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Abstract

A problem persists in measuring the welfare effects of simultaneous price and income changes 
because the Hicksian compensating variation (CV) and equivalent variation (EV), while 
unique, are based on unobservable (Hicksian) demand functions, and observable (Marshallian) 
demand functions do not necessarily yield a unique Marshallian consumer's surplus (CS). This 
paper proposes a solution by a Taylor series expansion of the expenditure function to 
approximate CV and EV by way of the Slutsky equation to transform Hicksian price effects into 
Marshallian price and income effects. The procedure is contrasted with McKenzie's "money 
metric" (MM) measure derived from a Taylor series expansion of the indirect utility function. 
MM requires a crucial assumption about the marginal utility of income to monetize changes in 
utility levels. No such assumption is required by the proposed procedure because the 
expenditure function is measured in money units. The expenditure approach can be used to 
approximate EV and CV while the MM is an approximation to EV. The EV and CV 
approximations are shown to be very accurate in numerical examples of two prices and income 
changing simultaneously, and are generally more accurate than MM.

*J. C. Dumagan is a post-doctoral researcher and T. D. Mount is a professor at the 
Department of Agricultural Economics, Cornell University. This paper is an outgrowth of a 
wider study on demand systems modeling and welfare change measurement supported by a 
research grant from the New York State Department of Public Service. The usual caveat 
applies that the authors alone are responsible for the analysis in this paper.



1. Introduction

Approximations to the Hicksian compensating variation (CV) and equivalent 

variation (EV) based on the Marshallian consumer's surplus (CS) (W illig, 

1976; Shonkwiler, 1991) are fundamentally limited to single price change 

because CS is generally not unique when more than one price changes 

(Silberberg, 1972, 1978; Chipman & Moore, 1976, 1980; Just, Hueth & Schmitz, 

1982).1 For a single price change, however, these approximations may not be 

necessary as shown by Hausman (1981) since exact measures of CV and EV 

could be obtained in certain cases by recovery of a local indirect utility 

function from observed demand functions. Hausman's exact measure of CV 

and EV could in theory be extended to multiple price changes, but no one has 

done it to date.2

Thus, none of the above approximate or exact measures are practicable 

for measuring welfare changes in the more general case of multiple price 

changes. For the latter case, there remains a need for a "practical algorithm" 

sought by Chipman & Moore (1980) for a money measure of welfare change 

based on observable demand functions. This measure exists in theory as 

shown by Hurwicz & Uzawa (1971). One such algorithm is McKenzie's (1983) 

"money metric" (MM) measure of EV from a Taylor series approximation to

the change in the indirect utility function. An alternative measure of EV and

1With more than one price changing at the same time, consumer's surplus is integrable or a 
unique measure of welfare change if and only if income elasticities are equal for the goods with 
the changing prices. This condition is equivalent to unitary income elasticities, i. e., 
homothetic preferences, for the case when all prices change simultaneously. Otherwise, with 
unequal income elasticities, consumer's surplus is not unique and will, therefore, result in 
misleading spproximations to welfare change given simultaneous price changes.

2His examples for a single price change when the demand function is linear or log-linear 
in own-price and income seem straightforward. However, his generalizations of these demand 
functions to include other prices yield exact welfare measures "when all other prices are 
constant" and "they cannot be used to analyze the welfare change when more than one price 
changes (except proportionately) without further analysis." (Hausman, 1980, p. 670). There is, 
however, no such further analysis in Hausman's paper.
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of CV based on a Taylor series approximation to the change in the 

expenditure function is proposed in this paper. This alternative can also be 

computed from observable demand functions by means of the Slutsky 

equation, which links Hicksian price effects to Marshallian price and income 

effects. However, in comparison to MM, the alternative in this paper is less 

restrictive in theory because it does not involve assumptions about the 

marginal utility of income, hence does not impose restrictions on consumer 

preferences in addition to those in standard consumer theory.

This paper is organized as follows. Section 2 presents the welfare 

measures proposed in this paper based on a Taylor series approximation to 

the change in the expenditure function for the case of multiple price and 

income changes. It is shown to preserve the properties of the expenditure 

function, namely, linear homogeneity and concavity in prices. Two 

formulations of the proposed welfare measure are presented, one for EV and 

the other for CV. Section 3 presents McKenzie's money metric measure of 

welfare change from a Taylor series approximation to the change in the 

indirect utility function. This is reformulated to show that the third-order 

approximation has the properties of the indirect utility function, namely, 

non-decreasing in income, non-increasing in prices and homogeneous of 

degree zero in prices and income. Section 4 compares the two 

approximations relative to the true EV and true CV in an example of two 

goods where both prices and income change simultaneously. The proposed 

EV approximation is also compared to MM given the same changes in prices 

and income. Section 5 concludes this paper with a summary of findings.
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2. Measuring Welfare Change From the Expenditure Function

The Hicksian measures of welfare change, namely, the equivalent 

variation (EV) and compensating variation (CV) are both based on the change 

in the value of the expenditure function when prices and/or income change. 

The difference between the two, however, is that EV uses the terminal level 

of utility and the original prices as bases for calculation while CV uses 

original utility and terminal prices. EV and CV are illustrated in Figure 1.

Figure 1. Hicksian Equivalent and Compensating Variations
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The original situation is given by point O on the indifference curve U°. 

Assume a change in prices and income such that the new or terminal 

situation is given by point T on the indifference curve l/. For the move from 

O on U° to T on U*, EV requires pivoting from T to O ' on U* such that at O ' 

prices are the same as the original prices at the starting point O. In this case, 

EV is equal to the change in the value of the expenditure function at the 

original prices that is required to maintain the terminal level of utility, which 

was achieved in the first place by a change in prices and income. Assuming 

in Figure 1 that X 2 is a numeraire good, EV = E Qt -  E ^ , where E is the 

minimum expenditure required to achieve the terminal utility level U* at the 

original prices P° = {P °  , P2} and, likewise, E^ is the minimum expenditure 

to stay on the original level of utility U° at these original prices. That is, EV is 

the change in expenditure for the parallel move between points O and O'. In 

contrast, CV is based on the original utility U° and on the terminal prices. 

Thus, CV requires pivoting from point O to T' on U° and CV = Ett— E , which 

is the change in expenditure for the parallel move between points T' and T.

2.2 EV Approximation for M ultiple Price and Income Changes

Let E(P, U) be the minimum expenditure at prices P to achieve utility U. 

This means that EV from above can be written as

EV = Eot -  Eoq = E(P°, U*) -  E(P°, U°) . [1]

It is apparent from Figure 1 that the move from O to T involves not only a 

change in prices but also a change income, which is given by

AI = Ett — E^ =E(P\ u b - E ^ U 0) • [2]

Combining [1] and [2\ EV can be decomposed (Boadway & Bruce, 1986) into
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price and income effects as

EV = E(P°, u ‘) -  E(Pl, U*) + AI . [3]

In [3], EV is defined such that its sign is in the opposite direction to the change 

in prices but in the same direction as the change in income. That is, EV is 

positive (negative) when prices fall (rise) and positive (negative) when 

income rises (falls). This is adopted in this paper so that a positive (negative) 

EV implies a welfare improvement (deterioration).

The key idea to the proposed EV approximation is that point O' on U* is 

not an observable point. Only points O on U° and T on U* are observable for 

the simple reason that the consumer actually starts from O and ends up at T.3. 

The point O' exists only as a theoretical construct by definition of EV. This 

realization has important implications in applied welfare analysis when the 

analyst has information only about the observable demand functions but not 

about the exact form of the underlying utility function. In this situation, EV 

for the move from the observable point O to the unobservable point O' can 

only be approximated by going through the observable point T.

It follows from above that the minimum expenditure E(P°, U*) at T' is 

not known outright but the minimum expenditure E(P*, l/ ) at T is in concept 

known. However, E(P°, l/ ) can be obtained by a Taylor's series (Apostol, 1967; 

Chiang, 1984) expansion around E(Pl, l/), i. e.,

E(P°, Ul) = E(Pl, U‘) + X  7[ E<P' U‘) + Rr [4]
r *

where r! is the factorial of r; dr E(P, l/ ) is the rth-order total differential of the 

expenditure function; and R r is the remainder term for a finite rth-order 

expansion. Because the expenditure function is continuous in prices, the 

change from E(Pl, l/ ) to E(P°, U*) can be expressed as a line integral,

3Given a change in income, points O and T lie on different demand curves.
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[5]

Combining [3], [4] and [5], it follows that EV can be expressed as

^  n

EV = Y  ~ 7 d rE(p, u t) + Rr + A l=  f £  
r « j  nt . Hp i=i

aE(P, U ) 
dP;

dP. + AI [6]

The value of the line integral is independent of the path of integration if and 

only if

a2 E(P, u‘) d2 E(P, u‘)
ap. ap. ap. ap. m

where the equivalence follows, first, by application of Shephard's lemma that 

the derivative of E(P, U*) with respect to price P. is the Hicksian demand
h t

function X. = X. (P, U ) and, second, by Young's theorem. Because [7] is true, 

then EV is integrable or that its value is unique independently of the pattern 

of price changes. This implies that the unique value of EV can be obtained 

without regard to the order of the price change in the process of calculation, 

given the same set of prices that have changed at the same time. The 

uniqueness of EV remains true when it is calculated by the Taylor series 

expansion rather than by the line integral expression.

Ignoring the remainder term Rj, [6] yields a third-order (r = 3) Taylor 

series approximation, EVd ~ EV,

3E(P, U‘)
E V d =  2 .  A P  +

i = l

n n

ap.
i  y  y  a2 e (p , i/)

1 2 ^  ap.ap.1=1 j=i i j
AP. AP. 

i ]

 ̂ V 1 "V  V   ̂ E(P, U )+ -  >  >  >  ------— — - AP. AP. AP. + AI .
6 £ j & & 3piapj 9pk 1 1 k

[8]
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All the partial derivatives in [8] should be evaluated at prices P* since these 

serve as the base prices of the Taylor series expansion in [4]. In principle, EVd 

is the approximate change in the value of the expenditure function as prices 

P* change to P° keeping utility constant at U*, while the expenditure line 

pivots from tangency at T towards tangency point O' in Figure 1. Therefore, 

the changes in prices in [8] should also be defined with prices P* as the base 

values, i. e.,

AP. = P° -  p !,i i i ' i = 1 ,2 , . . . ,  n. [9]

It may now be shown that the approximation EVd in [8] can be computed 

from observable demand functions. By Shephard's lemma,

9 E (P ,U ) h h t
— — — - = X. = X. (P, U ) 

9P. 1 1
[10]

which is the Hicksian demand function given the terminal utility level, u\ 

Since all partial derivatives are evaluated at the observed point T on U f at 

prices P*, [10] takes the value x j1 (P, l/ ) = X*1 (P*, U*). The observed Marshallian 

quantities x ! demanded at the prices P* can be substituted for the unobserved 

Hicksian quantities because point T corresponds to an intersection between 

Marshallian and Hicksian demand curves. That is, x!* (P*, U*) = x! (P*, I*) at 

point T where I* is the level of income or expenditure required to attain 

utility level U* given the prices p\

By the Slutsky equation (Varian, 1984),

a2E(P,u*) 3̂ <p-u‘) ax' ax'
ap.ap. ap ap. j ai Ji ) j j

where x ! and X* are Marshallian quantities noted above. It follows that
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[12]
a3 E(p,u‘) 82 ^(P-u*) a2 x‘ a2 x' i ax' ax,1 

ap.aR apk" ap apk ” ap apk + j ai apk + ai apk

A third-order approximation accomodates to some degree non-linear 

demand since second-order derivatives with respect to prices and income 

would be taken into account. Thus, a third-order is proposed in this paper as 

given by [8].

2.3 Calculating the EV Approximation From Observed Demand

The Hicksian substitution effects can be computed from observable 

Marshallian demand functions by means of the Slutsky equation. Thus, by

substitution of [11] and [12] into [8] and recalling that the Marshallian quantity 

X* at price p ! can be substituted for the Hicksian quantity xj^P* the 

third-order EVd approximation of this paper can be expressed as

EVd = AI+ X X; AP,+ ^ S S
ax;

i= 1

n n

i=i j=i

axt
— +x.1 —- ap. j ai 

v j

A PA P

°  i = l  j=l k=l

( a2 x‘i
ap. ap.) k

. a2 x‘ ax1 ax.tN
+ x.t ^ L + 1 ’) aiap, ai ap, APj APj APk . [13]

■ J

In [13], the levels of the Marshallian quantities demanded, X., i = 1 ,2 , ..., n, as 

well as the derivatives of the corresponding demand functions are evaluated 

at the terminal prices P*= { p !}. Morever, the changes in prices are computed 

using P* as bases, i. e., AP. = P° -  P* as defined earlier in [9].
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2.4 C V  A p p roxim ation  for M ultiple Price and Incom e C hanges

In Figure 1,

CV = Ett-  Eto = E(P*, l/) -  E(P*, U°) . [14]

Substituting for EfP*, U*) from [2\ CV can be expressed in terms of price and 

income effects as

CV = -  [(EfP*, U°) -  E(P°, U°)] + AI . [15]

The key idea to the proposed CV approximation is that point T  on U° is not 

an observable point and, therefore, the expenditure EfP* U°) at T' is not 

known outright. However, EfP*, U°) can be approximated by a Taylor series 

expansion of the known expenditure E(P°, U°) at the original (observable) 

point O. That is,

E(P*, U°) = E(P°, U°) + ^  ^  dr E(P, U°) + R . [16]

Ignoring the remainder term Rr, [15] and [16] yield a third-order (r = 3) Taylor 

series approximation, CVd = CV,

n n
„  V" 5E(P,U ) l v v 3  E(P,U )
CV . = AI -  > — V ------ A P . - -  >  >   ̂ '---- - AP.AP.

d dp . 1 2 " "  ap.ap. 1 j■ . - 1 - 1 i ji = l

n n n

i=i j=i

1 V 1 V 1 V 1 53 E(P,U°)-  -  > > >  ------— ------ AP. AP. AP, .
6 ^  ap.ap.ap. 1 j ki =l  j=l k=l  1 j k

[17]

All the partial derivatives in [17] are evaluated at prices P since these serve as 

the base prices of the Taylor series expansion in [16]. CVd is the approximate 

change in the value of the expenditure function as prices P° change to P* 

keeping utility constant at U °, while the expenditure line pivots from 

tangency at O towards tangency point T' in Figure 1. Hence, the changes in 

prices in [17] should be defined with prices P° as the base values, i. e.,
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AP.= P * -P ° / ; i = 1, 2 , . . . ,  n.

Following earlier analysis,

3E(P ,l A = x h  = x h o 
9P. 1 1 v

[18]

[19]

where x|* (P°, U°) = X° (P°, 1°) at point O where 1° is the level of income or 

expenditure required to attain utility level U° given the prices P°. Moreover,

. 2 .a2E(p,u°) 3x"(p,u°) ax“ 0 3Xj
+ X.

3 R 3 P 9P 9P 91
[20]

] )

where X° and X° are Marshallian quantities demanded at the original prices. 

It follows from [20] that

[21]

2.5 Calculating the CV Approximation From Observed Demand

Substituting [191 [20] and [21] into [17] and substituting the Marshallian 

quantity X° demanded at price P° for the Hicksian quantity x|*(P°, U°), the 

third-order CVd approximation can be expressed as

n n

CVd = A I - X
i =l i = l  j=l

^9X° 9X°
— ^ + X ° —  ̂
9P ) 91 

V J
AP.AP. 1 )

[22]

In [22], the levels of X ., i = 1 ,2 , . . . ,  n, as well as the derivatives are evaluated at 

the original prices P° = {P °} and the changes in prices are computed using P°
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as bases, i. e., AP. = p ! -  P° as defined earlier in [18]. Moreover, AI = I* - 1 ° .

2.6 Properties of the EV and CV Approximations

The Taylor series expansions for EV in [4] and for CV in [16] have similar 

mathematical constructs, except for the differences in base prices and base 

utility levels. Hence, in general, they can be expressed as the Taylor series 

expansion of an expenditure function E(P', U) about a given expenditure level 

E(P, U) when the original price vector P changes to the terminal price vector 

P' holding utility fixed at the level U.

It may be shown that EV and CV are homogeneous of degree one in 

prices, which is a property of the expenditure function. This property pertains 

only to a change in prices. Thus, AI = 0 is assumed. Hence, the third-order 

Taylor series expansion of E(P', U) around E(P, U) can be expressed as

Since the base prices are given by the vector P = (P j) and terminal prices by the 

vector P' = (P 'j), then the changes in prices are defined by AP; = F .  -  P 

Suppose that all prices change by the same proportion 8, i. e., F .  = 8P.. It 

follows in this case that 

AP. P.' -  P.1 1 1 o  ̂ -T

Substituting [24] into [23],

E(P', U) = E(P, U) + X  A F + ^ 2 ,  £  AP. AP.
i = i z  i = i p i  0 1 j

[23]
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[25]

n n n

E(F, U) = E(P, U) + (5 -1 ) X  ^  pi+ \  <8 -  l)2 S  X  sk PiPi
i . ,  -  . - 1  | -  9Pi ‘ '

n n n

+ -  (5 - 1)3 y  t  y  — r 1-  p .p . p + r
A '  ^  ^  A P  A P  i l k  . ̂ . . n 3P. 3P. 1 j k 3 ‘1=1 j=l k=l  j k

To evaluate [251 consider that xj* is determined at price P. given the utility 

level U. Therefore, by definition of an expenditure function,

X x |, P. = E(P ,U ) . [261
i = l

M oreover,

h (  h ^n n ^ v xl n n

y p p . p j p .  y — P 
£ £  3P1 "  h  3P >

since, by Euler's theorem,

A  dxh{
>  - P .  = 0 ; i = 1, 2, ... , n
2 rf 3P. )
J=i j

=  0 [27]

[28]

because Hicksian demand functions are homogeneous of degree zero in 

prices. Differentiate [28] with respect to P^ then post-multiply by P k and, 

finally, sum over all k to obtain

n

I
k = l

n ( a2xh axh ap.A
------- — p. + — -  — -
9 R 9 P k ) 3R 9PkI

i=i
Pk= o [29]

Consider the fact that the derivative 3P. /3P, equals zero when j *  k but equals

one when j = k. Therefore, [29] implies that

s i " P. P, + y
2 ^  ap. . . - 3P. 9P. ) k "  3P ik = l j=l j k J=1 )

P. = 0 [30]

and by virtue of [28]
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[31]
k=l  j=l
II1̂ = 1 i=1

n n

The results in [28] and [31] imply that the sum expressions in the second and 

third terms of [25] are equal to zero. Moreover, since these results generalize 

to any rth-order Taylor series expansion, the remainder term R . must reduce 

to zero when prices change in the same proportion.

It follows from [26] to [31] that [25] simplifies to

given that P.' = 8 P. for all i = 1, 2, ..., n. That is, if all prices change 5 times the 

original prices, the minimum expenditure required to attain the same level 

of utility at the new prices will be 5 times the minimum expenditure required 

to attain the same level of utility at the original prices. This shows that EV 

and CV preserve the linear homogeneity in prices property of the expenditure 

function.

It may be shown that EV and CV embody also the expenditure function 

property of concavity in prices. For this purpose, consider the fact that the 

H icks-Slutsky substitution matrix is the Hessian matrix S of the second-order 

price derivatives of the expenditure function,

which is symmetric by Young's theorem. The expenditure function is 

concave in prices if and only if the matrix S is negative sem i-definite or has 

non-positive eigenvalues. One eigenvalue is zero because [28] implies that S 

is singular. Therefore, if S is symmetric and negative semi-definite, then [23] 

embodies the concavity in prices property of the expenditure function.

E (F , U) = 5 E(P, U) [32]

[33]
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3. Measuring Welfare Change From the Indirect Utility Function

The indirect utility function can be written as

U(P, I) = U p C ^ I) , X2(P,I),..., Xn(P,I)] [34]

where (P, I) = (P1, P2, . . Pn; I) is the vector of prices and income and X. (P, I) is 

the Marshallian demand for the ith good. Referring back to Figure 1, the 

value of U(P, I) at the original point O may be represented by U(P°, 1°) and by 

U (P l, I*) at the terminal point T. Because the indirect utility function is 

continuous in prices and income, then the change in its value from point O 

to point T may be expressed as a Taylor series expansion,

AU = U(p‘, l') -  U (P°, I % Y  V  U(P, I) + R [35]
,  9 ! q

or as a line integral,

AU = [36]

In [35J dqU(P, I) is the qth-order total differential of [34] and R is the 

remainder term. The first-order total differential can be shown to be,

n _ _ n

X 3U 3U v
3 F dp’ + i r d I = - ^ e x x ‘)d p >+ ^i = 1 1 1 i =1

dl [37]

where X is the marginal utility of income. For a given change in prices and 

income, [36] can therefore be expressed (Just, Hueth and Schmitz, 1982) as,

P{ n I

AU=J0X(-^xi)dp1+J 0Xdl [38]
P i = 1

where (P°, p !) comprise the elements of the original and terminal price 

vectors and 1° and I* are the original and terminal income levels.
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Since the indirect utility function in [34] is non-increasing in prices and 

non-decreasing in income, the change in indirect utility in [38] is in the 

opposite direction to the change in prices but in the same direction to the 

change in income. Therefore, AU is positive (negative) when prices fall (rise) 

and/or when income rises (falls). Thus, welfare improves (deteriorates) 

when AU is positive (negative).

3.1 M oney Metric Measure of W elfare Change

The “money metric" proposed by McKenzie (1983) assumes the same 

situation envisaged in this paper. That is, there is information only about 

observable demand functions and the exact form of the underlying utility 

function is unknown. Thus, the money metric proceeds from a finite order 

(truncated) Taylor series expansion of AU in [35] around the original value of 

the indirect utility function, U(P°, 1°), i. e., AU is evaluated at the original 

prices, P° = { P ° } ,  i = 1, 2. ..., n, and income 1°. By Roy's identity, the 

derivatives of the indirect utility function in the Taylor series expansion can 

be expressed in terms of the parameters of observable demand functions.

The line integral in [38] implies that AU is integrable or a unique value if 

and only if,

3 ( - X X . )  3 ( - > c X ) d( -XX. )  dX d ( - X X )  dX
----------- - = -----------— • -------------= -----  • ------------ = ----  [391

3P. 3P. ' 31 3P. ' 31 3P.
) 1 1 )

Thus, the terms in the money metric Taylor series expansion of AU are 

expressed in accordance with [39], which implies that the marginal utility of 

income, X, varies with income and/or prices.

The indirect utility function in [34] is measured in units of “utility".
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This can be monetized to obtain "money 

monotonic transformation. From [37],

3U(P, I)
ap:

= - x x . au(p, i)
ai = x

metric" utility by the following

[40]

where X is the marginal utility of income. Thus, the reciprocal \/X is the 

marginal cost of utility. To obtain money metric utility, choose the value of 

X evaluated at the original prices and income, i. e., A° = X(P°, 1°), as the scalar 

for the transformation. In this case, the money metric transformation of 

indirect utility may be denoted by M(P, I),

M(P, I) = U(P, I)

X°
[41]

M(P, I) represents exactly the same preferences as U(P, I ). However, because 

M(P, I) is measured in money, it has the property that the marginal utility of 

income equals one at (P°, 1°). Denoting the money metric marginal utility of 

income by X. ,J m

,  TX 9M (P,I) 1 3U (P,I) X(P, I)
31 yO dl yO

[42]

M cKenzie's money metric measure of welfare change from changes in 

prices and income is a Taylor series approximation to the change in M(P, I) 

evaluated at (P°,I°). That is, the change being measured is 

1  1

AM = —  AU(P, I) = —  [U(P\ I*) -  U(P°, 1°)] [43]
X X

where AU(P, I) is defined in [35] to [38]. In view of the money metric property 

in [42], McKenzie's approximation assumes that Xm is constant with respect to
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income at that (P ° ,1°). That is,

asxm(P°,i0)
= 0  , s > l m

ar

which means that the derivative of Xm of all orders with respect to income 

equals zero. This implies from [42] that

aS X (P°, 1°)
= 0  , s > l [45]

ar
The assumption in [45] is the key to factoring out X from the right-hand side 

of the Taylor series expansion of AU(P, I) in order to yield the change in 

money metric utility defined by [43] when evaluated at original prices and
. , _ o  _o.
income (P , I ).

For a third-order expansion, dU is given by [37] from which

n n2 v 1 v  2̂u a2u a2u , 2

i = i j= i  - i ] i = 1 i ar
[46]

[47]

xp a3 u 2 a3 u 3
+ 3 2 , --------1 dp.(dl) + — -  (dl) .

i=i ap.ai ar

All the partial derivative terms are obtained subject to the integrability 

conditions in [39] and are evaluated at (P°, 1°).
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3.2 Properties of the Third-Order Money Metric Approximation

The third-order money metric measure of welfare change will be 

denoted by MM3 where, from [431 M M 3 « AM = (1/A°) AU(P, I). Dumagan 

(1989, 1991) reformulated McKenzie’s third-order money metric to facilitate 

showing that it has the properties of an indirect utility function. This 

reform ulation is

MM̂3  A I ^  AI
i - T " ^ Wi" ^ _ ^ WiEiiT : T1=1 1 1=1 1

[48]

n n1 ^  AP. AP.
+ — /  /  J (w.w. E.. -  w. E ..)-----------

2  ^  v 1 ] ]! i i] p  p
i = l j=l

V P. P  
1 )

n n

i n
i = l k = l

2
a x , a2 x. ^

I w.P, ■p . p ,
1 k ai2 1 ^ V 1

^ i ^ k  AI

pi pk 1

1 X X (w .w k E.IEkI) — 1 ^  *1  - I  £  I P . — 1 ^
2 1 k iI kI p . p . i 2 "  1 ai2 pi = l k = l i k i = l dl i

a x. a p .
+

where

l = E p, x i :
i = 1

p.x. ax. p. ax. t
w. = —■ ■ ; E.. = — 1 — ; E..= — -  —

1 i v ap. x. 11 ai x.
j i 1

[49]
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In view of [35] and [43], the changes in prices and income in the money metric 

measure are defined using the original levels as bases, i. e.,

t o
AP. P. -  P.i i i
P.

i = l ,  2 , . . . ,  n AI = I1 - 1 ° [50]
pr

o Tov
Moreover, all terms in [48] and [49] are evaluated at (P , I ). Thus, M M 3 has 

the same sign as AU, which is positive (negative) when prices fall (rise) 

and/or when income rises (falls). This sign is in the same direction as the 

change in utility.

MM3 has the properties of the indirect utility function U(P, I). When all 

prices are constant, [48] yields

M M,

I

AI
I

if i = 1, 2 ,..., n [51]

which means that the third-order money metric is non-decreasing in 

income. To show that it is non-increasing in prices and homogeneous of 

degree zero in prices and income, the following budget constraint identities 

are useful:

[52]

a x.ii

I p, .i=i ai
= 0 ;

n nIIpp?4- i"  1 j ap1 = 1 j=l :

— U _  Y P. X. 
1 1

= - i  ;
i = 1

19



n n p .p . ax n n

i=i j=i

n n

I 5 > ,
i = i  j=i

_ ,  ,  w. E.. =
8P. ^  f r (  J J11 1=1 j=l

- l  ;

•P.
a2x.

____ L
j a p  ai

= - i  ;

Consider the case where income remains the same but all prices change 

in the same proportion given by 

AP.
P = P.

; i = l ,  2 ,..., n [53]

Substituting [53] into [48] and making use of the budget identities in [52], it can 

be shown that 

M M .

I

*3 2 3=~P+P -P [54]

This result is consistent with the property of being non-increasing in prices 

Since it is clear that MM3 is positive (negative) if p is negative (positive).

Finally, if all prices and income change in the same proportion given by

AI AP.
T  =

I P.
; i = 1, 2,..., n [55]

it can be verified that by substitution of [55] into [48] and using the budget 

identities in [52],

M M .

I
= 0 for all x [56]

This result implies that [48] is homogeneous of degree zero, i.e. welfare is 

unchanged by a proportional change in prices and income.
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The properties of the money metric of being non-decreasing in income 

and homogeneous of degree zero in income and prices are not dependent on 

the order of the Taylor series approximation, at least up to a third-order as in 

the case of [48]. However, the property of being non-increasing in prices is 

not held by a second-order approximation.

The first-order approximation includes only the first two terms on the 

right-hand side of [48] It is straightforward to show that this is 

non-decreasing in income, non-increasing in prices and homogeneous of 

degree zero in income and prices. The second-order approximation consists 

of the first four terms of [48]. Once again, the expression is non-decreasing in 

income and is zero degree homogeneous in prices and income. However, if 

all prices change proportionally (with income constant) by a factor p, then the 

second-order money metric is 

M M , ,
— p = - p  + p • [57]

This is obviously a perverse result. It is sufficient to point out that if prices 

increase where p is greater than one, that MM2 /I is positive. This means that 

it is possible for welfare to improve when prices rise while income remains 

the same, which is nonsense.

The conclusion is that the money metric from a finite Taylor series 

approximation is not per se a welfare indicator for it depends on the order of 

the approximation. For example, a second-order approximation is not a 

welfare indicator since it is not non-increasing in prices. However, the 

third-order money metric in [48] is a welfare indicator in that it is 

non-decreasing in income, non-increasing in prices and homogeneous of 

degree zero in income and prices.
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4. Numerical Examples

Consider the following example adopted from Silberberg (1978), which 

he used to demonstrate the lack of uniqueness of the Marshallian 

consum er's surplus for multiple price changes.4 The utility function is given

U = In Xj + X2

By maximizing [58] subject to the budget constraint

I = P1 Xj + P2 X2

the resulting Marshallian demand functions are

X, = —  and
1 P i

From [58], [60] and [61], the indirect utility function is

U = In
f  p  >

v 1 y
i

- l .

[58]

[59]

[60] 

[61]

[62]

This utility function will be used in the following numerical examples to 

demonstrate the accuracy of the EV and CV approximations proposed in this 

paper as well as to compare this EV approximation to McKenzie's money 

metric EV approximation.

4This example may be found in pages. 354-5. Note our differences in notation, which is 
potentially confusing. For example, Silberberg uses "log" to mean a natural logarithm as he 
explains in page 45. However, we use the usual notation "In" in place of his "log" to mean 
natural logarithm. Also, we use "I" in place of his "M" to denote income. Finally, we use "A" in 
place of his "W" to denote the Marshallian consumer's surplus.
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4.1 Accuracy of the EV Approximation

From [62], the new level of utility (U ) can be expressed as

U = In

A
| E(P°, U*) 1

[63]

where E(P°, U*) is the minimum expenditure to attain U* at the original prices 

given by P° = (P°, P°}. Alternatively, U* can be attained at the new income I* 

and prices P* = (P*, P^}, i. e.,

U = In

P 2
[64]

It follows from [63] and [64] that

,t

E(P°, U‘) In
V "A2

vpv

I
+ ------ In

' p ° 'L 2
[65]

By duality between utility maximization and expenditure minimization, it is 

true that 1° = E(P°, U°) and I* = E(Pf, U*). Therefore, letting EV(AP, AI, U*) be 

the EV for attaining U*, it follows from [1] and [65] that

E V (AP, AI, U ) = In

0^
+ — -  In P ° - I °  l 2 1 [66]

Since I* = 1° + AI, EV(AP, AI, U*) can also be written to conform to [3],

EV (AP, AI, U ) =
f P2̂ I* f p ° l2

In

f i j

+ ------ In
pi P°2 V 1  V

P ° - l ‘ + AI . [67]

Suppose that the original prices and income are P = {P r  P2} = { 2 , 2 }  and 

1° = 50. Let the original prices change between 1.25 and 2.75 and let AI = 2.5. In

this case, the values of EV(AP, AI, U ) in [67] are tabulated in Table 1.
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Table 1. V alu es of EV(AP, AI, U*) at A ltern ative Prices

p* p4_>
i

1.25 1.50 1.75 2 . 0 0 2.25 2.50 2.75

1.25 34.00 20.36 10.67 3.44 -2 .16 -6 .61 -  10.24

1.50 33.64 2 0 . 0 0 10.31 3.08 -2 .52 -6 .98 -  10.61

1.75 33.33 19.69 1 0 . 0 0 2.77 -2 .83 -7 .29 -  10.91

2 . 0 0 33.06 19.42 9.73 2.50 -3 .10 -7 .55 -11.18

2.25 32.82 19.19 9.50 2.26 -3 .33 -7 .79 -  11.42

2.50 32.61 18.98 9.29 2.05 -3 .54 - 8 . 0 0 -  11.63

2.75 32.42 18.79 9.10 1 . 8 6 -3 .73 -8 .19 -11.82

For the same cases in Table 1, the values of the proposed EV approximation 

(EVd) in [13] have also been computed. In all cases, the sign of EVd agrees 

with the sign of EV. The values of EVd are reported in Table 2 as proportions 

of the corresponding values of the true EV from [67] in order to highlight the 

accuracy of EVd.

Table 2. Percent Ratios of EVd to EV(AP, AI, U*)

Pl P4->
1  V 1  2 ^

1

1.25 1.50 1.75 2 . 0 0 2.25 2.50 2.75

1.25 1 0 0 . 0 0 100.05 100.24 101.28 97.13 98.78 99.03

1.50 1 0 0 . 0 2 1 0 0 . 0 0 1 0 0 . 0 2 100.16 99.68 99.84 99.85

1.75 100.03 1 0 0 . 0 1 1 0 0 . 0 0 1 0 0 . 0 1 99.98 99.99 99.98

2 . 0 0 100.03 1 0 0 . 0 1 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 99.99 99.99

2.25 100.03 1 0 0 . 0 1 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 99.99

2.50 100.04 1 0 0 . 0 2 1 0 0 . 0 2 100.05 99.99 1 0 0 . 0 0 1 0 0 . 0 0

2.75 100.06 100.04 100.06 100.19 99.95 99.99 1 0 0 . 0 0
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It is amply evident from Table 2 that EVd is very accurate. Except in three 

cases when P* = 1.25 and P2 is equal to 2.00, 2.25 or 2.50, the absolute error of 

EVd is less than 1% of the true value of EV.

4.2 Accuracy of the CV Approximation

From [62], the original level of indirect utility (U ) can be expressed as

U° = In
, E(P*, U°) i

[68]

„ O
where E ( P , U ) is the minimum expenditure to attain U at the new prices 

given by P* = {Pj , P*}. Alternatively, U° can be attained at 1° and P° = {P°, P°}, 

i. e.,

U° = In
r

i . [69]

From [15], the CV for a change in both prices and income can be written 

as CV(AP, AI, U°) = -[E (P ‘, U°) -  E(P°, U°)] + AI where 1° = E(P°, U°). The term 

-[EfP*, U°) -  E(P°, U°)] is the change in the value of the expenditure function 

as the expenditure line pivots from tangency at point O to T' on U° in Figure 

1. Therefore, solving for EfP*, U°) from [68] and [69], it follows that

CV(AP, AI, U °) = I ° - ln

vp°;
+ ------ In p 2 + a i . [70]

Suppose that P = {Pr  P2) = (2, 2 }, I = 50 . Let the original prices change in 

the range between 1.25 and 2.75 and let AI = 2.5. Table 3 gives the values of 

CV(AP, AI, U°) from [70].
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Table 3 V alues of CV(AP, AI, U °) at A lternative Prices

pl pl—>
i

1.25 1.50 1.75 2 . 0 0 2.25 2.50 2.75

1.25 21.25 15.27 9.34 3.44 -2 .43 -8 .2 7 -  14.08

1.50 2 1 . 0 2 15.00 9.02 3.08 -2 .84 -8 .72 -  14.58

1.75 20.83 14.77 8.75 2.77 -3 .18 -9.11 -  15.01

2 . 0 0 2 0 . 6 6 14.57 8.52 2.50 -3 .48 -9 .44 -  15.37

2.25 20.52 14.39 8.31 2.26 -3 .75 -9 .74 -  15.70

2.50 20.38 14.23 8.13 2.05 -3 .99 - 1 0 . 0 0 -  15.99

2.75 20.26 14.09 7.96 1 . 8 6 -4 .20 -  10.24 -  16.25

For the same cases in Table 3, the values of the proposed CV 

approximation (CVd) in [22] have also been computed. The signs of CVd are 

all in agreement with those of true CV. The values are reported in Table 4 as 

proportions of the corresponding values of the true CV from [70] in order to 

highlight the accuracy of CVd.

Table 4 Percent Ratios of CVd to CV(AP, AI, U°)

Pl P*-> 
1  1 ' 1  2 ^

i

1.25 1.50 1.75 2 . 0 0 2.25 2.50 2.75

1.25 1 0 0 . 0 0 99.98 99.91 98.59 100.84 100.33 100.25

1.50 99.99 1 0 0 . 0 0 99.99 99.92 100.14 100.07 100.07

1.75 99.98 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 1 1 0 0 . 0 1 1 0 0 . 0 2

2 . 0 0 99.98 99.99 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 1 1 0 0 . 0 2

2.25 99.98 99.99 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 2

2.50 99.95 99.97 99.97 99.92 1 0 0 . 0 1 1 0 0 . 0 0 1 0 0 . 0 1

2.75 99.89 99.89 99.86 99.59 1 0 0 . 1 0 1 0 0 . 0 1 1 0 0 . 0 0
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The precision of CVd is very high in Table 4. The approximation error is less 

than 1% in all cases but one when P* = 1.25 and P2 = 2.00 for which the error is 

largest, equal to 1.41% of the true CV.

4.3 Accuracy of the M oney Metric Approximation

Following the money metric definition in [431 the normalized indirect 

utility function in [62] yields the money metric utility function with 3M/8I = 1 

at the initial set of prices,

M (P,I) = P2
r P2> I "

In — + ------ 1lpJ P2 J [71]

This implies that the change in utility in money metric terms from a change 

in both prices and income, AM(AP, AI), can be written as

AM(AP, AI) = M(p ‘, l‘) -  M (P°, 1°) [72]

where I* = 1° + AI.

Since the utility function in [71] is linear in income, EV in [66] equals AM 

in [72]. Thus, Table 1 represents both EV(AP, AI, U*) and AM(AP, AI), which 

are the true values of the equivalent variation and of the change in money 

metric utility from changes in both prices and income. In this case, the 

accuracy of the proposed EV approximation (EVd) in [13] can be compared 

directly to McKenzie's money metric approximation (M M 3) in [48] The 

results of the comparison are summarized in Table 5.
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Table 5 Percent R atios of EV d to EV  and of M M 3 to M M  W h en  EV  =  AM

ptl4.
P*-» 1.25 1.50 1.75 2 . 0 0 2.25 2.50 2.75

1.25 EVd
EV

1 0 0 . 0 0 100.05 100.24 101.28 97.13 98.78 99.03

1.25
MMj

AM
94.73 98.41 99.68 99.59 100.96 102.08 106.15

1.50
EVd
EV

1 0 0 . 0 2 1 0 0 . 0 0 1 0 0 . 0 2 100.16 99.68 99.84 99.85

1.50
MMj

AM
94.70 98.44 99.79 99.92 100.35 101.80 105.83

1.75 EVd
EV

100.03 1 0 0 . 0 1 1 0 0 . 0 0 1 0 0 . 0 1 99.98 99.99 99.98

1.75
MM3

AM
94.66 98.42 99.80 1 0 0 . 0 0 100.23 101.69 105.64

2 . 0 0

£Vd
EV

100.03 1 0 0 . 0 1 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 99.99 99.99

2 . 0 0

MM3

AM
94.62 98.40 99.80 1 0 0 . 0 0 1 0 0 . 2 1 101.63 105.51

2.25
EVd
EV

100.03 1 0 0 . 0 1 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 99.99

2.25
MM3

AM
94.58 98.38 99.79 1 0 0 . 0 0 1 0 0 . 2 0 101.59 105.39

2.50 EVd
EV

100.04 1 0 0 . 0 2 1 0 0 . 0 2 100.05 99.99 1 0 0 . 0 0 1 0 0 . 0 0

2.50
MM3

AM
94.54 98.36 99.77 99.92 100.23 101.56 105.31

2.75
EVd
EV

100.06 100.04 100.06 100.19 99.95 99.99 1 0 0 . 0 0

2.75
MM3

AM
94.49 98.31 99.70 99.59 100.38 101.60 105.27
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Table 5 shows that the computed values of EV d and of MM 3 as 

proportions of the exact values of EV = AM. In all cases, the sign of M M 3 

agree with the sign of EV, like EVd. Out of 49 cases, there are only four, 

namely, (pj, p‘) ={(1.25, 2.00), (1.25, 2.25), (1.50, 2.00), (1.75, 2.00)} (highlighted 

in bold) for which the absolute percentage errors of M M 3 are smaller than 

those of E V d This demonstrates that E V d is a generally more precise 

approximation to EV than MM3 for the example presented.

5. Conclusion

Approximations to EV and CV based on the Marshallian consumer's 

surplus are generally limited to measuring the welfare effects of a single price 

change. With more than one price changing at the same time, consumer's 

surplus is a unique measure if and only if income elasticities are equal for the 

goods with changing prices. For most realistic situations, consumer's surplus 

will result in misleading approximations to welfare change given 

simultaneous price and income changes.

This paper presents the procedures that provide the "practical 

algorithm " sought by Chipman and Moore (1980) for a welfare measure based 

on observed demand behavior. This measure exists in theory as shown by 

Hurwicz and Uzawa (1971). One procedure is McKenzie's "money metric" 

approximation to the change in the indirect utility function (McKenzie, 1983; 

Dumagan, 1989 & 1991) and the other proposed in this paper uses 

approximations to the expenditure function. McKenzie's method can be 

viewed as an approximation to EV, while the other method can approximate 

either EV or CV. All three of these approximations can be computed from
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observed Marshallian demand functions, and consequently, can be used for 

situations in which an explicit utility function is not specified.

For the utility function used by Silberberg (1978) to demonstrate the lack 

of uniqueness of consumer's surplus, the three approximations are shown to 

work well. In all cases considered, the correct direction of change in welfare is 

predicted by all three measures, and the level of accuracy is very high (less 

than 1% error). The EV approximation from the expenditure function (EVd) 

is a closer approximation than the money metric (MM3) for 45 out of 49 cases. 

Furthermore, because the money metric measure is derived from the indirect 

utility function, it requires a restrictive assumption about the marginal utility 

of income in order to monetize changes in utility levels. The procedures 

proposed in this paper impose no such restriction because the marginal utility 

of income is simply not involved in EV and CV approximations from the 

expenditure function.
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