Real Time Queue Operations

*
in Pure LISP

by

Robert Hood
Robert Melville

TR80-433

Department of Computer Science
Cornell University
Ithaca, New York 14853

* . : . . .
“This work has been supported in part by National Science Foundation grants
MCS 78-05850 and MCS 76-22360

Real-Time Queue Operations in Pure LISP*

Robert Hood
Robert Melville

Department of Computer Science
Cornell University
Ithaca, New York 14853

ABSTRACT

Several methods of implementing a queue in
Pure LISP are presented. A technique to distri-
bute the reversal of a list over a number of
operations leads to a real-time queue implementa-
tion.

1. Introduction

In Pure LISP, the inability to access the end
of & list in constant time increases the asymp-
totic complexity of some algoritims. It is impos-
sible, for example, to append one list to another
one without recopying the first. If the end of
the first list could be accessed (and modified)
then the append operation would take constant
time rather than time proportional to its length.
This restriction on access is of particular signi-
ficance when implementing a queue. By its very
nature a queue requires the ability to access both

ends of a list.
2. Queue Operations

2.1. The Straightforvard Version

We implement three queue operations: Query,
Delete, and Insert. Query[q] returns the element
at the fraont of queue q. Deletel[q] returns q with
its front element removed.
the queue formed by adding the element v to the
A straightforward implementation

Insert[q, v] returns

end of queue q.
of these operations is given in Figure 1.

If the head of the queue is kept at the front
of a list, as is done in our implementation, then
the Delete and Query operations can be performed
in constant time. The Insert operation, however,
requires the recopying of the queue, and therefore
takes time proportional to its length.

*

This work has been supported in part by Na-
tional Science Foundation grants MCS 78-05850 and
MCS 76-22360.

carlq]
cdrlql
appendlq, 1ist[v]]

Querylql
Deletelq]
Insert(q, v]

manm

Figure 1: Queue operations in Pure LISP1

2.2. An Asymptotic Improvement

A fairly simple modification allows constant
time access to both ends of the queue in most cir-
cumstances. Rather than being stored as a single
list (say (q0 ...qn)) the queue is kept as a head
tail list, with the tail kept 1in

(e.g. (qo q eee 95 qi)

list and a

reverse order and

(g @ ++# 9442 93417

Using this representation, the Insert opera-
tion can be performed in constant time since it is
sufficient to cons an element onto the tail list.
We allow the head list to be empty only if the
thus,
can be performed in constant time.

the Query operation
The Delete
operation requires constant time if deleting the
front element does not invalidate our invariant of
a non-empty head list. When Delete is called and
there is only one element left in the head list,

entire queue is empty;

it is necessary to replace it by the Reverse of
the tail 1list. that
manipulate queues represented this way.

Figure 2 shows operations

This representation reduces the cost of n
operations from 0(n2) to O(n). This can be easily
seen from the fact that the reversal of a list of
length k takes place only when there have been k
Inserts since the last reversal operation. Since
the reversal of the list of length k can be dome
in O(k) steps, then we are doing O(k) work to
reverse only after having done O(k) work to Imsert
the the
operations n queue

operations can be done in 0(n) time.

elements being reversed. Since other

require only constant time,

lNote that a blackboard dialect of LISP is used.

Suppose a queue is (H.T) where H is the
head list and T the tail (in reverse order).

Querylql = car[car[ql] --return car of H

Insert(q, vl =
cons[
car[q]l,
conslv, cdr{q]]
] --tack v onto T

Deletelql =
if nulllcdrlcar(q]]] --one left in H
’ then
cons[
Reverse[ecdr[qll,
NIL -
) --replace H by T
else
cons[
cdr[car(qll,
cdrlq]
J --delete first element
£i

Figure 2: Better queue operations

2.3. Real-Time Operations

2.3.l1¢ The Basic Idea

By distributing the Reverse of the tail list
over a mumber of operations, we can perform the
queue operations in real time.2 The basic idea of
performing one step of the Reverse during every
operation is easy to implement, if the list being
reversed is not changing. For example, if L is of
length n, then '

incr_revlincr_revl ... incr_revlcons[L, NIL]] ... 1]
b n times

will return with (NIL .1), vhere T is the reverse
of L, and incr_rev is defined as follows:

incr_rev[X] = cons[
cdrlecar(x]],
cons[
car[car[X]],
cdr[Xx]

) .
Note that any one call to incr_rev is performed in
constant time.

Rather than waiting for the head list H to
empty, we periodically Reverse the tail list T and

2A real-time queue implementation performs any
sequence of Inserts, Deletes, and Querys with only
a constant amount of processing between opera-
tions; note that this is stronger than linear
time. In the case of LISP, we assume the ex-
istence of real-time car, cdr, and coms primi-
tives [1].

-2-

append it to the head list, forming a new head

list H'. This is a three-step process:
(1) Reverse T forming the tail end of H'
(2) Reverse H forming H
(3) Reverse H_ onto the front of H'

R

Each of these operations is just the reversircg of
a list and can be donme using a function like
iner_rev. The first two steps are independent and
can be done in parallel. Thus, if at the start of
the reversal process we have:

front rear
W% Tyttt
{8}~ ---{T}---

(vhere T indicates the Reverse of the list ‘1'3)
then halfway through the above process we have:

front rear

qo e q.m qm+1 .ccqn
et R M

Since
front of H'

(qn Qyy oo qn).

is at the front of HR and is at the
then cons(cat(HR).H') will produce
After mtl comns operations we

have:
. front rear
Q +or 4G Yeg oo 9y
{n'}-
This is the basic idea behind implemecting
the real-time operations. One minor kitch
remains, however: while performing the increzen-

tal reverses the queue will not remain constant.
Our representation needs to reflect the current
state of the queue as well as the current state of

the recopying operation.

Taking care of the Inserts that occur while
A new tail list T'
instead of

recopying is simple. is used,
and the new elements Cons'ed onto it
the old tail T. 1In order to be able to satisfy
Query end Delete requests, there must be two
copies of the head list. One head list (h)
represents the front end of the queue. Deletes
vill be performed by replacing h by edr(h), and
Query's performed by returning car(h). The other
head list (H) is used in the reversal process to
form H_. Since there may have been Deletes, not
all of He should be reversed onto H'. A count,
#copys of the length of h is kept to irdicate how

much of HR needs to be copied.

3Note that the list H can have its
elements accessed while a8 reversed list such as T
has its rightmost elements accessible.

g o+e9g -1 Y4; *** 95 Yje1 0 -1 Ittt Y el 00 G2n Y2001 7 Y2neay

--------}HR} -------- - {B }ommm =={T}-- --- {B'}-" -mm-- {T'}-----

v 2xfoperations k= 2 x#ops 4

-{deletes}- -=--------s=s-soommooo-- { the queue }-=--==-===-c--ccoceonun
--------- {h}--ommmem-

(a) During the first pass of recopying

9 +er 9 -1 94) "t %0-1 %ttt 20 Y2me1 0 Y2neg

R

memeee- (1

-{deletes}-
==={h}---

..-{ ﬂ!}--

..... { T')_---..

(b) After the first pass of recopying

Y *** 94 4dp=1 Yay+dy *** 95 el 77 Fn-1 ot G20 Tomen 7 qua1+a2
{ T

{H'} ________

(c) During the second pass of recopying

% "'qdl+d2-1 94;+4dp *** Yn-1 9+t 920 Y2041 "'q2n+al+az
T

-----{B
—-{deletes}"

---------- {n'}

-—————————— o -

(d) After the recopying is finished

Figure 3:

The queue at various stages of the recopy process

2.3.2. The Recopy Strategy

Along with the recopy process we need a stra-
tegy to indicate when recopying should be dome.
We choose to start recopying when the length of
the tail list T is greater than the length of the
head list H., It will be necessary to show that
the recopying operation leaves us with [H'[2 [T'][.
When the queue is not in "recopy mode", it will

behave like the queue of §2.2.

Using the sbove strategy the recopy operation
will start when the tail list is say, ntl elements
long and the head list is of length n. The simul-
taneous reversing of H and T in the first pass of
the recopying will take n+l incremental steps to
perform,
will take n steps to perform.

The reversing of HR in the second pass
Thus there are a

total of 2n+l steps in the recopying process. The

implementation will get into trouble if the head

list h is emptied before the recopying is coa-

pleted. Since h is n elements long, the recopy
process must perform 2n*+l incremental steps in at
most n queue operations. This will be accom-

plished by performing the first two steps of the
recopy process in the operation that causes T to
be longer than H, and two more steps of the pro-
cess during every subsequent operation.
This gives us 2x(ntl)
the head list will be emptied.

to ensure that the recopy process will be com-

queue
incremental steps before

This is sufficient

pleted in time.

2.3.3. The Recopy Process
When the qucue's tail 1list becomes longer
than its head list, as below, the recopying

process begins.

front rear

9 ***9%-1 920
<+

——-{H)= ---{T)--

After a) additions to the queue and dj deletions
(vhere aj+dj < 1/2n) the queue will be in a state
as shown in Figure 3a. H is being reversed form-
ing HR and T is being reversed forming H'.
elements are Cons'ed to T' and deleted elements
are removed from h. Also taking place during this
pass is the counting of the length of H' (in len-
diff) as it is being formed, and the length of Hy

(in #copy) as well.

New

_When a)+d;=1/2n the queue will have finished
the first pass of the recopy operation and will be
as pictured in Figure 3b. After ap + dy more
additions and deletions, the queue is in the midst
of the second pass of recopying and is in a state
as shown in Figure 3c. Stored in #copy is a count
of the number of elements of HR that have not been
deleted from the queue. HR is being reversed onto
H' until #copy = 0. At that time H' and T'
replace H and T as the representation of the
queue, as shown shown in Figure 3d.
head list is of length 2n+1-dj-dy and the.nmewv tail
list is of length aj+ap and dj+dy+aj+az = n then:

can

Since the new

2ntl2n
2n+] 2 ajtagtd)+d;
2pt]l-dj-dj 2 ajtay
Thus, 2Tl

which we needed to show to prove that our recopy-
ing strategy was a valid one.

3. Conclusion

The linear-time algorithm of §2.2 is similar
to a Turing Machine construction due to Stoss [5].
Since a one-tape TM can be simulated in real time
in Pure LISP, the work of Leong and Seiferas [4]
implies the existence of a real-time queue imple-
mentation. Their work, which is much mcre gen-
eral, leads to a queue implementation waich is
complicated than the one

significantly more

presented here, however.

tize LISP

this could
It would

It is believed that all lipear
functions can be done incrementally;
lead to many real-time LISP algorithms.
be interesting to exhibit a problem for wrich the
lower bound in Pure LISP is worse than some imple-
mentation using rplaca and rplacd.

4., References

Baker, H. List Processing in Real Time on a
Serial Computer. Comm. ACH 21, 4
(April 1978), 280-294.

Dijkstra, E. A Discipline of Programmizz.
Prentice-Hall, 1976.

(1]

[2]

[3) Knuth, D. The Art of Computer Prograrming,
Yol. I. Addison-Wesley, 1973.
[4) Leong, B. and Seiferas, J. New Real-tize

Simulations of Multi-head Tape Units.
Proceedings of the Ninth Apnual Symposiiz on
Theory of Computing, Boulder, 1977, 23%-248.

[5] Stoss, H-J. K-band-Simulation von k-Kcpf-
Turing-Maschinen. Computing 6, 309-317
(1970).

5. Appendix--The Real-Time Queue Implementation

A queue is a nine-element list: list[recopy, lendiff, #copy, Ho T, h, H', T', HR]. where we have given

symbolic names to the components. For example, car[car[q]] is lendiff of queue q. An empty
queue has value: list[false, 0,0, NIL, NIL, NIL, NIL, NIL, NIL].

Insert[q, vl= .
if -1recopy A lendiff >0 + list[False, lendiff-1,0,H, cons[v, T], NIL, NIL, NIL, NIL]

D~ recopy A lendiff=0 + OnesteplOnestep[True, 0,0, H, cons[v, T], H, NIL, NIL, NIL]]

0 recopy + Onestep[Onestep[True, lendiff-1, #copy, H, T, h, H', cons[v, T], HR]]
£fi
Deletelql=

if -~1recopy A 1lendiff >0

list[False, lendiff-1, 0, cdr[H], T, NIL, NIL, NIL, NIL]

+

D ~recopy A lendiff=0 + Onestepl[Onestep[True, 0,0, cdrlH], T, edr[H], NIL, NIL, NIL]]

0 recopy + Onestep[Onestep[True, lendiff-1, #copy, H, T, edr[h], H', T', HRJJ
£i
Querylql=
if <recopy + car[H]
0 recopy + cax[h]
£i
Onesteplql=
if ~recopy *+ q .
0 recopy A -mull[E] A -null[T] -+
1list[True, lendiff+l, #copy+l, edr[H], cdr[T], b, cons[car[T], H'], T', cons[car[H., HR]]
0 recopy A mull[H] A -nulllT] -+
1ist[True, lendiff+1, #copy, NIL, NIL, h, cons[car[T], H'], T', HR]
0 recopy A mull[H] A null[T] A #copy>1l ~+
1ist[True, lendiff+1, #copy-1, NIL, NIL, h, cons[cat{BR]. H'], T', cdr[HR]]
0 recopy A wull[H] A null[T] A #copy=1 =+
list[False, lendiff+l, 0, cons[car[HR]. H'], T', NIL, NIL, NIL, NIL]
£i

Note that the only arithmetic operations performed are: add 1, subtract 1, and test for 0 or 1. They can
be performed by appropriate list functions if we encode integers in unary notation. (The integer a is a

list of n atoms.)

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif

