)

b
=

n∑
i=1

[
I(Y2i; J,Y1i,Y

−
2i|Y1i) + · · · + I(Ymi; J,Y1i, . . . ,Y(m−1)i,Y

−
mi|Y1i, . . . ,Y(m−1)i)

+ I(S i; J,Y1i, . . . ,Ymi, S
−
i |Y1i, . . . ,Ymi)

]
(5.4)

≥

n∑
i=1

[
I(Y2i; J,Y1i|Y1i) + · · · + I(Ymi; J,Y1i, . . . ,Y(m−1)i|Y1i, . . . ,Y(m−1)i)

+ I(S i; J,Y1i, . . . ,Ymi|Y1i, . . . ,Ymi)
]

(5.5)

c
=

n∑
i=1

[
I(Y2i; J,Y1i|Y1i) + · · · + I(Ymi; J,Y1i, . . . ,Y(m−1)i|Y1i, . . . ,Y(m−1)i)

+ I(S i; J,Y1i, . . . ,Y(m−1)i|Y1i, . . . ,Ymi)

+ I(S i; Ymi|J,Y1i, . . . ,Y(m−1)i,Y1i, . . . ,Ymi)
]

where a is obtained by the chain rule, b is due to the fact that (Y1i, . . . ,Ymi, S i) ⊥

(Y1i, . . . ,Ymi, S 1i), and c is due to the chain rule applied to the last term. When
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we combine the second-to-last and third-to-last term above, we get

n(R + ε)

≥

n∑
i=1

[
I(Y2i; J,Y1i|Y1i) + · · · + I(Y(m−1)i; J,Y1i, . . . ,Y(m−2)i|Y1i, . . . ,Y(m−2)i)

+ I(S i,Ymi; J,Y1i, . . . ,Y(m−1)i|Y1i, . . . ,Y(m−1)i)

+ I(S i; Ymi|J,Y1i, . . . ,Y(m−1)i,Y1i, . . . ,Ymi)
]

≥

n∑
i=1

[
I(Y2i; J,Y1i|Y1i) + · · · + I(Y(m−1)i; J,Y1i, . . . ,Y(m−2)i|Y1i, . . . ,Y(m−2)i)

+ I(S i; J,Y1i, . . . ,Y(m−1)i|Y1i, . . . ,Y(m−1)i)

+ I(S i; Ymi|J,Y1i, . . . ,Y(m−1)i,Y1i, . . . ,Ymi)
]
. (5.6)

Now we apply the chain rule on the second-to-last term, giving

n(R + ε)

≥

n∑
i=1

[
I(Y2i; J,Y1i|Y1i) + · · · + I(Y(m−1)i; J,Y1i, . . . ,Y(m−2)i|Y1i, . . . ,Y(m−2)i)

+ I(S i; J,Y1i, . . . ,Y(m−2)i|Y1i, . . . ,Y(m−1)i)

+ I(S i; Y(m−1)i|J,Y1i, . . . ,Y(m−2)i,Y1i, . . . ,Y(m−1)i)

+ I(S i; Ymi|J,Y1i, . . . ,Y(m−1)i,Y1i, . . . ,Ymi)
]

(5.7)
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a
=

n∑
i=1

[
I(Y2i; J,Y1i|Y1i) + · · · + I(Y(m−2)i; J,Y1i, . . . ,Y(m−3)i|Y1i, . . . ,Y(m−3)i)

+ I(S i,Y(m−1)i; J,Y1i, . . . ,Y(m−2)i|Y1i, . . . ,Y(m−2)i)

+ I(S i; Y(m−1)i|J,Y1i, . . . ,Y(m−2)i,Y1i, . . . ,Y(m−1)i)

+ I(S i; Ymi|J,Y1i, . . . ,Y(m−1)i,Y1i, . . . ,Ymi)
]

≥

n∑
i=1

[
I(Y2i; J,Y1i|Y1i) + · · · + I(Y(m−2)i; J,Y1i, . . . ,Y(m−3)i|Y1i, . . . ,Y(m−3)i)

+ I(S i; J,Y1i, . . . ,Y(m−2)i|Y1i, . . . ,Y(m−2)i)

+ I(S i; Y(m−1)i|J,Y1i, . . . ,Y(m−2)i,Y1i, . . . ,Y(m−1)i)

+ I(S i; Ymi|J,Y1i, . . . ,Y(m−1)i,Y1i, . . . ,Ymi)
]

(5.8)

where, a is obtained by combining third-to-last and fourth-to-last terms in (5.7).

Note that (5.6) is obtained from (5.5) by applying a series of chain rules and

term combinations. If we continue this procedure as we did while obtaining

(5.8) from (5.6), we get

R + ε

≥
1
n

n∑
i=1

[
I(S i; J,Y1i|Y1i) + I(S i; Y2i|J,Y1i,Y1i,Y2i) + · · ·

+ I(S i; Ymi|J,Y1i, . . . ,Y(m−1)i,Y1i, . . . ,Ymi)
]

(5.9)

a
=

1
n

n∑
i=1

[
I(S i; U′1i|Y1i) + I(S i; U′2i|U

′
1i,Y1i,Y2i) + · · ·

+ I(S i; U′mi|U
′
1i, . . . ,U

′
(m−1)i,Y1i, . . . ,Ymi)

]
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b
=

1
n

n∑
i=1

[
I(S i; U′1i|Y1i,T = i) + I(S i; U′2i|U

′
1i,Y1i,Y2i,T = i) + · · ·

+ I(S i; U′mi|U
′
1i, . . . ,U

′
(m−1)i,Y1i, . . . ,Ymi,T = i)

]
=I(S ; U′1|Y1,T ) + I(S ; U′2|U

′
1,Y1,Y2,T ) + · · · + I(S ; U′m|U

′
1, . . . ,U

′
(m−1),Y1, . . . ,Ym,T )

c
= I(S ; U′1,T |Y1) + I(S ; U′2,T |U

′
1,Y1,Y2,T ) + · · ·

+ I(S ; U′m,T |U
′
1, . . . ,U

′
(m−1),Y1, . . . ,Ym,T )

d
= I(S ; U1|Y1) + I(S ; U2|U1,Y1,Y2) + · · · + I(S ; Um|U1, . . . ,U(m−1),Y1, . . . ,Ym) (5.10)

where,

a : U′ji = (J,Y ji), ∀ j ∈ [m].

b : T is a random variable uniformly distributed on [n] and independent of all

source and side information variables and the U′jis.

c : T is independent of all source and side information variables.

d: Denote (U′i ,T ) as Ui for all i ∈ [m].

Note that (U′1i, . . . ,U
′
mi) ↔ S i ↔ (Y1i, . . . ,Ymi) for all i ∈ [n], giving

(U′1, . . . ,U
′
m) ↔ S ↔ (Y1, . . . ,Ym). Hence, (U1, . . . ,Um) ↔ S ↔ (Y1, . . . ,Ym), i.e.,

(U1, . . . ,Um) satisfies the condition 3). Also, since (U′ji,Y ji) = (J,Yn
j ), there exists

functions g′j(U
′
j,Y j) such that E[d(S , g′j(U

′
j,Y j))] ≤ D j + ε, for all j ∈ [m]. Then

we can conclude that (U1, . . . ,Um) satisfies the condition 4). By Lemma 13 in the

Appendix 5.1, we can obtain the cardinality bounds on (U1, . . . ,Um) as in condi-

tion 5). Then we minimize the right hand side of (5.10) over (U1, . . . ,Um). Also,

note that, we fixed the permutation as σ(i) = i for all i ∈ [m] and to get (5.2),

we applied the chain rule to (5.1) in the following order. We started with Yn
1

then continued with Yn
2 , . . . ,Y

n
m and lastly we had S n. Since we have m decoders

with side information, we can get m! different permutations. Hence, applying a

similar procedure to all permutations, we get m! lower bounds. By taking their

maximum, we obtain a lower bound to R(D). Lastly, since the problem can be
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described by specifying only the marginal P(S ,Yi)’s, we optimize it over the set

of joint distributions such that the marginal P(S ,Yi)’s are the same. This gives

us RMLB(D + ε1), where 1 denotes the m × 1 vector with all components 1.

Hence we have,

R(D) ≥ RMLB(D + ε1) − ε. (5.11)

Lemma 12. RMLB(D + ε1) of Theorem 1 is continuous in ε from the right at ε = 0.

Proof of Lemma 12. First we show that for a given joint distribution of source and

side information P(S ,Y1, . . . ,Ym), R̄σ(D + ε1) is continuous in ε from right for a

given permutation σ(.).

Let εk be a monotonically decreasing sequence converging to 0 and let U1(D +

εk1), . . . ,Um(D+εk1) denote an optimal (U1, . . . ,Um) which gives R̄σ(D+εk1). Since

the cardinalities of (U1, . . . ,Um) are finite, together with the conditions 3) and 4),

we have an optimization over a compact set. Then, we can find a convergent

subsequence εsk such that U1(D+εsk1), . . . ,Um(D+εsk1) converges to a (U1, . . . ,Um)

which is feasible for the distortion D. Hence we have

lim inf
ε→0

R̄σ(D + ε1) ≥ R̄σ(D).

Also, since R̄σ(D) is non increasing function of D we can write

lim sup
ε→0

R̄σ(D + ε1) ≤ R̄σ(D),

concluding that R̄σ(D+ε1) is continuous in ε from the right for a given permuta-

tion σ(.). Then, since finite maximum of functions that are continuous from the

right is also continuous from the right, maxσ(.) R̄σ(D + ε1) is continuous in ε from

right.
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Hence, now we show that supP̄ maxσ(.) R̄σ(D + ε1) is continuous in ε from the

right. Let us temporarily denote maxσ(.) R̄σ(D) as R̄(P̄,D) to indicate the depen-

dence on P̄. Then for any ε > 0 and any P̄, we have R̄(P̄,D + ε1) ≤ R̄(P̄,D). Hence

we have

lim sup
ε→0

sup
P̄

R̄(P̄,D + ε1) ≤ sup
P̄

R̄(P̄,D). (5.12)

Now, we fix any δ > 0. Then there exists P′ such that R̄(P′,D) ≥ supP̄ R̄(P̄,D)−

δ
2 . Let ε > 0 be such that R̄(P′,D + ε1) ≥ R̄(P′,D) − δ

2 . Then for any 0 < ε′ < ε we

can write

sup
P̄

R̄(P̄,D) ≤ R̄(P′,D) +
δ

2

≤ R̄(P′,D + ε′1) + δ

≤ sup
P̄

R̄(P̄,D + ε′1) + δ,

implying that

sup
P̄

R̄(P̄,D) − δ ≤ lim inf
ε′→0

sup
P̄

R̄(P̄,D + ε′1). (5.13)

Since δ > 0 was arbitrary, (5.12) and (5.13) give the result.

By Lemma 12, when ε goes to 0, (5.11) becomes

R(D) ≥ RMLB(D). (5.14)

Proof of Theorem 3.

1. Achievability:

We utilize the achievable scheme of Proposition 1 and apply the CAPM for

selection of UI to get an explicit expression.
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Step 1: Note that there is no demand related to Gm since all decoders have it

as side information. We place all demands of all decoders related to Gm−1 and

G0 into U[m]. The remaining demands are subsets of Gm−2, i.e., components that

m− 2 of decoders have. For any SJ ∈ Gm−2, where J = {α, β}, α , β Decoder α and

Decoder β are the two decoders that do not have SJ as side information. Then

we place f{α,β}J to U[m]. Also, we place fαJ and fβJ to level m − 1 messages. Since

there is no demand related to Gi,∀i ∈ [m − 3], all messages UI , |I| ≤ m − 2 will be

empty. This completes the Step 1.

Step 2 and 3: To determine the leftover bits in Step 2 and bits to be XORed in

Step 3 we write the demands in the following way: Note that there are m(m − 1)

different non overlapping pairs of demands related to Gm−2 since |Gm−2| =
m(m−1)

2

and there are two demands fαJ and fβJ for each S{α,β} ∈ Gm−2. Also, note that for

each Decoder α there are m − 1 non overlapping demands, fαJ related to Gm−2.

Therefore, we can put all those non overlapping demands into a matrix A with m

rows and m−1 columns in the following way. αth row, denoted by Aα, consists of

demands fβ{α,β} where β runs over the set [m]\{α}. Note that Aα does not contain

any demand from the Decoder α. Also, for each fβ{α,β}, all entries of Aα other

than fβ{α,β} exist as side information at Decoder β. Hence, we observe that all

non overlapping demands which are related to Gm−2 and placed in Uαc at Step 1

are in Aα. Also, there is no other type of demand in level m − 1 messages.

Lastly, as the size of each demand in Aα can be different, we arrange the

entries in Aα in an increasing order with respect to their sizes. If two demands

are in equal size, which one is put first does not matter. This completes the

construction of the matrix A.

For each Aα in A we apply the following ⊕ operation.
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Definition 17. Let ai, i ∈ {1, . . . ,m − 1} be vectors. Assume without loss of generality

that l1 ≤ l2 ≤, . . . ,≤ lm−1 where li = |ai| denotes the number of elements in ai. Then,

(a1, a2, . . . , am−1)⊕ = (a⊕1 , . . . , a
⊕

m−1)

where

(a⊕1 , . . . , a
⊕

m−1) = (a1 ⊕ (a2)l1 ⊕ · · · ⊕ (am−1)l1 ,

(a2)l2−l1 ⊕ · · · ⊕ (am−1)l2−l1 ,

· · · ,

(am−1)lm−1−lm−2),

and where (ai)l j−lk denotes the vector consisting of components of ai from (lk + 1)th to lth
j

component.

Note that all the components in A⊕α2, . . . , A
⊕

α(m−1) are leftover bits and moved

to U[m]. Then for each A⊕α = (A⊕α1, . . . , A
⊕

α(m−1)), all the components in A⊕α1 (i.e.,

Aα1, (Aα2)|Aα1 |, . . . , (Aα(m−1))|Aα1 |) remain in Uαc . This concludes Step 2.

Lastly by Step 3, we have Uαc = A⊕α1, for all α ∈ [m], and A⊕α2, . . . , A
⊕

α(m−1) are

in U[m]. This concludes CAPM. Also for the ease of notation, when we write

A⊕\{∪α∈[m]A⊕α1}, we will mean the vector A⊕ with the components A⊕α1 for all α ∈

[m] removed.

Hence,

U[m] = f1\{∪{1,β}⊆[m] f1{1,β}}, f2\{∪{2,β}⊆[m] f2{2,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}

Uαc = A⊕α1 ∀α ∈ [m],
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and we can write the achievable rate RCAPM as

max
k∈[m]
{H(f1\{∪{1,β}⊆[m] f1{1,β}}, f2\{∪{2,β}⊆[m] f2{2,β}}, . . . ,

fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Yk)}

+ max
k∈{1}c
{H(A⊕11|Yk)} + · · · + max

k∈{m}c
{H(A⊕m1|Yk)}. (5.15)

Note that

H(Aα1, (Aα2)|Aα1 |, . . . , (Aα(m−1))|Aα1 ||Yk) (5.16)

a
= H(Aα1 ⊕ (Aα2)|Aα1 |⊕, · · · ,⊕(Aα(m−1))|Aα1 ||Yk) (5.17)

= H(A⊕α1|Yk), (5.18)

a: Aαi ⊆ Yk, for all i ∈ [m − 1] and i , j, where Aα j is the demand at Decoder k

related to Gm−2.

Before rearranging the terms in RCAPM further, we would like to show the

following relations.

From the Definition 17, we know that for all k ∈ [m] \ {α} the conditional

entropy

H(A⊕α1|Yk)

= H((Aα j)|Aα1 ||Yk)

= H((Aα j)|Aα1 |) = |Aα1| = min
l∈[m−1]

|Aαl| bits, (5.19)

where Aα j is the demand at Decoder k related to Gm−2. Hence we get,

H(Uαc |Yk) = H(Uαc |Yj)

= min
l∈[m−1]

|Aαl| bits,∀k, j ∈ {α}c. (5.20)

136



Moreover, by Definition 17, for all α ∈ [m], we can write

H(A⊕\A⊕α1|Yα) = H(A⊕\A⊕α, (A
⊕

α2, . . . , A
⊕

α(m−1))|Yα)

= H(A⊕\A⊕α |Yα) + H(A⊕α2, . . . , A
⊕

α(m−1)|Yα)

= H(∪{α,β}⊆[m] fα{α,β}|Yα) + H(A⊕α2, . . . , A
⊕

α(m−1))

= H(∪{α,β}⊆[m] fα{α,β}|Yα) + (max
j
|Aα j| −min

j
|Aα j|). (5.21)

From (5.20), H(Uαc |Yk) = H(Uαc |Yj) for all k, j ∈ {α}c. When we expand the

terms inside maxk∈[m], we can write

RCAPM = max
{
H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Y1)

+
∑
α∈{1}c

H(Uαc |Y1) + max
k∈{1}c
{H(U1c |Yk)},

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Y2)

+
∑
α∈{2}c

H(Uαc |Y2) + max
k∈{2}c
{H(U2c |Yk)}

, . . . ,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Ym)

+
∑
α∈{m}c

H(Uαc |Ym) + max
k∈{m}c
{H(Umc |Yk)}

}
.

Since H(Uαc |Yk) = H(A⊕α1|Yk) and H(Uαc |Yk) = |A⊕α1| for all k ∈ {α}c from (5.19)
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and (5.20), we can further write RCAPM as

max
{
H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Y1)

+
∑
α∈{1}c

H(A⊕α1|Y1) + |A⊕11|,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Y2)

+
∑
α∈{2}c

H(A⊕α1|Y2) + |A⊕21|

, . . . ,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Ym)

+
∑
α∈{m}c

H(A⊕α1|Ym) + |A⊕m1|
}
. (5.22)

Note that all Uic = A⊕i1 are independent and for all collections of sub-

sets J1, . . . J j, K1, . . .Kk, L1, . . . , Ll, and all subsets {i1, . . . , ip} ⊆ [m], we

have that (UJ1 , . . . ,UJ j) and (UK1 , . . . ,UKk) are conditionally independent given

((UL1 , . . . ,ULl), (Yi1 , . . . ,Yip)), provided that the collections J1, . . . J j and K1, . . .Kk

are disjoint. Then by applying chain rule to the expression in (5.22), we have

RCAPM = max
{
H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Y1)

+ H(∪α∈{1}c A⊕α1|Y1) + |A⊕11|,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Y2)

+ H(∪α∈{2}c A⊕α1|Y2) + |A⊕21|

, . . . ,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}, A⊕\{∪α∈[m]A⊕α1}|Ym)

+ H(∪α∈{m}c A⊕α1|Ym) + |A⊕m1|
}
.

Since all Uic = A⊕i1 are independent and have the conditional independence

properties as stated in the previous paragraph, by applying chain rule once
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more, we get that RCAPM is equal to

max
{
H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}|Y1) + H(A⊕\A⊕11|Y1) + |A⊕11|,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}|Y2) + H(A⊕\A⊕21|Y2) + |A⊕21|

, . . . ,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}|Ym) + H(A⊕\A⊕m1|Ym) + |A⊕m1|
}
.

Finally, from (5.21), that |Aα1| = min j |Aα j|, and chain rule, we have the follow-

ing expression for RCAPM:

max
{
H(f1, f2\{∪{2,β}⊆[m] f2{2,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}|Y1) + max

j
|A1 j|,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, f2, f3\{∪{3,β}⊆[m] f3{3,β}}, . . . , fm\{∪{m,β}⊆[m] fm{m,β}}|Y2) + max
j
|A2 j|

, . . . ,

H(f1\{∪{1,β}⊆[m] f1{1,β}}, . . . , fm−1\{∪{m−1,β}⊆[m] fm−1{m−1,β}}, fm|Ym) + max
j
|Am j|

}
.

Then we can write this achievable rate for the problem, RCAPM in (5.15) as

RCAPM = max{R1, . . . ,Rm}. (5.23)

2. Converse:

Now, we find a lower bound which matches RCAPM above by utilizing the con-
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verse result in section 2.5. Let us focus on (2.7). Here, we can write

H(f2|Y2, f1,Y1)

= H(f2|f1,Y1)

= H(f2\{∪{2,β}∈[m] f2{2,β}}, {∪{2,β}∈[m] f2{2,β}}|f1,Y1)

= H(f2\{∪{2,β}∈[m] f2{2,β}}, f2{2,1}}|f1,Y1)

= H(f2\{∪{2,β}∈[m] f2{2,β}}, A1 j|f1,Y1),

where A1 j = f2{2,1}

= H(f2\{∪{2,β}∈[m] f2{2,β}}|f1,Y1) + H(A1 j)

= H(f2\{∪{2,β}∈[m] f2{2,β}}|f1,Y1) + |A1 j| (5.24)

and

H(f3|Y3, f2,Y2, f1,Y1)

= H(f3|f2,Y2, f1,Y1)

= H(f3\{∪{3,β}∈[m] f3{3,β}}, {∪{3,β}∈[m] f3{3,β}}|f2,Y2, f1,Y1) (5.25)

= H(f3\{∪{3,β}∈[m] f3{3,β}}|f2,Y2, f1,Y1),

since {∪{3,β}∈[m] f3{3,β}} ⊂ {Y1,Y2}

= H(f3\{∪{3,β}∈[m] f3{3,β}}|f2\{∪{2,β}∈[m] f2{2,β}},Y2, f1,Y1), (5.26)

since {∪{2,β}∈[m] f2{2,β}} ⊥ f3\{∪{3,β}∈[m] f3{3,β}}|Yi, fj for all i, j ∈ [m].

Note that f3 can be written as

{ f3[m], f33,∪{3,β}∈[m] f3{3,β},∪{3,β}∈[m] f{3,β}{3,β}}.

Then we get the following equality:

f3\{∪{3,β}∈[m] f3{3,β}} = { f3[m], f33,∪{3,β}∈[m] f{3,β}{3,β}}.
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Note that f{3,1}{3,1} ⊆ f1 and f{3,β}{3,β} ⊆ Y1, for all β ∈ [m]\{3} and β , 1. Also,

f3[m] < Y2, f33 ⊆ Y1, f33 ⊆ Y2. As a result, (5.26) can be written as

H(f3\{∪{3,β}∈[m] f3{3,β}}|f2\{∪{2,β}∈[m] f2{2,β}}, f1,Y1).

By similar arguments as above, for p > 2 we can write

H(fp|Yp, fp−1,Yp−1, . . . , f1,Y1)

= H(fp|fp−1,Yp−1, . . . , f1,Y1)

= H(fp\{∪{p,β}∈[m] fp{p,β}},∪{p,β}∈[m] fp{p,β}|fp−1,Yp−1, . . . , f1,Y1)

a
= H(fp\{∪{p,β}∈[m] fp{p,β}}|fp−1,Yp−1, . . . , f1,Y1)

b
= H(fp\{∪{p,β}∈[m] fp{p,β}}|fp−1\{∪{p−1,β}∈[m] fp−1{p−1,β}},Yp−1, . . . ,

f2\{∪{2,β}∈[m] f2{2,β}},Y2, f1,Y1)

c
= H(fp\{∪{p,β}∈[m] fp{p,β}}|fp−1\{∪{p−1,β}∈[m] fp−1{p−1,β}}, . . . ,

f2\{∪{2,β}∈[m] f2{2,β}}, f1,Y1) (5.27)

a: Since {∪{p,β}∈[m] fp{p,β}} ⊂ {Yi,Yj}, ∀i, j ∈ [m], p , i, j and i , j.

b: Since {∪{α,β}∈[m] fα{α,β}} ⊥ fγ\{∪{γ,β}∈[m] fγ{γ,β}} |Yi, fj, ∀i, j, α, γ ∈ [m].

c: Since fp = { fp[m], fpp, {∪{p,β}∈[m] fp{p,β}}, {∪{p,β}∈[m] f{p,β}{p,β}}, } and fp\{∪{p,β}∈[m] fp{p,β}}

equals { fp[m], fpp, {∪{p,β}∈[m] f{p,β}{p,β}}}, where

fp[m] < Yi,∀i ∈ [m] and fpp ⊆ Yi ∀i ∈ [m], i , p. Also, f{p,1}{p,1} ⊆ f1 and f{p,β}{p,β} ⊆ Y1,

∀β ∈ [m]\{p}, β , 1.

Hence, from (5.24) and (5.27), (2.7) can be written as

R ≥H(f1, f2\{∪{2,β}∈[m] f2{2,β}}, . . . , fm\{∪{m,β}∈[m] fm{m,β}}|Y1) + |A1 j|, (5.28)

where A1 j = f2{2,1}.
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By similar arguments used to obtain (5.28), we can write

R ≥H(f1, f2\{∪{2,β}∈[m] f2{2,β}}, . . . , fm\{∪{m,β}∈[m] fm{m,β}}|Y1) + max
j
|A1 j|. (5.29)

Note that the right hand side of (5.29) is R1. Since the problem is symmetric,

similarly we can get all Ri’s. Then,

R ≥max
i

Ri = RCAPM (5.30)

proving that RCAPM is optimal. This concludes the proof of the Theorem 3.

Lemma 13. The minimum in (2.2) is unaffected by the presence of the cardinality

bounds in condition 5).

Proof of Lemma 13. Without loss of generality let σ(i) = i for all i ∈ [m]. Let

PU1,...,Um,S (u1, . . . , um, s) denote the joint distribution of (U1, . . . ,Um, S ). We follow

a procedure similar to that of [5]. First we find the bound on the cardinality of

U1, then U2, etc.

To begin with, we consider the following (|S| − 1) + 1 + m functions of

PU2,...,Um,S |U1(., . . . , .|u1), denoted as g0
s , s ∈ |S| − 1 and g0

lo, g
0
d1
, . . . , g0

dm
.

g0
s(PU2,...,Um,S |U1(., . . . , .|u1)) =

∑
u2,...,um

PU2,...,Um,S |U1(u2, . . . , um, s|u1), (5.31)

for s = 1, . . . , |S| − 1 and

g0
lo(PU2,...,Um,S |U1(., . . . , .|u1))

= H(S |Y1) − H(S |U1 = u1,Y1) + I(S ; U2|U1 = u1,Y1,Y2) + · · ·

+ I(S ; Um|U1 = u1, . . . ,U(m−1),Y1, . . . ,Ym), (5.32)
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and

g0
d1

(PU2,...,Um,S |U1(., . . . , .|u1)) = E[d(S , g1(u1,Y1))|U1 = u1]

...

g0
dm

(PU2,...,Um,S |U1(., . . . , .|u1)) = E[d(S , gm(Um,Ym))|U1 = u1]

Then by Carathéodory’s theorem [49, Theorem 17.1] we can find a random

variable U1
1 with |U1

1 | ≤ |S| + m + 1 and random variables U1
2 , . . . ,U

1
m where

PU1
1 ,...,U

1
m,S (u1, . . . , um, s) = PU1

1
(u1)PU2,...,Um,S |U1(u2, . . . , um, s|u1) such that from (5.31)

PS is preserved and from (5.32)

I(S ; U1
1 |Y1) + I(S ; U1

2 |U
1
1 ,Y1,Y2) + · · · + I(S ; U1

m|U
1
1 , . . . ,U

1
(m−1),Y1, . . . ,Ym)

= I(S ; U1|Y1) + I(S ; U2|U1,Y1,Y2) + I(S ; Um|U1, . . . ,U(m−1),Y1, . . . ,Ym),

and we have

E[d(S , g1(U1
1 ,Y1)] = E[d(S , g1(U1,Y1))]

...

E[d(S , gm(U1
m,Y1)] = E[d(S , gm(Um,Y1))].

Now take the following |U1||S| + (m − 1) functions of PU1
1 ,U

1
3 ,...,U

1
m,S |U1

2
(., . . . , .|u2).

g1
s(PU1

1 ,U
1
3 ,...,U

1
m,S |U1

1
(., . . . , .|u2)) =

∑
u3,...,um

PU1
1 ,U

1
3 ,...,U

1
m,S |U1

2
(., . . . , .|u2), (5.33)

for (u1, s) = 1, . . . , |U1||S| − 1 and

g1
lo(PU1

1 ,U
1
3 ,...,U

1
m,S |U1

2
(., . . . , .|u2))

= −H(S |U1
1 ,U

1
2 = u2,Y1,Y2) + I(S ; U1

3 |U
1
1 ,U

1
2 = u2,Y1,Y2,Y3) · · ·

+ I(S ; U1
m|U

1
1 ,U

1
2 = u2,U1

3 . . . ,U
1
(m−1),Y1, . . . ,Ym), (5.34)
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and

g1
d2

(PU1
1 ,U

1
3 ,...,U

1
m,S |U1

2
(., . . . , .|u2)) = E[d(S , g2(u2,Y2)|U1

2 = u2]

...

g1
dm

(PU1
1 ,U

1
3 ,...,U

1
m,S |U1

2
(., . . . , .|u2)) = E[d(S , gm(U1

m,Ym)|U1
2 = u2].

Again by Carathéodory’s theorem, there is a random variable U2
2 with |U2

2 | ≤

|U1||S| + m and random variables U2
3 , . . . ,U

2
m where PU1

1 ,U
2
2 ,...,U

2
m,S (u1, . . . , um, s) is

equal to PU2
2
(u2)PU1

1 ,U
1
3 ,...,U

1
m,S |U1

2
(u1, u3, . . . , um, s|u2) such that PU1

1S is preserved (from

5.33).

Since PU1
1S is preserved, E[d(S , g2(U1

1 ,Y1)], H(S |U1
1 ,Y1,Y2), and I(S ; U1

1 |Y1) are

preserved. Also, from (5.34) we have

I(S ; U1
1 |Y1) + I(S ; U2

2 |U
1
1 ,Y1,Y2) + · · · + I(S ; U2

m|U
1
1 ,U

2
2 , . . . ,U

2
(m−1),Y1, . . . ,Ym)

= I(S ; U1
1 |Y1) + I(S ; U1

2 |U
1
1 ,Y1,Y2) + I(S ; U1

m|U
1
1 , . . . ,U

1
(m−1),Y1, . . . ,Ym).

Lastly, we have the following equalities.

E[d(S , g2(U2
2 ,Y2)] = E[d(S , g2(U1

2 ,Y2))]

...

E[d(S , gm(U1
m,Ym)] = E[d(S , gm(U1

mYm))].

By applying the above procedure to U2
3 , . . . ,U

2
m consecutively and relabel-

ing (U1
1 ,U

2
2 , . . .) as (U1, . . . ,Um) we obtain the cardinality bounds as stated in the

condition 5) of Theorem 2.1.
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CHAPTER 6

CHAPTER 3 OF APPENDIX

6.1

The aim of this appendix is to prove the following lemma.

Lemma 14 (Gaussian Variance-Drop Lemma). Let (W,WG,X, Z̃,Z) be random

vectors such that (WG,X, Z̃,Z) is jointly Gaussian, (W,WG) ↔ X ↔ Z̃ ↔ Z and

KX|W,Z̃ � 0. If KX|WG,Z = KX|W,Z then KX|W,Z̃ � KX|WG,Z̃. Also, if KX|W,Z̃ = KX|WG,Z̃ then

KX|WG,Z � KX|W,Z.

This lemma can be interpreted as follows. We view X as an underlying

source of interest and W, WG, Z̃, and Z as “noisy observations” of X. All ex-

cept possibly W are jointly Gaussian. If (W,Z) and (WG,Z) are equally-good

observations, in terms of their error covariance matrix, then (W, Z̃) can only be

better than (WG, Z̃). That is, replacing Z with Z̃ results in a “variance drop,” and

this drop is smallest in the Gaussian case.

To prove this result we will make use of the following technical lemma.

Lemma 15. Let (X, Z̃,Z) be jointly Gaussian random vectors such that X ↔ Z̃ ↔ Z

and KX|Z̃ � 0. We can form a Ẑ such that (X, Z̃,Z, Ẑ) is jointly Gaussian, Ẑ↔ X↔ Z,

and E[X|Z, Ẑ] = E[X|Z, Z̃] almost surely.

Proof. Given such (X, Z̃,Z), we can create a Z̄ such that Z̄ = Az̄X + Nz̄ where

Nz̄ is Gaussian, independent of (X,Z) and KX|Z,Z̄ = KX|Z,Z̃ = KX|Z̃. Since
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(X,Z, Z̄, E[X|Z, Z̄]) are jointly Gaussian, we can write

Z̄ = B


X

Z

E[X|Z, Z̄]

 + Nz̄
′,

for some matrix B where Nz̄
′ is independent of (X,Z, E[X|Z, Z̄]) and Gaussian

with some covariance matrix KNz̄
′ .

Observe that the orthogonality principle and the equation KX|Z,Z̄ = KX|Z,Z̃

together imply that

KE[X|Z,Z̄] = KE[X|Z,Z̃]. (6.1)

Orthogonality also implies that KXE[X|Z,Z̄] = KE[X|Z,Z̄] and KXE[X|Z,Z̃] = KE[X|Z,Z̃].

Hence,

KXE[X|Z,Z̄] = KXE[X|Z,Z̃]. (6.2)

Likewise, orthogonality implies that KE[X|Z,Z̃]Z = KXZ and KE[X|Z,Z̄]Z = KXZ.

Thus,

KE[X|Z,Z̃]Z = KE[X|Z,Z̄]Z. (6.3)

Then (6.1), (6.2), and (6.3) imply that (X,Z, E[X|Z, Z̄]) and (X,Z, E[X|Z, Z̃]) are

equal in distribution. Now given (X, Z̃,Z), create Ẑ via

Ẑ = B


X

Z

E[X|Z, Z̃]

 + Nẑ
′,
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where Nẑ
′ is Gaussian with covariance matrix KNz̄

′ and is independent of

(X, E[X|Z, Z̃],Z). Then,

(X,Z, Ẑ, E[X|Z, Z̃]) = (X,Z, Z̄, E[X|Z, Z̄]), in distribution

and so Ẑ↔ X↔ Z, and E[X|Z, Ẑ] = E[X|Z, Z̃] almost surely.

Proof of Lemma 14. Let (W,WG,X, Z̃,Z) be as in the statement. Then by Lemma

15, we can form a random vector Ẑ = AẑX+Nẑ, where Nẑ is independent of (X,Z),

such that Ẑ ↔ X ↔ Z, KX|Z,Ẑ = KX|Z,Z̃ = KX|Z̃ and E[X|Z, Z̃] = E[X|Z, Ẑ] almost

surely. Since for any W such that W↔ X↔ (Z̃, Ẑ,Z) we have KX|W,Z̃ = KX|W,Z,Z̃ =

KX|W,E[X|Z,Z̃] = KX|W,E[X|Z,Ẑ] = KX|W,Z,Ẑ, it suffices to prove the result for the special

case in which Z̃ = (Ẑ,Z) so we shall assume that Z̃ has this form. Also, let

X̂ = E[X|W,Z]. We will write the covariance matrix of the best linear estimate of

X using X̂ and Ẑ in terms of KX|W,Z and KX|Ẑ by applying the procedure of [50].

Then we can write

K(X, X̂, Ẑ) =


KX KX̂ KXAT

ẑ

KX̂ KX̂ KX̂AT
ẑ

AẑKX AẑKX̂ AẑKXAT
ẑ + KNẑ


where KX̂ = (KX − KX|W,Z). Note that KX̂ may not be invertible meaning that

some of the elements of X̂ can be determined as linear combinations of others.

Thus it is enough to consider only the components of X̂ or linear combinations

of them, denoted by X̄ = QX̂, such that the resulting covariance matrix, denoted

as KX̄ = QKX̂QT , is invertible. Then we can write,

K(X, X̄, Ẑ) =


KX KX̂QT KXAT

ẑ

QKX̂ KX̄ QKX̂AT
ẑ

AẑKX AẑKX̂QT AẑKXAT
ẑ + KNẑ

 .
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The covariance matrix of a linear estimation of X using X̂ and Ẑ is

K(X|X̂,Ẑ)L
= K(X|X̄,Ẑ)L

= KX −

(
KX̂QT KXAT

ẑ

)
C−1

 QKX̂

AẑKX


where

C =

 KX̄ QKX̂AT
ẑ

AẑKX̂QT AẑKXAT
ẑ + KNẑ

 .
By matrix inversion lemma we have

K−1
(X|X̂,Ẑ)L

= K−1
X + K−1

X

(
KX̂QT KXAT

ẑ

)
E−1

 QKX̂

AẑKX

 K−1
X

where

E = C −

 QKX̂

AẑKX

 K−1
X

(
KX̂QT KXAT

ẑ

)

= C −

 Q(I − KX|W,ZK−1
X )

Aẑ


(

KX̂QT KXAT
ẑ

)

= C −

 Q(KX̂ − KX|W,ZK−1
X KX̂)QT QK̂xAT

ẑ

AẑKX̂QT AẑKXAT
ẑ


=

 KX̄ QKX̂AT
ẑ

AẑKX̂QT AẑKXAT
ẑ + KNẑ

 −
 Q(KX̂ − KX|W,ZK−1

X KX̂)QT QKX̂AT
ẑ

AẑKX̂QT AẑKXAT
ẑ


=

 Q(KX|W,Z − KX|W,ZK−1
X KX|W,Z)QT 0

0 KNẑ

 .
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Then

K−1
(X|X̂,Ẑ)L

= K−1
X + K−1

X

(
KX̂QT KXAT

ẑ

)  K−1
(X̄|X)L

0

0 K−1
Ẑ|X


 QKX̂

AẑKX

 K−1
X

= K−1
X + K−1

X

(
KX̂QT K−1

(X̄|X)L
KXAT

ẑ K−1
Ẑ|X

)  QKX̂

AẑKX

 K−1
X

= K−1
X + K−1

X

(
KX̂QT K−1

(X̄|X)L
QKX̂ KXAT

ẑ K−1
Ẑ|X

AẑKX

)
K−1

X

= K−1
(X|X̄)L

+ KX|Ẑ − K−1
X , by matrix inversion lemma

= K−1
X|X̄ + KX|Ẑ − K−1

X

= K−1
X|X̂

+ KX|Ẑ − K−1
X

= K−1
X|W,Z + KX|Ẑ − K−1

X .

Hence we have

K−1
(X|X̂,Ẑ)L

= K−1
X|W,Z + K−1

X|Ẑ
− K−1

X + K−1
X|WG,Z − K−1

X|WG,Z

= K−1
X|WG,Z,Ẑ

+ K−1
X|W,Z − K−1

X|WG,Z. (6.4)

Note that KX|W,Z,Ẑ � K(X|X̂,Ẑ)L
so K−1

X|W,Z,Ẑ
� K−1

(X|X̂,Ẑ)L
. Then, from (6.4) we have

K−1
X|W,Z,Ẑ

� K−1
X|WG,Z,Ẑ

+ K−1
X|W,Z − K−1

X|WG,Z. (6.5)

Thus, by (6.5) if KX|WG,Z = KX|W,Z then KX|W,Z̃ � KX|WG,Z̃ and if KX|W,Z̃ = KX|WG,Z̃

then KX|WG,Z � KX|W,Z.

Lemma 14 leads us to the following corollary.

Corollary 2. Let (W,X,Z, Z̃) be random vectors such that X, Z, and Z̃ are jointly

Gaussian, W ↔ X ↔ Z̃ ↔ Z and KX|W,Z̃ � 0. Also, let D̃ = (D−1 + K−1
X|Z̃
− K−1

X|Z)−1. If

KX|W,Z = D then KX|W,Z̃ � D̃.
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Proof. We can find WG jointly Gaussian with (X, Z̃,Z) such that (W,WG)↔W↔

Z̃↔ Z, and KX|WG,Z = KX|W,Z = D. Then K−1
X|WG,Z̃

= K−1
X|WG,Z + K−1

X|Z̃
− K−1

X|Z = K−1
X|W,Z +

K−1
X|Z̃
− K−1

X|Z. Lemma 14 then implies the result.

Proof of Lemma 3. We show that without loss of optimality, the auxiliary ran-

dom vectors can be chosen jointly Gaussian with (X,Y1,Y2,Y) in ELB and En-

hanced ELB. Let Y ∈ S G, (W,U,V) ∈ C̃l1 ((W,U,V) ∈ C̄l1 for Enhanced ELB)

be given and Rlo1 = I(X; W,U|Y1) + I(X; V|W,U,Y) as defined before. Note that

without loss of generality we can write Y = AYX + BYY1 + NY, where NY is a

Gaussian vector that is independent of the pair (X,Y1). Then we have

Rlo1 = h(X|Y1) − h(X|W,U,Y1) + h(X|W,U,Y) − h(X|W,U,V,Y)

= h(X|Y1) − h(X|W,U,Y1) + h(X|W,U,Y1,Y) − h(X|W,U,V,Y1,Y),

since X↔ Y↔ Y1. Then we can further write

Rlo1 = h(X|Y1) − I(X; Y|W,U,Y1) − h(X|W,U,V,Y1,Y)

= h(X|Y1) + h(Y|X,Y1) − h(Y|W,U,Y1) − h(X|W,U,V,Y1,Y)

= h(X|Y1) + h(Y|X,Y1) − h(AYX + NY|W,U,Y1)

− h(X|W,U,V,Y1,Y), since Y = AYX + BYY1 + NY

≥
1
2

log
|KX|Y1 ||KY|X,Y1 |

|KAYX+NY |W,U,Y1 ||KX|W,U,V,Y1,Y|

where KAYX+NY |W,U,Y1 = AYKX|W,U,Y1 AT
Y + KNY and equality holds if (W,U,V) is

Gaussian. We can find (WG,UG) that are jointly Gaussian with (X,Y1,Y2,Y) such

that (WG,UG) ↔ X ↔ Y ↔ (Y1,Y2) and KX|WG,UG,Y1 = KX|W,U,Y1 . Then by Lemma

14, KX|WG,UG,Y � KX|W,U,Y � KX|W,U,V,Y. Thus we can find a VG that is jointly Gaus-

sian with (WG,UG,X,Y1,Y2,Y) such that (WG,UG,VG) ↔ X ↔ Y ↔ (Y1,Y2)

and KX|WG,UG,VG,Y = KX|W,U,V,Y, giving (WG,UG,VG) ∈ C̃l1, ((WG,UG,VG) ∈ C̄l1 for

Enhanced ELB). Therefore, one can choose the auxiliary random vectors to be
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jointly Gaussian with (X,Y1,Y2,Y) without loss of optimality in Rlo1. The same

argument applies to Rlo2 as well.

6.2

Lemma 16. R′lo(D,Y) is a convex function with respect to D.

Proof of Lemma 16. To prove the lemma, we use a similar argument to [51]. Let

ε > 0 be given. We can find (W̃, Ũ, Ṽ) and (Ŵ, Û, V̂) in Cl(D̃) and Cl(D̂) respec-

tively such that

R′lo(D̃,Y) + ε

≥ max{I(X; W̃, Ũ|Y1) + I(X; Ṽ|W̃, Ũ,Y), I(X; W̃, Ṽ|Y2) + I(X; Ũ|W̃, Ṽ,Y)} and

R′lo(D̂,Y) + ε

≥ max{I(X; Ŵ, Û|Y1) + I(X; V̂|Ŵ, Û,Y), I(X; Ŵ, V̂|Y2) + I(X; Û|Ŵ, V̂,Y)}.

Now we construct (W,U,V) and show that it is in Cl(λD̃ + (1 − λ)D̂). Let

T be a binary random variable with P(T = 1) = λ and independent of

(W̃, Ũ, Ṽ, Ŵ, Û, V̂,X,Y1,Y2,Y). Then we define

W = (W̃,T ) if T = 1, W = (Ŵ,T ) if T = 0,

U = (Ũ,T ) if T = 1, U = (Û,T ) if T = 0,

V = (Ṽ,T ) if T = 1, V = (V̂,T ) if T = 0

and

g1(W,U,Y1) = E[X|W̃, Ũ,Y1] if T = 1, g1(W,U,Y1) = E[X|Ŵ, Û,Y1] if T = 0,

g2(W,V,Y2) = E[X|W̃, Ṽ,Y2] if T = 1, g2(W,V,Y2) = E[X|Ŵ, V̂,Y2] if T = 0.
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Note that KX|g1(W,U,Y1) = λKX|W̃,Ũ,Y1
+(1−λ)KX|Ŵ,Û,Y1

and since Γ1 is a linear operator,

Γ1(KX|g1(W,U,Y1)) � λD̃1 + (1 − λ)D̂1. Similarly, that KX|g2(W,V,Y2) = λKX|W̃,Ṽ,Y2
+ (1 −

λ)KX|Ŵ,V̂,Y2
gives Γ2(KX|g2(W,V,Y2)) � λD̃2 + (1 − λ)D̂2 . Hence, (W,U,V) ∈ Cl(λD̃ +

(1 − λ)D̂). We can write

R′lo(λD̃ + (1 − λ)D̂,Y)

≤ max{I(X; W,U|Y1) + I(X; V|W,U,Y), I(X; W,V|Y2) + I(X; U|W,V,Y)}

= max{I(X; W,U,T |Y1) + I(X; V|W,U,T,Y), I(X; W,V,T |Y2) + I(X; U|W,V,T,Y)}

= max{I(X; W,U|Y1,T ) + I(X; V|W,U,T,Y), I(X; W,V|Y2,T ) + I(X; U|W,V,T,Y)}

= max{λI(X; W̃, Ũ|Y1) + (1 − λ)I(X; Ŵ, Û|Y1) + λI(X; Ṽ|W̃, Ũ,Y)

+ (1 − λ)I(X; V̂|Ŵ, Û,Y),

λI(X; W̃, Ṽ|Y2) + (1 − λ)I(X; Ŵ, V̂|Y2) + λI(X; Ũ|W̃, Ṽ,Y)

+ (1 − λ)I(X; Û|Ŵ, V̂,Y)}

≤ λmax{I(X; W̃, Ũ|Y1) + I(X; Ṽ|W̃, Ũ,Y), I(X; W̃, Ṽ|Y2) + I(X; Ũ|W̃, Ṽ,Y)}

+ (1 − λ) max{I(X; Ŵ, Û|Y1) + I(X; V̂|Ŵ, Û,Y), I(X; Ŵ, V̂|Y2) + I(X; Û|Ŵ, V̂,Y)}

≤ λR′lo(D̃,Y) + (1 − λ)R′lo(D̂,Y) + ε.

By letting ε → 0, we conclude that R′lo(D,Y) is a convex function of D.

152



6.3

Proof of Lemma 5. First we consider A � 0. Using the matrix inversion lemma,

we can write

([M−1 + A]−1)diag = (A−1 − A−1[M + A−1]−1A−1)diag

= A−1 − A−1([M + A−1]−1)diagA−1

� A−1 − A−1[Mdiag + A−1]−1A−1,

since (Mdiag)−1 � (M−1)diag, [52, Theorem 7.7.8]. By the matrix inversion lemma,

the right hand side of the last inequality is [(Mdiag)−1 + A]−1.

Now, we consider A � 0. Without loss of generality we can assume that all

positive diagonal entries are on the upper left corner of A. Hence we can write

A =

 A1 0

0 0

 ,
where A1 � 0, m1 ×m1 matrix, m1 ≤ m. Also we can represent M in terms of block

matrices,

M =

 M1 M2

MT
2 M3

 ,
where M1 � 0, m1 × m1 matrix, and M3 � 0, (m − m1) × (m − m1) matrix. Then we

can write inverse of M as

M−1 =

 M̄1 M̄2

M̄T
2 M̄3

 ,
where

M̄1 = (M1 − M2M−1
3 MT

2 )−1

M̄3 = (M3 − MT
2 M−1

3 M2)−1

M̄2 = −M−1
1 M2(M1 − M2M−1

3 MT
2 )−1.
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Also,

[M−1 + A] =

 M̄1 + A1 M̄2

M̄2 M̄3

 .
When we take the inverse of [M−1 + A] we have,

[M−1 + A]−1 =

 M̃1 M̃2

M̃2 M̃3

 .
where M̃2 is a matrix in terms of M̄1, M̄2, M̄3, A and

M̃1 = (M̄1 + A1 − M̄2M̄−1
3 M̄T

2 )−1

M̃3 = (M̄3 − M̄T
2 (M̄1 + A1)−1M̄2)−1.

Since, M1 = (M̄1 − M̄2M̄−1
3 M̄T

2 )−1 and M3 = (M̄3 − M̄T
2 M̄−1

1 M̄2)−1, we can write

M̃1 = [M−1
1 + A1]−1

M̃3 � M3.

Then utilizing the inequalities above we can write

([M−1 + A]−1)diag =

 M̃1 M̃2

M̃2 M̃3


diag

�

 ([M−1
1 + A1]−1)diag 0

0 (M3)diag


� [(Mdiag)−1 + A]−1.
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CHAPTER 7

CHAPTER 4 OF APPENDIX

7.1

Proof of Theorem 9. Let ε > 0, v ∈ V be given and joint distribution of

(U , X,Y1, . . . ,Ym) in Cach,v(D), denoted by p, is fixed. The scheme consists of three

main steps; namely, code construction, encoding and decoding. First we explain

each step then show that the resulting rate is D-achievable.

Code construction and encoding is similar to the proof of the achievable

scheme in [2], which depends on ε-letter typicality [53] arguments. Here, we

use lowercase letter z to denote a realization of a random variable Z.

Code Construction : A codebook, denoted as C S j , of size 2
n(RS j +R′S j

)
is created for

each set S j ∈ v in the following way. Let kS j = (kS j , k
′
S j

), where kS j ∈ [2nRS j ]

and k′S j
∈ [2

nR′S j ]. A codeword uS j(kS j) ∈ U
n
S j

of length n is created by drawing

each component from US j with respect to p(uS j) in an i.i.d (independent and

identically distributed) manner.

Encoding : Let 0 < ε0 < · · · < ε2m+1 be sufficiently small and xn ∈ Xn be given to the

encoder. Then encoding is performed in 2m − 1 stages. Specifically, at stage j en-

coder picks C S j and looks for an index kS j such that uS j(kS j) is ε j-letter typical

with xn and

u−S j
=

{
uSi(kSi)|i < j

}
. (7.1)

If such kS j (or multiple) exists then encoder picks one of them arbitrarily and

sends the bin index kS j to decoders. Otherwise encoder picks a codeword ran-

domly and sends the corresponding bin index.
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Decoding : We apply simultaneous decoding [4, Section 4]. Consider decoder l.

It forms reconstructions of all its messages, uDl (̂kDl) = {uS j (̂kS j)|S j ∈ Dl}, where

k̂Dl = {̂kS j |S j ∈ Dl}
1, in the following way. Decoder l takes the set of bin indices

kDl = {kS j |S j ∈ Dl} then looks for a set of indices k̃Dl such that

k̃S j = kS j for all S j ∈ Dl and (7.2)

uDl (̃kDl) are εl∗+1-letter typical with yn
l , (7.3)

where l∗ = max j:S j∈Dl j. Note that if no error occurs at the encoder, uDl(kDl) is

εl∗-typical with xn. If there is more than one set of codewords uS j (̃kS j), S j ∈ Dl

whose indices, k̃S j , satisfies (7.2) and (7.3), decoder l selects one arbitrarily and

sets k̂S j = k̃S j . If decoder l can not find any such set of indices, it sets k̂Dl to 1 (i.e.,

it declares an error). Since joint distribution of (U , X,Y1, . . . ,Ym) is in Cach,v(D), we

can find a function gl(·, ·) such that gl(uDli(̂kDl), yli) = x̂li, where uDli(̂kDl), yli and x̂li

are ith components of uDl (̂kDl), yn
l and x̂n

l respectively.

Now we analyze the error probabilities at the encoding and decoding steps

respectively.

Error Analysis for Encoder : Note that encoding process is correct if the following

is satisfied:

1. At each encoding stage j, we can find USi(kSi) such that it is ε j-jointly typical

with (U−S j
, Xn) i.e.,

CS j =
{
∃kS j such that uS j(kS j) ∈ T

(n)
ε j

(p|U−S j
, Xn)

}
. (7.4)

1Since v ∈ V is an ordered list, it induces an order on sets S j. Hence we can take k̂Dl as an
ordered set and consider ordered set structure.
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Then probability of error at the encoder, Pr(E) can be expressed as

Pr(E) = Pr((CS1 ∩ . . . ∩CS2m−1)
c)

= Pr(Cc
S1
∪ . . . ∪Cc

S2m−1
)

= Pr((Cc
S1
∩ C̄1) ∪ . . . ∪ (Cc

S2m−1
∩ C̄2m−1)), (7.5)

where C̄ j is defined as
⋂i< j

i=1 CSi for all j ∈ [2m − 1] \ {1} and C̄1 = ∅. Then from

(7.5) and union bound, we can write

Pr(E) ≤ Pr(Cc
S1
∩ C̄1) + · · · + Pr(Cc

S2m−1
∩ C̄2m−1)

≤ Pr(Cc
S1
|C̄1) + · · · + Pr(Cc

S2m−1
|C̄2m−1) (7.6)

Note that P(Cc
S j
|C̄ j), j ∈ [2m − 1] represents the probability of the event that

there is no US j(kS j) ε j-jointly typical with (U−S j
, Xn) given that for each i < j we

find USi(kSi) such that USi(kSi) is εi-jointly typical with (U−Si
, Xn), i.e.,

Pr(Cc
S j
|C̄ j) = Pr

(
∀kS j ,US j(kS j) < T

(n)
ε j

(p|U−S j
, Xn)|(U−S j

, Xn) ∈ T (n)
ε j−1

(p)
)
.

From Lemma 19 in Appendix 7.2 and since (1 − α)β < e−αβ we can write

Pr(Cc
S j
|C̄ j) < e

−

(1−δε j−1 ,ε j (n))2
−n

(
I(X,U−

S j
;US j

)+2ε jH(US j
)
)
2

n(RS j
+R′

S j
)


= e
−

(1−δε j−1 ,ε j (n))2
n
(
(RS j

+R′
S j

)−I(X,U−
S j

;US j
)−2ε jH(US j

)
)
, (7.7)

where δε j−1,ε j(n)→ 0 as n→ ∞. Note that when H(US j) = 0, Pr(Cc
S j
|C̄ j) is equal to

zero. Then Pr(Cc
S j
|C̄ j) < ε′

2m if n ≥ n1(ε′, ε jH(US j)), and

RS j + R′S j
≥ I(X,U−S j

; US j) + 3ε jH(US j). (7.8)

Hence, if (RS j ,R
′
S j

) satisfy the condition in (7.8) for all j ∈ [2m − 1], from (7.6)

we can conclude that probability of error at the encoder,

Pr(E) <
2m − 1

2m ε′ (7.9)
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when n ≥ N1 where N1 = max j∈[2m−1] n1(ε′, ε jH(US j)).

Error Analysis for Decoders : Let us focus on decoder l for some fixed l ∈ [m].

Decoding at this decoder is successful if the following conditions are satisfied:

1. There is no error at the encoder.

2. The source and the side information are ε0-typical, i.e.,

D0 =
{
(Xn,Yn

1 , . . . ,Y
n
m) ∈ T (n)

ε0
(p)

}
, (7.10)

3. The set of codewords UDl(kDl) = {US j(kS j)|S j ∈ Dl} chosen by the encoder are

εl∗+1-letter typical with Yn
l , i.e.,

D1,l =
{(

UDl(kDl), X
n,Yn

l
)
∈ T (n)

εl∗+1
(p)

}
. (7.11)

4. Within the received bins kDl = {kS j |S j ∈ Dl}, decoder l can find a unique set

of codewords, UDl (̂kDl) = {US j (̂kS j)|̂kS j = kS j ,S j ∈ Dl}, such that UDl (̂kDl) are

εl∗+1-letter typical with Yn
l , i.e.,

D2,l =
{
@k̃Dl , kDl such that k̃Dl = kDl ,

(
UDl (̃kDl),Y

n
l

)
∈ T (n)

εl∗+1
(p)

}
. (7.12)

Then we can write the probability of error at decoder l, denoted by Pr(Derr,l),

as

Pr(Derr,l) = Pr((Ec ∩ D0 ∩ D1,l ∩ D2,l)c)

= Pr(E ∪ Dc
0 ∪ Dc

1,l ∪ Dc
2,l)

= Pr(Ē ∪ (Dc
1,l ∩ Ēc) ∪ (Dc

2,l ∩ Ēc ∩ D1,l)), where Ē = E ∪ Dc
0,

≤ Pr(Ē) + Pr(Dc
1,l ∩ Ēc) + Pr(Dc

2,l ∩ Ēc ∩ D1,l). (7.13)

First we analyze Pr(Ē). By Lemma 18 in Appendix 7.2, Pr(Dc
0) < δε0(n) where

δε0(n) → 0 as n → ∞. Then we can find n2(ε′, δε0), ε′ > 0 such that if n ≥ n2(ε′, δε0),
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Pr(Dc
0) < ε′

2m . Hence, from (7.9) and the union bound, we have

Pr(Ē) ≤ Pr(E) + Pr(Dc
0) < ε′. (7.14)

when n ≥ max{n2(ε′, δε0),N1}.

Now we focus on Pr(Dc
1,l ∩ Ēc) and Pr(Dc

2,l ∩ Ēc ∩ D1,l). We can upper bound

Pr(Dc
1,l ∩ Ēc) by

Pr
((

UDl(kDl), X
n,Yn

l
)
< T n

εl∗+1
(p)

∣∣∣(UDl(kDl), X
n) ∈ T (n)

εl∗
(p)

)
. (7.15)

By Lemma 20 in Appendix 7.2, the probability in (7.15) is less than or equal to

δεl∗ εl∗+1(n) which goes to 0 as n→ ∞. Hence, Pr(Dc
1,l ∩ Ēc) < ε′ if n ≥ n3(ε′, δεl∗ εl∗+1).

Now we consider Pr(Dc
2,l ∩ Ēc ∩ D1,l). Note that event Dc

2,l can be rewritten as

Dc
2,l =

⋃
D ′l :D ′l ⊆Dl,D ′l ,∅

FD ′l
, where

FD ′l
=

{
∃k̃Dl such that k̃S j , kS j for all S j ∈ D ′l , k̃D ′l

= kD ′l
, k̃S j = kS j

for all S j ∈ Dl \D ′l and
(
UDl (̃kDl),Y

n
l

)
∈ T (n)

εl∗+1
(p)

}
.

Using the union bound on the probabilities, we can write

Pr(Dc
2,l ∩ Ēc ∩ D1,l) ≤

∑
D ′l :D ′l ⊆Dl,D ′l ,∅

Pr(FD ′l
∩ Ēc ∩ D1,l). (7.16)

Notice that FD ′l
∩ Ēc ∩D1,l denotes the error event that there is no error at the

encoder and source and side information are ε0 typical (event Ēc), decoder l can

find set of indices {̂kS j |S j ∈ Dl} such that UDl (̂kDl) are εl∗+1-jointly typical with

(Xn,Yn
l ) (event D1,l); however, kD ′l

= {kS j |S j ∈ D ′l } subset of those indices are not

unique (event FD ′l
). Now we bound each term inside the summation in (7.16).
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To do this, first we define an event F̄D ′l
by replacing the typical set T (n)

εl∗+1(p) in

event FD ′l
with T (n)

εl∗+2(p). In other words,

F̄D ′l
=

{
∃k̃Dl such that k̃S j , kS j for all S j ∈ D ′l , k̃D ′l

= kD ′l
, k̃S j = kS j

for all S j ∈ Dl \D ′l and
(
UDl (̃kDl),Y

n
l

)
∈ T (n)

εl∗+2
(p)

}
,

giving FD ′l
⊆ F̄D ′l

. Let S 1 = {̃kD ′l
|̃k′S j
, k′S j

, k̃D ′l
= kD ′l

,∀S j ∈ D ′l } and S 2 = {̃kD ′l
|̃kS j =

1,∀S j ∈ D ′l }. Then we can write,

Pr(F̄D ′l
∩ Ēc ∩ D1,l)

≤ Pr

⋃
S 1

UD ′l
(̃kD ′l

) ∈ T (n)
εl∗+2

(p|UDl\D ′l
(kDl\D ′l

),Yn
l )

∣∣∣(UDl\D ′l
(kDl\D ′l

),Yn
l ) ∈ T (n)

εl∗+1
(p)


(7.17)

≤ Pr

⋃
S 2

UD ′l
(̃kD ′l

) ∈ T (n)
εl∗+2

(p|UDl\D ′l
(kDl\D ′l

),Yn
l )

∣∣∣(UDl\D ′l
(kDl\D ′l

),Yn
l ) ∈ T (n)

εl∗+1
(p)

 ,
(7.18)

where (7.18) is obtained by using Lemma 21 in Appendix 7.2. Then due to the

union bound of probabilities we can write

Pr(F̄D ′l
∩ Ēc ∩ Dc

1,l)

≤
∑
S 2

Pr
(
UD ′l

(̃kD ′l
) ∈ T (n)

εl∗+2
(p|UDl\D ′l

(kDl\D ′l
),Yn

l )
∣∣∣(UDl\D ′l

(kDl\D ′l
),Yn

l ) ∈ T (n)
εl∗+1

(p)
)

≤ 2
n
∑

S j∈D ′l
R′S j 2−n

(∑
S j∈D

′
l

H(US j )−H(UD′l
|UDl\D

′
l
,Yl)−2εl∗+2

(∑
S j∈D

′
l

H(US j )
))
, from Corollary 3.

(7.19)

Note that R′S j
≥ 0, for all j ∈ [2m − 1] and when each R′S j

= 0, S j ∈ D ′l , there is

only one codeword U(kS j), S j ∈ D ′l in each bin. Then, from (7.17) Pr(F̄D ′l
∩ Ēc ∩

D1,l) = 0 in this case. Also, when each H(US j) = 0, S j ∈ D ′l , Pr(F̄D ′l
∩ Ēc ∩ D1,l) is

equal to 0.
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Thus from (7.19), if

∑
S j∈D ′l

R′S j
≤ max


 ∑
S j∈D ′l

H(US j)

 − H(UD ′l
|UDl\D ′l

,Yl) − 3εl∗+2

 ∑
S j∈D ′l

H(US j)

 , 0


(7.20)

and n ≥ n4(ε′, εl∗+2,H(US j)), Pr(Dc
2,l ∩ Ēc ∩ Dc

1,l) < ε′

2|Dl |
. Then from (7.13),

if R′S j
satisfies (7.20) for all Dl, l ∈ [m] and n > N, where N =

max{N1, n2(ε′, δε0), n3(ε′, δεl∗ εl∗+1),maxl∈[m]{n4(ε′, εl∗+2,H(US j))}}

Pr(Derr,l) < 3ε′. (7.21)

Let

Derr = ∪l∈[m]Derr,l

denote the event that there is a decoding error at some decoder. By (7.21) and

the union bound we have

Pr(Derr) < 3ε′m. (7.22)

Thus there must exists a single code in the ensemble for which (7.22) holds.

Now we focus on the distortion constraints at decoders for this particular code.

Assuming that there is no error occurring at the encoder and decoders (cor-

responding event is Ec ∩ Dc
err,l), decoder l can find unique uDl(kDl) such that

(uDl(kDl), y
n
l , x

n) are εl∗+1-jointly typical and it can reconstruct x̂n
l symbol by sym-

bol through x̂li = gl(uDli, yli), i ∈ [n]. Then using the arguments in [53, page 57]

we can bound the average distortion at decoder l as

1
n

n∑
i=1

dl(xi, x̂li) =

n∑
i=1

dl(xi, gl(uDli, yli))

≤ E
[
dl(X, gl(UDl ,Yl))

]
+ εl∗+1Dl,max

≤ Dl + εl∗+1Dl,max, (7.23)
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where Dl,max is the maximum distortion that dl(., .) can give. Then the expected

distortion at decoder l can be bounded by

E

1
n

n∑
i=1

dl(xi, x̂li)

 ≤ (Dl + εl∗+1Dl,max)Pr(Ec ∩ Dc
err,l) + Dl,maxPr(E ∪ Derr,l)

≤ Dl + Dl,max(εl∗+1 + Pr(E ∪ Derr,l))

< Dl + Dl,max(εl∗+1 + 4ε′m), (7.24)

where (7.24) holds if n > N and (RS j ,R
′
S j

), S j ⊆ [m] satisfy the conditions in (7.8),

(7.20), and the following non-negativity conditions.

RS j ≥ 0, for all j ∈ [2m − 1] (7.25)

R′S j
≥ 0, for all j ∈ [2m − 1]. (7.26)

Thus for all sufficiently large n, there exists a code whose expected distortion

at decoder l satisfies (7.24) and whose rate does not exceed

inf
2m−1∑
j=1

RS j (7.27)

subject to :RS j ,R
′
S j
, j ∈ [2m − 1] satisfying (7.8), (7.20), (7.25), and (7.26),

Lemma 17. Let 0 < ε0 < ε1 < . . . < ε2m+1, and US j ,S j ∈ v, be as in the proof of

Theorem 9. For γ ≥ 0, consider the following linear program:

R̃(γ) = inf
CLP

ach(γ)

2m−1∑
j=1

RS j , (7.28)

where CLP
ach(γ) denotes the set of RS j and R′S j

such that

1) RS j ≥ 0 and R′S j
≥ 0, for all j ∈ [2m − 1];

2) RS j + R′S j
≥ I(X,U−S j

; US j) + 3γ, for all j ∈ [2m − 1];

3) For each decoder l, l ∈ [m]

∑
S j∈D ′l

R′S j
≤ max


 ∑
S j∈D ′l

H(US j)

 − H(UD ′l
|UDl\D ′l

,Yl) − 3(2m − 1)γ, 0

 .
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Then R̃(γ) is continuous at γ = 0 and is greater than or equal to the optimal value

in (7.27) if

γ ≥ ε2m+1 max
US j

H(US j). (7.29)

Proof of Lemma 17. Note that when γ = 0, CLP
ach(γ) is equal to CLP

ach. Also, since the

alphabets are finite, CLP
ach(γ) is nonempty for any γ ≥ 0. The continuity of R̃(γ) in

γ then follows from standard results on the continuity of LPs [47]. The relation

with (7.27) follows from noting that CLP
ach(γ) is contained in the set defined by the

constraints (7.8), (7.20), (7.25), and (7.26), whenever (7.29) holds.

Now given ε > 0, choose 0 < ε0 < ε1 < . . . < ε2m+1, ε′ and γ such that

Dl,max(εl∗+1 + 4ε′m) < ε for all l ∈ [m]

γ ≥ ε2m+1 max
US j

H(US j)

and R̃(γ) < R̃(0) + ε. Then we have that for all sufficiently large n, there exists a

code with rate at most R̃(0) + ε whose expected distortion at decoder l is at most

Dl + ε. It follows that R̃(0) is D-achievable as desired.

7.2

We first give the definition of ε-letter typical sequences and then provide theo-

rems [53] that are useful to prove Theorem 9.

Definition 18. Let ε > 0 be given. xn ∈ Xn is called ε-letter typical sequence with

respect to pX if ∣∣∣∣∣1nN(a|xn) − pX(a)
∣∣∣∣∣ ≤ pX(a)ε, for all a ∈ X,
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where N(a|xn) denotes the number of a occurring in xn. Also T (n)
ε (pX) denotes the set of

all ε-letter typical sequences with respect to pX.

Definition 19. Let ε > 0 be given. (xn, yn) ∈ Xn×Yn is called jointly typical sequence

with respect to pXY if∣∣∣∣∣1nN(a, b|xn, yn) − pXY(a, b)
∣∣∣∣∣ ≤ pXY(a, b)ε, for all (a, b) ∈ X × Y,

Also T (n)
ε (pXY) denotes the set of all jointly typical sequences with respect to pXY .

Definition 20. Let ε > 0 be given. The set of conditionally typical sequence,

T
(n)
ε (pXY |xn), is defined as

T (n)
ε (pXY |xn) = {yn|(xn, yn) ∈ T (n)

ε (pXY)}.

Lemma 18. [53, Theorem 1.1] Let 0 < ε ≤ µX where µX = minx∈support(pX) p(x) and

Xn ∈ Xn drawn i.i.d with respect to pX. Then

1 − δε(n) ≤ Pr[Xn ∈ T (n)
ε (pX)] ≤ 1,

where δε(n) = 2|X|e−nε2µX .

Lemma 19. [53, Theorem 1.3] Let 0 < ε1 < ε2 ≤ µXY where µXY =

min(x,y)∈support(pXY ) p(x, y) and Yn ∈ Yn drawn i.i.d with respect to pY . If xn ∈ T
(n)
ε1 (pX)

then

(
1 − δε1,ε2(n)

)
2−n(I(X;Y)+2ε2H(Y)) ≤ Pr

[
Yn ∈ T (n)

ε2
(pXY | xn)

]
≤ 2−n(I(X;Y)−2ε2H(Y)),

where δε1,ε2(n) = 2|X||Y| · e−n (ε2−ε1)2

1+ε1
µXY .

Corollary 3. Let 0 < ε1 < ε2 ≤ µXYZ where µXYZ = min(x,y,z)∈support(pXYZ ) p(x, y, z).

Yn ∈ Yn is drawn i.i.d with respect to pY and Zn ∈ Zn is drawn i.i.d with respect to pZ.

If xn ∈ T n
ε1

(pX) then

Pr
[
(Yn,Zn) ∈ T (n)

ε2
(pXYZ | xn)

]
≤ 2−n((H(Y)+H(Z)−H(Y,Z|X))−2ε2(H(Y)+H(Z))),
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Proof.

Pr
[
(Yn,Zn) ∈ T (n)

ε2
(pXYZ | xn)

]
=

∑
(yn,zn)∈T (n)

ε2 (pXYZ |xn)

pn
Y(yn)pn

Z(zn)

≤ 2−n(1−ε2)H(Y)2−n(1−ε2)H(Z)|T (n)
ε2

(pXYZ | xn) |, by [53, Theorem 1.1]

≤ 2−n(1−ε2)H(Y)2−n(1−ε2)H(Z)2nH(Y,Z|X)(1+ε2), by [53, Theorem 1.2]

≤ 2−n((H(Y)+H(Z)−H(Y,Z|X))−2ε2(H(Y)+H(Z)))

Lemma 20. [53, Markov Lemma] Let 0 < ε1 < ε2 ≤ µXYZ where µXYZ =

min(x,y,z)∈support(pXYZ ) p(x, y, z) and (Xn,Yn,Zn) drawn i.i.d with respect to pXYZ such that

X ↔ Y ↔ Z. If (xn, yn) ∈ T n
ε1

(pXY) then

Pr
[
Zn ∈ T (n)

ε2
(pXYZ | xn, yn) |Yn = yn

]
= Pr

[
Zn ∈ T (n)

ε2
(pXYZ | xn, yn) |Yn = yn, Xn = xn

]
≥ 1 − δε1,ε2(n)

where δε1,ε2(n) = 2|X||Y||Z| · e−n (ε2−ε1)2

1+ε1
µXYZ .

Lemma 21. Let A, B and C denote the events

{∃k̃D ′l
such that k̃D ′l

, kD ′l
, k̃D ′l

= kD ′l
,UD ′l

(̃kD ′l
) ∈ T (n)

εl∗+2
(p|UDl\D ′l

(kDl\D ′l
),Yn

l )} and

{∃k̃D ′l
such that k̃D ′l

= 1,UD ′l
(̃kD ′l

) ∈ T (n)
εl∗+2

(p|UDl\D ′l
(kDl\D ′l

),Yn
l )}

{(UDl\D ′l
(kDl\D ′l

),Yn
l ) ∈ T (n)

εl∗+1
(p)}

respectively. Then

Pr (A|C) ≤ Pr (B|C) .
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Proof. The proof follows the steps in [4, Lemma 11.1]. We start with showing

that for a particular set of bin indices bD ′l
,

Pr
(
A|C, kD ′l

= bD ′l
is chosen at the encoder

)
≤ Pr

(
B|C, kD ′l

= bD ′l
is chosen at the encoder

)
. (7.30)

We can write

Pr
(
A|C, kD ′l

= bD ′l
is chosen at the encoder

)
=

∑
b′

D′l

p(b′D ′l |bD ′l
)Pr

(
∃k̃D ′l

such that k̃D ′l
= bD ′l

, k̃′D ′l , b′D ′l ,UD ′l
(̃kD ′l

)

is in T (n)
εl∗+2

(p|UDl\D ′l
(kDl\D ′l

),Yn
l )

∣∣∣∣∣C,kD ′l
= (bD ′l

, b̄′D ′l ) is chosen at the encoder
)

a
=

∑
b′

D′l

p(b′D ′l |bD ′l
)Pr

(
∃k̃D ′l

such that k̃S j = 1, k̃′S j
∈ [2

R′S j − 1]∀S j ∈ D ′l ,UD ′l
(̃kD ′l

)

is in T (n)
εl∗+2

(p|UDl\D ′l
(kDl\D ′l

),Yn
l )

∣∣∣∣∣C,kD ′l
= (bD ′l

, b̄′D ′l ) is chosen at the encoder
)

b
≤

∑
b′

D′l

p(b′D ′l |bD ′l
)Pr

(
∃k̃D ′l

such that k̃S j = 1 for all S j ∈ D ′l ,UD ′l
(̃kD ′l

)

is in T (n)
εl∗+2

(p|UDl\D ′l
(kDl\D ′l

),Yn
l )

∣∣∣∣∣C,kD ′l
= (bD ′l

, b̄′D ′l ) is chosen at the encoder
)

= Pr
(
∃k̃D ′l

such that k̃S j = 1 for all S j ∈ D ′l ,UD ′l
(̃kD ′l

) ∈ T (n)
εl∗+2

(p|UDl\D ′l
(kDl\D ′l

),Yn
l )

∣∣∣∣∣
C, kD ′l

= bD ′l
is chosen at the encoder

)
= P(B|C, kD ′l

= bD ′l
is chosen at the encoder),

where

a : Given any set of codeword indices bD ′l
= (bD ′l

, b̄′D ′l ) and event C, for each

S j ∈ D ′l , any collection of [2
R′S j − 1] number of codewords un(kS j) whose index

kS j is different from bS j has the same distribution.

b: Each bin in codebook CS j has size 2
R′S j .
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Multiplying both sides of (21) with p(bD ′l
) and summing over all bin indices

bD ′l
concludes the proof.
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