SDPT3 — a MATLAB software package for
semidefinite programming

K. C. Toh * M. J. Todd ! and R. H. Tiitiincii
March 5, 1998

Abstract

This software package is a MATLAB implementation of infeasible path-following al-
gorithms for solving standard semidefinite programs (SDP). Mehrotra-type predictor-
corrector variants are included. Analogous algorithms for the homogeneous formula-
tion of the standard SDP are also implemented. Four types of search directions are
available, namely, the AHO, HKM, NT and GT directions. A few classes of SDP
problems are also included. Numerical results for these classes show that our algo-
rithms are fairly efficient and robust on problems with dimensions of the order of a
hundred.

*Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore
119260 (mattohkc@math.nus.edu.sg).

tSchool of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853,
USA (miketodd@cs.cornell.edu). Research supported in part by NSF through grant DMS-9505155 and
ONR through grant N00014-96-1-0050.

iDepartment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
(reha+@andrew.cmu.edu).

1 Introduction

This is a software package for solving the standard SDP:

(P) miny C e X
ApeX = by, k=1,....m (1)
X = 0,

where Ay € H", C € H™ and b € IR™ are given data, and X € H" is the variable,
possibly complex. Here H"™ denotes the space of n X n hermitian matrices, P o ()
denotes the inner product Tr(P*@), and X > 0 means that X is positive semidef-
inite. We assume that the set {A;1,..., Ag} is linearly independent. (If this set is
nearly dependent, transformation to a better-conditioned basis may be advisable for
numerical stability.) The software also solves the dual problem associated with (P):

(D) maxy, z by

et YAy + Z = C (2)
Z =0,

where y € R™ and Z € H" are the variables.
This package is written in MATLAB version 5.0. It is available from the internet
site:

http://www.math.nus.sg/ mattohkc/index.html

The purpose of this software package is to provide researchers in SDP with a
collection of reasonably efficient algorithms that can solve general SDPs with matrices
of dimensions of the order of a hundred. If your problem is large-scale, you should
probably use an implementation that exploits problem structure. The only structure
we exploit in this package is block-diagonal structure, where MATLAB cell arrays are
used to handle dense and sparse blocks separately. For the purpose of evaluating the
performance of algorithms proposed by other authors, we also include a few classes
of SDP problems in this software package.

A special feature that distinguishes this SDP software from others (e.g., [3],[4],[5],[10])
is that complex data are allowed. But note that b and y must be real. Another special
feature, though also shared by the software of [5], of our package is that the spar-
sity of matrices A is exploited in the computation of the Schur complement matrix
required at each iteration of our SDP algorithms.

Part of the codes for real symmetric matrices is originally based on those by
Alizadeh, Haeberly, and Overton, whose help we gratefully acknowledge.

2 Infeasible-interior-point algorithms

2.1 The search direction

For later discussion, let us first introduce the operator A defined by

A:H" — R™,
A1.X

AX = : . (3)
Ape X

The adjoint of A with respect to the standard inner products in H™ and IR™ is the
operator

AR s W
Ay = 3L kA (4)

The main step at each iteration of our algorithms is the computation of the search
direction (AX, Ay, AZ) from the symmetrized Newton equation (with respect to an
invertible matrix P which is usually chosen as a function of the current iterate X, Z)
given below.

A*Ay + AZ = Ry = C—Z— A%
AAX =71, = b—-AX (5)
EAX v FAZ = R, = oul — Hp(XZ),

where y = X © Z/n and o is the centering parameter. Here Hp is the symmetrization
operator defined by

Hp: CY" — H"
Hp(U) = L [PUP™! + PT*U*P*], (6)
and £ and F are the linear operators
E =PxPZ, F = PX® P, (7)
where R %) T denotes the linear operator defined by
R®T:H" — H"
R®TU) = 3 [RUT*+TUR"]. (8)

Assuming that m = O(n), we compute the search direction via a Schur complement
equation as follows (the reader is referred to [2] and [8] for details). First compute
Ay from the Schur complement equation

where
M = AE~1FA*, (10)
h =1, + A" F(Rg) — AE"Y(R,). (11)
Then compute AX and AZ from the equations
AZ = Rq— A*Ay (12)
AX = E'R.-E7'F(AZ). (13)

If m > n, solving (9) by a direct method is overwhelmingly expensive; in this
case, the user should consider using an implementation that solves (9) by an iterative
method such as CG or QMR. In our package, we assume that m = O(n) and (9) is
solved by a direct method such as LU or Cholesky decomposition.

2.2 Computation of specific search directions

In this package, the user has four choices of symmetrizations resulting in four different
search directions, namely,

(1) the AHO direction, corresponding to P = I;
(2) the HKM direction, corresponding to P = Z'/2;

3) the NT direction, corresponding to P = N—!, where N is the unique matrix
q
such that N*ZN = N"'XN~* =: D, and D is a diagonal matrix; and

(4) the GT direction, corresponding to P = D/2G—*, where the matrices D and
G are defined as follows. Suppose X = G*G and Z = H*H are the Cholesky
factorizations of X and Z respectively. Let the SVD of GH* be GH* = UXV™*.
Let U and ® be positive diagonal matrices such that the equalities U*G = ¥G
and V*H = ®H hold, with all the rows of G and H having unit norms. Then
D =X%(Ud)"L.

To describe our implementation SDPT3, a discussion on the efficient computation
of the Schur complement matrix M is necessary, since this is the most expensive step
in each iteration of our algorithms where usually at least 80% of the total CPU time

is spent. From equation (10), it is easily shown that the (7, j) element of M is given
by

Mij = A; e E'F(4;). (14)

Thus for a fixed j, computing first the matrix £~'F(4,) and then taking inner product
with each A;, 1 =1,...,m, give the jth column of M.

However, the computation of M for the four search directions mentioned above
can also be arranged in a different way. The operator £ 'F corresponding to these
four directions can be decomposed generically as

ETNF(4)) = (R*®T)(D:1 O(D2: ® (R®T(4;)))),

4

where (9 denotes the Hadamard (elementwise) product and the matrices R, T', Dy,
and D5 depend only on X and Z. Thus the (7, j) element of M in (14) can be written
equivalently as

Mij = (R®T(4:)) e (D1 O[(D2 ® I(R®T(4))])- (15)

Therefore the Schur complement matrix M can also be formed by first computing
and storing R () T'(A;) for each j = 1,...,m, and then taking inner products as in
(15).

Computing M via different formulas, (14) or (15), will result in different compu-
tational complexities. Roughly speaking, if most of the matrices Ay, are dense, then it
is cheaper to use (15). However, if most of the matrices Ay are sparse, then using (14)
will be cheaper because the sparsity of the matrices Ay, can be exploited in (14) when
taking inner products. For the sake of completeness, in Table 1, we give an upper
bound on the complexity of computing M for the above mentioned search directions
when computed via (14) and (15).

directions | UPPeT bboyuillgi I(l); ((:1()5r;1plexity upper bb(;,u?lgi I(1);1 Floi;lplexity
AHO 4mn® + m?n? 63mn® + m*n?
HKM 2mn® + m?n? 4mn? + 0.5m?n?
NT mn?® + 0.5m?n? 2mn3 + 0.5m?n?
GT 2mn? + 0.5m?n? 4zmn® + 0.5m*n?

Table 1: Upper bounds on the complexities of computing M (for real SDP
data) for various search directions. We count one addition and one multiplica-
tion each as one flop. Note that, except for the HKM direction, all the others
require an eigenvalue decomposition of a symmetric matrix in the computation

of M.

The reader is referred to [2], [8], and [9] for more computational details, such as the
actual formation of M and A, involved in computing the above search directions. The
derivation of the upper bounds on the computational complexities of M computed via
(14) and (15) is given in [9]. The issue of exploiting the sparsity of the matrices Ay is
discussed in full detail in [5] for the HKM and NT directions; whereas an analogous
discussion for the AHO and GT directions can be found in [9].

In our implementation, we decide on the formula to use for computing M based
on the CPU time taken during the third and fourth iteration to compute M via (15)
and (14), respectively. We do not base our decision on the first two iterations for

two reasons. Firstly, if the initial iterates X° and Z° are diagonal matrices, then the
CPU time taken to compute M during these two iterations would not be accurate
estimate of the time required for subsequent iterations. Secondly, there are overheads
incurred when variables are first loaded into MATLAB workspace.

We should mention that the issue of exploiting the sparsity of the matrices Ay, is
not fully resolved in our package. What we have used in our package is only a rough
guide. Further improvements on this topic are left for future work.

2.3 The primal-dual path-following algorithm

The algorithmic framework of our primal-dual path-following algorithm is as follows.

Algorithm IPF. Suppose we are given an initial iterate (X°,4°, Z°) with X°, Z° positive
definite. Decide on the symmetrization operator Hp(-) to use. Set v° = 0.9 and ¢° = 0.5.

For £k =0,1,...

(Let the current and the next iterate be (X,y,Z) and (X+,y+, Z1) respectively. Also, let
the current and the next step-length (centering) parameter be denoted by v and 4+ (¢ and
o) respectively.)

o Set u=X e Z/n and

Il I Rdlr)
- , . 16
¢ = max (1+||b|| T+ [Cllr (16)

Stop the iteration if the infeasibility measure ¢ and the duality gap X e Z are suffi-
ciently small.

e Compute the search direction (AX, Ay, AZ) from the equations (9), (12) and (13).
e Update (X,y,Z) to (X*,yT,Z%) by

Xt =X+aAX, y" =y+B8Ay, ZT = Z+BAZ, (17)

where

. - . -
a = min (1, m) 5 /8 = min (1, m) . (18)

(Here Amin(U) denotes the minimum eigenvalue of U; if the minimum eigenvalue in
either expression is positive, we ignore the corresponding term.)

e Update the step-length parameter by
vt = 0.9+ 0.09min(a, 8), (19)

and the centering parameter by ¢ = 1 — 0.9 min(a, 8).

Remarks.

(a) The adaptive choice of the step-length parameter in (19) is used as the default
in our implementation, but the user has the option of fixing the value of ~.

(b) It is known that as the parameter p decreases to 0, the norm ||r,|| will tend to
increase, even if the initial iterate is primal feasible, due to increasing numerical
instability of the Schur complement approach. In our implementation of the
algorithms, the user has the option of correcting for the loss in primal feasibility
by projecting A X onto the null space of the operator A. That is, before updating
to X, we replace AX by

AX — A*DTA(AX),

where D = AA*. Note that this step is inexpensive. The m X m matrix D need
only to be formed once at the beginning of the algorithm.

(c) We only described termination when approximately optimal solutions are at
hand. Nevertheless, our codes stop when other indications arise. For example,
if the step makes little progress, or if the step-length taken in either primal
or dual spaces becomes very small, we terminate. We also stop if we get an
indication of infeasibility. For example, if the current iterate has 'y much
larger than ||A*y + Z||, then a suitable scaling is an approximate solution of
ly=1, A*y+ Z =0, Z = 0, which is a certificate that the primal problem
is infeasible. Similarly, if —C e X is much larger than ||.AX]|, we have an
indication of dual infeasibility: a scaled iterate is then an approximate solution
of —-Ce X =—-1, AX =0, X > 0, which is a certificate that the dual problem
is infeasible. In either case, we return the appropriate scaled iterate suggesting
primal or dual infeasibility.

2.4 The Mehrotra-type predictor-corrector algorithm

The algorithmic framework of the Mehrotra-type predictor-corrector variant of the
previous algorithm is as follows.

Algorithm IPC. Suppose we are given an initial iterate (X°,y°, Z%) with X°, Z° positive
definite. Decide on the type of symmetrization operator Hp(-) to use. Set v° = 0.9. Choose
a value for the parameter expon used in the exponent e.

For £k =0,1,...
(Let the current and the next iterate be (X,y, Z) and (X+,y*, Z1) respectively, and simi-
larly for v and ~*.)

e Set 4 = X e Z/n and ¢ as in (16). Stop the iteration if the infeasibility measure ¢
and the duality gap X e Z are sufficiently small.
o (Predictor step)

Solve the linear system (9), (12) and (13) with o = 0, i.e., with R, = —Hp(X Z2).
Denote the solution by (6X,dy,0Z). Let ap, and 8, be the step-lengths defined as in
(18) with AX, AZ replaced by §X,Z, respectively.

e Take o to be

(X +apdX)e(Z+3,0Z)]°
7= [XeZ : (20)
where the exponent e is chosen as follows:
max[expon, 3 min(a,, 3,)%] if u > 1078, 21)
e =
expon if u <1076,

e (Corrector step)

Compute the search direction (AX, Ay, AZ) from the same linear system (9), (12)
and (13) but with R, replaced by

R, = oul—Hp(XZ)— Hp(6X52).

e Update (X,y,Z) to (Xt,y*,Z*) asin (17), where a and 8 are computed as in (18)
with v chosen to be

v = 0.9+ 0.09min(ayp, 3).

e Update v to v as in (19).

Remarks.

(a) The default choices of expon for the AHO, HKM, NT, and GT directions are
expon = 3,1, 1,2, respectively. We observed experimentally that using expon =
2 for the HKM and NT directions seems to be too aggressive, and usually
results in slightly poorer numerical stability when p is small compared to the
choice expon = 1. We should mention that the choice of the exponent e in
Algorithm IPC above is only a rough guide. The user might want to explore
other possibilities.

(b) In our implementation, the user has the option to switch from Algorithm IPF

8

to Algorithm TPC once the infeasibility measure ¢ is below a certain threshold
specified by the variable sw2PC_tol.

(c) Once again, we also terminate if there is lack of progress in either the predictor
or corrector steps, the primal or dual step-length is too small, or we get an
indication of primal or dual infeasibility.

3 Homogeneous and self-dual algorithms

3.1 The search direction
Let A be the operator
A:Hr — R™H
A1 o X
AX = :
A e X
—CeX

Then the adjoint of A with respect to the standard inner products in %" and IR™*!
is the operator

A R — 1,

A* (2 > = E?:l yk:Ak' - 7C.
Our homogeneous and self-dual linear feasibility model for SDP is based on those
appearing in [11] for linear programming (LP). It has the following form:

A*(Z)JFZ:O
(s) (1) - (0) = 2
07

XZ = ™k = 0,

where X, Z, 7, k are positive semidefinite. A solution to this system with 7+ k positive
either gives optimal solutions to the SDP and its dual or gives a certificate of primal
or dual infeasibility.

At each iteration of our algorithms, we apply Newton’s method to a perturbation
of equation (22), namely,

A*<y>+Z=7]Rd

T

9

() ()

XZ = oul, 7K = op,

where the right-hand side quantities are considered as fixed. Here ¢ and 7 are pa-
rameters, and 7, and Ry are defined in (26) and (25) below, respectively.

Just as in the case of infeasible path-following methods, the search direction
(AX, Ay, AZ, A1, Ak) at each iteration of our homogeneous algorithms is computed
from a symmetrized Newton equation derived from the perturbed equation (23):

e Ay _ ~
A (Ar > + AZ = nRy
- 0 —-b Ay R 0
AAX + (bT K/T)(AT) —777”p+<rc/7_) (24)
EAX + FAZ = R,
TAK + KAT= 71,

where Hp(X Z) and £, F are defined as in (6) and (7), respectively, and

Ry = —fl*(f) — Z, (25)
. 0 0 b -
()
XeoeZ+1K

= — 2
a n+1 (27)
Te = Op—TK,
R. = opul —Hp(XZ).

We compute the search direction via a Schur complement equation as follows.
First compute Ay, A7 from the equation

) (O R

M = AETFA*, (29)

where

h =nf, + (Tc(}T) + nAEFRy — AE'R.. (30)

10

Then compute AX, AZ, and Ak from the equations

AZ = an—fl*<Ay>

AT
1
AX = &7'R. - ET'FAZ (31
Ak = (ro — KAT)/T.

3.2 Primal and dual step-lengths

As in the case of infeasible path-following algorithms, taking different step-lengths
in the primal and dual updates under appropriate conditions can enhance the per-
formance of homogeneous algorithms. Our purpose now is to establish one such
condition.

Suppose we are given the search direction (AX, Ay, AZ, At,Axr). Let & and B
be v times the maximum possible primal and dual step-lengths that can be taken for
the primal and dual updates, respectively (where 0 < v < 1).

Let

T, = T+ AT, Tq = T+ BAT. (32)
Suppose (X, y, Z, 7, k) is updated to (X*,yT, ZT, 77, k™) by

k+alk, ifrt=m,

+ i + _
7T = min(7,, 14 kKT = .
(Tp, 7a), { k+BAk, ifrt =1,

(33)
Xt = (X +alX), y" = T(y+BAy), Z* = T(Z+BAZ).

Then it can be shown that the scaled primal and dual infeasibilities, defined respec-
tively by

rp (@) = b—AXT/17), Rj() = C—Z"/r" - A(y" /"), (34)

satisfy the relation

_ -0y _ 1-pn
rz‘,"(a) N 1+ aAT1/T "p> R‘}L(ﬁ) N 1+ BAT/T Ra, (35)
where
rp =b— A(X/7), Ry=C—Z|t— A" (y/1). (36)

Our condition is basically determined by considering reductions in the norms of the
scaled infeasibilities. To determine this condition, let us note that the function f(t) :=
(1—1tn)/(1+tAT/7), t €[0,1], is decreasing if A7 > —n7 and increasing otherwise.
Using this fact, we see that the norms of the scaled infeasibilities r.f (), R} () are
decreasing functions of the step-lengths if A7 > —n7 and they are increasing functions

11

of the step-lengths otherwise. To keep the possible amplifications in the norms of the
scaled infeasibilities to a minimum, we set o and [to be min(&, B) when AT < —nT;
otherwise, it is beneficial to take the maximum possible primal and dual step-lengths
so as to get the maximum possible reductions in the scaled infeasibilities. For the
latter case, we take different step-lengths, a = & and § = 3, provided that the
resulting scaled total complementarity is also reduced, that is, if

Xt eZT +7tkT XeZ+171K
()2) ,

(37)

when we substitute & = & and 8 = § into (32) and (33).

To summarize, we take different step-lengths, a = & and g = 83, for the primal
and dual updates only when A7 > —n7 and (37) holds; otherwise, we take the same
step-length min(d,,@’) for a and S.

3.3 The homogeneous path-following algorithm

Our homogeneous self-dual path-following algorithms and their Mehrotra-type predictor-
corrector variants are modeled after those proposed in [11] for LP and the infeasible
path-following algorithms discussed in Section 2.

The algorithmic framework of these homogeneous path-following algorithm is as
follows.

12

Algorithm HPF. Suppose we are given an initial iterate (X©°,9°, Z° 70 k%) with
X0 70 19, k0 positive definite. Decide on the symmetrization operator Hp(-) to use. Set
7% =0.9,and ¢° = 0.1, ° = 0.9.

For £k =0,1,...

(Let the current and the next iterate be (X,y, Z, 7, k) and (X+,yT, St, 7%, k1) respectively.
Also, let the current and the next step-length (centering) parameter be denoted by v and
~T (o and o) respectively.)

e Set u=(XeZ+7K)/(n+1) and

(Wﬁ—AXHIVC—Z—mew>
r@+pl) @ +IClr)

¢ = (38)

Stop the iteration if either of the following occurs:

(a) The infeasibility measure ¢ and the duality gap X e Z/72 are sufficiently small.
In this case, (X/1,y/7,Z/7T) is an approximately optimal solution of the given
SDP and its dual.

(b)
T/K

< 1078,
T()/I‘&()

p/po < 107%,

In this case, either the primal or the dual problem (or both) is suspected to be
infeasible.

e Compute the search direction (AX, Ay, AZ At,Ak) from the equations (28)—(31)
usingn =1-o.

o Let

: — -
= 1
@ mm("Amin(XTAX)" 771A7’ /<;—1A/<;> ’

(39)

5 , — - =
1 .
p mm(Nmin(Z-1AZ)" T-IAT n—lAn>

(If any of the denominators in either expression is positive, we ignore the correspond-
ing term.)

If A7 > —n7 and (37) holds, set o = & and 3 = B; otherwise, set a = 8 = min(d,ﬁ).

13

o Let
T, = T+ alAr, 14 = 7+ BAT.

Update (X,y,Z,7,k) to (X+,yT, Z+ 7t k1) by

k+alAk, ifrt=r1

+ — mi + = ’ P

’ min(7y, 7a), " { k+ B8Ak, ifrt =1y
(40)

+ = 7t + =t + = 7t
Xt = (X +aAX), y* =T (y+8Ay), Zt=Z(Z+BAZ).
e Update the step-length parameter by

vt = 0.9+ 0.09min(a,), (41)

and let

ot =1-0.9min(a, §).

3.4 The homogeneous predictor-corrector algorithm

The Mehrotra-type predictor-corrector variant of the homogeneous path-following
algorithm is as follows.

Algorithm HPC. Suppose we are given an initial iterate (X©°,9°, 2% 7° k%) with
X0 70 70, k0 positive definite. Decide on the type of symmetrization operator Hp(-) to
use. Set v° = 0.9. Choose a value for the parameter expon used in the exponent e.

For £k =0,1,...

(Let the current and the next iterate be (X,y,Z,7,k) and (XT,y*, ZT, 77, kT) respec-
tively. Also, let the current and the next step-length parameter be denoted by v and v+
respectively.)

o Set p=(XeZ+7k)/(n+1) and ¢ as in (38). Stop the iteration if either of the
following occurs:

(a) The infeasibility measure ¢ and the duality gap X e Z/72 are sufficiently small.
(b)

T/K

< 1078
7'0/'90

p/po < 1078,

o (Predictor step)
Solve the linear system (28)—(31), with ¢ =0 and n =1, i.e., with R, = —Hp(X Z).
Denote the solution by (6X,dy,0Z,07,0k). Let ap, and 3, be defined as in (39) with
AX,AZ,At, Ak replaced by 6X,0Z, 7, Ik, respectively.

14

Take o to be

. - (X +ap,6X)e(Z+B,0Z) + (T4 apdr)(k + Bpdk)]°

XeZ + 1K

where the exponent e is chosen as in (21). Setn = 1 —o.

(Corrector step)

Compute the search direction (AX, Ay, AZ, Ar,Ak) from the same linear system
(28)—(31) but with R, r. replaced, respectively, by

R, = oul — Hp(XZ)— Hp(6X6Z)

ry = Op—TK—O0TO0kK.

Update (X,y, Z,1,k) to (X T,yT, ZT, 77, k™) as in (40), where o and 3 are computed
as in (39) with ~ chosen to be

v = 0.9+ 0.09min(ay, 3p).

Update v to ' as in (41).

Remarks.

(a) The numerical instability of the Schur complement equation (28) arising from
the homogeneous algorithms appears to be much more severe than that of the
infeasible path-following algorithms as p decreases to zero. We overcome this
difficulty by first setting A7 = 0 and then computing Ay in (28) when p is
smaller than 10~%. In essence, this amounts to switching to the infeasible path-
following algorithms where the Schur complement equation (9) is numerically
more stable.

(b) For the homogeneous algorithms, it seems not desirable to correct for the primal
infeasibility so as keep the primal infeasibility below a certain small level once
that level has been reached. The effect of such a correction can be quite erratic,
in contrast to the case of the infeasible path-following algorithms.

(c) Once again, there are other termination criteria: lack of progress or short step-
lengths. Here we do not test possible infeasibility in the way we did for our
infeasible-interior-point algorithms, because we have a specific termination cri-
terion ((b) in the descriptions above) to detect infeasibility.

(Remarks (a) and (b) are based on computational experience rather than our having
any explanation at this time.)

4 Initial iterates

Our algorithms can start with an infeasible starting point. However, the performance
of these algorithms is quite sensitive to the choice of the initial iterate. As observed

15

in [5], it is desirable to choose an initial iterate that at least has the same order of
magnitude as an optimal solution of the SDP. Suppose the matrices Ay and C are
block-diagonal of the same structure, each consisting of L blocks of square matrices
of dimensions ni,ns,...,nr. Let A,(;) and C denote the ith block of Ay and C, re-
spectively. If a feasible starting point is not known, we recommend that the following
initial iterate be used:

X% = Diag(¢ I,), y° =0, Z° = Diag(n; I,,), (42)
where i =1,..., L, I, is the identity matrix of order n;, and
- 1+ |byl 1+ max{maxg{||AY |7}, IC9]|]
fi = n; max 7@), n = .
sksm 14 |AY | g Vi

By multiplying the identity matrix I,,, by the factors & and n; for each i, the initial
iterate has a better chance of having the same order of magnitude as an optimal
solution of the SDP.

The initial iterate above is set by calling infeaspt.m, with initial line

function [X0,y0,Z0] = infeaspt(blk,A,C,b,options),

where options = 1 (default) corresponds to the initial iterate just described; and
options = 2 corresponds to the choice where X0, Z0O are identity matrices and yO is
a zero vector.

5 The main routine

The main routine that corresponds to the infeasible path-following algorithms de-
scribed in Section 2 is sdp.m:

[obj,X,y,Z,gaphist,infeashist,pathreshist,info] = sdp(blk,A,C,b,X0,y0,Z0),

whereas the corresponding routine for the homogeneous self-dual algorithms described
in Section 3 is sdphlf.m:

[obj,X,y,Z,gaphist,infeashist,pathreshist,info] = sdphlf(blk,A,C,b,X0,y0,Z0).

Functions used.

sdp.m calls the following function files during its execution:

AHOpred.m HKMpred.m NTpred.m GTpred.m
AHOcorr.m HKMcorr.m NTcorr.m GTcorr.m
trace.m Asum.m cholaug.m aasen.m
Atriu.m pathres.m corrprim.m steplength.m

scaling.m.

16

sdphlf .m calls the same set of function files except that the first two rows in the list
above are replaced by

AHOpredhlf.m HKMpredhlf.m NTpredhlf.m GTpredhlf.m
AHOcorrhlf.m HKMcorrhlf.m NTcorrhlf.m GTcorrhlf .m.

In addition, sdphlf .m calls the function file schurhlf .m.

C Mex files used.

The computation of the Schur complement matrix M requires repeated computation
of matrix products involving either matrices that are triangular or products that are
known a priori to be hermitian. We compute these matrix products in a C Mex routine
generated from a C program mexProd2.c written to take advantage of the structures
of the matrix products. Likewise, computation of the inner product between two
matrices is done in a C Mex rountine generated from a C program mextrace.c written
to take advantage of possible sparsity in either matrix. Another C Mex routine that is
used in our package is generated from the C program mexaasen.c written to compute
the Aasen decomposition of a hermitian matrix [1]. To summarize, here are the C
programs used in our package:

mextrace.c mexProd2.c mexaasen.c

Input arguments.

blk: a cell array describing the block structure of the A’s and C (see below).

A: a cell array with m columns such that the kth column corresponds to
the matrix Ag.

C, b: given data of the SDP.
X0, y0, Z0: an initial iterate.

Output arguments.

obj =[CeX bTy].

X,y,Z: an approximately optimal solution.

gaphist: a row vector that records the duality gap X e Z at each iteration.
infeashist: a row vector that records the infeasibility measure ¢ at each iteration.

pathreshist: a row vector that records the centrality measure |1 — Amin(X Z))/p|
at each iteration.
info: a 1 x 5 vector that contains performance information:
info(1) = termination code,
info(2) = number of iterations taken,
info(3) = final duality gap,

17

info(4) = final infeasibility measure, and
info(5) = total CPU time taken.

info (1) takes on nine possible integral values depending on the termination con-

ditions:

info(1) = 0 for normal termination;

info(1) = -1 for lack of progress in either the predictor or corrector step;
info(1) = -2 if primal or dual step-lengths are too short;

info(1) = -3 if the primal or dual iterates lose positive definiteness;
info(1) = -4 if the Schur complement matrix becomes singular;

info(1) = -10 for incorrect input;

info(1) = 1 if there is an indication of primal infeasibility;
info(1) = 2 if there is an indication of dual infeasibility; and
info(1) = 3 if there is an indication of both primal and dual infeasibilities.

If info(1) is positive, the output variables X,y,Z have a different meaning: if
info(1) = 1 or 3 then y,Z gives an indication of primal infeasibility: b’y = 1
and A*y + Z is small, while if info(1) = 2 or 3 then X gives an indication of
dual infeasibility: CeX = -1 and AX is small.

Global variables for parameters.

sdp.m and sdphlf.m use a number of global variables which are set up in the M-file
startup.m. If desired, the user can change the values of these parameters.

gam: step-length parameter. To use the default, set gam = 0; otherwise,
set gam to the desired fixed value, say gam = 0.98.
predcorr: a (-1 flag indicating whether to use the Mehrotra-type
predictor-corrector. The default is 1.
expon: a 1 X 4 vector specifying the lower bound for the exponent to be used in
updating the centering parameter ¢ in the predictor-corrector algorithm,
where
expon(1): for the AHO direction,
expon(2): for the HKM direction,
expon(3): for the NT direction, and
expon(4): for the GT direction.
The default is expon = [3 1 1 2].
steptol: the step-length threshold below which the iteration is terminated.
The default is 1e-6.
gaptol: the required accuracy in the duality gap as a fraction of the value of the
objective functions. The default is 1e-13.

maxit: maximum number of iterations allowed. The default is 50.

sw2PC_tol: the infeasibility measure threshold below which the predictor-corrector
step is applied. The default is sw2PC_tol = Inf.

18

use_corrprim: a (-1 flag indicating whether to correct for primal infeasibility.
The default is 1 for sdp.m, but 0 for sdphlf.m.

printyes: a 0-1 flag indicating whether to display the result of each iteration.
The default is 1.

One global parameter, vers, is not set in the M-file startup.m and has to be specified
by the user. It takes the following values:

vers: type of search direction to be used, where
vers = 1 corresponds to the AHO direction,
vers = 2 corresponds to the HKM direction,
vers = 3 corresponds to the N'T direction, and
vers = 4 corresponds to the GT direction.

Cell array representation for problem data.

Our implementation SDPT3 exploits the block-diagonal structure of the given data,
Ay, and C. Suppose the matrices Ay and C are block-diagonal of the same structure.
If the initial iterate (X°, Z%) is chosen to have the same block-diagonal structure,
then this structure is preserved for all the subsequent iterates (X, Z). For reasons
that will be explained later, if there are numerous small blocks each of dimension say
less than 10, we group them together as a single sparse block-diagonal matrix instead
of considering them as individual blocks. Suppose now that each of the matrices Ay
and C consists of L blocks of square matrices of dimensions ni,ns,...,ny. We can
classify each of these blocks into one of the following three types:

1. a dense or sparse matrix of dimension greater than or equal to 10;

2. a sparse block-diagonal matrix consisting of numerous sub-blocks each of di-
mension less than 10;

3. a diagonal matrix.

For each SDP problem, the block-diagonal structure of Ay and C is described by
an L x 2 cell array named blk where the content of each of its elements is given as
follows. If the ith block of each A; and C is a dense or sparse matrix of dimension
greater than or equal to 10, then

blk{i,1} = ’nondiag’ blk{i,2} = n;

A{i,kx}, ¢{i} = [njxn; double] or [n;xn; sparse].
(It is possible for some Ay’s to have a dense ith block and some to have a sparse ith
block, and similarly the ith block of C can be either dense or sparse.) If the ith block

of each Ay and C' is a sparse matrix consisting of numerous small sub-blocks, say %

of them, of dimensions ngl ,n§2), ... ,ngt) such that Ele ngl) = n,;, then

blk{i,1} = ’nondiag’ blk{i,2} = [n(il) n(iz) n(it)]
A{i,k}, C¢{i} = [nixn; sparse].

19

50x50

5x5

500x500

100x100

Figure 1: An example of a block-diagonal matrix.

If the ith block of each A; and C' is a diagonal matrix, then

blk{i,1} = ’diag’ blk{i,2} = n;
A{i,k}, ¢{i} = [nix1 doublel.

As an example, suppose each of the Ap’s and C has block structure as shown in
Figure 1; then we have

blk{1,1} = ’nondiag’ blk{1,2} = 50
blk{2,1} = ’nondiag’ blk{2,2} = [6 5 --- 5]
blk{3,1} = ’diag’ blk{3,2} = 100

and the matrices Ay and C are stored in cell arrays as

A{1,k}, c{1}
A{2,k}, ¢{2}
A{3,k}, c{3}

[50x50 double]
[500x500 sparse]
[100x1 doublel

Notice that when the block is a diagonal matrix, only the diagonal elements are
stored, and they are stored as a column vector.
Recall that when a block is a sparse block-diagonal matrix consisting of ¢ sub-

L@ 0

blocks of dimensions n; ’, .,n; ', we can actually view it as ¢ individual blocks,
in which case there will be ¢ cell array elements associated with the ¢ blocks rather
than just one single cell array element originally associated with the sparse block-
diagonal matrix. The reason for using the sparse matrix representation to handle
the case when we have numerous small diagonal blocks is that it is less efficient for

MATLAB to work with a large number of cell array elements compared to working

20

with a single cell array element consisting of a large sparse block-diagonal matrix.
Technically, no problem will arise if one chooses to store the small blocks individually
instead of grouping them together as a sparse block-diagonal matrix.

We should also mention the function file ops.m used in our package. The purpose
of this file is to facilitate arithmetic operations on the contents of any two cell arrays
with constituents that are matrices of the same dimensions.

For the usage of MATLAB cell arrays, refer to [7].

Complex data.

Complex SDP data are allowed in our package. The user does not have to make any
declaration even when the data is complex. Our codes will automatically detect this
if it is the case.

Caveats.

The user should be aware that semidefinite programming is more complicated than
linear programming. For example, it is possible that both primal and dual problems
are feasible, but their optimal values are not equal. Also, either problem may be
infeasible without there being a certificate of that fact (so-called weak infeasibility).
In such cases, our software package is likely to terminate after some iterations with an
indication of short step-length or lack of progress. Also, even if there is a certificate of
infeasibility, our infeasible-interior-point methods may not find it. Our homogeneous
self-dual methods may also fail to detect infeasibility, but they are practical variants
of theoretical methods that are guaranteed to obtain certificates of infeasibility if
such exist. In our very limited testing on strongly infeasible problems, most of our
algorithms have been quite successful in detecting infeasibility.

6 Example files

To solve a given SDP, the user needs to express it in the standard form (1) and
(2), and then write a function file, say problem.m, to compute the input data
blk,A,C,b,X0,y0,Z0 for the solvers sdp.m or sdphlf.m. This function file may
take the form

function [blk,A,C,b,X0,y0,Z0] = problem(input arguments).

The user can easily learn how to use this software package by reading the script
file demo.m, which illustrates how the solvers sdp.m and sdphlf.m can be used to
solve a few SDP examples. The next section shows how sdp.m and sdphlf.m can
be used to solve random problems generated by randsdp.m, graph.m, and maxcut .m,
and the resulting output, for several of our algorithms.

21

This software package also includes example files for the following classes of SDPs.
In these files, the input variables feas and solve are used as follows:

feas — 0 corresponds to the initial iterate given in (42),
] 1 corresponds to a feasible initial iterate;

0 only gives the input data blk,A,C,b,X0,y0,Z0 for sdp.m or sdphlf.m,
solve =< 1 solves the given problem by an infeasible path-following algorithm,
2 solves the given problem by a homogeneous self-dual algorithm.

If solve is positive, the output variable objval is the objective value of the associ-
ated optimization problem, and the output variables after objval give approximately
optimal solutions to the original problem and its dual (or possibly indications of in-
feasibility).

Here are our examples.

(1) Random SDP: The associated M-file is randsdp.m, with initial line
function [blk,A,C,b,X0,y0,Z0,0bjval,X,y,Z] = randsdp(de,sp,di,m,feas,solve),

where the input parameters describe a particular block diagonal structure for each Ay
and C. Specifically, the vector de is a list of dimensions of dense blocks; the vector sp
is a list of dimensions of (small) subblocks in a single sparse block; and the scalar di
is the size of the diagonal block. The scalar m is the number of equality constraints.

(2) Norm minimization problem:

m
i B B
Ju, |Bo + kz::l Tk B,

where the B, k = 0,...,m, are p X ¢ matrices (possibly complex, in which case
x ranges over C™) and the norm is the matrix 2-norm. The associated M-file is
normmin.m, with initial line

function [blk,A,C,b,X0,y0,Z0,0bjval,x] = normmin(B,feas,solve),
where B is a cell array with B{fk + 1} = By, k = 0,...,m.
(3) Chebyshev approximation problem for a matrix:
min |[p(B)],

where the minimization is over the class of monic polynomials of degree m, B is a
square matrix (possibly complex) and the norm is the matrix 2-norm. The associated
M-file is chebymat .m, with initial line

function [blk,A,C,b,X0,y0,Z0,0bjval,p] = chebymat(B,m,feas,solve).

22

See also igmres.m, which solves an analogous problem with p normalized such that
p(0) = 1.

(4) Max-Cut problem:
miny LeX
s.t. diag(X) =e/4, X =0,

where L = B — Diag(Be), e is the vector of all ones and B is the weighted adjacency
matrix of a graph [6]. The associated M-file is maxcut .m, with initial line

function [blk,A,C,b,X0,y0,Z0,0objval,X] = maxcut(B,feas,solve).
See also graph.m, from which the user can generate a weighted adjacency matrix B
of a random graph.
(5) ETP (Educational testing problem):
max;. pN eld
s.t. B —Diag(d) =0, d>0,

where B is a real N X N positive definite matrix and e is again the vector of all ones.
The associated M-file is etp.m, with initial line

function [blk,A,C,b,X0,y0,Z0,0bjval,d] = etp(B,feas,solve).

(6) Lovész 0 function for a graph:

miny Ce X

s.t. Al.le,
Ape X =0, k=2,...,m,
X =0,

where C' is the matrix of all minus ones, A; = I, and A; = eief + ejeZT, where the
(k—1)st edge of the given graph (with m — 1 edges) is from vertex 7 to vertex j. Here
e; denotes the ith unit vector. The associated M-file is theta.m, with initial line

function [blk,A,C,b,X0,y0,Z0,objval,X] = theta(B,feas,solve),

where B is the adjacency matrix of the graph.
(7) Logarithmic Chebyshev approximation problem:

. 1 T _1
;gﬁr}n 12}?ng | Og(bk .'I) Og(fk)‘a

where B = [by by --- bN]T is a real N X m matrix and f is a real N-vector. The
associated M-file is 1logcheby.m, with initial line

23

function [blk,A,C,b,X0,y0,Z0,0bjval,x] = logcheby(B,f,feas,solve).

(8) Chebyshev approximation problem in the complex plane:

i d
min max Ip(d)l,

where the minimization is over the class of monic polynomials of degree m and
{di,...,dn} is a given set of points in the complex plane. The associated M-file
is chebyinf .m, with initial line

function [blk,A,C,b,X0,y0,Z0,0bjval,p] = chebyinf(d,m,feas,solve),

where d = [d1 dg e dN].

See also chebyO0.m, which solves an analogous problem with p normalized such that
p(0) = 1.

(9) Control and system problem:

maxy p t
st. —BIP—-PB, =0, k=1,...,L
P>tl, I ~P P=PT,

where B, k = 1,..., L, are square real matrices of the same dimension. The associ-
ated M-file is control.m, with initial line

function [blk,A,C,b,X0,y0,Z0,0bjval,P] = control(B,solve),

where B is a cell array with B{k} = By, k = 1,...,L.

7 Sample Runs

>> randn(’seed’,0) J reset random generator to its initial seed.
>> rand(’seed’,0) %

>> startup % set global variables to default values, set paths
>>

>> %hhhh random SDP %%%h%hh

>>

>> de=[20]; sp=[]; di=[]; %% one 20X20 dense block, no sparse/diag blocks
>> m=20; % 20 equality constraints

>> feas=1; % feasible initial iterate

>> solve=0; % do not solve the problem, just generate data.

>> vers=1; % use AHO direction

>> [blk,A,C,b,X0,y0,20] = randsdp(de,sp,di,m,feas,solve);

>>

24

>> [obj,X,y,Z,gaphist,infeashist] = sdp(blk,A,C,b,X0,y0,Z0); % use IPC
condition no. of A = 1.75e+00

2k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k 3k 5k k k k >k >k >k >k 3k 3k 3k 3k 3k >k >k >k >k k %k %k >k >k >k 3k 3k 3k 3k 3k >k 3k >k >k >k K K 3 3 3k 3k 3k %k >k >k >k >k >k >k >k > % % %k >k

Infeasible path-following algorithms
sk o ko o ko o sk o o ke o ks ok sk o o ko ok ksl ok ko o ks o sk o sk o o sk o ks o k sk sk sk sk sk sk ok ko o k sk ok sk o ko

version predcorr gam expon use_corrprim sw2PC_tol
1 1 0.000 3 1 Inf

it pstep dstep p_infeas d_infeas gap obj pathres sigma rco

0 0.000 0.000 1.8e-16 1.3e-16 7.6e+02 1.787474e+02 0.0e+00
1 0.897 0.614 1.5e-16 1.1e-16 1.8e+02 -5.357108e+01 8.2e-01 0.100 1.5e-01

9 0.987 0.989 2.2e-16 1.3e-16 7.1le-11 -1.151599e+02 7.6e-01 0.000 3.7e-13
10 0.944 0.978 2.3e-16 1.5e-16 4.0e-12 -1.151599e+02 7.5e-01 0.000 5.0e-15

Stop: max(relative gap, infeasibilities) < 1.00e-13

number of iterations = 10

gap = 4.02e-12
relative gap = 3.49e-14
infeasibilities = 2.34e-16
Total CPU time = 3.4

CPU time per iteration = 0.3
termination code = 0

>> % next, generate new data with a different block structure

>> feas=0; J and use the (infeasible) initial iterate given in (42)
>> vers=4; Y} use GT direction

>> [blk,A,C,b,X0,y0,20] = randsdp([20 15],[4 3 3],5,30,feas,solve);

>> [obj,X,y,Z,gaphist,infeashist] = sdphlf(blk,A,C,b,X0,y0,Z0); % solve using HPC

2k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k 3k k 3k 3k 3k >k >k >k >k 3k 3k 3k 3k >k >k k >k k k %k %k >k >k >k 3k 3k 3k 3k 3k >k 3k >k >k >k >k K 3 3k 3k 5k 3k 3k >k >k %k >k >k >k >k 3 3% % >k >k

Homogeneous self-dual algorithms
ok ke o o o o k ks ok o o o ko o o o ko o o o sk o o o kK ok o o ok K sk o o o K sk o o o ks o o o ks ok o o ok ko o o ok sk o o ok ko ok o o ok

version predcorr gam expon use_corrprim sw2PC_tol

4 1 0.000 2 0 Inf
it pstep dstep p_infeas d_infeas gap obj pathres sigma rco
0 0.000 0.000 6.8e+00 6.2e-01 5.7e+04 6.376164e+03 0.0e+00
1 0.837 1.000 1.6e+00 1.0e-01 5.0e+03 8.941629e+02 7.1e+00 0.359 1.6e-02

25

10 0.989 0.989 1.7e-13 8.3e-15 5.8e-10 -1.917987e+02 8.8e-01 0.000 4.0e-18
11 0.985 0.985 5.1e-15 1.7e-16 8.8e-12 -1.917987e+02 8.9e-01 0.000 4.1e-18

Stop: max(relative gap, infeasibilities) < 1.00e-13

number of iterations = 11

gap = 8.77e-12

relative gap = 4.57e-14

infeasibilities = 5.14e-15

Total CPU time = 11.8

CPU time per iteration = 1.1

termination code = 0
>>
>> Whhh% MAXCUT PROBLEM %%%%%
>>
>> B = graph(50,0.3); %% generate an adjacency matrix of a 50 node graph
>> %% where each edge is present with probability 0.3
>> solve=1; % generate data, then solve the problem using IPF/IPC
>> feas=1; % use a feasible initial iterate;
>> vers=2; % use HKM direction

>> J, next solve the maxcut problem defined on the given graph
>>
>> [blk,A,C,b,X0,y0,20,0bjval,X] = maxcut(B,feas,solve);

2k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k % % dk >k %k >k >k 3k 3k 3k 3k 3k >k 3k >k >k >k %k %k >k >k >k 3k 3k 3k 3k 3k %k %k >k >k >k K K 3 3 >k 3k >k >k %k %k %k >k >k >k > 3 3 % %k >k

Infeasible path-following algorithms
e e o s o s e e o sk e e o ke ke sk o e o s s e o ke ke e ke o ks sk s sk sk sk ke ks o ke e ks o ek

version predcorr gam expon use_corrprim sw2PC_tol
2 1 0.000 1 1 Inf

it pstep dstep p_infeas d_infeas gap obj pathres sigma rco

0 0.000 0.000 0.0e+00 7.3e-17 2.2e+02 -2.872000e+02 0.0e+00
1 1.000 1.000 0.0e+00 4.7e-17 8.1le+t01 -2.389877e+02 8.0e-02 0.378 6.0e-01

11 1.000 1.000 0.0e+00 4.7e-17 6.4e-09 -2.488378e+02 2.0e-01 0.040 1.3e-10
12 0.931 1.000 0.0e+00 5.4e-17 9.8e-10 -2.488378e+02 8.7e-01 0.104 5.0e-12

lack of progress in corrector: mucorr/mu = 0.92, corr_convg_rate = 0.08
Stop: lack of progress in corrector.

number of iterations = 13
gap = 9.83e-10
relative gap = 3.95e-12
infeasibilities = 5.42e-17
Total CPU time = 6.8

26

CPU time per iteration = 0.5
termination code = -1

8 Nwumerical results

The tables below show the performance of the algorithms discussed in Section 2 and
3 on the first eight SDP examples described in Section 6. The result for each example
is based on ten random instances with normally distributed data generated via the
MATLAB command randn. The initial iterate for each problem is infeasible, generated
from infeaspt .m with the default option. Note that the same set of random instances
is used throughout for each example.

In Tables 2 and 3, we use the default value (given in Section 5) for the parameters
used in the algorithms.

In our experiments, we consider an SDP instance successfully solved by Algorithm
IPC if the algorithm manages to reduce the relative duality gap X ¢ Z/(1 + |C X|)
to less than 1076 while at the same time the infeasibility measure ¢ is less than the
relative duality gap. For Algorithm HPC, we consider an SDP instance successfully
solved if the relative duality gap is less than 1078 while the infeasibility measure ¢ is
at most 5 times more than the relative duality gap.

All of the SDP instances (a total of 640) considered in our experiments were suc-
cessfully solved, except for only three ETP instances and one Logarithmic Chebyshev
instance where Algorithm HPC using the AHO direction failed. This indicates that
our algorithms are probably quite robust.

The results in Tables 2 and 3 show that the behavior of Algorithm IPC and HPC
are quite similar in terms of efficiency (number of iterations) and accuracy on all the
the four search directions we implemented. For both algorithms, the AHO and GT
directions are more efficient and more accurate than the HKM and NT directions,
with the former and latter pairs having similar behavior in terms of efficiency and
accuracy.

27

8¢

Ave. no. of iterations Ave. CPU time (sec.)
Algorithm IPC to reduce the duality to reduce the duality Accuracy

gap by 1010 gap by 1010 mean(|log;(X & Z)|)

AHO GT HKM NT ||AHO GT HKM NT ||AHO GT HKM NT
random n =250

SDp S 103 105 119 114 184 135 107 1121 89 85 79 76

Norm min. n =100 91 94 108 11.0| 394 293 234 265 11.9 124 96 9.1
problem m =26

Cheby. approx. | n =100 88 93 108 115 379 284 248 275 | 137 136 108 105
of a real matrix m =26

Maxcut ”m zgg 9.9 105 115 117 11.3 79 58 6.2 || 109 98 90 87

ETP fn fégo 171 175 203 199 | 256 17.3 142 144| 88 88 71 7.2

Lovasz 0 n =30 11.7 117 121 121 533 299 238 218 116 109 104 105
function m =~ 220

Log. Cheby. no=300 106 130 137 137 246 212 152 182 96 97 97 98
problem m =51

Cheby. approx. | n =200 9.9 102 111 11.3 | 157 144 110 136 | 129 130 109 109
on C m =41

Table 2: Computational results on different classes of SDP for Algorithm IPC. Ten random instances are
considered for each class. The computations were done on a DEC AlphaStation/500 (333MHz). The number
X e Z above is the smallest number such that relative duality gap X ¢ Z/(1+ |C @ X|) is less than 1075 and the
infeasibility measure ¢ is less than the relative duality gap.

6C

Ave. no. of iterations Ave. CPU time (sec.)
Algorithm HPC to reduce the duality to reduce the duality Accuracy
gap by 1010 gap by 1010 mean(|log;o(X e Z)|)
AHO GT HKM NT || AHO GT HKM NT || AHO GT HKM NT
random n =250
e - 103 98 112 105 187 126 99 100 101 91 82 7.6
Norm min. no=1000 0 469 109 119 115 | 487 323 258 9277 | 111 115 96 9.0
problem m =26
Cheby. approx. | n =100 || 101 107 118 111 444 316 269 264 | 137 128 111 105
of a real matrix m =26
Maxcut ”m = 28 99 97 111 1061 11.8 7.6 58 58 || 108 101 92 86
ETP "m = égo 14.3* 153 17.1 166 || 21.8% 155 121 121 94* 95 72 6.9
Lovasz 6 n =30 11.5 117 129 128 | 44.6 298 248 224 122 115 110 105
function m =~ 220
Log. Cheby. noo=300 ys0x 195 132 132 | 317 213 154 184 | 122% 129 124 124
problem m =51
Chebf)"n agpmx' "m _ Z(ljo 98 96 101 100 | 165 145 101 125 135 133 115 115

Table 3: Same as Table 2, but for the homogenous predictor-corrector algorithm, Algorithm HPC. The duality
gap X e Z above is the smallest number such that the relative duality gap X e Z/(1+ |C e X|) is less than 107°
and the infeasibility measure ¢ is at most 5 times more than the relative duality gap.

* Three of the ETP instances fail because the infeasibility measure ¢ is consistentéy 5 times more than the
relative duality gap X e Z/(1+ |C e X|) when the relative duality gap is less than 10~°. One of the Log. Cheby.
instances fails due to step lengths going below 107%. The numbers reported here are based on the successful
instances.

References

[1]
2]

[10]

[11]

J. O. Aasen, On the reduction of a symmetric matriz to tridiagonal form, BIT
11 (1971), pp. 233-242.

F. Alizadeh, J.-P A. Haeberly, and M.L. Overton, Primal-dual interior-point
methods for semidefinite programming: convergence results, stability and numer-
ical results, Technical Report 721, Computer Science Department, NYU, New
York, May 1996, to appear in STAM J. Optimization.

F. Alizadeh, J.-P A. Haeberly, M.V. Nayakkankuppam, M.L. Overton, and
S. Schmieta, SDPPACK user’s guide, Technical Report, Computer Science De-
partment, NYU, New York, June 1997.

N. Brixius, F.A. Potra, and R. Sheng, Solving semidefinite programming
in Mathematica, Reports on Computational Mathematics, No 97/1996, De-
partment of Mathematics, University of Iowa, October, 1996. Available at
http://www.cs.uiowa.edu/ "brixius/sdp.html.

K. Fujisawa, M. Kojima, and K. Nakata, SDPA (semidefinite programming al-
gorithm) — user’s manual, Research Report, Department of Mathematical and
Computing Science, Tokyo Institute of Technology, Tokyo. Available via anony-
mous ftp at ftp.is.titech.ac. jp in pub/OpRes/software/SDPA.

C. Helmberg, F. Rendl, R. Vanderbei and H. Wolkowicz, An interior-point
method for semidefinite programming, STAM Journal on Optimization, 6 (1996),
pp- 342-361.

The MathWorks, Inc., Using MATLAB, The MathWorks, Inc., Natick, MA,
1997.

M.J. Todd, K.C. Toh, R.H. Titinci, On the Nesterov-Todd direction in semidef-
inite programming, Technical Report 1154, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca, March 1996, to appear in
SIAM J. Optimization.

K.C. Toh, Search directions for primal-dual interior point methods in semidefi-
nite programming, manuscript, Department of Mathematics, National University
of Singapore, Singapore, December 1997.

L. Vandenberghe and S. Boyd, User’s guide to SP: software for semidef-
inite programming, Information Systems Laboratory, Stanford University,
November 1994. Available via anonymous ftp at isl.stanford.edu in
pub/boyd/semidef prog. Beta version.

X. Xu, P.-F. Huang, and Y. Ye, A simplified homogeneous and self-dual linear
programming algorithm and its implementation, Annals of Operations Research,
62 (1996), pp. 151-171.

30

