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A central tenent of synthetic biology is the ability to predictably engineer complex patterns 

of gene expression. This fined tuned control allows us to reprogram organisms with 

sophisticated synthetic behaviors such as producing vital chemicals and drugs and sensing 

environmental signals. In order to do this we need libraries of highly efficient genetic 

regulators and proven methods of combining them into networks. RNA presents the ideal 

tool to build new genetic networks because its structural and temporal characteristics allow 

engineers to construct fast, designable genetic networks. In this work, we show 

characterization and optimization of new and existing RNA regulators as well as efforts to 

create new behaviors with RNA-based genetic networks. We begin by vastly improving the 

dynamic range of an existing transcriptional RNA regulator, the pT181 attenuator, by adding 

translational regulation. This dual control attenuator is successfully used to reduce circuit 

leak in an RNA-only cascade. In order to expand upon the functionality of the RNA 

repressors, we design sequesters that allow us to dial down repression. The sequestration 

effectively creates a threshold which we use to tune the relationship between the input and 

output of a system.  As we construct more complex circuits with diverse parts, modularity 

becomes essential in order to predict circuit behavior. We explore the modularity of our RNA 

regulators in combination with clustered regularly interspaced short palindromic repeats 

(CRISPR) interference (CRISPRi) in construction of an RNA pulse generator. Finally, we 

explore the design and implementation two complex circuits:  a communication network for 

delivering complex signals to cells and a control network to reduce noise in biological 



  

systems. We anticipate that the design rules learned and the tools developed here will allow 

construction of even more sophisticated behaviors as the growing discipline of genetic 

design matures. 
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CHAPTER 1 

INTRODUCTION 

1.1  Engineering gene expression 

The ability to predictably manipulate genes has allowed us to understand and treat diseases, 

program microbes to sense environmental signals, and produce useful biological molecules 

such as drugs and specialty chemicals (Khalil & Collins 2010). We do this by controlling gene 

expression using natural and synthetic genetic networks, collections of DNA elements that 

interact with each other through their RNA or protein expression products (Figure 1.1). 

Networks regulate expression of elements that make decisions about which genes to express, 

that in turn carry out specific functions by controlling cellular behavior. Genetic networks 

are built by using regulators that interact with aspects of transcription, translation, or 

degradation of genetic parts.  

 Early on, these genetic regulators were discovered in nature and then rewired to  

create simple networks. In order for more sophisticated networks to be built, large libraries 

of orthogonal regulators must constructed (Purnick & Weiss 2009). While there have been 

attempts to build libraries of synthetic transcription factors, proteins are notoriously 

difficult to design. With the discovery of zinc-fingers (Beerli & Barbas 2002) and   

transcription activator-like effectors (TALE) (Machens et al. 2017), engineering libraries of 

protein regulators has become possible, but the number of orthogonal protein parts remains 

limited and validating new ones is labor-intensive. Due to its smaller sequence space and 

more accurate folding  predictions, RNA orthogonality has proven far easier  to design 

computationally (Chappell et al. 2017; Green et al. 2014) and the discovery of CRISPRi melds 

RNA-designability with transcription factor-like gene expression control (Qi et al. 2013).  
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Figure 1.1 Central dogma of prokaryotic gene expression. DNA is transcribed into RNA that 

is in turn translated into protein. RNA and protein regulators can activate or repress gene 

expression by acting on transcription, translation, and degradation. Figure from Chappell et 

al. (Chappell et al. 2013) 

 

1.2  The development of steady state and dynamic synthetic gene networks 

Early genetic networks have focused on the ability to control the steady state ON and OFF 

gene expression level of a gene or multiple genes.  One of the very first was a genetic toggle 

switch (Gardner et al. 2000) that uses two repressible promoters to remember a genetic 

‘state’ (Figure 1.2) with bistability.  Synthetic biologists have also built logic gates to control 

steady state behavior as a function of multiple inputs (Anderson et al. 2007; Moon et al. 

2012). Recently, these logic gates have gotten quite complex, allowing for layered logic 

within mammalian cells (Ausländer et al. 2012), signal integration within a single 

mechanism (Green et al. 2017), and advanced function generation (Olson et al. 2014).  Logic 
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gates have even been used to implement biological edge detection (Tabor et al. 2009) and 

pattern formation (Basu et al. 2005).  

 Researchers have progressed to building synthetic networks with useful dynamic 

properties. Dynamic activation of metabolic pathway enzymes using quorum sensing has led 

to increase in product titers (Gupta et al. 2017) indicating that another way to optimize 

circuit capabilities is through its dynamics. Constructing and optimizing circuit dynamics can 

help us better understand their natural counterparts. Oscillatory networks are common in 

nature, but the first synthetic oscillator was built in 2000 using interconnected repressors 

(Elowitz & Leibler 2000). This oscillator has since been optimized for tunability (Stricker et 

al. 2008) and further engineered for synchronous oscillations (Potvin-Trottier et al. 2016) in 

which it was understood that simplicity and understanding noise may be the key to precision 

in such dynamic networks.  
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Figure 1.2 Examples of genetic networks. A genetic toggle switch (Top left), an oscillator 

made of connected repressors (top right), and a NOR logic gate (bottom). Circles indicate 

control points that can be genes or small molecules and function as inputs, out puts, or 

intermediates.  Connecting lines represent the function a gene performs such as repression 

(blunted line).  

 

1.3  RNA-based genetic regulation in bacteria 

RNAs are now understood to play broad regulatory roles across the cell. As such, 

synthetic biologists aim to use these versatile natural systems to create a broad array of parts 

that can regulate many aspects of gene expression from transcription (Brantl & Wagner 

NOR
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2000; Qi et al. 2013), translation (Isaacs et al. 2004), and mRNA degradation (Carrier & 

Keasling 1999) through the conditional formation of hairpin structures at specific points in 

mRNAs (Chappell, Watters, et al. 2015). Transcriptional terminators repress transcription 

when they form by causing polymerase to ratchet off the DNA complex (Brantl & Wagner 

2000), RBS-sequestering hairpins block translation by inhibiting ribosome binding (Green 

et al. 2014), and stability hairpins can block mRNA degradation (Carrier & Keasling 1997). 

RNA transcriptional regulators are particularly interesting because they regulate RNA 

synthesis as a function of RNA input and can be used to create genetic circuitry (Lucks et al. 

2011). These circuits have many potential advantages over proteins including the possibility 

of leveraging RNA folding algorithms and design rules and increasing the speed of signal 

propagation (Takahashi et al. 2015). 

 

Figure 1.3 Schematic of transcriptional attenuation (top) and Ribosome binding site (RBS) 

occlusion (bottom).   
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1.3.1 Transcriptional regulation – intrinsic termination 

Transcriptional regulation is often understood as acting through proteins that recruit RNA 

polymerase to a promoter or block transcription initiation, but RNA can also play important 

roles in transcriptional regulation (Qi et al. 2013; Chappell, Takahashi, et al. 2015; Liu et al. 

2011). Intrinsic termination is one such mechanism of regulation in which an RNA structure 

called an intrinsic terminator hairpin halts transcription by causing RNA polymerase to 

dissociate from the DNA (Figure 1.3, top). The hairpin is usually GC-rich and followed by a 

poly-U sequence. The U-rich sequence causes the RNA polymerase to pause and the 

formation of the hairpin is thought to pull the RNA out of the polymerase and release it from 

the DNA. These terminator hairpins are what terminate transcription after a gene has been 

fully transcribed in order to release transcription machinery, but they can also conditionally 

form upstream of a gene as a form of regulation. The formation of the intrinsic terminator is 

biased by the presence of another molecule that can be another RNA in the case of the pT181 

transcriptional terminator (see section 1.2.3) or by a small molecule for a transcriptional 

riboswitch (Watters et al. 2016).  

 

1.3.2  Translational regulation – RBS occlusion 

RNAs can also regulate one another after transcription but before the mRNA is translated 

into protein (Brantl 2007). Translation begins when the ribosome binds to the ribosome 

binding site in the 5’ untranslated region (5’ UTR) of the mRNA. Within the RBS is an 8 

nucleotide region called the Shine-Dalgarno sequence (SD) that is partially complementary 

to an RNA component of the ribosome, the 16S rRNA. If RNA secondary structures block 

access to the SD sequence this can greatly reduce the translation rate. The formation of these 
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secondary structures is a mechanism of translational regulation  is called ribosome binding 

site (RBS) occlusion (Figure 1.3, bottom) (Espah Borujeni et al. 2014). RBS accessibility can 

be governed by the presence of a small molecule such as for riboswitches (Breaker 2012), 

the formation of an RNA structure like a ribozyme (Tang & Breaker 1997), or the presence 

of another RNA for synthetic toehold switches (Green et al. 2014) and other natural 

regulators (Kittle et al. 1989; Morfeldt et al. 1995).  

 

1.3.3  Using pT181 to build RNA-based networks 

This work relies heavily on the pT181 transcriptional attenuator from the Staphylococcus 

aureus plasmid pT181 (Novick et al. 1989). In its natural form the attenuator is the sequence 

in the 5’ untranslated region of a pT181-encoded mRNA for the plasmid replication protein 

RepC. Attenuators use RNA structural changes to repress transcription in response to an 

antisense RNA (Figure 1.4). A number of RNA engineering strategies have utilized the pT181 

attenuator as a starting point. Since the attenuator was thought to largely regulate 

transcription (Brantl & Wagner 2002), initial engineering efforts used a transcriptional 

fusion following Brantl and Wagner’s work that included a portion of the repC coding 

sequence followed by a stop codon and a separate ribosome binding site for the downstream 

gene of interest. In this configuration, poor repression was observed which motivated 

engineering the terminator sequence to increase transcriptional repression from 64% to 

85% by the addition of GC pairs (Lucks et al. 2011). This was then used to build a library of 

orthogonal repressors (Takahashi & Lucks 2013) and the mechanism was reversed to build 

activators called small transcription activating RNAs (STARs) (Chappell, Takahashi, et al. 

2015). These attenuators were also engineered to respond to small molecule and protein 
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signals by fusing a theophylline aptamer (small molecule) or an MS2 (bacteriophage coat 

protein) aptamer to the antisense making them theophylline or MS sensitive (Qi et al. 2012). 

Genetic circuits have been constructed with these orthogonal regulators including logic 

gates(Chappell, Takahashi, et al. 2015), (Lucks et al. 2011) transcriptional cascades (Lucks 

et al. 2011), and single input modules (Takahashi et al. 2015).  These circuits have been 

shown to be faster than protein-based networks due to their dependence on the degradation 

rate of RNA which is typically much faster than protein degradation (Takahashi et al. 2015) 

and models have been developed to predict their behavior (Hu et al. 2015; Hu et al. 2018). 

 

Figure 1.4 Schematic of the pT181 transcriptional repression mechanism. The pT181 

attenuator sense target sequence resides in the 5’ untranslated region and regulates the 

expression of a downstream gene. The natural attenuator encoded in plasmid pT181 

regulates the expression of the repC gene (Kumar & Novick 1985). Following the attenuator 

sequence (Brantl & Wagner 2000), 96 nt fragment of the repC gene ending in a stop codon, 

TAA, is included as a transcriptional fusion before a ribosome binding site (RBS) and the 

regulated gene of interest. In the absence of antisense RNA (red), the attenuator folds such 
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that the anti-terminator sequence (orange) sequesters the 5’ region of the terminator stem 

(blue), preventing terminator formation and allowing transcription elongation by RNA 

polymerase (grey) causing the attenuator to be transcriptionally ON. When antisense RNA is 

present, its kissing hairpin interaction with the attenuator sequesters the anti-terminator, 

thus allowing terminator formation which prevents downstream transcription making the 

attenuator transcriptionally OFF. 

 

 

1.4  Construction of RNA-based genetic networks and their parts  

The work presented in this thesis focuses on the development and optimization of RNA 

regulators and their subsequent use in novel RNA-based genetic networks.    

 

1.4.1  Chapter 2:  Reducing circuit leak using dual transcriptional and translational 

regulation 

Predictable control of gene expression is vital for the accurate construction of genetic 

networks. However, many RNA regulators suffer from incomplete repression in their OFF 

state. This circuit leak can propagate through a network and interfere with network function. 

The work presented in this chapter addresses this by introducing an improvement to the 

pT181 attenuator system that takes advantage of natural translational control in addition to 

its well characterized transcriptional control. By adding this second layer of control, we 

manage to severely decrease regulator leak, increasing repression from 85% to 98% and 

activation from 10 fold activation to over 900 fold activation. Additionally, we show that 

orthogonal version of these dual control attenuators can be constructed by engineering 
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minimal antisense RNAs. Finally, we use the dual control attenuator in an small molecule-

activated RNA-only cascade to demonstrate that it successfully reduces leak in a genetic 

network. Moving forward, we anticipate these regulators will allow the construction of more 

accurate RNA-based genetic networks.  

 

1.4.1  Chapter 3:  Using RNA sequestration to shift a transfer function 

Large libraries of genetic parts have now been built and characterized. The ability to tune 

these parts can  facilitate optimization of new genetic networks. Here we show a method of 

tuning the pT181 attenuator using a sequester that binds to the antisense and blocks its 

ability to repress gene expression.   We start by using a cell free transcription-translation 

(TXTL) system and an Echo liquid handler to rapidly characterize the sequesters showing 

that they can efficiently de-repress gene expression. We are also able to shift the pT181 

attenuator transfer function by introducing a threshold with sequestration. After 

demonstrating TXTL functionality, we tested our sequester system in E. coli and showed that 

pT181 sequestration is able to de-repress gene expression as well as manipulate the 

relationship between in the input and the output of an inducible system. The ability to shift 

a transfer function could be vital for tuning future genetic networks, particularly changing 

the threshold of activation for biosensors.  

 

1.4.1  Chapter 4:  Generating a pulse of gene expression using regulatory timescale 

differences 

In order to build sophisticated genetic networks with new behaviors parts from different 

libraries with unknown compatibilities must be combined predictably. In this chapter we 
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use TXTL-based characterization experiments and an ODE-based mechanistic model to 

predict the combined dynamics of two different regulator types: CRISPRi and STARs. We 

rapidly parameterize the ODE-based model using data generated with TXTL, extract 

parameters using Bayesian inference, and show STAR and CRISPRi based regulation occur 

on different timescales. We then combine them into a single circuit that produces a pulse of 

gene expression using this timescale discrepancy. Our results suggest that these regulator 

types are modular and are ideal for use in sophisticated dynamic gene networks.  

 

1.4.1  Chapter 5:  Enhancing cellular communication by decoding signal pulses 

As genetic networks become more sophisticated, one of the challenges is to create ways to 

pass complex messages to these engineered cellular systems.  This chapter focuses on 

expanding cellular communication methods by proposing two networks that can decode 

pulses of light or chemical signal. The first network uses protein as genetic ‘memory’ in an 

RNA circuit due to differing degradation timescales. Our results suggest that the timescale 

difference is not enough to efficiently remember state especially when factoring in dilution 

due to cell division. The second circuit ‘remembers’ state using bistability and is based off of 

interconnected toggle switches. A stability analysis suggests that this circuit should 

remember state under some conditions. Preliminary experiments also suggest that the best 

method for sending signals is using light-based induction due to experimental challenges 

using chemical inducers.  

 

1.4.1  Chapter 6:  Towards RNA-based biological control 
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Biological noise can cause uncertainty in engineered biological systems. For networks that 

rely on constant component concentrations, this variability can lead to unexpected 

behaviors. In industrial systems, controller are used to maintain a constant output in the face 

of changing environmental conditions. Here we explore two RNA-based biological controller 

designs. Both controllers rely on RNA sequestration to perform error calculation but one 

performs the correction using activation while the other uses negative autoregulation. 

Previous work has suggested RNA sequestration must be much faster than RNA degradation 

in order for the controller to function. We find activator sequestration to be less efficient 

than repressor sequestration. Preliminary data indicates the repression based controller is 

able to perform reference tracking.  
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CHAPTER 2 

ACHIEVING LARGE DYNAMIC RANGE CONTROL OF GENE EXPRESSION WITH A 

COMPACT RNA TRANSCRIPTION-TRANSLATION REGULATOR 

2.1 Abstract 

RNA transcriptional regulators are emerging as versatile components for genetic network 

construction.  However, these regulators suffer from incomplete repression in their OFF 

state, making their dynamic range less than that of their protein counterparts. This 

incomplete repression causes expression leak, which impedes the construction of larger 

synthetic regulatory networks as leak propagation can interfere with desired network 

function. To address this, here we demonstrate how naturally derived antisense RNA-

mediated transcriptional regulators can be configured to regulate both transcription and 

translation in a single compact RNA mechanism that functions in Escherichia coli. Using in 

vivo gene expression assays, we show that a combination of transcriptional termination and 

RBS sequestration increases repression from 85% to 98%, or activation from 10 fold to over 

900 fold, in response to cognate antisense RNAs. We also show that orthogonal repressive 

versions of this mechanism can be created through engineering minimal antisense RNAs. 

Finally, to demonstrate the utility of this dual control mechanism, we use it to reduce 

network leak in an RNA-only cascade that activates gene expression as a function of a small 

molecule input. We anticipate these regulators will find broad use as synthetic biology moves 

beyond parts engineering to the design and construction of larger and more sophisticated 

regulatory networks.  

__________________________________ 
 This work was originally published in Nucleic Acids Research and has been reproduced here. 
(Westbrook & Lucks 2017) 
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2.2 Introduction 

RNAs are now understood to play broad regulatory roles across the cell (Strobel et al. 2016). 

As such, synthetic biologists have sought to use these versatile natural systems to create a 

diverse array of parts that can regulate many aspects of gene expression including 

transcription (Lucks et al. 2011; Chappell, Takahashi, et al. 2015; Qi et al. 2013), translation 

(Green et al. 2014; Pardee et al. 2016), and mRNA degradation (Carrier & Keasling 1999; 

Carothers et al. 2011; Pfleger et al. 2006). Antisense-mediated RNA transcriptional 

regulators are particularly versatile because they regulate RNA synthesis as a function of an 

RNA input and thus can be used to create RNA-only genetic networks (Lucks et al. 2011; 

Takahashi et al. 2015). RNA genetic networks have many potential advantages over protein-

based networks including the possibility of leveraging advances in RNA folding algorithms 

and design rules for part design (Takahashi et al. 2016; Zadeh et al. 2011) and their natural 

fast dynamics (Takahashi et al. 2015).  

 Despite these advantages, RNA transcriptional regulators still suffer from low 

dynamic range, the ratio of maximum (ON) to minimum (OFF) signal, in comparison to 

protein-based regulators. Low dynamic range can lead to excess signal in the OFF state, 

causing networks that contain these regulators to be disrupted by low, transient amounts of 

gene expression signal called network leak. This leak can propagate through the network 

causing it to function incorrectly, for example by causing a network to express a gene when 

repression is desired. Previous research has focused on reducing leak to diminish undesired 

effects, for example by using a recombinase to control gene availability in a multigene 

network to construct a digital switch biosensor (Lapique & Benenson 2014). However, low 

dynamic range still remains a significant barrier to using RNA transcriptional repressors in 
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large genetic networks. While there has been progress in creating RNA translational 

activators with low leak (Green et al. 2014), there is still room for improvement in RNA 

translational repressors (RNA IN/OUT 90% (10-fold) repression (Mutalik et al. 2012)), RNA 

transcriptional repressors (pT181 and variants 85% (6-fold) repression (Lucks et al. 2011)), 

and RNA transcriptional activators (STAR’s 90 fold activation (Chappell, Takahashi, et al. 

2015)). Thus an important challenge for RNA engineering is to improve the dynamic range 

of RNA regulators so that they can be more effective as elements of synthetic genetic 

networks. 

 While there has been great progress in improving the dynamic range of RNA 

regulators by engineering mechanisms that control a single gene expression process (Lee et 

al. 2016; Qi et al. 2013; Chappell, Takahashi, et al. 2015), only several studies have explored 

the idea of engineering multiple genetic control processes for tighter regulation (Morra et al. 

2016; Horbal & Luzhetskyy 2016; Liu et al. 2012). Specifically, Morra et al. recently combined 

transcriptional and translational control with two distinct mechanisms - inducible 

promoters and orthogonal translational riboswitches - to achieve tight control of fluorescent 

proteins (Morra et al. 2016). Horbal and Luzhetskyy also recently used a similar approach to 

control pamamycin production in Streptomyces albus (Horbal & Luzhetskyy 2016). Using 

RNA engineering strategies, Liu et al. pursued a different approach by combining RNA-

mediated translation regulators with leader-peptide transcriptional attenuators to create a 

hybrid RNA mechanism that uses sequential control of translation then transcription to 

achieve large dynamic range repression and activation (Liu et al. 2012). Importantly this 

study showed that multiple RNA structures can be combined together to regulate several 

aspects of gene expression. 
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 A notable feature of RNA regulatory mechanisms is that they regulate transcription, 

translation, and mRNA degradation through the conditional formation of simple hairpin 

structures at defined positions in mRNAs (Chappell, Watters, et al. 2015). Specifically, 

intrinsic transcriptional terminators repress transcription by causing the dissolution of the 

transcription elongation complex (Ray-Soni et al. 2016; Chen et al. 2013), ribosome binding 

site (RBS)-sequestering hairpins block translation by inhibiting ribosome binding (Brantl 

2007; Espah Borujeni et al. 2014), and stability hairpins can prevent the activity of RNases 

to control mRNA degradation  

(Carrier & Keasling 1997; Alifano et al. 1994). The common connection between structure 

and function exhibited by RNA regulatory mechanisms reveals an intriguing possibility of 

engineering hairpin structures that can regulate multiple control points within a single 

mechanism.  

 We sought to use this approach on the pT181 attenuator from the Staphylococcus 

aureus plasmid pT181 (Novick et al. 1989),  which has previously been shown to be useful 

for engineering a growing number of RNA networks (Lucks et al. 2011; Takahashi et al. 2015; 

Hu et al. 2015). In its native form, the pT181 attenuator is encoded in the 5’ untranslated 

region of the plasmid replication protein RepC mRNA. Without the cis-encoded antisense 

RNA repressor, the sense RNA attenuator folds into a structure that allows for transcription 

of the RepC mRNA. When the antisense RNA is present, its binding to the sense RNA target 

permits the formation of an intrinsic transcriptional terminator upstream of the RepC coding 

sequence thereby terminating transcription (Figure 2.1).  

 A number of RNA engineering strategies have used the pT181 attenuator as a starting 

point to create RNA genetic networks and gene expression logics. Earlier studies concluded 
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that the attenuator primarily regulates transcription (Brantl & Wagner 2002), leading initial 

engineering efforts to use a transcriptional fusion of the attenuator to create basic RNA 

transcriptional repressors (Lucks et al. 2011). This transcriptional fusion (Brantl & Wagner 

2002) included a fragment of the RepC coding sequence followed by a stop codon and a 

separate ribosome binding site for translation of the downstream gene of interest after the 

transcriptional decision was made by the attenuator (Figure 2.1A). This configuration 

initially exhibited only 64% repression, but was improved by strengthening the base of the 

terminator (Ray-Soni et al. 2016) through the addition of GC pairs to achieve 85% repression 

(Lucks et al. 2011). Subsequent work used this system to build a library of independently 

acting, or orthogonal, transcriptional repressors that only repress their cognate targets with 

minimal cross talk with other variants (Takahashi & Lucks 2013). Orthogonal pairs of 

regulators are important for networks to function as expected by only controlling target 

genes as desired without interfering with off target expression. Recently the pT181 

mechanism was used to build RNA transcriptional activators (Chappell, Takahashi, et al. 

2015), and a variety of genetic networks including logic gates (Chappell, Takahashi, et al. 

2015; Lucks et al. 2011), transcriptional cascades (Lucks et al. 2011), and genetic networks 

that sequentially activate multiple genes (Takahashi et al. 2015). 

 Intriguingly, early studies on the natural pT181 attenuator mechanism hypothesized 

that an AGGAG sequence embedded in the 3’ half of the terminator hairpin was the ribosome 

binding site for repC (Kumar & Novick 1985). This would suggest that the terminator hairpin 

of the pT181 attenuator could also function by occluding the RBS to regulate translation as 

well as transcription. Later, it was determined that the primary mechanism of repression 

was transcription by comparing transcriptional versus translational reporter gene fusions 
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(Brantl & Wagner 2002). However the presence of a near canonical RBS sequence in the 3’ 

terminator hairpin, spaced 12 nt from the start codon of repC suggests the possibility that 

the pT181 mechanism may in fact have a more powerful effect on gene expression by 

simultaneously regulating transcription and translation through the conditional formation 

of a single compact hairpin in response to interactions with an antisense RNA (Figure 2.1B).  

 In this work, we show that antisense-mediated repression of gene expression can be 

improved by utilizing the native RBS and thus the natural dual transcriptional/translational 

regulation of the pT181 attenuator. When configured as a translational fusion, we show we 

can increase the percent repression (100%-OFF gene expression level/ON gene expression 

level) of a fluorescent reporter protein from 85% (+/- 3.4%) to 98% (+/- 0.4%) in 

Escherichia coli. The success of this strategy led us to use it to improve the fold activation 

(ON gene expression level/OFF gene expression level) of a small transcription activating 

RNA (STAR) system based on the pT181 hairpin from 10 fold (+/- 3.7) to 923 fold (+/- 213). 

Our next goal was to create a library of orthogonal dual control repressors that can function 

independently in the same cell as components of larger genetic networks. To do this, we 

converted previously published orthogonal pT181 variants that functioned at the 

transcriptional level (Takahashi & Lucks 2013) into dual control regulators. Interestingly, 

this library of dual control repressors showed significant cross-talk, indicating that the dual 

control system breaks orthogonality, likely by increasing the opportunity for non-cognate 

antisense RNAs to bind and induce translational repression. To mitigate this, we engineered 

a minimal antisense RNA that reduced crosstalk thereby allowing the repressors to function 

independently. Finally, to demonstrate that these regulators can be used to fix leak within 

RNA genetic networks and that orthogonal versions can function in the same cell without 
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breaking network function, we constructed a repressor cascade using the dual control 

repressor on the bottom level and found that the dual control cascade exhibited reduced 

network leak and a higher dynamic range.  

 

Figure 2.1. Schematic of the transcriptional pT181 repression mechanism (A) and the 

proposed pT181 dual transcription/translation repression mechanism (B). The pT181 

attenuator sense target sequence resides in the 5’ untranslated region and regulates the 

expression of a downstream gene. The natural attenuator encoded in plasmid pT181 

regulates the expression of the repC gene (Kumar & Novick 1985). For the transcriptional 

fusion, a 96 nt fragment of the repC gene ending in a stop codon, TAA, is included after the 

attenuator sequence (Brantl & Wagner 2000) and before a ribosome binding site (RBS) and 

the regulated gene of interest. For the dual control/translational fusion,12 nt of the repC 

gene is included and is translationally fused to the regulated gene of interest. In the 

absence of antisense RNA (red), the attenuator folds such that the anti-terminator 

sequence (orange) sequesters the 5’ region of the terminator stem (blue), preventing 

terminator formation and allowing transcription elongation by RNA polymerase (grey). 

Thus in the absence of antisense RNA the attenuator is transcriptionally ON. In the dual 

control/translational fusion, this structure also contains an exposed ribosome binding site 
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(RBS) for the gene of interest, which allows ribosomes (purple) to bind and translate the 

mRNA. When antisense RNA is present, its kissing hairpin interaction with the attenuator 

sequesters the anti-terminator, thus allowing terminator formation, which prevents 

downstream transcription. Thus in the presence of antisense RNA the attenuator is 

transcriptionally OFF. The dual control version is both transcriptionally and translationally 

off in this case due to the added effect of RBS occlusion by the terminator hairpin. 

Sequences and structures for the dual control attenuator are shown in Supplementary 

Figure A8. 

 

2.3 Results 

2.3.1 Regulating both transcription and translation with a single RNA structure 

improves dynamic range 

We first sought to evaluate the performance of the dual control repressor by configuring it 

as a translational fusion with a downstream reporter gene (Figure 2.1B). Because the 

terminator hairpin contains a canonical RBS in its 3’ half, we would expect this configuration 

to regulate both transcription and translation of the downstream gene. Specifically, in the 

presence of antisense RNA, the formation of the terminator hairpin should both repress 

transcription of the downstream gene, as well as occlude the initiation of translation of any 

mRNA transcripts that were extended due to imperfect termination efficiency. Thus, we 

expected the dual control translational fusions to exhibit lower OFF levels than the 

transcription-only regulators. 

 In previous work, a translational fusion of the pT181 attenuator to the lacZ gene 

exhibited 62% repression in the presence of an antisense RNA as measured by Miller assays 
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(Brantl & Wagner 2002). Since the terminator of the pT181 system had been previously 

engineered (Lucks et al. 2011) to strengthen the terminator stem base in order to increase 

transcriptional repression (Ray-Soni et al. 2016), we began by assessing the observed 

antisense-mediated repression of both the natural and engineered terminator using a 

translational fusion between repC and an SFGFP reporter gene (Figure 2.2A,B). To 

characterize attenuator function, plasmids were constructed such that each attenuator was 

placed downstream of a constitutive promoter and upstream of the SFGFP coding sequence 

on a medium copy plasmid. Complementary antisense RNAs were placed on a separate high 

copy plasmid downstream of the same constitutive promoter (Supplementary Table A1). 

Each attenuator plasmid was transformed into E. coli TG1 cells along with either its cognate 

antisense or a no-antisense control plasmid (Supplementary Table A2). Individual colonies 

were picked, grown overnight, sub-cultured into minimal media and grown until logarithmic 

growth was reached. Fluorescence was measured for each culture using flow cytometry (see 

materials and methods). Using this experimental design, we observed a 63% (+/- 7.9%) 

repression in gene expression for the wild-type transcriptional fusion that increased to 98% 

(+/- 0.4%) when a translational fusion was used (Figure 2.2A). A closer examination of the 

increase in repression revealed that the translational fusion not only decreased the OFF level 

of gene expression in the presence of antisense, but also increased the ON level in the 

absence in antisense. 

 We performed the same fluorescence experiment  described above with the 

engineered terminator and found an improvement from 85% (+/- 3.4%) repression to 98% 

(+/- 0.7%) repression (Figure 2.2B). However, in this case the ON level was reduced for the 

translational fusion, which could be due to the terminator mutation causing increased 
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spacing between the RBS and the start codon of repC. This suggested that the repC context of 

the dual control system could be important. To test this, we fully removed the repC sequence 

and characterized the dual control attenuator. We found that when repC is fully removed, the 

ON level is reduced (Supplementary Figure A4), possibly due to the sequence context change. 

For this reason we chose to continue with the wild type translational fusion repressor 

including a 12nt fusion of repC.  

 To further investigate the mechanism of the attenuator, we performed qRT-PCR 

experiments on a transcriptional and a translational fusion construct (Supplementary Figure 

A5). The transcriptional attenuator with the engineered terminator showed 80% (+/- 3.4%) 

repression when measuring SFGFP fluorescence and 78% (+/- 9.1%) repression when 

measuring SFGFP transcripts with qRT-PCR, indicating that repression comes primarily 

from transcriptional termination.  The dual control attenuator with the wild type terminator 

showed 97% (+/- 0.7%) repression when measuring SFGFP fluorescence and 84% (+/- 8.1%) 

repression when measuring SFGFP transcripts with qRT-PCR, indicating that the increased 

repression is due to the added translational control. 

 We next designed a construct to compare dual transcription/translation control to 

transcription-only control using a dual reporter protein operon (Figure 2.2C). In this design, 

mRFP is translationally fused to the attenuator, while SFGFP is translated from an 

independent downstream RBS. In this way, we would expect mRFP to be regulated at both 

the transcriptional and translational levels, while SFGFP would be regulated at just the 

transcriptional level leading to overall increased repression for mRFP. We transformed cells 

with the sense target plasmid and the antisense repressor or a blank control plasmid and 

measured the fluorescence using flow cytometry. As expected, we found that mRFP was 
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repressed more effectively (92% +/- 1.7%) than SFGFP (71% +/- 5.8%). This result also 

demonstrated that the dual control repressor can be modularly used to regulate different 

proteins as well as operons. 
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Figure 2.2. Dual transcription/translation control represses gene expression with higher 

dynamic range than transcription control in vivo. Functional characterization of the (A) 

wild type (Brantl & Wagner 2002), or (B) engineered (Lucks et al. 2011) attenuator 

configured to repress either transcription (transcriptional fusion) or dual 

transcription/translation (translational fusion) of an SFGFP coding sequence. Average 

fluorescence was collected by flow cytometry as Molecules of Equivalent Fluorescein 

(MEFL) of E. coli TG1 cells transformed with a plasmid expressing the indicated attenuator-

SFGFP construct and a plasmid expressing the antisense RNA (+, blue) or a control plasmid 

lacking the antisense sequence (-, red) (Supplementary Table A2). Percent repression is 

labelled above each construct tested. In both cases the dual control regulator showed 98% 

repression (50-fold), though with a higher ON expression level for the wild type attenuator. 

Error bars represent standard deviations of at least seven biological replicates. Cartoons 

highlight differences between the wild type and engineered attenuator sequences, which 

differ by several bases in the 3’ half of the terminator hairpins. (C) Testing dual control vs. 

transcriptional control in a two-colour operon construct. The wild type attenuator 

sequence was translationally fused to an mRFP coding sequence, which was followed by an 

RBS-SFGFP sequence. In this way mRFP was under dual transcription/translation control 

while SFGFP was under only transcription control. The construct was tested as in (A) with 

mRFP fluorescence collected by flow cytometry as Molecules of Equivalent Phycoerythrin 

(MEPE). RFP was more strongly repressed at 92% (+/- 1.7%) than GFP at 71% (+/- 5.8%). 

Averages and standard deviations plotted in (A) and (B) are presented Supplementary 

Table A3 to allow for comparison within orders of magnitude. 
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2.3.2 The dual control strategy can be extended to a pT181-based activator to 

dramatically improve fold activation 

We next sought to determine if the dual control strategy could be applied to an RNA-based 

transcriptional activator mechanism derived from the pT181 system. Small transcription 

activating RNAs (STARs) were recently engineered to activate, rather than repress, 

transcription in the presence of designed antisense RNAs (Chappell, Takahashi, et al. 2015). 

In the STAR mechanism, the sense target region consists of a transcriptional terminator 

placed upstream of a target gene which blocks transcription elongation to form the OFF state 

in the absence of a STAR antisense RNA (Supplementary Figure A6). The addition of a STAR 

antisense RNA, designed to contain an anti-terminator sequence complementary to the 5’ 

half of the terminator stem, prevents terminator formation, allowing transcription to 

proceed and gene expression to be ON. Early investigations showed that the pT181 

attenuation system could be converted into a STAR by using the terminator sequence from 

pT181 and an appropriately designed STAR antisense RNA (Chappell, Takahashi, et al. 2015). 

This gave us the opportunity to examine whether a dual control strategy would be effective 

in the context of gene expression activation.  

 We constructed a dual control activator by making a translational fusion using one of 

the pT181 STARs (Supplementary Table A1) (Figure 2.3A). To characterize dual control and 

transcription-only STAR activator function, each sense target plasmid was transformed into 

E. coli TG1 cells along with either its cognate STAR antisense or a no-antisense control 

plasmid (Supplementary Table A2). Individual colonies were picked, grown overnight, sub-

cultured into minimal media and grown until logarithmic growth was reached. Fluorescence 

was measured for each culture using flow cytometry (see Materials and Methods). The dual 
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control strategy improved transcription-only activation from 10 fold (+/- 3.7) to 923 fold 

(+/- 213) respectively, due to both a higher ON level and a lower OFF level. Notably the OFF 

level for the dual-control STAR system was remarkably close to the background cellular 

autofluorescence level (Figure 2.3C).  

 

Figure 2.3.  Converting a small transcription activating RNA (STAR) mechanism to a dual 

transcription/translation activator enhances fold activation. (A) Schematic of the proposed 
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dual transcription/translation activation mechanism. The sense target region consists of 

the pT181 STAR target region from Chappell et al. (Chappell, Takahashi, et al. 2015) 

followed by 12 nt of the repC gene translationally fused to SFGFP. In the absence of the 

STAR RNA (red/orange), the terminator forms, preventing downstream transcription by 

RNA polymerase (grey). This structure also occludes the RBS inside the 3’ side of the 

terminator hairpin, which prevents ribosome binding. Thus in the absence of STAR RNA 

the mechanism is transcriptionally and translationally OFF. The STAR RNA contains an 

anti-terminator sequence (orange) complementary to the 5’ half of the terminator (blue). 

When present, the STAR RNA binds to the terminator, preventing terminator formation 

and allowing transcription elongation. This structure also exposes the RBS, allowing 

ribosome binding and translation. Thus in the presence of STAR RNA the mechanism is 

transcriptionally and translationally ON. The original transcriptional mechanism is shown 

in Supplementary Figure A6. Sequences and structures are shown in Supplementary Figure 

A11. (B) Functional characterization of a pT181 STAR that controls transcription. Average 

fluorescence (MEFL) (top) was collected by flow cytometry of E. coli TG1 cells transformed 

with a plasmid expressing the STAR target transcriptionally fused to an SFGFP coding 

sequence and a plasmid expressing the STAR RNA (+, blue) or a control plasmid lacking the 

STAR sequence (-, red) (Supplementary Table A2). Error bars represent standard 

deviations of at least seven biological replicates. The flow cytometry histogram data 

(bottom) is plotted on a bi-exponential graph (Parks et al. 2006). Auto-fluorescence 

indicates the observed fluorescence distribution from E. coli TG1 cells transformed with 

plasmids lacking activator-SFGFP fusion or antisense (Supplementary Table A2) (C) 

Functional characterization of a pT181 STAR that controls both transcription and 
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translation. Data was collected and plotted as in (B). The dual control strategy increases 

fold activation from 10 fold (+/- 3.7) to 923 fold (+/- 213) by increasing the ON expression 

as well as decreasing the OFF expression to near-background auto-fluorescence levels. 

Averages and standard deviations plotted in (B) and (C) are presented Supplementary 

Table A4 to allow for comparison within orders of magnitude. 

 

2.3.3 Multiple dual control regulators can be built using pT181 mutants and 

chimeras 

We next sought to determine if the dual control strategy could be applied to additional 

transcriptional attenuators to improve their dynamic range. Multiple orthogonal, or 

independently acting, pairs of antisense/attenuators are needed in order to build more 

sophisticated genetic networks. Since a library of orthogonal pT181 transcriptional 

regulators has previously been engineered (Takahashi & Lucks 2013), we first sought to 

apply the dual control strategy to these additional regulators. To create orthogonal 

antisense/attenuator pairs, the library includes several pT181 specificity changing mutants 

in the first attenuator hairpin that affect antisense recognition, as well as chimeric fusions of 

the pT181 mechanism with RNA kissing-hairpin interaction regions taken from translational 

repressors. However, in order to preserve their overall function, the pT181 mutants and 

fusions are very similar in sequence, including the pT181 terminator hairpin, allowing us to 

make translational fusions to test the dual control strategy in these mutant contexts.  

 Additional dual control repressors were characterized as above and compared to the 

repression observed in the transcription-only regulatory configuration. Specifically, we 

tested the transcriptional wild type (WT) repressor, the mutant repressors (Mut 1,2) (Lucks 
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et al. 2011), and fusion repressors (Fus 3,4) (Takahashi & Lucks 2013) and observed 

between 63% and 85% repression (Figure 2.4B). We then tested the dual control repressors 

made from the same attenuators and found that repression increased to between 81% and 

98% (Figure 2.4C) averaging to a 15% increase in repression with the wild type pT181 

remaining the best dual control repressor. As before, these increases in dynamic range come 

from both a higher ON level and a lower OFF level (Figure 2.4).  

 

Figure 2.4. The dual transcription/translation control strategy functions across orthogonal 

pT181 mutants and chimeras. (A) Schematics of the interactions between the dual control 
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sense target region and the corresponding cognate antisense RNA for wild type, specificity 

mutants and chimeric fusions engineered to change the specificity of the antisense-

attenuator interactions. Sequences and structures are shown in Supplementary Figure A12. 

(B) Functional characterization of the transcriptional wild type pT181 repressor (WT), two 

mutants (Mut 1,2) (Lucks et al. 2011), and two chimeric fusions (Fus 3,4) (Takahashi & Lucks 

2013). Each repressor contained the wild type terminator region depicted in Figure 2.2A. 

Functional characterization and data presentation as in Figure 2.2. Error bars represent 

standard deviations of at least seven biological replicates. (C) As in (B) except with each 

repressor configured as a dual transcription/translation controller. Using the dual control 

strategy improves the repression of the transcriptional attenuators. Averages and standard 

deviations plotted in (B) and (C) are presented Supplementary Table A5 to allow for 

comparison within orders of magnitude. 

 

2.3.4 Orthogonal dual control repressors can be engineered by reducing the 

antisense RNA sequence 

We next sought to test the orthogonality of the dual control repressors. In addition to 

requiring multiple dual control regulators to build genetic networks, these regulators must 

also be orthogonal, or only interact with their cognate target. Previous work showed that the 

original transcription-only chimeric fusions exhibited limited crosstalk between non-

cognate antisense/sense target pairs, making them highly orthogonal (Takahashi & Lucks 

2013). To test this for our dual control repressors, we challenged each repressor sense target 

with all non-cognate antisense RNAs to form an orthogonality matrix (Figure 2.5B, 

Supplementary Figure A7A).  
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 Despite starting from a set of highly orthogonal transcriptional repressors, we 

observed significant crosstalk between the dual control regulators. Earlier work on 

elucidating the mechanism of antisense-mediated translation repression suggested that 

flanking sequences in the antisense RNA can form extended interactions with the sense 

target RNAs (Kolb et al. 2000). We thus hypothesized that portions of the antisense RNAs 

can be interacting with the sense target to repress translation even after the transcriptional 

regulatory decision has been made. To test this hypothesis, we truncated the antisense RNA 

sequence to the elements necessary for initial RNA-RNA kissing-hairpin interactions that 

were shown to be essential for the transcriptional regulatory decision (Takahashi et al. 

2016). Specifically, hairpin 2 of the pT181 antisense makes contact with the first hairpin of 

the sense target region of the attenuator that contains the anti-terminator (Supplementary 

Figure A8). We hypothesized that we could remove the antisense hairpin 1 and truncate the 

stem of hairpin 2 to reduce cross-talk between the dual control repressors (Figure 2.5A, 

Supplementary Figure A9). Using these reduced antisense RNAs, we repeated the 

orthogonality matrix and observed that crosstalk was reduced for most non-cognate 

interactions (Figure 2.5C, Supplementary Figure A7B). However, not all crosstalk was 

reduced. Notably sense/antisense pairs that began with low crosstalk values, displayed 

increased crosstalk using the truncated antisense. For example the pair consisting of fusion 

4 antisense targeting the fusion 3 sense target rose significantly from 7% to 27% to become 

the highest crosstalk. However, generally those non-cognate pairs that started at higher 

crosstalk were more significantly reduced (reduced 21% on average for those above 20% 

crosstalk) compared to those that started at lower crosstalk (raised 0.5% on average for 

those below 20% crosstalk).  
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Figure 2.5. Truncated antisense RNA improves orthogonality between dual 

transcription/translation RNA repressors. (A) Schematics of the interactions between the 

dual control sense target region and the corresponding cognate antisense RNA for wild type, 

specificity mutants and chimeric fusions. Dashed lines show portions of the antisense RNA 

structure that were truncated to reduce cross talk between pairs of dual 

transcription/translation control RNA repressors. Hairpin 1 and unnecessary regions (4 nt) 

at the base of hairpin 2 of the antisense were deleted. Sequences and structures for the wild 
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type pT181 antisense are show in Supplementary Figure A9. (B) An orthgonality matrix 

showing percent repression observed when sense targets were co-expressed with different 

full-length antisense RNAs. Each element of the matrix represents the percent repression 

observed from the indicated antisense/sense target plasmid combination compared to a no-

antisense/sense target plasmid condition using functional characterization experiments as 

in Figure 2.2. (C) As in (B) with truncated forms of the antisense RNAs depicted in (A), 

showing reduction in repression when non-cognate truncated antisense is present (off 

diagonal elements). Barplots depicting the data in (B) and (C) are shown in Supplementary 

Figure A7. Standard deviations for the data in (B) and (C) are shown in Supplementary 

Tables A6 and A7. 

 

2.3.5 The dual control repressor mitigates network leak in an RNA repressor cascade 

Finally we sought to test the dual control regulators in an RNA-only network context that 

would demonstrate how reduced leak improves network performance and confirm that 

orthogonal versions can function correctly in the same cell. RNA repressor cascades were 

the first RNA-only network built (Lucks et al. 2011) and have been used to highlight the fast 

speed of RNA genetic networks (Takahashi et al. 2015). The repressor cascade also acts as a 

modular unit that can be built upon to create more sophisticated networks such as one that 

controls the timing of a sequence of genes in response to a single input (Takahashi et al. 

2015; Alon 2007). However, past attempts at characterizing repressor cascades have 

revealed that the network leaks due to insufficient repression of the individual regulators 

resulting in un-desired gene expression in conditions where the overall network is designed 

to be OFF. We therefore sought to fix the leak of an RNA repressor cascade using the dual 
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control repressor. To test this, we built an RNA repressor cascade that activates the 

expression of SFGFP in response to theophylline (Figure 2.6A). Theophylline was chosen 

because a theophylline activated antisense allows us to build an RNA-only network that can 

directly respond to this small molecule (Qi et al. 2012). However, we also verified that other 

inducible promoter systems can be used to induce antisense expression and tune repression 

(Supplementary Figure A10). The cascade consists of three plasmids each expressing one 

level of the network. Without theophylline present, antisense repressor RNA 2 represses 

sense target RNA 2 and SFGFP expression. When theophylline is added, it activates antisense 

repressor RNA 1, which is normally non-functional in the absence of theophylline due to a 

designed interaction between the antisense RNA hairpin and a fused theophylline aptamer 

(Qi et al. 2012). In this way, theophylline binding allows antisense repressor RNA 1 to 

repress antisense repressor RNA 2, allowing SGFP to be expressed. Overall, when 

theophylline is added to the cell culture, an RNA signal induces SFGFP expression.  

 To compare RNA cascades that use either transcription-only or dual control SGFP 

expression, we performed time course experiments on E. coli cultures that contained the 

cascade plasmids with either the transcriptional or dual control repressor cascade plasmids 

for the bottom level of the cascade. After incubating overnight in LB media, the cultures were 

diluted into M9 supplemented media and incubated for four hours. The cultures were then 

diluted again into fresh M9 media to a consistent OD and incubated for four more hours. 

From here, we sampled cultures every 30 minutes to measure SFGFP fluorescence and 

culture OD over time. Theophylline was added to some cell cultures at the beginning of 

sampling to measure the cascade response (Figure 2.6B). This experiment was repeated on 

three separate days, with the first day shown in Figure 2.6B and the other two shown in 
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Supplementary Figure A2. In addition we performed a version of this experiment from 

glycerol stocks which showed similar results (Supplementary Figure A3). As expected, when 

theophylline was introduced to both the transcriptional and dual control cascades, we 

observed SFGFP activation that continued throughout the rest of the time course. However, 

the transcriptional version of the network displayed significant leak (Figure 2.6B, green 

curves) in comparison to the dual control network, which displayed a lower baseline 

expression (Figure 2.6B, blue curves) and thus a greater dynamic range. The leak in the 

transcriptional version of the network is a direct result of the leaky transcriptional repressor 

– even when in the OFF state, terminator read through can lead to translation of downstream 

transcripts since their RBS is not masked within a secondary structure. In the dual control 

case however, the masking of the RBS within the terminator structure prevents this aberrant 

translation leading to reduced OFF states throughout. This result demonstrated that dual 

control repressors can not only be used in an RNA genetic network, but that their use 

reduced overall leak through the network to improve its desired function.  

 

Figure 2.6. The dual transcription/translation control strategy mitigates leak in an RNA 
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repressor cascade. (A) Schematic of the theophylline activated RNA repressor cascade. The 

level three SFGFP gene expression is controlled by sense target region 2, which is repressed 

by repressor RNA 2. Repressor RNA 2 is in turn controlled by the upstream sense target 

region 1, which is repressed by repressor RNA 1. Repressor RNA 1 is a fusion with a 

theophylline aptamer (Qi et al. 2012) that is active only with theophylline bound. Without 

theophylline, repressor RNA 1 is inactive causing overall repression of SFGFP (OFF). When 

theophylline is added to the cell culture media, the repressor RNA 1 represses transcription 

of repressor RNA 2, leading to SFGFP expression (ON). The level three attenuator was 

configured to regulate SFGFP either transcriptionally, or using the dual 

transcription/translational control mechanism. (B) Functional time course characterization 

of the transcriptional and dual control repressor cascades. Three plasmids each encoding 

one of the network levels were co-transformed into E. coli TG1 cells, grown overnight and 

sub-cultured into fresh M9 minimal media for four hours before starting the time-course 

with a fresh sub-culture (see Methods). After four hours of growth in M9, theophylline (2mM) 

was added to the media causing SFGFP to be expressed (orange for transcriptional and red 

for dual control). Time points were sampled every 30 minutes for four hours. Bulk 

fluorescence and OD600 were measured using a plate reader. The no theophylline condition 

is shown in green for the transcriptional cascade and blue for dual control. The dual control 

regulator reduces the overall background fluorescent level while maintaining a similar ON 

level and thus improves dynamic range. The data shown here are from three individual 

transformants on a single day. Data for the three independent experiments performed on 

separate days are shown together in Supplementary Figure A2.  The colored region indicates 

the standard deviation from three biological replicates.  
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2.4 Discussion 

In this work, we have demonstrated the utility of an RNA structure that regulates both 

transcription and translation in a single, compact mechanism by showing that it improves 

dynamic range of antisense RNA-mediated control of gene expression and reduces leak when 

used in RNA genetic networks. Specifically, translational fusions between the pT181 

attenuator and downstream reporter genes allowed the transcription of these genes to be 

regulated by the pT181 terminator hairpin and the translation of these genes by the repC 

RBS sequence encoded in the 3’ half of the same hairpin. In this way, the formation of the 

OFF structure in the presence of a cognate antisense RNA allows gene expression to be 

repressed at two levels, and thereby improves repression from 85% (+/- 3.4%) for the 

transcriptional-only case to 98% (+/- 0.4%) in the dual control case. In addition to 

decreasing OFF levels in the presence of antisense RNA, this configuration increased the ON 

level in the absence of antisense RNA.  

To further investigate the mechanistic details of the dual control repressors we 

performed qRT-PCR experiments (Supplementary Figure A5). The transcriptional 

attenuator displayed similar SFGFP fluorescence repression (80%) and SFGFP transcript 

repression (78%) measured by qRT-PCR, while the dual control attenuator revealed 

improved SFGFP fluorescence repression (97%) over SFGFP transcript repression (84%). 

This indicates that some of the improvement is due to the added translational effect of RBS 

occlusion when the antisense RNA is present. The dual control improvement in repression 

comes from both an increased ON level in the absence of antisense RNA and a decreased OFF 

level when antisense is present as compared to the transcriptional attenuator. The increased 
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ON level could be due to increased RBS exposure due to RNA structural context around the 

RBS and the start codon with the RNA is in the anti-terminated structure (Supplementary 

Figure A8). A similar structural effect has recently been seen in the B. cereus crcB fluoride 

riboswitch in which the anti-terminated form shows increased RBS exposure (Watters et al. 

2016). In addition, the translational fusion allowed an optimal distance between the RBS and 

the start codon (Supplementary Figure A8) allowing for more efficient access to the 

ribosome and greater frequency of translation initiation. We also observed a reduction in the 

mRNA OFF level in the dual control scenario as compared to the transcriptional attenuator 

when measuring SFGFP transcripts using qRT-PCR. This effect could be a result of a decrease 

in translation in the tightly regulated OFF state, which could reduce ribosome protection of 

the mRNA to allow more efficient mRNA degradation.  

Interestingly, our results are different from those observed by previous studies of the 

pT181 attenuator (Brantl & Wagner 2002). Through comparing transcriptional vs. 

translational fusions of the pT181 attenuator to the LacZ reporter gene, this study observed 

62% repression for the translational fusion and 50% for the transcriptional fusion. The lack 

of significantly different results and the presence of an intrinsic terminator sequence 

indicated that the attenuator functioned primarily through transcriptional repression. It is 

possible that our system shows a more significant difference because of the increased 

sensitivity afforded by our use of SFGFP expression. Nevertheless, our findings strongly 

suggest that the natural pT181 attenuator system likely regulates at both the transcriptional 

and translational levels.  

Overall the dual control mechanism significantly improved the dynamic range of RNA 

regulators over RNA transcriptional repressors and is better than the ~90% repression seen 
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for the best RNA translational repressors (Mutalik et al. 2012) and the 85% repression seen 

for the best transcriptional RNA repressors (Lucks et al. 2011). In addition to the pT181 dual 

control repressor, we also engineered a pT181 STAR activator and increased its activation 

in response to STAR antisense RNA from 10 fold (+/- 3.7) to 923 fold (+/- 213). This 

improves upon the previously published fold activation of transcriptional STAR regulators 

(90 fold (Chappell, Takahashi, et al. 2015)) and translational toehold regulators (~400 fold 

(Green et al. 2014)). We also showed that this strategy could be expanded to additional 

pT181 mutant and fusion repressors, increasing the repression of several orthogonal 

regulators with this unique combination of transcriptional and translation control. Overall 

this is a significant increase in the number and capability of regulatory tools available for 

constructing genetic networks with tighter control, which Is particularly useful for situations 

in which an RNA part with reduced leak is desired. 

In order to build robust genetic networks in which the parts act independently and 

predictably the parts must be orthogonal or act independently of other regulators in the 

system. However, the initial dual control riboregulators exhibited significant crosstalk. We 

hypothesized that this was due to additional interactions between the antisense RNAs and 

the sense target RNAs that caused translation to be repressed even after the transcriptional 

decision had been made. For a transcriptional decision to be made, the antisense RNAs must 

interact cotranscriptionally. However, the antisense can still bind the dual control sense 

target after transcription and affect RBS availability. This would indicate that the 

modifications between mutants, fusions, and the original pT181 are enough to inhibit 

crosstalk during transcription but the increased time for antisense-sense target interactions 

before translation initiation allows shared sequences in non-cognate pairs more opportunity 
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to interact. We therefore decided to reduce the redundant pT181 sequence to reduce the 

affinity of non-cognate antisense RNAs for sense target regions. While not all non-cognate 

antisense and sense target pairs were improved by the truncations, on average the worst 

performing pairs improved by 20% repression. By truncating redundant pT181 sequence 

we greatly improved orthogonality, making it possible to use these dual control repressors 

in RNA networks.  

Finally, we used dual control RNA repressors to address a current problem with RNA 

only networks, which is leak that results from parts that do not allow complete repression 

of their targets. Specifically, we used the dual control repressor in a repressor cascade and 

found that it reduced network leak and background fluorescence. Additionally, the repressor 

cascade demonstrates that the orthogonal attenuators can function together in the same cell.  

This work demonstrates a novel RNA motif that regulates multiple aspects of gene 

expression in a single compact mechanism, and that displays a dynamic range of gene 

regulation comparable to protein-based mechanisms. As such, this is another example of 

how RNAs may be optimized to function as well as proteins. We anticipate that as synthetic 

biology moves beyond the creation of regulator parts libraries and into building more 

sophisticated networks, RNA regulatory mechanisms such as dual control repressors will 

find increased use in designing RNA genetic networks with predictable function. 

 

2.5 Materials and Methods 

Plasmid construction 

Key sequences can be found in Supplementary Table A1. All the plasmids used in this study 

can be found in Supplementary Table A2 and plasmid diagrams in Supplementary Figure A1. 
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The pT181 repressor and antisense plasmids, the pT181 mutant repressor and antisense 

plasmids, and the no-antisense control plasmid were constructs pAPA1272, pAPA1256, 

pAPA1273, pAPA1257, and pAPA1260, respectively, from Lucks et al. (Lucks et al. 2011). 

The top level of the cascade was the theophylline pT181 mutant antisense plasmid, construct 

pAPA1306, from Qi et al. (Qi et al. 2012). The middle level of the cascade was modified from 

construct pAPA1347 from Lucks et al. (Lucks et al. 2011) using Golden Gate assembly (Engler 

et al. 2008). The bottom level of the transcriptional cascade was construct pJBL1855 from 

Takahashi et al. (Takahashi et al. 2015) and the bottom level of the dual control cascade was 

modified from this construct using Golden Gate assembly. The antisense and repressor 

plasmids were constructed using inverse PCR (iPCR). 

 

Strains, growth medium, and In Vivo end point gene expression.  

All experiments were performed in E. coli strain TG1. Experiments were performed for at 

least seven biological replicates, (independent transformants of an isogenic strain unless 

otherwise noted) collected over three separate days. Plasmid combinations were 

transformed into chemically competent E. coli TG1 cells, plated on Difco LB+Agar plates 

containing 100 μg/mL carbenicillin and 34 μg/mL chloramphenicol and incubated overnight 

at 37 °C. Plates were taken out of the incubator and left at room temperature for 

approximately 9 h. Three colonies were picked and used to inoculate 300 μL of LB containing 

carbenicillin and chloramphenicol at the concentrations above in a 2 mL 96-well block 

(Costar 3960), and grown approximately 17 h overnight at 37 °C at 1,000 rpm in a Labnet 

Vortemp 56 benchtop shaker. Six microliters of each overnight culture was then added to 

separate wells on a new block containing 294 μL (1:50 dilution) of supplemented M9 
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minimal media (1xM9 minimal salts, 1 mM thiamine hydrochloride, 0.4% glycerol, 0.2% 

casamino acids, 2 mM MgSO4, 0.1 mM CaCl2) containing the selective antibiotics and grown 

for 4 h at the same conditions as the overnight culture. Cultures (6-12 μL) were then 

transferred into a FACS round-bottom 96 well plate with 244 μL of PBS containing 2mg/mL 

Kanamycin to stop translation. The plate was then read on a BD LSR II using the high 

throughput setting with the high throughput sampler (HTS). The samples for Figure 2.2C 

were transferred to Falcon 5 ml polystyrene round-bottom tubes and analyzed on a BD Aria 

Fusion. Growth information for glycerol stocks of an individual transformant for the cascade 

experiment is described in Supplementary Note A1. 

 

Flow cytometry data collection.  

Data for the following parameters were collected on the BD LSR II: forward scatter (FSC), 

side scatter (SSC), and SFGFP (Pédelacq et al. 2006) fluorescence (488 nm excitation, 515-

545 nm emission). Three to ten uL of each sample was measured in high throughput mode. 

Each sample was required to have at least 5,000 counts, but most had 10,000 to 50,000. 

Counts were gated in FSC vs. SSC by choosing a window surrounding the largest cluster of 

cells. SFGFP fluorescence values were recorded in relative channel number (1-262,144 

corresponding to 18-bit data) and the geometric mean over the gated data was calculated 

for each sample. Data for Figure 2.2C was collected on a BD Aria Fusion for the following 

parameters: forward scatter (FSC), side scatter (SSC), SFGFP fluorescence (488 nm 

excitation, 530 nm emission), and mRFP Fluorescence (561 nm excitation, 582 nm emission). 

SFGFP and mRFP fluorescence values were recorded in relative channel number (1-262,144 

corresponding to 18-bit data) and the geometric mean over the gated data was calculated 
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for each sample. Compensation was calculated automatically by the BD Aria FACSDiva 

software using the compensation setup feature.  

 

Flow cytometry data analysis.  

Data analysis and FACS calibration was performed according to the supplementary info of 

Lucks et al. (Lucks et al. 2011). Spherotech 8-Peak Rainbow Calibration Beads (Spherotech 

cat. no 559123) were used to obtain a calibration curve to convert fluorescence intensity 

(geometric mean, relative channel number) into Molecules of Equivalent of Fluorescein 

(MEFL) units for SFGFP fluorescence or Molecules of Equivalent Phycoerythrin (MEPE) for 

RFP fluorescence. For each experiment, data for a set of control cultures was also collected 

which consisted of E. coli TG1 cells that do not produce SFGFP (transformed with control 

plasmids JBL001 and JBL002). The mean MEFL or MEPE value of TG1 cells without SFGFP or 

mRFP expression, respectively was subtracted from each colony’s MEFL or MEPE value. 

Mean MEFL or MEPE values were calculated over replicates and error bars represent the 

standard deviation. For repressors, the OFF level is the MEFL or MEPE of cells containing the 

sense plasmid and the antisense plasmid and the ON level is the MEFL or MEPE of cells 

containing the sense plasmid and a no-antisense control plasmid. The percent repression for 

each antisense RNA/attenuator plasmid combination was calculated by subtracting the OFF 

level divided by the ON level from 1 (1-OFF/ON). For activators the ON level is the MEFL or 

MEPE of cells containing the sense plasmid and the antisense plasmid and the OFF level is 

the MEFL or MEPE of cells containing the sense plasmid and a no-antisense control plasmid. 

The fold activation was calculated by dividing the ON level by the OFF level (ON/OFF). 
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In Vivo bulk fluorescence time course experiments.  

Strain, transformation, and media were all the same as for end point experiments described 

above, except 25ug/mL of kanamycin was used in addition to the other selective antibiotics 

because the cascade is encoded by three plasmids. Transformation plates containing E. coli 

TG1 cells transformed with three cascade plasmids (Supplementary Table A2) were taken 

out of the incubator and left at room temperature for approximately 3 h. Three colonies were 

picked and used to inoculate 300 μL of LB containing selective antibiotics in a 2 mL 96-well 

block (Costar 3960), and grown approximately 17 h overnight at the same conditions as 

described for an end point experiment. Twenty microliters of each overnight culture was 

then added to separate wells on a new block containing 980 μL (1:50 dilution) of 

supplemented M9 minimal media (as mentioned above) containing the selective antibiotics 

and grown for 4 h at the same conditions as the overnight culture. The optical density (OD, 

600 nm) was then measured by transferring 50 μL of culture from the block into a 96-well 

plate (Costar 3631) containing 50 μL of phosphate buffered saline (PBS) and measuring 

using a Biotek Synergy H1m plate reader. The cultures were diluted into 1ml of fresh M9 

minimal media to an optical density of 0.015 and grown for four hours. Then theophylline 

was added to the theophylline condition to a final concentration of 2mM. Every 30 min for 

the next 4 h, 50 μL from each of the fresh cultures was removed from the 96-well block and 

transferred to a 96-well plate (Costar 3631) containing 50 μL of phosphate buffered saline 

(PBS). SFGFP fluorescence (FL, 485 nm excitation, 520 nm emission) and optical density (OD, 

600 nm) were then measured at each time point using a Biotek Synergy H1m plate reader. 

 

Bulk fluorescence data analysis.  
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On each 96-well block, there were two sets of controls; a media blank (M9 alone) and E. coli 

TG1 cells that do not produce SFGFP (transformed with control plasmids JBL001, JBL002, 

and JBL1856). The block contained three replicates of each control. OD and FL values for 

each colony at each time point were first corrected by subtracting the corresponding values 

of the media blank at that same time point. The ratio of FL to OD (FL/OD) was then calculated 

for each well (grown from a single colony), and the mean FL/OD of TG1 cells without SFGFP 

at the same time point was subtracted from each colony’s FL/OD value to correct for cellular 

autofluorescence. Experiments were performed for nine biological replicates collected over 

three separate days. One day is shown in Figure 2.6 while all three days are shown together 

in Supplementary Figure A2. Data for glycerol stocks of an individual transformant is shown 

in Supplementary Figure A3 and data collection is described in Supplementary Note A1.  
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CHAPTER 3 

TUNING THE TRANSFER FUNCTION OF AN RNA REPRESSOR USING SEQUESTRATION 

3.1  Abstract 

RNA regulation is increasingly being used to build complex biological networks, with large 

libraries of RNA parts of diverse functions reported and characterized. To manipulate and 

optimize networks constructed from RNA regulators, synthetic biologists must be able to 

tune the functionality of individual RNA parts. Here we show a method of tuning RNA-

mediated repression of gene expression using a sequestration strategy by designing an RNA 

molecule that binds to and sequesters an antisense RNA repressor. We demonstrate how 

RNA repressors can be sequestered in both cell free transcription-translation (TXTL) 

reactions and in Escherichia coli to de-repress gene expression. Additionally, we show that 

multiple sequesters can be made orthogonal, allowing their use in complex biological 

networks. Finally, we show that the RNA repressor transfer function can be shifted using 

sequestration in both TXTL and E. coli. We anticipate this new regulatory element could be 

used to build RNA based networks that implement biological control strategies, or to tune 

the threshold response of a biosensor.   

 

3.2 Main Text 

A central goal of synthetic biology is to create libraries of modular parts for the precise and 

predictable control of gene expression. Libraries of synthetic parts exhibiting a wide range 

of functionality have now been built and characterized (McLaughlin et al. 2018; Madsen et 

al. 2016), and great progress has been made in combining these parts into 

__________________________________ 
 This work is being prepared for publication in ACS Synthetic Biology as a Technical Note. 
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sophisticated genetic networks (Nielsen et al. 2016). While many networks have been 

constructed with existing parts, it is still highly desirable to develop strategies to tune the 

function of regulatory parts to accomplish or optimize a desired network function. 

 Of the many types of genetic parts developed, RNA parts have emerged as a 

particularly versatile toolset for controlling gene expression and engineering genetic 

networks. In particular, RNA parts have recently been developed that regulate many aspects 

of gene expression including transcription (Lucks et al. 2011; Chappell et al. 2015; Qi et al. 

2013), translation (Green et al. 2014; Pardee et al. 2016), and mRNA degradation (Carrier & 

Keasling 1999; Carothers et al. 2011; Pfleger et al. 2006). Additionally, RNA-based genetic 

circuits have many potential advantages including the possibility of leveraging advances in 

RNA folding algorithms and design rules for part design (Takahashi et al. 2016; Zadeh et al. 

2011) and their naturally fast circuit dynamics  (Takahashi, Chappell, et al. 2015). While RNA 

regulators can be tuned through rational design of RNA structures (Chappell et al. 2017; Salis 

et al. 2009), here we sought to develop a trans-acting strategy to use molecular sequestration 

interactions to interfere with RNA regulators, a strategy which has been successfully used to 

tune transfer functions for protein regulators (Chen & Arkin 2012) and is beginning to be 

explored in the context of RNA regulators. 
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Figure 3.1. RNA sequestration can be used to tune RNA repressor function in cell free 

transcription-translation (TXTL) reactions. (A) Schematic of the repressor/sequester system. 

The pT181 target sequence resides in the 5’ untranslated region and regulates the 

expression of a downstream gene. In the absence of repressor RNA (dark blue), the target 

folds such that the anti-terminator sequence (purple) sequesters the 5’ region of the 

terminator stem (light blue), preventing terminator formation and allowing transcription 

elongation by RNA polymerase (grey). This structure also contains an exposed ribosome 

binding site (RBS, red), which allows ribosomes to bind and translate the mRNA. Thus in the 

absence of repressor RNA the target is transcriptionally and translationally ON. When the 

repressor RNA is present, it interacts with the anti-terminator, allowing terminator 

formation, which prevents downstream transcription, and also occludes the RBS inside the 
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3’ side of the terminator hairpin to prevent ribosome binding. Thus in the presence of 

repressor RNA the target is transcriptionally and translationally OFF. An RNA sequester 

(orange) binds to the second hairpin of the RNA repressor and blocks its interaction with the 

target RNA, leading to a net activation of gene expression. (B) Schematic of the TXTL 

experiment performed with an Echo 550 for rapid characterization of circuit combinations. 

TXTL components (cell extract and energy mix) are thawed on ice and then combined with 

purified DNA expressing circuit elements by acoustic droplet ejection with an Echo 550. The 

prepared reactions are then moved to the BioTek Plate reader to measure fluorescence over 

time. (C) Functional time course characterization of repressor sequestration in TXTL. GFP 

fluorescence is measured every 3 minutes for TXTL reactions containing 1nM reporter 

plasmid, with either no repressor or sequester plasmid (purple), with 4nM of repressor 

plasmid (blue), and with concentrations of sequester plasmid at 2, 4, and 8nM (orange, 

yellow, green respectively). Total DNA concentration was kept fixed with a control plasmid. 

(D) Production rates were calculated from the data in (C). (E) Sequestration shifts the 

repressor transfer function in TXTL. GFP fluorescence at 3 hours is plotted versus the 

repressor plasmid concentration. Sequester plasmid concentrations range from 0 to 8nM 

and cause the repressor transfer function to shift from the left at 0nM (green) to the right at 

8nM (purple).  (F) Characterization of sequester orthogonality in TXTL. The wildtype and 

mutant target/repressor pairs are challenged with their cognate sequester and noncognate 

sequester. Fold activation, calculated by dividing the de-repressed expression by the 

repressed expression, is only high with cognate pairs indicating low crosstalk. 

 

 To develop an RNA sequestration mechanism, we sought to build upon an RNA 
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repressor that has been shown to be useful for engineering a growing number of RNA circuits 

(Lucks et al. 2011; Takahashi, Chappell, et al. 2015; Hu et al. 2015) and has been optimized 

for low circuit leak (Westbrook & Lucks 2017). The repressor is designed from the pT181 

attenuation mechanism from the Staphylococcus aureus plasmid pT181 (Novick et al. 1989), 

and is made up of two interacting RNAs: a target RNA and a repressor RNA. The target is an 

RNA sequence in the 5’ untranslated region (5’ UTR) of a gene of interest. Alone, the target 

RNA co-transcriptionally folds into a structure that allows for transcription and translation 

of the downstream gene. When the repressor RNA is present, its binding to the RNA target 

causes the 5’ UTR to fold into a structure that exposes a transcriptional terminator upstream 

of the gene of interest during transcription. This terminator represses transcription of the 

mRNA (Figure 3.1A) by causing the polymerase to ratchet off the DNA, and blocks translation 

by occluding the ribosome binding site (RBS) within the terminator hairpin. A number of 

RNA engineering strategies have utilized the pT181 attenuator as a starting point to create 

RNA genetic networks and gene expression logics (Lucks et al. 2011), build a library of 

orthogonal transcriptional repressors (Takahashi & Lucks 2013), and most recently invert 

this mechanism to build RNA transcriptional/translational activators (Chappell et al. 2015; 

Westbrook & Lucks 2017). Furthermore, a variety of genetic circuits have been constructed 

with these orthogonal pT181-based regulators including logic gates (Lucks et al. 2011; 

Chappell et al. 2015), transcriptional cascades (Lucks et al. 2011), single input modules 

(Takahashi, Chappell, et al. 2015), and negative autoregulation feedback networks (Hu et al. 

2018).  In this work we tune pT181 repression by introducing an RNA sequester that binds 

to the second hairpin of the pT181 antisense, blocking its ability to repress its target (Figure 

3.1A).  
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 While versatile, it has been difficult to fine tune the regulatory response of the pT181 

mechanism using RNA engineering strategies. Therefore, in this work we tune pT181 

repression by developing a trans-acting sequestering RNA that is fully complementary to the 

second hairpin of the pT181 antisense so that it can bind and block its ability to repress its 

target (Figure 3.1A). We began by evaluating the performance of the designed sequester by 

testing it’s functionality in a cell free transcription-translation (TXTL) expression system 

using an Echo 550 Liquid Handler which uses focused sound pulses to quickly move small 

volumes of liquid. The combination of TXTL, which allows rapid characterization of genetic 

parts and circuits, with the Echo system, makes it possible to characterize many 

combinations of circuit components in parallel by simply varying the DNA concentrations of 

individual circuit elements (Santora 2018). Since TXTL characterization data also shows 

good agreement with in vivo data (Takahashi, Hayes, et al. 2015), this setup allowed us to 

perform allowing rapid prototyping in TXTL to inform follow-up in vivo experiments.   

 To rapidly characterize repressor and sequester function in TXTL, we used the Echo 

to titrate antisense and sequester plasmid concentrations using a fixed concentration of 

reporter plasmid.  Four plasmids were used that constitutively expressed the repressor, 

sequester, Target-GFP, or a control RNA (Figure 3.1B). In each TXTL reaction we added 1nM 

of the target-GFP reporter plasmid, a varying concentration of the antisense plasmid (0, 1, 2, 

4, 6, 8, 12, or 16nM) and a varying concentration of the sequester plasmid (0, 2, 4, 8nM). A 

control plasmid that expresses a terminator RNA was used to maintain a constant DNA 

concentration in each reaction. For each combination of plasmids, we then measured the GFP 

fluorescence over time using a plate reader (Figure 3.1B). Since there is no protein 

degradation in standard TXTL reactions (Garamella et al. 2016), we use measurements of 
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both bulk fluorescence over time (Figure 3.1C) as well as fluorescence production rate 

(Figure 3.1D) to analyze the system dynamics and observe a steady state as a plateau in 

production rate. Production rates can then be used to calculate % repression (100%-OFF 

gene expression rate/ON gene expression rate) in TXTL (Takahashi, Chappell, et al. 2015). 

Without any sequester, we observed 99% repression of GFP production rate which agrees 

with previous data showing 98% repression in vivo (Westbrook & Lucks 2017). When 

sequester is added, it is expected bind to the repressor RNA to blocking repression of GFP 

and lead to a net activation of gene expression. Indeed, with the range of sequester plasmids 

tested we found that the addition of sequester could tune repression from 74% repression 

with 2nM of sequester plasmid to 0% repression with 8nM of sequester plasmid (Figure 

3.1D). This result shows that sequestration is able to tune repression in TXTL.  

 We were also able to use this data set to determine how the presence of the sequester 

shifts the transfer function of the repressor system in TXTL. A transfer function describes 

the relationship between the input and the output of a system, here input repressor 

concentration and output gene expression. Transfer functions are often used to characterize 

genetic parts as they can help predict the response of a system to a given input (Carbonell-

Ballestero et al. 2014). The transfer function for the RNA repressor can be seen in Figure 

3.1E (green), which shows the expected decrease of GFP output when the repressor plasmid 

concentration is increased. When a sequester is added, its presence is expected to increase 

the amount of repressor needed to observe the same level of gene expression, causing an 

overall shift to the right of the transfer function (Chen & Arkin 2012).  As predicted, when 

increasing concentrations of sequester plasmid are added, the transfer function gradually 

shifts to the right indicating a higher threshold for switching with a higher concentration of 
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sequester. This shows that the sequester does shift the transfer function of the repressor 

interaction in TXTL.  

 In order for these parts to be used in larger circuit contexts they need to be orthogonal. 

Libraries of orthogonal RNA parts have been developed for both activators (Chappell et al. 

2017) and repressors (Takahashi & Lucks 2013). To demonstrate that sequesters can be 

designed to maintain orthogonality, we specifically challenged two versions of 

repressor/target pairs with their corresponding cognate and non-cognate repressors 

sequesters (Figure 3.1F). Indeed, we observed minimal crosstalk between the non-cognate 

pairs indicating that these sequesters are orthogonal and could be used in circuitry together.  
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Figure 3.2. RNA sequestration can be used to tune RNA repressor function in vivo. (A) 

Functional characterization of the repressor/sequester system in vivo. A BioTek plate reader 
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was used to measure bulk fluorescence of E. coli TG1 cells transformed with plasmids 

constitutively expressing the target-SFGFP on a low copy plasmid (green), the repressor on 

a medium copy plasmid (blue), and the sequester on a high copy plasmid (orange). Error 

bars represent standard deviations of at least three biological replicates. Cartoons indicate 

which parts are present for each of the three conditions. (B) The repressor transfer function 

in vivo with and without sequester. The repressor is under control of the Lux promoter on a 

high copy plasmid, which is activated by the addition of AHL to the media. Bulk fluorescence 

was measured for different concentrations of AHL while cells that were constitutively 

expressing the reporter plasmid, and either a plasmid expressing a control RNA (blue) or a 

sequester RNA (orange) on a medium copy plasmid. The error bars indicate the standard 

deviation from three biological replicates. 

 

 After confirming functionality in TXTL we sought to test our sequestration strategy 

in E. coli.. To characterize function in E. coli, each RNA part was placed on a separate plasmid. 

The sequester was cloned onto a high copy plasmid, the antisense onto a medium copy 

plasmid, and the target onto a low copy plasmid. The plasmids were transformed into E. coli 

TG1 cells, and individual colonies were picked, grown overnight, sub-cultured into minimal 

media and grown until logarithmic growth was reached. Fluorescence was measured for 

each culture using a plate reader. When only the target-GFP (Figure 3.2A, green) is present 

we see high GFP expression. As expected, the repressor gives 96% repression (Figure 3.2A, 

blue) and when the sequester is added, GFP expression is restored to 3% repression (Figure 

3.2A orange). Notably, we observed an increase in variability when the sequester is present, 

which could be due to the increased burden of RNA expressed in the system. 
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 We also tested whether the sequester could shift the repressor transfer function in E. 

coli. To test this, we cloned the antisense on a high copy plasmid following a pLux promoter, 

which enabled us to use acyl homoserine lactone (AHL) added to the media to induce 

expression. The sequester was moved to a medium copy plasmid under constitutive 

expression and the target remained on a low copy plasmid. We transformed E. coli TG1 cells 

with the circuit plasmids (with and without the sequester) and the cells were grown in 

varying concentrations of AHL added to the media to induce antisense expression. For both 

transfer functions in the presence and absence of sequester, we observed AHL induced 

SFGFP repression (Figure 3.2B). When the sequester is expressed, it shifts the threshold of 

AHL needed to repress SFGFP to higher levels, confirming that transfer function shifting can 

be implemented by our designed sequester in E. coli. 

 This work demonstrates an effective strategy to tune repression and shift transfer 

functions in TXTL and E. coli. Previous attempts at RNA sequestration have been successfully 

used to tune CRISPR repression (Lee et al. 2016) and STAR activation (Lee et al. 2018). Our 

system provides an RNA only method of tuning repression with high efficiency and low 

circuit leak. We anticipate that this tool could be used to tune an RNA-mediated biosensor 

by shifting it’s sensing threshold, or as a method to calculate error with respect to a reference 

RNA concentration for biological control strategies (Agrawal et al. 2018).  

 

3.3  Materials and Methods 

TXTL Extract and Buffer Preparation.  

Cell extract and reaction buffer were prepared according to Garamella et al. (Garamella et al. 

2016) 
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TXTL experiments.  

TX-TL buffer and extract tubes were thawed on ice for approximately 20 min. Separate 

reaction tubes were prepared with combinations of DNA representing a given circuit 

condition. Appropriate volumes of DNA, buffer, and extract were calculated using a custom 

spreadsheet developed by Sun et al. (Sun et al. 2013) and modified to fit the experiment. 

Buffer and extract were mixed together and then added to each tube of DNA according to the 

previously published protocol. Each TX-TL reaction mixture (10 μL each) was transferred to 

a 384-well plate (Nunc 142761), covered with a plate seal (Nunc 232701), and placed on a 

Biotek SynergyH1m plate reader. We note that special care is needed when pipetting to avoid 

air bubbles, which can interfere with fluorescence measurements. Temperature was 

controlled at 29°C. GFP fluorescence was measured (485 nm excitation, 520 emission) every 

5 min.  

 

Strains, growth medium, and In Vivo gene expression.  

All experiments were performed in E. coli strain TG1. Plasmid combinations were 

transformed into chemically competent E. coli TG1 cells, plated on Difco LB+Agar plates 

containing antibiotics and incubated overnight at 37 °C. Plates were taken out of the 

incubator and left at room temperature for approximately 9 h. Three colonies were picked 

and used to inoculate 300 μL of LB containing antibiotics at the concentrations above in a 2 

mL 96-well block (Costar 3960), and grown approximately 17 h overnight at 37 °C at 1,000 

rpm in a Labnet Vortemp 56 benchtop shaker. 50 μL from each of the fresh cultures was 

removed from the 96-well block and transferred to a 96-well plate (Costar 3631) containing 
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50 μL of phosphate buffered saline (PBS). SFGFP fluorescence (FL, 485 nm excitation, 520 

nm emission) and optical density (OD, 600 nm) were then measured using a Biotek Synergy 

H1m plate reader. 
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CHAPTER 4 

DISTINCT TIMESCALES OF RNA REGULATORS ENABLE THE CONSTRUCTION OF A 

GENETIC PULSE GENERATOR 

4.1  Abstract 

To build complex genetic networks with predictable behaviors, synthetic biologists use 

libraries of modular parts that can be characterized in isolation and assembled together to 

create programmable higher-order functions. Characterization experiments and 

computational models for gene regulatory parts operating in isolation are routinely 

employed to predict the dynamics of interconnected parts and guide the construction of 

new synthetic devices. Here, we individually characterize two modes of RNA-based 

transcriptional regulation, using small transcription activating RNAs (STARs) and CRISPR 

interference (CRISPRi), and show how their distinct regulatory timescales can be used to 

engineer a composed feedforward loop that creates a pulse of gene expression. We use a 

cell-free transcription-translation system (TXTL) to rapidly characterize the system, and 

we apply Bayesian inference to extract kinetic parameters for an ODE-based mechanistic 

model. We then demonstrate in simulation and verify with TXTL experiments that the 

simultaneous regulation of a single gene target with STARs and CRISPRi leads to a pulse of 

gene expression. Our results suggest the modularity of the two regulators in an integrated 

genetic circuit, and we anticipate that construction and modeling frameworks that can 

leverage this modularity will become increasingly important as synthetic circuits increase 

in complexity.   

 
__________________________________ 
 This work has been submitted for publication in Biotechnology and Bioengineering (Westbrook et al. 
2018). 
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4.2  Introduction 

An important goal of synthetic biology is the development of rational methods for precise 

temporal control of gene expression, which is necessary to achieve sophisticated dynamic 

functions in engineered cells (Chappell, Westbrook, Verosloff & Lucks 2017b; Lucks et al. 

2011; Green et al. 2014; Carrier & Keasling 1999). Towards this broad goal, libraries of 

synthetic regulatory parts have been developed to give synthetic biologists control over 

distinct levels of gene expression (Takahashi, Chappell, et al. 2015). In order to create more 

complex networks, these parts need to be modular and composable (Chappell et al. 2015), 

performing their function within the network with minimal undesired interactions. RNA 

provides a powerful platform to achieve this.  

RNA-based regulators have become increasingly popular for building libraries of 

synthetic parts to orthogonally control many aspects of gene expression (Qi et al. 2013). 

RNA transcriptional regulators are particularly interesting because they can regulate RNA 

synthesis as a function of an RNA input and thus can be used to create genetic circuitry that 

propagates signals on the RNA level (Chappell, Westbrook, Verosloff & Lucks 2017b). These 

circuits have many potential advantages over protein-based circuits, including the ability to 

leverage RNA-folding algorithms and high-throughput structure determination to optimize 

regulatory part folding and function (Chappell, Westbrook, Verosloff & Lucks 2017a), 

reduced metabolic load for the host (Qi et al. 2013), and rapid signal propagation due to 

their fast degradation rates (Alon 2013). 

Here we focus on building a simple genetic network by combining two modes of 

RNA-based transcriptional regulation: using small transcription activating RNAs (STARs) 

(Goentoro et al. 2009) and clustered regularly interspaced short palindromic repeats 
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(CRISPR) interference (CRISPRi) (Entus et al. 2007; Cheng et al. 2017; Barone et al. 2017). 

STARs activate gene expression through an interaction with a sequence specific target RNA. 

The target RNA resides in the 5’ UTR of the gene of interest and folds into a transcriptional 

terminator that halts transcription by causing the polymerase to fall off of the DNA complex 

before the downstream gene. When present, the activating RNA – called the STAR – binds 

to the target RNA to prevent terminator formation, thus allowing downstream 

transcription to turn gene expression ON (Figure 4.1A). Libraries of orthogonal STARs have 

been built and shown to work in many contexts, including within genomic DNA to 

reprogram cellular phenotypes, and to control multiple genes within a metabolic pathway 

(VG 2015; Liao et al. 2017; Nielsen et al. 2016). 

CRISPRi is a method of transcriptional repression that relies on targeting a 

catalytically dead Cas9 (dCas9) nuclease to a gene (Alon 2013; Del Vecchio & Murray 

2017). Targeting is dictated by a guide RNA (gRNA) with a 20-bp segment complementarity 

to the sequence of interest. Here we use the Streptococcus pyrogenes Cas9 that targets 

sequences flanked by a 3’ NGG PAM. Binding of the dCas9:gRNA ribonucleoprotein complex 

to DNA can either block polymerase binding if the targeted region is near a promoter or 

halt transcription elongation if the targeted region is within a gene. Orthogonal gRNAs can 

be designed to independently regulate multiple genes or to integrate signals for genetic 

circuits such as logic gates (Hu et al. 2015; O'Brien et al. 2012). In nature, gRNAs are 

produced by RNase III cleavage of dsRNA formed by the binding of a trans-activating crRNA 

(tracrRNA) to complementary sequences in a transcribed CRISPR RNA (Hu et al. 2015). The 

resulting processed crRNA binds to Cas9 (or dCas9) to form an active ribonucleoprotein 

complex (Figure 4.1B). CRISPRi works efficiently using either gRNAs produced by the 
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processing of crRNA/tracrRNA duplexes or using single-guide RNAs (sgRNAs) which fuse 

the tracrRNA and crRNA to mimic the processed form using a single molecule 

(Subsoontorn et al. 2012; Brown & Sethna 2003). In this work we use separate crRNA and 

tracrRNA because they represent the natural form of the gRNA as it is expressed in bacteria, 

and they also add to an additional time delay in the CRISPRi regulation due to the kinetics 

of pairing between the RNAs.  

One difference between STAR and CRISPRi mechanisms is the timescale on which 

the regulation occurs. STARs rely on one co-transcriptional RNA-RNA interaction that 

results in transcription activation typically within minutes (Subsoontorn et al. 2012), while 

CRISPRi requires the formation of an RNA-protein repressor complex before DNA binding 

to DNA for repression, which has been shown to take on the order of one hour for 

regulation to occur (Chappell, Westbrook, Verosloff & Lucks 2017b). This timescale 

difference between these two opposing modes of gene regulation thus creates an intriguing 

possibility to use STARs and CRISPRi to engineer a network that produces a pulse of gene 

expression, similar to the incoherent type-1 feedforward loop (I1-FFL) (Garamella et al. 

2016).  

The I1-FFL is a common network motif in natural bacterial networks (Garamella et 

al. 2016) and has received much interest due to its ability to produce a pulse of gene 

expression (Sun et al. 2013) and accelerate the response time (Mangan et al. 2006). I1-FFLs 

have also been used to implement band-pass filters (Entus et al. 2007; Kaplan et al. 2008), 

fold-change detection (Goentoro et al. 2009), biosensing (Barone et al. 2017), and noise 

buffering (Osella et al. 2011). An I1-FFL consists of an activator X that activates a gene Z 

and simultaneously its repressor, Y (Figure 4.1C). It can produce a pulse of gene Z 
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expression because the activation reaction is triggered immediately by X, while the 

dominating repression occurs with a delay due to the presence of the intermediate 

component Y (Mangan & Alon 2003). Here, we exploit STARs to induce rapid activation of 

gene expression, and CRISPRi to achieve delayed repression due to the slow assembly of 

the gRNA-dCas9 complex. We expect that, when combined, these two RNA-based 

regulatory mechanisms will operate on timescales that are sufficiently different to yield a 

transient pulse of gene expression (Figure 4.1D). While our design is not an I1-FFL by a 

strict definition, it accomplishes the same general behaviour and should produce a pulse of 

gene expression by exploiting the regulatory timescale differences to cause the delayed 

repression of Z after fast activation.  

A challenge in interconnecting molecular components characterized in isolation is 

that unexpected interactions between species and resource competition can affect the 

predicted operation of the composed system, as demonstrated previously (Qian et al. 

2017). Reaction rates can be affected by possible crosstalk between the components and 

the relative abundance of RNA species and dCas9, which are subject to biological noise and 

circuit complexity (Mishra et al. 2014), thus making the prediction of the integrated 

construct dynamics necessary and challenging. To address these challenges, we use an 

interdisciplinary approach that combines cell-free experiments and mathematical 

modeling. 

Mathematical models have gained popularity in guiding the construction and 

characterization of dynamic molecular systems, given their cost-effectiveness and 

efficiency as compared to experiments (VG 2015; Liao et al. 2017; Nielsen et al. 2016; Hu et 

al. 2015). Ordinary differential equations (ODEs) are an effective tool to model molecular 
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reaction networks, gene expression in protein-based genetic network systems (Alon 2013; 

Del Vecchio & Murray 2017), and small RNA transcriptional circuits (Hu et al. 2015; 

O'Brien et al. 2012). ODEs are particularly suitable to model and parameterize cell-free 

reactions, where initial concentration of chemical species can be accurately controlled. In 

order to rapidly characterize the STAR and CRISPRi reactions we developed ODE models 

based on experiments performed with TXTL, an E. coli cell-free transcription-translation 

platform (Sun et al. 2013). TXTL experiments have been successfully combined with 

mathematical models to parameterize and understand RNA circuits (Hu et al. 2015; Hu et 

al. 2018; Agrawal et al. 2018). TXTL is ideal for prototyping genetic circuit dynamics 

because it is quick and easy to use, requires minimal cloning, and shows good agreement 

with in vivo data (Takahashi, Hayes, et al. 2015), and recently it was used to to characterize 

CRISPR nucleases and guide RNAs (Marshall et al. 2018). Additionally, TXTL also allows for 

experiments that would otherwise be difficult to perform in vivo by giving direct control 

over component concentrations and enabling circuit optimization and flexibility when 

designing experiments to fit model parameters. 

Here, we start by using TXTL to verify that the STAR and CRISPRi present 

sufficiently distinct regulatory timescales. Then, we build ODE models for the STAR and 

CRISPRi pathways in isolation, and we perform systematic TXTL experiments to 

parameterize and validate the models. We find that when the models are composed to 

build the IFFL circuit, they predict the expected pulse generation. We conclude with 

experiments showing that, when connected together to regulate the same promoter, the 

candidate STAR-CRISPRi pulse generator circuit yields a pulse in target gene expression, 

and that the composed models can quantitatively capture the pulse generator behavior. 
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Our results demonstrate that the combination of modeling and experiments in a simplified 

TXTL environment is an effective approach to prototyping biological dynamic circuits for 

control of gene expression. Most importantly, our results indicate that RNA regulators 

characterized in isolation can be combined in more complex circuits without loss of 

performance when interconnected, making them modular and composable components for 

dynamic synthetic circuits.  



 77 

 



 78 

Figure 4.1. Architecture of a type 1 incoherent feedforward loop (I1-FFL) composed of 

STAR activation and CRISPRi repression. (A) Small transcription activating RNA (STAR) 

mechanism. The target RNA sequence folds into a transcriptional terminator (blue) that 

causes RNA polymerase to ratchet off the DNA complex and halt transcription upstream of 

the gene (gene OFF). When present, a STAR (red) binds to both the linear region and the 5’ 

half of the terminator hairpin (blue) of the target RNA, preventing terminator formation 

and allowing transcription elongation of the gene (gene ON). (B) CRISPR interference 

mechanism. The crRNA, tracrRNA, and dCas9 bind to form the CRISPR complex that 

specifically binds to a DNA sequence encoded by the crRNA sequence. When bound the 

CRISPR complex either blocks transcription initiation or transcription elongation. (C) The 

I1-FFL motif consists of three parts. An activator X activates expression of Z and its 

repressor, Y. (D) The pulse generator circuit works by taking advantage of fast STAR 

activation and slow CRISPRi repression. STAR activates GFP expression immediately while 

the crRNA/tracrRNA/dCas9 formation causes a delay before finally repressing GFP 

expression. In TXTL there is no protein degradation, so this causes a pulse in the rate of 

GFP production.  

 

4.3  Results 

4.3.1 Pre-incubation experiments confirm the expected STAR/CRISPRi timescale 

difference 

We first sought to verify the timescale difference between STAR and CRISPRi regulation 

expected from previous studies (Chappell, Westbrook, Verosloff & Lucks 2017b; Chappell 

et al. 2015). To do this, we designed experiments that isolated the kinetic processes of each 
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mechanism. We transcribed RNA components and allowed folding and complex formation 

with previously synthesized dCas9 before assessing regulatory function, to isolate only the 

timescale of the regulatory mechanism. When performing a typical TXTL experiment, all 

DNA is added to the reaction at t = 0 and gene expression is measured over the course of a 

few hours. Inherent to this experimental design is a delay due to the transcription of RNA 

regulator parts, which must first be transcribed before they can perform their function. In 

order to isolate the timescale of the regulatory event, we incubated a plasmid expressing 

each RNA regulatory part alone for 2 hours, essentially allowing the TXTL reaction to 

synthesize RNA regulators before being assessed for function. We then mixed pre-

incubated reactions with reporter DNA and characterized the response time of the system. 

In this way, we removed the timescale needed for regulatory RNA synthesis and instead 

focused the characterization experiment on the relevant timescales of action for each 

regulator. 

The STAR system only has one trans-acting RNA, so we incubated a plasmid 

expressing the STAR RNA or a plasmid expressing a non-functional control RNA in TXTL for 

2 hours. We then added DNA encoding the p70a-Target-GFP plasmid to this reaction 

mixture at t = 0 and began measuring fluorescence over time. We observed detectable 

STAR activation of gene expression ~20 minutes after the addition of the GFP plasmid 

(Figure 4.2A) and STAR activation as determined by the GFP production rate reached 70% 

of the steady state after 35 minutes, where the steady state was computed from an 

exponential fit (Figure 4.2B) as described in Supplementary Note B1.  

We anticipated that regulation of gene expression by the dCas9 complex would take 

significantly longer than the STAR activation, given previous observations suggesting that 
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gRNA loading onto dCas9 takes on the order of ~1hr in the presence of non-specific RNAs 

(Mekler et al. 2016). As the CRISPRi system requires a crRNA, tracrRNA, and dCas9, a more 

sophisticated experiment was required to characterize the regulatory timescale. 

Specifically, we sought to determine the timescale for crRNA-tracrRNA-dCas9 complex 

assembly required for the dCas9 complex to repress gene expression. To quantitatively 

estimate this timescale, we incubated the DNA encoding each RNA component in all 

combinations of alone, together, and in TXTL already containing dCas9 for 2 hours 

(Supplementary Figure B1) and then combined them into a final reaction with DNA 

encoding the p70a-GFP plasmid before began measurement. For clarity, we only show two 

conditions in Figure 4.2C: all alone or all together in TXTL containing dCas9. When 

incubated separately, we expect all components to be present at high concentrations at the 

beginning of the measurement but no CRISPRi repression complex will have formed yet. 

The complex will begin forming when the measurement starts. When incubated together, 

we expect the CRISPRi complex to have already formed and be present at high 

concentrations. Comparing these two conditions indicates the time it takes for the crRNA-

tracrRNA-dCas9 complex to form and then repress (Figure 4.2C). However, when incubated 

separately, the complex was slower to repress gene expression, and did not achieve full 

gene repression until 55 minutes after addition of the DNA reporter construct (Figure 

4.2D). This large difference in response times reveals that the crRNA-tracrRNA-dCas9 

complex takes on the order of 55 minutes to fully form and perform its function in TXTL, 

which is similar to previous research (Mekler et al. 2016). 

Taken together, these results indicate that there is a timescale difference between 

STAR activation (70% of the steady state production rate seen after 35 minutes) and 
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CRISPRi repression (30% peak production rate seen after 55 minutes) due to the extra 

steps required for the crRNA-tracrRNA-dCas9 complex assembly as opposed to the direct 

RNA-RNA interactions of the STAR mechanism. These timescale differences could therefore 

be exploited to construct a simple network architecture that produces a pulse of gene 

expression.  

 

Figure 4.2. Pre-incubation experiments indicate that STAR activation is faster than dCas9-

based repression. (A) Functional time course characterization of GFP expression when 

STAR is pre-incubated (blue) or a non-function control is pre-incubated (red). The 

timescale of STAR activation is on the order of 20 minutes after reporter DNA is added to 

the reaction. (B) The production rate of GFP expression for the STAR pre-incubation 

experiment (blue). The GFP production rate reached 70% of max as determined by the 
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exponential fit (dotted black line) at 35 minutes.  (C) Functional time course 

characterization of the CRISPRi response when parts are incubated together (red) or 

separately (blue) in comparison to unrepressed expression (green). The timescale of pre-

incubated CRISPR repression is much faster than when the parts are incubated separately, 

suggesting that the dCas9 loading time adds a significant delay to the system. The inset 

shows the two repressed states. Data for all pre-incubation combinations of CRISPRi parts 

is shown in Supplementary Figure B6. (D) The production rate of GFP expression for the 

CRISPRi pre-incubation experiment (blue). The GFP production rate reached 30% of its 

peak as determined by the exponential fit to the derivative (dotted black line) at 55 

minutes. 

 

4.3.2 STAR and CRISPRi model derivation 

After verifying the timescale difference with our pre-incubation experiments, we then 

sought to construct mathematical models for the STAR and the CRISPRi systems 

respectively, to computationally test our hypothesis and guide the design of the circuit, 

before conducting further experiments. We used ordinary differential equations to model 

the rate-of-change of each molecular concentration, as a result of coupled kinetic reactions 

(Figure 4.3).  

We modelled the STAR activation as a one-step reaction, where STAR binds to the 

free promoter Py directly to achieve transcription activation, at rate Es, mimicking the fact 

that STAR activation only requires RNA-RNA interactions. This is an approximation that 

coarse-grains the details of how the small RNA modifies target RNA structure to activate 

transcription, but it is justified based on similar simplifying assumptions made in previous 
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work modeling RNA transcriptional repressors (Hu et al. 2015; Hu et al. 2018). In parallel, 

we modelled CRISPR-Cas9 complex formation as a two-step reaction process. As part of 

this process, the tracrRNA and the crRNA bind to form the gRNA at rate J1. The gRNA can 

then bind to dCas9 to form the active repressor complex at rate J2. Since dCas9 dissociation 

rates are extremely low with no mismatches (Boyle et al. 2017), we assumed the formation 

of the CRISPR-Cas9 complex and its binding (at rate Z) to the free promoter Py to form the 

repressed promoter Py- to be irreversible. While capturing the key reactions in the CRISPR-

Cas9 formation, the model coarse-grains the detailed dynamics of how crRNA, tracrRNA 

and dCas9 interact with each other and interferes transcription. To enable a direct 

comparison between the STAR and CRISPRi regulation pathway, we used a first-order 

kinetic reaction to model the STAR activation, instead of the Hill-type function used in Hu 

et al (Hu et al. 2015). 

In the STAR system, reporter p70a-Target-GFP mRNA (M) is only produced when 

p70a-Target-GFP (Py) is activated (i.e. bound to STAR at rate Es), at rate Dm, while in the 

CRISPRi system, M is only produced from the free promoter p70a-GFP (for simplicity and 

for later use in the combined model, this is also denoted by Py), at rate Dm. The GFP 

translational initiation, elongation, and maturation were modelled following prior work 

(Hu et al. 2015), and the mature GFP (Gm) is compared to the experimental measurement.  

In addition to the transcriptional rates above, each RNA species has a degradation 

rate and each protein species has a translation rate. Specifically, Ds, Dcr, Dtr , Gs, Gcr, Gtr, and Gg 

are the transcriptional and degradation rates of STAR, crRNA, tracrRNA, and gRNA 

respectively; Gm is the degradation rate of GFP mRNA, M; Ki is the translation initiation rate, 

Ke is the translation elongation rate, and Dgm is the GFP maturation rate. Pytot is the total 
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amount of reporter promoters, Mi is the translationally initialized mRNA, and G is the 

immature GFP protein. We note that no protein degradation rate is included because 

proteins do not degrade in TXTL unless degradation tags are included (Garamella et al. 

2016). and there is no translation rate for dCas9 because extracts were made from E. coli 

cells expressing dCas9 (Marshall et al. 2018).  

 

Figure 4.3. Separate STAR and CRISPRi models with the corresponding topology. The STAR 

activation is modelled as a one-step binding at rate Es, to the free output promoter Py, to 

enable expression of GFP mRNA M. The CRISPRi repression is modelled as a two-step 

reaction, where formation of active repressor complex happens before it binds to the free 

output promoter Py to form the repressed Py-, and GFP is only expressed from the free Py 

promoter. For simplicity, the degradation rates of the RNA species are modelled but not 

shown in the topology. In both models, mature GFP protein Gm is compared to experimental 

measurements. All the STAR, M, Mi, G, Gm, crRNA, tracrRNA, gRNA, Complex, and Py- are 

initiated with concentration 0 nM. The initial free Py plasmid was 0.5 nM, and dCas9 

concentration was estimated to be 35 nM based on previous experimental measurement.  
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4.3.3 Model parameterization  

With the separate STAR and CRISPRi models, our next step was to extract suitable kinetic 

parameters to construct a combined model for reliable predictions. To achieve this, we 

adopted a Bayesian inference parameterization approach (Subsoontorn et al. 2012; Brown 

& Sethna 2003) to fit parameters for STARs and CRISPRi separately. Specifically, we used 

three sets of the STAR activation experiments (Full experimental data shown in 

Supplementary Figure B2) to train our model for the three STAR-related kinetic 

parameters: Ds, Gs, and Es. We also used three sets of the CRISPRi repression experiments 

(Full experimental data is shown in Supplementary Figure B3) to train our model for the 

eight CRISPRi-related kinetic parameters: Dcr, Dtr, Gcr, Gtr, Gg, J1, J2, and Z. As crRNA and 

tracrRNA were transcribed from the same promoter in our experiments, we assumed that 

they share the same transcription rate, and we set Dcr = Dtr in the fitting. The five reporter 

GFP-related parameters (Dm, Gm, Ki, Ke, and Dmg) were also fitted for both STAR and CRISPRi.   

For both STAR and CRISPRi experiments, we initiated our fitting with 10 different 

initial guesses that were evenly spaced in the admissible parameter intervals that were 

inferred from previous publications (Supplementary Table B1) (Hu et al. 2015). To fit the 8 

parameters in the STAR model, we conducted 105,000 iterations of parameter updates to 

seek convergence, and to fit the 12 parameters in the CRISPRi model, we conducted 

210,000 iterations. The probability of accepting parameter set i from parameter set j was 

set according to the following (Subsoontorn et al. 2012): 
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with T = 0.125 (= 2V2), and V is the estimated measurement error. The cost function 

E is defined as the cumulated point-wise squared prediction-measurement error for each 

experiment cycle: 

 

The parameter set that gave the lowest cost function E across all the fittings was 

deemed as the best fitted parameter set. The corresponding simulations are plotted in 

Figure 4.4A and B against the experimental measurement. The comparisons between 

predictions and data demonstrate that models trained with the Bayesian inference 

approach were able to reproduce the dynamics of the STAR and the CRISPRi system under 

various conditions. To understand the distribution of each parameter, we ranked all the 

sampled parameter sets (i.e. 10 x 105,000 and 210,000 sets of parameters for the STAR and 

CRISPRi fitting respectively) with respect to the corresponding value of the cost function E. 

Figure 4.4C shows the parameter distribution of the first 1000 sets of parameters that gave 

the lowest fitting error E. Note that the five GFP-related parameters shown in Figure 4.4C 

were fitted from the STAR activation experiments, for demonstration. The values of the 

best fitting parameters are given in Supplementary Table B1. 

Interestingly, while some CRISPRi-related parameters have a relatively wide 

distribution, we see limited variation in the repressor formation-related parameters such 

as Z for the plotted 1,000 fitted parameter values. This observation suggests that the 

repressor formation kinetics dominate the accuracy of the CRISPRi regulation process. On 

the other hand, all three STAR-related parameters displayed a relatively wide distribution, 

which suggests the existence of multiple optimal solutions for the fitting. This might be due 
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to our simplification of the STAR activation mechanism and/or limited experimental 

conditions (e.g. initial concentrations), such that a wide range of parameter values can fit 

well the model. Note that fewer reaction steps and experimental conditions lead to fewer 

constraints for the parameterization. The corresponding fitted parameter distribution and 

correlation are given in Supplementary Figures B4 and B5.  

 

Figure 4.4. Model parameterization with separate STAR and CRISPRi experiments. (A) 

Comparison of best fitted simulation to the STAR experiments for three conditions: high 

activation with 8 nM of STAR plasmid (green plots, 8 nM STAR), moderate activation with 4 
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nM of STAR plasmid (blue plots, 4 nM STAR), and no activation with no STAR plasmid (red 

plots, STAR OFF). (B) Comparison of the best-fitted simulation to the CRISPRi 

parameterization experiments for three conditions: no repression with no crRNA or 

tracrRNA (red plots, 0nM CRISPR RNA), moderate repression with 0.1 nM crRNA and 

tracrRNA plasmid (blue plots, 0.1 nM CRISPRi RNA), and complete repression with 0.25 nM 

crRNA and tracrRNA plasmid (green plots, 0.25 CRISPRi RNA). (C) Histogram of 

parameters obtained from 1000 samples that gave the lowest fitting error within the pool 

of 10 x 105000 and 10 x 210000 fitting rounds for the STAR and CRISPRi system 

respectively. Grey bar indicates the location of the parameter value that gave the best 

fitting. Note, all the kinetic parameters are scaled to be dimensionless before taking their 

log values in the histogram plots.  

 

4.3.4 Pulse generator modeling and experimental verification 

After parameterizing the separate STAR and CRISPRi models, we then combined them to 

build the pulse generator model by introducing a competition for Py promoter binding 

between STAR and CRISPRi (Figure 4.5). In the combined pulse generator model, a free 

promoter Py can either bind to CRISPRi to form a repressed state or to STAR to form an 

activated state for gene expression. Once Py is bound to the CRISPRi complex, it becomes 

unavailable for STAR activation. To simulate the model, all output promoter copies were 

initiated in the free state (unbound), with a fixed concentration to mimic conditions used in 

the CRISPRi characterization experiments.  
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Figure 4.5. Topology of the pulse generator model. The separate STAR and CRISPRi model 

are combined by introducing a competition for Py binding through the repressor formation 

in dPy-/dt and the activation in dM/dt equations. Once CRISPRi repressor complex binds to 

Py to form repressed state Py-, it can no longer be activated for expression. Py and Py- 

follows mass balance with a total initial concentration of Pytot. For simplicity, the 

degradation rates of the RNA species are modelled but not shown in the topology. All the 

STAR, M, Mi, G, Gm, crRNA, tracrRNA, gRNA, Complex, and Py- are initiated with 

concentration 0 nM. The initial free Py plasmid was 0.5 nM, and the dCas9 concentration 

was estimated to be 35 nM based on previous experimental measurement. 

 

We then used the combined model to test if a pulse could be generated in the 

production rate of the target gene. Instead of using one best fitted parameter set, we 
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decided to combine the set of best fit from each of the 10 Bayesian fittings for both the 

STAR and the CRISPRi regulator experiments, obtaining 100 sets of parameters (10 STAR x 

10 CRISPRi) to generate predictions of the pulse generator behaviour. This is because a 

mismatch between our model prediction and the pulse generator behaviour could be 

caused by the fact that multiple optimal parameters exist for each individual regulator 

model (Figure 4.4), so the combination of the very best fits might not give the most 

accurate prediction for the interconnected circuit. The procedure to generate combinations 

of best fits is summarized in Figure 4.6A. Prediction with the best STAR and CRISPRi 

separately fitted parameters demonstrated a plateau in the GFP concentration (dashed 

black plot in Figure 4.6B), and a pulse in the production rate (dashed black plot in Figure 

4.6C), and indeed all 100 parameter combinations suggested a pulse in the production rate 

(Supplementary Figure B6). Given these observations, we expect the integrated pulse 

generator to function robustly and also to produce a pulse in experiments. 

We then performed a TXTL experiment that combined both the STAR and the 

CRISPRi systems. As in the separate CRISPRi experiment, we added 0.25 nM crRNA, 0.25 

nM tracrRNA, and 0.5 nM p70a-Target-GFP. Since the STAR ON expression level is 

significantly lower than that of the CRISPRi system (Figure 4.4), we doubled the amount of 

STAR plasmid used in the separate STAR experiment from 8 nM to 16 nM in the combined 

system, to mitigate this difference. After the addition of all DNAs, we immediately began 

measuring fluorescent GFP expression (see Supplementary Figure B7 for complete 

experimental data). As predicted, the experiments also demonstrated a plateau in GFP 

expression level (Figure 4.6B, red), and a pulse in the production rate (Figure 4.6C, red). 

We only see a pulse in the production rate because TXTL has negligible protein degradation 



 91 

(Sun et al. 2013). If performed in vivo, we would expect a pulse in concentration rather than 

production rate. We then quantified the prediction accuracy by defining the prediction 

error in the same way as the cost function in Eqn. 2 to study the possible changes in the 

model parameters caused by the combination. The log-based prediction errors are 

summarized in the heat map in Figure 4.6D. 

One interesting observation is that the best prediction (solid black plot in Figure 

4.6B and C) was not achieved by the set of the best-fitted parameters (dashed black plot). 

The best-fitted parameter set predicted a higher steady-state concentration in GFP and a 

taller pulse in the production rate, as compared to the averaged experimental 

measurement (solid red plot in Figure 4.6B and C) and the best prediction. Indeed, the best 

fitted and the best prediction parameters were from the same STAR (same row in Figure 

4.6D) but a different CRISPRi fitting trial (different column in Figure 4.6D). The values of 

the best prediction parameters are given in Supplementary Table B1. This observation 

suggested that the coupling may affect the CRISPRi dynamics, such that the set of 

parameters fit best the separate experiments but underpredicted the repressor formation 

rate, which lead to a higher predicted GFP expression level. A detailed parameter-to-

parameter comparison between the best prediction and the best-fitted parameters is given 

in Supplementary Figure B8, to visualize the relative location of each parameter value.    

We next asked how well we can fit the STAR/CRISPRi combined model to the 

experimental measurements, and how that compares to the best prediction with the 

separately fitted parameters. Again, to seek convergence we conducted 10 Bayesian fittings 

from different initial guesses, with 210,000 iterations for each fitting (same as in the 

CRISPRi fitting). The fitting that yielded the lowest fitting error is plotted in Figure 4.6B and 
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C in green. Surprisingly, the best prediction with the separately fitted parameters slightly 

outperformed the best fits on the combined model. This could be due to the fact that in the 

combined model more parameters have to be simultaneously fitted relative to the 

individual component models, leading the combined model to require a larger number of 

samplings (i.e. initial guesses and/or iterations) to reach an equally good fit. Indeed, the 

fitting error comparison in Supplementary Figure B9 suggests that to fit 12 parameters in 

the CRISPRi model, even more iterations might be needed. Additionally, the best prediction 

from the separately fitted parameters is similar to the best fits out of 100 fittings, since it is 

the best prediction from a 10 x 10 best fitted parameter sets. To improve the fitting on the 

combined model, one can use more initial guesses and increase the number of iterations. 

Supplementary Figure B9 summarizes the detailed comparison of the accuracy and the 

error convergence for the STAR, CRISPRi, and pulse generator model fitting, respectively. 

 

Figure 4.6. Pulse model prediction and experimental verification. (A) Procedure for 

parameterization and prediction: each of the individual STAR and CRISPRi models were 

trained with experimental measurements to fit 10 sets of best fitting parameters. These 

parameters were then combined into 100 sets that were used to predict the dynamics of 

the pulse model. The predictions were then compared to experimental measurement and 
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quantified by the squared error between the prediction and the observed trajectories. (B) 

GFP concentration reached steady state in both the simulation (black and green) and 

experiments (red) within 240 min, while the best fitted parameter set predicted a higher 

steady state concentration level (dashed black), and the best prediction from the separately 

fitted parameters (solid black) gave better accuracy to the best fitting of the pulse model 

(green); (C) GFP production rate demonstrated a pulse which peaked at around 40 min and 

dropped when the repression kicked in and RNA degradation took over, in both the 

simulations (black and green) and the experiments (red). (D) Presentation of the 

prediction accuracy with the 100 sets of separately fitted parameters indicates the best 

separately fitted parameter set did not give the best prediction in the combined pulse 

model. Red dot indicates the location of the best separately fitted parameter sets and the 

yellow dot indicates the location of the parameter set for the best prediction. Note that they 

are in the same row (i.e. same STAR fitting trial) but different columns (i.e. different 

CRISPR fitting trial). Best separate fitting: prediction with parameters that best fit the STAR 

and CRISPR system individually; best prediction: the best of the 100 predictions with 

individually fitted parameters; best pulse fitting: best out of the 10 fittings to the pulse 

experiments. 

 

4.4 Discussion 

In this work we have demonstrated an RNA-based pulse generator in TXTL that harnesses 

the difference in speed between STAR and CRISPRi regulation. This STAR-CRISPRi hybrid 

construct is able to produce a pulse of gene expression. STAR activation involves a single, 

fast, co-transcriptional RNA-RNA interaction while CRISPRi requires the slow formation of 
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an RNA-protein complex leading to a delay before CRISPRi repression sets in. Combined, 

these mechanisms produce pulse of gene expression caused by the transcription of a few 

RNA molecules. 

There have been a number of synthetic I1-FFLs built using protein regulators (Entus 

et al. 2007; Cheng et al. 2017; Barone et al. 2017). Recently, we built an RNA-based I1-FFL 

that uses AHL to activate expression of a STAR RNA that activates expression of mRFP as 

well as a gRNA and dCas9 that repress mRFP (Chappell, Westbrook, Verosloff & Lucks 

2017b). This design relies on an additional RNA cleavage strategy, cascading RNA 

regulatory events, and slow dCas9 production. Here, we constructed a simpler network 

that implements the pulse of gene expression of an I1-FFL, but faster and more effectively 

with a simpler network design. 

As synthetic networks grow in complexity, models will be vital for predicting their 

behaviour and understanding dynamics, as they provide faster assessments of the network 

as compared to experiments. Here, we constructed and parameterized a coarse-grained 

mechanistic model and used it to predict the dynamics of the pulse generator network. 

With the simulation results, we observed possible modularity of the STAR regulator when 

combined with other structures to form more complicated networks, while the 

performance of the CRISPRi regulation might be affected, as indicated by the change in the 

parameter values. However, this observed change in the CRISPRi regulation might be due 

to several reasons: first, given the limited amount of training data, it could be possible that 

the CRISPRi parameters were over-fitted on the training data thus giving a non-ideal 

prediction in the new condition (combined system). Indeed, the complexity, 

parameterization methods, and experimental noise could all contribute to the accuracy of 
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the model parameterization. Second, un-modelled (and undesired) coupling of the two 

regulatory pathways could affect the dynamics; for example, indirect competition for the 

transcription machinery could reduce transcription rates in a non-homogeneous manner in 

the two circuits, altering their regulation timescale. Third, the mechanism of the CRISPRi 

repressor formation might be oversimplified such that intermediate reaction steps were 

overlooked. For further investigations, we suggest a richer data set under various 

conditions for model parameterization, and a refined model to encompass more detailed 

reactions in the system. 

Model parameterization can be challenging, especially when obtaining large amount 

of experimental measurements under various conditions is costly and a stochastic 

parameterization method is used, which would normally require convergence. The results 

in this study suggest that, instead of fitting all the parameters simultaneously, fitting part of 

a combined network separately could also lead to reliable predictions of an integrated 

structure, especially when the modularity of each component can be maintained. Because 

fitting parameters of individual modules for use in integrated structures provides a more 

computationally tractable alternative to comprehensive parameter fitting, we expect this 

approach to become predominant as synthetic molecular systems become more and more 

complex. 

In summary, we demonstrate a STAR-CRISPRi hybrid pulse generator both with 

simulation and in vitro TXTL experiments; the circuit mimics the architecture and 

performance of an I1-FFL.  We also demonstrated how mathematical modeling can be used 

to guide and assess the design of biological constructs. We found that parameters fitted 

from separate models can also accurately predict the performance of the combined 
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model/construct. We further discussed the importance of sample data, and optimization 

settings in improving the parametrization. We anticipate the results in this study to provide 

guideline for future work in the modeling, parameterization, and construction of biological 

parts made of both STAR and CRISPRi regulators.  

 

4.5 Materials and Methods 

Plasmid construction and purification.  

Key sequences can be found in Supplementary Table B2. All the plasmids used in this study 

can be found in Supplementary Table B3. The STAR plasmid and control plasmid were 

construct pJBL4971 and pJBL002, respectively, from Chappell et al (Chappell, Westbrook, 

Verosloff & Lucks 2017b). The GFP expression plasmid was p70a-GFP from Garamella et al 

(Garamella et al. 2016). and the STAR-target plasmid was modified from this plasmid using 

iPCR. The plasmids expressing crRNA, tracrRNA, and the scrambled crRNA were 

constructed using Gibson Assembly and iPCR and sequence verified using sanger 

sequencing. Plasmids were purified using a Qiagen QIAfilter Plasmid Midi Kit (Catalog 

number: 12243) followed by isopropanol precipitation and eluted with double distilled 

water. 

 

TXTL Extract and Buffer Preparation.  

Cell extract and reaction buffer were prepared according to prior work (Garamella et al. 

2016). 

 

TXTL experiments.  
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TXTL buffer and extract tubes were thawed on ice for approximately 20 min. Separate 

reaction tubes were prepared with combinations of DNA representing a given circuit 

condition. Appropriate volumes of DNA, buffer, and extract were calculated using a custom 

spreadsheet developed by Sun et al (Sun et al. 2013). and modified to fit the experiments. 

Buffer and extract were mixed together and then added to each tube of DNA according to 

the previously published protocol. Each TXTL reaction mixture (10 μL each) was 

transferred to a 384-well plate (Nunc 142761), covered with a plate seal (Nunc 232701), 

and placed on a Biotek Synergy H1m plate reader. We note that special care is needed 

when pipetting to avoid air bubbles, which can interfere with fluorescence measurements. 

Temperature was controlled at 29°C. GFP fluorescence was measured (485 nm excitation, 

520 emission) every 5 min. A calibration to EGFP concentration (μM) was performed using 

a standard curve of pure EGFP (Cell Biolabs STA-201) in order to present measurement 

data in terms of GFP concentration.  Pre-incubation experiments were performed by 

combining two types of extracts. One extract has dCas9 pre-expressed and the other does 

not. Each plasmid was incubated in the appropriate extract and buffer for 2 hours before 

the pre-incubated reactions were combined in equal parts and measurements began.  

 

Modeling.  

Equations in Figure 4.3 were solved with MATLAB_R2014b ode23s solver to get the 

simulated GFP concentration for the error calculation (Eqn. 3) in data fitting. Candidate 

parameters were generated with a uniform distribution within a bounded interval 

(Supplementary Table B1), using MATLAB random number generation function rand. One 

trial of the Bayesian inference data fitting (i.e. one initial guess, with 105000 iterations) 
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took about three computational hours on a Macbook Pro with a 2 GHz Intel Core i7 

processor. Model in Figure 4.5 was also numerically solved with MATLAB_R2014b ode23s 

function to get predictions for the combined pulse generator.  
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CHAPTER 5 

USING THE TEMPORAL DOMAIN TO ENHANCE CELLULAR COMMUNICATION WITH AN 

RNA GENETIC CIRCUIT 

5.1  Abstract 

Current methods for communicating with cells are limited and largely rely on a few inducers 

to create slow changes in steady state gene expression. We aim to expand on these 

capabilities by using genetic networks that can decode complex signals. Here we propose 

two possible circuit designs, a temporal circuit and a circuit that remembers state, that can 

interpret complex inputs.  These circuits receive signal pulses from chemical or light-based 

inducers and return different gene expression patterns based on the number and type of 

pulse. Experimental results for the temporal design indicate cell division will need to be 

artificially slowed for the circuit to function properly. Due to the speed and ease of 

experimental techniques we suggest light induction is a better choice than chemical 

induction. Finally, we use a stability analysis to show our circuit design can remember state 

under some conditions. We anticipate these designs will greatly improve the amount of 

information that can be passed to cells.  

 

5.2  Introduction 

Within the field of synthetic biology, scientists and engineers have reprogrammed organisms 

with sophisticated synthetic behaviors ranging from production of vital chemicals and drugs 

to sensing environmental signals. These modified organisms could one day function as single 

cell sensors and machines to tackle crucial challenges in medicine and sustainability. These 

desirable cellular behaviors are controlled by patterns of gene expression governed by 
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networks of genetic regulators. To manipulate these cellular machines, we communicate 

with them by sending signals that result in changes in gene expression. However, current 

communication methods are primitive, relying on a few inducers to trigger changes in slow, 

steady state gene expression. Most genetic circuitry is induced with one of a limited number 

of steady state chemical signals (IPTG, aTc, arabinose (Voigt 2006), AHL (Basu et al. 2005), 

or light-based inducers (Levskaya et al. 2005). While progress has been made in engineering 

synthetic biomolecular parts that can detect signals, most designs focus on logic gates that 

detect static chemical signals. Temporal information decoding offers a more efficient way to 

communicate with cells. We aim to improve external cellular communication by engineering 

cells to detect time-varying signals. 

Other synthetic biologists have recently begun to recognize the utility of time-

dependent circuits. New innovations have used time varying optical signals to control gene 

expression (Olson & Tabor 2014). One group has engineered cells that count inducer pulses 

(Friedland et al. 2009) and another has developed cells that can record order of inducer 

exposure (Hsiao et al. 2016) opening up the possibility that cellular counting could be used 

to record environmental histories for applications like microbiome recording and 

environmental reporting (Kotula et al. 2014). We propose to expand upon this work by 

developing information processing genetic circuitry that can decode temporal information 

(Figure 5.1).  
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Figure 5.1 One design of an RNA temporal signal decoding circuit. The circuit is composed 

of two RNA modules buffered by protein-based genetic memory. The sensing module is a 

light-activated repressor cascade composed of RNA regulators that confers overall activation 

in the presence of green light. When light is pulsed, the MS2 protein is produced, and acts as 

a transient genetic memory in the cell. The decoding circuit, which is made from a second 

RNA repressor cascade, reads MS2 concentration as an input and controls the timing of gene 

expression as an output. Different configurations of RNA transcription regulators (hairpins) 

produce different output responses (Levskaya et al. 2005). 

 

Current methods for communicating with cells rely on a limited number of chemical 

or optical inducers to trigger changes in slow, steady state gene expression. Many natural 

biological processes are inherently temporal such as developmental transcription networks 

(Levine & Davidson 2005) and responses to environmental stimuli (Baudrimont & Becskei 

2015). Synthetic biologists have begun to recognize the utility of time-dependent circuits. 

Friedland et al. constructed a synthetic network that could count up to three sequential 

inducer pulses (Friedland et al. 2009). However, this system does not remember state or 

distinguish between length and timing of pulses. Pioneering work by Hsiao et al. used 

unidirectional DNA recombination to record sequences of input events (Hsiao et al. 2016). 
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This design does remember state but is irreversible. Circuit designs that are fast, robust, 

reversible, and versatile are needed to address these limitations. We propose to create 

genetic circuitry that can decode signals in the time domain, alleviating the current 

bottleneck on external cellular communication. 

RNA presents the ideal tool to build this circuitry because its structural and temporal 

characteristics allow engineers to construct fast, designable genetic networks. Not only does 

RNA’s single stranded structure gives it the flexibility to fold into different forms that 

determine its function (Chappell et al. 2013), but our increasing understanding of RNA 

folding and design gives us unique control over its functionality. A few simple circuits have 

already been built: a transcriptional cascade that confers overall activation and a single input 

module (SIM) that uses one input to control multiple outputs (Alon 2007; Takahashi et al. 

2015). In addition, RNA has been used to construct synthetic NOR, AND, and A-AND NOT-B 

logic gates, paving the way for genetic computation with RNA (Lucks et al. 2011). In this work 

we use the pT181 dual control attenuators described in Chapter 2.  

Many biological applications require external control of gene expression 

accomplished through signals sent by molecular inducers. However, there are significant 

limitations to using chemical signals. Membrane transport processes can limit entrance to 

the cell and chemicals can be degraded or interfere with cellular metabolism. More 

specifically to our goals, chemical inducers can be toxic and difficult to pulse in a controlled 

manner. Optogenetics, or light inducible gene expression offers an attractive alternative to 

using molecular signals. There has been remarkable progress in using a broad array of light-

inducible systems to activate gene expression (Zoltowski et al. 2009; Rockwell et al. 2006). 
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In synthetic biology, the CcaS/CcaR system (Figure 5.2) (Tabor et al. 2011) has found use in 

reversibly inducing gene expression and characterizing synthetic parts (Olson et al. 2014). 

In is natural context, the cyanobacterial Ccas/CcaR system induces the expression of 

a phycobilisome-related gene in response to green light. The system consists of a membrane-

associated histidine kinase, CcaS, and a response regulator, CcaR.  When green light (520nm) 

is adsorbed by CcaS bound to chromophore phycocyanobilin (PCB), the rate of CcaS 

autophosphorylation increases. CcaS then transfers its phosphate group to CcaR, which 

increases transcription of superfolder GFP (SFGFP). Red light (650nm) reverses this process 

by reducing the rate of CcaS autophosphorylation. The CcaS/CcaR system share a common 

chromophore (PCB) with the Cph8/OmpR and have been compatibly used to activate gene 

expression within the same cell (Tabor et al. 2011). The Cph8/OmpR system works similarly 

to the CcaS/CcaR system except it is activated by far-red light (740nm) and repressed by red 

light (650nm) with Cph8 being the histidine kinase and OmpR its response regulator. These 

well characterized optogenetic systems are ideal for inducing genetic circuitry without 

toxicity in a time-dependent manner. 
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Figure 5.2 The CcaS/CcaR two-component light-switchable system (Schmidl et al. 2014). 

The system is activated by green (535nm) light and repressed by red (670nm) light. When 

chromophore phycocyanobilin (PCB, blue pentagons) is bound to CcaS absorption of green 

light increases the rate of CcaS autophosphorylation, phosphotransfer to CcaR, and 

transcription of SFGFP. Absportion of red light reverses this process. The system has been 

engineered to increase fold activation from 6 fold to 117 fold.  Figure from Schmidl et al. 

(Schmidl et al. 2014) 

 

5.3  Results 

5.3.1  Designing a temporal signal decoding circuit  

Our goal is to build a genetic network that can interpret an input in the time domain and 

respond with multiple outputs depending on the timing and duration of the input.  We have 

developed two designs that each accomplish this in different ways. The first (Figure 5.1) 

relies on the hypothesis that RNA degrades much faster than protein, allowing protein to act 

as genetic memory in an RNA circuit. The second (Figure 5.3) acts as a finite state machine, 

remembering state with bistability. 

 The first design is composed of two modules buffered by a transient protein ‘memory’ 

(Figure 5.1). The sensing module is a light-activated RNA repressor cascade. When light is 

pulsed, MS2, a coat protein derived from the MS2 bacteriophage fused to a florescent protein, 

is produced and acts as genetic memory. The decoding circuit is a single input module (SIM) 

(Takahashi et al. 2015), made from a repressor cascade, which reads MS2 concentration as 

an input. The double attenuator in front of red fluorescent protein (RFP) creates a threshold 

such that at low concentrations of MS2 only green florescent protein (GFP) is produced and 
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at high concentrations of MS2 both RFP and GFP are produced. After one pulse the cells store 

an MS2 concentration at which GFP is produced, and after two pulses the cells store an MS2 

concentration at which GFP and RFP are produced.  Eventually MS2 concentration is reduced 

through dilution, allowing the circuit to reset over time. 

The second design is composed of two connected toggle switches (Figure 5.3). The 

circuit responds to one or two pulses of green light and is reset by red light. A toggle switch 

(Figure 5.3 left), similar to an electrical SR latch, is two connected repressors. When the 

correct conditions are met, a toggle switch exhibits bistability or two states in which one 

repressor is expressed and the other repressed. One repressor controls GFP such that in one 

state GFP is high and in the other GFP is low. In the full circuit one toggle switch controls GFP 

and the other controls RFP. The toggle switches are cascaded such that one pulse causes the 

first toggle switch to enter a high state and express GFP and a second pulse activates the 

second toggle switch causing GFP to be repressed and RFP to be expressed. Both toggle 

switches are turned OFF with the reset, red light. 
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Figure 5.3 Temporal signal decoding circuit design #2. The first design is shown in Figure 

5.1. The second design is constructed from two toggle switches and uses green light as a set 

signal and red light as a reset signal. GFP is produced in response to one green light pulse 

and RFP in response to two green light pulses. Red light reset the circuit to the OFF state. 

This circuit remembers state with bistability. 

 

5.3.2  The sensing circuit responds to pulses of theophylline. 

We first sought to test the sensing circuit proposed in circuit design #1 (Figure 5.1). We 

began by testing the module (Figure 5.4A) with theophylline activation instead of light 

activation. The sensing module is a three level RNA repressor cascade that responds to 

pulses of theophylline to create pulses of an output protein over time. This output protein is 

an MS2-RFP fusion, because the MS2 protein is the next input for the planned decoding 

circuitry. We tested the dynamic response to theophylline pulses in the context of MS2-RFP 

and verified that we can produce the desired rising saw tooth pattern. 

 We performed time course experiments on E. coli cultures that contained the dual 

control sensing module plasmids expressing MS2-RFP. We tested the circuit by incubating 

overnight in LB media, followed by dilution into M9 supplemented media and incubation for 

four hours, and then another dilution into fresh M9 and four hour incubation before 

beginning the measurements to mitigate observed toxicity of theophylline (Figure 5.4B). As 

expected, when theophylline was pulsed we observed a saw tooth pattern that consisted of 

a rise in MS2-RFP expression when theophylline was present, and a decrease in MS2-RFP 

expression when theophylline was absent. Importantly we saw that the second pulse of 

theophylline could sustain increased MS2-RFP expression. 
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Figure 5.4 The sensing module produces the desired saw-tooth production of GFP and MS2-

RFP in response to pulses of theophylline, confirming its desired function. (A) Schematic of 

the basic sensing circuit. This cascade is identical to Figure 8A except MS2-RFP is produced 

instead of GFP. (B) Pulse response of the MS2-RFP repressor cascade. Theophylline is added 

at t=0 to both the constant theophylline (green) and pulsed theophylline (red) cultures. At 

t=1.5 hours all cultures are spun down at 6,000g for 10 minutes and then resuspended in 

fresh M9. Theophylline is immediately added to the constant theophylline condition. The 

t=2.0 hours measurement is taken immediately following resuspension in the correct media. 

The washing occurs between t=1.5 hours and t=2 hours. At t=3.5 hours theophylline is added 

again to the pulse condition (red). 

 

5.3.3  The decoding circuit responds to MS2 concentration. 

Next we tested the decoding module’s response to MS2 concentration. As proposed, the 

decoding module is a three level RNA repressor cascade that responds to different levels of 

the MS2 protein to stimulate the expression of different output proteins based on the MS2 
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concentration sensed. Specifically, this cascade consists of an antisense RNA fused to an MS2 

aptamer (Mutalik et al. 2012) in such a way that it is only functional when MS2 is bound. In 

the presence of MS2, the repression caused by this antisense RNA is inverted through the 

RNA cascade to produce the desired protein. We constructed and tested the basic functioning 

of this MS2-sensitive cascade architecture by replacing the theophylline sensitive antisense 

RNA of the sensing module with the MS2-sensitive antisense RNA and adding pLac controlled 

MS2-RFP to the top level of the cascade such that MS2-RFP could be induced with IPTG.  

To characterize the decoding module, we performed steady state experiments on E. 

coli cultures that contained the decoding module plasmids (Figure 5.5A). After incubating 

overnight in LB media, the cultures were diluted into M9 supplemented media, induced with 

varying concentrations of IPTG, and incubated for four hours. After the four-hour incubation, 

the cultures were sampled and measured for GFP fluorescence, RFP fluorescence, and 

culture OD (Figure 5.5B). As expected, increasing IPTG concentration caused MS2-RFP to be 

produced and this in turn caused increased GFP expression. We also observed a significant 

leak in GFP expression in the low IPTG conditions. Overall, the decoding module works as 

expected: increasing MS2 production yields increased GFP expression. 
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Figure 5.5 The decoding circuit architecture senses the MS2 protein and produces GFP. (A) 

Schematic of the basic decoding architecture, an MS2 activated repressor cascade. This 

cascade is very similar to Figure 5.4A except the circuit senses MS2 instead of theophylline. 

To make MS2 inducible, it was included in the level 1 plasmid under control of a pLac 

promoter. Thus, when IPTG is added to the system MS2 is produced and activates the 

cascade. (B) Expression of GFP and MS2-RFP versus IPTG concentration. As IPTG is increased 

MS2-RFP is produced which activates the repressor cascade causing GFP expression. 

 

5.3.4  A simplified circuit propagates signal through a transient protein 

We next built a simplified circuit to test our ability to propagate a signal through a transient 

protein. The overall sensing-decoding circuit design is a combination of the two modular 

circuit architectures encoded in the same cell. The design allows signal propagation from a 

theophylline input, through the sensing module architecture into MS2 expression, which is 

then sensed by the decoding circuit and converted into a GFP or RFP output. We constructed 
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and characterized a simplified version of this overall circuit architecture to confirm that we 

are able to achieve the desired signal passing between modules (Figure 5.6A). 

 To construct the minimal sensing-decoding circuit, we combined a single repression 

sensing circuit and single repression decoding circuit into a two-plasmid system (Figure 

5.6A). A high copy plasmid expressed two antisense RNAs: the theophylline activated 

antisense and the MS2 activated antisense. A low copy plasmid expressed both targets and 

their outputs: the theophylline antisense represses a dual control repressor regulating MS2-

RFP and the MS2 antisense represses a dual control repressor regulating GFP. When 

theophylline is added, the theophylline antisense will be activated, causing repression of 

MS2-RFP. This will cause the MS2 activated antisense to become inactive and GFP will be 

expressed. 

We characterized this minimal sensing-decoding circuit by performing a time course 

experiment on E. coli cultures that contained the circuit plasmids described above. As 

expected, when theophylline was introduced, we observed MS2-RFP decreasing in 

expression and increased GFP expression. Thus, we are able to propagate a protein signal 

between RNA modules. However, there was significant variability amongst the three 

colonies measured and background fluorescence. 
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Figure 5.6 A minimal sensing-decoding circuit transmits theophylline signals through MS2 

into measurable GFP outputs. (A) Schematic of a simplified temporal signal decoding circuit. 

This circuit is made up of two RNA repressors buffered by a protein intermediary (MS2). The 

output is GFP, which is controlled by RNA repressor 2. In the OFF state (no theophylline) 

RNA repressor 1 is inactive so MS2-RFP is expressed. MS2-RFP activates RNA repressor 2, 

which represses GFP. When theophylline is added (ON) RNA repressor 1 is activated, 

repressing MS2-RFP. This causes RNA repressor 2 to become inactive, leading to GFP 

expression. (B) MS2-RFP fluorescence after induction of the circuit with theophylline. The 

background (no induction) is shown in blue and is somewhat noisy. MS2-RFP decreases as 
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expected with induction of theophylline. (C) GFP activates after induction with theophylline. 

The background (no induction) is shown in blue. 

 
5.3.5  Using a computational model to inform circuit designs.  

In addition to studying the proposed circuits experimentally, we have developed a 

computational framework using a system of kinetic differential equations to qualitatively 

inform experimental and circuit design. The model uses simplified parameters that capture 

the overall synthesis and degradation rates of RNAs and proteins but coarse grains 

biochemical details (Alon 2007). The framework informs experimental design choices such 

as the optimal timing and length of theophylline pulses required to achieve an output that 

matches the desired patterns. It also enables the exploration alternative circuit designs 

without expending resources to build them in cells.  

A limitation of the first temporal circuit design is its dependence on the dilution rate 

of MS2 due to cell division to maintain state and remember the number of pulses. 

Experiments indicate that the production rate of the fluorescent protein is too similar to the 

dilution/degradation rate to effectively act as genetic memory (Figure 5.7). While there are 

ways to modify the dilution rate by slowing growth, an alternative strategy is to design a 

circuit that remembers state and resets with a separate signal rather than over time. The 

second design discussed in section 5.3.1 describes such a circuit. Here we present results of 

modeling this circuit and its internal component, the toggle switch. 
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Figure 5.7 A time course using the theophylline cascade indicates that the GFP production 

rate is similar to its degradation rate. The slope of the theophylline condition (red) from t=0 

to 2 hours is similar to the slope after theophylline has been removed (red) from t=2 to 3.5 

hours. Experiment performed as in Figure 5.4B. 

 

We began by modeling an RNA toggle switch (Figure 5.8A) controlled by light 

activation using 6 ODEs (equations 1-6). Light intensity (Ig or green light, Ir for red light) 

determines the production rate of [A] and [B] (equations 1-2) (Olson & Tabor 2014) based 

on a published model for the CcaS/CcaR and Cph8/OmpR systems. See tables 1 and 2 in 

Appendix 1 for variable descriptions and parameter values. Parameters are order of 

magnitude estimations based on previous studies.   

𝑑[𝐴]
𝑑𝑡

= 𝑘𝑝(𝐼𝑔)[𝑐𝑔(𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦) − 𝐴(𝑡)] 
 

(1)(Olson et al. 
2014)  

𝑑[𝐵]
𝑑𝑡

= 𝑘𝑝(𝐼𝑟)[𝑐𝑟(𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦) − 𝐵(𝑡)]  
(2)(Olson et al. 

2014)  
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 Previous work on modeling RNA interactions indicated that the Hill function 

accurately describes this system (Hu et al. 2015), so species [C] and [D] are modeled with 

their interactions according to the network diagram shown in Figure 5.8B. GFP mRNA (𝑀𝑔) 

is produced from the same transcript as [D] and shares the same equation.  

𝑑[𝐶]
𝑑𝑡

= 𝛽 [1 −
[𝐴]

𝐾 + [𝐴]]
𝜂𝐴𝐶

[1 −
[𝐷]

𝐾 + [𝐷]]
𝜂𝐷𝐶

− 𝑑𝑚[𝐶] 
 

(3) 

𝑑[𝐷]
𝑑𝑡

= 𝛽 [1 −
[𝐵]

𝐾 + [𝐵]]
𝜂𝐵𝐷

[1 −
[𝐶]

𝐾 + [𝐶]]
𝜂𝐶𝐷

− 𝑑𝑚[𝐷] 
 

(4) 
𝑑[𝑀𝑔]

𝑑𝑡
= 𝛽 [1 −

[𝐵]
𝐾 + [𝐵]]

𝜂𝐵𝐷

[1 −
[𝐶]

𝐾 + [𝐶]]
𝜂𝐶𝐷

− 𝑑𝑚[𝑀] 
 

(5) 

GFP (𝑃𝑔) production is governed by a translation rate (𝑘𝑃𝑔 ) and a degradation rate 

(𝑑𝑃𝑔).  

𝑑[𝑃𝑔]
𝑑𝑡

= 𝑘𝑃𝑔[𝑀𝑔] − 𝑑𝑃𝑔[𝑃𝑔] 
 

(6) 
Toggle switches are known to require cooperativity in order to exhibit 

bistability(Gardner et al. 2000), or the existence of multiple stable states. The pT181 

attenuator is not cooperative, but pT181 attenuators used in tandem exhibit cooperative 

behavior (Lucks et al. 2011) because multiplying non-cooperative hill functions can sharpen 

transfer curves. By performing a stability analysis around 𝑑[𝐶]
𝑑𝑡

 and 𝑑[𝐷]
𝑑𝑡

 from the toggle switch 

model, we found conditions for bistability as a function of the number of tandem attenuators 

for repressors D and C such that 𝜂𝐶𝐷 = 2 and 𝜂𝐷𝐶 = 2, but 𝜂𝐴𝐶 = 1 and 𝜂𝐵𝐷 = 1 (Figure 

5.9). As shown below, the double attenuator toggle switch exhibits bistability (Figure 5.9B) 

while the single attenuator has only one stable point (Figure 5.9A). The design is sensitive to 

changes in K, the repression constant, such that if the repression is poor more tandem 

attenuators are required to maintain bistability (Figure 5.9C). Additionally, the design is 

sensitive to changes in 𝛽 , the transcription rate, such that if the transcription is low 

bistability is lost (Figure 5.9C). With these tandem attenuators the model indicates that the 
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proposed network would work as expected such that GFP is expressed after a pulse of green 

light and repressed after a pulse of red light (Figure 5.8C). 

 

 



  120 

Figure 5.8 Model for the toggle switch and two pulse counter. (A) Network diagram for the 

toggle switch consisting of two connected repressors responding to green light and red light 

as inputs. (B) Trajectories for the toggle switch responding to pulses of light. GFP is 

expressed after a pulse of green light and repressed after a pulse of red light. (C) Network 

diagram for the two pulse counter made of two connected toggle switches responding to 

green light as a set and red light as a reset.  (D) Trajectories for the two pulse counter 

responding to pulses of light.  GFP is expressed after one pulse of green light, RFP is 

expressed after two pulses of green light, and red light represses both GFP and RFP.  

 

We then modeled an RNA two pulse counter (Figure 5.8D) controlled by light 

activation (equations 1-2, 7-15). As with the toggle switch, we used the published light model 

and constant light intensity to model [A] and [B] production. For this reason, the first two 

equations modeling the two pulse counter are the same as the toggle switch (equations 1-2).  

Hill functions were also used to model species [C], [D], [E], [F], [G] and their interactions 

according to the network diagram shown in Figure 8C. GFP mRNA (𝑀𝑔) is produced from the 

same transcript as [D] and RFP mRNA (𝑀𝑟) is produced from the same transcript as [G].  

𝑑[𝐶]
𝑑𝑡

= 𝛽 [1 −
[𝐴]

𝐾 + [𝐴]]
𝜂𝐴𝐶

[1 −
[𝐷]

𝐾 + [𝐷]]
𝜂𝐷𝐶

− 𝑑𝑚[𝐶] 
 

(7) 

𝑑[𝐷]
𝑑𝑡

= 𝛽 [1 −
[𝐵]

𝐾 + [𝐵]]
𝜂𝐵𝐷

[1 −
[𝐶]

𝐾 + [𝐶]]
𝜂𝐶𝐷

[1 −
[𝐺]

𝐾 + [𝐺]]
𝜂𝐺𝐷

− 𝑑𝑚[𝐷] 
 

(8) 

𝑑[𝑀𝑔]
𝑑𝑡

= 𝛽 [1 −
[𝐵]

𝐾 + [𝐵]]
𝜂𝐵𝐷

[1 −
[𝐶]

𝐾 + [𝐶]]
𝜂𝐶𝐷

[1 −
[𝐺]

𝐾 + [𝐺]]
𝜂𝐺𝐷

− 𝑑𝑚[𝑀𝑔] 
 

(9) 

𝑑[𝐸]
𝑑𝑡

= 𝛽 [1 −
[𝐴]

𝐾 + [𝐴]]
𝜂𝐴𝐸

[1 −
[𝐺]

𝐾 + [𝐺]]
𝜂𝐺𝐸

− 𝑑𝑚[𝐸] 
 

(10) 

𝑑[𝐹]
𝑑𝑡

= 𝛽 [1 −
[𝐷]

𝐾 + [𝐷]]
𝜂𝐷𝐹

[1 −
[𝐺]

𝐾 + [𝐺]]
𝜂𝐺𝐹

− 𝑑𝑚[𝐹] 
 

(11) 

𝑑[𝐺]
𝑑𝑡

= 𝛽 [1 −
[𝐵]

𝐾 + [𝐵]]
𝜂𝐵𝐺

[1 −
[𝐸]

𝐾 + [𝐸]]
𝜂𝐸𝐺

[1 −
[𝐹]

𝐾 + [𝐹]]
𝜂𝐹𝐺

− 𝑑𝑚[𝐺] 
 

(12) 

𝑑[𝑀𝑟]
𝑑𝑡

= 𝛽 [1 −
[𝐵]

𝐾 + [𝐵]]
𝜂𝐵𝐺

[1 −
[𝐸]

𝐾 + [𝐸]]
𝜂𝐸𝐺

[1 −
[𝐹]

𝐾 + [𝐹]]
𝜂𝐹𝐺

− 𝑑𝑚[𝑀𝑟] 
 

(13) 
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GFP and RFP protein (𝑃𝑔, 𝑃𝑟) production rate is governed by a translation rate (𝑘𝑃𝑔 , 

𝑘𝑃𝑟) and a degradation rate (𝑑𝑃𝑔, 𝑑𝑃𝑟).  

𝑑[𝑃𝑔]
𝑑𝑡

= 𝑘𝑃𝑔[𝑀𝑔] − 𝑑𝑃𝑔[𝑃𝑔] 
 

(14) 
𝑑[𝑃𝑟]

𝑑𝑡
= 𝑘𝑃𝑟[𝑀𝑟] − 𝑑𝑃𝑟[𝑃𝑟] 

 
(15) 

As in the case of the toggle switch, the two pulse counter requires cooperativity to 

function properly. In addition to tandem C and D attenuators we found that tandem 

attenuators are needed for repressors A, G, and E such that the cooperativity constants 

𝜂𝐶𝐷, 𝜂𝐷𝐶, 𝜂𝐴𝐸, 𝜂𝐺𝐸, 𝜂𝐺𝐹, 𝜂𝐸𝐺 = 2 , but 𝜂𝐴𝐶, 𝜂𝐵𝐷, 𝜂𝐺𝐷, 𝜂𝐷𝐹, 𝜂𝐵𝐺, 𝜂𝐹𝐺 = 1 . This design is 

sensitive to changes in K and 𝛽 similar to the toggle switch. With these tandem repressors 

the model shows the desired behavior indicating that the proposed network would work as 

expected: GFP is expressed after one pulse of green light, RFP is expressed after a second 

pulse of green light, and both GFP and RFP are repressed after a pulse of red light (Figure 

5.8D).  
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Figure 5.9 Stability analysis of the toggle switch for single attenuators (A) and double 

attenuators (B) and bifurcations for various values of n, K, and β (C). The nullclines are 

shown in red (dC/dt=0) and green (dD/dt=0). Solutions with various initial conditions are 

shown in black and the vector field is shown with blue arrows. The single attenuator toggle 

switch has one stable point (blue x) while the double attenuator toggle switch has three, two 

of which are stable (blue x, magenta x) and one which is a saddle point (red x). (C) These 

bifurcation plots show how the critical points change with change K, n, and β. There is no 

bistability at n=1 for any value of K. At n=2 bistability appears as K decreases. Increasing 

values of n and β cause bistability to appear. 

 

5.4  Discussions and Conclusions 

In this work we have demonstrated the need for better external communication with cellular 

systems. We have proposed two possible designs to be constructed with RNA regulators and 

have outlined a plan to connect light-induction to our RNA circuits to facilitate pulse 

experiments and reduce the negative metabolic effects of chemical inducers.   

Our results have indicated that chemical inducers are non-ideal due to (1) potential 

toxicity and interference with metabolic processes and (2) the experimental difficulty of 

pulsing chemical inducers in an appropriate timeframe. Optogenetics offers a unique 

alternative that could fix both of these issues. Our new designs suggest the CcaS/CcaR and 

Cph8/OmpR light-switchable systems because they: (i) are compatible with one another 

giving us two control points, (ii) are light-switchable rather than light-responsive, and (iii) 

have been successfully used to characterize biological parts. Our designs use a light-

switchable, two-component system to drive the activation of RNA circuitry and could later 
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be used to characterize the temporal dynamics of RNA regulatory parts. This will give us 

much more flexibility in temporal manipulation and part characterization. 

The circuitry developed in this proposal will greatly improve the amount of 

information that can be transferred to cells by taking advantage of the temporal domain with 

inducer pulses. The temporal signal decoding circuit will spur development of fundamental 

principles that can be applied broadly to many challenges in synthetic biology. The RNA 

circuitry components refined here are modular and can be used for many other applications. 

This research contributes to a growing discipline of genetic design that will allow scientists 

to predictably engineer genetic regulatory networks.   

 

5.5  Materials and Methods 

Strains, growth medium, and In Vivo bulk fluorescence time course experiments.  

All experiments were performed in E. coli strain TG1. Plasmid combinations were 

transformed into chemically competent E. coli TG1 cells, plated on Difco LB+Agar plates 

containing appropriate antibiotics and incubated overnight at 37 °C. Transformation plates 

containing E. coli TG1 cells transformed with circuit plasmids were taken out of the incubator 

and left at room temperature for approximately 3 h. Three colonies were picked and used to 

inoculate 300 μL of LB containing selective antibiotics in a 2 mL 96-well block (Costar 3960), 

and grown approximately 17 h overnight. Twenty microliters of each overnight culture was 

then added to separate wells on a new block containing 980 μL (1:50 dilution) of 

supplemented M9 minimal media (as mentioned above) containing the selective antibiotics 

and grown for 4 h at the same conditions as the overnight culture. The optical density (OD, 

600 nm) was then measured by transferring 50 μL of culture from the block into a 96-well 
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plate (Costar 3631) containing 50 μL of phosphate buffered saline (PBS) and measuring 

using a Biotek Synergy H1m plate reader. The cultures were diluted into 1ml of fresh M9 

minimal media to an optical density of 0.015 and grown for four hours. Then theophylline 

was added to the theophylline condition to a final concentration of 2mM. Every 30 min for 

the next 4 h, 50 μL from each of the fresh cultures was removed from the 96-well block and 

transferred to a 96-well plate (Costar 3631) containing 50 μL of phosphate buffered saline 

(PBS). SFGFP fluorescence (FL, 485 nm excitation, 520 nm emission) and optical density (OD, 

600 nm) were then measured at each time point using a Biotek Synergy H1m plate reader. 

 

Bulk fluorescence data analysis.  

On each 96-well block, there were two sets of controls; a media blank (M9 alone) and E. coli 

TG1 cells that do not produce SFGFP (transformed with control plasmids JBL001, JBL002, 

and JBL1856). The block contained three replicates of each control. OD and FL values for 

each colony at each time point were first corrected by subtracting the corresponding values 

of the media blank at that same time point. The ratio of FL to OD (FL/OD) was then calculated 

for each well (grown from a single colony), and the mean FL/OD of TG1 cells without SFGFP 

at the same time point was subtracted from each colony’s FL/OD value to correct for cellular 

autofluorescence.  
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CHAPTER 6 

TOWARDS AN RNA-BASED BIOLOGICAL CONTROLLER 

6.1  Abstract 

Controllers are implemented in many engineered systems as a way to control a process 

regardless of changing environmental conditions. However, controllers have yet to be 

implemented in a biological context. Here, we show our efforts to construct a biological 

controller in a cell free transcription-translation (TXTL) system. We propose two controller 

designs that uses transcriptional riboregulators to compute error and perform proportional 

adjustment. Previous research has indicated that RNA sequestration must dominate over 

RNA degradation for such a controller to function. Current repressor sequestration is more 

efficient than activator sequestration. Due to this, we have found that our repression based 

controller is able to better track  reference point than our activation based controller.  

 

6.2  Introduction 

Cells naturally sense and respond to their environment in order to maintain constant 

internal conditions. Synthetic biologists are starting to explore the idea of synthetic control 

networks to reduce variability in engineered systems (Dunlop et al. 2010; Ma et al. 2009; 

Briat, Gupta, et al. 2016; Briat, Zechner, et al. 2016).  Reducing uncertainty in engineered 

systems could vastly improve networks that rely on stable plasmid copy numbers(Park et al. 

2002), enzyme concentrations (Dunlop et al. 2010), and regulator concentrations (Del 

Vecchio et al. 2017). Up to this point, all efforts to build biological controllers have been 

theoretical, relying on models to determine if a certain controller design is experimentally 

viable and will produce an effective controller. One such study looked at the ability RNA 
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regulators, CRISPRi (Qi et al. 2013) and small transcription activating RNAs (STARs) 

(Chappell et al. 2015), to provide feedback control (Agrawal et al. 2018). This method relies 

on RNA sequestration to perform error calculation and notably found that it’s two designs, a 

‘direct’ controller and an ‘indirect’ controller could adapt to perturbations in DNA 

concentration and kinetic parameters. However, one key finding indicated that the RNA 

sequestration rate must dominate over the RNA degradation rate for effective controller 

performance.  

In industrial systems feedback controllers are used maintain a robust output in the 

face of environmental uncertainties. Common examples include the speed of your car under 

auto pilot and the temperature of your house with a thermostat. A user-defined reference 

point is used to maintain the output of a process at a specified value. The controller calculates 

the error between the reference and the output using sensors and then performs a correction 

to the process in order to minimize the error (Figure 6. 1).  Ideally the controller should 

exhibit perfect adaptation, meaning it should be able to track changes in the reference value 

robustly and show zero steady state error when parameters are perturbed. RNA is an ideal 

molecule for implementing such control networks in biological systems because of its fast 

and tunable dynamics (Takahashi et al. 2015; Carrier & Keasling 1999). RNA regulators have 

recently been developed with dynamic range that challenges protein regulators (Chappell et 

al. 2017; Green et al. 2014) and are also easier to computationally design.   
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Figure 6.1 Block diagram representation of a closed loop controller from Deepak et al. 

(Agrawal et al. 2018) In order to maintain a constant output even in changing external 

conditions, a closed loop is introduced between the process and a reference. The controller 

calculates an error between the reference and the output and makes a correction based on 

this error. 

 

Here, we present preliminary work towards implementation of an RNA-based 

controller. We explore two controller designs: an activation loop controller and a repression 

loop controller (Figure 6.2). All experiments are performed in TXTL because of its unique 

ability to allow rapid prototyping of RNA parts and circuits (Takahashi et al. 2015). Each 

controller calculates error using RNA sequestration. We begin by exploring the activation 

loop controller that is directly based off of the ‘direct’ controller modeled in Agrawal et al. 

(Agrawal et al. 2018) The reference, X, for this controller is a small transcription activating 

RNA (STAR) that activates expression of Y, that represents both the signal and the output. Y 

is sequestered by X performing a molecular error calculation and allowing for excess X to 

correct for external perturbations. Preliminary results for the activation loop controller 

indicate that STAR sequestration does not dominate over RNA degradation and so the 
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activation loop design does not function well as a controller. We tried to optimize STAR 

sequestration extra sequence and promote STAR-sequester binding, but this only resulted 

in minimal improvements.  

The next design we tried was the repression loop controller. Repressor sequestration 

has already been demonstrated in Chapter 5 and is more efficient than the STAR 

sequestration developed here. We thought if we could use repressor sequestration instead, 

this might lead to a more function controller. The repression loop controller uses a repressor 

sequester as the reference, X, and the repressor as the signal from the output (Y). We found 

that the repression loop controller shows better reference tracking than the open loop but 

more work must be done to confirm if the repression loop design is functioning as a robust 

controller.  

 

Figure 6.2 Two designs for an RNA-based controller. The activation loop controller (left) 

uses a STAR while the repression loop controller (right) uses a pT181 repressor.  
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6.3  Results 

6.3.1  Small transcription activating RNA (STAR) sequestration  

In order to construct the activation loop controller we need an RNA that can sequester 

STARs. RNA sequestration has been successfully used to de-repress CRISPRi (Lee et al. 2016) 

and STAR sequestration was even recently published for the pAD1 STARs (Lee et al. 2018). 

We began developing STAR sequestration before the pAD1 STAR sequesters were published 

and choose to build off of the new higher activation, computationally designed stars 

(Chappell et al. 2017). We designed the sequesters to be complementary to the the linear 

region of the STAR so they would form a double stranded RNA complex and block STAR from 

binding its target.  

 We began by testing STAR sequestration in TXTL. We added plasmids expressing 

STAR RNA at 8nM, sequester RNA from 4nM to 16nM, and GFP at 1nM to pre-incubated TXTL 

extract and measured GFP fluorescence every 5 minutes for 3 hours.   With no STAR or 

sequester present the GFP fluorescence was undetectable above background. When STAR 

was added we see a high ON level of GFP expression. We then added 4nM, 8nM, and 16nM of 

sequester plasmid and saw 37%, 66%, and 90% repression respectively (Figure 6.3). Ninety 

percent repression at a 2:1 ratio of sequester to STAR is better than what has been previously 

published (Lee et al. 2018), but there is still a significant amount of leak given the OFF state 

of the STAR is essentially zero.  
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Figure 6.3 STAR sequestration in TXTL. Plasmids expressing the STAR RNA, sequester RNA, 

and GFP are added to TXTL and then GFP fluorescence is measured every 5 minutes for 3 

hours.  The STAR sequester binds to the STAR to block activation of GFP. As STAR sequester 

plasmid concentration increases STAR activation is reduced.  

 

6.3.2  Activation loop controller 

The activation loop controller is based off of the ‘direct’ controller characterized in Agrawal 

et al. (Agrawal et al. 2018) The goal for this controller is to be able to accurately track changes 

in the reference and adapt to external perturbations. The controller consists of three 

plasmids each expressing RNAs that interact create the control circuit. The reference, X, is 

the DNA expressing a STAR. This STAR activates expression of Y, the DNA expressing the 

sequester and GFP, the output. A difference between X and Y (error) is detected through 
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STAR sequestration and a corrective action is taken by the excess or reduced STAR pool 

(Figure 6.4, left). The open loop controller simply removes the sequestration error 

calculation  mechanism by using a nonfunctional RNA in place of the sequester.  

 We sought to test the performance of the activation loop controller by changing the 

reference DNA concentration in TXTL to see if the controller could track the reference and 

how it performed in comparison to the open loop. We performed a time course experiment 

in TXTL with 3 difference concentrations of reference: 0nM, 4nM, and 8nM (Figure 6.4, right). 

We found that the open and closed loops behaved very similarly and both were able to track 

the reference. At higher concentrations of reference we would expect to see the open loop 

hit saturation while the closed loop should still be able to track the reference. In order to see 

this, more experiments would need to be done. However, we can see from this experiment 

that the controller is not working as expected. If the sequestration was functioning correctly, 

the closed loop should have lower expression than the open loop and this is now what we 

see. In order to address this we must improve the sequestration by several orders of 

magnitude.  
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Figure 6.4 The activation loop controller shows poor reference tracking. Schematic for the 

activation loop controller (left). The activation loop controller consists of three plasmids. The 

first plasmid expresses STAR RNA (X) that activates the other two plasmids: GFP and the 

sequester (Y). The sequester (Y) binds to and inhibits the STAR (X). The open loop removes 

the sequestration between X and Y and instead of a sequester a junk RNA is expressed as Y. 

At different reference levels, the open and closed loops behave similarly (top right) and show 

similar levels of referencing tracking (bottom right).  

 

6.3.3  Improving STAR sequestration 

Simulations of the activation loop controller indicated that fast sequestration was vital for 

controller performance (Agrawal et al. 2018). Even at a 2:1 ratio of sequester plasmid to 

STAR plasmid, the repression is only 90% which is significant leak over the OFF level. Other 

attempts to sequester STARs have seen similar low efficiencies (Lee et al. 2018). Our 
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hypothesis for why STAR sequestration works so poorly relies on abortive transcription. 

When there is no STAR present in the system, RNA Polymerase is still constantly binding to 

the DNA and creating short abortive transcripts that code for the STAR terminator. This 

terminator shares sequence with the STAR sequester meaning that when STAR is not present 

at saturating levels, a STAR sequester-like molecule is being constantly transcribed by RNA 

polymerase. This will create a threshold that the STAR would need to overcome in order for 

activation to work and could partially explain why STAR plasmid is needed in great excess 

to Target-GFP plasmid in order for STAR activation to function.  In order for the STAR 

sequester to have any impact, the STAR sequester plasmid would need to be in even greater 

excess to create a larger threshold for STAR activation. 

We hoped to alleviate this problem by making the binding of STAR to STAR sequester 

more favorable than STAR to aborted terminator.  We used NUPACK, a computation tool for 

designing RNA structures, to design linear RNA sequences that would not interfere with 

STAR folding (Zadeh et al. 2011). We then added the complementary sequence to the STAR 

sequester and tested the new STAR/sequester variants in TXTL (Figure 6.5). At a 1:1 ratio of 

STAR to sequester the wild type had 3 fold repression while the best variant had 6 fold 

repression (Figure 6.5). While this is an improvement over the original STAR/sequester pair, 

we would need several orders of magnitude improvement for the controller to function as 

expected.   
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Figure 6.5 New STAR variants do not significantly improve STAR sequestration. We 

designed new STAR and sequester variants with increased, randomized linear regions to 

encourage binding between the STAR and the sequester. The wild type STAR sequester 

system shows 3 fold repression at equimolar concentrations of STAR and repressor plasmid. 

The best new star/sequester variant shows 6 fold repression.  



  138 

 

6.3.4  Repression loop controller 

Due to the difficulty of improving STAR sequestration and data suggesting that repressor 

sequestration is more effective (see chapter 3) we sought to determine if the repression loop 

controller would function better.  This controller combines negative autoregulation and 

repressor sequestration. Negative autoregulation based on the pT181 attenuator was 

recently shown to reduce network response time and steady state noise in gene expression 

(Hu et al. 2018). Like the activation loop controller, this controller also consists of three 

plasmids that express RNAs to conduct signals and calculate error. The reference is the DNA 

expressing X, the repressor sequester. The repressor sequester binds to Y, the repressor to 

calculate error. Y represses itself using negative autoregulation as well as GFP, the output 

(Figure 6.6, left). The open loop removes the negative feedback on Y. Sequestration is still 

functional, but the repressor no longer represses itself.  

 We tested this controller by changing the concentration of reference plasmid to 

determine if the controller could accurately track the reference in TXTL (Figure 6.6, right) . 

We found that both the open and closed loops could track changes in the reference, but the 

closed loop had a more linear response which is what we would expect of a functioning 

controller. More experiments remain to be done to determine if the controller can respond 

to environmental perturbations, but the preliminary data is promising, showing an expected 

difference between the open and closed loops.  
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Figure 6.6 The repression loop controller shows more linear reference tracking as 

compared to the open loop. The repression loop controller consists of three plasmids. The 

first plasmid expresses the repressor sequester (X) that sequesters the repressor (Y). The 

repressor (Y) acts as the signal from the output and represses itself as well as a plasmid 

expressing GFP. The open loop removes the feedback such that the repressor (Y) no longer 

represses itself. As the concentration of reference (X) increases, the production rate of GFP 

increases more linearly for the closed loop indicated better controller performance.  

 
6.4  Discussions and Conclusions 

In this work we have proposed designs for RNA-based biological controllers, built the 

necessary components, and presented preliminary data. While the activation-loop controller 

doesn’t show the characteristics we would expect of a functioning controller due to 

insufficient sequestration, we have shown promising results for the repression loop 

controller. More work remains to be done to validate the robustness of the repression loop  

controller. Attempts to improve STAR sequestration to fix the activation loop controller did 
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not succeed. This marks one of the first steps towards implementing a biological controller 

in cells and could lead to more predictable and stable genetic networks as networks increase 

in complexity.  

 

6.5  Materials and Methods 

TXTL Extract and Buffer Preparation.  

Cell extract and reaction buffer were prepared according to Garamella et al. (Garamella et al. 

2016) 

 

TXTL experiments.  

TX-TL buffer and extract tubes were thawed on ice for approximately 20 min. Separate 

reaction tubes were prepared with combinations of DNA representing a given circuit 

condition. Appropriate volumes of DNA, buffer, and extract were calculated using a custom 

spreadsheet developed by Sun et al. (Sun et al. 2013) and modified to fit the experiment. 

Buffer and extract were mixed together and then added to each tube of DNA according to the 

previously published protocol. Each TX-TL reaction mixture (10 μL each) was transferred to 

a 384-well plate (Nunc 142761), covered with a plate seal (Nunc 232701), and placed on a 

Biotek SynergyH1m plate reader. We note that special care is needed when pipetting to avoid 

air bubbles, which can interfere with fluorescence measurements. Temperature was 

controlled at 29°C. GFP fluorescence was measured (485 nm excitation, 520 emission) every 

5 min.  
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CHAPTER 7 

CONCLUSIONS 

In this work we have optimized RNA regulators, built new ways to tune them, and used them 

to create synthetic networks with novel behaviors. We have improved the dynamic range of 

the pT181 transcriptional attenuator by adding translational regulation and using it in a 

RNA-only network to reduce circuit leak. The dual control strategy has also been applied to 

STARs and a library of orthogonal attenuators.  In order to tune our regulators we developed 

a method of sequestration that allows us to shift the regulator transfer function. This method 

is broadly applicable and can also be used on orthogonal attenuators without inhibiting their 

orthogonality.  The modularity of RNA regulators was demonstrated in our pulse generating 

network that uses the timescale difference between CRISPRi and STARs to create a pulse of 

gene expression. The modeling tools developed here can be used to combine other regulators 

as networks grow in complexity.  

 Additionally, we explore emerging network concepts including how to pass 

information to cells given the limited numbers of inducers and biological control. In order to 

send multiple signals to a cell using one inducer we explore the idea of encoding information 

in the temporal domain with pulses of a single inducer. We develop two new circuit designs 

and weigh their advantages and disadvantages. Models of control networks taught us that 

that sequestration is a valid way to perform error calculation in a controller, but 

sequestration strength is important for controller functionality. Though more work needs to 

be done, we perform experiments that represent some of the first attempts to build 

controllers in the lab. This research marks a significant step towards engineering 

sophisticated RNA networks with predictable behaviors.  
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APPENDIX A 

Supplementary Information for Achieving large dynamic range control of gene 

expression with a compact RNA transcription-translation regulator 

A.1 Supplementary Tables, Figures, and Notes 

 
 Description 

Table A1 Important DNA sequences 
Table A2 Plasmids used in this study 
Figure A1 Plasmid architectures used in this study 
Note A1 Supplementary Materials and Methods 
Figure A2 Day 1, 2, and 3 of repressor cascade 
Figure A3 Repressor cascade from glycerol stock 
Figure A4 RepC Knockout 
Figure A5 qRT-PCR 
Figure A6 Transcriptional activator mechanism 
Figure A7 In vivo expression data used to calculate orthogonality matrices 
Figure A8 Sequence and structure of the pT181 dual control attenuator 

Figure A9 
Sequence and structure of the pT181 antisense and truncated 
pT181 antisense 

Figure A10 Induction curves 
Table A3 Averages and standard deviations for Figure 2.2A and 2.2B 
Figure A11 Sequence and structure of the pT181 dual control activator 
Table A4 Averages and standard deviations for Figure 2.3B and 2.3C 

Figure A12 
Sequence and structure of interaction regions for antisense 
mutants and fusions 

Table A5 Averages and standard deviations for Figure 2.4B and 2.4C 

Table A6 
Standard deviations for orthogonality matrix repression Figure 
2.5B 

Table A7 
Standard deviations for orthogonality matrix repression Figure 
2.5C 

References  
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Table A1: Important DNA sequences 
Name Sequence 
J23119 TTGACAGCTAGCTCAGTCCTAGGTATAATACTAGT 
pLac 
Promoter 

AATTGTGAGCGGATAACAATTGACATTGTGAGCGGATAACAAGATACT 

Super 
folder 
green 
fluorescent 
protein 
(Ribosome 
binding site 
(RBS) -
SFGFP) 

AGGAGGAAGGATCTATGAGCAAAGGAGAAGAACTTTTCACTGGAGTTGTC
CCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTC
CGTGGAGAGGGTGAAGGTGATGCTACAAACGGAAAACTCACCCTTAAATT
TATTTGCACTACTGGAAAACTACCTGTTCCGTGGCCAACACTTGTCACTAC
TCTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCACATGAAACG
GCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCAC
TATATCTTTCAAAGATGACGGGACCTACAAGACGCGTGCTGAAGTCAAGTT
TGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAGGGTATTGATTTTA
AAGAAGATGGAAACATTCTTGGACACAAACTCGAGTACAACTTTAACTCA
CACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAA
CTTCAAAATTCGCCACAACGTTGAAGATGGTTCCGTTCAACTAGCAGACCA
TTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAA
CCATTACCTGTCGACACAATCTGTCCTTTCGAAAGATCCCAACGAAAAGCG
TGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGG
CATGGATGAGCTCTACAAA 

TrrnB GAAGCTTGGGCCCGAACAAAAACTCATCTCAGAAGAGGATCTGAATAGCGC
CGTCGACCATCATCATCATCATCATTGAGTTTAAACGGTCTCCAGCTTGGC
TGTTTTGGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAGA
ACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGT
GGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGA
TGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAA
TAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTT
TGTCGGTGAACT 

Monomeric 
Red 
fluorescent 
protein 
(mRFP) 

ATGGCAAGTAGCGAAGACGTTATCAAAGAGTTCATGCGTTTCAAAGTTCG
TATGGAAGGTTCCGTTAACGGTCACGAGTTCGAAATCGAAGGTGAAGGTG
AAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAG
GTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCCCCGCAGTTCCAGTACG
GTTCCAAAGCTTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAAC
TGTCCTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGACG
GTGGTGTTGTTACCGTTACCCAGGACTCCTCCCTGCAAGACGGTGAGTTCA
TCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTCCGACGGTCCGGTTA
TGCAGAAAAAAACCATGGGTTGGGAAGCTTCCACCGAACGTATGTACCCGG
AAGACGGTGCTCTGAAAGGTGAAATCAAAATGCGTCTGAAACTGAAAGAC
GGTGGTCACTACGACGCTGAAGTTAAAACCACCTACATGGCTAAAAAACCG
GTTCAGCTGCCGGGTGCTTACAAAACCGACATCAAACTGGACATCACCTCC
CACAACGAAGACTACACCATCGTTGAACAGTACGAACGTGCTGAAGGTCGT
CACTCCACCGGTGCTTAATAA 

LacI ORF GGCACGTAAGAGGTTCCAACTTTCACCATAATGAAACATACTAGAGAAAG
AGGAGAAATACTAGATGGTGAATGTGAAACCAGTAACGTTATACGATGTC
GCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAG
GCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCG
GAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAG
TCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGC
AAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGG
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TGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGC
ACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGG
ATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGT
TATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCC
ATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACC
AGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGC
GTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAG
CGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGC
AAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATC
AGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTG
GTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTT
ATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAA
CCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCA
ATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCA
ATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGG
CACGACAGGTTTCCCGACTGGAAAGCGGGCAGGCTGCAAACGACGAAAACT
ACGCTTTAGTAGCTTAATAACTCTGATAGTGCTAGTGTAGATCCCTACTAG
AGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCG
TTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTC
ACCTTCGGGTGGGCCTTTCTGCGTTTATA 

Theophylli
ne 
aptamer-
pT181-
mutant 
antisense 
(aptamer-
antisense-
sTRSV 
Ribozyme) 

GGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTCTTTGAATGGTG
CTGCCCTGCAACTTTGGCGAGGGACAGGGCGACTCCTTTTTATTTCTGTCA
CCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACGAAACAG 

sTRSV 
Ribozyme 

CTGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACGAAACAG 

Double 
pT181 
antisense 
(BamHI-
BglII Scar-
sTRSV 
Ribozyme 
antisense)x
2 

GGATCTCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACGA
AACAGGGATCTATACAAGATTATAAAAACAACTCAGTGTTTTTTTCTTTG
AATGATGTCGTTCACAAACTTTGGTCAGGGCGTGAGCGACTCCTTTTTATT
TGGATCTCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACG
AAACAGGGATCCTAACTCGAGATACAAGATTATAAAAACAACTCAGTGTT
TTTTTCTTTGAATGATGTCGTTCACAAACTTTGGTCAGGGCGTGAGCGACT
CCTTTTTATTTGGATCT 

pT181 
repressor 
(sense 
target – 
repC  96nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCACGCCCTGACCAAAGTTTGTGAACGAC
ATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTA
GATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCG
ATTCCTTAAACGAAATTGAGATTAAGGAGTCGCTCTTTTTTATGTATAAA
AACAATCATGCAAATCATTCAAATCATTTGGAAAATCACGATTTAGACAA
TTTTTCTAAAACCGGCTACTCTAATAGCCGGTTGTAAGGATCT 

pT181 
repressor 

AACAAAATAAAAAGGAGTCGCTCACGCCCTGACCAAAGTTTGTGAACGAC
ATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTA
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with WT 
terminator 
(sense 
target – 
repC  96nt 
fragment) 

GATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCG
ATTCCTTAAACGAAATTGAGATTAAGGAGTCGATTTTTTATGTATAAAAA
CAATCATGCAAATCATTCAAATCATTTGGAAAATCACGATTTAGACAATT
TTTCTAAAACCGGCTACTCTAATAGCCGGTTGTAAGGATCT 

pT181-
mutant 1 
repressor 
(sense 
target – 
repC  96nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCTGTCCCTCGCCAAAGTTGCAGAACGACA
TCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTAG
ATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCGA
TTCCTTAAACGAAATTGAGATTAAGGAGTCGCTCTTTTTTATGTATAAAA
ACAATCATGCAAATCATTCAAATCATTTGGAAAATCACGATTTAGACAAT
TTTTCTAAAACCGGCTACTCTAATAGCCGGTTGTAAGGATCT 

pT181-
mutant 2 
repressor 
(sense 
target – 
repC  96nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCGTACCCTCTGCAAAGTTAACGAACGAC
ATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTA
GATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCG
ATTCCTTAAACGAAATTGAGATTAAGGAGTCGCTCTTTTTTATGTATAAA
AACAATCATGCAAATCATTCAAATCATTTGGAAAATCACGATTTAGACAA
TTTTTCTAAAACCGGCTACTCTAATAGCCGGTTGTAAGGATCT 

Fusion 3 
repressor 
(sense 
target – 
repC  96nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCACGCCTCGAACTTGGCGGAACGCAGTGT
GAACGACATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGT
ATATTTAGATATTAAACGATATTTAAATATACATAAAGATATATATTTGG
GTGAGCGATTCCTTAAACGAAATTGAGATTAAGGAGTCGCTCTTTTTTATG
TATAAAAACAATCATGCAAATCATTCAAATCATTTGGAAAATCACGATTT
AGACAATTTTTCTAAAACCGGCTACTCTAATAGCCGGTTGTAAGGATCT 

Fusion 4 
repressor 
(sense 
target – 
repC  96nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCACGTTCAACTTTGGCGAGTACGATGTG
AACGACATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTA
TATTTAGATATTAAACGATATTTAAATATACATAAAGATATATATTTGGG
TGAGCGATTCCTTAAACGAAATTGAGATTAAGGAGTCGCTCTTTTTTATGT
ATAAAAACAATCATGCAAATCATTCAAATCATTTGGAAAATCACGATTTA
GACAATTTTTCTAAAACCGGCTACTCTAATAGCCGGTTGTAAGGATCT 

pT181 
activator 
(sense 
target – 
repC  96nt 
fragment) 

TTGGGTGAGCGATTCCTTAAACGAAATTGAGATTAAGGAGTCGCTCTTTTT
TTTTTATGTATAAAAACAATCATGCAAATCATTCAAATCATTTGGAAAAT
CACGATTTAGACAATTTTTCTAAAACCGGCTACTCTAATAGCCGGTTGTAA
GGATCT 

pT181 dual 
control 
activator 
(sense 
target – 
repC  12nt 
fragment) 

TTGGGTGAGCGATTCCTTAAACGAAATTGAGATTAAGGAGTCGATTTTTT
ATGTATAAAAAC 

pT181 dual 
control 
repressor 
with WT 

AACAAAATAAAAAGGAGTCGCTCACGCCCTGACCAAAGTTTGTGAACGAC
ATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTA
GATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCG
ATTCCTTAAACGAAATTGAGATTAAGGAGTCGATTTTTTATGTATAAAAA
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terminator 
(sense 
target – 
repC  12nt 
fragment) 

C 

pT181 dual 
control 
repressor 
(sense 
target – 
repC  12nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCACGCCCTGACCAAAGTTTGTGAACGAC
ATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTA
GATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCG
ATTCCTTAAACGAAATTGAGATTAAGGAGTCGCTCTTTTTTATGTATAAA
AAC 

pT181 
mutant 1 
dual 
control 
repressor 
(sense 
target – 
repC  12nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCTGTCCCTCGCCAAAGTTGCAGAACGACA
TCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTAG
ATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCGA
TTCCTTAAACGAAATTGAGATTAAGGAGTCGATTTTTTATGTATAAAAAC 

pT181 
mutant 2 
dual 
control 
repressor 
(sense 
target – 
repC  12nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCGTACCCTCTGCAAAGTTAACGAACGAC
ATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTATATTTA
GATATTAAACGATATTTAAATATACATAAAGATATATATTTGGGTGAGCG
ATTCCTTAAACGAAATTGAGATTAAGGAGTCGATTTTTTATGTATAAAAA
C 

Fusion 3 
dual 
control 
repressor 
(sense 
target – 
repC  12nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCACGCCTCGAACTTGGCGGAACGCAGTGT
GAACGACATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGT
ATATTTAGATATTAAACGATATTTAAATATACATAAAGATATATATTTGG
GTGAGCGATTCCTTAAACGAAATTGAGATTAAGGAGTCGATTTTTTATGT
ATAAAAAC 

Fusion 4 
dual 
control 
repressor 
(sense 
target – 
repC  12nt 
fragment) 

AACAAAATAAAAAGGAGTCGCTCACGTTCAACTTTGGCGAGTACGATGTG
AACGACATCATTCAAAGAAAAAAACACTGAGTTGTTTTTATAATCTTGTA
TATTTAGATATTAAACGATATTTAAATATACATAAAGATATATATTTGGG
TGAGCGATTCCTTAAACGAAATTGAGATTAAGGAGTCGATTTTTTATGTA
TAAAAAC 

pT181 
antisense 

ATACAAGATTATAAAAACAACTCAGTGTTTTTTTCTTTGAATGATGTCGT
TCACAAACTTTGGTCAGGGCGTGAGCGACTCCTTTTTATTTGGATCT 

pT181 ATACAAGATTATAAAAACAACTCAGTGTTTTTTTCTTTGAATGATGTCGT
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mutant 1 
antisense 

TCTGCAACTTTGGCGAGGGACAGAGCGACTCCTTTTTATTTGGATCT 

pT181 
mutant 2 
antisense 

ATACAAGATTATAAAAACAACTCAGTGTTTTTTTCTTTGAATGATGTCGT
TCGTTAACTTTGCAGAGGGTACGAGCGACTCCTTTTTATTTGGATCT 

Fusion 4 
antisense 

ATACAAGATTATAAAAACAACTCAGTGTTTTTTTCTTTGAATGATGTCGT
TCACATCGTACTCGCCAAAGTTGAACGTGAGCGACTCCTTTTTATTTGGAT
CT 

Fusion 3 
antisense 

ATACAAGATTATAAAAACAACTCAGTGTTTTTTTCTTTGAATGATGTCGT
TCACACTGCGTTCCGCCAAGTTCGAGGCGTGAGCGACTCCTTTTTATTTGG
ATCT 

pT181 
activator 
antisense 

AACAAAATAAAGCAATAAGGAATCGCTCACCCAAAGGATCT 

pT181 
truncated 
antisense 

TGAATGATGTCGTTCACAAACTTTGGTCAGGGCGTGAGCGACTCCTTTTTG
GATCT 

Fusion 3 
truncated 
antisense 

TGAATGATGTCGTTCACACTGCGTTCCGCCAAGTTCGAGGCGTGAGCGACT
CCTTTTTGGATCT 

pT181 
mutant 1 
truncated 
antisense 

TGAATGATGTCGTTCTGCAACTTTGGCGAGGGACAGAGCGACTCCTTTTTG
GATCT 

pT181 
mutant 2 
truncated 
antisense 

TGAATGATGTCGTTCGTTAACTTTGCAGAGGGTACGAGCGACTCCTTTTTG
GATCT 

Fusion 4 
truncated 
antisense 

TGAATGATGTCGTTCACATCGTACTCGCCAAAGTTGAACGTGAGCGACTCC
TTTTTGGATCT 

 
 
 
Table S2 – Plasmids used in this study. Sequences in the plasmid architecture can 
be found in Table A1. 

Plasmi
d # Plasmid architecture Name 

 
Figure 

Figure 
S1 map 

JBL001 TrrnB – CmR – p15A origin 
CmR/p15A 
control 

2-6, S2-5, 
S7, S10  

B 

JBL002 J23119 – TrrnB – ColE1 origin – AmpR 

No 
antisense 
control 

2-6, S2-5, 
S7, S10 

A 

JBL003 
J23119 – pT181 sense target – repC(1-96) – RBS – 
SFGFP – TrrnB – CmR – p15A origin 

pT181 
repressor 
WT term 

2 D 

JBL004 
J23119 – pT181 antisense – TrrnB – ColE1 origin – 
AmpR 

pT181 
antisense 

2, 4, 5, S4, 
S5, S7 

C 

JBL006 J23119 – pT181 sense target mutant terminator – pT181 2, 4, S5, D 
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repC(1-96) – RBS – SFGFP – TrrnB – CmR – p15A 
origin 

repressor 
mut term 

S10 

JBL007 

J23119 – pT181 mutant 1 sense target mutant 
terminator – repC(1-96) – RBS – SFGFP – TrrnB – 
CmR – p15A origin 

pT181 
mutant 1 
repressor 

4 D 

JBL008 
J23119 – pT181 mutant 1 antisense – TrrnB – ColE1 
origin – AmpR 

pT181 
mutant 1 
antisense 

4, 5, S7 C 

JBL009 

J23119 – pT181 mutant 2 sense target mutant 
terminator – repC(1-96) – RBS – SFGFP – TrrnB – 
CmR – p15A origin 

pT181 
mutant 2 
repressor 

4 D 

JBL010 
J23119 – pT181 mutant 2 antisense – TrrnB – ColE1 
origin – AmpR 

pT181 
mutant 2 
antisense 

4, 5, S7 C 

JBL021 
LacI ORF – pLac – pT181 antisense – TrrnB – ColE1 
origin – AmpR 

IPTG 
inducible 
antisense 

S10 E 

JBL103
3 

J23119 – Fusion 4 antisense – TrrnB – ColE1 origin – 
AmpR 

Fusion 4 
antisense 

4, 5, S7 C 

JBL103
5 

J23119 – Fusion 3 antisense – TrrnB – ColE1 origin – 
AmpR 

Fusion 3 
antisense 

4, 5, S7 C 

JBL103
9 

J23119 – Fusion 3 sense target mutant terminator – 
repC(1-96) – RBS – SFGFP – TrrnB – CmR – p15A 
origin 

Fusion 3 
repressor 

4 D 

JBL112
6 

J23119 – Fusion 4 sense target mutant terminator – 
repC(1-96) – RBS – SFGFP – TrrnB – CmR – p15A 
origin 

Fusion 4 
repressor 

4 D 

JBL184
3 

J23119 – theophylline aptamer-pT181 mutant 1 
antisense – sTRSV ribozyme – TrrnB – ColE1 origin – 
AmpR  

Aptamer 
pT181 
mutant 1 
antisense, 
aptamer-AS-
2 

6, S2, S3 G 

JBL184
4 

J23119 – pT181 mutant 1 sense target mutant 
terminator – repC(1-96) – (sTRSV ribozyme – pT181 
antisense)x2 – TrrnB – CmR – p15A origin 

Cascade L2 
on 
p15A/CmR 
backbone 

6, S2, S3 H 

JBL185
5 

J23119 – pT181 sense target – repC(1-96) – RBS – 
SFGFP – TrrnB – pSC101 origin – KanR  

pT181 
repressor 

6, S2, S3 I 

JBL185
6 TrrnB – pSC101 origin – KanR  

pSC101/Kan
R control 

6, S2, S3 J 

JBL207
1 

J23119 – pT181 activator – RBS – SFGFP – TrrnB – 
CmR – p15A origin 

pT181 
activator 

3 D 

JBL212
8 

J23119 – pT181 activator antisense – TrrnB – ColE1 
origin – AmpR  

pT181 
activator 
antisense 

3 C 

JBL241
2 

J23119 – pT181 dual control sense target – repC(1-
12) – SFGFP – TrrnB – CmR – p15A origin 

pT181 DC 
repressor 
WT term 

2, 4, 5, S4, 
S5, S7, 
S10 

D 
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JBL241
3 

J23119 – pT181 dual control sense target mutant 
terminator – repC(1-12) – SFGFP – TrrnB – CmR – 
p15A origin 

pT181 DC 
repressor 

2 D 

JBL241
5 

J23119 – pT181 dual control mutant 1 sense target – 
repC(1-12) – SFGFP – TrrnB – CmR – p15A origin 

pT181 DC 
mutant 1 
repressor 

4, 5, S7 D 

JBL242
1 

J23119 – pT181 dual control activator sense target – 
repC(1-12) – SFGFP – TrrnB – CmR – p15A origin 

pT181 DC 
activator 

4, 5, S7 D 

JBL242
7 

J23119 – Fusion 3 dual control sense target – repC(1-
12) – SFGFP – TrrnB – CmR – p15A origin 

Fusion 3 DC 
repressor 

4, 5, S7 D 

JBL243
2 

J23119 – pT181 dual control mutant 2 sense target – 
repC(1-12) – SFGFP – TrrnB – CmR – p15A origin 

pT181 DC 
mutant 2 
repressor 

4, 5, S7 D 

JBL243
4 

J23119 – Fusion 4 dual control sense target – repC(1-
12) – SFGFP – TrrnB – CmR – p15A origin 

Fusion 4 DC 
repressor 

4, 5, S7 D 

JBL246
3 

J23119 – pT181 dual control sense target – repC(1-
12) – RFP – RBS – SFGFP – TrrnB –  CmR – p15A 
origin 

Dual control 
RFP/GFP 

2 F 

JBL246
4 

J23119 – pT181 truncated antisense – TrrnB – ColE1 
origin – AmpR 

pT181 
truncated 
antisense 

5, S7 C 

JBL246
9 

J23119 – Fusion 3 truncated antisense – TrrnB – 
ColE1 origin – AmpR 

Fusion 3 
truncated 
antisense 

5, S7 C 

JBL248
9 

J23119 – pT181 mutant 1 truncated antisense – 
TrrnB – ColE1 origin – AmpR 

pT181 
mutant 1 
truncated 
antisense 

5, S7 C 

JBL249
0 

J23119 – pT181 mutant 2 truncated antisense – 
TrrnB – ColE1 origin – AmpR 

pT181 
mutant 2 
truncated 
antisense 

5, S7 C 

JBL249
1 

J23119 – Fusion 4 truncated antisense – TrrnB – 
ColE1 origin – AmpR 

Fusion 4 
truncated 
antisense 

5, S7 C 

JBL249
3 

J23119 – pT181 dual control sense target – repC(1-
12) – SFGFP – TrrnB – pSC101 origin – KanR 

pT181 DC 
WT Term 
repressor 

6, S2, S3 I 

JBL252
6 

J23119 – pT181 dual control sense target – SFGFP – 
TrrnB – CmR – p15A origin 

pT181 DC 
repressor 
RepC KO 

S4 D 
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A
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Supplementary Figure A1: Plasmid architectures for plasmids used in this study. 

(A) Antisense plasmid blank control (B) Attenuator plasmid blank control (C) 

Antisense plasmid architecture (D) Attenuator plasmid architecture (E) Induction 

assay plasmid architecture (F) Two color assay plasmid architecture (G) 

Architecture of level 1 (top level) of the cascade (H) Architecture of level 2 (mid 

level) of the cascade (I) Architecture of level 3 (bottom level) of the cascade (J) 

Cascade level 3 (bottom level) blank control plasmid. Specific sequences can be 

found in Table A1. 

 
 
Supplementary Note A1: Supplementary Materials and Methods. 

 

Total RNA extraction for quantitative PCR.  

qRT-PCR was performed following the MIQE guidelines (1). Strain, transformation, 

media, and growth conditions were all the same as for end point experiments 

described in the Materials in Methods in the main text.  Plasmids were transformed, 

and subsequent colonies were grown overnight as described for in vivo bulk 

fluorescence measurements. For each biological replica, 20 μl of a single overnight 

culture was added to three wells containing 980 μl (1:50 dilution) of supplemented 

M9 minimal medium containing the selective antibiotics and grown for 4 h at the 

same conditions as the overnight cultures. For each plasmid combination, 500 μl of 

cells were removed from three wells (grown from one colony) and combined into a 

1.6-ml tube and pelleted by centrifugation at 13,000 r.p.m. for 1 min. Total RNA 

extraction was performed using Trizol reagent (Life Technologies) and an ethanol 

precipitation as described in Chappell et al. (2). The supernatant was removed, and 

the remaining pellet was resuspended in 750 μl of Trizol reagent (Life 
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Technologies), homogenized by repetitive pipetting, and incubated at room 

temperature for 5 min. 150 μl of chloroform was added, and the samples were 

mixed for 15 s and incubated at room temperature for 3 min. Following incubation, 

the samples were centrifuged for 15 min at 12,000g at 4 °C, and 200 μl of the top 

aqueous layer was removed. One microliter of glycogen (20 μg/μl; Life 

Technologies) and 375 μl of isopropanol were added to the aqueous phase, and the 

sample was incubated at room temperature for 10 min and centrifuged for 15 min at 

15,000 r.p.m. at 4 °C. Following centrifugation, the isopropanol was carefully 

removed from the total RNA/glycogen pellets, washed in 600 μl of chilled 70% 

ethanol (EtOH) and centrifuged for 2 min at 15,000 r.p.m. at 4 °C. EtOH was 

removed, and tubes were centrifuged for another 2 min at 15,000 r.p.m. at 4 °C to 

ensure that all of the ethanol was effectively removed. Pellets were resuspended in 

20 μl of RNase free double-distilled water (ddH2O) and stored at -80 °C.  

 

DNase treatment of total RNA for qPCR.  

The total RNA was treated with Turbo DNase to remove any genomic or plasmid 

DNA from the RNA extraction (2). Purified total RNA samples were quantified by the 

Qubit Fluorometer (Life Technologies) and were diluted to a concentration of 30 

ng/μl in a total of 10 μl RNase free ddH2O and digested by Turbo DNase (Life 

Technologies) according to the manufacturer's protocol. After digestion, 150 μl of 

RNase free ddH2O and 200 μl phenol/chloroform was added, and the sample was 

vortexed for 10 s and incubated for 3 min at room temperature and centrifuged for 

10 min at 15,000 r.p.m. at 4 °C. After centrifugation, 190 μl of the top aqueous layer 

was carefully removed, 190 μl of chloroform was added, and samples were vortexed 

for 10 s, incubated for 3 min at room temperature and centrifuged for 10 min at 
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15,000 r.p.m. at 4 °C. After centrifugation, 170 μl of the top aqueous layer was 

carefully removed, 170 μl of chloroform was added, and samples were vortexed for 

10 s, incubated for 3 min at room temperature and centrifuged for 10 min at 15,000 

r.p.m. at 4 °C. After centrifugation, 120 μl of the top aqueous layer was carefully 

removed and added to 1 μl glycogen, 360 μl of chilled 100% EtOH and 12 μl of 3 M 

sodium acetate, pH 5. Samples were vortexed for 10 s and stored at −80 °C for 1 h. 

Samples were then centrifuged for 30 min at 15,000 r.p.m. at 4 °C. Supernatant was 

removed, and the pellets were washed in 600 μl of chilled 70% EtOH. Samples were 

then centrifuged for 2 min at 15,000 r.p.m. at 4 °C, and the EtOH was removed. 

Samples were recentrifuged for 2 min at 15,000 r.p.m. at 4 °C, and residual EtOH 

was removed, and pellets were air-dried for 10 min, and eluted in 10 μl RNase fee 

ddH2O and stored at -80 °C.  

 

Normalization of total RNA, reverse transcription and qPCR measurements.  

To enable comparison between different samples, each DNase treated sample was 

normalized to contain the same total RNA concentration. Each sample was 

quantified by Qubit Fluorometer, and the sample was diluted to 1 ng/μl of total RNA 

in 12 μl RNase free ddH2O. For the reverse transcription, one microliter of this total 

RNA, 1 μl of 2 μM reverse transcription primer (RT SFGFP: 

TTATTTGTAGAGCTCATCCATG), 1 μl of 10 mM of dNTPs (New England BioLabs) 

and RNase-free ddH2O (up to 6.5 μl) were incubated for 5 min at 65 °C and cooled 

on ice for 5 min. 0.25 μl of Superscript III reverse transcriptase (Life Technologies), 

1 μl of 100 mM Dithiothreitol (DTT), 1 μl first-strand buffer (Life Technologies), 0.5 

μl RNaseOUT (Life Technologies) and RNase free H2O up to 3.5 μl were then added, 

and the solution was incubated at 55 °C for 1 h, 75 °C for 15 min and then stored at 
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−20 °C. qPCR was performed using 5 μl of Maxima SYBR green qPCR master mix 

(Thermo Scientific), 1 μl of cDNA and 0.5 μl of 2 μM SFGFP qPCR primers  

(SFGFP.Fwd: CACTGGAGTTGTCCCAATTCT, SFGFP.Rev: 

TCCGTTTGTAGCATCACCTTC) and RNase-free ddH2O up to 10 μl. A Bio-Rad CFX 

Connect Real-Time System (Bio-Rad) was used for data collection using the 

following PCR program: 50 °C for 2 min, 95 °C for 10 min, followed by 30 cycles of 

95 °C for 15 s and 60 °C for 1 min. All of the measurements were followed by 

melting curve analysis. A Hard-Shell 96-well PCR Plate (HSL9641, Bio-Rad) and a 

Microseal ‘B’ seal (MSB1001, Bio-Rad) were used for all measurements. Results 

were analyzed using Bio-Rad CFX Manager (V 3.1, Bio-Rad) by a relative standard 

curve. For quantification, a six-point standard curve covering a 100,000-fold range 

of SFGFP DNA concentrations (R2 > 0.99) was run in parallel and used to determine 

the relative SFGFP cDNA abundance in each sample. It was shown that the SFGFP 

qPCR primer set had a primer efficiency between 101–104%. All of the cDNA 

samples were measured in triplicate, and nontemplate controls run in parallel to 

control for contamination and nonspecific amplification or primer dimers. All NTC 

samples were quantified after 30 cycles. In addition, qPCR was performed on total 

RNA samples to confirm limited plasmid DNA contamination of cDNA samples. 

Control samples were quantified at least 4 cycles after their cDNA samples. Melting 

curve analysis was performed to confirm that only a single product was amplified. 

Units are reported as ng/μl x 10-7 representing cDNA concentration in the 

processed samples. 

 

Induction curve assay.  
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Strain, transformation, media, and growth conditions were all the same as for end 

point experiments described in the Materials and Methods in the main text. Plasmid 

combinations were transformed into chemically competent E. coli TG1 cells, plated 

on Difco LB+Agar plates containing selective antibiotics and incubated overnight 

(approximately 17 hours) at 37°C. Plates were taken out of the incubator and left at 

room temperature for approximately 7 h. Three colonies were used to separately 

inoculate 300 µL of LB containing selective antibiotics in a 2 mL 96-well block 

(Costar 3960), and grown approximately 17 h overnight at 37°C. Four microliters of 

this overnight culture was then added to 196 μL (1:50 dilution) of supplemented M9 

minimal media containing the selective antibiotics and the required amount of IPTG. 

After 4 h of incubation at 37C, 50 µL of this culture was then transferred to a 96-well 

plate (Costar 3631) containing 50 µL of phosphate buffered saline (PBS). 

Fluorescence (485 nm excitation, 520 nm emission) and optical density (OD, 600 

nm) were then measured using a Biotek SynergyH1m plate reader.  

 

RepC Knockout Assay.  

Strain, Transformation, media, and growth conditions were all the same for the end 

point experiments described in the Materials and Methods in the main text. After the 

4 h incubation at 37C in supplemented M9 minimal media, 50 µL of this culture was 

then transferred to a 96-well plate (Costar 3631) containing 50 µL of phosphate 

buffered saline (PBS). Fluorescence (485 nm excitation, 520 nm emission) and 

optical density (OD, 600 nm) were then measured using a Biotek SynergyH1m plate 

reader. 
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In Vivo bulk fluorescence time course experiments from glycerol stocks, Strain, 

transformation, media, and growth conditions were all the same as for end point 

experiments described in the Materials in Methods in the main text. Transformation 

plates containing E. coli TG1 cells transformed with three cascade plasmids 

(Supplementary Table A2) were taken out of the incubator and left at room 

temperature for approximately 7 h. Colonies were picked and incubated at 37C 

overnight in LB containing selective antibiotics. The following morning, 500μL of 

culture was mixed with 500μL of 50% glycerol and frozen at -80C. Three colonies 

were picked from the frozen glycerol stocks and used to inoculate 300 μL of LB 

containing selective antibiotics in a 2 mL 96-well block (Costar 3960), and grown 

approximately 17 h overnight at the same conditions as described for an end point 

experiment (see Materials and Methods in main text). Cultures were diluted 1:50 in 

separate wells on a new block containing 1 mL of supplemented M9 minimal media 

containing the selective antibiotics and grown for 4 h at the same conditions as the 

overnight culture. Then theophylline was added to the theophylline condition to a 

final concentration of 2mM. Every 30 min for the next 4 h, 50 μL from each of the 

fresh cultures was removed from the 96-well block and transferred to a 96-well 

plate (Costar 3631) containing 50 μL of phosphate buffered saline (PBS). SFGFP 

fluorescence (FL, 485 nm excitation, 520 nm emission) and optical density (OD, 600 

nm) were then measured at each time point using a Biotek Synergy H1m plate 

reader. 
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Supplementary Figure A2: Additional data for repressor cascade (Figure 2.6). 

Functional data for the transcriptional and dual control repressor cascades over 

time. All three plasmids were co-transformed into E. coli TG1 cells. Theophylline 

(2mM) is spiked at t=0 hours (orange for transcriptional and red for dual control) 
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causing GFP to be expressed. Bulk fluorescence was measured using a plate reader 

(see Materials and Methods). The no theophylline condition is shown in green for 

the transcriptional cascade and blue for dual control. The dual control reduces 

circuit leak and the background fluorescence. The transformation, culturing, and 

measurements were done on different days for three days of experiments. The 

colored region indicates the standard deviation from three biological replicates. 

 
Supplementary Figure A3: Functional data for the transcriptional and dual control 

repressor cascades over time performed from glycerol stocked strains. Experiment 

performed as described in Supplementary Note A1. Data was analyzed as described 

in the Materials and Methods. The no theophylline condition is shown in green for 

the transcriptional cascade and blue for dual control. The dual control reduces 

circuit leak and the background fluorescence. The colored region indicates the 

standard deviation from three biological replicates. 
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Supplementary Figure A4: Functionality of the 12nt RepC fusion versus complete 

RepC knockout. (A) Schematic of the pT181 transcriptional terminator with RBS 

(pink) and dual control 12nt fusion to RepC (orange) expressing SFGFP (green). The 

dual control with no RepC lacks the orange region. (B) Experiments were performed 

as described in Supplementary Note A1. Bulk fluorescence data was collected using 

a plate reader. The 12nt RepC fusion shows similar percent repression (97% +/- 

1.5%) as the dual control with no RepC (96% +/-0.8%), but has a much higher ON 

level. Error bars represent the standard deviation of nine biological replicates. 
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Supplementary Figure A5: Quantitative RT-PCR of a transcriptional and a dual 

control pT181 attenuator. qRT-PCR quantification was performed as described in 

Supplementary Note A1. Bulk fluorescence was measured using a plate reader from 

the same cultures as the RNA was extracted. The fluorescence ON levels (red) were 

significantly different (P > 0.05 for Welch’s t-test), but mRNA ON levels (green) were 

not significantly different. Transcriptional fluorescence repression (80% +/- 3.4%) 

was similar to mRNA repression (78 +/- 9.1%) while dual control fluorescence 

repression (97% +/- 0.7%) was much higher than mRNA repression (84% +/- 

8.1%). The error bars represent the standard deviation of three technical replicates 

of three biological replicates.  
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Supplementary Figure A6: Schematic of the pT181 anti-terminator STAR 

mechanism. The sense target region consists of the pT181 STAR target region from 

Chappell et al. (2) followed by a 96 nt fragment of the repC gene ending in a stop 

codon, TAA, included as a transcriptional fusion before a ribosome binding site 

(RBS) and the regulated gene of interest. In the absence of the STAR RNA 

(red/orange), the terminator forms, preventing downstream transcription by RNA 

polymerase (grey). Thus in the absence of STAR RNA the mechanism is 

transcriptionally OFF. The STAR RNA contains an anti-terminator sequence 

(orange) complementary to the 5’ half of the terminator (blue). When present, the 

STAR RNA binds to the terminator, preventing terminator formation and allowing 

transcription elongation. Thus in the presence of STAR RNA the mechanism is 

transcriptionally ON. 
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Supplementary Figure A7: In vivo expression data used to calculate orthogonality 

matrices in Figure 2.5. Functional characterization of orthogonality matrix cognate 

and non-cognate pairs. Average fluorescence (MEFL) was collected by flow 

cytometry of E. coli TG1 cells with no antisense (red), wild type antisense (orange), 
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mutant 1 antisense (yellow), mutant 2 antisense (green), fusion 3 antisense (blue), 

or fusion 4 antisense (purple). Error bars represent standard deviations of at least 

seven biological replicates. 
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Supplementary Figure A8: Sequences and model structures of the schematic 

shown in Figure 2.1B with both the anti-terminated structure (ON) in the absence of 

antisense (A) and the terminated structure (OFF) in the presence of antisense (B). 

The anti-terminator region is highlighted in orange and the 5’ terminator stem is 

highlighted in blue. The RBS is shown with a pink line, the Poly U with a blue line, 

the 12 nt RepC fragment with an orange line, and SFGFP coding sequence with a 

green line. Sequences for both the wild type and engineered terminators are shown. 

Structures are from Brantl and Wagner (3).  

 

 
Supplementary Figure A9: Sequence and structure of the full length wild type 

pT181 antisense and the truncated wild type antisense. In order to create the 

truncated antisense, the first hairpin from the 5’ side was removed and sequence 

was truncated from the 5’ stem of the antisense. Structures are from Brantl and 

Wagner (3). 
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Supplementary Figure A10: Induction curves of transcriptional and dual control 

attenuators. Antisense expression is under the control of the Lac promoter. 

Experiment performed as described in Supplementary Note A1. Data was analyzed 

as described in Materials and Methods. The dual control attenuator (red) shows 

greater dynamic range (77% +/- 6.1%) in response to IPTG induction than the 

transcriptional (orange) attenuator (58% +/- 6.6%). The colored region indicates 

the standard deviation from 3 biological replicates.    
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Supplementary Table A3: Averages and standard deviations (MEFL) plotted in 

Figure 2.2A and 2.2B. Values have been rounded to the nearest integer for ease of 

interpretation.   

 

No antisense 
(average) 

With 
antisense 
(average) 

No antisense 
(SD) 

With 
antisense 
(SD) 

Transcriptio
nal WT 
terminator 40289 14857 7307 1659 
Dual control 
WT 
terminator 94148 1630 11530 260 
Transcriptio
nal 
Eng 
terminator 38699 5849 4207 1132 
Dual control 
Eng 
terminator 27401 671 3644 181 
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Supplementary Figure A11: Sequences and structures of the schematic shown in 

Figure 2.3A with both the terminated structure (OFF) in the absence of antisense 

(A) and the anti-terminated structure (ON) in the presence of antisense (B). The 5’ 

terminator stem is highlighted in blue. The RBS is shown with a pink line, the Poly U 

with a blue line, the 12 nt RepC fragment with an orange line, and SFGFP with a 

green line. Structures are derived from diagrams in Chappell et al. (2). 
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Supplementary Table A4: Averages and standard deviations (MEFL) plotted in 

Figure 2.3B and 2.3C. Values have been rounded to the nearest integer for ease of 

interpretation. 

  
No antisense 
(average) 

With 
antisense 
(average) 

No antisense 
(SD) 

With 
antisense (SD) 

STAR 3700 37976 695 11837 
Dual 
control 
STAR 115 106062 16 19872 
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Supplementary Figure A12: Sequences and structures of antisense/attenuator 

interaction regions in Figure 2.4A including the wild type (A), mutant 1 (B), mutant 

2 (C), fusion 3 (D), and fusion 4 (E). Wild type sequence is shown in black. Mutant 1 

sequence is shown in blue. Mutant 2 sequence is shown in green. Fusion 3 sequence 
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is shown in red. Fusion 4 sequence is shown in purple. Structures are from Brantl 

and Wagner (3) (A), Lucks et al. (4) (B, C) and Takahashi et al. (5) (D, E). 

 
 
 
 
Supplementary Table A5: Averages and standard deviations (MEFL) plotted in 

Figure 2.4B and 2.4C. Values have been rounded to the nearest integer for ease of 

interpretation. 

  

No 
antisense 
(average) 

With antisense 
(average) 

No 
antisense 
(SD) 

With 
antisense 
(SD) 

Transcription
al WT 38699 5849 4207 1132 
Dual control 
WT 94590 3671 9334 455 
Transcription
al Mutant 1 38311 7369 4557 776 
Dual control 
Mutant 1 81071 2832 14435 1116 
Transcription
al Mutant 2 37943 14133 2518 867 
Dual control 
Mutant 2 78197 17278 4814 3053 
Transcription
al Fusion 3 36984 6935 3957 844 
Dual control 
Fusion 3 87808 2675 8282 432 
Transcription
al Fusion 4 48829 10917 4764 2190 
Dual control 
Fusion 4 138298 5338 9637 1056 
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Supplementary Table A6: Standard deviations for the percent repressions 

presented in Figure 2.5B with full-length antisense. Bolded cells indicate the 

diagonal.  

  WT full AS 
Mut 1 full 
AS 

Mut 2 full 
AS 

Fus 3 full 
AS 

Fus 4 full 
AS 

WT sense 0.77 11.31 11.82 20.47 14.14 
Mut 1 
sense 9.89 1.23 12.25 20.17 22.70 
Mut 2 
sense 13.39 12.32 5.50 25.33 19.28 
Fus 3 
sense 16.57 33.62 24.14 3.56 20.95 
Fus 4 
sense 10.78 14.73 13.43 11.11 3.78 

 
 
 
 
 
 
 
Supplementary Table A7: Standard deviations for the percent repression 

presented in Figure 2.5C with truncated antisense. Bolded cells indicate the 

diagonal.  

  
WT trunc 
AS 

Mut 1 
trunc AS 

Mut 2 
trunc AS 

Fus 3 trunc 
AS 

Fus 4 trunc 
AS 

WT sense 0.62 11.42 10.99 19.93 18.07 
Mut 1 
sense 15.76 1.51 17.57 21.57 16.72 
Mut 2 
sense 8.61 10.06 4.13 17.50 7.83 
Fus 3 
sense 12.92 9.30 12.55 0.57 10.65 
Fus 4 
sense 17.02 12.14 16.28 13.62 0.81 
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APPENDIX B 

Supplementary information for Timescale Differences Allow Construction of 

an RNA-based Incoherent Feed Forward Loop 

B.1 Supplementary Figures and Tables 
 

 
  

 Description 
Table B1 Parameter values used in Figure 4.3 and 4.5 
Table B2 Important DNA sequences 
Table B3 Plasmids used in this study 
Figure B1 Complete CRISPRi pre-incubation data 
Figure B2 Complete STAR parameterization data 
Figure B3 Complete CRISPRi parameterization data 

Figure B4 
Parameter correlation comparison of the 1000 fitted STAR 
parameters 

Figure B5 
Parameter correlation comparison of the 1000 fitted CRISPRi 
parameters 

Figure B6 
Predictions of all combinations of STAR and CRISPRi parameter 
sets 

Figure B7 Complete pulse generator circuit data 
Figure B8 Prediction parameters compared to fitting parameters 
Figure B9 Best fitting from each of the 10 Bayesian inference for STAR 
Note B1 Slope computation and fitting for Figure 4.2 
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Table B1. Parameter values used in Figure 3 and 5. The best fitting EGFP reporter 

parameters from both STAR and CIRSPRi pre-incubation experiments are listed in 

order of STAR/CRISPRi. 

Parameters Varying Interval Best Fitting Values Best Prediction Values 
Ds 10-2 - 10 s-1 2.038 s-1 2.038 s-1 
Gs 10-5  - 10-1 s-1 0.0915 s-1 0.0915 s-1 
Es 103 - 107 nM-1s-1 310969 nM-1s-1 310969 nM-1s-1 

Dcr/tr 10-2 – 10 s-1 0.739 s-1 0.03 s-1 
Gcr 10-5  - 10-1 s-1 0.0615 s-1 0.0614 s-1 
Gtr 10-5  - 10-1 s-1 0.030 s-1 0.073 s-1 
Gg 10-5  - 10-1 s-1 0.085 s-1 0.0176 s-1 
J1 103 - 107 nM-1s-1 7.38x106 nM-1s-1 8.69x106 nM-1s-1 
J2 103 - 107 nM-1s-1 6.56x106 nM-1s-1 3.68x106 nM-1s-1 
Z 103 - 107 nM-1s-1 3.1x104 nM-1s-1 7.17x106 nM-1s-1 
Dm  10-1 – 100 s-1 0.1/50.65 s-1 0.1 s-1 
Gm 10-5  - 10-1 s-1 4.01x10-4/0.094 s-1 4.01x10-4 s-1 
Ki 10-4  - 10-2 s-1 0.0012/9.019x10-4 s-1 0.0012 s-1 
Ke 10-4  - 10-2 s-1 0.009/4.168x10-4 s-1 0.009 s-1 
Dgm 10-3  - 10-1 s-1 0.092/0.015 s-1  0.092 s-1 

 
 
Table B2. Important DNA sequences 

Name Sequence 
J23119 TTGACAGCTAGCTCAGTCCTAGGTATAATACTAGT 
p70a TGAGCTAACACCGTGCGTGTTGACAATTTTACCTCTGGCGGTGATAATGGT

TGCA 
STAR 5 TGAACTGTATACATTCCCCGCAGGATAGGAATTGAAGATGAAACGATGAG

ACTTGGGACGAGGATCT 
STAR 5 
Target 

TCGTCCCAAGTCTCATCGTTTCATCTTCAATTCCTATCCTGCGGGGAATGT
ATACAGTTCATGTATATATTCCCCGCTTTTTTTTTGGATCT 

crRNA GGTAAAATTGTCAACACGCAGTTTTAGAGCTATGCTGTTTTGAATGGTCCC
AAAAC 

Scrambled 
crRNA 

AAGCAGATTACGTTCAAGCAGTTTTAGAGCTATGCTGTTTTGAATGGTCCC
AAAAC 

tracrRNA ATCTTGTTGGAACCATTCAAAACAGCATAGCAAGTTAAAATAAGGCTAGT
CCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTG 

eGFP 
(Ribosome 
binding site 
(RBS) -
GFP) 

AGAAGGAGATATACCATGGAGCTTTTCACTGGCGTTGTTCCCATCCTGGTC
GAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC
GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACC
GGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCG
TGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCA
AGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGG
ACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCC
TGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACA
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TCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCA
TGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACA
ACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCC
CCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCA
GTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCT
GGAGTTCGTGACCGCCGCCGGGATCTAACTCGAG 

TrrnB GAAGCTTGGGCCCGAACAAAAACTCATCTCAGAAGAGGATCTGAATAGCGC
CGTCGACCATCATCATCATCATCATTGAGTTTAAACGGTCTCCAGCTTGGC
TGTTTTGGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAGA
ACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGT
GGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGA
TGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAA
TAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTT
TGTCGGTGAACT 

T500 CAAAGCCCGCCGAAAGGCGGGCTTTT 
 
 
 
Table B3. Plasmids used in this study. Sequences in the plasmid architecture can be 

found in Table B2. 

 
  

Plasmid 
# Plasmid architecture Name 

 
Figure 

 
Reference 

JBL002 J23119 – TrrnB – ColE1 origin – AmpR 
No STAR 
control 

2-6, S2-5, 
S7, S10 

A 

70a-GFP p70a – GFP – ColE1 origin - AmpR P70a-GFP 

2 Garamell
a et al. 
2016 

AMW01
9 

p70a – STAR 5 Target – GFP – ColE1 origin - 
AmpR 

P70a-STAR 
Target-GFP 

2, 4, 5, S4, 
S5, S7 

This 
paper 

JBL4971 J23119 – STAR 5 – t500 – ColE1 origin - AmpR STAR 5 

2, 4, S5, 
S10 

Chappell 
et al. 
2017 

CSM257 J23119 – crRNA – t500 – CamR – ColE1 crRNA 
4 This 

paper 

CSM258 
J23119 – scrambled crRNA – t500 – CamR – 
ColE1 

crRNA 
control 

4, 5, S7 This 
paper 

CSM275 J23119 – tracrRNA – t500 – CamR – ColE1 tracrRNA 
4 This 

paper 
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Supplementary Figure B1. Complete data for the CRISPRi pre-incubation 

experiment.  Functional time course characterization of the CRISPRi response when 

parts are incubated together or alone in various combinations for 2 hours before 

measurements. When no crRNA or trRNA is present, GFP expression is ON (green). 

When all the parts are incubated together, GFP is quickly repressed (red). GFP 

repression is delayed when all parts are incubated separately (blue). Incubating 

trRNA alone, but dCas9 and crRNA together shows similar delays in repression 

(yellow). When crRNA (orange) or dCas9 (purple) is incubated alone (but dCas9 and 

trRNA together or crRNA and trRNA together, respectively) the delay is less dramatic. 

The colored region indicates the standard deviation of nine replicates. The same data 
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is shown in both plots except the p70a-GFP has been removed from the bottom plot 

so that the other conditions could be seen clearly.  

 

 
Supplementary Figure B2. Complete data for the STAR parameterization 

experiment.  Functional time course characterization of GFP expression when 

different concentrations of STAR plasmid is added to the TXTL reaction with 0.5nM 

of the p70a-STAR Target-GFP plasmid at the start of the measurement. The colored 

region indicates the standard deviation of nine replicates.  

 

 
Supplementary Figure B3. Complete data for the CRISPRi parameterization 

experiment.  Functional time course characterization of GFP expression when 

different concentrations of crRNA and trRNA plasmids are added to the dCas9 TXTL 
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reaction with 0.5nM of the p70a-GFP plasmid at the start of the measurement. The 

colored region indicates the standard deviation of nine replicates. 

 

 
Supplementary Figure B4. Distribution and parameter correlation comparison of 

the 1000 fitted STAR parameters that gave the lowest fitting error to the STAR 

experiments. While no strong correlations were observed among the parameters, 

some parameters have a wider distribution such as βs and Ki, some others have 

narrower distributions such as αm. 
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Supplementary Figure B5. Distribution and parameter correlation of the 1000 fitted 

CRISPRi parameters that gave the lowest fitting error to the CRISPRi experiments. 

While minimal to no correlations were observed among the parameters, some 

parameters have a wider distribution such as γ1, some others have narrower 

distributions such as ω. 

  
 

Supplementary Figure B6. Predictions of all the 100 combinations of STAR and 

CRISPRi separately fitted parameter sets demonstrate pulse in the combined model. 
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Solid blue plots are individual predictions, dashed black plot is the prediction with 

the best separately fitted parameters, the solid black plot is the best prediction out of 

this 100 combinations, and the solid red plot is the averaged experimental 

measurement. 

 
Supplementary Figure B7. Complete data for the pulse generator experiment.  

Functional time course characterization of pulse generator with 0.5nM of the p70a-

STAR Target-GFP plasmid, 16nM of STAR plasmid (for the +STAR conditions), and 

0.25nM of crRNA and trRNA plasmids (for the +crRNA conditions). The pulse 

generator activates expression and plateaus quickly. A pulse is generated in 

production rate when both STAR and crRNA are present (+STAR +crRNA, purple). We 

show both the normalized concentrations (top) and normalized production rate 



 184 

(bottom) because GFP does not degrade so the pulse is seen in production rate. The 

production rates shown are smoothed averages of nine replicates. The pulse 

generator (+STAR +crRNA, purple), negative control (-STAR -crRNA, red), and 

CRISPRi control (-STAR +crRNA, green) conditions are normalized by the +STAR 

+crRNA and the STAR control (+STAR -crRNA, blue) is normalized by its own 

maximum. The colored regions (top) indicate the standard deviation of nine 

replicates. 

 
 

Supplementary Figure B8. Comparison in terms of parameter values in the best 

fitted and prediction parameter sets, demonstrating that a faster CRISPRi repressor 

formation rate was needed in the pulse circuit model for better prediction accuracy. 

Prediction param = fitting param
Prediction  param  ≠  fittin g param
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Supplementary Figure B9. Best fitting from each of the 10 Bayesian inference for 

STAR (a), CRISPRi (b), and pulse generator model (c). Fitting error demonstrates 

convergence comparison in log scale for STAR (e), CRISPRi (f), and pulse generator 

(h). There are 8, 12, and 15 parameters fitted in the STAR, CRISPRi, and pulse 

generator model respectively. Due to the increased number of parameters, even with 

a larger number of iterations it was challenging to obtain convergence for the CRISPRi 

and pulse model fitting, with worse fitting performance with respect to to STAR.This 

indicates that our fitting approach becomes more challenging and computationally 

expensive as the number of fitted parameters increases. 

 
Supplementary Note B1: Slope computation and fitting for Figure 4.2 in the 

main manuscript. 

Data were first smoothed by employing a 2 point moving average filter with MATLAB. 

The slope of each kinetic data set was computed using the MATLAB function diff. The 
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slope was then averaged over all the available samples. The averaged slope was fitted 

to the following functions, using MATLAB’s lsqcurvefit routine: 

a) STAR system: 

 

 Fitted values for the parameters are: d1 = 0.3*10-3 Pm/min, d2 = 25 min.  

b) CRISPR system: 

 

 Fitted values for the parameters are: k1 = -0.0218 Pm/min, k2 = 14.24 min, k3 = 

0.0224 Pm/min, k4 = 18.27 min  
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APPENDIX C 

Supplementary Information for Chapter 5 

C.1 Supplementary Tables 
 
Table C1: Model Variables 
 

Variable Description 
t time 
Ig Intensity of green light 
Ir Intensity of red light 
A Concentration of repressor A 
B Concentration of repressor B 
C  Concentration of repressor C 
D Concentration of repressor D 
E Concentration of repressor E 
F Concentration of repressor F 
G Concentration of repressor G 
Mg Concentration of GFP mRNA 
Mr Concentration of RFP mRNA 
Pg Concentration of GFP 
Pr Concentration of RFP 

 
Table C2: Parameter estimations from the literature for both models. 
 

Name Value Description Reference 
kp,g(Ig) varies Transcription rate based on CcaS/CcaR model Olson et al. 2014 
kp,r(Ir) varies Transcription rate based on Cph8/OmpR 

model 
Olson et al. 2014 

c(t-tdelay) varies Set point based on CcaS/CcaR or Cph8/OmpR 
model 

Olson et al. 2014 

β 230 
molecules/
min 

RNA transcription constant Hu and Lucks, 2015 

K 150, 120 
molecules 

Repression constant  Hu and Lucks, 2015 

dm 0.23/min RNA degradation constant Estimated from 
bionumbers 

kPg, kPr 1320/min Protein translation rate Estimated from 
bionumbers 

dPg, dPr 0.023/min Protein degradation rate Estimated from 
bionumbers 

𝜂𝐶𝐷, 𝜂𝐷𝐶, 
𝜂𝐴𝐸, 𝜂𝐺𝐸, 
 𝜂𝐺𝐹, 𝜂𝐸𝐺 

2 Number of tandem attenuators (𝜂XW) for X 
attenuator regulating W antisense 

Determined from 
stability analysis 
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𝜂𝐴𝐶, 𝜂𝐵𝐷, 
 𝜂𝐺𝐷, 𝜂𝐷𝐹, 
 𝜂𝐵𝐺, 𝜂𝐹𝐺 

1 Number of tandem attenuators (𝜂XW) for X 
attenuator regulating W antisense 

Determined from 
stability analysis 
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