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In a plethora of natural phenomena, events occur in flurries, clusters, or

bunches. Modern service systems are no exception to this. This can be by de-

sign, such as in batches of jobs being sent to a data center for processing, or

simply by circumstance, such as in bursts of newly infected flu patients arriving

to a health clinic or in the virality of new interactions with a popular social me-

dia post. This thesis is concerned with the modeling, exploration, and analysis

of these batch and burst arrival processes through the lens of applied probabil-

ity. Often, this builds on the idea of self-exciting Hawkes process, in which each

arrival increases the likelihood of another arrival occurring soon after, forming

quick bursts of several successive arrivals. By comparison, batches are taken

to be truly simultaneous, with multiple entities entering the system at precisely

the same epoch. In the course of this dissertation, batches are both compared to

bursts and used as tools to develop deeper understanding of bursts. These ob-

jects are also both applied in a variety of settings, most notably in the problem

of staffing teleoperation support systems for autonomous vehicles. This analy-

sis reveals that batches and bursts have a pronounced effect on service systems,

and thus must be addressed.
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CHAPTER 1

INTRODUCTION

At the heart of this dissertation is the idea of bursts, meaning temporally

clustered flurries of arrivals to a system. By comparison to periodicity or season-

ality, bursts need not follow a regular schedule. The times that these clusters oc-

cur are unpredictable, and many new entities could arrive to the system within

a short period of time without advance warning. Empirical evidence shows

that this phenomenon is ubiquitous; data-driven examples include call centers

(e.g. Glynn et al. (2019); Ibrahim et al. (2016); L’Ecuyer et al. (2018)), financial

activity (e.g. Aı̈t-Sahalia et al. (2015); Azizpour et al. (2016)), and communica-

tion and social media (e.g. Farajtabar et al. (2017); Malmgren et al. (2008); Rizoiu

et al. (2017)). Motivated by such observations, this thesis is concerned with un-

derstanding the structure of bursts of arrivals, providing managerial insights

on how to handle and prepare for their occurrence, and developing new tech-

niques for analyzing the phenomenon. Primarily, the bursts discussed herein

stem from two types of sources: exogenously driven stimuli and endogenously

created self-excitation. For the former, this means that external events create a

rush of new arrivals to a system, like when many people call to report a sin-

gle emergency incident, as studied in L’Ecuyer et al. (2018). For the latter, this

means that the occurrence of new activity increases the likelihood of additional

activity soon afterwards, like how one firm defaulting increases the risk that

other firms will default as well, as is studied in Azizpour et al. (2016). This idea

of self-exciting point processes originated in Hawkes (1971), which proposed an

arrival process model such that “the current intensity of events is determined

by events in the past.”
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Drawing upon motivations from service systems, the following chapters

both employ and extend these arrival processes. This involves using batches

of arrivals as both a subject of research and a tool for analysis. For example,

in Chapter 6 we study the problem of staffing a remote support center for the

teleoperation assistance of driverless cars. In this problem, autonomous vehi-

cles disengage their self-driving capabilities and receive human help, provided

there are enough operators available. Due to the rapid bursts of requests and

the simulation-based crowd-sourcing style of support, we identify batches as a

salient feature of the associated queueing model. We show that increasing the

batch size raises the necessary staffing level linearly, whereas increasing the ar-

rival rate is known to only have a sub-linear effect on the staffing level, yielding

a fundamental contribution for queueing theory. As a practical problem contri-

bution, we use national driving data to show that a remote operation center is

more efficient than having in-car safety drivers for every vehicle, producing a

key insight for managing fleets of driverless cars or trucks at scale. These find-

ings are powered by our methodological contributions, as we have proved a

novel batch scaling limit theorem connecting the multi-server queueing models

to storage processes.

This multi-server batch scaling methodology is a generalization of infinite

server techniques developed in Chapter 3 and 4. In Chapter 4, this yields an

important connection between the self-exciting Hawkes process and a linear

birth-death-immigration process, which can be thought of as an infinite server

queue with state-dependent arrival rates. This model offers many of the same

properties as the Hawkes process but with greater analytical tractability. More-

over, this parsimonious pre-limit object offers fundamental understanding into

the concept of self-excitement since it provides a formal link to conceptually
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similar processes, such as epidemic models. This work can be seen as an exten-

sion of the Hawkes process driven infinite server queues studied in Chapter 2,

as the model in Chapter 4 is both excited by arrivals and inhibited by depar-

tures. Thus, this process pioneers the idea of ephemeral self-excitement, in which

an arriving entity only increases the rate of new arrivals so long as it remains in

the system.

This dissertation has also led to additional insights into broader classes of

stochastic processes beyond the motivating burst arrival models. For example,

by recognizing an underlying nesting structure to differential equations for the

moments of the Hawkes process intensity, we have identified a computation-

ally efficient, matrix-based calculation in Chapter 5 that is able to yield higher

order closed form moments than what was previously known in the literature.

This technique can be used to calculate the moments of many other Markov

processes, and we provide example applications for popular models such as

Itô diffusions, growth-collapse processes, and shot noise processes. Before pro-

ceeding with the contents of this dissertation, let us first review the self-exciting

Hawkes process, as this stochastic model serves as the subject of much of the

following research.

1.1 The Hawkes Arrival Process

Introduced and pioneered through the series of papers Hawkes (1971); Hawkes

(1971); Hawkes and Oakes (1974), the Hawkes process is a stochastic intensity

point process in which the current rate of arrivals is dependent on the history

of arrival process itself. Formally, this is defined as follows: let (λt,Nt) be an
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intensity and counting process pair such that

P
(
Nt+∆ − Nt = 1 | F N

t

)
= λt∆ + o(∆),

P
(
Nt+∆ − Nt > 1 | F N

t

)
= o(∆),

P
(
Nt+∆ − Nt = 0 | F N

t

)
= 1 − λt∆ + o(∆),

where F N
t is the filtration of Nt up to time t and λt is given by

λt = λ∗ +

∫ t

−∞

g(t − u)dNu,

where λ∗ > 0 and g : R+ → R+ is such that
∫ ∞

0
g(x)dx < 1. Through this definition,

the intensity λt captures the history of the arrival process up to time t. Thus,

λt encapsulates the sequence of past events and uses it to determine the rate

of future occurrences. We refer to λ∗ as the baseline intensity and g(·) as the

excitation kernel. The baseline intensity represents an underlying stationary

arrival rate and the excitation kernel governs the effect that the history of the

process has on the current intensity. A common modeling choice is to set g(x) =

αe−βx, where β > α > 0. This is often referred to as the “exponential” kernel and

it is perhaps the most widely used form of the Hawkes process. In this case,

(λt,Nt) is a Markov process obeying the stochastic differential equation

dλt = β(λ∗ − λt)dt + αdNt. (1.1)

That is, at arrival epochs λt jumps upward by amount α and the Nt,λ increases

by 1; between arrivals λt decays exponentially at rate β towards the baseline

intensity λ∗. Thus, each arrival increases the likelihood of additional arrivals

occurring soon afterwards – hence, it self-excites. This form of the Hawkes pro-

cess is also often alternatively stated with an initial value for λt, say λ0 ≥ λ
∗. In

this case, if one applies Ito’s lemma to the kernel function e−βtλt, then one can

show that

λt = λ∗ + e−βt(λ0 − λ
∗) + α

∫ t

0
e−β(t−s)dNs, (1.2)
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as in Da Fonseca and Zaatour (2014), which also discusses the impact of the

initial value of the intensity λ0. This process is known to be stable for α < β,

see Laub et al.. Additionally, it is Markovian when conditioned on the present

value of both the counting process and the intensity, which is also given in Laub

et al.. For the rest of this study we will restrict our setting to this exponential

kernel assumption. When we use the term “Hawkes process” we assume that it

has such a kernel. Before proceeding with a review of relevant Hawkes process

results from the literature, we motivate the use of this process by showing both

its similarities and its differences with the Poisson process.

1.1.1 Comparison to the Poisson Process

In Equation 1.2, note that if α = 0 and λ0 = λ∗ then λt = λ∗ for all t. In this

case, the Hawkes process is equivalent to a stationary Poisson process with rate

λ∗. However, if α = 0 but λ0 , λ∗ it is equivalent to a non-stationary Poisson

process. So, conceptually, a Poisson process is a Hawkes process without excite-

ment. Furthermore, a Hawkes process with λ0 = λ∗ is in essence a stationary

Poisson process until the first arrival occurs. However, once an arrival occurs

the intensity process jumps by an amount α from the initial value and then be-

gins to decay towards the baseline rate according to the exponential decay rate

β. This is demonstrated in the example in Figure 1.1 below. This simulation,

in addition to all the others throughout this work, is constructed by use of the

algorithm described in Ogata (1981).
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Figure 1.1: Simulated λt, where α = 3/4, β = 1, and λ∗ = 1.

This example also shows another key difference between the Hawkes and

Poisson processes. Because the self-excitation increases the likelihood of an-

other arrival occurring soon after, the Hawkes process tends to cluster arrivals

together across time. This means that the variance of a Hawkes process will be

larger than that of a Poisson process, which is known to be equal to its mean. Be-

low we demonstrate this through simulated limit distributions of the Hawkes

process compared with the known Poisson probability mass function (PMF),

each with the same mean.

Figure 1.2: Limit Distributions for λ∗ = β = 1 and α = 0 (left) and 0.6 (right).

The simulated results are based on 10,000 replications, each with an end time

of 500. As described previously, the two processes are equivalent for α = 0.

However, as α increases, the similarity between the Hawkes process and the
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Poisson process starts to disappear. Through these examples, we observe that

the Hawkes process behaves quite differently from the Poisson process since it

has heavier tails and therefore, is more variable. Thus, this provides theoretical

motivation for the following investigations.

1.1.2 Review of Relevant Hawkes Process Literature

We now review a brief selection of Hawkes process results that support our

following analysis of Hawkes processes in queueing systems. These results can

be found in greater detail in Dassios and Zhao (2011); Da Fonseca and Zaatour

(2014, 2015), as discussed specifically after each result statement. This review

is primarily focused on the transient and stationary moments of the Hawkes

process, and is included both for the sake of completeness and understanding

of the problem, but also so that it may be incorporated later in this work. In the

first statement, Proposition 1.1.1, differential equations for the moments of the

Hawkes process are provided.

Proposition 1.1.1. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equa-

tion 1.1, then we have the following differential equations for the moments of Nt and λt,

d
dt

E
[
Nm

t
]

=

m−1∑
j=0

(
m
j

)
E

[
λtN

j
t

]
(1.3)

d
dt

E
[
λm

t
]

= mβλ∗E
[
λm−1

t

]
− mβE

[
λm

t
]
+

m−1∑
j=0

(
m
j

)
αm− jE

[
λ

j+1
t

]
(1.4)

d
dt

E
[
λm

t N l
t

]
= mβλ∗E

[
λm−1

t N l
t

]
− mβE

[
λm

t N l
t

]
+

∑
( j,k)∈S

(
m
j

)(
l
k

)
αm− jE

[
λ

j+1
t Nk

t

]
(1.5)

where S = ({0, . . . ,m} × {0, . . . , l}) \ {(m, l)}.

Proof. This follows directly from the approach involving the infinitesimal gen-
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erator described in Sections 2.1 and 2.2 of Da Fonseca and Zaatour (2014), fol-

lowed by simplification using the binomial theorem. For the first and second

moments of Nt and λt and the first product moment, these equations are stated

exactly in that work. �

As has been observed in the literature, the differential equations for the mo-

ments form a system of linear ordinary differential equations that have explicit

solutions. We now provide the exact dynamics of the first two moments of the

Hawkes process since this is of particular relevance to our later analysis. We

also define notation that will be used throughout the remainder of this work.

Proposition 1.1.2. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equa-

tion 1.1 with α < β, then the mean, variance, and covariance of Nt and λt are provided

by the following equations for all t ≥ 0,

E [λt] = λ∞ + (λ0 − λ∞) e−(β−α)t (1.6)

E [Nt] = λ∞t +
λ0 − λ∞
β − α

(
1 − e−(β−α)t

)
(1.7)

Var (λt) =
α2λ∞

2(β − α)
+
α2(λ0 − λ∞)

β − α
e−(β−α)t −

α2(2λ0 − λ∞)
2(β − α)

e−2(β−α)t (1.8)

Var (Nt) =
β2λ∞

(β − α)2 t +
α2(2λ0 − λ∞)

2(β − α)3

(
1 − e−2(β−α)t

)
−

2αβ(λ0 − λ∞)
(β − α)2 te−(β−α)t

+

(
β + α

(β − α)2 (λ0 − λ∞) −
2αβ

(β − α)3λ∞

)
(1 − e−(β−α)t) (1.9)

Cov [λt,Nt] =

(
αλ∞
β − α

+
α2λ∞

2(β − α)2

) (
1 − e−(β−α)t

)
+
α2(2λ0 − λ∞)

2(β − α)2

(
e−2(β−α)t − e−(β−α)t

)
+
αβ(λ0 − λ∞)

β − α
te−(β−α)t (1.10)

where

λ∞ =
βλ∗

β − α
.

Proof. The proof of this result can be found in Section 3.4 of Dassios and Zhao
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(2011) (as a particular case where ρ = 0) and in Section 3.2 of Da Fonseca and Za-

atour (2015), or by solving the corresponding ODE system stated above Propo-

sition 1.1.1. �

By further observation of Proposition 1.1.2 or simply by further review of

the references in this section, the steady-state behavior of various Hawkes pro-

cess statistics is also available. These expressions are stated in the following

corollary.

Corollary 1.1.3. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equa-

tion 1.1 with α < β, then the steady state values of the mean and variance of the

intensity and of the covariance between the intensity and the counting process are as

follows:

lim
t→∞

E [λt] =
βλ∗

β − α
= λ∞, (1.11)

lim
t→∞

Var (λt) =
α2λ∞

2(β − α)
, (1.12)

lim
t→∞

Cov [λt,Nt] =
αλ∞
β − α

+
α2λ∞

2(β − α)2 . (1.13)

In Proposition 1.1.2 and Corollary 1.1.3, we assume that α < β, which is a

known stability condition in the literature, as detailed in Laub et al.. However,

we can also consider the case where α ≥ β and investigate the behavior of the

system through its transient mean values. This is performed in the following

corollary.

Corollary 1.1.4. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equa-

tion 1.1 with α ≥ β, the transient mean intensity and transient mean of the counting
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process for t ≥ 0 are

E [λt] =
βλ∗

α − β

(
e(α−β)t − 1

)
+ λ0e(α−β)t (1.14)

E [Nt] =

(
βλ∗

(α − β)2 +
λ0

α − β

) (
e(α−β)t − 1

)
−

βλ∗

α − β
t (1.15)

when α > β, and

E [λt] = βλ∗t + λ0 (1.16)

E [Nt] =
βλ∗

2
t2 + λ0t (1.17)

when α = β.

As is stated in the stability condition, we see that the limits of these functions

as t goes to infinity diverge for α ≥ β. The effect of the relationship of α and β on

the system can be observed in the following graph.

α = β

α =
β

4

α =
β

2

α =
3 β

4

3 α

4
= β

α

2
= β

α

4
= β

t

Figure 1.3: Transient Mean Intensity for α < β, α = β, and α > β.

For the majority of this work we will consider settings in which the arrival

process is stable and so we will assume α < β. However, there are settings in
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which the transient behavior of the unstable arrival process is of interest, and so

in our analysis of the queueing system we will also explore the mean behavior

of queues under such arrival conditions.
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CHAPTER 2

QUEUES DRIVEN BY HAWKES PROCESSES

2.1 Introduction

Historically, the Hawkes process has been studied predominantly in financial

settings. However, it has only recently received a significant amount of atten-

tion in more general contexts. In this chapter, we are particularly interested in

socially informed queueing systems, and we use these systems as a motivation

for both studying the Hawkes process and applying it to queueing models. For

example, in situations in which a person does not know the value of compet-

ing offers or services, she may decide to pursue the option that has the most

other people already waiting for it. When one can’t be sure of what is earned by

waiting, the willingness of others to wait can often be the best indicator.

As a quick example for the sake of building intuition, consider walking past

a street performer. If there is only a handful of other people watching, one may

not feel a desire to stop and see the performance. However, if there is a large

crowd already watching it is more enticing to join the group and see what is

happening. This is the basic motivation of self-exciting and clustering arrival

processes. Although this example is simple, the concept itself has powerful

implications for service systems. Several naturally occurring examples of these

systems were detailed in a recent Chicago Booth Review article (Mordfin, 2015).

Contents of this chapter have been published in Daw and Pender (2018).
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These examples include cellular companies paying employees to join the lines

outside stores during product launches and pastry enthusiasts waiting hours in

queue to buy baked goods from the famed Dominique Ansel Bakery in New

York. (The article even includes a story of a German man joining a long queue

in 1947 without any knowledge of what awaited him, only to find it was for

visas to the United States!)

In this chapter, we will discuss Hawkes driven queues in two main applica-

tions: the viral nature of modern web traffic and the appeal associated with the

lengths of queues for nightclubs. In socially informed internet traffic, webpages

experience arrivals of users in clusters due to the contagion-like spread of infor-

mation. If one user shares a webpage, others become more likely to view and

share it as well. We demonstrate this through an example from Twitter data and

explore the impact of a click. The night club example can be seen as an effect of

having to pay a cover fee up front to enter the venue. Because club-goers must

pay before ever seeing inside, the number of others already in queue to enter the

club gives a sense of the attraction they are awaiting. In this setting we consider

the managerial control problem of how quickly to admit customers to maxi-

mize earnings. Again, in these examples the occurrence of an event or arrival of

a customer increases the likelihood that another will happen soon after.

We model these sort of settings through queueing systems in which the ar-

rivals occur according to a Hawkes process and in which service times follow

phase-type distributions. This general type of service allows for more detailed

modeling while preserving key characteristics for queues, such as the Markov

property. Mathematically, this work is most similar to recent work by Gao and

Zhu (2018a) and Koops et al. (2018). Moreover, transient moments for infinite
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server queues with Markovian arrivals are also among the findings in Koops

et al. (2018), an independent and concurrent work. However the moments

in Koops et al. (2018) are only derived for exponential service distributions,

whereas we give expressions for any phase-type service distribution. Addition-

ally, we analyze the Hawkes/D/∞ queue and give an explicit analysis for its

first two moments. Conceptually, our motivation is most similar to Debo et al.

(2012). While the model in Debo et al. (2012) is similar to this one in concept, it is

quite different in its probabilistic structure. Rather than using a Hawkes process

for the arrivals, the authors model the scenario through a Poisson process with

a probability of arrivals joining or balking that increases with the length of the

queue. This describes the setting well, but there are a few limitations and room

for additional considerations. For example, recency plays no role in the influ-

ence of the next arrival. For queues of identical length, that model considers the

most recent arrival occurring a minute ago to be equivalent to it occurring an

hour ago. Additionally, because events arrive according to a time-homogeneous

Poisson process and then either join or balk, the rate at which arrivals join the

queue is bounded by the overall arrival rate, a constant. This prevents any kind

of “viral” behavior for the events, so a large influx of arrivals over a short time

is unlikely to occur. By contrast, these behaviors are inherent to our model.

We will explore these ideas and others after the following descriptions of this

chapter’s composition.

2.1.1 Main Contributions of Chapter

In this chapter, we provide exact expressions for the mean, variance, and co-

variance of the Hawkes process driven queue for all time, in both transient and
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steady state. These moments are derived for general phase-type service; we

also provide examples for hyper-exponential and Erlang service. These results

are derived by exploiting linear ordinary differential equations. We also de-

rive expressions for all moments of the queue. We verify these functions via

comparisons to simulations. We also derive a partial differential equation for

the moment generating function and the cumulant moment generating func-

tion for the Hawkes/PH/∞ queue. We are able to show that the solution of the

potentially high dimensional PDE for the MGF can be reduced to solving one

differential equation, which does not have a closed form expression except in

some special cases. Moreover, we analyze the Hawkes/D/∞ queue where the

service times are deterministic. We derive exact expressions for the mean, vari-

ance, and auto-covariance of the queue length process. Throughout this work

we show the relevance of the Hawkes process by direct comparison to the Pois-

son process and through novel applications. In our applications, we investigate

the long run effects of the self-excitement structure, design an optimal control

problem, and describe how to solve it numerically.

2.1.2 Organization of Chapter

The remainder of this chapter is organized into three main sections. In Sec-

tion 1.1, we give an overview of results and properties in the Hawkes process lit-

erature that are relevant to this work and we then investigate the infinite server

Hawkes process driven queue with deterministic service. In Section 2.3, we per-

form the main analysis of this work, which is the investigation of infinite server

queues with Hawkes process arrivals and phase-type distributed service. In

doing so, we first provide model definitions and technical lemmas, then derive
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expressions for the moments of the queue, followed by the auto-covariance and

moment and cumulant generating functions. In Section 2.4, we apply this work

to two novel settings, trending web traffic and night clubs.

2.2 Hawkes/D/∞ Queue

Before moving on to the phase-type distributed service systems, we will first in-

vestigate the deterministic service setting. Since we have a good understanding

about the Hawkes process itself, we can leverage our knowledge to analyze the

Hawkes/D/∞ queue where D is deterministic and is equal to the exact amount of

time each customer spends in service. We exploit the fact that the Hawkes/D/∞

queue can be written as the difference between the Hawkes process evaluated

at time t and the Hawkes process evaluated at time t − D i.e.

Qt = Nt − Nt−D. (2.1)

This representation of the Hawkes/D/∞ queue leads us to a theorem that pro-

vides explicit expressions for the mean, variance, and auto-covariance of the

Hawkes/D/∞ queueing process. However, before we state the result, we need a

lemma that describes the transient auto-covariance of the Hawkes process. This

lemma will be extremely useful for our future calculations of other quantities of

interest for the Hawkes/D/∞ queue.

Lemma 2.2.1. Let Nt be a Hawkes process with dynamics given by Equation 1.1 with

α < β and suppose Nt is initialized at zero. If we define C(t, τ) as

C(t, τ) ≡ Cov[Nt,Nt−τ], (2.2)
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then

C(t, τ) =
α
(
1 − e−(β−α)τ

)
2(β − α)3

(
(2β − α)λ∞ − 2e−(β−α)(t−τ) (αλ0 + β(λ∞ − λ0)(β − α)(t − τ) + (β − α)λ∞)

)
+

(
λ∞ +

2αλ∞
β − α

+
α2λ∞

(β − α)2

)
(t − τ) +

α2(2λ0 − λ∞)
2(β − α)3

(
1 − e−(β−α)(2t−τ)

)
−

2αβ(λ0 − λ∞)
(β − α)2

· (t − τ)e−(β−α)(t−τ) +

(
β + α

(β − α)2 (λ0 − λ∞) −
2αβ

(β − α)3λ∞

)
(1 − e−(β−α)(t−τ)) (2.3)

for all t ≥ τ ≥ 0; otherwise C(t, τ) = 0.

Proof. To see this, we manipulate the definition of the auto-covariance to find

an expression in terms of other known functions. Starting from the definition of

covariance, we have

Cov [Nt,Nt−τ] = E [NtNt−τ] − E [Nt]E [Nt−τ]

and by Proposition 1.1.2 we have expressions for E [Nt] and E [Nt−τ]. Thus, we

focus on E [NtNt−τ]. However, for brevity’s sake we do not yet substitute these

known expressions into the equation. By the tower property, we have that

C(t, τ) = E [E [NtNt−τ | Ft−τ]] − E [Nt]E [Nt−τ]

where Ft−τ is the filtration of the Hawkes process up to time t − τ. Through

this conditioning, Nt−τ is known in the inner expectation, and so we can replace

E [E [NtNt−τ | Ft−τ]] with E [E [Nt | Ft−τ]Nt−τ]. Then, again by Proposition 1.1.2 we

have that E [Nt | Ft−τ] = λ∞τ + λt−τ−λ∞
β−α

(
1 − e−(β−α)τ

)
+ Nt−τ. Making use of this, we

now have that

C(t, τ) = λ∞τE [Nt−τ] + E [λt−τNt−τ]
1 − e−(β−α)τ

β − α
−

λ∞
β − α

E [Nt−τ]

·
(
1 − e−(β−α)τ

)
+ E

[
N2

t−τ

]
− E [Nt]E [Nt−τ],
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and by the definitions of covariance and variance this is equivalent to

C(t, τ) = λ∞τE [Nt−τ] +
Cov [λt−τ,Nt−τ] + E [λt−τ]E [Nt−τ]

β − α

(
1 − e−(β−α)τ

)
−

λ∞
β − α

E [Nt−τ]
(
1 − e−(β−α)τ

)
− E [Nt]E [Nt−τ] + Var (Nt−τ) + E [Nt−τ]2.

Here we can recognize that each term in this expression has a known form from

Proposition 1.1.2. Hence, by substituting these expressions and simplifying, we

achieve the stated result. �

Figure 2.1: Auto-covariance of the Hawkes Process with D = 5, λ∗ = 1, α = 3
4 ,

and β = 5
4 .

With the expression for the transient auto-covariance of the Hawkes pro-

cess in hand, we can now give explicit forms of the mean, variance, and auto-

covariance of the Hawkes/D/∞ queue.

Theorem 2.2.2. The transient mean of the Hawkes/D/∞ when α < β is given by the

following expression

E[Qt] =


λ∞t + λ0−λ∞

β−α

(
1 − e−(β−α)t

)
if t ≤ D,

λ∞D + λ0−λ∞
β−α

(
e−(β−α)(t−D) − e−(β−α)t

)
if t > D.

(2.4)
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Thus, the steady state mean queue length is

E[Q∞] = λ∞D. (2.5)

Moreover, the transient variance of the Hawkes/D/∞ queue is given by the following

expression

Var[Qt] =


C(t, 0) if t ≤ D,

C(t, 0) + C(t − D, 0) − 2C(t,D) if t > D.
(2.6)

Lastly, the transient auto-covariance of the Hawkes/D/∞ queue is given by the follow-

ing expression when τ ≥ D,

Cov[Qt,Qt−τ] =



0 if t ≤ τ,

C(t, τ) − C(t − D, τ − D) if τ < t ≤ τ + D

C(t, τ) + C(t − D, τ) − C(t, τ + D) − C(t − D, τ − D) if τ + D < t

(2.7)

and when τ < D, then

Cov[Qt,Qt−τ] =



0 if t ≤ τ,

C(t, τ) if τ < t ≤ D,

C(t, τ) − C(t − τ,D − τ) if D < t ≤ τ + D

C(t, τ) + C(t − D, τ) − C(t, τ + D) − C(t − τ,D − τ) if τ + D < t.
(2.8)

Proof. Throughout this proof we make use of the form of the auto-covariance of

Nt given in Lemma 2.2.1. The transient mean is straightforward since it follows

from the linearity property of expectation and just taking the difference of the

19



two means. Moreover, for the variance we have

Var[Qt] = Var[Nt − Nt−D]

= Var[Nt] + Var[Nt−D] − 2Cov[Nt,Nt−D]

= Var[Nt] + Var[Nt−D] − 2C(t,D)

= C(t, 0) + C(t − D, 0) − 2C(t,D).

Finally for the auto-covariance, if τ ≥ D we have that

Cov[Qt,Qt−τ] =



0 if t ≤ τ,

Cov [Nt − Nt−D,Nt−τ] if τ < t ≤ τ + D

Cov [Nt − Nt−D,Nt−τ − Nt−τ−D] if τ + D < t

by the definition of the Hawkes/D/∞ queue and from the linearity of covariance.

Now, for τ < D, we have that

Cov[Qt,Qt−τ] =



0 if t ≤ τ,

Cov [Nt,Nt−τ] if τ < t ≤ D,

Cov [Nt − Nt−D,Nt−τ] if D < t ≤ τ + D

Cov [Nt − Nt−D,Nt−τ − Nt−τ−D] if τ + D < t.

Again by the definition of the deterministic, Hawkes-driven, infinite server

queue and the linearity of covariance, we achieve the stated result. �

2.3 Hawkes/PH/∞ Queue

In this section, we will explore queueing systems in which arrivals occur accord-

ing to a Hawkes process. This section is organized in the following manner. In
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Figure 2.2: Mean of the Hawkes/D/∞Queue with D = 5, λ∗ = 1, α = 3
4 , and β = 5

4 .

Subsection 2.3.1, we provide key model definitions such as the phase-type dis-

tribution and we detail technical lemmas that support our analysis. Next, in

Subsection 2.3.2, we derive differential equations for all moments of the queue-

ing system and solve for exact expressions for the first and second moments. In

Subsection 2.3.3, we consider the stationary limits of queues with stable arrival

processes and investigate the transient behavior of those with unstable arrivals.

Afterwards, we consider the auto-covariance of the queue in Subsection 2.3.4.

Finally, in Subsection 2.3.5 we derive partial differential equations for the mo-

ment generating function and the cumulant moment generating function for

this system.

2.3.1 Model Definitions and Technical Lemmas

To begin, we define the phase-type distribution. This form of service, formally

defined below, can be thought of as a sequence of sub-services that have in-

dependent and exponentially distributed durations. We use this primarily for
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two factors. The first is that this is more general than just exponential service,

and it can be shown that phase-type distributions can weakly approximate any

non-negative continuous distribution, see Cox (1955). Secondly, because the

phase-type distribution is comprised of independent exponential service times,

a queueing system with such service distributions is Markovian. Thus, these

two properties together give us a system that is both flexible in application and

practical in terms of analysis. A phase-type distribution with n phases repre-

sents the time taken from an initial state to an absorbing state of a continuous

time Markov chain (CTMC) with the following infinitesimal generator matrix,

Γ =

 0 0

s S

 .
Here 0 is a 1 × n zero vector, s is an n × 1 vector, and S is an n × n matrix. Note

s = −Sv where v is an n×1 vector of ones. The matrix S and the initial distribution

θ, which is a 1 × n vector, identify the phase-type distributions. The number of

phases in S is n. The matrix S and vector s can be expressed as:

S =


−µ1 · · · µ1,n

...
. . .

...

µn,1 · · · −µn

 , s = (µ1,0, . . . , µn,0)T, (2.9)

where the µi j’s agree with the definition of the infinitesimal generator matrix Γ.

For notational consistency, we use a term phase to indicate the state of CTMC

of the phase-type distributions throughout this chapter. Additionally, we now

note that in all following use of the matrix S we will not use a bold notation as

in those settings additional emphasis that it is a matrix is not necessary.

With the phase-type distributions as described above, we build a Marko-

vian queueing model referred to as the Hawkes/PH/∞ queue. We assume that

the system starts with no customers and that there are infinitely many servers.
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Further, we suppose that there are n phases of service and the transition rate

between two distinct phases i and j is µi j. Let θ ∈ [0, 1]n be a distribution

over the phases such that the probability that an arriving entity joins the ith

phase is θi, with
∑n

i=1 θi = 1. An entity departs the system at rate µi0, where i

is the entity’s phase of service before leaving. For brevity of notation, define

µi ≡ µi0 + µi1 + · · ·+ µi,i−1 + µi,i+1 + µi,n. Let Qt ∈ N
n represent the number of entities

in the queueing system, with Qt,i representing the number in phase i of service

i.e.

Qt =

n∑
i=1

Qt,ivi (2.10)

where vi is the unit column vector in the ith coordinate. We let (λt,Nt) represent a

Hawkes process as described in Equation 1.1. We will now find the infinitesimal

generator for real valued functions of the state space, f : R+ × N × Nn → R. For

simplicity of notation, when describing the difference in values of f for changed

arguments we will only list the variables that change, rather than listing all n

queueing phase variables. This generator is shown below.

L f (x) = β(λ∗ − λt)
∂ f (x)
∂λt︸              ︷︷              ︸

Excitation Decay

+

n∑
i=1

λtθi
(
f (λt + α,Nt + 1,Qt,i + 1) − f (x)

)
︸                                                 ︷︷                                                 ︸

Arrivals

(2.11)

+

n∑
i=1

n∑
j=1
j,i

µi jQt,i

(
f (λt,Nt,Qt,i − 1,Qt, j + 1) − f (x)

)
︸                                                          ︷︷                                                          ︸

Transfers

+

n∑
i=1

µi0Qt,i
(
f (λt,Nt,Qt,i − 1) − f (x)

)
︸                                         ︷︷                                         ︸

Departures

Here, x is an element of the state space (R+ × N × Nn). We can use this to obtain

Dynkin’s formula for the full Hawkes/PH/∞ queueing system. We have that

Et
[
f (Xs)

]
= f (Xt) + Et

[∫ s

t
L f (Xu)du

]
, (2.12)

where Xt = (λt,Nt,Qt). This gives rise to the following lemma.

Lemma 2.3.1. Let f be a function such that Equation 2.12 holds. Then,

d
dt

E
[
f (Xt)

]
= E

[
L f (Xt)

]
23



for all t ≥ 0.

Proof. This is achieved through use of Fubini’s theorem and the fundamental

theorem of calculus. Using Equation 2.12 we have that

d
dt

E
[
f (Xt)

]
=

d
dt

(
f (X0) + E

[∫ t

0
L f (Xu)du

])
=

d
dt

E
[∫ t

0
L f (Xu)du

]
=

d
dt

∫ t

0
E

[
L f (Xu)

]
du = E

[
L f (Xt)

]
and this completes this proof. �

Remark. It is important for the reader to recognize that this is equivalent to

Dynkin’s theorem. In most textbooks, Dynkin’s theorem is proved for suffi-

ciently differentiable and more importantly bounded functions. However, this

assumption of boundedness can often be relaxed. In fact this relaxation of the

boundedness is very common for extending results like Ito’s lemma and the

Feynman Kac formula for unbounded, but polynomial bounded functions. This

is often extended by stopping the process when it hits a certain level by using

stopping times. Then one applies the previous results for bounded functions

and takes limits as the bound tends to infinity. For the interested reader, see

Lemma 2 of Oelschlager (1984) for a proof.

Now, before using these differential equations to find explicit functions as

we did previously, we will first introduce a series of technical lemmas to aid

our analysis. These lemmas are presented without proof as they follow from

standard approaches for matrix exponentials and integration. First, we give a

form for the indefinite integral of the exponential of a non-singular matrix.

Lemma 2.3.2. Let L ∈ Rn×n be invertible. Then, if the integral of eLt exists it can be
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expressed ∫
eLt dt = L−1eLt + c

where c is some constant of integration.

Proof. The proof follows from standard approaches. �

The second lemma now provides explicit forms for the definite integral from

0 to t of the product of an exponential of an invertible matrix, a vector, a scalar

power of the variable of integration, and a scalar exponential function of the

variable of integration.

Lemma 2.3.3. Let L ∈ Rn×n be invertible, let ν ∈ Rn, let η ∈ N, and let γ ∈ R. Then, if

L + γI is invertible,∫ t

0
eLsνsηeγs ds =

η∑
k=0

η!
(η − k)!

(−1)k (L + γI)−(k+1)
(
eLtνtη−keγt

)
− η!(−1)η (L + γI)−(η+1) ν

for t > 0.

Proof. The proof follows from the preceding lemma, induction, and integration

by parts. �

The next lemma is a quick demonstration of commutativity of the inverse of

a matrix exponential and an inverse of the same matrix shifted in the direction

of the identity.

Lemma 2.3.4. Let A ∈ Rn×n be invertible and let b, c ∈ R be such that cA + bI is also

invertible. Then,

e−A (cA + bI)−1 = (cA + bI)−1 e−A.

Proof. The proof follows from the definition of the matrix exponential. �
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These lemmas now come together to give the general solution to differential

equations of a certain form.

Lemma 2.3.5. Let g(t) ∈ Rn be a function described by the first-derivative dynamics

•
g(t) = −Lg(t) +

∑
i∈S

νitηieγit

with an initial condition of g(0) = g0, where L ∈ Rn×n is invertible and S is a finite index

set such that νi ∈ R
n, ηi ∈ N, and γi ∈ R for each i ∈ S. Then, if L + γiI is invertible for

all i ∈ S the explicit function for g(t) is given by

g(t) =
∑
i∈S

ηi∑
k=0

ηi!(−1)k

(ηi − k)!
(L + γiI)−(k+1)

(
νitηi−keγit

)
− ηi!(−1)ηi (L + γiI)−(ηi+1) e−Ltνi + e−Ltg0

for all t ≥ 0.

Proof. The proof follows from standard differential equation techniques and the

three preceding lemmas. �

Now, before introducing one final lemma we first define a useful matrix. For

γ, c ∈ R, ν ∈ Rn, and L ∈ Rn×n, let Mγ,ν,L(t) ∈ Rn×n be such that

Mγ,ν,L(t) =

∫ t

0
e(γI−LT)sννTe−Ls ds (2.13)

for all t ≥ 0. Element-wise, we can express this matrix after integration as

(
Mγ,ν,L(t)

)
i, j

=


∑n

k=1
∑n

l=1 νkνl
∑∞

r=0
∑∞

w=0
(Lr)k,i(Lw)l, j

γr+w+1

(
r+w

r

) (
eγt ∑r+w

z=0
(−γt)z

z! − 1
)

if γ , 0,∑n
k=1

∑n
l=1 νkνl

∑∞
r=0

∑∞
w=0

(Lr)k,i(Lw)l, jtr+w+1

r!w!(r+w+1) if γ = 0.

This function provides shorthand when integrating a particular function that

otherwise does not produce a nice linear algebraic form. The difficulty of ex-

pressing this integral in matrix form stems from the fact that L and ννT need not

commute. With defining Mγ,ν,L(t) we circumvent this issue by integrating on the

element-level, but if L and ννT were to commute we could avoid this function

entirely, as we will later see. For now, this definition leads us to our next lemma.
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Lemma 2.3.6. Let η, γ, c ∈ R, ν ∈ Rn, L ∈ Rn×n be such that L, γI + L, and (η+ 1)γI − L

are each invertible. Then,∫ t

0

( (
(η + 1)γI − LT

)−1 (
e(ηγI−LT)s − e−γIs

)
ννTce−Ls + e−LT sννTc

(
e(ηγI−L)s − e−γIs

)
· ((η + 1)γI − L)−1

)
ds

=c
(
(η + 1)γI − LT

)−1
(
(η + 2)γMηγ,ν,L(t) + e(ηγI−LT)tννTe−Lt − ννT + ννT

(
e−(γI+L)t − I

)
(γI + L)−1

· ((η + 1)γI − L) +
(
(η + 1)γI − LT

)
(γI + LT)−1

(
e−(γI+LT)t − I

)
ννT

)
((η + 1)γI − L)−1

for all t ≥ 0.

Proof. The proof follows from the given definition of Mγ,ν,L(t), the product rule,

and the preceding lemma. �

With these lemmas and definitions now in hand we can proceed to our analy-

sis of the Hawkes/PH/∞ queueing system. These results, stated in the following

theorem, make use of the form of the infinitesimal generator in Lemma A.1.1,

with simplification through linearity of expectation and the binomial theorem.

2.3.2 Mean Dynamics of the Hawkes/PH/∞ Queue

To begin investigation of the Hawkes/PH/∞ queueing system, we first derive

differential equations for the moments of the number in each phase of service

and the intensity.

Theorem 2.3.7. Consider a queueing system with arrivals occurring in accordance to a

Hawkes process (λt,Nt) with dynamics given in Equation 1.1 and phase-type distributed
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service. Then we have differential equations for the moments of Qt,i given by

d
dt

E
[
Qm

t,i

]
= θi

m−1∑
g=0

(
m
g

)
E

[
λtQ

g
t,i

]
+

m−1∑
g=0

n∑
j=1
j,i

(
m
g

)
µ jiE

[
Qt, jQ

g
t,i

]
(2.14)

+

m∑
g=1

(
m

g − 1

)
µi(−1)m−g+1E

[
Qg

t,i

]
,

for the products of Qt,i and Qt, j where i , j given by

d
dt

E
[
Qm

t,iQ
l
t, j

]
= θi

m−1∑
g=0

(
m
g

)
E

[
λtQl

t, jQ
g
t,i

]
+ θ j

l−1∑
h=0

(
l
h

)
E

[
λtQm

t,iQ
h
t, j

]
(2.15)

+

n∑
k=1

i,k, j

m−1∑
g=0

(
m
g

)
µkiE

[
Qt,kQg

t,iQ
l
t, j

]
+

n∑
k=1

j,k,i

l−1∑
h=0

(
l
h

)
µk jE

[
Qt,kQm

t,iQ
h
t, j

]

+ µi

m−1∑
g=0

(
m
g

)
(−1)m−gE

[
Ql

t, jQ
g+1
t,i

]
+ µi j

m∑
g=0

l−1∑
h=0

(
m
g

)(
l
h

)
(−1)m−gE

[
Qg+1

t,i Qh
t, j

]
+ µ j

l−1∑
h=0

(
l
h

)
(−1)l−hE

[
Qm

t,iQ
h+1
t, j

]
+ µ ji

l∑
h=0

m−1∑
g=0

(
l
h

)(
m
g

)
(−1)l−hE

[
Qh+1

t, j Qg
t,i

]
,

and for the products of λt and Qt,i given by

d
dt

E
[
λm

t Ql
t,i

]
= βλ∗mE

[
λm−1

t Ql
t,i

]
− βmE

[
λm

t Ql
t,i

]
+ θi

m∑
g=0

l−1∑
h=0

(
m
g

)(
l
h

)
(2.16)

· αm−gE
[
λ

g+1
t Qh

t,i

]
+

m−1∑
g=0

(
m
g

)
αm−gE

[
λ

g+1
t Ql

t,i

]
+ µi

l−1∑
h=0

(
l
h

)

· (−1)l−hE
[
λm

t Qh+1
t,i

]
+

n∑
j=1
j,i

l−1∑
h=0

(
l
h

)
µ jiE

[
λm

t Qt, jQh
t,i

]
,

where t ≥ 0.

Proof. We can first observe that each of these moments can be generalized to
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E
[
λm

t Ql
t,iQ

k
t, j

]
. From Lemma A.1.1 we see that

d
dt

E
[
λm

t Ql
t,iQ

k
t, j

]
= E

[
β(λ∗ − λt)mλm−1

t Ql
t,iQ

k
t, j + λtθi

(
(λt + α)m(Qt,i + 1)lQk

t, j − λ
m
t Ql

t,iQ
k
t, j

)
+ λtθ j

(
(λt + α)mQl

t,i(Qt, j + 1)k − λm
t Ql

t,iQ
k
t, j

)
+

n∑
x=1

j,x,i

λtθxQl
t,iQ

k
t, j

(
(λt + α)m − λm

t
)

+

n∑
x=1

i,x, j

µxiQt,xλ
m
t Qk

t, j

(
(Qt,i + 1)l − Ql

t,i

)
+

n∑
x=1

j,k,i

µx jQt,xλ
m
t Ql

t,i

(
(Qt, j + 1)k − Qk

t, j

)

+

n∑
x=0

i,x, j

µixQt,iλ
m
t Qk

t, j

(
(Qt,i − 1)l − Ql

t,i

)
+

n∑
x=0

j,x,i

µ jxQt, jλ
m
t Ql

t,i

(
(Qt, j − 1)k − Qk

t, j

)

+ µi jQt,iλ
m
t

(
(Qt,i − 1)l(Qt, j + 1)k − Ql

t,iQ
k
t, j

)
+ µ jiQt, jλ

m
t

(
(Qt, j − 1)k(Qt,i + 1)l − Ql

t,iQ
k
t, j

) ]
where we have combined the transfers from one phase to another and depar-

tures from that phase into the same summation by starting the index at 0. Using

the binomial theorem and linearity of expectation, we have the following:

d
dt

E
[
λm

t Ql
t,iQ

k
t, j

]
= βλ∗mE

[
λm−1

t Ql
t,iQ

k
t, j

]
− βmE

[
λm

t Ql
t,iQ

k
t, j

]
+

n∑
x=1

j,x,i

m−1∑
y=0

(
m
y

)
θxα

m−y

· E
[
λ

y+1
t Ql

t,iQ
k
t, j

]
+ θi

 m∑
x=0

l∑
y=0

(
m
x

)(
l
y

)
αm−xE

[
λx+1

t Qy
t,iQ

k
t, j

]
− E

[
λm+1

t Ql
t,iQ

k
t, j

]
+ θ j

( m∑
x=0

k∑
y=0

(
m
x

)(
k
y

)
αm−xE

[
λx+1

t Ql
t,iQ

y
t, j

]
− E

[
λm+1

t Ql
t,iQ

k
t, j

])
+

n∑
x=1

i,x, j

l−1∑
y=0

(
l
y

)
µxi

· E
[
λm

t Qt,xQy
t,iQ

k
t, j

]
+

n∑
x=1

i,x, j

k−1∑
y=0

(
k
y

)
µx jE

[
λm

t Qt,xQl
t,iQ

y
t, j

]
+

n∑
x=0

i,x, j

l−1∑
y=0

(
l
y

)
(−1)l−yµixE

[
λm

t Qy+1
t,i Qk

t, j

]

+

n∑
x=0

i,x, j

k−1∑
y=0

(
k
y

)
(−1)k−yµ jxE

[
λm

t Ql
t,iQ

y+1
t, j

]
+ µi j

( l∑
x=0

k∑
y=0

(
l
x

)(
k
y

)
(−1)l−xE

[
λm

t Qx+1
t,i Qy

t, j

]

− E
[
λm

t Ql+1
t,i Qk

t, j

])
+ µ ji

 l∑
x=0

k∑
y=0

(
l
x

)(
k
y

)
(−1)k−yE

[
λm

t Qx
t,iQ

y+1
t, j

]
− E

[
λm

t Ql
t,iQ

k+1
t, j

] .
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Now we simplify by recognizing that
∑

x, j µix = µi − µi j and
∑

i,x, j θx = 1 − θi − θ j.

This leaves us with

d
dt

E
[
λm

t Ql
t,iQ

k
t, j

]
= βλ∗mE

[
λm−1

t Ql
t,iQ

k
t, j

]
− βmE

[
λm

t Ql
t,iQ

k
t, j

]
+

m−1∑
y=0

(
m
y

)
αm−yE

[
λ

y+1
t Ql

t,iQ
k
t, j

]
+ θi

m∑
x=0

l−1∑
y=0

(
m
x

)(
l
y

)
αm−xE

[
λx+1

t Qy
t,iQ

k
t, j

]
+ θ j

m∑
x=0

k−1∑
y=0

(
m
x

)(
k
y

)
αm−xE

[
λx+1

t Ql
t,iQ

y
t, j

]
+

n∑
x=1

i,x, j

l−1∑
y=0

(
l
y

)
µxiE

[
λm

t Qt,xQy
t,iQ

k
t, j

]
+

n∑
x=1

i,x, j

k−1∑
y=0

(
k
y

)
µx jE

[
λm

t Qt,xQl
t,iQ

y
t, j

]

+ µi

l−1∑
y=0

(
l
y

)
(−1)l−yE

[
λm

t Qy+1
t,i Qk

t, j

]
+ µi j

l∑
x=0

k−1∑
y=0

(
l
x

)(
k
y

)
(−1)l−xE

[
λm

t Qx+1
t,i Qy

t, j

]
+ µ j

k−1∑
y=0

(
k
y

)
(−1)k−yE

[
λm

t Ql
t,iQ

y+1
t, j

]
+ µ ji

k∑
y=0

l−1∑
x=0

(
l
x

)(
k
y

)
(−1)k−yE

[
λm

t Qx
t,iQ

y+1
t, j

]
which is equivalent to each stated result when m = k = 0, k = 0, and m = 0,

respectively. �

We can now observe that we can form closed systems of linear ordinary dif-

ferential equations from these equations. To do so, we restrict our focus to the

equations for moments of combined power at most m ∈ Z+. Of course, the col-

lection of equations that is of most practical interest is found by setting m = 2, as

this yields a system for the means and variances. This now gives rise to Corol-

lary 2.3.8, which states the differential equations for the mean, variance, and

covariances of queues driven by Hawkes processes.

Corollary 2.3.8. Consider a queueing system with arrivals occurring in accordance to a

Hawkes process (λt,Nt) with dynamics given in Equation 1.1 and phase-type distributed

service. Then, we have the following differential equations for the mean, variance, and
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covariances of the number of entities in each phase and in the system as a whole:

d
dt

E
[
Qt,i

]
= θiE [λt] +

n∑
j=1
j,i

µ jiE
[
Qt, j

]
− µiE

[
Qt,i

]
(2.17)

d
dt

Var
(
Qt,i

)
= θiE [λt] + 2θiCov

[
λt,Qt,i

]
+ 2

n∑
j=1
j,i

µ jiCov
[
Qt,i,Qt, j

]
+ µiE

[
Qt,i

]
(2.18)

+

n∑
j=1
j,i

µ jiE
[
Qt, j

]
− 2µiVar

(
Qt,i

)
d
dt

Cov
[
λt,Qt,i

]
= (α − β − µi)Cov

[
λt,Qt,i

]
+ αθiE [λt] +

n∑
j=1
j,i

µ jiCov
[
λt,Qt, j

]
(2.19)

+ θiVar (λt)

d
dt

Cov
[
Qt,i,Qt, j

]
= θiCov

[
λt,Qt, j

]
+ θ jCov

[
λt,Qt,i

]
− (µi + µ j)Cov

[
Qt,i,Qt, j

]
(2.20)

+

n∑
k=1
k,i

µkiCov
[
Qt,k,Qt, j

]
+

n∑
k=1
k,i

µk jCov
[
Qt,k,Qt,i

]
− µi jE

[
Qt,i

]
− µ jiE

[
Qt, j

]
.

We will find that it is quite useful to also be able to state the equations in

Corollary 2.3.8 in linear algebraic form. Recall that the vector of the number

in each phase of service is Qt ∈ N
n, the distribution of arrivals into phases is

θ ∈ [0, 1]n, and the sub-generator-matrix for the n phases of service is S ∈ Rn×n

so that S i,i = −µi for each i ∈ {1, . . . , n} and S i, j = µi, j for all j , i. We now

also incorporate the notation diag (x) ∈ Rn×n for x ∈ Rn as diag (x) ≡
∑n

i=1 VixvT
i ,

where vi ∈ R
n is the unit column vector in the direction of the ith coordinate and

Vi = vivT
i , meaning that the ith diagonal element is 1 and the rest are 0. Together,

we have that the vector form of Equation 2.17 is

d
dt

E [Qt] = θE [λt] + S TE [Qt],
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the vector form of Equation 2.19 is

d
dt

Cov [λt,Qt] =
(
S T − (β − α)I

)
Cov [λt,Qt] + αθE [λt] + θVar (λt),

and the matrix form of Equations 2.18 and 2.20 is

d
dt

Cov [Qt,Qt] = S TCov [Qt,Qt] + Cov [Qt,Qt]S + θCov [λt,Qt]T + Cov [λt,Qt]θT

+ diag
(
θE [λt] + S TE [Qt]

)
− S Tdiag (E [Qt]) − diag (E [Qt])S

where the diagonal elements of the matrix Cov [Qt,Qt] correspond to the vari-

ance of the number in each phase of service and the off-diagonal elements rep-

resent the covariance between two phases of service. We can now use the tech-

nical lemmas in Subsection 2.3.1 to find explicit linear algebraic solutions to the

closed system of differential equations in Corollary 2.3.8.

Theorem 2.3.9. Consider a queueing system with arrivals occurring in accordance to

a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 with α < β and phase-

type distributed service. Let S ∈ Rn×n be the sub-generator matrix for the transient

states in the phase-distribution CTMC and let θ ∈ [0, 1]n be the initial distribution for

arrivals to these states. If S + (β − α)I is invertible, then the vector of the mean number

in service in each phase of service is

E [Qt] = λ∞
(
−S T

)−1 (
I − eS Tt)θ − (λ0 − λ∞)

(
S T + (β − α)I

)−1(
e−(β−α)tI − eS Tt)θ (2.21)

where λ∞ =
βλ∗

β−α
. Further, the vector of covariances between the intensity and each phase

of service is

Cov [λt,Qt] =
α(2β − α)λ∞

2(β − α)

(
(β − α)I − S T

)−1 (
I − e(S T−(β−α)I)t

)
θ −

αβ(λ0 − λ∞)
β − α

·
(
S T

)−1 (
e−(β−α)tI − e(S T−(β−α)I)t

)
θ +

α2(2λ0 − λ∞)
2(β − α)

(
S T + (β − α)I

)−1

·
(
e−2(β−α)tI − e(S T−(β−α)I)t

)
θ . (2.22)
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Finally, the matrix of covariances between phases of service is given by

Cov [Qt,Qt] =
α(2β − α)λ∞

2(β − α)

(
(β − α)I − S T

)−1
(
2(β − α)eS TtM0,θ,S (t)eS t + θθT − eS TtθθTeS t

+ eS TtθθT
(
e−(β−α)tI − eS t

)
((β − α)I + S )−1((β − α)I − S ) +

(
(β − α)I − S T

) (
(β − α)I + S T

)−1

·
(
e−(β−α)tI − eS Tt

)
θθTeS t

)
((β − α)I − S )−1 +

αβ(λ0 − λ∞)
β − α

(
S T

)−1
(
(β − α)eS TtM−(β−α),θ,S (t)eS t

+ e−(β−α)tθθT − eS TtθθTeS t − eS TtθθT
(
e−(β−α)tI − eS t

)
((β − α)I + S )−1S − S T

(
(β − α)I + S T

)−1

·
(
e−(β−α)tI − eS Tt

)
θθTeS t

)
S −1 −

α2(2λ0 − λ∞)
2(β − α)

(
(β − α)I + S T)−1

(
e−2(β−α)tθθT − eS TtθθTeS t

− eS TtθθT
(
e−(β−α)tI − eS t

)
−

(
e−(β−α)tI − eS Tt

)
θθTeS t

)
((β − α)I + S )−1

− λ∞diag
( (

S T
)−1

·
(
I − eS Tt

)
θ
)
− (λ0 − λ∞)diag

((
S T + (β − α)I

)−1 (
e−(β−α)tI − eS Tt

)
θ
)

(2.23)

where all t ≥ 0.

Proof. Throughout this proof we use the fact that a matrix being invertible im-

plies that its transpose is invertible as well. To begin, we can see from Corol-

lary 2.3.8 that

d
dt

E [Qt] = S TE [Qt] + θE [λt] = S TE [Qt] + θ
(
λ∞ + (λ0 − λ∞) e−(β−α)t

)
and so we apply Lemma 2.3.5. Let ν1 = θλ∞ and η1 = γ1 = 0, and let ν2 =

θ(λ0 − λ∞), η2 = 0, and γ2 = −(β − α). We assume that the queue starts empty.

Then, we have

E [Qt] = −
(
S T

)−1
θλ∞ +

(
S T

)−1
e−S Ttθλ∞ −

(
S T + (β − α)I

)−1
θ(λ0 − λ∞)e−(β−α)t

+
(
S T + (β − α)I

)−1
e−S Ttθ(λ0 − λ∞)

which now simplifies to the stated result. Note that S is invertible because it

is diagonally dominant by definition and we have assumed the invertibility of

S + (β − α)I, which implies non-singularity of the respective transposes. We
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find the stated result for Cov [λt,Qt] through repeating the same technique to

the corresponding differential equation systems, where again we make use of

the linear algebraic representation. Thus, we are left to solve for the covariance

matrix. Note that from Corollary 2.3.8, the variance of each phase and the co-

variance between phases can form one linear algebraic form as the covariance

matrix, as shown below.

d
dt

Cov [Qt,Qt] = S TCov [Qt,Qt] + Cov [Qt,Qt]S + θCov [λt,Qt]T + Cov [λt,Qt]θT

+ diag
(
θE [λt] + S TE [Qt]

)
− S Tdiag (E [Qt]) − diag (E [Qt])S

Using the product rule and multiplying through by matrix exponentials on the

right and left, we can also express this as below:

d
dt

(
e−S TtCov [Qt,Qt]e−S t

)
= e−S TtθCov [λt,Qt]Te−S t + e−S TtCov [λt,Qt]θTe−S t

+ e−S Ttdiag
(
θE [λt] + S TE [Qt]

)
e−S t − e−S TtS Tdiag (E [Qt])e−S t

− e−S Ttdiag (E [Qt])S e−S t.

For the pair of Cov [λt,Qt] terms, we use Lemma 2.3.6 in conjunction with the

explicit function for Cov [λt,Qt] to find∫ t

0

(
e−S T sθCov [λs,Qs]Te−S s + e−S T sCov [λs,Qs]θTe−S s

)
ds

=
α(2β − α)λ∞

2(β − α)

(
(β − α)I − S T

)−1
(
2(β − α)M0,θ,S (t) + e−S TtθθTe−S t − θθT + θθT

(
e−((β−α)I+S )t − I

)
· ((β − α)I + S )−1((β − α)I − S ) +

(
(β − α)I − S T

) (
(β − α)I + S T

)−1 (
e−((β−α)I+S T)t − I

)
θθT

)
· ((β − α)I − S )−1 +

αβ(λ0 − λ∞)
β − α

(
S T

)−1
(
(β − α)M−(β−α),θ,S (t) + e−((β−α)I+S T)tθθTe−S t − θθT

− θθT
(
e−((β−α)I+S )t − I

)
((β − α)I + S )−1S − S T

(
(β − α)I + S T

)−1 (
e−((β−α)I+S T)t − I

)
θθT

)
S −1

−
α2(2λ0 − λ∞)

2(β − α)
(
(β − α)I + S T)−1

(
e−(2(β−α)I+S T)tθθTe−S t − θθT − θθT

(
e−((β−α)I+S )t − I

)
−

(
e−((β−α)I+S T)t − I

)
θθT

)
((β − α)I + S )−1
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and so we now integrate the remaining terms in the covariance matrix dif-

ferential equations. Note that the product rule for three terms is ( f gh)′ =

f ′gh + f g′h + f gh′. We have already used this in concatenating the covariance

matrix terms in the differential equation, and we can now make use of it again.

Recall that d
dt E [Qt] = S TE [Qt] + θE [λt]. Using this realization, the integral of the

remaining three terms is∫ t

0

(
e−S T sdiag

(
θE [λs] + S TE [Qs]

)
e−S s − e−S T sS Tdiag (E [Qs])e−S s − e−S T sdiag (E [Qs])S e−S s

)
ds

= e−S Ttdiag (E [Qt])e−S t

= −e−S Ttdiag
((

S T
)−1 (

I − eS Tt
)
θ
)
e−S tλ∞ − e−S Ttdiag

((
S T + (β − α)I

)−1 (
e−(β−α)tI − eS Tt

)
θ
)

· e−S t(λ0 − λ∞)

where we are justified in moving the differentiation through the diagonalization

and distributing it across sums via the definition of diagonalization as a linear

combination. Combining this with the integral for the covariance between the

queue and intensity and multiplying each side by the corresponding exponen-

tials, we achieve the stated result. �

As a brief example, consider a Hawkes process driven queueing system with

infinite servers and suppose that the service is phase-type distributed with ini-

tial distribution θ = v1 and the following sub-generator matrix:

S Cox =



−4 3 0 0 0

0 −2 1 0 0

0 0 −3 2 0

0 0 0 −5 4

0 0 0 0 −1


. (2.24)

This is referred to as a Coxian distribution. It is characterized by each phase of

service having an associated probability of either system departure or advance-
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Figure 2.3: Example Mean of the Hawkes/PH/∞Queue with Sub-Generator Ma-
trix S Cox as in Equation 2.24.

ment to the next phase upon service completion. In this example, λ∗ = 1, α = 3
4 ,

and β = 1. The simulation is based on 100,000 replications.

Remark. We now note that the assumed nonsingularity of S + (β − α)I is neces-

sary to implement the technical lemmas, but need not hold in order for a closed

form solution to exist. If these conditions do not hold, one can instead make

use of the structure of invertibility that is implied by a specific phase-type dis-

tribution. In Corollaries 2.3.10 and 2.3.11, we demonstrate this for Erlang and

hyper-exponential service, respectively. Like we have seen in Theorem 2.3.9,

these expressions can be found through solving systems of differential equa-

tions provided by Corollary 2.3.8.

We start with the case of service times following a Erlang distribution. In this

case, we define N ∈ Rn×n as the matrix of all ones on the first lower diagonal and

zeros otherwise. Then, S T = nµ(N − I) for this phase-type distribution. Observe

that N is a nilpotent matrix of a particular structure: for k ∈ N, Nk is the matrix
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of all ones on the kth lower diagonal if k ≤ n− 1 and is the zero matrix otherwise.

Additionally, in this case θ = v1 as all arrivals occur in the first phase. With this

in hand, we see that

(
Mγ,v1,nµ(I−NT)(t)

)
i, j

=
(
Mγ+2nµ,v1,nµNT(t)

)
i, j

=


(

i+ j−2
i−1

)
(nµ)i+ j−2 e(γ+2nµ)t ∑i+ j−2

k=0
(−(γ+2nµ)t)k

k! −1
(γ+2nµ)i+ j−1 if γ + 2nµ , 0

(tnµ)i+ j−1

nµ(i−1)!( j−1)!(i+ j−1) if γ + 2nµ = 0

and we make use of this in the following corollary.

Corollary 2.3.10. Consider a queueing system with arrivals occurring in accordance to

a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 with α < β and Erlang

distributed service with n phases and mean 1
µ
. Then, when nµ , β − α, the vector of

mean number in each phase of service is given by

E [Qt] =
λ∞
nµ

(
I − enµ(N−I)t)v − (λ0 − λ∞) (nµN − (nµ − β + α)I)−1 (

e−(β−α)tI − enµ(N−I)t)v1,

(2.25)

and when nµ = β − α, this vector is

E [Qt] =
λ∞
nµ

(
I − enµ(N−I)t)v + (λ0 − λ∞) enµ(N−I)tx(t), (2.26)

where λ∞ =
βλ∗

β−α
and x : R+ → Rn is such that xi(t) =

(−nµ)i−1ti

i! . Further, when nµ , β−α

the vector of covariances between the number in each phase of service and the intensity

is

Cov [λt,Qt] = λ∞

(
α +

α2

2(β − α)

)
((nµ + β − α)I − nµN)−1

(
I − e(nµN−(nµ+β−α)I)t

)
v1

+
αβ(λ0 − λ∞)

nµ(β − α)

(
e−(β−α)tI − e(nµN−(nµ+β−α)I)t

)
v +

α2(2λ0 − λ∞)
2(β − α)

(nµN − (nµ − β + α)I)−1

·
(
e−2(β−α)tI − e(nµN−(nµ+β−α)I)t

)
v1, (2.27)
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and when nµ = β − α, this is

Cov [λt,Qt] = λ∞

(
α

nµ
+

α2

2(nµ)2

)
(2I − N)−1

(
I − enµ(N−2I)t

)
v1 + (λ0 − λ∞)

(
α

nµ
+

α2

(nµ)2

)
·
(
e−nµtI − enµ(N−2I)t

)
v −

α2(2λ0 − λ∞)
2nµ

enµ(N−2I)tx(t). (2.28)

Finally, when nµ , β − α, the matrix of the covariance between the number in the

phases of service is given by

Cov [Qt,Qt] =
α(2β − α)λ∞

2(β − α)
((nµ + β − α)I − nµN)−1

(
2(β − α)enµ(N−I)tM2nµ,v1,nµNT(t)enµ(NT−I)t

+ v1v1
T − enµ(N−I)tv1v1

Tenµ(NT−I)t + enµ(N−I)tv1v1
T
(
e−(β−α)tI − enµ(NT−I)t

)
(nµNT − (nµ − β + α)I)−1

· ((nµ + β − α)I − nµNT) + ((nµ + β − α)I − nµN)(nµN − (nµ − β + α)I)−1
(
e−(β−α)tI − enµ(N−I)t

)
· v1v1

Tenµ(NT−I)t
) (

(nµ + β − α)I − nµNT
)−1

+
αβ(λ0 − λ∞)
(nµ)2(β − α)

(N − I)−1
(
(β − α)enµ(N−I)t

· M2nµ−β+α,v1,nµNT(t)enµ(NT−I)t + e−(β−α)tv1v1
T − enµ(N−I)tv1v1

Tenµ(NT−I)t − nµenµ(N−I)tv1v1
T

·
(
e−(β−α)tI − enµ(NT−I)t

)
(nµNT − (nµ − β + α)I)−1(NT − I) − nµ(N − I)(nµN − (nµ − β + α)I)−1

·
(
e−(β−α)tI − enµ(N−I)t

)
v1v1

Tenµ(NT−I)t
)
(NT − I)−1 −

α2(2λ0 − λ∞)
2(β − α)

(nµN − (nµ − β + α)I)−1

·

(
e−2(β−α)tv1v1

T − enµ(N−I)tv1v1
Tenµ(NT−I)t − enµ(N−I)tv1v1

T
(
e−(β−α)tI − enµ(NT−I)t

)
−

(
e−(β−α)tI − enµ(N−I)t

)
v1v1

Tenµ(NT−I)t
)
(nµNT − (nµ − β + α)I)−1 +

λ∞
nµ

diag
( (

I − enµ(N−I)t
)

v
)

− (λ0 − λ∞)diag
(
(nµN − (nµ − β + α)I)−1

(
e−(β−α)tI − enµ(N−I)t

)
v1

)
, (2.29)

whereas when nµ = β − α, this matrix is

Cov [Qt,Qt] = diag
(
λ∞
nµ

(
I − enµ(N−I)t)v + (λ0 − λ∞) enµ(N−I)tx(t)

)
+ enµ(N−I)t

(
λ∞

(
α

nµ
+

α2

2(nµ)2

)
·

( (
M2nµ,v1,nµNT(t) − x(t)v1

T
) (

2I − NT
)−1

+ (2I − N)−1
(
M2nµ,v1,nµNT(t) − v1xT(t)

) )
+ (λ0 − λ∞)

·

(
α

nµ
+

α2

(nµ)2

) (
M2nµ,v1,nµNT(t)

(
I − NT

)−1
+ (I − N)−1 M2nµ,v1,nµNT(t) − x(t)vT − vxT(t)

)
−
α2(2λ0 − λ∞)

2nµ

(
X(t) + XT(t)

) )
enµ(NT−I)t, (2.30)

where all t ≥ 0 and X : R+ → Rn×n is such that Xi, j(t) =
(−nµ)i+ j−2ti+ j−1

(i−1)! j!(i+ j) .
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As with the Erlang, we also provide explicit formulas for the hyper-

exponential distribution. In this case we have that S = −D where D is a diagonal

matrix of the rates of service in each phase. This allows it to commute with the

symmetric θθT, giving us

Mγ,θ,−D(t) =

∫ t

0
e(γI+D)sθθTeDs ds =

∫ t

0
e(γI+2D)s dsθθT = (γI + 2D)−1

(
e(γI+2D)t − I

)
θθT

as long as γI +2D is invertible. However, we also seek to address the case where

(β − α)I + S = (β − α)I − D is not invertible. In the hyper-exponential service

setting, (β−α)I −D being singular implies that some µi = β−α, but it is not clear

which or for how many µi this is the case. So, we instead use the element-level

equations in Corollary 2.3.8 to solve for the explicit expressions. This method is

preferable to the linear algebra approach for hyper-exponential service since in

this setting µi j = 0 for every i and j.

Corollary 2.3.11. Consider a queueing system with arrivals occurring in accordance

to a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 with α < β and hyper-

exponential distributed service with n phases and distinct service rates µ1, . . . , µn. Then,

the mean number in phase i ∈ {1, . . . , n} of service is

E
[
Qt,i

]
=


λ∞
µi

(
1 − e−µit

)
θi + λ0−λ∞

µi−β+α

(
e−(β−α)t − e−µit

)
θi if µi , β − α,

λ∞
µi

(
1 − e−µit

)
θi + (λ0 − λ∞) θite−µit if µi = β − α,

(2.31)

where λ∞ =
βλ∗

β−α
. Furthermore the covariance between the number in phase i of service
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and the intensity is

Cov
[
λt,Qt,i

]
=



αθi(2β−α)λ∞
2(β−α)(µi+β−α)

(
1 − e−(µi+β−α)t

)
+

αβθi(λ0−λ∞)
µi(β−α)

(
e−(β−α)t

−e−(µi+β−α)t) − α2θi(2λ0−λ∞)
2(β−α)(µi−β+α)

(
e−2(β−α)t − e−(µi+β−α)t

)
if µi , β − α,

αθi(2µi+α)λ∞
4µ2

i

(
1 − e−2µit

)
+

αβθi(λ0−λ∞)
µ2

i

(
e−µit − e−2µit

)
−
α2θi(2λ0−λ∞)

2µi
te−2µit if µi = β − α.

(2.32)

Then, the covariance between the number in phase i of service and the number in phase

j of service where i, j ∈ {1, . . . , } and i , j is

Cov
[
Qt,i,Qt, j

]
=



αθiθ j(2β−α)λ∞
2(β−α)(µ j+β−α)

(
1−e−(µi+µ j)t

µi+µ j
− e−(µ j+β−α)t

−e−(µi+µ j)t

µi−β+α

)
+
αβθiθ j(λ0−λ∞)

µ j(β−α)

(
e−(β−α)t−e−(µi+µ j)t

µi+µ j−β+α
− e−(µ j+β−α)t

−e−(µi+µ j)t

µi−β+α

)
−

α2θiθ j(2λ0−λ∞)
2(β−α)(µ j−β+α)

(
e2(β−α)t−e−(µi+µ j)t

µi+µ j−2β+2α −
e−(µ j+β−α)t

−e−(µi+µ j)t

µi−β+α

)
+

αθiθ j(2β−α)λ∞
2(β−α)(µi+β−α)

(
1−e−(µi+µ j)t

µi+µ j
− e−(µi+β−α)t−e−(µi+µ j)t

µ j−β+α

)
+
αβθiθ j(λ0−λ∞)

µi(β−α)

(
e−(β−α)t−e−(µi+µ j)t

µi+µ j−β+α
− e−(µi+β−α)t−e−(µi+µ j)t

µ j−β+α

)
−
α2θiθ j(2λ0−λ∞)
2(β−α)(µi−β+α)

(
e2(β−α)t−e−(µi+µ j)t

µi+µ j−2β+2α −
e−(µi+β−α)t−e−(µi+µ j)t

µ j−β+α

)
if µi , β − α , µ j,

αθiθ j(2β−α)λ∞
4µ2

j

(
1−e−(µi+µ j)t

µi+µ j
− e−2µ jt−e−(µi+µ j)t

µi−µ j

)
+

αβθiθ j(λ0−λ∞)
µ2

j

·
(

e−µ jt−e−(µi+µ j)t

µi
− e−2µ jt−e−(µi+µ j)t

µi−µ j

)
−

α2θiθ j(2λ0−λ∞)
2µ j

·

(
te−2µit

µ j−µi
+ e−(µi+µ j)t−e−2µit

(µ j−µi)2

)
+

αθiθ j(2β−α)λ∞
2µ j(µi+µ j)

(
1−e−(µi+µ j)t

µi+µ j

−te−(µi+µ j)t
)

+
αβθiθ j(λ0−λ∞)

µiµ j

(
e−µ jt−e−(µi+µ j)t

µi
− te−(µi+µ j)t

)
−
α2θiθ j(2λ0−λ∞)

2µ j(µi−µ j)

(
e2µ jt−e−(µi+µ j)t

µi−µ j
− te−(µi+µ j)t

)
if µi , β − α = µ j,

(2.33)
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Finally, the variance of the number in phase i ∈ {1, . . . , n} of service is given by

Var
(
Qt,i

)
=



λ∞θi
µi

(
1 − e−µit

)
+

αθ2
i (2β−α)λ∞

2µi(β−α)(µi+β−α)

(
1 − e−2µit

)
−

(
αθ2

i (2β−α)λ∞
(β−α)(µi+β−α)

+
2αβθ2

i (λ0−λ∞)
µi(β−α) −

α2θ2
i (2λ0−λ∞)

(β−α)(µi−β+α)

)
e−(µi+β−α)t−e−2µit

µi−β+α
+

(
(λ0 − λ∞)θi

+
µi(λ0−λ∞)θi
µi−β+α

+
2αβθ2

i (λ0−λ∞)
µi(β−α)

)
e−(β−α)t−e−2µit

2µi−β+α
−

α2θ2
i (2λ0−λ∞)

2(β−α)(µi−β+α)2

·
(
e−2(β−α)t − e−2µit

)
−

(λ0−λ∞)θi
µi−β+α

(
e−µit − e−2µit

)
if µi , β − α , 2µi,

λ∞θi
µi

(
1 − e−µit

)
+

αθ2
i (2β−α)λ∞

2µi(β−α)(µi+β−α)

(
1 − e−2µit

)
−

(
αθ2

i (2β−α)λ∞
(β−α)(µi+β−α)

+
2αβθ2

i (λ0−λ∞)
µi(β−α) −

α2θ2
i (2λ0−λ∞)

(β−α)(µi−β+α)

)
e−(µi+β−α)t−e−2µit

µi−β+α
+

(
(λ0 − λ∞)θi

+
µi(λ0−λ∞)θi
µi−β+α

+
2αβθ2

i (λ0−λ∞)
µi(β−α)

)
te−2µit −

α2θ2
i (2λ0−λ∞)

2(β−α)(µi−β+α)2

(
e−2(β−α)t

−e−2µit
)
−

(λ0−λ∞)θi
µi−β+α

(
e−µit − e−2µit

)
if 2µi = β − α,

λ∞θi
µi

(
1 − e−µit

)
+

αθ2
i (2β−α)λ∞

4µ3
i

(
1 − e−2µit

)
−

(
αθ2

i (2β−α)λ∞
2µ2

i

+
2αβθ2

i (λ0−λ∞)
µ2

i

)
te−2µit +

(
(λ0 − λ∞)θi +

2αβθ2
i (λ0−λ∞)
µ2

i

)
· e
−µit−e−2µit

µi
−

α2θ2
i (2λ0−λ∞)

2µi
t2e−2µit + (λ0 − λ∞)θi

(
te−µit

µi

+ e−2µit−e−µit

µ2
i

)
if µi = β − α,

(2.34)

where all t ≥ 0.

We now note that in both Corollary 2.3.10 and Corollary 2.3.11, taking n = 1

reduces the setting to exponential service. We demonstrate the simplification

and use of the singe-phase expressions in finding the auto-covariance of the

Hawkes/M/∞ queue, shown in Proposition 2.3.14. We also note that these find-

ings compare quite nicely to simulations in numerical demonstrations. In Sub-

section 2.3.6, we provide several example figures of these equations and their

simulated counterparts.

41



Now that we have investigated the transient behavior of the Hawkes/PH/∞

queue for a variety of settings it is natural to consider the behavior of the system

in steady-state. This, along with the behavior of the system with an unstable

arrival process, is the focus of the next subsection.

2.3.3 Limiting Behavior of the Hawkes/PH/∞ Queue

In many situations, the steady-state behavior of a queueing system may be of

particular interest. With that in mind, we now investigate the mean and vari-

ance of the Hawkes/PH/∞ queue as time goes to infinity.

Corollary 2.3.12. Consider a queueing system with arrivals occurring in accordance

to a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 and phase-type dis-

tributed service. Let S ∈ Rn×n be the sub-generator matrix for the transient states in

the phase-distribution CTMC and let θ ∈ [0, 1]n be the initial distribution for arrivals

to these states. Then, the steady-state mean number in each phase of service is given by

the vector

Q∞ ≡ lim
t→∞

E [Qt] = λ∞
(
−S T

)−1
θ (2.35)

where λ∞ =
βλ∗

β−α
. Further, the vector of steady-state covariances between the number in

each phase of service and the intensity is

C∞ ≡ lim
t→∞

Cov [λt,Qt] = λ∞
α(2β − α)
2(β − α)

(
(β − α)I − S T

)−1
θ . (2.36)

Finally, the matrix of steady-state covariances between each phase of service

limt→∞Cov [Qt,Qt], denotedV∞, is given by the solution to the Lyapunov equation

S TV∞ +V∞S +M = 0 (2.37)
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whereM = θCT
∞ + C∞θ

T − S Tdiag (Q∞) − diag (Q∞)S . If S is symmetric, then V∞ =

−1
2S −1M.

Proof. The proof follows by either taking the limit of the equations in Theo-

rem 2.3.9 or setting the corresponding differential equations to 0 and finding

the equilibrium solution. �

Remark. We note that in steady-state the invertibility conditions from Theo-

rem 2.3.9 are no longer necessary. We can further observe that these equations

reveal an interesting relationship among these steady-state values for the case

of single phase service. For µ as the rate of exponential service, Corollary 2.3.12

yields

V∞ = Q∞ +
1
µ
C∞ =

λ∞
µ

(
1 +

α(2β − α)
2(β − α)(µ + β − α)

)
. (2.38)

Thus, we have that the steady-state variance of the number in system for the

Hawkes/M/∞ queue is equal to the mean number in system plus the expected

service duration times the steady-state covariance between the number in sys-

tem and the intensity. Thus this provides an explicit contrast with Poisson-

driven queues, as the steady-state distribution of a M/M/∞ system is known

to be Poisson distributed with rate equal to the steady-state mean number in

system. This implies that the steady-state variance for such a queue is equal to

its steady-state mean, unlike the relationship we observe for the Hawkes/M/∞

system in Equation 2.38.

However, as we have noted, if α ≥ β the Hawkes process is unstable and

so steady-state analysis of the queue will not apply. Thus, in this scenario we

instead investigate the transient behavior of the mean of the queue under the

unstable arrival process.
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Corollary 2.3.13. Consider a queueing system with arrivals occurring in accordance to

a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 with α ≥ β and phase-

type distributed service. Let S ∈ Rn×n be the sub-generator matrix for the transient

states in the phase-distribution CTMC and let θ ∈ [0, 1]n be the initial distribution for

arrivals to these states. Then the vector of mean number in service in each phase of

service is given by

E [Qt] =
(
(α − β)I − S T

)−1 (
e(α−β)tI − eS Tt

)
θ

(
βλ∗

α − β
+ λ0

)
+ (S T)−1

(
I − eS Tt

)
θ
βλ∗

α − β
(2.39)

when α > β and

E [Qt] = −(S T)−1
(
I − eS Tt

)
θ(λ0 − βλ

∗) − (S T)−1θβλ∗t (2.40)

when α = β.

2.3.4 Auto-covariance of the Hawkes/PH/∞ Queue

We now consider the auto-covariance of the number in this queueing system,

Qt ∈ R
n. Analogous to the auto-covariance for the number of arrivals from the

Hawkes process discussed in Subsection 2.2, this matrix quantity is defined as

Cov [Qt,Qt−τ] = E
[
QtQT

t−τ

]
− E [Qt]E [Qt−τ]T

where t ≥ τ ≥ 0 and otherwise the covariance is equal to 0. For an infinite

server queue with Hawkes process arrivals and phase-type distributed service,

the findings in Subsection 2.3.2 give us expressions for E [Qt] and E [Qt−τ]. Let Fs

be the filtration of the queueing system, the Hawkes process, and the intensity
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at time s ≥ 0. Then, assuming S + (β − α)I is invertible, conditional expectation

yields

E
[
QtQT

t−τ

]
= E

[
E [Qt | Ft−τ]QT

t−τ

]
= E

[(
λ∞

(
−S T

)−1 (
I − eS Tτ)θ − (λt−τ − λ∞)

(
S T + (β − α)I

)−1 (
e−(β−α)τI

− eS Tτ)θ + eS TτQt−τ

)
QT

t−τ

]
= λ∞

(
−S T

)−1 (
I − eS Tτ)θE [Qt−τ]T −

(
S T + (β − α)I

)−1 (
e−(β−α)τI − eS Tτ)θ

·
(
E

[
λt−τQT

t−τ

]
− λ∞E [Qt−τ]T

)
+ eS TτE

[
Qt−τQT

t−τ

]
by application of the expression for the vector of the mean number in each phase

given in Theorem 2.3.9, modified to start at time t − τ. Upon recognizing that

E
[
λt−τQT

t−τ

]
= Cov [λt−τ,Qt−τ] + E [λt−τ]E [Qt−τ]T and E

[
Qt−τQT

t−τ

]
= Cov

[
Qt−τ,QT

t−τ

]
+

E [Qt−τ]E [Qt−τ]T, we have that

Cov [Qt,Qt−τ] = λ∞
(
−S T

)−1 (
I − eS Tτ

)
θE [Qt−τ]T −

(
S T + (β − α)I

)−1 (
e−(β−α)τI − eS Tτ

)
· θ

(
Cov [λt−τ,Qt−τ]T + E [λt−τ]E [Qt−τ]T − λ∞E [Qt−τ]T

)
+ eS TτCov [Qt−τ,Qt−τ]

+
(
eS TτE [Qt−τ] − E [Qt]

)
E [Qt−τ]T (2.41)

and that each term in this expression can be calculated by applying Theo-

rem 2.3.9. In this section we give an explicit expression for the auto-covariance

of the Hawkes/M/∞ queue. In this setting with service rate µ, the same approach

as above yields

Cov [Qt,Qt−τ] =
λ∞
µ

(
1 − e−µτ

)
E [Qt−τ] + e−µτVar (Qt−τ) + Cov [λt−τ,Qt−τ]

e−(β−α)τ − e−µτ

µ − β + α

+ (E [λt−τ] − λ∞) E [Qt−τ]
e−(β−α)τ − e−µτ

µ − β + α
+ e−µτE [Qt−τ]2 − E [Qt]E [Qt−τ]

(2.42)
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when µ , β − α and

Cov [Qt,Qt−τ] =
λ∞
µ

(
1 − e−µτ

)
E [Qt−τ] + e−µτVar (Qt−τ) + Cov [λt−τ,Qt−τ]τe−µτ

+ (E [λt−τ] − λ∞) E [Qt−τ]τe−µτ + e−µτE [Qt−τ]2 − E [Qt]E [Qt−τ]

(2.43)

when µ = β−α, where each of these makes use of Corollary 2.3.11 with n = 1, θ1 =

1, and µi = µ. These expressions are made explicit in the following proposition.

Proposition 2.3.14. Consider a queueing system with arrivals occurring in accordance

to a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 with α < β and

exponentially distributed service with rate µ. Then, for t ≥ τ ≥ 0 the auto-covariance of

the number in system is

Cov [Qt,Qt−τ] =
λ∞
µ

(
1 − e−µτ

) (λ∞
µ

(
1 − e−µ(t−τ)

)
+

λ0 − λ∞
µ − β + α

(
e−(β−α)(t−τ) − e−µ(t−τ)

))
+
λ∞
µ

·
(
e−µτ − e−µt) +

α(2β − α)λ∞
2µ(β − α)(µ + β − α)

(
e−µτ − e−µ(2t−τ)

)
−

(
α(2β − α)λ∞

(β − α)(µ + β − α)
+

2αβ(λ0 − λ∞)
µ(β − α)

−
α2(2λ0 − λ∞)

(β − α)(µ − β + α)

)e−(µ+β−α)t+(β−α)τ − e−µ(2t−τ)

µ − β + α
+

(
λ0 − λ∞ +

µ(λ0 − λ∞)
µ − β + α

+
2αβ(λ0 − λ∞)
µ(β − α)

)
· h(t − τ)e−µτ −

α2(2λ0 − λ∞)
2(β − α)(µ − β + α)2

(
e−2(β−α)t−(µ−2β+2α)τ − e−µ(2t−τ)) − λ0 − λ∞

µ − β + α

(
e−µt

− e−µ(2t−τ)) + e−µτ
(
λ∞
µ

(
1 − e−µ(t−τ)

)
+

λ0 − λ∞
µ − β + α

(
e−(β−α)(t−τ) − e−µ(t−τ)

) )2

+
e−(β−α)τ − e−µτ

µ − β + α

·

(
α(2β − α)λ∞

2(β − α)(µ + β − α)

(
1 − e−(µ+β−α)(t−τ)

)
+
αβ(λ0 − λ∞)
µ(β − α)

(
e−(β−α)(t−τ) − e−(µ+β−α)(t−τ))

−
α2(2λ0 − λ∞)

2(β − α)(µ − β + α)
(
e−2(β−α)(t−τ) − e−(µ+β−α)(t−τ))) + (λ0 − λ∞)

e−(β−α)τ − e−µτ

µ − β + α

(
λ0 − λ∞
µ − β + α

·
(
e−2(β−α)(t−τ) − e−(µ+β−α)(t−τ)

)
+
λ∞
µ

(
e−(β−α)(t−τ) − e−(µ+β−α)(t−τ)

) )
−

(
λ∞
µ

(
1 − e−µt) +

λ0 − λ∞
µ − β + α

·
(
e−(β−α)t − e−µt))(λ∞

µ

(
1 − e−µ(t−τ)

)
+

λ0 − λ∞
µ − β + α

(
e−(β−α)(t−τ) − e−µ(t−τ)

) )
(2.44)
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when µ , β − α and

Cov [Qt,Qt−τ] =
λ∞
µ

(
1 − e−µτ

) (λ∞
µ

(
1 − e−µ(t−τ)

)
+ (λ0 − λ∞) (t − τ)e−µ(t−τ)

)
+
λ∞
µ

(
e−µτ − e−µt)

+
α(2β − α)λ∞

4µ3

(
e−µτ − e−µ(2t−τ)

)
−

(α(2β − α)λ∞
2µ2 +

2αβ(λ0 − λ∞)
µ2

)
(t − τ)e−µ(2t−τ) +

(
λ0 − λ∞

+
2αβ(λ0 − λ∞)

µ2

)e−(β−α)t−(µ−β+α)τ − e−µ(2t−τ)

µ
−
α2(2λ0 − λ∞)

2µ
(t − τ)2e−µ(2t−τ) + (λ0 − λ∞)

·

( (t − τ)e−µt

µ
+

e−µ(2t−τ) − e−µt

µ2

)
+ e−µτ

(
λ∞
µ

(
1 − e−µ(t−τ)

)
+ (λ0 − λ∞) (t − τ)e−µ(t−τ)

)2

+

(
α(2µ + α)λ∞

4µ2

(
1 − e−2µ(t−τ)

)
+
αβ(λ0 − λ∞)

µ2

(
e−µ(t−τ) − e−2µ(t−τ)) − α2(2λ0 − λ∞)

2µ
(t − τ)e−2µ(t−τ)

)
· τe−µτ + τ(λ0 − λ∞)e−µt

(
λ∞
µ

(
1 − e−µ(t−τ)

)
+ (λ0 − λ∞) (t − τ)e−µ(t−τ)

)
−

(
λ∞
µ

(
1 − e−µt)

+ (λ0 − λ∞) te−µt
)(
λ∞
µ

(
1 − e−µ(t−τ)

)
+ (λ0 − λ∞) (t − τ)e−µ(t−τ)

)
(2.45)

when µ = β − α, where h(s) = se−2µs if 2µ = β − α and h(s) = e−(β−α)s−e−2µs

2µ−β+α
if 2µ , β − α

for all s ≥ 0.

Proof. The stated forms follow by simplification of the expressions in Corol-

lary 2.3.11, yielding

E [Qt] =
λ∞
µ

(
1 − e−µt) +

λ0 − λ∞
µ − β + α

(
e−(β−α)t − e−µt

)
for the mean of the Hawkes/M/∞ queue,

Cov [λt,Qt] =
α(2β − α)λ∞

2(β − α)(µ + β − α)

(
1 − e−(µ+β−α)t

)
+
αβ(λ0 − λ∞)
µ(β − α)

(
e−(β−α)t − e−(µ+β−α)t)

−
α2(2λ0 − λ∞)

2(β − α)(µ − β + α)

(
e−2(β−α)t − e−(µ+β−α)t

)
for the covariance between the queue and the intensity, and

Var (Qt) =
λ∞
µ

(
1 − e−µt) +

α(2β − α)λ∞
2µ(β − α)(µ + β − α)

(
1 − e−2µt

)
−

(
α(2β − α)λ∞

(β − α)(µ + β − α)
+

2αβ(λ0 − λ∞)
µ(β − α)

−
α2(2λ0 − λ∞)

(β − α)(µ − β + α)

)e−(µ+β−α)t − e−2µt

µ − β + α
+

(
λ0 − λ∞ +

µ(λ0 − λ∞)
µ − β + α

+
2αβ(λ0 − λ∞)
µ(β − α)

)
·

e−(β−α)t − e−2µt

2µ − β + α
−

α2(2λ0 − λ∞)
2(β − α)(µ − β + α)2

(
e−2(β−α)t − e−2µt

)
−

λ0 − λ∞
µ − β + α

(
e−µt − e−2µt

)
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for the variance of the queue, all in the case where µ , β − α. The remaining

derivation follows directly from substitution of these functions and the corre-

sponding expressions for remaining cases and epochs into Equations 2.42 and

2.43. �

Figure 2.4: Auto-covariance of the Hawkes/M/∞ Queue for τ = 5, where α = 3
4 ,

β = 5
4 , λ∗ = µ = 1 (left) and α = 1, β = 2, λ∗ = µ = 1 (right).

In Figure 2.4 the expressions in Proposition 2.3.14 are compared to simula-

tions, based on 100,000 replications.

2.3.5 Generating Functions for the Hawkes/PH/∞ Queue

To complement these findings, we also derive a form for the moment generating

function for a general queueing system driven by a Hawkes process.

Theorem 2.3.15. Consider a queueing system with arrivals occurring in accordance

to a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 with α < β and

phase-type distributed service. Let δ ∈ Rn+1
+ and let M(δ, t) = M(δ0, . . . , δn, t) =

E
[
eδ0λt+

∑n
i=1 δiQt,i

]
. Then, the moment generating function for the queueing system M(δ, t)
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is given by the solution to the following partial differential equation,

∂M(δ, t)
∂t

= δ0βλ
∗M(δ, t) +

 n∑
i=1

θi(eδ0α+δi − 1) − δ0β

 ∂M(δ, t)
∂δ0

(2.46)

+

n∑
i=1

µi0(e−δi − 1) +
∑
k,i

µik(eδk−δi − 1)

 ∂M(δ, t)
∂δi

.

Proof. This proof makes use of techniques similar to the prior theorems, and

so we omit the preceding infinitesimal generator steps. Note that ∂M(δ,t)
∂t =

∂
∂t E

[
eδ0λt+

∑n
i=1 δiQt,i

]
. From this, we start with the following.

∂M(δ, t)
∂t

= E
[
δ0β(λ∗ − λt)eδ0λt+

∑n
i=1 δiQt,i +

n∑
j=1

λtθ j

(
eδ0(λt+α)+

∑
k, j δkQt,k+δ j(Qt, j+1) − eδλt+

∑n
i=1 δiQt,i

)
+

n∑
k=1

∑
j,k

µ jkQt, j

(
eδ0λt+

∑
l, j∧l,k δlQt,l+δ j(Qt, j−1)+δk(Qt,k+1) − eδ0λt+

∑n
i=1 δiQt,i

)
+

n∑
j=1

µ j0Qt, j

(
eδ0λt+

∑
k, j δkQt,k+δ j(Qt,k−1) − eδ0λt+

∑n
i=1 δiQt,i

) ]

Now, we distribute terms and notice that the difference of exponentials here can

be expressed as the following products.

∂M(δ, t)
∂t

= E
[
δ0βλ

∗eδ0λt+
∑n

i=1 δiQt,i − δ0βλteδ0λt+
∑n

i=1 δiQt,i +

n∑
j=1

λtθ jeδ0λt+
∑n

i=1 δiQt,i
(
eδ0α+δ j − 1

)
+

n∑
k=1

∑
j,k

µ jkQt, jeδ0λt+
∑n

i=1 δiQt,i
(
eδk−δ j − 1

)
+

n∑
j=1

µ j0Qt, jeδ0λt+
∑n

i=1 δiQt,i
(
e−δ j − 1

) ]

Here, we can now use linearity of expectation and group like terms.

∂M(δ, t)
∂t

= δ0βλ
∗E

[
eδ0λt+

∑n
i=1 δiQt,i

]
+

 n∑
j=1

θ j(eδ0α+δ j − 1) − δ0β

 E
[
λteδ0λt+

∑n
i=1 δiQt,i

]
+

n∑
j=1

µ j0(e−δ j − 1) +
∑
k, j

µ jk(eδk−δ j − 1)

 E
[
Qt, jeδ0λt+

∑n
i=1 δiQt,i

]
Finally, here we recognize the form of partial derivatives of M(δ, t) in each ex-

pectation, and so we simplify to the desired result. �
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We can use this to also find a partial differential equation for the natural

logarithm of the moment generating function. This is called the cumulant mo-

ment generating function, as the derivative of this function yields the cumulant

moments.

Corollary 2.3.16. Consider a queueing system with arrivals occurring in accordance

to a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 and phase-type dis-

tributed service. Let δ ∈ Rn+1
+ and let G(δ, t) = G(δ0, . . . , δn, t) = log

(
E

[
eδ0λt+

∑n
i=1 δiQt,i

])
.

Then, the cumulant moment generating function for the queueing system G(δ, t) is

given by the solution to the following partial differential equation,

∂G(δ, t)
∂t

= δ0βλ
∗ +

 n∑
i=1

θi(eδ0α+δi − 1) − δ0β

 ∂G(δ, t)
∂δ0

(2.47)

+

n∑
i=1

µi0(e−δi − 1) +
∑
k,i

µik(eδk−δi − 1)

 ∂G(δ, t)
∂δi

.

Proof. To begin, we see from the derivative of the logarithm and the chain rule

that

∂G(δ, t)
∂t

=
∂

∂t
log

(
E

[
eδ0λt+

∑n
i=1 δiQt,i

])
=

∂
∂t E

[
eδ0λt+

∑n
i=1 δiQt,i

]
E

[
eδ0λt+

∑n
i=1 δiQt,i

]
and here we can recognize that these expectations are the moment generating

function. Using Theorem 2.3.15, we have

∂G(δ, t)
∂t

= δ0βλ
∗ +

 n∑
i=1

θi(eδ0α+δi − 1) − δ0β

 ∂
∂δ0

E
[
eδ0λt+

∑n
i=1 δiQt,i

]
E

[
eδ0λt+

∑n
i=1 δiQt,i

]
+

n∑
i=1

µi0(e−δi − 1) +
∑
k,i

µik(eδk−δi − 1)

 ∂
∂δi

E
[
eδ0λt+

∑n
i=1 δiQt,i

]
E

[
eδ0λt+

∑n
i=1 δiQt,i

] .

Now we recognize that
∂
∂δi

E
[
eδ0λt+

∑n
i=1 δiQt,i

]
E
[
eδ0λt+

∑n
i=1 δiQt,i

] =
∂G(δ,t)
∂δi

, and so we have the stated result.

�
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Comparing these two partial differential equations, we see that the expres-

sion for the cumulant moment generating function only depends on the partial

derivatives, not on the function itself. In some cases the cumulant moment gen-

erating function is better since it directly will compute the variance, skewness,

and higher order cumulants directly without having to know the relationships

between cumulants and moments. Moreover, the cumulant moments have shift

and scale invariance properties, which are often desired. The PDE in Corol-

lary 2.3.16 produces a form that provides insight to the solution through use of

the method of characteristics, which we now show in the following theorem.

Theorem 2.3.17. Consider a queueing system with arrivals occurring in accordance

to a Hawkes process (λt,Nt) with dynamics given in Equation 1.1 and phase-type dis-

tributed service with transient state sub-generator matrix S ∈ Rn×n. Let δ ∈ Rn+1
+

and let G(δ, t) = G(δ0, . . . , δn, t) = log
(
E

[
eδ0λt+

∑n
i=1 δiQt,i

])
. Then, the cumulant moment

generating function for the queueing system G(δ, t) is given by

G(δ, t) = βλ∗
∫ t

0
h(z)dz + h(0)λ0 (2.48)

where h(z) is the solution to the ordinary differential equation

•

h(z) = 1 − eαh(z)θT
(
v + e−S (z−t)

(
ediag(δ) − I

)
v
)

+ βh(z)

with initial value h(t) = δ0.

Proof. We proceed by the method of characteristics for the PDE given in Corol-

lary 2.3.16. To do so, let z be a parametrization variable and let ∆0,∆1, . . . ,∆n be

characteristics variables. From recognizing the linearity of the PDE, we see that

we can implement the method of characteristics by setting
•

∆i(z) := d∆i(z)
dz equal

to the function serving as coefficient of ∂G(δ,t)
∂δi

in the PDE for each i ∈ {0, . . . , n},
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each with initial condition that ∆i(t) = δi. This yields the following system of

characteristic ODE’s:

•

∆0(z) = 1 − e∆0α
∑
j,i

θ je∆ j + ∆0β,

•

∆i(z) = µi − µi0e−∆i −
∑
j,i

µi je∆ j−∆i ∀i ∈ {1, . . . , n}.

We now let x ∈ Rn be such that xi = e∆i . Note that this substitution can also

be expressed x = ediag(∆)v, as this will be of use in solving the system. Then, we

have that
•
xi(z) = xi(z)

•

∆i(z). In this form, the last n characteristic ODE’s can be

expressed as
•
x(z) = −S x(z) + S v

which means that

x(z) = v + e−S (z−t)
(
ediag(δ) − I

)
v

where we have used the initial condition x(t) = ediag(∆(t)) = ediag(δ). We now note

that to follow the method of characteristics fully and receive a closed form solu-

tion to the PDE we would want to solve the remaining characteristic ODE

•

∆0(z) = 1 − e∆0α
∑
j,i

θ je∆ j + ∆0β = 1 − e∆0αθTx + ∆iβ

which has initial condition that ∆0(t) = δ0. Because this form of ODE is not

known to have a closed form solution in terms of standard math functions, we

let h(z) be defined as the solution to this initial value problem. Then, we now

complete the method of characteristics by solving

•
g(z) = βλ∗∆0(z) = βλ∗h(z)

with the initial condition that g(0) = G(∆(0), 0) = ∆0(0)λ0 = h(0)λ0. Since this

ODE is already separated, we have

g(z) − h(0)λ0 = g(z) − g(0) =

∫ z

0

•
g(ξ)dξ = βλ∗

∫ z

0
h(ξ)dξ.
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Thus, we now have

G(δ, t) = g(t) = βλ∗
∫ t

0
h(ξ)dξ + h(0)λ0

and this is the stated result. �

While the ODE in this statement may not be able to be solved for a closed

form expression outside of special cases, this reduction of the PDE to an ODE

simplifies numerical implementations. We now note that this of course extends

to the moment generating function as well by simply taking the exponential of

the cumulant generating function.

2.3.6 Simulation Study

To conclude Section 2.3 we provide a collection of simulation examples that

verify the accuracy of our expressions for the moments in a variety of settings.

In each example we derive the simulated functions via 100,000 replications of

the procedure described in Ogata (1981). We start with the mean and variance

of a single phase system, as shown in the pair of plots below in Figure 2.5.

As a second example, we also consider a three-phase Erlang distributed ser-

vice. We use two different parameter settings, one in which the mean service

duration is 1 and another in which the mean service length is 6. In the first case,

α = 1
2 , β = 3

4 , and λ∗ = 1. In the latter, α = 3
4 , β = 5

4 , and λ∗ = 1. The mean

is shown in Figure 2.6, the variance in Figure 2.7, the covariance of the queue

and the intensity in Figure 2.8, and the covariance of the phases of the queue in

Figure 2.9.
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Figure 2.5: Mean (left) and Variance (right) of Qt in Hawkes/M/∞, α = 1
2 , β = 3

4 ,
λ∗ = µ = 1.

Figure 2.6: Mean of the Hawkes/E3/∞ Queue, where α = 1
2 , β = 3

4 , λ∗ = 1, 1
µ

= 1
(left) and α = 3

4 , β = 5
4 , λ∗ = 1, 1

µ
= 6 (right).

In addition to the Erlang setting, we also verify the performance of the

hyper-exponential service equations. We again consider a three phase dis-

tributed service and display a pair of scenarios. In both parameter groups

θ = [.15, .4, .45]T and µ = [1, 4, 6]T. In the first setting we consider α = 1
2 , β = 1,

and λ∗ = 2, whereas in the second setting α = 1, β = 2, and λ∗ = 2. These are

displayed in the same order as the Erlang examples are: mean in Figure 2.10,

variance in Figure 2.11, covariance with the intensity in Figure 2.12, and covari-

ance of the queues in Figure 2.13.
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Figure 2.7: Variance of the Hawkes/E3/∞Queue, where α = 1
2 , β = 3

4 , λ∗ = 1, 1
µ

= 1
(left) and α = 3

4 , β = 5
4 , λ∗ = 1, 1

µ
= 6 (right).

Figure 2.8: Covariance of Hawkes/E3/∞ Queue, where α = 1
2 , β = 3

4 , λ∗ = 1, 1
µ

= 1
(left) and α = 3

4 , β = 5
4 , λ∗ = 1, 1

µ
= 6 (right).

In conducting these simulation experiments we have made an interesting

observation. Consider the following example: let λ∗ = 1, α = 1, and β = 2. Then,

let D = 1 be the fixed service length in a Hawkes/D/∞ system and let µ = 1

be the parameter of the exponential distribution in a Hawkes/M/∞ system. We

plot the simulated variances of these two systems in Figure 2.14 based on 10,000

replications, in which we find that the variance is larger in the deterministic

service setting.

While this relationship may seem unexpected, there is an intuitive expla-
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Figure 2.9: Covariance between Phases in the Hawkes/E3/∞ Queue, where
α = 1

2 , β = 3
4 , λ∗ = 1, 1

µ
= 1 (left) and α = 3

4 , β = 5
4 , λ∗ = 1, 1

µ
= 6 (right).

Figure 2.10: Mean of the Hawkes/H3/∞ Queue, where α = 1
2 , β = 1, λ∗ = 2,

θ = [.15, .4, .45]T, µ = [1, 4, 6]T (left) and α = 1, β = 2, λ∗ = 2, θ = [.15, .4, .45]T,
µ = [1, 4, 6]T (right).

nation for it. Because the Hawkes process exhibits clustering behavior in the

arrival times, a service system with fixed service length will also experience

clusters of departures times. By comparison, a system with random service du-

rations has the opportunity to counteract the clustering behavior and disperse

the departure times. In Proposition 2.3.18 we show that the steady-state vari-

ance in the deterministic service setting is greater than that of the exponential

service setting.

Proposition 2.3.18. For equal Hawkes process parameters λ∗, α, and β and equivalent
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Figure 2.11: Variance of the Hawkes/H3/∞ Queue, where α = 1
2 , β = 1, λ∗ = 2,

θ = [.15, .4, .45]T, µ = [1, 4, 6]T (left) and α = 1, β = 2, λ∗ = 2, θ = [.15, .4, .45]T,
µ = [1, 4, 6]T (right).

Figure 2.12: Covariance of λt and the Hawkes/H3/∞ Queue, where α = 1
2 ,

β = 1, λ∗ = 2, θ = [.15, .4, .45]T, µ = [1, 4, 6]T (left) and α = 1, β = 2, λ∗ = 2,
θ = [.15, .4, .45]T, µ = [1, 4, 6]T (right).

service parameters D = 1
µ
> 0, the steady-state variance of the Hawkes/D/∞ queue is

greater than the steady-state variance of the Hawkes/M/∞ queue.

Proof. Let β > α > 0 and let λ∗ > 0. Further, let D = 1
µ
> 0. By Theorem 2.2.2, the

steady-state variance of the Hawkes/D/∞ queue is

VD ≡ λ∞D
(
1 +

2αβ − α2

(β − α)2

)
− λ∞(1 − e−(β−α)D)

2αβ − α2

(β − α)3 .

Likewise, Corollary 2.3.12 gives the steady-state variance in the exponential ser-
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Figure 2.13: Covariance between Phases in the Hawkes/H3/∞ Queue, where
α = 1

2 , β = 1, λ∗ = 2, θ = [.15, .4, .45]T, µ = [1, 4, 6]T (left) and α = 1, β = 2, λ∗ = 2,
θ = [.15, .4, .45]T, µ = [1, 4, 6]T (right).

Figure 2.14: Comparison of Variances in Hawkes/M/∞ and Hawkes/D/∞Queues
when 1

µ
= D = 1, with λ∗ = 1, α = 1, and β = 2.

vice case as

VM ≡
λ∞
µ

(
1 +

2αβ − α2

2(β − α)(µ + β − α)

)
,

as noted in Remark 2.3.3. Then, the difference between these terms is

VD −VM =
λ∞
µ

(
2αβ − α2

(β − α)2

) 1 − β − α

2(µ + β − α)
−
µ − µe−(β−α) 1

µ

β − α

 ,
where we have substituted 1

µ
for D. Because of the assumed relationships among

the parameters, VD − VM is positive if and only if the expression inside the
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lattermost parenthesis is. Multiplying this expression by 2
µ2 (µ + β − α)(β − α) > 0

and simplifying yields

Υ

(
β − α

µ

)
≡

(
β − α

µ

)2

− 2
(
1 − e−

β−α
µ

)
+ 2

(
β − α

µ

)
e−

β−α
µ .

We can re-parameterize this expression as Υ(x) for x ≡ β−α

µ
. By checking the first

derivative of Υ(x), we see that it is strictly increasing for x ≥ 0. Since Υ(0) = 0

and β−α

µ
> 0 for any valid α, β, and µ, we have thatVD −VM > 0. �

In Figure 2.15 we observe that this behavior can also occur in non-Markovian

service settings, shown here for lognormal distributions based on 10,000 simu-

lation replications. In this experiment each lognormal distribution has a mean

of 1 and the variances increase from 0 to 5 with a step size of 0.5. Note that

all the mean queue lengths appear to be converging to 1 in steady-state. Fur-

ther, we see that the means of systems with higher variance in the lognormal

service distribution are converging more slowly than those of lower lognormal

variance. However, the opposite relationship appears to hold in terms of the

variances of the queues: the higher the variance of the lognormal, the lower the

variance of the queue.

2.4 Applications

To motivate this study and demonstrate its findings, we now briefly discuss

two applications of this work, one concerned with viral internet traffic and one

covering night clubs. Each is inspired by the self-excitement behavior of the

Hawkes process, and in these settings we consider the impact and influence
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Figure 2.15: Mean (left) and Variance (right) of the Hawkes/Lognormal/∞ with
λ∗ = 1, α = 1, and β = 2 where Mean Service Durations is 1 and Service Variance
Increases from 0 to 5.

one arrival can have on a system and how managers of such systems might try

to harness that influence for some kind of benefit.

2.4.1 Trending Web Traffic

In May 2017 website rankings for the United States, Youtube, Facebook, and

Reddit each ranked among the top 5 most visited websites, with Twitter in the

top 10 and LinkedIn and Instagram both in the top 15, per Alexa Alexa the Web

Information Company (2017). For Facebook, Reddit, and Twitter in particular,

users’ interactions with the sites frequently involve viewing links to external

media like videos, articles, and shopping sales. A user’s exposure to a webpage

and her likelihood to share it herself is directly influenced by whether she sees

the link from other users. As users choose to visit and potentially re-share links

posted by other users, the link may start trending or become “viral.” This means

that it is receiving high levels of traffic and arrivals to the site, and this may

lead to even more arrivals while the users continue to share it on various social

60



platforms. For a business or organization, going viral can lead to significant

jumps in exposure, interest, and revenue.

As a basic example, we analyzed publicly available Twitter data McKelvey

and Menczer (2013). This data set covers all tweets featuring both a URL and

a hashtag from November 2012 and includes the tweet timestamp, the hash-

tags used, and the URL’s linked, as well as an anonymous user ID. Perhaps the

most notable event captured among the reactions in this data set is the 2012 U.S.

Presidential election, which was held on November 6. Among the bountiful

election-related tweets are 106 posts of the music video for Young Jeezy’s 2008

song My President from the start of November 5 to midday on November 7. A

plot of the timestamps of these tweets along with the total number of tweets

occurring by that time is below. Note the flurry of posts once the election re-

sults were announced; 60 of the data’s 106 postings of the video occur within an

hour’s time. A quick numerical investigation suggests that this type of extreme

viral reaction may be more likely in certain parameter settings. In 100,000 sim-

ulation replications of a system with λ∗ = 0.5, α = 19.5, and β = 20, 82.4% of the

trials had a majority of arrivals occur within one time quartile. By comparison,

in the same number of replications for a system with λ∗ = 1, α = 0.5, and β = 1,

this only occurred for 18.0% of the experiments. However, even outside of the

main spike in this data, users seem to be posting the video in clustered time

segments, approximately at the 6, 20, 45, 48, and 52 hour marks. These clus-

ters suggest that these arrivals could be appropriately modeled by a Hawkes

process, particularly when compared to a Poisson process.
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Figure 2.16: Tweets of Young Jeezy - My President music video from November
5 - 7, 2012.

Using what we have observed from this data as inspiration, we now model

users arriving to a webpage as a Hawkes process. Because of the viral behav-

ior we have seen in this type of arrivals, we will investigate the impact of a

click. Consider a Hawkes Process Nt with baseline intensity λ∗, initial intensity

λ0, jump size α, and decay parameter β. Now, let N̂t represent an independent

Hawkes process that is identical to Nt in terms of parameters with the exception

that it experienced an arrival at time 0, whereas Nt starts empty. This means

that the baseline intensity, jump size, and decay parameter are the same for N̂t

as they were for Nt, but the initial intensity is λ0 +α and N̂0 = 1. Then, by Propo-

sition 1.1.1,

E
[
N̂t

]
− E [Nt] = λ∞t +

λ0 + α − λ∞
β − α

(
1 − e−(β−α)t

)
+ 1 − λ∞t −

λ0 − λ∞
β − α

(
1 − e−(β−α)t

)
=

β

β − α
−

α

β − α
e−(β−α)t −→

β

β − α
as t → ∞

which shows that the gap between the two expectations is positive and grows

throughout time. However, this is simply tracking the number of visitors; it
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does not account for the time the users spend on the site. To capture this, we can

extend this arrival model to a queueing model in which the service represents

the time the user spends on the webpage. Provided the website is well hosted,

this can be modeled as an infinite server queue as any user can visit the webpage

that chooses to do so. If the time each user spends on the page is independently

and exponentially distributed with rate µ, we see that the expected number of

users on the page at time t is E [Qt]. Then, from time 0 to time T the expected

total time spent on the page across all users σ(T ) is

σ(T ) =

∫ T

0
E [Qt] dt =

∫ T

0

(
λ∞
µ

(
1 − e−µt) +

λ0 − λ∞
µ − β + α

(
e−(β−α)t − e−µt

))
dt

=
λ∞
µ

(
T −

1 − e−µT

µ

)
+

λ0 − λ∞
µ − β + α

(
1 − e−(β−α)T

β − α
−

1 − e−µT

µ

)
where we have applied the results of Corollary 2.3.11 for hyper-exponential ser-

vice with n = 1 and µ , β − α, thus yielding exponential service. Now, suppose

that a website earns m dollars per unit of time in advertising revenue for each

user on the site. Then, the expected earnings by time T is A(T ) = mσ(T ). We can

now repeat the value of a click experiment when also considering service. Let

Qt be a queueing system with exponential service at rate µ, infinite servers, and

Hawkes process arrivals with parameters λ∗, α, and β and assume the queue

starts empty. Then, let Q̂t be the analogous adaptation of Qt that N̂t is to Nt. Let

A(T ) and Â(T ) be the corresponding expected dwell time revenues, each with

earning rate m. Note that the expected time the initial customer has spent in the

system by time T is min{S ,T } where S is the duration of her service. Hence the

revenue associated with her visit to the page by time T is m 1−e−µT

µ
. Then,

Â(T ) − A(T ) = m
1 − e−µT

µ
+ m

α

µ − β + α

(
1 − e−(β−α)T

β − α
−

1 − e−µT

µ

)
=

m
µ

(
1 +

1
β − α

)
− m

αe−(β−α)T

(β − α)(µ − β + α)
− m

(µ − β)e−µT

µ(µ − β + α)
,
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which can be shown to also always grow with T via its first derivative. We can

also further observe that as α → β each of these gaps grows towards infinity,

and thus so grows the impact of a click in viral settings.

Note that this model can also be used for internet-inspired applications other

than users arriving to internet pages. For example, as mobile carriers continue

to add cloud storage based services and allow customers to upload pictures

from their smart phones as soon as they are taken, the Hawkes/M/∞ queue can

be used to describe the number of pictures being uploaded at once. For further

reading on the Hawkes process and its use in internet traffic applications see

Rizoiu et al. (2017), in which the authors develop a novel Hawkes-process-based

model for the popularity of online content in great detail.

2.4.2 Club Queue

From our Hawkes driven infinite server queue with phase-type service distri-

butions, we can construct what we refer to as the Club Queue. This stems from

an application perhaps uncommon to queueing systems, a nightclub. This set-

ting features a key characteristic: the best club has the most people waiting for

it. Because of this, the Hawkes process naturally represents the excitation exhib-

ited by club-goers joining a queue as many club-goers might call their friends

to join them. With this application in mind, it is important to understand the

characteristics of nightclubs. Many nightclubs have waiting spaces for poten-

tial customers outside the club. Moreover, inside the club is where much of

the activity happens. Thus, using phase-type distributions we can model the

inside and outside of the club as two phases of services or a two dimensional
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phase-type queue. The first phase of service can be considered “admittance”

to the service with the second step being the service itself. Because the clubs’

bouncers have the ability to admit customers into the venue from any position

in the external queue and because each customer determines how long she stays

in the club, we model this scenario as an infinite server queue. This process is

visualized below, where µO and µI are the rates of each step of service.

µO

Admittance

µIλt

Arrivals Service

QO QI

Figure 2.17: Club Queue Process Diagram.

We can represent the Club Queue using the two dimensional vector of queue

lengths Q(t) for t ≥ 0, with coordinates QI(t) and QO(t) representing the service

systems inside and outside the club, respectively. A fundamental managerial

task is to figure out at what rate to admit club-goers into the club to maximize

profitability while making the club attractive from the outside. This is non-

trivial as a short line outside the club might signal to others that the club is not

interesting and make them choose to not go inside the club. However, if the

line is too long, there are many customers not actively generating revenue for

the club and becoming frustrated with the wait outside. With this in mind, we

construct the following objective function that maximizes the rate at which the

bouncer of the club should let club-goers inside the club over the finite time

horizon [0,T ], where T > 0.

ζ(µO(t)) = rOµOE [QO(t)] + rIE [QI(t)] − c(µOE [QO(t)] − k)2 − wµ2
O (2.49)
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Here rO ≥ 0 and rI ≥ 0 are revenues generated from the cover outside and inside

the club respectively. We also have that c is a penalty for having the overall

admittance rate be too slow or too fast and finally, w is a penalty for admitting

each individual customer too quickly. A complete formulation of this optimal

control problem is presented next.

Problem 2.4.1 (Unconstrained Club Profit Model).

max{µO≥0}

∫ T

0

[
rOµO(t)E [QO(t)] + rIE [QI(t)] − c(µO(t)E [QO(t)] − k)2 − wµO(t)2

]
dt

subject to
•

E[λ(t)] = β · (λ∗ − E[λ(t)]) + α · E[λ(t)]
•

E[QO(t)] = E[λ(t)] − µO(t) · E[QO(t)]
•

E[QI(t)] = µO(t) · E[QO(t)] − µI · E[QI(t)]

The solution to this problem gives the optimal rate to admit club-goers across

time in order to maximize the difference between club revenue and the queue

length and admittance rate penalties. This is characterized by the following

theorem.

Theorem 2.4.1. The optimal solution to Problem 2.4.1 is given by µ∗O(t), where

µ∗O(t) =
(rO + 2ck − γ1 + γ2)E [QO(t)]

2w + 2cE [QO(t)]2 (2.50)

for all t ∈ [0,T ].

Proof. We start by transforming the optimization model into a single Hamil-

tonian equation, which can be thought of as an unconstrained version of the

Lagrangian. For this problem, we have the HamiltonianH as

H(t, γ) = ζ(µO(t)) − γ1

(
•

E[QO(t)] − E[λ(t)] + µOE[QO(t)]
)
− γ2

(
•

E[QI(t)] − µOE[QO(t)]

+ µIE[QI(t)]
)
− γ3

(
•

E[λ(t)] − β · (λ∗(t) − E[λ(t)]) − α · E[λ(t)]
)
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where each γi ∈ R for i ∈ {1, 2, 3}. To achieve optimality in the control problem,

the method ensures that µO(t) is such that dH
dµO(t) = 0 for all t ∈ [0,T ]. We see that

the derivative of the Hamiltonian with respect to µO(t) is

dH
dµO(t)

= rOE [QO(t)] − 2cµO(t)E [QO(t)]2 + 2ckE [QO(t)] − 2wµO(t) − γ1E [QO(t)] + γ2E [QO(t)].

Thus, the optimal µ∗O(t) is found by solving

0 =
dH

dµO(t)
= (rO + 2ck − γ1 + γ2)E [QO(t)] − (2cE [QO(t)]2 + 2w)µ∗O(t)

for µ∗O(t), which yields the expression in Equation 2.50. Because the objective

function is concave in µO(t) at every t, we have that this solution corresponds to

a maximum. �

Using the differential equations shown in Section 2.3, this optimization prob-

lem can be solved numerically by the Forward Backward sweep method as

in Niyirora and Pender (2016); Qin and Pender (2017); Lenhart and Workman

(2007). We now give two example outputs of this method below.

Figure 2.18: Example Forward Backward Sweep Implementation.

In the scenario on the left, the parameters are as follows: rO, the external
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entrance revenue rate, is equal to 100 units of currency per units of time. The

revenue per person inside, rI , is equal to 100 units of currency per person. The

cost of deviating from the desired admittance rate k, c, is also 100, whereas k = 8.

Finally, the penalty for admitting individuals too quickly, w = 150. On the right,

w is instead 100 and k = 12. These changes have significant impacts on the

resulting solution. On the left the outside queue is allowed to grow roughly

three times as large whereas on the right µO is approximately twice the size of

that on the left.

2.5 Conclusion and Final Remarks

In this chapter, we have analyzed a new infinite server stochastic queueing

model that is driven by a Hawkes arrival process and phase-type distributed

service. We are able to derive the exact moments and moment generating func-

tion for the Hawkes driven queue as well as the Hawkes process itself.

Although we have analyzed this queueing model in great detail, there are

many extensions that are worthy of future study. One extension that we intend

to explore is the impact of a non-stationary baseline intensity in the spirit of

Massey and Pender (2013); Pender (2014a); Engblom and Pender (2014); Pender

(2016a, 2015a,b, 2016b). In one simple example, we could set the baseline be

λ∗(t) = λ∗ + ρ · sin(t). This analysis of a non-stationary baseline intensity is im-

portant not only because arrival rates of customers are not constant over time,

but also because it is important to know how to distinguish and separate the

impact of the time varying arrival rate from the impact of the stochastic dynam-

ics of the self-excitation. The extension of one periodic function such as sin(t)
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seems analytically tractable, however, additional functions may require Fourier

analysis.

Other extensions include the modeling of different types of queueing mod-

els other than the infinite server model. For example, it would be interesting to

apply our analysis to the Erlang-A queueing model with abandonments. With

regard to obtaining analytical expressions for the Erlang-A model, this is a non-

trivial problem because even the Erlang-A queueing model with a Poisson ar-

rival process is analytically somewhat intractable. This presents new challenges

for deriving analytical formulas and approximations for the moment behavior

of this type of queueing model. Work by Massey and Pender (2011); Pender

(2014c,b, 2015a, 2016c); Daw and Pender (2019a) shows that simple closure ap-

proximations or spectral expansions can be effective at approximating the dy-

namics of the Erlang-A model and variants. Thus, a natural extension is to apply

these techniques to the Erlang-A setting when it is driven by a Hawkes process.

Not only do these approximations have the potential to describe the moment

dynamics, but they can be used to stabilize performance measures like in Pen-

der and Massey (2017). A detailed analysis of these extensions will provide a

better understanding how the information that operations managers provide to

their customers will affect the dynamics of these real world systems like in Pen-

der et al. (2017a, 2018, 2017b). We plan to explore these extensions in subsequent

work.
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CHAPTER 3

ON THE DISTRIBUTIONS OF INFINITE SERVER QUEUES WITH BATCH

ARRIVALS

3.1 Introduction

Queueing systems with batch arrivals have enjoyed a long and rich history of

study, at least on the time scale of queueing theory. Researchers have been ex-

ploring models of this sort for no less than six decades, based on the April 1958

submission date of Miller Jr (1959). Given this stretch of time, a wide variety

of systems and settings have been considered under the banner of batch ar-

rivals. Much of the earliest work focuses on single server models, including

Miller Jr (1959); Lucantoni (1991); Masuyama and Takine (2002); Liu and Tem-

pleton (1993) and Foster (1964), although infinite server models followed soon

after, such as work by Shanbhag (1966) and Brown and Ross (1969). Later work

has expanded the concept into a variety of related models, such as for prior-

ity queues Takagi and Takahashi (1991) and for handling server vacations Lee

et al. (1995). Additionally, there is some work that proves heavy traffic limit

theorems for queues with batch arrivals. Examples of this include Chiamsiri

and Leonard (1981); Pang and Whitt (2012); Pender (2013). These papers show

that one can approximate the queue length process with Brownian motion and

Ornstein-Uhlenbeck processes and also show that one can exploit the approxi-

mations even in multi-server and non-Markovian settings.

Contents of this chapter have been published in Daw and Pender (2019b).
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In this chapter we consider queues with arrivals occurring at times following

a Poisson process, with consideration given to both non-stationary and station-

ary rates. We analyze both general and exponential service as conducted by

infinitely many servers. Additionally, this work addresses both fixed and ran-

dom batch sizes. Our analysis starts with the fixed batch size case. We begin

by analyzing the transient behavior of the queue with Markovian service and

time-varying arrival rates, providing explicit forms for the moment generating

function, mean, and variance. Then, we show that if the arrival rate is station-

ary the resulting steady-state distribution can be written as a sum of indepen-

dent, non-identical, scaled Poisson random variables. This leads us to uncover

connections to the harmonic numbers and generalizations of the Hermite dis-

tribution. By viewing the batch arrival queue as a collection of infinite server

sub-queues that receive solitary arrivals simultaneously, we are able to extend

this Poisson sum construction to general service distributions. This perspective

also provides an avenue for us to extend to random batch sizes. We also give

fluid and diffusion scalings of the queue in the case of random batch sizes, as

well as extending many of the results we found for fixed batch sizes.

One can note that the batch arrival queue may not always be given the name

“batch,” as many authors choose to use the term “bulk” instead. Predominantly,

this reflects two leading strands of applications, where “bulk” often gives a con-

notation of transportation settings whereas “batch” frequently implies applica-

tions in communications. Just as practical by any other name, this family of

models has also been studied in a wide variety of applications beyond these

two. Perhaps one most distinct from other types of queueing models is par-

ticle splitting in DNA caused by radiation, as discussed in Sachs et al. (1992).

In this application, primary particles arrive at a cell nucleus and cause DNA
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double-strand breaks. These double-strand breaks occur in near simultaneity

and are thus modeled as arriving in batches of random size, as it is possible that

any number double-strand breaks will be induced. After they are induced, the

double-strand breaks are then processed by cellular enzymes, corresponding to

service in the queueing model. Another interesting and modern application of

these models is in cloud-based data processing. In this case, the batches arriving

to the system are collections of jobs submitted simultaneously. These jobs are

then served by each being processed individually and returned. For more dis-

cussion, detailed models, and specific analysis for this setting, see works such

as Lu et al. (2011); Pender and Phung-Duc (2016); Xie et al. (2017); Yekkehkhany

et al. (2018) and references therein.

3.1.1 Main Contributions of Chapter

Our contributions in this chapter can be summarized as follows:

i) We show that an infinite server queue with batch arrivals at Poisson process

epochs is equivalent in steady state distribution to a sum of scaled indepen-

dent Poisson random variables, including for generally distributed service

and randomly distributed batch sizes. For exponential service, this reveals

a connection to the harmonic numbers and generalized Hermite distribu-

tions.

ii) We derive a limit of the queue length process in which the batch size grows

infinitely large and the number of entities in the system is scaled inverse

proportionally, yielding a novel distribution characterized by the exponen-

tial integral functions. For distributions that meet a divisibility condition,
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we find that this also holds for random batch sizes.

iii) In the case of time-varying arrival rates we give a transient moment gener-

ating function for fixed batch sizes as well as means and variance for both

fixed and randomly sized batches.

iv) We give fluid and diffusion limits of the queue for stationary arrival rates

for batches of random size.

3.1.2 Organization of Chapter

The body of the remainder of this chapter is organized in two main sections:

Sections 3.2 and 3.3. In Section 3.2 we consider systems in which the size of

the batches is fixed. Similarly, we devote Section 3.3 to the case of randomly

distributed batch sizes. At the beginning of each section we give a detailed

overview of the contents within and provide context for the analysis in term of

this project’s scope. After these sections we conclude in Section 3.4.

3.2 Batches of Deterministic Size

In this section we will consider infinite server queues with arrivals occurring in

batches of a fixed size. We will assume that the arrival epochs occur according

to a Poisson process, including both stationary and non-stationary models. We

also will investigate both exponentially and generally distributed service.

This section starts with studying the case of Markovian arrivals and service

in transient state in Subsection 3.2.1. For a time-varying arrival rate, we give
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the mean, variance, and moment generating function. We then use this in Sub-

section 3.2.2 to find the steady-state distribution of the queue. Upon observing

that this can be represented as a sum of scaled Poisson random variables, we

establish connections to generalized Hermite distributions and to the harmonic

numbers. Taking motivation from this, we derive the distribution of the limit

of the scaled system as the batch size grows infinitely large. Finally, in Sub-

section 3.2.3, we examine the batch queue as a collection of infinite server sub-

queues that simultaneously receive solitary arrivals. In doing so we extend our

understanding of the steady-state distribution to the case of general service.

3.2.1 Transient Analysis of the Markovian Setting

We begin our analysis with the case of non-stationary Poisson arrival epochs

and Markovian service. In Kendall notation, this is the Mn
t /M/∞ queue. We let

Qt represent the number of entities present in the queueing system at time t ≥ 0,

which we often refer to as the “number in system.” We will use this notation

throughout the remainder of this work, where the precise setting of the queue

will be implied by context. In this fully Markovian setting, we can use Dynkin’s

infinitesimal generator theorem to support our analysis. Specifically, we can

note that for a sufficiently regular function f : N→ R, we have

d
dt

E
[
f (Qt)

]
= E

[
λ(t) ( f (Qt + n) − f (Qt)) + µQt ( f (Qt − 1) − f (Qt))

]
, (3.1)

for a batch arrival queue with arrival intensity λ(t) > 0. We will see in this sub-

section that this infinitesimal generator approach gives us a potent toolkit for

exploring this model. Moreover, the insights we find in Markovian settings now

and in Subsection 3.2.2 will provide intuition that will guide our investigation

of this system when the Markov property does not hold.
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To begin, we now derive the moment generating function of the number in

system. We do so for a system with a non-stationary arrival rate given by a

Fourier series, allowing these results to hold for all periodic arrival patterns.

Proposition 3.2.1. For θ ∈ R, let M(θ, t) = E
[
eθQt

]
be the moment generating func-

tion of the number in system of an infinite server queue with periodic arrival rate

λ +
∑∞

k=1 ak cos(kt) + bk sin(kt) > 0, arrival batch size n ∈ Z+, and exponential service

rate µ > 0. Then,M(θ, t) is given by

M(θ, t) =
(
e−µt(eθ − 1) + 1

)Q0
e
∑n

j=1 (n
j)(eθ−1) j

(
λ
jµ (1−e− jµt)+

∑∞
k=1

(ak jµ−bkk)

k2+ j2µ2 (cos(kt)−e− jµt)
)

· e
∑n

j=1 (n
j)(eθ−1) j ∑∞

k=1
(akk+bk jµ) sin(kt)

k2+ j2µ2 (3.2)

for all time t ≥ 0, where Q0 is the initial number in system.

Proof. From Equation 3.1, the MGF is given by the solution to the partial differ-

ential equation

∂

∂t
M(θ, t) =

λ +

∞∑
k=1

ak cos(kt) + bk sin(kt)

 (enθ − 1
)
M(θ, t) + µ

(
e−θ − 1

) ∂
∂θ
M(θ, t)

with initial solution M(θ, 0) = eθQ0 . Because d log( f (x))
dx = 1

f (x)
d f (x)

dx , we can ob-

serve that the partial differential equation for the cumulant generating function

G(θ, t) = log
(
E

[
eθQt

])
is

µ(1 − e−θ)
∂G(θ, t)
∂θ

+
∂G(θ, t)
∂t

=

λ +

∞∑
k=1

ak cos(kt) + bk sin(kt)

 (enθ − 1),

with the initial condition G(θ, 0) = log
(
E

[
eθQ0

])
= θQ0. We will now solve this

PDE by the method of characteristics. We begin by establishing the characteris-
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tic ODE’s and corresponding initial solutions as follows:

dθ
ds

(r, s) = µ(1 − e−θ), θ(r, 0) = r,

dt
ds

(r, s) = 1, t(r, 0) = 0,

dg
ds

(r, s) =

λ +

∞∑
k=1

ak cos(kt) + bk sin(kt)

 (enθ − 1), g(r, 0) = rQ0.

The first two of these initial value problems yield the following solutions.

θ(r, s) = log(ec1(r)+µs + 1) → θ(r, s) = log ((er − 1)eµs + 1)

t(r, s) = s + c2(r) → t(r, s) = s

Therefore we can simplify the remaining characteristic ODE to

dg
ds

(r, s) =

λ +

∞∑
k=1

ak cos(ks) + bk sin(ks)

 (((er − 1)eµs + 1)n
− 1

)
=

λ +

∞∑
k=1

ak cos(ks) + bk sin(ks)

 n∑
j=1

(
n
j

)
(er − 1) je jµs,

and this produces the general solution of

g(r, s) = c3(r) +

n∑
j=1

(
n
j

)
(er − 1) j

 λjµ +

∞∑
k=1

(ak jµ − bkk) cos(ks)
k2 + j2µ2 +

(akk + bk jµ) sin(ks)
k2 + j2µ2

 e jµs.

This now equates to

g(r, s) = rQ0 +

n∑
j=1

(
n
j

)
(er − 1) j

(
λ

jµ

(
e jµs − 1

)
+

∞∑
k=1

(ak jµ − bkk)
k2 + j2µ2

(
cos(ks)e jµs − 1

)
+

∞∑
k=1

(akk + bk jµ) sin(ks)
k2 + j2µ2 e jµs

)
as the solution to the initial value problem. We now find the solution to

the original PDE by solving for each characteristic variable in terms of t and

θ and then substituting these expression into g(r, s). That is, for s = t and
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r = log
(
e−µt(eθ − 1) + 1

)
, we have that

G(θ, t) = g
(
log

(
e−µt(eθ − 1) + 1

)
, t
)

= log
(
e−µt(eθ − 1) + 1

)
Q0 +

n∑
j=1

(
n
j

)
(eθ − 1) j

(
λ

jµ

(
1 − e− jµt

)
+

∞∑
k=1

(ak jµ − bkk)
k2 + j2µ2

·
(
cos(kt) − e− jµt

)
+

∞∑
k=1

(akk + bk jµ)
k2 + j2µ2 sin(kt)

)
.

To conclude the proof, we note thatM(θ, t) = eG(θ,t). �

We now extend this analysis through two following corollaries. First, for

systems with a stationary arrival rate, say λ > 0, we can further specify the mo-

ment generating function explicitly in Corollary 3.2.2. This will be of use when

we explore the distribution of the queue in steady-state, which we begin in Sub-

section 3.2.2. As with Proposition 3.2.1, the uniqueness of moment generating

functions will aid us in later exploration of the distributions within this model

and within generalizations of it.

Corollary 3.2.2. For θ ∈ R, letM(θ, t) = E
[
eθQt

]
be the moment generating function

of the number in system of an infinite server queue with stationary arrival rate λ > 0,

arrival batch size n ∈ Z+, and exponential service rate µ > 0. Then,M(θ, t) is given by

M(θ, t) =
(
e−µt(eθ − 1) + 1

)Q0
eλ

∑n
j=1 (n

j) (eθ−1) j
jµ (1−e− jµt) (3.3)

for all time t ≥ 0, where Q0 is the initial number in system.

For the second direct result of Proposition 3.2.1, we can also give explicit

expressions for the transient mean and variance of the queue. We derive these

equations from the first and second derivatives, respectively, of the cumulant

generating function log(E
[
eQt

]
).
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Corollary 3.2.3. Let Qt be an infinite server queue with periodic arrival rate λ +∑∞
k=1 ak cos(kt) + bk sin(kt) > 0, arrival batch size n ∈ Z+, and exponential service rate

µ > 0. Then, the mean and variance of the queue are given by

E [Qt] = Q0e−µt +
nλ
µ

(
1 − e−µt) +

∞∑
k=1

n(akµ − bkk)
k2 + µ2

(
cos(kt) − e−µt)

+

∞∑
k=1

n(akk + bkµ)
k2 + µ2 sin(kt) (3.4)

Var (Qt) = Q0

(
e−µt − e−2µt

)
+

nλ
µ

(
1 − e−µt) +

∞∑
k=1

n(akµ − bkk)
k2 + µ2

(
cos(kt) − e−µt)

+

∞∑
k=1

n(akk + bkµ)
k2 + µ2 sin(kt) +

n(n − 1)λ
2µ

(
1 − e−2µt

)
+

∞∑
k=1

n(n − 1)(2akµ − bkk)
k2 + 4µ2

·
(
cos(kt) − e−2µt

)
+

∞∑
k=1

n(n − 1)(akk + 2bkµ)
k2 + 4µ2 sin(kt) (3.5)

for all time t ≥ 0, where Q0 is the initial number in system.

In the remainder of this work we will explore various modifications of this

model, including general service and randomized batch sizes. The results of

this subsection will serve as cornerstone throughout much of this upcoming

analysis, both supporting the underlying derivation techniques and providing

the intuition for new perspectives.

3.2.2 The Markovian System with Stationary Arrival Rates

Our first departure from our initial model will be modest: instead of studying

the fully Markovian, non-stationary, fixed batch size system in transient time

we will now move to addressing the stationary case, with much of our analy-

sis focused on the system in steady-state. This simplified setting will allow us

to extract greater intuition from our prior findings, which in turn will support
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generalization of the service distribution and randomization of the batch sizes.

To begin, we find a representation of the steady-state distribution of the queue

length in terms of a sum of independent, scaled Poisson random variables.

Proposition 3.2.4. In steady-state the distribution of the number in system of an in-

finite server queue with stationary arrival rate λ > 0, arrival batch size n ∈ Z+, and

exponential service rate µ > 0 is

Q∞(n) D
=

n∑
j=1

jY j (3.6)

where Y j ∼ Pois
(
λ
jµ

)
are independent.

Proof. From Proposition 3.2.1, we have that the steady-state moment generating

function of the queue is given by

lim
t→∞
M(θ, t) = eλ

∑n
k=1 (n

k)
(eθ−1)k

kµ .

To satisfy our stated Poisson form, we are now left to show that
∑n

k=1

(
n
k

)
(eθ−1)k

k =∑n
k=1

ekθ−1
k for all n ∈ Z+. We proceed by induction. In the base case of n = 1

we have eθ − 1 = eθ − 1 and so we are left to show the inductive step. We now

assume
∑n

k=1

(
n
k

)
(eθ−1)k

k =
∑n

k=1
ekθ−1

k holds at n. Then, by the Pascal triangle identity(
n
k

)
=

(
n+1

k

)
−

(
n

k−1

)
and our inductive hypothesis we can observe

n∑
k=1

ekθ − 1
k

=

n∑
k=1

(
n
k

)
(eθ − 1)k

k
=

n∑
k=1

((
n + 1

k

)
−

(
n

k − 1

))
(eθ − 1)k

k
.

Now, by applying the identity
(

n
k−1

)
= k

n+1

(
n+1

k

)
and distributing the summation

we can further note that

n∑
k=1

((
n + 1

k

)
−

(
n

k − 1

))
(eθ − 1)k

k
=

n∑
k=1

((
n + 1

k

)
−

k
n + 1

(
n + 1

k

))
(eθ − 1)k

k

=

n∑
k=1

(
n + 1

k

)
(eθ − 1)k

k
−

∑n
k=1

(
n+1

k

)
(eθ − 1)k

n + 1
.
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Now, we can use the binomial theorem to see that
n∑

k=1

(
n + 1

k

)
(eθ − 1)k = (eθ − 1 + 1)n+1 − 1 − (eθ − 1)n+1 = e(n+1)θ − 1 − (eθ − 1)n+1,

and so we can now simplify and find

n∑
k=1

(
n + 1

k

)
(eθ − 1)k

k
−

∑n
k=1

(
n+1

k

)
(eθ − 1)k

n + 1
=

n∑
k=1

(
n + 1

k

)
(eθ − 1)k

k
+

(eθ − 1)n+1

n + 1

−
e(n+1)θ − 1

n + 1
.

Hence, in conjunction with our initial equation, we have that
n∑

k=1

ekθ − 1
k

=

n∑
k=1

(
n + 1

k

)
(eθ − 1)k

k
+

(eθ − 1)n+1

n + 1
−

e(n+1)θ − 1
n + 1

,

and by rearranging terms we now complete the inductive approach:

n+1∑
k=1

ekθ − 1
k

=

n+1∑
k=1

(
n + 1

k

)
(eθ − 1)k

k
.

We can now observe that we have a moment generating function that is a prod-

uct of moment generating functions of scaled Poisson random variables, which

yields the stated result. �

While we will continue to explore the stationary arrival rate setting through-

out this subsection, we note that this Poisson sum representation will be a lead-

ing inspiration in the sequel. Specifically, in Subsection 3.2.3 we will find intu-

ition for this result by viewing the batch arrival queue as a collection of sub-

systems.

Remark. In addition to this Poisson sum representation, we can also express the

steady-state MGF in terms of the truncated polylogarithm function and har-

monic numbers. From the MGF of the queue length in steady state for θ < 0, we

can observe that

lim
t→∞
M(θ, t) = e

λ
µ

∑n
k=1

ekθ−1
k = e

λ
µ (Li(eθ,n,1)−Hn)
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where we have Hn as the nth harmonic number, given by
∑n

k=1
1
k , and where the

truncated polylogarithm function Li(z, n, s) is defined as

Li(z, n, s) =

n∑
k=1

zk

ks .

This decomposition into Poisson random variables can be quite useful from

a computational standpoint. It allows us to simulate the steady state quite easily

since we only need to simulate n Poisson random variables instead of simulating

an actual queue, which could be quite expensive. We can now observe that this

construction also yields an interesting connection to both the harmonic number

and Hermite distributions, as suggested in the remark above. To motivate our

following analysis, suppose that n = 2. Then, steady-state queue length has

steady-state moment generating function given by

Mn(θ,∞) = e
λ
µ (eθ−1)+ λ

2µ (e2θ−1).

We can now observe that this MGF corresponds to a Hermite distribution with

parameters λ
µ

and λ
2µ . This implies that the steady-state CDF of the queue at n = 2

is

P(Q∞(2) ≤ k) = e−
3λ
2µ

bkc∑
i=0

bi/2c∑
j=0

(
λ
µ

)i−2 j (
λ

2µ

) j

(i − 2 j)! j!
= e−

3λ
2µ

bkc∑
i=0

bi/2c∑
j=0

(
λ
µ

)i− j
2− j

(i − 2 j)! j!
.

Furthermore, the steady-state PMF of the queue length is given by

P(Q∞(2) = i) = e−
3λ
2µ

bi/2c∑
j=0

(
λ
µ

)i− j
2− j

(i − 2 j)! j!
.

This observation prompts us to ponder generalizations for n ≥ 3. The term

“generalized Hermite distribution” has taken on slightly varying (yet always

interesting) definitions for different authors. For readers interested in the Her-

mite distribution and popular generalizations of it, we suggest Kemp and Kemp
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(1965); Gupta and Jain (1974), and Milne and Westcott (1993). In our setting we

note that the coefficients of λ
µ

in the MGF for batch size n will be 1, 1
2 , 1

3 , . . . , 1
n .

For this reason, we think of this particular generalization of Hermite distribu-

tions to be the harmonic Hermite distribution. We can now note that because of

this harmonic structure we can instead fully characterize the distribution sim-

ply by n and λ
µ
. In the following proposition we find a useful recursion for the

probability mass function of this distribution at all n ∈ Z+.

Proposition 3.2.5. Let Qt(n) be an infinite server batch arrivals queue with arrival rate

λ > 0, batch size n ∈ Z+, and service rate µ > 0. Then, the steady-state distribution of

the queue is given by the recursion

P(Q∞(n) = j) = p j =

n∑
i=1

ip j−i
λ

i jµ
=

n∑
i=1

p j−i
λ

jµ
, (3.7)

where p0 = e−
λ
µHn for Hn as the nth harmonic number and pk = 0 for all k < 0. Thus, we

say that Q∞(n) follows the “harmonic Hermite distribution” with parameter n.

Proof. We know from our Poisson representation of the steady state queue

length that the steady-state moment generating function is

M(θ) =

∞∑
j=0

P(Q∞(n) = j)θ j =

∞∑
j=0

p jθ
j = exp

 n∑
i=1

λ

iµ

(
θi − 1

) .
If we take the logarithm of both sides we see that we have

log

 ∞∑
j=0

p jθ
j

 =

n∑
i=1

λ

iµ

(
θi − 1

)
.

Now we take the derivative of both sides with respect to the parameter θ and

this yields the following expression∑∞
j=1 jp jθ

j−1∑∞
j=0 p jθ j =

n∑
i=1

λ

µ
θi−1.
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By moving the denominator to the righthand side, we have that

∞∑
j=1

jp jθ
j−1 =

 ∞∑
j=0

p jθ
j


 n∑

i=1

λ

µ
θi−1

 .
Finally, by matching similar powers of θ on the left and right sides, we complete

the proof. �

From the above result, we see that for the steady state queue length Q∞(n)

we can derive the specific probabilities,

p0 = e−
λ
µHn ,

p1 =
λ

µ
p0 =

λ

µ
e−

λ
µHn ,

p2 =
λ

2µ
(p0 + p1) =

λ

2µ
e−

λ
µHn +

λ2

2µ2 e−
λ
µHn .

We can repeat this process as needed for any desired probability. From Proposi-

tion 3.2.4, we can observe that the mean number in system grows linearly with

the batch size, meaning that the mean of the nth harmonic Hermite distribution

is

E [Q∞(n)] =

n∑
j=1

jE
[
Y j

]
=

nλ
µ
. (3.8)

We can observe further that the second moment and variance are quadratic

functions of n:

E
[
Q∞(n)2

]
= E


 n∑

j=1

jY j


2 =

n(n + 1)λ
2µ

+ n2λ
2

µ2 ,

Var[Q∞(n)] = E
[
Q∞(n)2

]
− E [Q∞(n)]2 =

n(n + 1)λ
2µ

.

We note that from Proposition 3.2.4 and the following remark, the moment gen-

erating function of this distribution is given by

lim
t→∞
M(θ, t) = e

λ
µ

∑n
k=1

ekθ−1
k = e

λ
µ (Li(eθ,n,1)−Hn). (3.9)
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If one is to consider this system as the batch size grows infinitely large we can

see from Equations 3.8 and 3.9 that the number in system will grow proportion-

ally, tending to infinity as n does. This leads us to ponder the limiting object of

the scaled number in system Qt(n)
n as the batch size grows.

We begin by using Equation 3.9 with θ replaced by θ
n to see that the steady-

state moment generating function of this scaled queue length is

lim
t→∞
M(θ, t) = e

λ
µ

∑n
k=1

e
k
n θ−1

k . (3.10)

Furthermore, by replacing θ with θ
n and Q0(n) with Q0(n)

n in Proposition 3.2.1, we

can note that the transient moment generating function for this scaled system

with constant arrival rate is given by

E
[
eθ·

Qt (n)
n

]
≡ Mn(θ, t) =

(
e−µt(e

θ
n − 1) + 1

) Q0
n eλ

∑n
k=1 (n

k)
(eθ/n−1)k

kµ (1−e−kµt).

Additionally, we can also observe that the steady-state distribution of the scaled

queue can also be interpreted as a sum of Poisson random variables through

direction application of Proposition 3.2.4 or by inspection of Equation 3.10. This

representation is

Q∞(n)
n

D
=

n∑
j=1

j
n

Y j, (3.11)

where again Y j ∼ Pois
(
λ
jµ

)
.

We now consider the limit as n→ ∞, in which we are both sending the size of

batches of arrivals to infinity while also scaling the size of the queue inversely.

We can use this construction to move beyond just the mean and variance and

instead explicitly state every cumulant of the scaled queue. In Proposition 3.2.6

we give exact expressions of all steady-state cumulants of the scaled queue as

functions of the Bernoulli numbers. Further, we find a convenient form of every

cumulant of the scaled queue as the batch size grows to infinity.
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Proposition 3.2.6. Let λ > 0 be the arrival rate of batches of size n ∈ Z+ to an infinite

server queue with exponential service rate µ > 0. Then, the kth steady-state cumulant of

the scaled queue Ck
[

Q∞(n)
n

]
is given by

Ck

[
Q∞(n)

n

]
=

nk

k + 1
2nk−1 +

∑k−1
j=2

B j

j! (k − 1) j−1nk− j

nk . (3.12)

where (n)i = n!
(n−i)! is the ith falling factorial of n and Bi is the ith Bernoulli number, which

is defined as

Bi =

i∑
k=0

k∑
j=0

(−1) j

(
k
j

)
( j + 1)i

k + 1
.

Moreover, we have that limn→∞ C
k
[

Q∞(n)
n

]
= λ

kµ .

Proof. From our prior observation that Q∞(n)
n

D
=

∑n
j=1

j
nY j where Y j ∼ Pois

(
λ
jµ

)
, we

have that

Ck

[
Q∞(n)

n

]
= Ck

 n∑
j=1

j
n

Y j

 =

n∑
j=1

Ck
[ j
n

Y j

]
=

n∑
j=1

jk

nkC
k
[
Y j

]
=

λ

µnk

n∑
j=1

jk−1,

from the independence of these Poisson distributions. Now, by using Faul-

haber’s formula as given in Knuth (1993), we achieve the stated result. �

Just as we built from inherited expressions for the mean and variance to

specify every cumulant in Proposition 3.2.6, we can also find the limit of the

transient-state moment generating function for the scaled queue given in Equa-

tion 3.9.

Proposition 3.2.7. Let Qt be an infinite server queue with arrival rate λ > 0, arrival

batch size n ∈ Z+, and exponential service rate µ > 0. For θ ∈ R, let

M∞(θ, t) = lim
n→∞

E
[
e
θQt (n)

n

]
.
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Then,M∞(θ, t) is given by

M∞(θ, t) =



e
λ
µ (Ei(θ)−Ei(θe−µt)−µt) if θ > 0,

e
λ
µ (E1(−θe−µt)−E1(−θ)−µt) if θ < 0,

1 if θ = 0,

(3.13)

for all time t ≥ 0, where the exponential integral functions Ei(x) and E1(x) are defined

Ei(x) = −

∫ ∞

−x

e−s

s
ds, E1(x) =

∫ ∞

x

e−s

s
ds,

and are real-valued for x > 0.

Proof. While conventions may vary by application area, in this work we use the

definition of exponential integral function given by

Ei(x) = −

∫ ∞

−x

e−s

s
ds.

By taking the limit of the MGF of the scaled queue, we have that

∂

∂t
M∞(θ, t) = λ

(
eθ − 1

)
M∞(θ, t) − µθ

∂

∂θ
M∞(θ, t)

with initial solutionM∞(θ, 0) = limn→∞ e
θQ0

n = 1. In the same manner as the proof

of Theorem 3.2.1, we solve the PDE of the cumulant generating function through

use of the method of characteristics. We start by establishing the characteristic

ODE’s:

dθ
ds

(r, s) = µθ, θ(r, 0) = r,

dt
ds

(r, s) = 1, t(r, 0) = 0,

dg
ds

(r, s) = λ(eθ − 1), g(r, 0) = 0.

We now solve the first two initial value problems and find

θ(r, s) = c1(r)eµs → θ(r, s) = reµs,

t(r, s) = s + c2(r) → t(r, s) = s.
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This allows us to simplify the third characteristic equation to

dg
ds

(r, s) = λ(ereµs
− 1).

Because θ = reµs, we can note that r and θ will match in sign: r > 0 if and only if

θ > 0. If θ > 0, the general solution to this ODE is

g(r, s) = c3(r) +
λ

µ
(Ei(reµs) − µs) ,

whereas if θ < 0, the solution is instead

g(r, s) = c3(r) −
λ

µ
(E1(−reµs) + µs) .

This follows from the fact that for x > 0 the exponential integral functions are

such that Ei(x) = −E1(−x) − iπ; that is, the real parts of E1(−x) and −Ei(x) are the

same. Moreover, for x > 0 one can consider Ei(x) as the real part of −E1(−x).

Additionally, E1(x) is real for all x > 0. Hence, we use each definition of the

exponential integral function when appropriate. As an alternative, we could re-

place each of these functions with real(−E1(−x)) to have a single expression for

both positive and negative x. For a collection of facts regarding the exponential

integral functions, see Pages 228-237 of Abramowitz and Stegun (1965).

Now, using this we have that the corresponding solutions to the initial value

problems will be

g(r, s) =


λ
µ

(Ei(reµs) − Ei(r) − µs) if r > 0,

λ
µ

(E1(−r) − E1(−reµs) − µs) if r < 0.

Hence, for s = t and r = θe−µt, this yields

G(θ, t) = g
(
θe−µt, t

)
=


λ
µ

(
Ei(θ) − Ei(θe−µt) − µt

)
if θ > 0,

λ
µ

(
E1(−θe−µt) − E1(−θ) − µt

)
if θ < 0.

ByM∞(θ, t) = eG∞(θ,t), we complete the proof. �
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By consequence, we can also give the moment generating function in steady-

state.

Corollary 3.2.8. The moment generating function of the scaled number in system in

steady-state as n→ ∞ is given by

M∞(θ) =



θ−
λ
µ e

λ
µ (Ei(θ)−γ) if θ > 0,

(−θ)−
λ
µ e−

λ
µ (E1(−θ)+γ) if θ < 0,

1 if θ = 0,

(3.14)

where γ is the Euler-Mascheroni constant.

Proof. From Abramowitz and Stegun (1965), for x > 0 we can expand the expo-

nential integral functions as

Ei(x) = γ + log(x) +

∞∑
k=1

xk

kk!
, E1(x) = −γ − log(x) −

∞∑
k=1

(−x)k

kk!
, (3.15)

where γ is the Euler-Mascheroni constant. By expanding Ei(θe−µt) and E1(−θe−µt)

in the respective cases of positive and negative θ and taking the limit as t → ∞,

we achieve the stated result. �

As a demonstration of the convergence of the steady-state moment gener-

ating functions of the batch scaled queues to the expression given in Corol-

lary 3.2.8, we plot the first four cases in comparison to the limiting scenario

in Figure 3.1.

While it can be argued that even in steady-state the form of this moment

generating function is unfamiliar, we can still observe interesting characteristics

of it. In particular, for θ < 0 we can uncover a connection back to the harmonic

numbers. We now discuss this in the following remark.
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Figure 3.1: Steady-state MGF of the scaled queue for increasing batch size where
λ
µ

= 1.

Remark. Using Equation 3.15, we can note that for θ < 0 the steady-state moment

generating function of limit of the scaled queue can be expressed

M(θ) = (−θ)−
λ
µ e−

λ
µ (E1(−θ)+γ)

= e−
λ
µ (E1(−θ)+γ+log(−θ)) = e−

λ
µ

(
−

∑∞
k=1

θk
kk!

)
.

From Dattoli and Srivastava (2008), we have that −ex ∑∞
k=1

(−x)k

kk! is an exponential

generating function for the harmonic numbers. That is,

−ex
∞∑

k=1

(−x)k

kk!
=

∞∑
n=1

xn

n!
Hn

where Hn is the nth harmonic number. Thus, for θ < 0 the steady-state moment

generating function of this limiting object can be further simplified to

M(θ) = e−
λ
µ

(
−

∑∞
k=1

θk
kk!

)
= e−

λ
µ

∑∞
n=1 Hneθ (−θ)n

n! = e−
λ
µE[HN ],

where N ∼ Pois(−θ).

In addition to this remark’s connection of the moment generating function

and the harmonic numbers, we can also gain insight into this limiting object
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through Monte Carlo methods. Using Equation 3.11, we have a simple and effi-

cient approximate simulation method for this process through summing scaled

Poisson random numbers. Furthermore, this approximation of course becomes

increasingly precise as n grows. As an example of this, we give the simulated

steady-state densities across different relationships of λ and µ in Figures 3.2.

In addition to the interesting shapes of the densities across the different set-

tings, one can see the limiting form of the relationships given by the recursion in

Proposition 3.2.5 in these plots. We can note that one could also calculate these

through a numerical inverse Laplace transform of the steady-state moment gen-

erating function in Corollary 3.2.8, although this may likely incur significantly

more computational costs than the simulation procedure.

So far we have only considered exponentially distributed service. In the next

subsection we will address this and extend this Poisson sum representation of

the steady-state distribution to hold for general service. We do this through

viewing the n-batch-size system as being composed of n sub-systems that expe-

rience single arrivals simultaneously.

3.2.3 Generalizing through Sub-System Perspectives

Because of the infinite server construction of this model, we can also interpret

this system as being a network of sub-systems that also feature infinitely many

servers. However, this network’s mutuality is not in its services but rather in its

arrivals. Specifically, in this subsection we will think of infinite server queues

with batch arrivals of size n as being n infinite server queues that all receive indi-

vidual arrivals simultaneously. From this perspective, one can quickly observe
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Figure 3.2: Approximate steady-state density of the scaled queue limit for size
where λ

µ
= 1

2 (top), λ
µ

= 1 (left), and λ
µ

= 2 (right), using 1,000,000 simulation
replications and n = 2, 000.

that marginally each subsystem will be distributed as a standard infinite server

queue.

For example, if the batch system is the Mn
t /M/∞ that we first considered in

Subsection 3.2.1, then each of these sub-queues are Mt/M/∞ systems. These sub-

systems are coupled through the coincidence of their arrival times but otherwise

operate independently from one another. To quantify the relationship between

these systems, in Proposition 3.2.9 we derive the transient covariance between

two sub-systems for a general time-varying arrival rate.

Proposition 3.2.9. Let the batch arrival queue Qt with batch size n ∈ Z+ be represented
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as a superposition of n infinite server single arrival queues {Qt,i | 1 ≤ i ≤ n} that all

receive arrivals simultaneously and each have independent exponentially distributed

service, as described above. Let λ(t) > 0 be the non-stationary rate of simultaneous

arrivals and let µ > 0 be the rate of service. Then, for distinct i, j ∈ {1, . . . , n}, the

covariance between Qt,i and Qt, j is given by

Cov
[
Qt,i,Qt, j

]
= e−2µt

∫ t

0
λ(s)e2µsds (3.16)

for all t ≥ 0.

Proof. From Equation 3.1, we can solve for the product moment of the two sub-

systems through the ODE

d
dt

E
[
Qt,iQt, j

]
= λ(t)

(
E

[
Qt,i

]
+ E

[
Qt, j

]
+ 1

)
− 2µE

[
Qt,iQt, j

]
.

The solution to this differential equation is given by

E
[
Qt,iQt, j

]
= Q0,iQ0, je−2µt + e−2µt

∫ t

0
λ(s)

(
E

[
Qs,i

]
e2µs + E

[
Qs, j

]
e2µs + e2µs

)
ds.

By substituting the corresponding forms of E
[
Qs,k

]
= Q0,ke−µs + e−µs

∫ s

0
λ(u)eµudu

in for each of the two means, we have

E
[
Qt,iQt, j

]
= Q0,iQ0, je−2µt + e−2µt

∫ t

0
λ(s)

(
e2µs +

(
Q0,i +

∫ s

0
λ(u)eµudu

)
eµs

+

(
Q0, j +

∫ s

0
λ(u)eµudu

)
eµs

)
ds,

and this simplifies to the following

E
[
Qt,iQt, j

]
= Q0,iQ0, je−2µt + e−2µt

∫ t

0
λ(s)e2µsds +

(
Q0,i + Q0, j

)
e−2µt

∫ t

0
λ(s)eµsds

+ 2e−2µt
∫ t

0
λ(s)eµs

∫ s

0
λ(u)eµududs.
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We can now use the fact that for a function F : R+ → R defined such that F(t) =∫ t

0
f (s)ds for a given f (·), integration by parts implies∫ t

0
f (s)F(s)ds = F(t)2 −

∫ t

0
F(s) f (s)ds,

and so
∫ t

0
f (s)F(s)ds =

F(t)2

2 . This allows us to simplify to

E
[
Qt,iQt, j

]
= Q0,iQ0, je−2µt + e−2µt

∫ t

0
λ(s)e2µsds +

(
Q0,i + Q0, j

)
e−2µt

∫ t

0
λ(s)eµsds

+ e−2µt

(∫ t

0
λ(s)eµsds

)2

,

and now we turn our focus to the product of the means. Here we distribute the

multiplication to find that

E
[
Qt,i

]
E

[
Qt, j

]
=

(
Q0,ie−µt + e−µt

∫ t

0
λ(s)eµsds

) (
Q0, je−µt + e−µt

∫ t

0
λ(s)eµsds

)
= Q0,iQ0, je−2µt + (Q0,i + Q0, j)e−2µt

∫ t

0
λ(s)eµsds + e−2µt

(∫ t

0
λ(s)eµsds

)2

and by subtracting this expression from that of the product moment, we com-

plete the proof. �

As a consequence of this, we can specify the covariance between sub-systems

in the non-stationary and stationary arrival settings we have considered thus

far in this report. Further, for stationary arrival rates we capitalize on simpli-

fied expressions to also give an explicit expression for the correlation coefficient

between two sub-systems.

Corollary 3.2.10. Let Qt be an infinite server queue with arrival batch size n ∈ Z+

and exponential service rate µ > 0. Further, let Qt,k for k ∈ {1, . . . , n} be infinite server

queues with solitary arrivals and exponential service rate µ > 0, so that
∑n

k=1 Qt,k = Qt

for all t ≥ 0. Let i, j ∈ {1, . . . , n} be distinct. Then, if the arrival rate is given by
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λ +
∑∞

k=1 ak cos(kt) + bk sin(kt) > 0, the covariance between Qt,i and Qt, j is

Cov
[
Qt,i,Qt, j

]
=

λ

2µ

(
1 − e−2µt

)
+

∞∑
k=1

ak

k2 + 4µ2

(
2µ cos(kt) + k sin(kt) − 2µe−2µt

)
+

∞∑
k=1

bk

k2 + 4µ2

(
2µ sin(kt) − k cos(kt) + ke−2µt

)
, (3.17)

and if the arrival rate is given by λ > 0, the covariance between Qt,i and Qt, j is

Cov
[
Qt,i,Qt, j

]
=

λ

2µ

(
1 − e−2µt

)
, (3.18)

where all t ≥ 0. Finally, the correlation between two sub-systems in the stationary

setting can be calculated as

Corr[Qt,i,Qt, j] =

λ
2µ

(
1 − e−2µt

)
√(

Q0,i
(
e−µt − e−2µt) + λ

µ
(1 − e−µt)

) (
Q0, j

(
e−µt − e−2µt) + λ

µ
(1 − e−µt)

) ,
hence for stationary arrival rates, Corr[Qt,i,Qt, j]→ 1

2 as t → ∞.

Thus, we find that for a fully Markovian batch arrival queue with stationary

arrival rate the correlation among any two sub-systems in steady-state is 1
2 , re-

gardless of the arrival or service parameters. In some sense this seems to capture

a balance between the effect of arrivals and of services on an infinite server sys-

tem, with the latter being independent between these systems and the former

being perfectly correlated.

Now, we can pause to note that we have actually made an implicit model-

ing choice by separating the batch into n identical sub-systems. In this set-up

we have decided to route all customers within one batch equivalently, but we

are free to make other routing decisions and still maintain the n sub-systems

construction. With that in mind, it seems natural to wonder if we can uncover

distributional structure of the full system if we choose our routing procedure
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carefully. We will now find that not only is this true, but we in fact already have

already seen a suggestion on what type of routing to consider.

From Proposition 3.2.4, we have seen that the steady-state distribution of

the Mn/M/∞ system is equivalent to that of
∑n

j=1 jY j where Y j ∼ Pois( λ
jµ ) are

independent. We can also note that just as the minimum of the independent

sample S 1, . . . , S n ∼ Exp(µ) will be exponentially distributed with rate nµ, for S (i)

as the ith ordered statistic of the n-sample we have that S (i) − S (i−1) ∼ Exp((n −

i + 1)µ). Of course, the sum of these differences will telescope so that
∑i

j=1 S ( j) −

S ( j−1) = S (i).

Taking this as inspiration, we will now assume that upon the arrival of a

batch we can now know the duration of each customer’s service. We then take

the sub-queues to be such that the first sub-system always receives the service

with the shortest duration, the second sub-system receives the second shortest

service, and so on. Thus, we will route each batch of customers according to the

order statistics within each batch. For reference, we visualize this sub-system

construction in Figure 3.3.

We can note that while the covariance structure we explored in Proposi-

tion 3.2.9 and Corollary 3.2.10 do not apply for this new routing, the sub-systems

are certainly still correlated. Due to the order-statistics structuring of the service

in each queue, we can note that now both the arrival processes and the service

distributions will be dependent. However, we can in fact use our understand-

ing of this dependence to not only understand how these systems relate to one

another, but also to interpret how they form the structure of the full batch sys-

tem as a whole. In this way, we will now consider a Mn/G/∞ system. As follows

in Theorem 3.2.11, we will find that the order-statistics-routing inspiration we
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Figure 3.3: Queueing diagram for the batch arrival queue with infinite servers,
in which the arriving entities are routed according to the ordering of their ser-
vice durations.

have used from Proposition 3.2.4 leads us to a generalized Poisson sum result

for general service distributions.

Theorem 3.2.11. Let Qt(n) be an Mn/G/∞ queue. That is, let Qt(n) be an infinite server

queue with stationary arrival rate λ > 0, arrival batch size n ∈ Z+, and general service

distribution G. Then, the steady-state distribution of the number in system Q∞(n) is

Q∞(n) D
=

n∑
j=1

(n − j + 1)Y j (3.19)

where Y j ∼ Pois
(
λE

[
S ( j) − S ( j−1)

])
are independent, with S (1) ≤ · · · ≤ S (n) as order

statistics of the distribution G and with S (0) = 0.

Proof. As we have discussed in the paragraphs preceding this statement, we

will consider the full queueing system as being composed of n infinite server

sub-systems to which we route the arriving customers in each batch. That is, let

Q1, . . . , Qn be infinite server queues of which we will consider the steady-state
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behavior. Upon the arrival of a batch, we order the customers according to the

duration of their service. Then, we send the customer with the earliest service

completion to Q1, the customer with the second earliest to Q2, and so on.

When viewing each sub-system on its own, we see that Q j is an infinite

server queue with single arrivals according to a Poisson process with rate λ

and service distribution matching that of S ( j), the jth order statistics of G. Thus,

we can see that in steady-state Q j ∼ Pois
(
λE

[
S ( j)

])
through the literature for

M/G/∞ queues, such as in Eick et al. (1993). While we can further observe that

Q∞(n) =
∑n

j=1 Q j, we must take care in re-assembling the sub-queues. In par-

ticular, we can note that S ( j) shares a similar structure with S ( j−1). Each order

statistic can be viewed as a construction of the gaps between the lower ordered

quantities:

S ( j) =

j∑
k=1

S (k) − S (k−1).

Thus, from the thinning property of the Poisson distribution and the linearity of

expectation, we can write the distribution of Q j as a sum of independent Poisson

RV’s, as given by

Q j ∼

j∑
k=1

Pois
(
λE

[
S (k) − S (k−1)

])
.

We can note further that j−1 of the Poisson components of Q j are the exact com-

ponents of Q j−1, with j− 2 of these components also shared with Q j−2, j− 3 with

Q j−3, and so on. Then, we see that the Poisson component Pois
(
λE

[
S ( j) − S ( j−1)

])
is repeated n − j + 1 times across this sub-system construction of Q∞(n), as it

appears in each of the Poisson sum expressions of Q j, Q j+1, . . . , Qn−1, and Qn.

Assembling Q∞(n) in this way, we complete the proof. �

One can also note that this order statistic sub-system structure also provides

some motivation for the occurrence of the harmonic numbers that we observed
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in Subsection 3.2.2 when viewing the largest order statistic, which we discuss

now in the following remark.

Remark. For S i ∼ Exp(µ), one can see through the telescoping construction of the

order statistics that

E
[
S (n)

]
=

n∑
i=1

E
[
S (i) − S (i−1)

]
=

n∑
i=1

1
(n − i + 1)µ

=
1
µ

Hn.

Now, throughout this section we have operated on the assumption that the

batch size is a known, fixed constant. While this may be applicable in some

settings there are certainly many settings where the batch size is unknown and

varies between arrivals. Thus, we address this in Section 3.3 and find that many

of the results we have shown thus far can be replicated for models with random

batch size.

3.3 Random Batch Sizes

We will now consider systems in which the size of an arriving batch is drawn

from an independent and identically distributed sequence of random variables.

We will treat the distribution of the batch size as general throughout this work.

As in Section 3.2, we assume that the times of arrivals are given by a Poisson

process, with consideration given to both stationary and non-stationary rates,

and we will again analyze both exponential and general service distributions.

We start by giving the mean and variance of the system for time-varying ar-

rival rates with exponential service in Subsection 3.3.1. Then, in Subsection 3.3.2

we give three limiting results for the stationary arrivals model: a batch scaling, a

fluid limit, and a diffusion limit. Finally in Subsection 3.3.3 we extend the Pois-
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son sum construction of the steady-state distribution to hold for random batch

sizes.

One can note that many of these results are generalizations or extensions

of findings from Section 3.2, thus implying them as a special case and perhaps

even building a case for them to be omitted. Rather, these findings are critical

to the narrative of this report. As we will see, the results for fixed batch size

provide the analytic foundations and conceptual inspirations from which we

derive much of the analysis in this section.

3.3.1 Mean and Variance for Time-Varying, Markovian Case

To begin our exploration into random batch size systems, we’ll start simple:

we’ll look at a fully Markovian (albeit time-varying) system and find the mean

and variance, using conditional probability and our results from Section 3.2.

Specifically, in this subsection we will consider the MN
t /M/∞ queue. That is, take

an infinite server queue with a general non-stationary arrival rate. We suppose

that arrivals occur in batches of random size from a sequence of independent

and identically distributed random variables. Furthermore, we suppose that

service is exponentially distributed. We now give the mean and variance of this

system in Proposition 3.3.1.

Proposition 3.3.1. Let Qt be an infinite server queue with finite, time-varying arrival

rate λ(t) > 0, exponential service rate µ > 0, and random batch size with finite mean,

E [N]. Then, the mean number in system is given by

E [Qt] = Q0e−µt + e−µtE [N]
∫ t

0
λ(s)eµsds, (3.20)
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for all t ≥ 0. Then, if the batch size distribution has finite second moment E
[
N2

]
, the

variance of the number in system is given by

Var (Qt) = Q0

(
e−µt − e−2µt

)
+ e−2µt

(
E

[
N2

]
− E [N]

) ∫ t

0
λ(s)e2µsds

+ e−µtE [N]
∫ t

0
λ(s)eµsds, (3.21)

again for all t ≥ 0.

Proof. Using the infinitesimal generator method, we have that the first and sec-

ond moments of this system are given by the solutions to

d
dt

E [Qt] = λ(t)E [N1] − µE [Qt],

d
dt

E
[
Q2

t

]
= λ(t)

(
2E [Qt]E [N1] + E

[
N2

1

])
− 2µE

[
Q2

t

]
+ µE [Qt],

where {Ni | i ∈ Z+} are the i.i.d. batch sizes that are also independent of the

queue. Through noting that

d
dt

Var (Qt) =
d
dt

E
[
Q2

t

]
− 2E [Qt]

d
dt

E [Qt] = λ(t)E
[
N2

1

]
+ µE [Qt] − 2µVar (Qt),

we can solve for the stated results. �

In addition to providing a direct comparison to the fixed batch size case

in conjunction with Corollary 3.2.3, Proposition 3.3.1 also provides a building

block for the remainder of this section. In particular, in the following subsection

we will develop a series of limiting results for this queueing system, including

fluid and diffusion limits. In those cases, we will use this result for added inter-

pretation. To expedite comparison in cases of stationary arrival rates, we now

give the mean and variance for such systems in Corollary 3.3.2. Additionally, to

also facilitate comparison to Corollary 3.2.3, we provide expressions for periodic

arrival rates in Corollary 3.3.3.
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Corollary 3.3.2. Let Qt be an infinite server queue with stationary arrival rate λ > 0,

exponential service rate µ > 0, and random batch size with mean E [N]. Then, the mean

number in system is given by

E [Qt] = Q0e−µt +
λE [N]
µ

(
1 − e−µt) , (3.22)

for all t ≥ 0. Then, if the batch size distribution has finite second moment E
[
N2

]
, the

variance of the number in system is given by

Var (Qt) = Q0

(
e−µt − e−2µt

)
+
λE [N]
µ

(
1 − e−µt) +

λ

2µ

(
E

[
N2

]
− E [N]

) (
1 − e−2µt

)
,

(3.23)

again for all t ≥ 0.

Corollary 3.3.3. Let Qt be an infinite server queue with periodic arrival rate λ +∑∞
k=1 ak cos(kt) + bk sin(kt) > 0, exponential service rate µ > 0, and random batch size

with finite mean, E [N]. Then, the mean number in system is given by

E [Qt] = Q0e−µt +
λE [N]
µ

(
1 − e−µt) +

∞∑
k=1

E [N](akµ − bkk)
k2 + µ2

(
cos(kt) − e−µt)

+

∞∑
k=1

E [N](akk + bkµ)
k2 + µ2 sin(kt), (3.24)

for all t ≥ 0. Then, if the batch size distribution has finite second moment E
[
N2

]
, the

variance of the number in system is given by

Var (Qt) = Q0

(
e−µt − e−2µt

)
+
λE [N]
µ

(
1 − e−µt) +

∞∑
k=1

EN(akµ − bkk)
k2 + µ2

(
cos(kt) − e−µt)

+

∞∑
k=1

E [N](akk + bkµ)
k2 + µ2 sin(kt) +

λ

2µ

(
E

[
N2

]
− E [N]

) (
1 − e−2µt

)
+

(
E

[
N2

]
− E [N]

)  ∞∑
k=1

2akµ − bkk
k2 + 4µ2

(
cos(kt) − e−2µt

)
+

∞∑
k=1

akk + 2bkµ

k2 + 4µ2 sin(kt)

 ,
(3.25)

again for all t ≥ 0.
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3.3.2 Limiting Results for Stationary Arrival Rates

We will now focus on systems with stationary arrival rates throughout the anal-

ysis in this subsection. In doing so, we derive limit theorems for various scalings

of this process. To begin, we show a brief technical lemma for the limit of non-

negative random variables that can be represented as sums of independent and

identically distributed random variables.

Lemma 3.3.4. Let X(n) be any random variable that X(n) =
∑n

k=1 Yk where Yk are i.i.d.

non-negative, discrete random variables. Then, the moment generating function of X(n)

is such that

E
[
e
θX(n)

n
]
→ eE[Y1]θ

as n→ ∞.

Proof. By the strong law of large numbers, we have that

lim
n→∞

X(n)
n

= lim
n→∞

1
n

n∑
k=1

Yk
a.s.
= E [Y1],

and this implies convergence in distribution, which is equivalent to convergence

of moment generating functions. �

We can note that this condition is a weaker form of infinite divisibility. Thus,

in addition to holding for any infinitely divisible and non-negative random vari-

ables such as the Poisson, and negative binomial distributions, Lemma 3.3.4 also

holds for some distributions that are not infinitely divisible, such as the bino-

mial. Using this lemma we can now find our first limit theorem for random

batch sizes, a batch scaling result akin to Proposition 3.2.7.
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Theorem 3.3.5. For n ∈ Z+, let Qt(n) be an infinite server queue with batch arrivals

where the batch size is drawn from the i.i.d. sequence {Ni(n) | i ∈ Z+}. Let λ > 0 be the

arrival rate and let µ > 0 be the rate of exponentially distributed service. Then, suppose

that for any i and n there is a sequence of i.i.d. non-negative, discrete random variables

{Bk | k ∈ Z+} such that Ni(n) =
∑n

k=1 Bk. Then, the limiting moment generating function

of the batch scaled object

lim
n→∞

E
[
e
θ
n Qt(n)

]
=



e
λ
µ (Ei(θE[B1])−Ei(θE[B1]e−µt)−µt) if θ > 0,

e
λ
µ (E1(−θE[B1]e−µt)−E1(−θE[B1])−µt) if θ < 0,

1 if θ = 0,

(3.26)

for all t ≥ 0.

Proof. Because this system is Markovian, we can calculate the time derivative of

the moment generating function for a given n as

d
dt

E
[
e
θ
n Qt(n)

]
= E

[
λ
(
e
θ
n N1(n) − 1

)
e
θ
n Qt(n) + µQt(n)

(
e−

θ
n − 1

)
e
θ
n Qt(n)

]
= λ

(
E

[
e
θ
n N1(n)

]
− 1

)
E

[
e
θ
n Qt(n)

]
+ nµ

(
e−

θ
n − 1

)
E

[
Qt(n)

n
e
θ
n Qt(n)

]
.

This can then be re-expressed in partial differential equation form as

∂Mn(θ, t)
∂t

= λ
(
E

[
e
θ
n N1(n)

]
− 1

)
Mn(θ, t) + nµ

(
e−

θ
n − 1

) ∂Mn(θ, t)
∂θ

,

whereMn(θ, t) = E
[
e
θ
n Qt(n)

]
. Now, through Lemma 3.3.4, we see that the limit of

this partial differential equation is given by

∂M∞(θ, t)
∂t

= λ
(
eθE[B1] − 1

)
M∞(θ, t) − µθ

∂M∞(θ, t)
∂θ

.

We achieve the stated result through a straightforward update of the method of

characteristics approach in Proposition 3.2.7. �
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We can note that a similar batch scaling of infinite server queues is discussed

in de Graaf et al. (2017), in which the authors show that the limiting process can

be interpreted as a shot noise process. However, that work considers a different

class of batch size distributions, as the authors define their batch size distribu-

tion in terms of the distribution of the marks through use of a ceiling rounding

function. In this way, that paper is more oriented around the distribution of the

marks in the shot noise process rather than the size of the batches.

From this result, we can identify a relationship between the moment gener-

ating functions of the deterministic and random batch size queues under batch

scalings. Let M∞
n (θ, t) be the limiting moment generating function of the fixed

batch size queue as given in Proposition 3.2.7 and let M∞
N (θ, t) be the same for

the random batch size queue as we have now seen in Theorem 3.3.5. Then, we

can observe that

M∞
N (θ, t) =M∞

n (θE [B1], t),

whenever the distribution of the random batch sizes meets the “finite divisi-

bility” condition as described in Lemma 3.3.4. The relationship between these

limiting objects provides a direct comparison between the two different batch

types.

As two additional limiting results, we now provide fluid and diffusion limits

for scaling the arrival rate in Theorems 3.3.6 and 3.3.7, respectively. We did not

give fluid or diffusion limits for the deterministic batch cases in Section 3.2, so

these two limits are built from scratch within this section. Although we did

not develop such limits explicitly for the Mn/M/∞ system, we will find that

these limits can still be used to draw comparisons between this system and the

MN/M/∞ queue simply by treating the random batch size as deterministically
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distributed. We now begin with the fluid limit.

Theorem 3.3.6. For n ∈ Z+, let Qt(n) be an infinite server queue with batch arrivals

where the batch size is drawn from the i.i.d. sequence {Ni | i ∈ Z+}. Let nλ > 0 be

the arrival rate and let µ > 0 be the rate of exponentially distributed service. Then, the

limiting moment generating function of the fluid scaling is given by

lim
n→∞

E
[
e
θ
n Qt(n)

]
= e

λE[N1]θ
µ (1−e−µt)+Q0θe−µt

, (3.27)

for all t ≥ 0.

Proof. We begin with the infinitesimal generator equation for the time derivative

of the moment generating function at a given n. This is

d
dt

E
[
e
θ
n Qt(n)

]
= E

[
nλ

(
e
θN1

n − 1
)

e
θ
n Qt(n) + µQt(n)

(
e−

θ
n − 1

)
e
θ
n Qt(n)

]
= nλ

(
E

[
e
θN1

n

]
− 1

)
E

[
e
θ
n Qt(n)

]
+ µn

(
e−

θ
n − 1

)
E

[
Qt(n)

n
e
θ
n Qt(n)

]
,

which can also be expressed in partial differential equation form as

∂Mn(θ, t)
∂t

= nλ
(
E

[
e
θN1

n

]
− 1

)
Mn(θ, t) + µn

(
e−

θ
n − 1

) ∂Mn(θ, t)
∂θ

,

where Mn(θ, t) = E
[
e
θ
n Qt(n)

]
. By a Taylor expansion of the function e

θN1
n and by

taking the limit as n→ ∞, we can see that this yields

∂M∞(θ, t)
∂t

= λθE [N1]M∞(θ, t) − µθ
∂M∞(θ, t)

∂θ
.

Using the initial condition M∞(θ, 0) = eQ0θ, we can see that the solution to this

partial differential equation will be

M∞(θ, t) = e
λE[N1]θ

µ (1−e−µt)+Q0θe−µt
,

and this completes the proof. �
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From Corollary 3.3.2, we see that the mean number in system for the

MN/M/∞ queue is λE[N1]
µ

(
1 − e−µt) + Q0e−µt. Thus, this fluid limit moment gen-

erating function is equivalent to eθE[Qt] for all t ≥ 0 and all θ, showing that the

fluid limit converges to the mean. We now find a connection to both the mean

and the variance through a diffusion limit in Theorem 3.3.7.

Theorem 3.3.7. For n ∈ Z+, let Qt(n) be an infinite server queue with batch arrivals

where the batch size is drawn from the i.i.d. sequence {Ni | i ∈ Z+}. Let nλ > 0 be

the arrival rate and let µ > 0 be the rate of exponentially distributed service. Then, the

limiting moment generating function of the diffusion scaling is given by

lim
n→∞

E
[
e

θ√
n

(
Qt(n)− nλE[N1]

µ

)]
= e

λθ2
4µ (E[N1]+E[N2

1])(1−e−µt)+θQ0e−µt
(3.28)

which gives a steady-state approximation of X ∼ Norm
(
λE[N1]
µ

, λ
2µ

(
E [N1] + E

[
N2

1

]))
.

Proof. Through use of the infinitesimal generator, we have that the time deriva-

tive of the moment generating function for a given n can be expressed

d
dt

E
[
e

θ√
n

(
Qt(n)− nλE[N1]

µ

)]
= E

[
nλ

(
e
θN1√

n − 1
)

e
θ√
n

(
Qt(n)− nλE[N1]

µ

)
+ µQt(n)

(
e−

θ√
n − 1

)
e

θ√
n

(
Qt(n)− nλE[N1]

µ

)]
= E

[
√

nλ
(
θN1 +

θ2N2
1

2
√

n
+ O

(
θ3N3

1

6n

))
e

θ√
n

(
Qt(n)− nλE[N1]

µ

)]
+ E

[
µ
√

n
(

Qt(n)
√

n
−

nλE [N1]
√

nµ
+

nλE [N1]
√

nµ

) (
e−

θ√
n − 1

)
e

θ√
n

(
Qt(n)− nλE[N1]

µ

)]
,

where here we have used a Taylor expansion of the function e
θN1√

n . Now, for

Mn(θ, t) = E
[
e

θ√
n

(
Qt(n)− nλE[N1]

µ

)]
, this equation can be written as a partial differential

equation as follows:

∂Mn(θ, t)
∂t

= λθ
√

nE [N1]Mn(θ, t) +
λθ2

2
E

[
N2

1

]
Mn(θ, t) +

√
nλE

[
O

(
θ3N3

1

6n

)
e

θ√
n

(
Qt(n)− nλE[N1]

µ

)]
+
√

nµ
(
e−

θ√
n − 1

)
∂Mn(θ, t)

∂θ
+ nλE [N1]

(
e−

θ√
n − 1

)
Mn(θ, t).
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As we take n→ ∞ this PDE becomes

∂M∞(θ, t)
∂t

=
λθ2

2
E [N1]M∞(θ, t) +

λθ2

2
E

[
N2

1

]
M∞(θ, t) − µθ

∂M∞(θ, t)
∂θ

,

and this yields a solution of

M∞(θ, t) = e
λθ2
4µ (E[N1]+E[N2

1])(1−e−µt)+θQ0e−µt
.

To observe the steady-state distribution, we take the limit as t → ∞ and observe

that this produces the moment generating function for a Gaussian. �

By comparison to the limits of the expresions in Corollary 3.3.2 as t → ∞,

we can now observe that this steady-state approximation is equal in mean and

variance to the steady-state queue.

3.3.3 Extending the Order Statistics Sub-Systems

In Subsection 3.2.3 we found that the steady-state distribution of infinite server

queues with fixed batch size and general service can be written as a sum of

scaled Poisson random variables, providing a succinct interpretation of the pro-

cess and an efficient simulation procedure for approximate calculations. The un-

derlying observation that supported this approach was that we can think of an

infinite server queue with batch arrivals as a collection of infinite server queues

with solitary arrivals that occur simultaneously. Using the thinning property of

Poisson processes, we now extend this result to queues with random batch sizes

and general service.

Theorem 3.3.8. Let Qt be a MN/G/∞ queue. That is, let Qt an infinite server queue

with stationary arrival rate λ > 0, arrival batch of random size according to the i.i.d. se-

quence of non-negative integer valued random variables {Ni | i ∈ Z+}, and general
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service distribution G. Then, the steady-state distribution of the number in system Q∞

is

Q∞
D
=

∞∑
n=1

n∑
j=1

(n − j + 1)Y j,n (3.29)

where Y j,n ∼ Pois
(
λpnE

[
S ( j,n) − S ( j−1,n)

])
are independent, with S (1,n) ≤ · · · ≤ S (n,n)

as order statistics of the distribution G when Ni = n, where S (0,n) = 0 for all n and

pn = P (N1 = n).

Proof. To begin, we suppose that there is some m ∈ Z+ such that

P (Ni ∈ {0, . . . ,m}) = 1. Then, using the thinning property of Poisson processes,

we separate the arrival process into m arrival streams where the nth arrival rate

is λpn. Then, by Theorem 3.2.11 the steady-state distribution of the number in

system from the nth stream is

n∑
j=1

(n − j + 1)Pois
(
λpnE

[
S ( j,n) − S ( j−1,n)

])
.

Then, since the m thinned Poisson streams are independent, we have that the

full combined system will be distributed as

m∑
n=1

n∑
j=1

(n − j + 1)Pois
(
λpnE

[
S ( j,n) − S ( j−1,n)

])
.

Through taking the limit as m→ ∞, we achieve the stated result. �

We can note that Theorem 3.3.8 also provides a method for approximate em-

pirical calculation through simulation. This representation can also be simpli-

fied if more information is known about the distribution of the batch size or

of the service, or both. As an example, we give the distribution for the fully

Markovian system in the following corollary.
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Corollary 3.3.9. Let Qt be a MN/M/∞ queue. That is, let Qt an infinite server queue

with stationary arrival rate λ > 0, arrival batch of random size according to the i.i.d. se-

quence of non-negative integer valued random variables {Ni | i ∈ Z+}, and exponentially

distributed service at rate µ > 0. Then, the steady-state distribution of the number in

system Q∞ is

Q∞
D
=

∞∑
j=1

jY j (3.30)

where Y j ∼ Pois
(
λ
jµ F̄N( j)

)
are independent, where F̄N( j) = P (N1 ≥ j).

One can note that the moment generating function for this system in steady-

state is

E
[
eθQ∞

]
= e

∑∞
j=1

λ
jµ F̄N ( j)(e jθ−1),

and that this also admits a connection to the generalized Hermite distributions

we discussed in Subsection 3.2.2. In particular, this generalized Hermite distri-

bution can be characterized by λ
µ
, which is again the mean of the distribution,

and the complementary cumulative distribution function of the batch size dis-

tribution, which dictates the coefficients at each j. For this reason, it may be

possible that the steady-state distribution of the queue may be simplified even

further for particular batch size distributions.

Because Theorem 3.3.8 is again built upon an order statistics sub-queue per-

spective, it is natural to wonder how the distribution of the batch size would

affect those sub-systems. In particular, we now consider the following scenario:

suppose that the batch size is bounded by some constant, say k, and that we

have k sub-systems. For each arriving batch, the customer with the shortest ser-

vice duration will go to the first sub-system, the second shortest to the second

sub-system, and so on, but only up to the number that have just arrived: if this
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batch is of size k − 1, the kth sub-queue will not receive an arrival. In this way,

the ith sub-queue represents the number in system that were the ith smallest in

their batch. In the following proposition we find the conditions on the batch size

distribution under which the distributions of the sub-queues will be equivalent.

Proposition 3.3.10. Consider a MB/G/∞ queueing system in which the distribution

of B has support on {1, . . . , k}. Let φ ∈ [0, 1]k−1 be such that φi = P (B = i), yielding

P (B = k) = 1 −
∑k−1

i=1 φi. Let S (i, j) be the ith order statistics in a sample of size j from

the service distribution. Furthermore, let Qi be steady-state number in system of an

infinite server sub-queue to which the customer with the ith smallest service duration in

an arriving batch will be routed whenever there are at least i customers in the batch. Let

M ∈ Rk−1×k−1 be an upper triangular matrix such that

Mi, j =
E

[
S (i, j)

]
E

[
S (k,k)

]
− E

[
S (i,k)

] ,
for i ≤ j and Mi, j = 0 otherwise. For v ∈ Rk−1 as the all-ones column vector, if φ is such

that

v =
(
M + vvT

)
φ,

then Qi
D
= Q j for all sub-queues i and j. Moreover, if 1 + vTM−1v , 0, then the

distributions of the sub-queues are equivalent if and only if φ = (M + vvT)−1v.

Proof. We start by considering the mean of each queue and solving for φ such

that all the means are equal. Let λ be the batch arrival rate. Then, the mean of

Qi is

E [Qi] =

k−1∑
j=i

λφ jE
[
S (i, j)

]
+ λ

1 − k−1∑
j=1

φ j

 E
[
S (i,k)

]
,

as entities only arrive to Qi when B ≥ i. We can note that for Qk this is

E [Qk] = λ

1 − k−1∑
j=1

φ j

 E
[
S (k,k)

]
.
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Then, we can see that all the queue means will be equal if E [Qi] = E [Qk] for all

i. Thus, we want to solve for φ such that

0 =

k−1∑
j=i

λφ jE
[
S (i, j)

]
+ λ

1 − k−1∑
j=1

φ j

 E
[
S (i,k)

]
− λ

1 − k−1∑
j=1

φ j

 E
[
S (k,k)

]
,

for all i. Rearranging this equation and dividing by λ(E
[
S (k,k)

]
− E

[
S (i,k)

]
), we

receive
k−1∑
j=i

E
[
S (i, j)

]
E

[
S (k,k)

]
− E

[
S (i,k)

]φ j +

k−1∑
j=1

φ j = 1.

We can now observe that this forms the linear system (M + vvT)φ = v, and so we

have shown that if φ satisfies this system then the means of the sub-queues will

be equal. We can note moreover that M + vvT is a rank one update of the matrix

M. Thus, it is known that M +vvT will be invertible if 1+vTM−1v , 0; see Lemma

1.1 of Ding and Zhou (2007). In that case, we know that the unique solution to

this system is φ = (M + vvT)−1v.

As we noted in the proof of Theorem 3.3.8, the steady-state distribution of an

M/G/∞ queue is Pois(λE [S ]) when the arrival rate is λ and service distribution

is equivalent to the random variables S . We can now note further that λE [S ]

is the steady-state mean of such a queueing system. The distribution of Qi is

then given by Pois(E [Qi]) for each i ∈ {1, . . . , k}, and thus is equivalent across all

sub-queues. �

For added motivation, we now consider the two dimensional case in the

following remark.

Remark. If k = 2, M and φ are scalars, given by

M =
E [S ]

E
[
S 2,2

]
− E

[
S 1,2

] , φ =
E

[
S 2,2

]
− E

[
S 1,2

]
E [S ] + E

[
S 2,2

]
− E

[
S 1,2

] .
In this case, we can note that if P (B = 1) = φ, then in steady-state the distri-

bution of the workload in the system from the easier jobs from all batches will
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be equivalent to that of the harder jobs. If P (B = 1) > φ the number of harder

jobs will stochastically dominate the number of easier jobs, and vice-versa is

P (B = 1) < φ.

This result implies if we have the ability to choose the probability of batch

sizes, we can construct each of the sub-systems which are organized by the order

statitics to have the same queue length distribution. Thus, providing equal work

to all of the queues.

3.4 Conclusion and Final Remarks

In this chapter, we have found parallels between infinite server queues with

batch arrivals, sums of scaled Poisson random variables, and Hermite distribu-

tions. Moreover, we also connect the stochastic objects to analytic quantities and

functions of external interest, such as the harmonic numbers, the exponential

integral function, the Euler-Mascheroni constant, and the polylogarithm func-

tion. In addition to being interesting in their own right, these connections have

helped us to specify exact forms of valuable quantities related to this queue-

ing system, including generating functions for the queue and for the limit of

the queue scaled by the batch size. Thus, we have gained both insight into the

queue itself and perspective on the model’s place in operations research and

applied mathematics more broadly.

For this reason, we believe continued work on these fronts is merited. For

example, while we have some intuition for the harmonic Hermite distribution

discussed in Subsection 3.2.2, we have less of an understanding of the limiting

distribution of the scaled queue in that subsection and extended for random
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batch sizes in Subsection 3.3.2. Having more knowledge of what distribution

might produce a moment generating function comprised of exponential inte-

gral function. Finding such a distribution could not only teach us about this

queueing system, it would also likely be worth studying entirely on its own.

Additionally, providing further connections of this distribution back to the har-

monic numbers and the associated Hermite distribution would also be of inter-

est, such as in the connection of the limiting moment generating function to the

expected value of a harmonic number evaluated at a Poisson random variable

that we remarked in Subsection 3.2.2. One could also consider control problems

for the routing of arrivals to sub-systems, like what we discuss for the case of

random batch sizes in Subsection 3.3.3.

For future expansions of this work into other areas of queueing, we can

group the main themes of potential further investigations in three categories.

First, the extension of our batch model beyond infinite server queues to multi-

server queues, queues with abandonment, and networks of infinite server

queues, a la Mandelbaum and Zeltyn (2007); Massey and Pender (2013); Eng-

blom and Pender (2014); Gurvich et al. (2013); Pender (2014a); Daw and Pender

(2019a). It would be interesting to explore our limit theorems in these cases to

understand the impact of having a finite number of servers. Second, it would

also be interesting to explore the impact of the batch arrivals in the context of

queues with delayed information as in Pender et al. (2017a,b, 2018). It would be

of interest to know whether or not the batch arrivals would influence the Hopf

bifurcations or oscillations that occur in the delayed information queues. Addi-

tionally, one could explore findings of this work, like the steady-state distribu-

tion representation or the batch scaling, in contexts where there is dependence

among the service durations within each batch of arrivals, such as those studied
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in Pang and Whitt (2012); Falin (1994). Finally, we are particularly interested in

studying the impact of batch arrivals in the context of self-exciting arrival pro-

cesses such as Hawkes processes like in the work of Gao and Zhu (2018a); Koops

et al. (2018) and in Chapter 2. We intend to pursue the ideas described here as

well as other related concepts in our future work.
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CHAPTER 4

AN EPHEMERALLY SELF-EXCITING POINT PROCESS

4.1 Introduction

What’s past is prologue – unavoidably, the present is shaped by what has already

occurred. The current state of the world is indebted to our history. Our actions,

behaviors, and decisions are both precursory and prescriptive to those that fol-

low, and this can be observed across a variety of different scenarios. For exam-

ple, the spread of an infectious disease is accelerated as more people become

sick and dampened as they recover. In finance, a flurry of recent transactions

can prompt new buyers or sellers to enter a market. On social media platforms,

as more and more users interact with a post it can become trending or viral and

thus be broadcast to an even larger audience.

Self-exciting processes are an intriguing family of stochastic models in which

the history of events influences the future. Hawkes (1971) introduced the con-

cept of self-excitement – defining what is now known as the Hawkes process, a

model in which “the current intensity of events is determined by events in the

past.” That is, the Hawkes process is a stochastic intensity point process that

depends on the history of the point process itself. The rate of new event occur-

rences increases as each event occurs. As time passes between occurrences, the

Contents of this chapter are, at the time of this dissertation’s writing, under review for
publication and are publicly available as a preprint (Daw and Pender, 2020a). Previous publicly
available drafts of this work used the moniker “Queue-Hawkes process,” but this has been re-
branded to avoid confusion and ambiguity. Alas, “the process formerly known as the Queue-
Hawkes” is likely not an improvement in this regard.
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intensity is governed by a deterministic excitement kernel. Most often, this ker-

nel is specified so that the intensity jumps upward at event epochs and strictly

decreases in the interim. In this way, occurrences beget occurrences; hence the

term “self-exciting.” Unlike the Poisson process, disjoint increments are not

independent in sample paths of Hawkes process. Instead, they are positively

correlated and, by definition, the events of the former influence the events of

the latter. Furthermore, the Hawkes process is known to be over-dispersed –

meaning that its variance is larger than its mean – which is commonly found in

real world data, whereas the Poisson process has equal mean and variance.

Because of the practical relevance of these model features, self-exciting pro-

cesses have been used in a wide variety of applications, many of which are

quite recent additions to the literature. Seismology was among the first domains

to incorporate these models, such as in Ogata (1988), as the occurrence of an

earthquake increases the risk of subsequent seismic activity in the form of after-

shocks. Finance has since followed as a popular application and is now perhaps

the most prolific area of work. In these studies, self-excitement is used to cap-

ture the often contagious nature of financial activity, see e.g. Errais et al. (2010);

Bacry et al. (2013); Bacry and Muzy (2014); Da Fonseca and Zaatour (2014); Aı̈t-

Sahalia et al. (2015); Azizpour et al. (2016); Rambaldi et al. (2017); Gao et al.

(2018); Wu et al. (2019). Similarly, there have been many recent internet and

social media scenarios that have been modeled using self-exciting processes,

drawing upon the virality of modern web traffic. For example, see Farajtabar

et al. (2017); Rizoiu et al. (2017, 2018). Notably, this also includes use of Hawkes

processes for constructing data-driven methods in the artificial intelligence and

machine learning literatures, such as Du et al. (2015); Mei and Eisner (2017); Xu

et al. (2017). In an intriguing area of work, self-excitement has also been used
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to model inter-personal communication; for example in application to conver-

sation audio recordings in Masuda et al. (2013) or in studying email correspon-

dence in Malmgren et al. (2008); Halpin and De Boeck (2013). Hawkes processes

have also recently been used to represent arrivals to service systems in queueing

models, e.g. in Gao and Zhu (2018a,b); Koops et al. (2018) as well as in Chapter 2

of this thesis. This is of course not an exhaustive list of works in these areas, nor

is it a complete account of all the modern applications of self-excitement. Exam-

ples of other notable uses include neuroscience Truccolo et al. (2005); Krumin

et al. (2010), environmental management Gupta et al. (2018), public health Zino

et al. (2018), movie trailer generation Xu et al. (2015), energy conservation Li

and Zha (2018), and industrial preventative maintenance Yan et al. (2013).

As the variety of uses for self-excitement has continued to grow, the number

of Hawkes process generalizations has kept pace. By modifying the definition

of the Hawkes process in some way, the works in this generalized self-exciting

process literature provide new perspectives on these concepts while also em-

powering and enriching applications. For example, Brémaud and Massoulié

(1996) introduce a non-linear Hawkes process that adapts the definition of the

process intensity to feature a general, non-negative function of the integration

over the process history, as opposed to the linear form given originally. Simi-

larly, the quadratic Hawkes process model given by Blanc et al. (2017) allows for

excitation kernels that have quadratic dependence on the process history, rather

than simply linear. This is also an example of a generalization motivated by

application, as the authors seek to capture time reversal asymmetry observed in

financial data. As another finance-motivated generalization, Dassios and Zhao

(2011) propose the dynamic contagion process. This model can be thought of as

a hybrid between a Hawkes process and a shot-noise process, as the stochastic
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intensity of the model features both self-excited and externally excited jumps.

The authors take motivation from an application in credit risk, in which the dy-

namics are shaped by both the process history and by exogenous shocks. The

affine point processes studied in e.g. Errais et al. (2010); Zhang et al. (2009,

2015) are also motivated by credit risk applications. The models in these works

combine the self-exciting dynamics of Hawkes process with those of an affine

jump-diffusion process, imbedding modeling concepts of feedback and depen-

dency into the process intensity. An exact simulation procedure for the Hawkes

process with CIR intensity, a generalization of the Hawkes process that is a spe-

cial case of the affine point process, is shown in Dassios and Zhao (2017). In that

case, the authors discuss an application to portfolio loss processes.

There have also been several Hawkes process generalizations proposed in

social media and data analytics contexts. For example, Rizoiu et al. (2018) intro-

duces a finite population Hawkes process that couples self-excitement dynam-

ics with those of the Susceptible-Infected-Recovered (SIR) process. Drawing

upon the use of the SIR process for the spread of both disease and ideas, the

authors propose this SIR-Hawkes process as a method of studying information

cascades. Similarly, Mei and Eisner (2017) introduce the neural Hawkes pro-

cess as a new point process model in the machine learning literature. As the

name suggests, this model combines self-excitement with concepts from neu-

ral networks. Specifically, a recurrent neural network effectively replaces the

excitation kernel, governing the effect of the past events on the rate of future oc-

currences. In the literature for Bayesian nonparametric models, Du et al. (2015)

present the Dirichlet-Hawkes process for topic clustering in document streams.

In this case, the authors combine a Hawkes process and a Dirichlet process, so

that the intensity of the stream of new documents is self-exciting while the type
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of each new document is determined by the Dirichlet process, leading to a pref-

erential attachment structure among the document types.

In this chapter, we propose the ephemerally self-exciting process, a novel gener-

alization of the Hawkes process. Rather than regulating the excitement through

the gradual, deterministic decay provided by an excitation kernel function, we

instead incorporate randomly timed down-jumps. We will refer to this random

length of time as the arrival’s activity duration. The down-jumps are equal in

size to the up-jumps, and between events the arrival rate does not change. Thus,

this process increases in arrival rate upon each occurrence, and these increases

are then mirrored some time later by decreases in the arrival rate once the ac-

tivity duration expires. In this way, the self-excitement is ephemeral: it is only

in effect as long as the excitement is active. Much of the body of this work

will discuss how this ephemeral, piece-wise constant self-excitement compares

to the eternal but ever-decaying notion from Hawkes’s original definition. As

we will see in our analysis, this new process is both a promising model of self-

excitement and an explanation of its origins in natural phenomena.

4.1.1 Practical Relevance

While this chapter will not be focused on any one application, in this subsec-

tion we summarize several domain areas in which the models in this work can

be applied. A natural example is in public health and the management of epi-

demics. For example, consider influenza. When a person becomes sick with

the flu, she increases the rate of spread of the virus through her contact with

others. This creates a self-exciting dynamic of the spread of the virus. How-
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ever, a person only spreads a disease as long as she is contagious; once she has

recovered she no longer has a direct effect on the rate of new infections. From

a system-level perspective, the ephemerally self-exciting process can thus be

thought of as modeling the arrivals of new infections, capturing the self-exciting

and ephemeral nature of sick patients. This motivates the use of this model as an

arrival process to queueing models for healthcare, as the rate of arrivals to clinics

serving patients with infectious diseases should depend on the number of peo-

ple currently infected. The health-care service can also be separately modeled,

as an infinite server queue may be a fitting representation for the number of in-

fected individuals but the clinic itself likely has limited capacity. This concept

of course extends to the modeling and management of any other viral disease,

including the novel coronavirus that has caused the COVID-19 pandemic.

Of course, epidemic models need not be exclusively applied to disease

spread. These same ideas can be used for information spread and product adop-

tion, such as in the aforementioned Hawkes-infused models in Rizoiu et al.

(2018) and Zino et al. (2018). In these contexts, one can think of the duration

in system as being the time a person actively promotes a concept or product.

A single person only affects the self-excitement of the idea or product spread

as long as she is in the system, which distinguishes this model from those in

the aforementioned works. Epidemic models have also been used to study so-

cial issues, such as the contagious nature of imprisonment demonstrated by

Lum et al. (2014). We discuss the relevance of ephemeral self-excitement for

epidemics in detail in Subsection 4.3.3 by relating this model to the Susceptible-

Infected-Susceptible (SIS) process through a convergence in distribution. In fact,

throughout Section 4.3 we establish connections from this process to other rel-

evant stochastic models. This includes classical processes such as branching
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processes and random walks, as well as models popular both in Bayesian non-

parametrics and in preferential attachment settings, such as the Dirichlet pro-

cess and the Chinese restaurant process.

In the context of service systems, self-excitement can be motivated by the

same rationale that inspires restaurants to seat customers at the tables by the

windows. Potential new customers could choose to dine at the establishment

because they can see others already eating there, taking an implicit recommen-

dation from those already being served. This same example also motivates the

ephemerality. After a customer seated by the window finishes her dinner and

departs, any passing potential patron only sees an empty table; the implicit rec-

ommendation vanishes with the departing customer. A similar dynamic can be

observed in online streaming platforms. For example on popular music stream-

ing services like Spotify and Apple Music, users can see what songs and albums

have been recently played by their friends. If a user sees that many of her friends

have listened to the same album recently, she may be more inclined to listen to

it as well. However, this applies only as long as the word “recently” does. If

her friends don’t play the album within a certain amount of time, the platform

will no longer promote the album to her in that fashion. Again, this displays

the ephemerality of the underlying self-excitement: the album grows more at-

tractive as more users listen to it, but only as long as those listens are “recent”

enough.

In finance, limit order books (LOB’s) are among the many concepts that have

been modeled using Hawkes process, such as in Rambaldi et al. (2017); Bacry

et al. (2016). LOB’s have also been studied through queueing models, where

one can model the state of the LOB (or, more specifically, the number of un-
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resolved bids and asks) as the length of a queueing process. Moreover, there

has been recent work that models this process as not just a queue, but a queue

with Hawkes process arrivals; for example see Guo et al. (2015); Gao and Zhu

(2018a). Conceptually, the self-excitement may arise from traders reacting to the

activity of other traders, creating runs of transactions. However, the desire to

not act on stale information may mean that this excitement only lasts as long as

trades are actively being conducted. In fact, the idea of the self-excitement in

LOB models being “queue-reactive” has just very recently been considered by

Wu et al. (2019), a related work to this one.

One can also consider failures in a mechanical system as an application of

this model. For example, consider a network of water pipes. When one pipe

breaks or bursts, it can place stress on the pipes connected to it. This stress may

then cause further failures within the pipe network. However once the pipe is

properly repaired it should no longer place strain on its surrounding compo-

nents. Thus, the increase in pipe failure rate caused by a failure is only in effect

until the repair occurs, inducing ephemeral self-excitement. The self-excitement

(albeit without the ephemerality) arising in this scenario was modeled using

Hawkes processes in Yan et al. (2013), which includes an empirical study. A

similar problem for electrical systems is considered in Ertekin et al. (2015). The

reactive point process considered in that work is perhaps the model most simi-

lar to the ones studied herein, as the rate of new power failures both increases at

the prior failure times and decreases upon inspection or repair. However, a key

difference is that in Ertekin et al. (2015), the authors treat the inspection times as

controlled by management, whereas in this chapter the model is fully stochastic

and thus the repair durations are random. Regardless, that work is an excellent

example of how generalized self-exciting processes can be used to shape prac-
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tical policy. Because power outages have significant and wide-reaching conse-

quences, it is critical to understand the inter-dependency between these events

and to study the resulting ephemerally self-exciting process that arises in these

electrical grid failures.

4.1.2 Organization and Contributions of Chapter

Let us now detail the remainder of this chapter’s organization, as well as the

contributions therein.

• In Section 4.2, we define the ephemerally self-exciting process (ESEP), a

Markovian model for self-excitement that lasts for only a finite amount of

time. After defining the model, we develop fundamental distributional

quantities and compare the ESEP to the Hawkes process.

• In Section 4.3, we relate the ESEP to many other important and well-

known stochastic processes. This includes branching processes, which

gives us further comparisons between the Hawkes process and the ESEP,

models for preferential attachment and Bayesian statistics, and epidemic

models. The lattermost of these motivates the ESEP as a representation

for the times of infection within an epidemic, and this also provides a

formal link between the conceptually similar concepts of epidemics and

self-excitement.

• In Section 4.4, we broaden our exploration of ephemeral self-excitement

to non-Markovian models with general activity durations and batches of

arrivals. In this general setting, we establish a limit theorem providing

an alternate construction of general Hawkes processes. This batch scaling
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limit thus yields intuition for the observed occurrence of self-excitement in

natural phenomena and stands as a fundamental cornerstone for studying

such processes.

In addition to these main avenues of study, we also have extensive auxiliary

analysis housed in this chapter’s appendix. Appendix A.1 contains lemmas

and side results that support our analysis but are outside the main narrative.

In Appendix A.2, we explore a model that is a hybrid between the ESEP and

the Hawkes process, in that it regulates the excitement with both down-jumps

and decay. Appendix A.3 is devoted to a finite capacity version of the ESEP, in

which arrivals that would put the active number in system above the capacity

are blocked from occurring. Finally, Appendix A.4 contains an algebraically

cumbersome proof of a result from Section 4.2.

4.2 Modeling Ephemeral Self-Excitement

We begin this chapter by defining our ephemerally self-exciting model and con-

ducting an initial analysis of some fundamental quantities. These quantities

include the transient moment generating function and the steady-state distribu-

tion. Before doing so though, let us first review the Hawkes process, which is

the original self-exciting probability model.
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4.2.1 Defining the Ephemerally Self-Exciting Process

As we have discussed in the introduction, a plethora of natural phenomena ex-

hibit self-exciting features but only for a finite amount of time. This prompts the

notion of ephemeral self-excitement. By comparison to the traditional Hawkes

process we have reviewed in Subsection 5.3.2, we seek a model in which a new

occurrence increases the arrival rate only so long as the newly entered entity

remains active in the system. Thus, we now define the ephemerally self-exciting

process (ESEP), which trades the Hawkes process’s eternal decay for randomly

drawn expiration times. Moreover, in the following Markovian model, ex-

ponential decay is replaced with exponentially distributed durations. In Sec-

tion 4.4, we extend these concepts to generally distributed service. As another

generalization, in Appendix A.2 we consider a Markovian model with both de-

cay and down-jumps. For now, we explore the effects of ephemerality through

the ESEP model in Definition 4.2.1.

Definition 4.2.1 (Ephemerally self-exciting process). For times t ≥ 0, a baseline

intensity η∗ > 0, intensity jump size α > 0, and expiration rate β > 0, let Nt be a

counting process with stochastic intensity ηt such that

ηt = η∗ + αQt, (4.1)

where Qt is incremented with Nt and then is depleted at unit down-jumps ac-

cording to the rate βQt. Then, we say that (ηt,Nt) is an ephemerally self-exciting

process (ESEP).

We will assume that η0 and Q0 are known initial values such that η0 = η∗ +

αQ0. In addition to this definition, one could also describe the ESEP through
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its dynamics. In particular, the behavior of this process can be summarily cast

through the life cycle of its arrivals:

i) At each arrival, the arrival rate ηt increases by α.

ii) Each arrival remains active for an activity duration drawn from an i.i.d. se-

quence of exponential random variables with rate β.

iii) At the expiration of a given activity duration, ηt decreases by α.

The ephemerality of the ESEP is embodied by this cycle. Because arrivals only

contribute to the intensity for the length of their activity duration, their effect on

the process’s excitation vanishes when this clock expires. Furthermore, there is

an affine relationship between the number of active “exciters” – meaning unex-

pired arrivals still causing excitation – and the intensity, i.e. ηt = η∗ + αQt. Thus,

we could also track the arrival rate through Qt in place of ηt and still have full

understanding of this process. This also means that results are readily trans-

ferrable between these two processes; we will often make use of this fact. x Be-

cause the ESEP is quite parsimonious, there are many alternative perspectives

we could take to gain additional understanding of it. For example, one could

consider Qt a Markovian queueing system with infinitely many servers and a

state dependent arrival rate. Equivalently, one could also describe the ESEP as

a Markov chain on the non-negative integers where transitions at state i are to

i + 1 at rate η∗ + αi and to i − 1 at rate µi, with the counting process then defined

as the epochs of the upward jumps in this chain. A visualization of this linear

birth-death-immigration process is given in Figure 4.1. Stability for this chain

occurs when β > α; we will assume this hereforward although it of course is not

necessary for transient results.
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Figure 4.1: The transition diagram of the Markov chain for Qt.

In the remainder of this subsection, let us now develop a few fundamental

quantities for this stochastic process, particularly its intensity and active number

in system as these capture the self-exciting behavior of the process. First, in

Proposition 4.2.1 we compute the transient moment generating function for the

intensity ηt. As we have noted, this can also be used to immediately derive the

same transform for Qt, and the proof makes use of this fact.

Proposition 4.2.1. Let ηt = η∗+αQt be the intensity of an ESEP with baseline intensity

η∗ > 0, intensity jump α > 0, and expiration rate β > α. Then, the moment generating

function for ηt is given by

E
[
eθηt

]
=

(
β − αeαθ − β(1 − eαθ)e−(β−α)t

β − αeαθ − α(1 − eαθ)e−(β−α)t

) η0−η
∗

α
(

βeαθ

β − αeαθ
−

αeαθ

β − αeαθ

(
β − αeαθ − β(1 − eαθ)e−(β−α)t

β − αeαθ − α(1 − eαθ)e−(β−α)t

)) η∗

α

,

for all t ≥ 0 and θ < 1
α

log
(
β

α

)
.

Proof. We will approach this through the perspective of the active number in

system, Qt. Using Lemma A.1.1, we have that the probability generating func-

tion for Qt, say P(z, t) = E
[
zQt

]
, is given by the solution to the following partial

differential equation:

∂

∂t
E

[
zQt

]
= E

[
(η∗ + αQt)

(
z2 − z

)
zQt−1 + βQt (1 − z) zQt−1

]
,

which is equivalently expressed

∂

∂t
P(z, t) = η∗ (z − 1)P(z, t) +

(
α
(
z2 − z

)
+ β (1 − z)

) ∂
∂z
P(z, t),
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with initial condition P(z, 0) = zQ0 . The solution to this initial value problem is

given by

P(z, t) =

(
β − αz − β(1 − z)e−(β−α)t

β − αz − α(1 − z)e−(β−α)t

)Q0 ( β

β − αz
−

α

β − αz

(
β − αz − β(1 − z)e−(β−α)t

β − αz − α(1 − z)e−(β−α)t

)) η∗

α

,

yielding the probability generating function for Qt. By setting z = eθ we receive

the moment generating function. Finally, using the affine relationship ηt = η∗ +

αQt, we have that

E
[
eθηt

]
= E

[
eθ(η

∗+αQt)
]

= eθη
∗

E
[
eαθQt

]
,

with η0 = η∗ + αQ0. �

As we have mentioned, this Markov chain can be shown to be stable for β >

α through standard techniques. Thus, using the moment generating function

from Proposition 4.2.1, we can find the steady-state distributions of the intensity

and the active number in system by taking the limit of t. We can quickly observe

that this leads to a negative binomial distribution, as we state in Theorem 4.2.2.

Because of the varying definitions of the negative binomial distribution, we state

the probability mass function explicitly.

Theorem 4.2.2. Let ηt = η∗ +αQt be an ESEP with baseline intensity η∗ > 0, intensity

jump α > 0, and expiration rate β > α. Then, the activer number in system in steady-

state follows a negative binomial distribution with probability of success α
β

and number

of failures η∗

α
, which is to say that the steady-state probability mass function is

P (Q∞ = k) =
Γ
(
k +

η∗

α

)
Γ
(
η∗

α

)
k!

(
β − α

β

) η∗

α
(
α

β

)k

. (4.2)

Consequently, the steady-state distribution of the intensity is given by a shifted and

scaled negative binomial with probability of success α
β

and number of failures η∗

α
, shifted

by η∗ and scaled by α.
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Proof. Using Proposition 4.2.1, we can see that the steady-state moment gener-

ating function of Qt is given by

lim
t→∞

E
[
eθQt

]
=

(
β − α

β − αeθ

) η∗

α

.

We can observe that this steady-state moment generating function is equivalent

to that of a negative binomial. By the affine transformation ηt = η∗+αQt, we find

the steady-state distribution for the intensity. �

Let us pause to note that this explicit characterization of the steady-state

intensity is already an advantage of the ESEP over the traditional Markovian

Hawkes process, for which there is not a closed form intensity stationary distri-

bution available. As a consequence of Theorem 4.2.2, we can observe that the

steady-state mean of the intensity is η∞ := βη∗

β−α
. Interestingly, this would also be

the steady-state mean of the Hawkes process when given the same baseline in-

tensity, the same intensity jump size, and an exponential decay rate equal to the

rate of expiration. This leads us to ponder how the processes would otherwise

compare when given equivalent parameters. In Proposition 4.2.3 we find that

although this equivalence of means extends to transient settings, for all higher

moments the ESEP dominates the Hawkes process in terms of both the intensity

and the counting process.

Proposition 4.2.3. Let (ηt,Nt,η) be an ESEP intensity and counting process pair with

jump size α > 0, expiration rate β > α, and baseline intensity η∗ > 0. Similarly, let

(λt,Nt,λ) be a Hawkes process intensity and counting process pair with jump size α > 0,

decay rate β > 0, and baseline intensity η∗ > 0. Then, if the two processes have equal

initial values, their means will satisfy

E [λt] = E
[
ηt
]
, E

[
Nt,λ

]
= E

[
Nt,η

]
, (4.3)
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and for m ≥ 2 their mth moments are ordered such that

E
[
λm

t
]
≤ E

[
ηm

t
]
, E

[
Nm

t,λ

]
≤ E

[
Nm

t,η

]
, (4.4)

for all time t ≥ 0.

Proof. Let us start with the means. For the intensities, we can note that these are

given by the solutions to

d
dt

E [λt] = αE [λt] − β(E [λt] − η∗) and
d
dt

E
[
ηt
]

= αE
[
ηt
]
− βα

(
E

[
ηt
]
− η∗

α

)
,

and through simplification one can quickly observe that these two ODE’s are

equivalent. Thus, because we have assumed that the processes have the same

initial values, we find that E [λt] = E
[
ηt
]
. Since

d
dt

E
[
Nt,λ

]
= E [λt] and

d
dt

E
[
Nt,η

]
= E

[
ηt
]
,

this equality immediately extends to the means of the counting processes as

well. We will now use these equations for the means as the base cases for induc-

tive arguments, beginning again with the intensities. For the inductive step, we

will assume that the intensity moment ordering holds for moments 1 to m − 1.

The mth moment of the Hawkes process intensity is thus given by the solution

to

d
dt

E
[
λm

t
]

=

m−1∑
k=0

(
m
k

)
E

[
λk+1

t

]
αm−k − mβE

[
λm

t
]
+ mβη∗E

[
λm−1

t

]
:= fλ(t,E

[
λm

t
]
),

where fλ(t,E
[
λm

t
]
) is meant to capture that this ODE depends on the value of

the mth moment and of the lower moments, which by the inductive hypothesis

we take as known functions of the time t. Then, the mth moment of the ESEP

intensity will satisfy

d
dt

E
[
ηm

t
]

=

m−1∑
k=0

(
m
k

)
E

[
ηk+1

t

]
αm−k +

β

α

m−1∑
k=0

(
m
k

)
E

[
ηk+1

t

]
(−α)m−k −

βη∗

α

m−1∑
k=0

(
m
k

)
E

[
ηk

t

]
(−α)m−k.

130



By pulling the k = m − 1 terms off the top of each summation, we can re-express

this ODE as

d
dt

E
[
ηm

t
]

=

m−1∑
k=0

(
m
k

)
E

[
ηk+1

t

]
αm−k − mβE

[
ηm

t
]
+ mβη∗E

[
ηm−1

t

]
+
β

α

m−2∑
k=0

(
m
k

)
(−α)m−k

(
E

[
ηk+1

t

]
− η∗E

[
ηk

t

])
,

and through the definition of fλ(·) and the inductive hypothesis, we can find the

following lower bound:

d
dt

E
[
ηm

t
]
≥ fλ(t,E

[
ηm

t
]
) +

β

α

m−2∑
k=0

(
m
k

)
(−α)m−k

(
E

[
ηk+1

t

]
− η∗E

[
ηk

t

])
.

This right-most term can then be expressed

β

α

m−2∑
k=0

(
m
k

)
(−α)m−k

(
E

[
ηk+1

t

]
− η∗E

[
ηk

t

])
=
β

α
E

[
(ηt − η

∗)
(
(ηt − α)m − ηm

t + mαηm−1
t

)]
,

and we can now reason about the quantity inside the expectation. By definition,

we have that ηt ≥ η
∗ surely, and furthermore we can observe that if ηt − η

∗ > 0,

then ηt ≥ η
∗+α > α. Thus, let us consider (ηt−α)m−ηm

t + mαηm−1
t assuming ηt > α.

Dividing through by ηm
t , we have the expression(

1 −
α

ηt

)m

− 1 +
mα
ηt
. (4.5)

Since (1 − x)m − 1 + mx is equal to 0 at x = 0 and is non-decreasing on x ∈ [0, 1)

via a first-derivative check, we can note that (4.5) is non-negative for all ηt > η∗.

Thus, we have that

E
[
(ηt − η

∗)
(
(ηt − α)m − ηm

t + mαηm−1
t

)]
≥ 0,

and by consequence,
d
dt

E
[
ηm

t
]
≥ fλ(t,E

[
ηm

t
]
),

completing the proof of the intensity moment ordering via Lemma A.1.2. For

the counting processes, let us again assume as an inductive hypothesis that the
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moment ordering holds for moments 1 through m − 1, with the mean equality

serving as the base case. Then, the mth moment of the ESEP counting process

will satisfy

d
dt

E
[
Nm

t,η

]
=

m−1∑
k=0

(
m
k

)
E

[
ηtNk

t,η

]
,

and the ODE for the mth Hawkes counting process moment is analogous. By the

FKG inequality, we can observe that

m−1∑
k=0

(
m
k

)
E

[
ηtNk

t,η

]
≥

m−1∑
k=0

(
m
k

)
E

[
ηt
]
E

[
Nk

t,η

]
.

By the inductive hypothesis, we have that E
[
Nk

t,η

]
≥ E

[
Nk

t,λ

]
for each k ≤ m − 1,

and thus we can observe that

m−1∑
k=0

(
m
k

)
E

[
ηt
]
E

[
Nk

t,η

]
≥

m−1∑
k=0

(
m
k

)
E [λt]E

[
Nk

t,λ

]
.

Finally, by another application of Lemma A.1.2, we have E
[
Nm

t,λ

]
≤ E

[
Nm

t,η

]
. �

The fact that the ESEP variance dominates the Hawkes variance should not

be surprising, since the presence of both up and down jumps means that the

ESEP sample paths should be subject to more abrupt changes. Nevertheless,

this also shows that the ESEP is more over-dispersed than the Hawkes process

is. This may be an attractive feature for data modeling. It is worth noting that

matrix computations are available for all moments of these intensities via Chap-

ter 5, through which one could use the method of moments to fit the processes

to data.
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4.2.2 The Ephemerally Self-Exciting Counting Process

Thus far we have studied the intensity of the ESEP, as this process is by def-

inition tracking the self-excitement. However, this excitation is manifested in

the actual arrivals from the process, which are counted in Nt. We now turn

our attention to developing fundamental quantities for this counting process.

To begin, we give the probability generating function of the counting process

in closed form below in Proposition 4.2.4. One can note that by comparison,

the generating functions of the Hawkes process are instead only expressible as

functions of ordinary differential equations with no known closed form solu-

tions, see for example Chapter 2.

Proposition 4.2.4. Let Nt be the number of arrivals by time t ≥ 0 in an ESEP with

baseline intensity η∗ > 0, intensity jump α > 0, and expiration rate β > α. Then, the

probability generating function of Nt is given by

E
[
zNt

]
= e

η∗(β−α)
2α t


2e

t
2

√
(β+α)2−4αβz

1 − β+α−2αz√
(β+α)2−4αβz

+

(
1 +

β+α−2αz√
(β+α)2−4αβz

)
et
√

(β+α)2−4αβz


η∗

α

·


β + α

2α
+

√
(β + α)2 − 4αβz

2α


1 − β+α−2αz√

(β+α)2−4αβz
−

(
1 +

β+α−2αz√
(β+α)2−4αβz

)
et
√

(β+α)2−4αβz

1 − β+α−2αz√
(β+α)2−4αβz

+

(
1 +

β+α−2αz√
(β+α)2−4αβz

)
et
√

(β+α)2−4αβz




Q0

(4.6)

where Q0 is the active number in system at time 0.

Proof. Due to the cumbersome length of some equations, please see Ap-

pendix A.4 for the proof. �

In addition to calculating the probability generating function, we can also
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find a matrix calculation for the transient probability mass function of the count-

ing process. To do so, we recognize that the time until the next arrival occurs

can be treated as the time to absorption in a continuous time Markov chain. By

building from this idea to construct a transition matrix for several successive

arrivals, we find the form for the distribution given in Proposition 4.2.5.

Proposition 4.2.5. Let Nt be the number of arrivals by time t in an ESEP with baseline

intensity η∗ > 0, intensity jump α > 0, and expiration rate β > α. Further, let Q0 = k be

the initial active number in system. Then for i ∈ N, define the matrices Di ∈ R
k+i+1×k+i+1

and Si ∈ R
k+i+1×k+i+2 as

Di =



−(η∗ + (k + i)(α + β)) (k + i)β

−(η∗ + (k + i − 1)(α + β))
. . .

−(η∗ + α + β) β

−η∗


,

and

Si =



η∗ + α(k + i) 0

η∗ + α(k + i − 1) 0
. . .

...

η∗ + α 0

η∗ 0


.
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Further, let Zn ∈ R
d̂n×d̂n for d̂n =

n(n+1)
2 + (n + 1)(k + 1) be a matrix such that

Zn =



D0 S0

D1 S1

. . .
. . .

. . . Sn−2

Dn−1 Sn−1

Dn



.

Then, the probability that Nt = n is given by

P (Nt = n) = v1
TeZntv: (4.7)

where vj ∈ R
d̂n is the unit column vector for the jth coordinate and v: =

∑k+n
j=0 vd̂n− j.

Proof. This follows directly from viewing Zn as a sub-matrix of the generator

matrix of a CTMC, much like one can do to calculate probabilities of phase-

type distributions. Specifically, the sub-generator matrix is defined on the state

space S =
⋃n

i=0{(0, i), (1, i), . . . , (k + i − 1, i), (k + i, i)}. In this scenario, the state

(s1, s2) represents having s1 entities in system and having seen s2 arrivals since

time 0. Then, Di is the sub-generator matrix for transitions among the sub-state

space {(k + i, i), (k + i − 1, i), . . . , (1, i), (0, i)} to itself (where the states are ordered

in that fashion). Similarly, Si is for transitions from states in {(k + i, i), (k + i −

1, i), . . . , (1, i), (0, i)} to states in {(k + i + 1, i + 1), (k + i, i + 1), . . . , (1, i + 1), (0, i + 1)}.

Then, one can consider this from an absorbing CTMC perspective since if n + 1

arrivals occur it is not possible to transition back to any state in which n arrivals

had occurred. Hence, we only need to use the matrix Zn to consider up to n

arrivals. Then, eZnt is the sub-matrix for probabilities of transitions among states

in S, where the rows will sum to less than 1 as it is possible that the chain has

experienced more than n arrivals by time t. Finally, because Q0 = k we know that
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the chain states in state (k, 0); further, because we are seeking the probability that

there have been exactly n arrivals by time t we want the probability of transitions

from (k, 0) to any of the states in {(k + n, n), (k + n − 1, n), . . . , (1, n), (0, n)}. �

With these fundamental quantities in hand, let us now turn to explore more

nuanced connections between the ESEP and other stochastic processes in the fol-

lowing section. Doing so will provide further comparison between the Hawkes

process and the ESEP, and moreover will formally connect the notion of self-

excitement to similar concepts such as contagion, virality, and rich-get-richer

effects.

4.3 Relating Ephemeral Self-Excitement to Branching Pro-

cesses, Random Walks, and Epidemics

Aside from the original definition, the most frequently utilized result for

Hawkes processes is perhaps the immigration-birth representation first shown

in Hawkes and Oakes (1974). By viewing a portion of arrivals as immigrants –

externally driven and stemming from a homogenous Poisson process – and then

viewing the remaining portion as offspring – excitation-driven descendants of

the immigrants and the prior offspring – one can take new perspectives on self-

exciting processes. From this position, if an arrival is a descendant then it has a

unique parent, the excitement of which spurred this arrival into existence. Ev-

ery entity has the potential to generate offspring. This viewpoint takes on added

meaning in the context of ephemeral self-excitement, as an entity only has the

opportunity to generate descendants so long as it remains in the system. In this

section, we will use this idea to connect self-exciting processes to well-known
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stochastic models that have applications ranging from public health to Bayesian

statistics. Furthermore, these connections will also help us form comparisons

between the Hawkes process and the model we have introduced, the ESEP. The

different dynamics are at the forefront of this process comparison, as the branch-

ing structure is dictated by the self-excitation caused by a single arrival. For the

Hawkes process, this increase in the arrival rate is eternal but ever-diminishing,

whereas in the ESEP the jump is ephemeral but constant when it does exist.

4.3.1 Discrete Time Perspectives through Branching Processes

Let us first view these processes through a discrete time lens as branching pro-

cesses. In this subsection we will interpret classical branching processes results

in application to these self-exciting processes. Taking the immigration-birth rep-

resentation as inspiration, we start by considering the distribution of the total

number of offspring of a single arrival. That is, we want to calculate the proba-

bility mass function for the number of arrivals that are generated directly from

the excitement caused by the initial arrival. To constitute the total number of off-

spring, we will consider all the children of this initial entity across all time. For

the ESEP, this equates to the number of arrivals generated by the entity through-

out its duration in the system; in the Hawkes process this counts the number of

arrivals spurred by the entity as time goes to infinity. Given that the stabil-

ity conditions are satisfied throughout, in Proposition 4.3.1 we calculate these

distributions by way of inhomogeneous Poisson processes, yielding a Poisson

mixture form for each.

Proposition 4.3.1. Let β > α > 0. Let Xη be the number of new arrivals generated

by the excitement caused by an arbitrary initial arrival throughout its duration in the
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system in an ESEP with jump size α and expiration rate β. Then, this offspring distri-

bution is geometrically distributed with probability mass function

P (Xη = k) =

(
β

α + β

) (
α

α + β

)k

. (4.8)

Similarly, let Xλ be the number of new arrivals generated by the excitement caused by

an arbitrary initial arrival in a Hawkes process with jump size α and decay rate β. This

offspring distribution is then Poisson distributed with probability mass function

P
(
Xλ = k

)
=

e−
α
β

k!

(
α

β

)k

. (4.9)

where all k ∈ N.

Proof. Without loss of generality, we assume that the initial arrival in each pro-

cess occurred at time 0. Then, at time t ≥ 0 the excitement generated by these

initial arrivals has intensities given by αe−βt and α1{t < S } for the Hawkes and

ESEP processes, respectively, where S ∼ Exp(β). Using Daley and Vere-Jones

(2007), one can note that the offspring distributions across all time can then be

expressed as

Xλ ∼ Pois
(
α

∫ ∞

0
e−βtdt

)
and Xη ∼ Pois

(
α

∫ ∞

0
1{t < S }dt

)
,

which are equivalently stated Xλ ∼ Pois (α/β) and Xη ∼ Pois (αS ). This now

immediately yields the stated distributions for Xλ and Xη, as the Poisson-

Exponential mixture is known to yield a geometric distribution, see for example

the overview of Poisson mixtures in Karlis and Xekalaki (2005). �

We now move towards considering the total progeny of an initial arrival,

meaning the total number of arrivals generated by the excitement of an initial ar-

rival and the excitement of its offspring, and of their offspring, and so on across
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all time. It is important to note that by comparison to the number of offspring,

the progeny includes the initial arrival itself. As we will see, the stability of the

self-exciting processes implies that this total number of descendants is almost

surely finite. This demonstrates the necessity of immigration for these processes

to survive. From the offspring distributions in Proposition 4.3.1, the Hawkes

descendant process is a Poisson branching process and, similarly, the ESEP is

a geometric branching process. These are well-studied models in branching

processes, so we have many results available to us. In fact, we now use a re-

sult for random walks with potentially multiple simultaneous steps forward to

derive the progeny distributions for these two processes. This is through the

well-known hitting time theorem, stated below in Lemma 4.3.2.

Lemma 4.3.2 (Hitting Time Theorem). The total progeny Z of a branching process

with descendant distribution equivalent to X1 is

P (Z = k) =
1
k

P (X1 + X2 + · · · + Xk = k − 1) ,

where X1, . . . , Xk are i.i.d. for all k ∈ Z+.

Proof. See Otter (1949) for the original statement and proof in terms of random

walks; a review and elementary proof are given in the brief note Van der Hofs-

tad and Keane (2008). �

We now use the hitting time theorem to give the total descendants distri-

butions for the Hawkes process and the ESEP in Proposition 4.3.3. This is a

common technique for branching processes, and it now yields valuable insight

into these two self-exciting models.

Proposition 4.3.3. Let β > α > 0. Let Zη be a random variable for the total progeny of

an arbitrary arrival in an ESEP with intensity jump α and expiration rate β. Likewise,
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let Zλ be a random variable for the total progeny of an arbitrary arrival in a Hawkes

process with intensity jump α and decay rate β. Then, the probability mass functions

for Zη and Zλ are given by

P (Zη = k) =
1
k

(
2k − 2
k − 1

) (
β

β + α

)k (
α

β + α

)k−1

and P
(
Zλ = k

)
=

e−
α
β k

k!

(
αk
β

)k−1

, (4.10)

where k ∈ Z+.

Proof. This follows by applying Lemma 4.3.2 to Proposition 4.3.1. Because the

sum of independent Poisson random variables is Poisson distributed with the

sum of the rates, we have that

1
k

P
(
Xλ

1 + Xλ
2 + . . . Xλ

k = k − 1
)

=
1
k

P (K1 = k − 1) ,

where K1 ∼ Pois
(
αk
β

)
. This now yields the expression for the probability mass

function for Zλ. Similarly for Zη we note that the sum of independent geometric

random variables has a negative binomial distribution, which implies that

1
k

P
(
Xη

1 + Xη
2 + . . . Xη

k = k − 1
)

=
1
k

P (K2 = k − 1) ,

where K2 ∼ NegBin
(
k, α

β+α

)
, and this completes the proof. �

For a visual comparison of the descendants in the ESEP and the Hawkes

process, we plot these two progeny distributions for equivalent parameters in

Figure 4.2. As suggested by the variance ordering in Proposition 4.2.3, the tail

of the ESEP progeny distribution is heavier than that of the Hawkes process.

We can note that while one can calculate the mean of each progeny via the

probability mass functions in Proposition 4.3.3, they can also easily be found us-

ing Wald’s identity. Through standard infinitesimal generator approaches, one
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Figure 4.2: Progeny distributions for the ESEP and the Hawkes process with
matching parameters.

can calculate that the expected number of arrivals (including by immigration)

in the ESEP is

E [Nt] =
βη∗t
β − α

+
η0 − η∞
β − α

(1 − e−(β−α)t).

However, using these branching process representations, we can also express

this as

E [Nt] = E

 Mt∑
i=1

Zi(t)

,
where Mt is a Poisson process with rate η∗ and Zi(t) are the total progeny up to

time t ≥ 0 that descend from the ith immigrant arrival. Now, by applying Wald’s

identity to the limit of 1
t E [Nt] as t → ∞, we see that

βη∗

β − α
= lim

t→∞

E [Nt]
t

= lim
t→∞

1
t
E

 Mt∑
i=1

Zi(t)

 = η∗E [Zη],

and so E [Zη] =
β

β−α
. By analogous arguments for the Hawkes process, we see

that E
[
Zλ

]
=

β

β−α
.
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As a final branching process comparison between these two processes, we

calculate the distribution of the total number of generations of descendants of

an initial arrival in the ESEP and the Hawkes process. That is, let the first entity

be the first generation, its offspring be the second generation, their offspring the

third, and so on. In Proposition 4.3.4 we find the probability mass function for

the ESEP in closed form and a recurrence relation for the cumulative distribu-

tion function for the Hawkes process.

Proposition 4.3.4. Let β > α > 0. Let Gη be the number of distinct arrival generations

across in full the progeny of an initial arrival in an ESEP with intensity jump α and

service rate β. Then, the probability mass function for Gη is given by

P (Gη = k) =
αk−1(β − α)
βk − αk −

αk(β − α)
βk+1 − αk+1 . (4.11)

Likewise, let Gλ be the number of distinct arrival generations in the full progeny of an

initial arrival for a Hawkes process with intensity jump α > 0 and decay rate β. Then,

Gλ has cumulative distribution function FGλ(k) = P
(
Gλ ≤ k

)
satisfying the recursion

FGλ(k) = e−
α
β

(
1−F

Gλ (k−1)
)
, (4.12)

where FGλ(0) = 0 and all k ∈ Z+.

Proof. Let Yλ
k and Yη

k be Galton-Watson branching processes defined as

Yλ
k =

Yλk−1∑
i=1

X(k)
λ,i , Yη

k =

Yηk−1∑
i=1

X(k)
η,i , (4.13)

with X(k)
λ,i

i.i.d.
∼ Pois

(
α
β

)
, X(k)

η,i
i.i.d.
∼ Geo

(
α
α+β

)
, and Yλ

0 = Yη
0 = 1. These processes then

have probability generating functions

Pλk(z) =

∞∑
j=0

z jP
(
Yλ

k = j
)

and P
η
k(z) =

∞∑
j=0

z jP
(
Yη

k = j
)
,
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that are given by the recursions Pλk+1(z) = PXλ

(
Pλk(z)

)
and Pλk+1(z) = PXη

(
P
η
k(z)

)
withPλ1(z) = PXλ(z) andPη1(z) = PXη(z), wherePXλ(z) andPXη(z) are the probability

generating functions of X(1)
λ,1 and X(1)

η,1, respectively; see e.g. Section XII.5 of Feller

(1957). One can then use induction to observe that

P
η
k(z) = 1 −

αk(1 − z)
βk +

∑k
j=1 α

jβk− j(1 − z)
,

whereas Pλk(z) = e−
α
β (1−Pλk−1(z)), with Pλ1(z) = e−

α
β (1−z). Because of their shared off-

spring distribution constructions, the number of the progeny in the kth arrival

generations of the Hawkes process and the ESEP are equivalent in distribution

to Yλ
k and Yη

k , respectively. In this way, we can express Gλ and Gη as

Gλ = inf{k ∈ Z+ | Yλ
k = 0} and Gη = inf{k ∈ Z+ | Yη

k = 0}.

This leads us to observe that the events {Gλ = j} and {Yλ
j = 0,Yλ

j−1 > 0} are

equivalent, as are {Gη = j} and {Yη
j = 0,Yη

j−1 > 0}. Focusing for now on Gλ, we

have that

P
(
Yλ

j = 0,Yλ
j−1 > 0

)
=

∞∑
i=1

P
(
X(1)
λ,1 = 0

)i
P
(
Yλ

j−1 = i
)

= Pλj−1

(
P
(
X(1)
λ,1 = 0

))
− P

(
Yλ

j−1 = 0
)
,

and since P (K = 0) = P(0) for any non-negative discrete random variable K with

probability generating function P(z), this yields

P
(
Gλ = j

)
= Pλj (0) − Pλj−1(0).

Using Pλ0(0) = 0, this telescoping sum now produces the stated form of the cu-

mulative distribution function for Gλ. By analogous arguments for Gη, we com-

plete the proof. �

In the following subsection we focus on the ESEP, using the insight we have

now gained from branching processes to connect this process to stochastic mod-

els for preferential attachment that are popular in the Bayesian nonparametric

and machine learning literatures.
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4.3.2 Similarities with Preferential Attachment and Bayesian

Statistics Models

In the branching process perspective of the ESEP, consider the total number of

active families at one point in time. That is, across all the entities present in

the system at a given time, we are interested in the number of distinct progeny

to which these entities belong. As each arrival occurs, the new entity either

belongs to one of the existing families, meaning that the entity is a descendant,

or it forms a new family, which is to say that it is an immigrant. If the entity

is joining an existing family, it is more likely to join families that have more

presently active family members.

We can note that these dynamics are quite similar to the definition of the Chi-

nese Restaurant Process (CRP), see Chapter 11 in Aldous (1985). The CRP mod-

els the successive arrival of customers to the restaurant that has infinitely many

tables that each have infinitely many seats. Each arriving customer chooses

which table to join based on the decisions of those before. Specifically, the nth

customer to arrive joins table i with probability ci
n−1+λ

or otherwise starts a new

table with probability λ
n−1+λ

, where ci is the number at table i and λ > 0. As

the number seated at table i grows larger, it is increasingly likely that the next

customer will choose to sit at table i. In the ESEP, a new arrival at time t ≥ 0

was generated as part of active excitement family i with probability αQt,i

αQt+η∗
and

otherwise was an externally generated arrival with probability η∗

αQt+η∗
, where Qt,i

is the number of active exciters in the system at time t in the ith excitement fam-

ily with Qt =
∑

i Qt,i. By normalizing the numerator and denominator of these

probabilities by 1
α
, we see that these dynamics match the CRP almost exactly.

The difference is hardly a novel idea for restaurants – in the ESEP diners even-
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tually leave. This departure then decreases the number of customers at the table,

making it less attractive to the next person to arrive.

In addition to being an intriguing stochastic model, the CRP is also of interest

for Bayesian statistics and machine learning through its connection to Bayesian

nonparametric mixture models, specifically Dirichlet process mixtures. By con-

sequence, the CRP then also has commonality with urn models and models for

preferential attachment, see e.g. Blackwell et al. (1973). The CRP is also estab-

lished enough to have its own generalizations, such as the distance dependent

CRP in Blei and Frazier (2011), in which the probability a customer joins a table

is dependent on a distance metric, and the recurrent CRP in Ahmed and Xing

(2008), in which the restaurant closes at the end of each day forcing all of that

day’s customers to simultaneously depart. Drawing inspiration from the CRP

and from the branching process perspectives of the ESEP, we investigate the dis-

tribution of the number of active families in the ESEP. Equivalently stated, this is

the number of active tables in a continuous time CRP in which customers leave

after their exponentially distributed meal durations. To begin, we first find the

expected amount of time until a newly formed table becomes empty.

Proposition 4.3.5. Suppose that an ESEP receives an initial arrival at time 0. Let Xt be

the number of entities in the system at time t ≥ 0 that are progeny of the initial arrival

and let τ be a stopping time such that τ = inf{t ≥ 0 | Xt = 0}. Then, the expected value

of τ is

E [τ] =
1
α

log
(

β

β − α

)
, (4.14)

where α > 0 is the intensity jump size and β > α is the expiration rate.

Proof. To observe this, we note that Xt can be viewed as the state of an absorbing

continuous time Markov chain on the non-negative integers. State 0 is the single
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absorbing state and in any other state j the two possible transitions are to j + 1

at rate α j and to j − 1 at rate µ j, as visualized below.

0 1 2 3 4 . . .

α 2α 3α 4α

5β4β3β2ββ

Then, τ is the time of absorption into state 0 when starting in state 1 and so E [τ]

can be calculated by standard first step analysis approaches, yielding

E [τ] =

∞∑
i=1

1
αi

i∏
j=1

α j
β j

=
1
α

∞∑
i=1

1
i

(
α

β

)i

=
1
α

log

 1
1 − α

β

 ,
and this simplifies to the stated result. �

Proposition 4.3.5 gives the expectation of the total time of an excitement fam-

ily is active in the system. Using this, in Proposition 4.3.6 we now employ a

classical queueing theory result to find the exact distribution of the number of

active families simultaneously in the system in steady-state.

Proposition 4.3.6. Let B be the number of distinct excitement families that have

progeny active in the system in steady-state of an ESEP with baseline intensity η∗ > 0,

intensity jump α > 0, and expiration rate β > α. Then, B ∼ Pois
(
η∗

α
log

(
β

β−α

))
.

Proof. We first note that new excitement families are started when a baseline-

generated arrival occurs, which follows a Poisson process with rate ν∗. The

duration excitement family’s time in system then has mean given by Proposi-

tion 4.3.5. Because there is no limitation on the number of possible families in

the system at once, this is equivalent to an infinite server queue with Poisson
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process arrivals and generally distributed service, an M/G/∞ queue in Kendall

notation. This process is known to have Poisson distributed steady-state distri-

bution, see e.g. Eick et al. (1993), with mean given by the product of the arrival

rate and the mean service duration, which yields the stated form for B. �

An interesting consequence of the number of active families being Pois-

son distributed and the total number in system being negative binomially dis-

tributed is that it suggests that the number of simultaneously active family

members is logarithmically distributed. We observe this via the known com-

pound Poisson representation of the negative binomial distribution Willmot

(1986). For B ∼ Pois
(
η∗

α
log

(
β

β−α

))
, Q ∼ NegBin

(
α
β
, η
∗

α

)
, and Li

iid
∼ Log

(
α
β

)
, then

one can observe that

Q D
=

B∑
i=1

Li,

where P (L1 = k) =
(
α
β

)k (
k log

(
β

β−α

))−1
for all k ∈ Z+. Thus, the idea that the num-

ber of active members of each family is logarithmically distributed follows from

the fact that this is a sum of positive integer valued random variables, of which

there are as many as there are active families, and this sum is equal to the total

number in system.

4.3.3 Connections to Epidemic Models

As a final observation regarding the ESEP and its connections to other stochas-

tic models, consider disease spread. As we discussed in the introduction to this

chapter, when a person becomes sick with a contagious disease she increases

the rate of new infection through her contact with others. Furthermore when a

person recovers from a disease such as the flu, she is no longer contagious and
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thus she no longer contributes to the rate of disease spread. While we have dis-

cussed in the introduction that this scenario has the hallmarks of self-excitement

qualitatively, a classic model for studying this phenomenon is the Susceptible-

Infected-Susceptible (SIS) process.

In the SIS model there is a finite population of N ∈ Z+ individuals. Each

individual takes on one of two states, either infected or susceptible. Let It be

the number infected at time t ≥ 0 and S t be the number susceptible. In the

continuous time stochastic SIS model, each infected individual recovers after an

exponentially distributed duration of the illness. Once a person recovers from

the disease, she becomes susceptible again. Because there is a finite population,

the rate of new infection depends on both the number infected and the number

susceptible; a new person falls ill at a rate proportional to It ·
S t
N . Because this

CTMC would be absorbed into state It = 0, it is common to include an exoge-

nous infection rate proportional to just S t
N . We will refer to this model as the

stochastic SIS with exogenous infections, and Figure 4.3 shows rate diagram for

the transitions from infected to susceptible and from susceptible to infected. For

the sake of comparison, we set the exogenous infection rate as η∗, the epidemic

infection rate as α, and the recovery rate as β.

S t It

(η∗ + αIt) S t
N

βIt

Figure 4.3: Stochastic SIS model with exogenous infections

One can note that there are immediate similarities between this process and
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the ESEP. That is, new infections increase the infection rate while recoveries de-

crease it, and infections can be the result of either external or internal stimuli.

However, the primary difference between these two models is that the SIS pro-

cess has a finite population, whereas the ESEP does not. In Proposition 4.3.7

we find that as this population size grows large the difference between these

models fades, yielding that the distribution of the number infected in the ex-

ogenously driven SIS model converges to the distribution of the queue length

in the ESEP.

Proposition 4.3.7. Let It be the number of infected individuals at time t ≥ 0 in an

exogenously driven stochastic SIS model with population size N ∈ Z+, exogenous in-

fection rate η∗ > 0, epidemic infection rate α > 0, and recovery rate β > 0. Then, as

N → ∞

It
D

=⇒ Qt,

where Qt is the active number in system at time t for an ESEP with baseline intensity

η∗, intensity jump α, and expiration rate β.

Proof. Because the SIS model is a Markov process, one can use the infinitesimal

generator approach to find a time derivative for the moment generating func-

tion of the number of infected individuals at time t ≥ 0. Thus, by noting that

S t = N − It we have that

d
dt

E
[
eθIt

]
= E

[
αItS t

N

(
eθ − 1

)
eθIt + βI

(
e−θ − 1

)
eθIt +

η∗S t

N

(
eθ − 1

)
eθIt

]
= E

[
αIt(N − It)

N

(
eθ − 1

)
eθIt

]
+ E

[
βIt

(
e−θ − 1

)
eθIt

]
+ E

[
η∗(N − It)

N

(
eθ − 1

)
eθIt

]
,

which we can re-express in partial differential equation form as

∂E
[
eθIt

]
∂t

=

(
α
(
eθ − 1

)
+ β

(
e−θ − 1

)
−
η∗

N

(
eθ − 1

)) ∂E
[
eθIt

]
∂θ

−
α

N

(
eθ − 1

) ∂2E
[
eθIt

]
∂θ2

+ η∗
(
eθ − 1

)
E

[
eθIt

]
.
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Now as the population size N → ∞, this converges to

∂E
[
eθIt

]
∂t

=
(
α
(
eθ − 1

)
+ β

(
e−θ − 1

)) ∂E
[
eθIt

]
∂θ

+ η∗
(
eθ − 1

)
E

[
eθIt

]
,

which we can recognize as the partial differential equation for the moment gen-

erating function of the ESEP through its own infinitesimal generator. �

As a demonstration of this convergence, we plot the empirical steady-state

distribution of the SIS process for increasing population size below in Figure 4.4.

Note that in this example the distributions appear fairly close for populations

of size N = 1, 000. On the scale of the populations of cities or even some larger

high schools, this is quite small. At a medium university size of N = 10, 000, the

distributions are essentially indistinguishable.
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Figure 4.4: Steady-state distribution of the number infected in the exogenously
driven SIS model for increasing population size N, where η∗ = 10, α = 2, and
β = 3.

We would be remiss if we did not note that connections from epidemic mod-

els to birth-death processes are not new. For example, Ball (1983) demonstrated
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that epidemic models converge to birth-death processes, and Singh and Myers

(2014) even noted that the exogenously driven Susceptible-Infected-Recovered

(SIR) model – that is, people cannot become re-infected – converges to a linear

birth-death-immigration process; however, these works did not outright form

connections to self-exciting processes. In Rizoiu et al. (2018), the similarities

between the Hawkes process and the SIR process are shown and formal con-

nections are made, although this is through a generalization of the Hawkes

process defined on a finite population rather than through increasing the epi-

demic model population size. Regardless, the topics considered in these prior

works serve to expand the practical relevance of the ESEP, as they note that

these epidemic models are also of use outside of public health. For example, the

contagious nature of these models has also been used to study topics like prod-

uct adoption, idea spread, and social influence. These all also naturally relate

to the concept of self-excitement, and in Proposition 4.3.7 we observe that this

connection can be formalized.

These connections also take on an added importance in the contemporane-

ous context of the COVID-19 public health crisis. It is worth noting that the con-

vergence of distributions in Proposition 4.3.7 does not require our commonly

assumed stability condition β > α. Thus, this convergence also covers poten-

tially pandemic scenarios in which α ≥ β. In such settings, one can quickly

observe that the mean number infected by time t is such that E [Nt] ∈ O(e(α−β)t),

reproducing the exponential growth exhibited by this novel coronavirus in these

early stages. The ESEP arrival process then captures the times of new infections,

some portion of which may then be used as the arrival process to a queueing

model for the cases that require hospitalization.
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4.4 Constructing Eternal Self-Excitement from Ephemeral Self-

Excitement

Thus far we have exclusively considered a Markovian model for ephemeral self-

excitement. However, just as the Hawkes process need not be Markovian, we

do not have to restrict ourselves to settings in which the Markov property ex-

ists. Recall from Subsection 5.3.2 that the general definition from Hawkes (1971)

described the intensity as

λt = λ∗ +

∫ t

−∞

g(t − u)dNu,λ = λ∗ +

Nt∑
i=1

g(t − Ai),

where g : R+ → R+ and
∫ ∞

0
g(x)dx < 1 for stability. One could also consider a

marked Hawkes process that draws jump sizes from a sequence of i.i.d. positive

random variables {Mi | i ∈ Z+}, in which case the summation form of intensity

would instead be expressed

λt = λ∗ +

Nt∑
i=1

Mig(t − Ai).

The ESEP model has provided us a natural comparison for the popular Marko-

vian case where g(x) = αe−βx (with no marks), but let us now consider more

general excitation kernels and jump sizes. To do so, we will make two main

generalizations while preserving the other key elements of the ESEP, such as

the affine relationship between the intensity and the number of active exciters.

First, we will change the activity duration to be a general distribution, mimick-

ing the general excitation kernel. Secondly, we also change from solitary arrivals

to batch arrivals, meaning groups of events that occur simultaneously at each

arrival epoch. The size of these batches may be drawn from an i.i.d. sequence of

positive integer random variables, so we will use the parameter n to represent
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the relative size of this batch through the mean of the batch size distribution.

This leads us to the nth general ephemerally self-exciting process (n-GESEP), defined

now in Definition 4.4.1.

Definition 4.4.1 (nth general ephemerally self-exciting process). For times t ≥ 0,

a baseline intensity η∗ > 0, cumulative distribution function G : R+ → [0, 1],

i.i.d. sequence of positive random variables {Bi | i ∈ Z+}, and n ∈ Z+ such that

E [Bi] ∈ O(n), let Nt(n) be a counting process for the arrival epochs occurring

according to the stochastic intensity ηt(n), defined such that

ηt(n) = η∗ +
α

n
Qt(n), (4.15)

where Qt(n) is incremented by Bi(n) at the ith arrival epoch in Nt(n) and then is

depleted at unit down-jumps at the expiration of each individual arrival’s activ-

ity duration, which are i.i.d. draws from the distribution G(·) across all batches

and all epochs. Then, we say that (ηt(n),Nt(n)) is the nth general ephemerally self-

exciting process (n-GESEP).

It is important to note that in this definition, a batch of size n occurring at

the current time would increase the present arrival rate by α. However, each of

these n activity durations are mutually independent. Thus, despite the common

arrival epoch, each expiration should cause an instantaneous decrease of just α/

n if the activity duration distribution is continuous. It is also worth noting that

this n-GESEP model encapsulates the simple generalization of the ESEP with

general service durations, as this is given by (ηt(1),Nt(1)) with P (B1(1) = 1).

Just as it can often be beneficial to think of the length of an infinite server

queue as a sum over all customers that remain in service, it will be quite useful

for us to think about the number active within the n-GESEP as the sum of all
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arrivals that have not yet expired. For Ai as the ith arrival epoch and S i, j as the

jth activity duration within the ith batch, this can be expressed

Qt(n) =

Nt(n)∑
i=1

Bi∑
j=1

1{t < Ai + S i, j},

or equivalently for the intensity,

ηt = η∗ +
α

n

Nt(n)∑
i=1

Bi∑
j=1

{t < Ai + S i, j}.

A nice consequence of this representation is that the ephemerality is at the fore-

front. Because the event within the indicator is that the current time t is less

than the sum of a given arrival time and activity duration, this indicator counts

whether that particular excitement is currently active. Thus, this indicator will

switch from 1 to 0 when the present time passes a given expiration time, causing

the intensity to drop by α/n. From this point forward, the excitement brought

by this particular arrival no longer has a direct effect on the system.

We will now use the n-GESEP to establish a main result of this work, in which

we connect this general form of ephemeral self-excitement to general forms of

the traditional, eternal notion of self-excitement. In Theorem 4.4.1, we prove a

scaling limit that incorporates random batch distributions and general service

to construct marked, general decay Hawkes processes. We refer to this limit as

a “batch scaling,” as we are letting the relative batch size n grow large, which

simultaneously shrinks the size of the excitement generated by each individual

entity within a batch of arrivals. Thus, while the effect of one individual exciter

shrinks, the collective effect of a batch arrival remains fixed. In the limit, this

provides an alternate construction of the Hawkes process.

Theorem 4.4.1. For t ≥ 0 and n ∈ Z+, let (ηt(n),Nt(n)) be a n-GESEP with baseline

intensity η∗ > 0, intensity jump size α > 0, activity duration CDF G(·), and i.i.d. batch
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size sequence of non-negative, discrete random variables {Bi | i ∈ Z+}. Additionally, let

η0(n) = η∗, i.e. Q0(n) = 0. Then, for all t ≥ 0, this n-GESEP process is such that

ηt(n)
D

=⇒ λt and Nt(n)
D

=⇒ Nt,λ (4.16)

as n→ ∞, where (λt,Nt,λ) is the general Hawkes process intensity and counting process

pair such that

λt = η∗ +

Nt,λ∑
i=1

MiḠ(t − Ai), (4.17)

where {Ai | i ∈ Z+} are the Hawkes process arrival epochs, Ḡ(x) = 1 −G(x) for all x ≥ 0,

and {Mi | i ∈ Z+} is an i.i.d. sequence of positive real random variables such that αB1/

n
D

=⇒ M1 and B1/n2 p
−→ 0.

Proof. We will organize the proof into two parts. Each part is oriented around

the process arrival times, as these fully determine the sample path of the

Hawkes process. We will first show through induction that the distributions

of inter-arrival times converge. Then, we will demonstrate that given the same

arrival times, the dynamics of the processes converge.

To begin, let Aη
i for i ∈ Z+ be the time of the ith arrival in the n-GESEP and

similarly let Aλ
i be the ith arrival time for the Hawkes process. We start with

the base case: for the time of the first arrival, we can note that for all n-GESEP

models,

P
(
Aη

1 > x
)

= e−η
∗x,

as Q0(n) = 0 and thus the first arrival is driven by the external baseline rate.

Likewise for the Hawkes process, since Equation 4.17 implies that λt = ν∗ for

0 ≤ t < Aλ
1, we can see that

P
(
Aλ

1 > x
)

= e−η
∗x,

155



and thus P
(
Aλ

1 > x
)

= P
(
Aη

1 > x
)
. As an inductive hypothesis, we now as-

sume that {Aη
1, . . . , A

η
k} converge in joint and marginal distributions to {Aλ

1, . . . , A
λ
k }

where k ∈ Z+. Now, for the Hawkes process we can observe that

Pk

(
Aλ

k+1 − Aλ
k > x

)
:= P

(
Aλ

k+1 − Aλ
k > x | {Aλ

1, . . . , A
λ
k }
)

= Ek

[
e
−

∫ x
0 λAλk +tdt

]
,

because when conditioned on the arrival history, the Hawkes process behaves

like an imhogoneous Poisson process until the next arrival occurs. Using Equa-

tion 4.17, we can express this as

Ek

[
e
−

∫ x
0 λAλk +tdt

]
= e−η

∗xEk

[
e−

∫ x
0

∑k
i=1 MiḠ(Aλk−Aλi +t)dt

]
= e−η

∗x
k∏

i=1

Ek

[
e−Mi

∫ x
0 Ḡ(Aλk−Aλi +t)dt

]
.

Turning to the ESEP epochs, we define Nη
i, j ((t, t + s]) as the number of arrivals

on the time interval (t, t + s] that are generated by the excitement caused by the

jth entity within the ith batch. Furthermore, let Nη
∗ ((t, t + s]) be the number of

arrivals on (t, t + s] that are generated by the external, baseline rate η∗. Then,

using this notation we have that

Pk

(
Aη

k+1 − Aη
k > x

)
:= P

(
Aη

k+1 − Aη
k > x | {Aη

1, . . . , A
η
k}
)

= Pk

 k⋂
i=1

Bi⋂
j=1

{
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0

}
∩

{
Nη
∗

(
(Aη

k , A
η
k + x]

)
= 0

}
= Ek

 k∏
i=1

Bi∏
j=1

1
{
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0

}
1
{
Nη
∗

(
(Aη

k , A
η
k + x]

)
= 0

} .
From the independence of each of these arrival processes, we can move the

probability for no arrivals in the external arrival process and the product over i

outside of the expectation to receive

Ek

 k∏
i=1

Bi∏
j=1

1
{
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0

}
1
{
Nη
∗

(
(Aη

k , A
η
k + x]

)
= 0

}
= e−η

∗x
k∏

i=1

Ek

 Bi∏
j=1

1
{
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0

} .
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Consider an arbitrary entity, say the jth entity in the ith batch. Let S i, j be its

service duration. If this entity has departed from the queue before Aη
k , then it

cannot generate further arrivals and thus

Pk

(
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0 | S i, j ≤ Aη

k − Aη
i

)
= 1.

Likewise, if it does not depart until after Aη
k + x, then the probability that it

generates an arrival on (Aη
k , A

η
k + x] is

Pk

(
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0 | S i, j ≥ Aη

k − Aη
i + x

)
= e−

α
n x.

Finally, if the entity departs in the interval (Aη
k , A

η
k +x], the probability it generates

an arrival before departing is

Pk

(
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0 | S i, j = Aη

k − Aη
i + z

)
= e−

α
n z,

where 0 < z < x. Therefore through conditioning on each entity’s service dura-

tion, we have that

e−η
∗x

k∏
i=1

Ek

 Bi∏
j=1

1
{
Nη

i, j

(
(Aη

k , A
η
k + x]

)
= 0

}
= e−η

∗x
k∏

i=1

Ek

 Bi∏
j=1

(
G(Aη

k − Aη
i ) + e−

α
n xḠ(Aη

k − Aη
i + x) +

∫ x

0
e−

α
n zg(Aη

k − Aη
i + z)dz

) ,
where g(·) is the density corresponding to G(·). Since the term inside the inner

product does not depend on the specific entity within a batch but rather just the

batch itself, we can evaluate this inside the expectation as

e−η
∗x

k∏
i=1

Ek

 Bi∏
j=1

(
G(Aη

k − Aη
i ) + e−

α
n xḠ(Aη

k − Aη
i + x) +

∫ x

0
e−

α
n zg(Aη

k − Aη
i + z)dz

)
= e−η

∗x
k∏

i=1

Ek

(G(Aη
k − Aη

i ) + e−
α
n xḠ(Aη

k − Aη
i + x) +

∫ x

0
e−

α
n zg(Aη

k − Aη
i + z)dz

)Bi
 .

Since the base term of this exponent is deterministic, we will simplify it as

follows. Using integration by parts on
∫ x

0
e−

α
n zg(Aη

k − Aη
i + z)dz and expanding

157



Ḡ(x) = 1 −G(x), this simplifies to

G(Aη
k − Aη

i ) + e−
α
n xḠ(Aη

k − Aη
i + x) +

∫ x

0
e−

α
n zg(Aη

k − Aη
i + z)dz = e−

α
n x +

α

n

∫ x

0
e−

α
n zG(Aη

k − Aη
i + z)dz.

If we express e−
α
n x in integral form via e−

α
n x = 1 − α

n

∫ x

0
e−

α
n zdz, we can further

simplify this expression of the base to

e−
α
n x +

α

n

∫ x

0
e−

α
n zG(Aη

k − Aη
i + z)dz = 1 −

α

n

∫ x

0
e−

α
n zḠ(Aη

k − Aη
i + z)dz.

This form makes it quick to observe that this base term is at most 1. Thus we are

justified in taking the expectation of this term raised to Bi, since that is equiv-

alent to the probability generating function of the batch size and this exists for

all discrete random variables when evaluated on values less than or equal to

1 in absolute value. Returning to this expectation, we first note that for all x,

rearranging the Taylor expansion of ex produces

1 + x = ex −

∞∑
j=2

x j

j!
= ex

1 − e−x
∞∑
j=2

x j

j!

 = ex+log
(
1−e−x ∑∞

j=2
x j
j!

)
.

Thus we re-express the expectation in exponential function form as

e−η
∗x

k∏
i=1

Ek

(G(Aη
k − Aη

i ) + e−
α
n xḠ(Aη

k − Aη
i ) +

∫ x

0
e−

α
n zg(Aη

k − Aη
i + z)dz

)Bi


= e−η
∗x

k∏
i=1

Ek

[
e−

α
n Bi

∫ x
0 e−

α
n zḠ(Aηk−Aηi +z)dz+O

(
Bi
n2

)]
.

Through use of a Taylor expansion on e−
α
n z and absorbing higher terms into the

O
(

Bi
n2

)
notation, we can further simplify to

e−η
∗x

k∏
i=1

Ek

[
e−

α
n Bi

∫ x
0 e−

α
n zḠ(Aηk−Aηi +z)dz+O

(
Bi
n2

)]
= e−η

∗x
k∏

i=1

Ek

[
e−

α
n Bi

∫ x
0 Ḡ(Aηk−Aηi +z)dz+O

(
Bi
n2

)]
.

We can now take the limit as n→ ∞ and observe that

e−η
∗x

k∏
i=1

Ek

[
e−

α
n Bi

∫ x
0 Ḡ(Aηk−Aηi +z)dz+O

(
Bi
n2

)]
−→ e−η

∗x
k∏

i=1

Ek

[
e−Mi

∫ x
0 Ḡ(Aηk−Aηi +z)dz

]
,
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as we have that α
n B1

D
=⇒ M1 and Bi

n2

D
=⇒ 0. This is now equal to the Hawkes

process inter-arrival probability Pk

(
Aλ

k+1 − Aλ
k > x

)
. Hence by induction and total

probability the arrival times converge, completing the first part of the proof.

For the second part of the proof, we now show that the dynamics of the

processes converge when we condition on having the same fixed arrival times,

which we now denote {Ai | i ∈ Z+} for both processes. Since Nt(n) is defined

as the counting process of arrival epcochs rather than total number of arrivals,

Nt(n) = Nt,λ for all n and all t. We now treat the intensity in two cases, the jump at

arrivals and the dynamics between these times. For the first case, we take k ∈ Z+

and let λAk−
= infAk−1≤t<Ak λt and ηAk−

(n) = infAk−1≤t<Ak ηt(n) for all n, where A0 = 0.

Then, the jump in the n-GESEP intensity at the kth jump is such that

ηAk(n) − ηAk−
(n) =

α

n
Bk

D
=⇒ Mk = λAk − λAk−

,

as n → ∞. For the behavior between arrival times we first note that for S j inde-

pendent and distributed with CDF G(·) for all j ∈ Z+, the probability generating

function of 1
n

∑B1
j=1 1{y < S j} is

E
[
z

1
n
∑B1

j=1 1{y<S j}
]

= E
[(

G(y) + Ḡ(y)z
1
n
)B1

]
= E

[(
1 − Ḡ(y)

(
1 − e

1
n log z

))B1
]
,

and by a Taylor expansion approach similar to what we used in the proof’s first

part, we can see that

E
[(

1 − Ḡ(y)
(
1 − e

1
n log z

))B1
]

= E
[
e−B1Ḡ(y)

(
1−e

1
n log z

)
+O

(
B1
n2

)]
= E

[
e

1
n B1Ḡ(y) log(z)+O

(
B1
n2

)]
.

Taking the limit as n → ∞, this yields E
[
z

1
n
∑B1

j=1 1{y<S j}
]
−→ E

[
zḠ(y)M1

]
, which is to

say that
1
n

B1∑
j=1

1{y < S j}
D

=⇒ Ḡ(y)M1.
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Using this, we can now see that for k ∈ Z+ and 0 ≤ x < Ak+1 − Ak, the intensity of

the n-GESEP satisfies

ηAk+x(n) = η∗ +
α

n

k∑
i=1

Bi∑
j=1

1{Ak + x < Ai + S i, j}
D

=⇒ η∗ +

k∑
i=1

MiḠ(Ak − Ai + x) = λAk+x,

as n → ∞. Thus, both the jump sizes of ηt(n) and the behavior of ηt(n) between

jumps converge to that of λt, completing the proof. �

For an empirical demonstrate of this convergence, in Figure 4.5 we plot

cumulative distribution functions for the intensity of the Markovian n-GESEP

across multiple batch sizes and compare them to the empirical distribution of

the Markovian Hawkes process. As one can see, in each of the two parameter

settings with n = 8, the distribution of the n-GESEP intensity is quite close to

that of the Hawkes intensity. Loosely speaking, one can also note that the con-

vergence appears to be faster in the case displayed on the right hand side, which

has larger parameter values. In future work, it will be of interest to consider the

rate of convergence for this batch-scaling and how those depend on the process

parameters.

As a reference, we list the components of the ephemerally self-exciting mod-

els and their corresponding limiting quantities in the general Hawkes process

below in Table 4.1. We can note that because the limiting excitation kernel given

in Theorem 4.4.1 is a complementary cumulative distribution function it is ex-

clusively non-increasing, meaning that the excitement after each arrival imme-

diately decays. It can be observed that this includes the two most popular exci-

tation kernels, the exponential and power-law forms that we detailed in Subsec-

tion 5.3.2. However, it does not include kernels that have a “hump remote from

the origin” that Hawkes mentions briefly in the original paper Hawkes (1971).

If desired, this can be remedied through extension to multi-phase service in the
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Figure 4.5: Empirical steady-state CDF of the n-GESEP intensity where ν∗ = α =

1 and µ = 2 (left); and where ν∗ = 5, α = 2 and µ = 3 (right), based on 10,000
replications.

n-GESEP, with the intensity defined as an affine relationship with one of the

later phases.

n −→ ∞
Batch =⇒ Mark
Expire =⇒ Decay
ESEP =⇒ Hawkes

Table 4.1: Overview of convergence details in the batch-scaling of the ESEP.

Before concluding, let us remark that in addition to providing conceptual un-

derstanding into the Hawkes process itself, the alternate construction through

the batch scaling in Theorem 4.4.1 is also of practical relevance in explaining the

use of the Hawkes process in many application settings. For example, in biolog-

ical applications such as the environmental management problem considered

in Gupta et al. (2018), one of the invasive species studied may produce multiple

offspring simultaneously but only for the duration of its life cycle. That is, many

species give birth in litters, creating batch arrivals, but of course only reproduce

during their lifetime, yielding ephemerality. Furthermore, the numerical exper-

iments in Figure 4.5 suggest that n need not be overly large for the n-GESEP and
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the Hawkes process to be comparable in distribution.

As another example, consider the spread of information on communication

and social media platforms. This setting has recently been a popular application

of Hawkes processes, see e.g. Du et al. (2015); Farajtabar et al. (2017); Halpin

and De Boeck (2013); Rizoiu et al. (2017, 2018). When a user shares a post on

these platforms, it is immediately and simultaneously dispatched to the real-

time feeds of many other users, creating a batch increase of the response rate

from the other users. The post then will typically only be seen on news feeds for

a short period of time, as new content comes in to replace it. On top of this, social

media administrators have been adopting a trend of intentionally introducing

ephemerality into their platforms. For example, the expiration of posts and

messages has been a defining feature of Snapchat since its inception. Facebook

and Instagram have recently adopted the same behavior with “stories,” and

Twitter has responded in kind with the appropriately named “fleets.” Just as in

the case of biological offspring processes, Theorem 4.4.1 offers an explanation

of why the Hawkes process has become a popular and successful model in this

space. Moreover, the insights from these connections can be deepened through

the additional model relationships that we have discussed in Section 4.3.

4.5 Conclusion

Time is fleeting; excitement is ephemeral. In this chapter we have introduced

the ephemerally self-exciting process (ESEP), a point process driven by the pieces

of its history that remain presently active. That is, each arrival excites the arrival

rate until the expiration of its randomly drawn activity duration, at which point
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its individual influence vanishes. Throughout this work we have compared

ephemeral self-excitement to eternal self-excitement through contrast with the

well-known Hawkes process. These comparisons include an ordering of the

moments of the two processes in Proposition 4.2.3 and through study of each

process’s branching structure in Subsection 4.3.1. We have also used the ESEP

to relate ephemeral self-excitement to other well known stochastic models, in-

cluding preferential attachment, random walks, and epidemics. Finally, we

have also considered a generalized model with batch arrivals and general ac-

tivity duration distributions, which we refer to as the nth general ephemerally self-

exciting process (n-GESEP). This n-GESEP model provides an alternate construc-

tion of general marked Hawkes processes through a batch scaling limit. ln The-

orem 4.4.1 we prove that the n-GESEP model converges to a Hawkes process as

its batch arrival size grows large, in which the limiting Hawkes process has an

excitation kernel matching the tail CDF of the activity duration distribution and

has marks given by the scaled limit of the batch sizes. As we have discussed,

this limit both provides intuition for the occurrence of self-excitement in natural

phenomena and relates the Hawkes process to the other stochastic models we

connected to ephemeral self-excitement.

This presents many different directions for future research. First, we have

frequently campaigned in this work that our results motivate the ESEP (and by

extension, the n-GESEP) as a promising model for self-excitement in its own

right. This follows from its tractability for analysis and its amenability to con-

nection with other models. Because of this promise, we believe that further

exploration and application of the ESEP holds great potential. Another natural

and relevant avenue would be to continue to explore the connection between

ephemeral self-excitement and the other stochastic models we have discussed.
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For example, one could study the connection between ESEP and epidemic mod-

els on more complex networks or with more complex dynamics. Doing so

would give a point process representation for the times of infection in a more

realistic epidemic model, which could be quite useful in practice for resource

allocation and policy design. Similar deepened connections could also be pur-

sued for other models such as preferential attachment. In general, we believe

the concept of ephemeral self-excitement merits further theoretical exploration

and detailed empirical application, both of which we look forward to pursuing.
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CHAPTER 5

MATRIX CALCULATIONS FOR MOMENTS OF MARKOV PROCESSES

5.1 Introduction

In recently studying the intensity of Markovian Hawkes process, originally de-

fined in Hawkes (1971), we have been interested in computing all the moments

of this process. In surveying the literature for this process, there does not seem

to be any closed form transient solutions at the fourth order or higher (see

Proposition 5 of Gao and Zhu (2018c) for moments one through three), and

both steady-state solutions and ordinary differential equations have only been

available up to the fourth moment, see Da Fonseca and Zaatour (2014); Errais

et al. (2010). Similarly, Aı̈t-Sahalia et al. (2015) give expressions for the fourth

transient moment of a self-exciting jump-diffusion model up to squared error

in the length of time, and one could simplify these expressions to represent the

Markovian Hawkes intensity with the same error. The standard methodology

for finding moments is to differentiate the moment generating function to obtain

the moments, however, this is intractable for practical reasons, see for example

Errais et al. (2010). The problem of finding the moments of the Hawkes process

is also the subject of the recent interesting research in Cui et al. (2019); Cui and

Wu (2019), works that are concurrent and independent from this one. In Cui

et al. (2019), the authors propose a new approach for calculating moments that

they construct from elementary probability arguments and also relate to the in-

Contents of this chapter are, at the time of this dissertation’s writing, under review for
publication and are publicly available as a preprint (Daw and Pender, 2020b).
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finitesimal generator. Like the infinitesimal generator, this new methodology

produces differential equations that can be solved algebraically or numerically

to yield the process moments, and the authors provide closed form transient

expressions up to the second moment. Cui and Wu (2019) extends this method-

ology to cases of Gamma decay kernels. In other recent previous works, includ-

ing Koops et al. (2018) and Chapter 2, the authors have identified the differential

equation for an arbitrary moment of the Hawkes process, although the closed

form solutions for these equations have remained elusive and prompted closer

investigation. Upon inspecting the differential equation for a given moment of

the Hawkes process intensity, one can notice that this expression depends on

the moments of lower order. Thus, to compute a given moment one must solve

a system of differential equations with size equal to the order of the moment,

meaning one must at least implicitly solve for all the lower order moments first.

This same pattern occurs in Cui et al. (2019). Noticing this nesting pattern leads

one to wonder: what other processes have moments that follow this structure?

In this chapter, we explore this question by identifying what exactly this

nesting structure is. In the sequel, we will define a novel sequence of matrices

that captures this pattern. Just as Matryoshka dolls – the traditional Russian

nesting figurines – stack inside of one another, these matrices are characterized

by their encapsulation of their predecessors in the sequence. Hence, we refer to

this sequence as Matryoshkan matrices. As we will show, these matrices can be

used to describe the linear system of differential equations that arise in solving

for the moments of the Hawkes process, as well as the moments of a large class

of other Markov processes. In fact, the only assumption we make on these pro-

cesses is that their moments satisfy differential equations that do not depend on

any higher order moments. As we will demonstrate through detailed examples,
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this includes a wide variety of popular stochastic processes, such as Itô diffu-

sions and shot noise processes. By utilizing this nesting structure we are able to

solve for the moments of these processes in closed form. By comparison to tra-

ditional methods of solving these systems of differential equations numerically,

the advantage of the approach introduced herein is the fact that the moments

can be computed at a specific point in time rather than on a path through time.

This yields a methodology that is both efficient and precise.

This methodology also has the potential to be quite relevant in practice. Of

course, these techniques can be used to efficiently calculate the commonly used

first four moments, thus obtaining the mean, variance, skewness, and kurtosis.

Moreover though, let us note that the higher moment calculations are also of

practical use. For example, these higher moments can be used in Markov-style

concentration inequalities, as the higher order should improve the accuracy of

the tail bounds. To that end, one can also use the vector of moments to approx-

imate generating functions such as the moment generating function of Laplace-

Stieltjes transforms. This could then be used to characterize the stationary dis-

tribution of the process, for example, or to provide approximate calculations

of quantities such as the cumulative distribution function through transform

methods. The calculation of moments can also be highly relevant for many ap-

plications in mathematical finance. For example, these techniques may hold

great potential for polynomial processes, see for example Filipović and Larsson

(2019). One could also expect this efficiently calculated vector of moments to be

of use in estimation through method of moment techniques. Again in this case,

access to higher order moments should improve fit.

The remainder of this chapter is organized as follows. In Section 5.2, we
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introduce Matryoshkan matrix sequences and identify some of their key prop-

erties. In Section 5.3 we use these matrices to find the moments of a large class

of general Markov processes. We also give specific examples. In Section 5.4, we

demonstrate the numerical performance of this method in comparison to tradi-

tional differential equation techniques. In Section 5.5, we conclude. Throughout

the course of this study, we make the following contributions:

i) We define a novel class of matrix sequences that we call Matryoshkan ma-

trix sequences for their nesting structure. We identify key properties of

these matrices such as their inverse and matrix exponentials.

ii) Through these Matryoshkan matrices, we solve for closed form expressions

for the moments of a large class of Markov processes. Furthermore, we

demonstrate the general applicability of this technique through applica-

tion to notable stochastic processes including Hawkes processes, shot noise

process, Itô diffusions, growth-collapse processes, and linear birth-death-

immigration processes. In the case of the Hawkes process and growth-

collapse processes this resolves an open problem, as closed form expres-

sions of these general transient moments were not previously known in the

literature.

iii) We compare the precision and computation time of our methodology to nu-

merically solving the underlying differential equations. In observing em-

pirical superiority of the Matryoshkan matrix approach, we demonstrate

the efficiency of calculating the moments at a given point, rather than on a

path through time.
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5.2 Matryoshkan Matrix Sequences

For the sake of clarity, let us begin this section by introducing general notation

patterns we will use throughout this chapter. Because of the heavy use of ma-

trices in this work, we reserve boldface upper case variables for these objects,

such as I for the identity matrix. Similarly we let boldface lower case variables

be vectors, such as v for the vector of all ones or vi being the unit vector in the

ith direction. One can assume that all vectors are column vectors unless other-

wise noted. Scalar terms will not be bolded. A special matrix that we will use

throughout this work is the diagonal matrix, which we denote diag(a), which

is a square matrix with the values of the vector a along its diagonal and zeros

otherwise. We will also make use of a generalization of this, denoted diag(a, k),

which instead contains the values of a on the kth off-diagonal, with negative k

being below the diagonal and positive k being above.

Let us now introduce a sequence of matrices that will be at the heart of this

work. We begin as follows: consider a sequence of lower triangular matrices

{Mn, n ∈ Z+} such that

Mn =

Mn−1 0n−1×1

mn mn,n

 , (5.1)

where mn ∈ R
n−1 is a row vector, mn,n ∈ R, and M1 = m1,1, an initial value. Taking

inspiration from Matryoshka dolls, the traditional Russian nesting dolls, we will

refer to these objects as Matryoshkan matrices. Using their nested and triangular

structures, we can make four quick observations of note regarding Matryoshkan

matrices.

Proposition 5.2.1. Each of the following statements is a consequence of the definition

of Matryoshkan matrices given by Equation 5.1:
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i) If Xn ∈ R
n×n and Yn ∈ R

n×n are both Matryoshkan matrix sequences, then so are

Xn + Yn and XnYn.

ii) If mi,i , 0 for all i ∈ {1, . . . , n} then the Matryoshkan matrix Mn ∈ R
n×n is nonsin-

gular. Moreover, the inverse of Mn is given by the recursion

M−1
n =

 M−1
n−1 0n−1×1

− 1
mn,n

mnM−1
n−1

1
mn,n

 . (5.2)

iii) If mi,i , 0 for all i ∈ {1, . . . , n} and are all distinct then the matrix exponential of

the Matryoshkan matrix Mn ∈ R
n×n multiplied by t ∈ R follows the recursion

eMnt =

 eMn−1t 0n−1×1

mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
emn,nt

 . (5.3)

iv) If mi,i , 0 for all i ∈ {1, . . . , n} and are all distinct then the matrices Un ∈ R
n×n and

Dn ∈ R
n×n are such that

MnUn = UnDn

for the Matryoshkan matrix Mn ∈ R
n×n when defined recursively as

Un =

 Un−1 0n−1×1

mn
(
Dn−1 − mn,nI

)−1 Un−1 1

 , Dn =

 Dn−1 0n−1×1

01×n−1 mn,n

 . (5.4)

One can pause to note that in some sense any lower triangular matrix could

be considered Matryoshkan, or at least be able to satisfy these properties. How-

ever, we note that some of the most significant insights we can gain from the

Matryoshkan structure are the recursive implications available for sequences of

matrices. Moreover, it is the combination of the nested relationship of consec-

utive matrices and the lower triangular structure that enables us to find these

patterns. We will now see how this notion of Matryoshkan matrix sequences

and the associated properties above can be used to specify element-wise solu-

tions to a sequence of differential equations.
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Lemma 5.2.2. Let Mn ∈ R
n×n, cn ∈ R

n, and sn(t) : R+ → Rn be such that

Mn =

Mn−1 0n−1×1

mn mn,n

 , cn =

cn−1

cn

 , and sn(t) =

sn−1(t)

sn(t)


where mn ∈ R

n−1 is a row vector, cn−1 ∈ R
n−1, sn(t) ∈ R, and M1 = m1,1. Further,

suppose that
d
dt

sn(t) = Mnsn(t) + cn.

Then, if mk,k , 0 for all k ∈ {1, . . . , n}, the vector function sn(t) is given by

sn(t) = eMntsn(0) −M−1
n

(
I − eMnt

)
cn, (5.5)

and if all mk,k , 0 for all k ∈ {1, . . . , n} are distinct, the nth scalar function sn(t) is given

by

sn(t) = mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

) (
sn−1(0) +

cn−1

mn,n

)
+ emn,ntsn(0)

−
cn

mn,n

(
1 − emn,nt) +

mn

mn,n
M−1

n−1

(
I − eMn−1t

)
cn−1, (5.6)

where t ≥ 0.

With this lemma in hand, we can now move to using these matrix sequences

for calculating Markov process moments. To do so, we will use the infinites-

imal generator, a key tool for Markov processes, to find the derivatives of the

moments through time. By identifying a Matryoshkan matrix structure in these

differential equations, we are able to apply Lemma 5.2.2 to find closed form

expressions for the moments.
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5.3 Calculating Moments through Matryoshkan Matrix Se-

quences

In this section we connect Matryoshkan matrix sequences with the moments of

Markov processes. In Subsection 5.3.1, we prove the main result, which is the

computation of the moment of a general Markov process through Matryoshkan

matrices. To demonstrate the applicability of this result, we now apply it to

a series of examples. First in Subsection 5.3.2 we obtain the moments of the

self-exciting Hawkes process, for which finding moments in closed form has

been an open problem. Then in Subsection 5.3.3 we study the Markovian shot

noise process, a stochastic intensity process that trades self-excitement for ex-

ternal shocks. Next in Subsection 5.3.4 we showcase the use of these techniques

for diffusive dynamics through application to Itô diffusions. Finally, in Subsec-

tion 5.3.6 we apply this technique to a process with jumps both upwards and

downwards, a linear birth-death-immigration process we have studied previ-

ously called the Affine Queue-Hawkes process. In each scenario, we describe

the process of interest, define the infinitesimal generator, and identify the matrix

structure. Through this, we solve for the process moments.

5.3.1 The Moments of General Markov Processes

The connection between Matryoshkan matrices and Markov processes is built

upon a key tool for Markov processes, the infinitesimal generator. For a detailed

introduction to infinitesimal generators and their use in studying Markov pro-

cesses, see e.g. Ethier and Kurtz (2009). For a Markov process Xt on state space
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S, the infinitesimal generator on a function f : S→ R is defined

L f (x) = lim
τ→0

E
[
f (Xτ) | X0 = x

]
− f (x)

τ
.

In our context and in many others, the power of the infinitesimal generator

comes through use of Dynkin’s formula, which gives us that

d
dt

E
[
f (Xt)

]
= E

[
L f (Xt)

]
.

To study the moments of a Markov process, we are interested in functions f that

are polynomials. Let’s suppose now that Lxn for any n ∈ Z+ is polynomial in the

lower powers of x for a given Markov process Xt. Then, we can then write

LXn
t = θ0,n +

n∑
i=1

θi,nXi
t ,

which implies that the differential equation for the nth moment of this process is

d
dt

E
[
Xn

t
]

= θ0,n +

n∑
i=1

θi,nE
[
Xi

t

]
,

for some collection of constants θ0,n, θ1,n, . . . , θn,n. Thus, to solve for the nth mo-

ment of Xt we must first solve for all the moments of lower order. We can also

observe that to solve for the (n − 1)th moment we must have all the moments

below it. In comparing these systems of differential equations, we can see that

all of the equations in the system for the (n − 1)th moment are also in the system

for the nth moment. No coefficients are changed in any of these lower moment

equations, the only difference between the two systems is the inclusion of the

differential equation for the nth moment in its own system. Hence, the nesting

Matryoshkan structure arises. By expressing each system of linear ordinary dif-

ferential equations in terms of a vector of moments, a matrix of coefficients, and

a vector of shift terms, we can use these matrix sequences to capture how one

moment’s system encapsulates all the systems below it. This observation then
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allows us to calculate all the moments of the process in closed form, as we now

show in Theorem 5.3.1.

Theorem 5.3.1. Let Xt be a Markov process such that the time derivative of its nth

moment can be written

d
dt

E
[
Xn

t
]

= θ0,n +

n∑
i=1

θi,nE
[
Xi

t

]
, (5.7)

for any n ∈ Z+, where t ≥ 0 and θi,n ∈ R for all i ≤ n. Let Θn ∈ R
n×n be defined

recursively by

Θn =

Θn−1 0n−1×1

θn θn,n

 , (5.8)

where θn = [θ1,n, . . . , θn−1,n] and Θ1 = θ1,1. Furthermore, let θ0,n = [θ0,1, . . . , θ0,n]T.

Then, if θk,k , 0 for all k ∈ {1, . . . , n} are distinct, the nth moment of Xt can be expressed

E
[
Xn

t
]

= θn
(
Θn−1 − θn,nI

)−1
(
eΘn−1t − eθn,ntI

) (
xn−1(x0) +

θ0,n−1

θn,n

)
+ xn

0eθn,nt −
θ0,n(1 − eθn,nt)

θn,n

+
θn

θn,n
Θ−1

n−1

(
I − eΘn−1t

)
θ0,n−1, (5.9)

where x0 is the initial value of Xt and where xn(a) ∈ Rn is such that (xn(a))i = ai. If Xt

has a stationary distribution, then the nth steady-state moment E
[
Xn
∞

]
is given by

E
[
Xn
∞

]
=

1
θn,n

(
θnΘ

−1
n−1θ0,n−1 − θ0,n

)
, (5.10)

and these steady-state moments satisfy the recursive relationship

E
[
Xn+1
∞

]
= −

1
θn+1,n+1

(
θn+1sX

n (∞) + θ0,n+1

)
, (5.11)

where sX
n (∞) ∈ Rn is the vector of steady-state moments such that

(
sX

n (∞)
)

i
= E

[
Xi
∞

]
.

Proof. Using the definition of Θn in Equation 5.8, Equation 5.7 gives rise to the

system of ordinary differential equations given by

d
dt

sX
n (t) = ΘnsX

n (t) + θ0,n, (5.12)
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where sX
n (t) ∈ Rn is the vector of transient moments at time t ≥ 0 such that(

sX
n (t)

)
i

= E
[
Xi

t

]
for all 1 ≤ i ≤ n. We can observe that by definition the matrices

Θn form a Matryoshkan sequence, and thus by Lemma 5.2.2, we achieve the

stated transient solution. To prove the steady-state solution, we can first note

that if the process has a steady-state distribution then the vector sX
n (∞) ∈ Rn

defined
(
sX

n (∞)
)

i
= E

[
Xi
∞

]
will satisfy

0 = ΘnsX
n (∞) + θ0,n, (5.13)

as this is the equilibrium solution to the differential equation corresponding to

each of the moments. This system has a unique solution since Θn is nonsingular

due to the assumption that the diagonal values are unique and non-zero. Using

Proposition 5.2.1, we find the nth moment by

E
[
Xn
∞

]
= −vT

nΘ
−1
n θ0,n =

[
1
θn,n
θnΘ

−1
n−1 −

1
θn,n

] θ0,n−1

θ0,n

 =
1
θn,n

(
θnΘ

−1
n−1θ0,n−1 − θ0,n

)
,

which completes the proof of Equation 5.27. To conclude, one can note that each

line of the linear system in Equation 5.13 implies the stated recursion. �

5.3.2 Application to Hawkes Process Intensities

For our first example of this method let us turn to our motivating application,

the Markovian Hawkes process intensity. Via Hawkes (1971), this process is

defined as follows. Let λt be stochastic arrival process intensity such that

λt = λ∗ + (λ0 − λ
∗)e−βt +

∫ t

0
αe−β(t−s)dNs = λ∗ + (λ0 − λ

∗)e−βt +

Nt∑
i=1

αe−β(t−Ai),

where {Ai | i ∈ Z+} is the sequence of arrival epochs in the point process Nt, with

P (Nt+s − Nt = 0 | Ft) = P (Nt+s − Nt = 0 | λt) = e−
∫ s

0 λt+udu,
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where Ft is the filtration generated by the history of λt up to time t. We will

assume that β > α > 0 so that the process has a stationary distribution, and we

will also let λ∗ > 0 and λ0 > 0. Note that the process behaves as follows: at

arrivals λt increases by α and in the interims it decays exponentially at rate β

towards the baseline level λ∗. In this way, (λt,Nt) is referred to as a self-exciting

point process, as the occurrence of an arrival increases the intensity and thus

increases the likelihood that another arrival will occur soon afterwards. Because

the intensity λt forms a Markov process, we can write its infinitesimal generator

for a (sufficiently regular) function f : R+ → R as follows:

L f (λt) = λt ( f (λt + α) − f (λt)) − β (λt − λ
∗)

d f (λt)
dλt

.

Note that this expression showcases the process dynamics that we have de-

scribed, as the first term on the right-hand side corresponds to the product of

the arrival rate and the change in the process when an arrival occurs while the

second term captures the decay.

To obtain the nth moment we must consider f (·) of the form f (x) = xn. In the

simplest case when n = 1 this formula yields an ordinary differential equation

for the mean, which can be written

d
dt

E [λt] = αE [λt] − β (E [λt] − λ∗) = βλ∗ − (β − α)E [λt].

By comparison for the second moment at n = 2 we have

d
dt

E
[
λ2

t

]
= E

[
λt

(
(λt + α)2 − λ2

t

)
− 2βλt(λt − λ

∗)
]

= (2βλ∗ + α2)E [λt] − 2(β − α)E
[
λ2

t

]
,

and we can note that while the ODE for the mean is autonomous, the second

moment equation depends on both the mean and the second moment. Thus, to

solve for the second moment we must also solve for the mean, leading us to the
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following system of differential equations:

d
dt

E [λt]

E
[
λ2

t

]
 =

 −(β − α) 0

2βλ∗ + α2 −2(β − α)


E [λt]

E
[
λ2

t

]
 +

βλ
∗

0

 .
Moving on to the third moment, the infinitesimal generator formula yields

d
dt

E
[
λ3

t

]
= E

[
λt

(
(λt + α)3 − λ3

t

)
− 3βλ2

t (λt − λ
∗)
]

= α3E [λt]+3(βλ∗+α2)E
[
λ2

t

]
−3(β−α)E

[
λ3

t

]
,

and hence we see that this ODE now depends on all of the first three moments.

Thus, to solve for E
[
λ3

t

]
we need to solve the system of ordinary differential

equations

d
dt


E [λt]

E
[
λ2

t

]
E

[
λ3

t

]
 =


−(β − α) 0 0

2βλ∗ + α2 −2(β − α) 0

α3 3(βλ∗ + α2) −3(β − α)




E [λt]

E
[
λ2

t

]
E

[
λ3

t

]
 +


βλ∗

0

0

 ,
and this now suggests the Matryoshkan structure of these process moments: we

can note that the system for the second moment is nested within the system for

the third moment. That is, the matrix for the three dimensional system contains

the two dimensional system in its upper left-hand block, just as the vector of

the first three moments has the first two moments in its first two coordinates. In

general, we can see that the nth moment will satisfy the ODE given by

d
dt

E
[
λn

t
]

= E
[
λt

(
(λt + α)n − λn

t
)
− nβλn−1

t (λt − λ
∗)
]

=

n∑
k=1

(
n

k − 1

)
αn−k+1E

[
λk

t

]
− nβE

[
λn

t
]
+ nβλ∗E

[
λn−1

t

]
,

where we have simplified by use of the binomial theorem. Thus, the system of

differential equations needed to solve for the nth moment uses the matrix from

the (n − 1)th system augmented below by the row[
αn nαn−1

(
n
2

)
αn−2 . . .

(
n

n−3

)
α3

(
n

n−2

)
α2 + nβλ∗ −n(β − α)

]
, (5.14)
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and buffered on the right by a column of zeros. To collect these coefficients into

a coherent structure, let us define the matrix Pn(a) ∈ Rn×n for a ∈ R such that

(Pn(a))i, j =


(

i
j−1

)
ai− j+1 i ≥ j,

0 i < j.
(5.15)

If we momentarily disregard the terms with β in the general augment row in

Equation 5.14, one can observe that the remaining terms in this vector are given

by the bottom row of the matrix Pn(α). Furthermore, by definition {Pn(a) | n ∈

Z+} forms a Matryoshkan matrix sequence. We can also note that Pn(a) can be

equivalently defined as

Pn(a) =

n∑
k=1

a

0n−k×n−k 0n−k×k

0k×n−k Lk(a)

 ,
where Lk(a) = eadiag(1:k−1,−1) is the kth lower triangular Pascal matrix, i.e. the

nonzero terms in Lk(1) yield the first k rows of Pascal’s triangle. Alternatively,

Pn(a) can be found by creating a lower triangular matrix from the strictly lower

triangular values in Ln+1(a). For these reasons, we refer to the sequence of Pn(a)

as Matryoshkan Pascal matrices. For brief overviews and beautiful properties

of Pascal matrices, see Brawer and Pirovino (1992); Call and Velleman (1993);

Zhang (1997); Edelman and Strang (2004). As we have seen in the preceding

derivation, Matryoshkan Pascal matrices arise naturally in using the infinitesi-

mal generator for calculating moments of Markov processes. This follows from

the application of the binomial theorem to jump terms. Now, in the case of the

Markovian Hawkes process intensity we find closed form expressions for all

transient moments in Corollary 5.3.2.

Corollary 5.3.2. Let λt be the intensity of a Hawkes process with baseline intensity

λ∗ > 0, intensity jump α > 0, and decay rate β > α. Then, the nth moment of λt is given
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by

E
[
λn

t
]

= mλ
n

(
Mλ

n−1 + n(β − α)I
)−1 (

eMλ
n−1t − e−n(β−α)tI

) (
xn−1(λ0) −

βλ∗v1

n(β − α)

)
+ λn

0e−n(β−α)t

+ I{n=1}
βλ∗

β − α

(
1 − e−(β−α)t

)
−

βλ∗

n(β − α)
mλ

n

(
Mλ

n−1

)−1 (
I − eMλ

n−1t
)

v1, (5.16)

for all t ≥ 0 and n ∈ Z+, where v1 ∈ R
n is the unit vector in the first coordinate,

Mλ
n = βλ∗diag (2 : n,−1) − βdiag (1 : n) + Pn(α), mλ

n =

[(
Mλ

n

)
n,1
, . . . ,

(
Mλ

n

)
n,n−1

]
is

given by

(
mλ

n

)
j
=


(

n
j−1

)
αn− j+1 if j < n − 1,(

n
n−2

)
α2 + nβλ∗ if j = n − 1,

and xn(a) ∈ Rn is such that (xn(a))i = ai. In steady-state, the nth moment of λt is given

by

lim
t→∞

E
[
λn

t
]

= −
βλ

n(β − α)
mλ

n

(
Mλ

n−1

)−1
v1, (5.17)

for n ≥ 2 with limt→∞ E [λt] =
βλ∗

β−α
. Moreover, the (n + 1)th steady-state moment of the

Hawkes process intensity is given by the recursion

lim
t→∞

E
[
λn+1

t

]
=

1
(n + 1)(β − α)

mλ
n+1sλn, (5.18)

for all n ∈ Z+, where sλn ∈ Rn is the vector of steady-state moments defined such that(
sλn

)
i
= limt→∞ E

[
λi

t

]
for 1 ≤ i ≤ n.

5.3.3 Application to Shot Noise Processes

As a second example of calculating moments through Matryoshkan matrices,

consider a Markovian shot noise process; see e.g. Daley and Vere-Jones (2003)

for an introduction. That is, let ψt be defined such that

ψt =

Nt∑
i=1

Jie−β(t−Ai),
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where β > 0, {Ji | i ∈ Z+} is a sequence of i.i.d. positive random variables, Nt

is a Poisson process at rate λ > 0, and {Ai | i ∈ Z+} is the sequence of arrival

times in the Poisson process. These dynamics yield the following infinitesimal

generator:

L f (ψt) = λ ( f (ψt + Ji) − f (ψt)) − βψt
d f (ψt)

dψt
.

We can note that this is similar to the Hawkes process discussed in Subsec-

tion 5.3.2, as the right-hand side contains a term for jumps and a term for ex-

ponential decay. However, this infinitesimal generator formula also shows key

differences between the two processes, as the jumps in the shot noise process

are of random size and they occur at the fixed, exogenous rate λ > 0. Supposing

the mean jump size is finite, this now yields that the mean satisfies the ordinary

differential equation
d
dt

E
[
ψt

]
= λE [J1] − βE

[
ψt

]
,

whereas if E
[
J2

1

]
< ∞, the second moment of the shot noise process is given by

the solution to

d
dt

E
[
ψ2

t

]
= E

[
λ
(
(ψt + J1)2 − ψ2

t

)
− 2βψ2

t

]
= λE

[
J2

1

]
+ 2λE [J1]E

[
ψt

]
− 2βE

[
ψ2

t

]
,

which depends on both the second moment and the mean. This gives rise to the

linear system of differential equations

d
dt

E
[
ψt

]
E

[
ψ2

t

]
 =

 −β 0

2λE [J1] −2β


E

[
ψt

]
E

[
ψ2

t

]
 +

λE [J1]

λE
[
J2

1

]
 ,

and by observing that the differential equation for the third moment depends

on the first three moments if the third moment of the jump size is finite,

d
dt

E
[
ψ3

t

]
= E

[
λ
(
(ψt + J1)3 − ψ3

t

)
− 3βψ3

t

]
= λE

[
J3

1

]
+3λE

[
J2

1

]
E

[
ψt

]
+3λE [J1]E

[
ψ2

t

]
−3βE

[
ψ3

t

]
,
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we can see that the system for the first two moments again are contained in the

system for the first three moments:

d
dt


E

[
ψt

]
E

[
ψ2

t

]
E

[
ψ3

t

]
 =


−β 0 0

2λE [J1] −2β 0

3λE
[
J2

1

]
3λE [J1] −3β




E

[
ψt

]
E

[
ψ2

t

]
E

[
ψ3

t

]
 +


λE [J1]

λE
[
J2

1

]
λE

[
J3

1

]
 .

By use of the binomial theorem, we can observe that if E
[
Jn

1

]
< ∞ then the nth

moment of the shot noise process satisfies

d
dt

E
[
ψn

t
]

= E
[
λ
(
(ψt + J1)n − ψn

t
)
− nβψn

t
]

=

n−1∑
k=0

(
n
k

)
E

[
Jn−k

1

]
E

[
ψk

t

]
− nβE

[
ψn

t
]
,

which means that the nth dimensional system is equal to the preceding one aug-

mented below by the row vector[
nλE

[
Jn−1

1

] (
n
2

)
λE

[
Jn−2

1

] (
n
3

)
λE

[
Jn−3

1

]
. . .

(
n

n−2

)
λE

[
J2

1

]
nλE [J1] −nβ

]
,

and to the right by zeros. Bringing this together, this now leads us to Corol-

lary 5.3.3.

Corollary 5.3.3. Let ψt be the intensity of a shot noise process with epochs given by a

Poisson process with rate λ > 0, jump sizes drawn from the i.i.d. sequence of random

variables {Ji | i ∈ Z+}, and exponential decay at rate β > 0. If E
[
Jn

1

]
< ∞, the nth

moment of ψt is given by

E
[
ψn

t
]

= mψ
n

(
Mψ

n−1 + nβI
)−1

(
eMψ

n−1t − e−nβtI
) (

xn−1 (ψ0) −
λjn−1

nβ

)
+ ψn

0e−nβt

+
λE

[
Jn

1

]
nβ

(
1 − e−nβt

)
−
λmψ

n

nβ

(
Mψ

n−1

)−1
(
I − eMψ

n−1t
)

jn−1, (5.19)

for all t ≥ 0 and n ∈ Z+, where jn ∈ R
n is such that (jn)i = E

[
Ji

1

]
, Mψ

n ∈ R
n×n is

recursively defined

Mψ
n =

M
ψ
n−1 0n−1×1

mψ
n −nβ

 ,
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with the row vector mψ
n ∈ R

n−1 defined such that
(
mψ

n

)
i

=
(

n
i

)
λE

[
Jn−i

1

]
and with Mψ

1 =

−β, and where xn(a) ∈ Rn is such that (xn(a))i = ai. In steady-state, the (n+1)th moment

of the shot noise process is given by

lim
t→∞

E
[
ψn

t
]

=
λ

nβ

(
E

[
Jn

1
]
−mψ

n

(
Mψ

n−1

)−1
jn−1

)
, (5.20)

for n ≥ 2 where limt→∞ E
[
ψt

]
= λ

β
E [J1]. Moreover, if E

[
Jn+1

1

]
< ∞ the (n + 1)th moment

of the shot noise process is given by the recursion

lim
t→∞

E
[
ψn+1

t

]
=

1
(n + 1)β

(
mψ

n+1sψn + E
[
Jn+1

1

])
, (5.21)

for all n ∈ Z+, where sψn ∈ Rn is the vector of steady-state moments defined such that

(sψn )i = limt→∞ E
[
ψi

t

]
for 1 ≤ i ≤ n.

5.3.4 Application to Itô Diffusions

For our third example, we consider an Itô diffusion; see e.g. Oksendal (2013) for

an overview. Let S t be given by the stochastic differential equation

dS t = g(S t)dt + h(S t)dBt,

where Bt is a Brownian motion and g(·) and h(·) are real-valued functions. Then,

the infinitesimal generator for this process is given by

L f (S t) = g(S t)
d f (S t)

dS t
+

h(S t)2

2
d2 f (S t)

dS 2
t
,

where f : R→ R. Because we will be considering functions of the form f (x) = xn

for n ∈ Z+, we will now specify the forms of g(·) and h(·) to be g(x) = µ + θx

for some µ ∈ R and θ ∈ R and h(x) = σxγ/2 for some σ ∈ R and γ ∈ {0, 1, 2}.

One can note that this encapsulates a myriad of relevant stochastic processes

including many that are popular in the financial models literature, such as
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Ornstein-Uhlenbeck (OU) processes, geometric Brownian motion (GBM), and

Cox-Ingersoll-Ross (CIR) processes. In this case, the infinitesimal generator be-

comes

L f (S t) = (µ + θS t)
d f (S t)

dS t
+
σ2S γ

t

2
d2 f (S t)

dS 2
t
,

meaning that we can express the ordinary differential equation for the mean as

d
dt

E [S t] = µ + θE [S t],

and similarly the second moment will be given by the solution to

d
dt

E
[
S 2

t

]
= E

[
2(µ + θS t)S t + σ2S γ

t

]
= 2µE [S t] + 2θE

[
S 2

t

]
+ σ2E

[
S γ

t
]
.

For the sake of example, we now let γ = 1 as is the case in the CIR process. Then,

the first two transient moments of S t will be given by the solution to the system

d
dt

E [S t]

E
[
S 2

t

]
 =

 θ 0

2µ + σ2 2θ


E [S t]

E
[
S 2

t

]
 +

µ0
 .

By observing that the third moment differential equation is

d
dt

E
[
S 3

t

]
= E

[
3(µ + θS t)S 2

t + 3σ2S γ+1
t

]
= 3µE

[
S 2

t

]
+ 3θE

[
S 3

t

]
+ 3σ2E

[
S γ+1

t

]
,

we can note that the third moment system for γ = 1 is

d
dt


E [S t]

E
[
S 2

t

]
E

[
S 3

t

]
 =


θ 0 0

2µ + σ2 2θ 0

0 3µ + 3σ2 3θ




E [S t]

E
[
S 2

t

]
E

[
S 3

t

]
 +


µ

0

0

 ,
and this showcases the Matryoshkan nesting structure, as the second moment

system is contained within the third. Because the general nth moment for n ≥ 2

has differential equation given by

d
dt

E
[
S n

t
]

= E
[
n(µ + θS t)S n−1

t +
n(n − 1)σ2

2
S n+γ−2

t

]
= nµE

[
S n−1

t

]
+nθE

[
S n

t
]
+

n(n − 1)σ2

2
E

[
S n+γ−2

t

]
,
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we can see that the (n − 1)th system can be augmented below by the row vector

γ = 1 [
0 0 . . . 0 nµ +

n(n−1)σ2

2 nθ
]
,

and to the right by zeros. Through this observation, we can now give the mo-

ments of Itô diffusions in Corollary 5.3.4.

Corollary 5.3.4. Let S t be an Itô diffusion that satisfies the stochastic differential equa-

tion

dS t = (µ + θS t)dt + σS γ/2
t dBt, (5.22)

where Bt is a Brownian motion and with µ, θ, σ ∈ R and γ ∈ {0, 1, 2}. Then, the nth

moment of S t is given by

E
[
S n

t
]

= mS
n

(
MS

n−1 − χnI
)−1 (

eMS
n−1t − eχntI

) (
xn−1(S 0) +

µv1 + σ2I{γ=0}v2

χn

)
+ S n

0eχnt

−
(
µI{n=1} + σ2I{γ=0,n=2}

) 1 − eχnt

χn
+

mS
n

χn

(
MS

n−1

)−1 (
I − eMS

n−1t
) (
µv1 + σ2I{γ=0}v2

)
,

(5.23)

for all t ≥ 0 and n ∈ Z+, where χn = nθ+ n
2 (n−1)σ2I{γ=2}, MS

n = θdiag(1 : n) +µdiag(2 :

n,−1) + σ2

2 diag(d2−γ
n+γ−2, γ − 2) for d j

k ∈ R
k such that (d j

k)i = ( j + i)( j + i − 1), and

mS
n =

[(
MS

n

)
n,1
, . . . ,

(
MS

n

)
n,n−1

]
is such that

(
mS

n

)
j
=



nµ +
n(n−1)σ2

2 I{γ=1} j = n − 1,

n(n−1)σ2

2 I{γ=0} j = n − 2,

0 1 ≤ j < n − 2,

and xn(a) ∈ Rn is such that (xn(a))i = ai. If θ < 0 and γ ∈ {0, 1}, then the nth steady-state

moment of S t is given by

lim
t→∞

E
[
S n

t
]

=
µ

χn
mS

n

(
MS

n−1

)−1
v1, (5.24)
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for n ≥ 2 with limt→∞ E [S t] = −
µ

θ
. Moreover, the (n + 1)th steady-state moment of S t is

given by the recursion

lim
t→∞

E
[
S n+1

t

]
= −

1
χn

mS
n+1sS

n , (5.25)

for all n ∈ Z+, where sS
n ∈ R

n is the vector of steady-state moments defined such that(
sS

n

)
i
= limt→∞ E

[
S i

t

]
for 1 ≤ i ≤ n.

As a consequence of these expressions we can also gain insight for the mo-

ments of an Itô diffusion in the case of non-integer γ ∈ [0, 2], as is used in

volatility models such as the CEV model and the SABR model, see e.g. Henry-

Labordere (2008). This can be achieve through bounding the differential equa-

tions, as the nth moment of such a diffusion is again given by

d
dt

E
[
S n

t
]

= nµE
[
S n−1

t

]
+ nθE

[
S n

t
]
+

n(n − 1)σ2

2
E

[
S n+γ−2

t

]
,

and the right-most term in this expression can be bounded above and below

E
[
S n+bγc−2

t

]
≤ E

[
S n+γ−2

t

]
≤ E

[
S n+dγe−2

t

]
,

and the differential equations given by substituting these bounded terms form a

closed system solvable by Corollary 5.3.4. Assuming the true differential equa-

tion and the upper and lower bounds all share an initial value, the solution to

the bounded equations bounds the solution to the true moment equation, see

Hale and Lunel (2013).

5.3.5 Application to Growth-Collapse Processes

For a fourth example, we consider growth-collapse processes with Poisson

driven shocks. These processes have been studied in variety of contexts, see e.g.
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Boxma et al. (2006); Kella (2009); Kella and Löpker (2010); Boxma et al. (2011).

More recently, these processes and their related extensions have seen renewed

interest in the study of the crypto-currency Bitcoin, see for example Frolkova

and Mandjes (2019); Koops (2018); Javier and Fralix (2019); Fralix (2019). While

growth-collapse processes can be defined in many different ways, for this exam-

ple we use a definition in the style of Section 4 from Boxma et al. (2006). We let

Yt be the state of the growth collapse model and let {Ui | i ∈ Z+} be a sequence of

independent Uni(0, 1) random variables that are also independent from the state

and history of the growth-collapse process. Then, the infinitesimal generator of

Yt is given by

L f (Yt) = λ
d f (Yt)

dYt
+ µ ( f (UiYt) − f (Yt)) .

Thus, Yt experiences linear growth at rate λ > 0 throughout time but it also

collapses at epochs given by a Poisson process with rate µ > 0. At the ith collapse

epoch the process falls to a fraction of its current level, specifically it jumps

down to UiYt. Using the infinitesimal generator, we can see that the mean of this

growth-collapse process satisfies

d
dt

E [Yt] = λ + µ (E [U1Yt] − E [Yt]) = λ −
µ

2
E [Yt],

and its second moment will satisfy

d
dt

E
[
Y2

t

]
= 2λE [Yt] + µ

(
E

[
U2

1Y2
t

]
− E

[
Y2

t

])
= 2λE [Yt] −

2µ
3

E
[
Y2

t

]
.

Therefore, we can write the linear system of differential equations for the second

moment of this growth-collapse process as

d
dt

E [Yt]

E
[
Y2

t

]
 =

−
µ

2 0

2λ −
2µ
3


E [Yt]

E
[
Y2

t

]
 +

λ0
 .
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Moving to the third moment, via the infinitesimal generator we write its differ-

ential equation as

d
dt

E
[
Y3

t

]
= 3λE

[
Y2

t

]
+ µ

(
E

[
U3

1Y3
t

]
− E

[
Y3

t

])
= 3λE

[
Y2

t

]
−

3µ
4

E
[
Y3

t

]
,

which thus shows that the system of differential equations for the third moment

is

d
dt


E [Yt]

E
[
Y2

t

]
E

[
Y3

t

]
 =


−
µ

2 0 0

2λ −
2µ
3 0

0 3λ −
3µ
4




E [Yt]

E
[
Y2

t

]
E

[
Y3

t

]
 +


λ

0

0

 ,
which evidently encapsulates the system for the first two moments. We can note

that the general nth moment will satisfy

d
dt

E
[
Yn

t
]

= nλE
[
Yn−1

t

]
+ µ

(
E

[
Un

1Yn
t
]
− E

[
Yn

t
])

= nλE
[
Yn−1

t

]
−

nµ
n + 1

E
[
Yn

t
]
,

and thus the system for the nth moment is given by appending the row vector[
0 0 . . . 0 nλ −

nµ
n+1

]
below the matrix from the (n − 1)th system augmented by zeros on the right.

Following this derivation, we reach the following general expressions for the

moments in Corollary 5.3.5. Furthermore, we can note that because of the rela-

tive simplicity of this particular structure, we are able to solve the recursion for

the steady-state moments and give these terms explicitly.

Corollary 5.3.5. Let Yt be a growth-collapse process with growth rate λ > 0 and uni-

formly sized collapses occurring according to a Poisson process with rate µ > 0. Then,

the nth moment of Yt is given by

E
[
Yn

t
]

= nλvT
n−1

(
MY

n−1 +
nµ

n + 1
I
)−1 (

eMY
n−1t − e−

nµt
n+1 I

) (
xn−1(y0) −

(n + 1)λv1

nµ

)
+ yn

0e−
nµt
n+1

+
(n + 1)λI{n=1}

nµ

(
1 − e−

nµt
n+1

)
−

(n + 1)λ2

µ
vT

n−1

(
MY

n−1

)−1 (
I − eMY

n−1t
)

v1, (5.26)
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where y0 is the initial value of Yt, xn(a) ∈ Rn is such that (xn(a))i = ai, MY
n =

λdiag (2 : n,−1) − µdiag
(

1
2 : n

n+1

)
, and mY

n = [
(
MY

n

)
n,1
, . . . ,

(
MY

n

)
n,n−1

] is such that

mY
n = nλvT

n−1. Moreover the nth steady-state moment of Yt is given by

lim
t→∞

E
[
Yn

t
]

= 2n!
(
λ

µ

)n

, (5.27)

for n ∈ Z+.

5.3.6 Application to Ephemerally Self-Exciting Processes

As a final detailed example of the applicability of Matryoshkan matrices, we

now consider a stochastic process we have analyzed in Chapter 4. This process

is a linear birth-death-immigration process in which the occurrence of an arrival

increases the arrival rate by an amount α > 0, like in the Hawkes process, and

this increase expires after an exponentially distributed duration with some rate

µ > α. In this way, this process is an ephemerally self-exciting process. Given a

baseline intensity ν∗ > 0, let Qt be such that new arrivals occur at rate ν∗+αQt and

then the overall rate until the next excitement expiration is µQt. One can then

think of Qt as the number of entities still causing active excitement at time t ≥ 0.

We will refer to Qt as the number in system for this ephemerally self-exciting

process. The infinitesimal generator for a function f : N→ R is thus

L f (Qt) = (ν∗ + αQt) ( f (Qt + 1) − f (Qt)) + µQt ( f (Qt − 1) − f (Qt)) ,

which again captures the dynamics of the process, as the first term on the right

hand-side is the product of the up-jump rate and the change in function value

upon an increase in the process while the second term is the product of the

down-jump rate and the corresponding process decrease. This now yields an
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ordinary differential equation for the mean given by

d
dt

E [Qt] = ν∗ + αE [Qt] − µE [Qt] = ν∗ − (µ − α)E [Qt],

while the second moment will satisfy

d
dt

E
[
Q2

t

]
= E

[
(ν∗ + αQt)

(
(Qt + 1)2 − Q2

t

)
+ µQt

(
(Qt − 1)2 − Q2

t

)]
= (2ν∗ + µ + α) E [Qt] + ν∗ − 2(µ − α)E

[
Q2

t

]
.

Thus, the first two moments are given by the solution to the linear system

d
dt

E [Qt]

E
[
Q2

t

]
 =

 −(µ − α) 0

2ν∗ + µ + α −2(µ − α)


E [Qt]

E
[
Q2

t

]
 +

ν
∗

ν∗

 ,
and by observing that the third moment differential equation is

d
dt

E
[
Q3

t

]
= E

[
(ν∗ + αQt)

(
(Qt + 1)3 − Q3

t

)
+ µQt

(
(Qt − 1)3 − Q3

t

)]
= (3ν∗ + 3α + 3µ) E

[
Q2

t

]
+ (3ν∗ + α − µ) E [Qt] + ν∗ − 3(µ − α)E

[
Q3

t

]
,

we can observe that the third moment system does indeed encapsulate that of

the second moment:

d
dt


E [Qt]

E
[
Q2

t

]
E

[
Q3

t

]
 =


−(µ − α) 0 0

2ν∗ + µ + α −2(µ − α) 0

3ν∗ + α − µ 3ν∗ + 3α + 3µ −3(µ − α)




E [Qt]

E
[
Q2

t

]
E

[
Q3

t

]
 +


ν∗

ν∗

ν∗

 .
In general, the nth moment is given by the solution to

d
dt

E
[
Qn

t
]

= E
[
(ν∗ + αQt)

(
(Qt + 1)n − Qn

t
)

+ µQt
(
(Qt − 1)n − Qn

t
)]

= ν∗ + ν∗
n−1∑
k=1

(
n
k

)
E

[
Qk

t

]
+ α

n∑
k=1

(
n

k − 1

)
E

[
Qk

t

]
+ µ

n∑
k=1

(
n

k − 1

)
E

[
Qk

t

]
(−1)n−k−1,

which means that the nth system is given by augmenting the previous system

below by[
nν∗ + α + µ(−1)n

(
n
2

)
ν∗ + nα + nµ(−1)n−1 . . . nν∗ +

(
n
2

)
α +

(
n
2

)
µ −n(µ − α)

]
,
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and to the right by zeros. By comparing this row vector to the definition of the

Martyoshkan Pascal matrices in Equation 5.15, we arrive at explicit forms for

the moments of this process shown now in Corollary 5.3.6.

Corollary 5.3.6. Let Qt be the number in system for an ephemerally self-exciting pro-

cess with baseline intensity ν∗ > 0, intensity jump α > 0, and duration rate µ > α.

Then, the nth moment of Qt is given by

E
[
Qn

t
]

= mQ
n

(
MQ

n−1 + n(µ − α)I
)−1 (

eMQ
n−1t − e−n(µ−α)tI

) (
xn−1(Q0) −

ν∗v
n(µ − α)

)
+ Qn

0e−n(µ−α)t

+
ν∗

n(µ − α)

(
1 − e−n(µ−α)t

)
−

ν∗mQ
n

n(µ − α)

(
MQ

n−1

)−1 (
I − eMQ

n−1t
)

v, (5.28)

for all t ≥ 0 and n ∈ Z+, where MQ
n = ν∗Pn(1)diag(v,−1) + αPn(1) + µPn(−1), and

mQ
n =

[(
MQ

n

)
n,1
, . . . ,

(
MQ

n

)
n,n−1

]
is such that

(
mQ

n

)
j
=

(
n
j

)
ν∗+

(
n

j−1

)
α+

(
n

j−1

)
µ(−1)n− j−1 and

xn(a) ∈ Rn is such that (xn(a))i = ai. In steady-state, the nth moment of Qt is given by

lim
t→∞

E
[
Qn

t
]

=
ν∗

µ − α

(
1 −mQ

n

(
MQ

n−1

)−1
v
)
, (5.29)

for n ≥ 2 with limt→∞ E [Qt] = ν∗

µ−α
. Moreover the (n + 1)th steady-state moment of the

ephemerally self-exciting process is given by the recursion

lim
t→∞

E
[
Qn+1

t

]
=

1
(n + 1)(µ − α)

(
mQ

n+1sQ
n + ν∗

)
, (5.30)

for all n ∈ Z+, where sQ
n ∈ R

n is the vector of steady-state moments defined such that(
sQ

n

)
i
= limt→∞ E

[
Qi

t

]
for 1 ≤ i ≤ n.

5.3.7 Additional Applications by Combination and Permuta-

tion

While the preceding examples are the the only detailed examples we include

in this chapter, we can note that these Matryoshkan matrix methods can be
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applied to many other settings. In fact, one can observe that these example

derivations can be applied directly to processes that feature a combination of

their structures, such as the dynamic contagion process introduced in Dassios

and Zhao (2011). The dynamic contagion process is a point process that is both

self-excited and externally excited, meaning that its intensity experiences jumps

driven by its own activity and by the activity of an exogenous Poisson pro-

cess. In this way, the process combines the behavior of the Hawkes and shot

noise processes. Hence, its infinitesimal generator can be written using a com-

bination of expressions used in Subsections 5.3.2 and 5.3.3, implying that all

moments of the process can be calculated through this methodology. Similarly,

these methods can also be readily applied to processes that combine dynamics

from Hawkes processes and from Itô diffusions, such as affine point processes.

These processes, studied in e.g. Errais et al. (2010); Zhang et al. (2015); Gao and

Zhu (2019), feature both self-excitement and diffusion behavior and thus have

an infinitesimal generator that can be expressed using terms from the genera-

tors for Hawkes and Itô processes. Similarly, one could study the combination

of externally driven jumps and diffusive behavior such as in affine jump diffu-

sions, see e.g. Duffie et al. (2000). Of course, one can also consider permutations

of the model features seen in our examples, such as trading fixed size jumps for

random ones to form marked Hawkes processes or changing to randomly sized

batches of arrivals in the ephemerally self-exciting process. In general, the key

requirement from the assumptions in Theorem 5.3.1 is the closure of the system

of moment differential equations specified in Equation 5.7. This is equivalent

to having the infinitesimal generator of any polynomial being a polynomial of
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order no more than the original. That is, infinitesimal generators of the form

L f (Xt) = (α0 + α1Xt) ( f (Xt + Ai) − f (Xt))︸                                   ︷︷                                   ︸
Up-jumps

+ (α2 + α3Xt) ( f (Xt − Bi) − f (Xt))︸                                   ︷︷                                   ︸
Down-jumps

+ (α4 + α5Xt)
d f (Xt)

dXt︸                 ︷︷                 ︸
Drift, decay, or growth

+ (α6 + α7Xt + α8X2
t )

d2 f (Xt)
dX2

t︸                             ︷︷                             ︸
Diffusion

+α9 ( f (CiXt) − f (Xt))︸                   ︷︷                   ︸
Expansion or collapse

,

can be handled by this methodology, where α j ∈ R for all j and where the se-

quences {Ai}, {Bi} and {Ci} are of mutually independent random variables. Fi-

nally we note that this example generator need not be exclusive, as it is possible

that other dynamics may also meet the closure requirements in Equation 5.7.

5.4 Complexity Analysis and Numerical Experiments

In this section we address the calculations within this method through compar-

ison with parsimonious differential equation techniques. Specifically, we com-

pare both the result and the calculation time of these two methods in computing

the transient moments of these stochastic processes. For the Matryoshkan-based

approach, we define the calculation time as the time needed to complete the

matrix computations of the moments at the specified point in time. In the dif-

ferential equation approach, we take the calculation time as the time needed to

reach the specified time through applying Euler’s iterative method to the lin-

ear system of ODE’s in Equation 5.12, starting at time 0. We choose to compare

to Euler’s method because it is the fastest technique available in terms of to-

tal run time. Of course in practice in solving differential equations one may

use more sophisticated approaches such as higher order Runge-Kutta methods,

but such techniques are inherently at least as computationally demanding as

Euler’s method. As we will see however, our direct Matryoshkan matrix ap-
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proach is more efficient than Euler’s method outside of very short time inter-

vals, while also delivering much more accurate answers. In Subsection 5.4.1 we

compare these two in a formal complexity analysis, and in Subsection 5.4.2 we

compare empirically through numerical experiments. Because the same matri-

ces are used in both approaches, the time to form the matrices is omitted from

each empirical calculation time reported in Subsection 5.4.2, although we do

address the complexity of this pre-computation step in Subsection 5.4.1.

5.4.1 Complexity Characterization

In computing the moments through either the differential equations approach

or the Matryoshkan matrix approach, one must first form the matrix that de-

scribes the system of differential equations. Thus, before comparing the two

methods let us first quickly discuss this common pre-computation step. To form

the matrix needed to solve for the nth moment, there will be O(n2) operations.

Specifically, there are 1
2n(n + 1) elements to write in this lower triangular matrix,

which can be naturally conducted by writing vectors of size increasing from 1

to n through the nested Matryoshkan structure of the matrix.

Turning now to Euler’s method, we will let ∆ > 0 be the time-step size pa-

rameter. For simplicity we will assume that the desired time point t is a multiple

of ∆, meaning that there will be t/∆ iterations within the method to calculate the

moment across time from the known initial value. Since the matrix multiplica-

tions will take O(n2) time at each step, the total complexity of Euler’s method

will thus be O(n2t/∆), with the global error known to be O(∆) (Butcher, 2016). By

comparison in the direct Matryoshkan calculations, the matrix exponential cal-
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culations imply that this method is O(n3). There is of course no dependence on

∆, and there exist methods in which the coefficients on n3 do not depend on t, but

rather only at lower powers of n (Moler and Van Loan, 2003). It is also possible

this calculation could be expedited, at least in terms of the hidden coefficients,

through leveraging Proposition 5.2.1 and the triangularity of the matrices.

In many applications, we would expect the number of Eulerian time steps

should be much larger than the order of the largest moment, i.e. t/∆ � n. For

example, even at a very high order moment like n = 100, taking a modest time

step of ∆ = .01 would then put times t ≥ 1 as at least as expensive for Eu-

ler’s method as for the Matryoshkan approach. Of course, as the time step be-

comes more refined or as longer time horizons are considered, the Matryoshkan

matrix calculations should become even more competitive by comparison. As

we have discussed, this superiority in complexity should also immediately ex-

tend to comparisons to other numerical differential equation techniques that are

themselves more complex than Euler’s method. Furthermore, differential equa-

tion techniques should incur an time-step dependent error in their solution, and

the closed form solutions of the Matryoshkan will not be subject to this.

5.4.2 Empirical Comparisons and Speed Tests

To demonstrate the computational efficiency and numerical precision of this

method in practice, we now examine the five detailed examples covered in

Subsections 5.3.2, 5.3.3, 5.3.4, 5.3.5, and 5.3.6, apply our Matryoshkan matrix

methodology, and compare its performance to solving the differential equations

numerically through Euler’s method. To compare the results produced by the
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two methods, we give the absolute and relative error of Euler’s method to the

Matryoshkan method. That is, for mD as the Eulerian moment differential equa-

tion solution and mM as the Matryoshkan calculated moment, we define these

errors as

Absolute Error = |mD − mM| and Relative Error =
|mD − mM|

mM
.

All calculations are performed using simple MATLAB code on a 64-bit Windows

machine with 16 GB of memory. In all four examples, we evaluate four different

step sizes for Euler’s method: 0.01, 0.001, 0.0001, and 0.00001. All time and error

results presented in the following tables are found through averaging the results

of 20 trial calculations per scenario.

We begin with the moments of the Hawkes process intensity, the first exam-

ple we have discussed and the original motivation for this work. It is worth

noting that to the best of our knowledge even the recognition of the matrix

structure of the moments ODE system is a new contribution, as the highest or-

der moment with explicitly stated differential equation is the fourth moment,

presented without proof or solution in ?. Similarly, the highest order moment

with closed form solution (either transient or stationary) previously given in the

literature appears to be the second. In Table 5.1, we give the errors and the time

incurred for computing the first 4, 10, 20, and 100 moments. For this example we

take a baseline intensity of λ∗ = 1, an intensity jump size of α = 1, a decay rate

of β = 2, and we compute the moments for time t = 10. Additionally, we assume

the initial value of the intensity is equal to the baseline. As can be quickly ob-

served, the calculation time in the Matryoshkan computation outpaces Euler’s

method in all scenarios regardless of the Eulerian step size. Furthermore, when

Euler’s method is performed with a smaller, more precise step size, we find

that its solution is increasingly close to the solution given by the Matryoshkan
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method as both the relative error and the absolute error decrease with the step

size. In the most precise setting for Euler’s method, the Matryoshkan method’s

run time is 4 orders of magnitude smaller for the 4, 10, and 20 moment settings

and 3 orders of magnitude smaller for the 100th moment.

n = 4 Run Time Absolute Error Relative Error
Matryoshkan 2.1 × 10−4 sec · ·

Euler ∆ = 10−2 1.4 × 10−3 sec 3.0 × 10−4 5.0 × 10−6

Euler ∆ = 10−3 1.3 × 10−2 sec 3.1 × 10−5 5.1 × 10−7

Euler ∆ = 10−4 1.3 × 10−1 sec 3.1 × 10−6 5.2 × 10−8

Euler ∆ = 10−5 1.3 × 100 sec 3.1 × 10−7 5.2 × 10−9

n = 10 Run Time Absolute Error Relative Error
Matryoshkan 2.3 × 10−4 sec · ·

Euler ∆ = 10−2 1.5 × 10−3 sec 4.4 × 101 1.0 × 10−5

Euler ∆ = 10−3 1.4 × 10−2 sec 4.5 × 100 1.1 × 10−6

Euler ∆ = 10−4 1.4 × 10−1 sec 4.5 × 10−1 1.1 × 10−7

Euler ∆ = 10−5 1.4 × 100 sec 4.5 × 10−2 1.1 × 10−8

n = 20 Run Time Absolute Error Relative Error
Matryoshkan 2.5 × 10−4 sec · ·

Euler ∆ = 10−2 1.5 × 10−3 sec 7.8 × 1012 1.7 × 10−5

Euler ∆ = 10−3 1.5 × 10−2 sec 8.0 × 1011 1.8 × 10−6

Euler ∆ = 10−4 1.4 × 10−1 sec 8.0 × 1010 1.8 × 10−7

Euler ∆ = 10−5 1.4 × 100 sec 8.0 × 109 1.8 × 10−8

n = 100 Run Time Absolute Error Relative Error
Matryoshkan 4.3 × 10−3 sec · ·

Euler ∆ = 10−2 5.0 × 10−3 sec 3.0 × 10145 5.1 × 10−5

Euler ∆ = 10−3 4.9 × 10−2 sec 3.1 × 10144 5.2 × 10−6

Euler ∆ = 10−4 4.6 × 10−1 sec 3.1 × 10143 5.2 × 10−7

Euler ∆ = 10−5 4.4 × 100 sec 3.1 × 10142 5.3 × 10−8

Table 5.1: Comparison of run time and errors for Hawkes process moment cal-
culation via Matryoshkan matrix method and via Euler differential equation
methods as the moment size increases.

We find similarly effective performance for the shot noise process. In the

example shown in Table 5.2, we suppose that the Poisson process arrival rate is

λ = 1 and that the distribution of the shot noise is LogNormal with µ = 0 and

σ = 1. Furthermore, we assume that the exponential decay rate is β = 4 and we

evaluate the moments at time t = 5. Because of the scale of these moments, we
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now perform these computations for n = 5, 10, 15, and 20. Again we see that

as the step size in Euler’s method decreases the differences between the pair of

results shrinks, although in this case the run times of the Matryoshkan method

and Euler’s method with step size 0.01 are of the same magnitude. Neverthe-

less, as Euler’s method grows increasingly precise the Matryoshkan approach

becomes more favorable; its run time is 3 orders of magnitude smaller than the

most precise Euler’s computational duration.

n = 5 Run Time Absolute Error Relative Error
Matryoshkan 2.1 × 10−4 sec · ·

Euler ∆ = 10−2 1.9 × 10−4 sec 1.3 × 10−9 3.2 × 10−10

Euler ∆ = 10−3 2.0 × 10−3 sec 1.4 × 10−10 3.5 × 10−11

Euler ∆ = 10−4 1.9 × 10−2 sec 1.4 × 10−11 3.5 × 10−12

Euler ∆ = 10−5 1.9 × 10−1 sec 1.6 × 10−12 3.9 × 10−13

n = 10 Run Time Absolute Error Relative Error
Matryoshkan 2.2 × 10−4 sec · ·

Euler ∆ = 10−2 1.9 × 10−4 sec 2.6 × 102 5.6 × 10−10

Euler ∆ = 10−3 1.9 × 10−3 sec 2.9 × 101 6.0 × 10−11

Euler ∆ = 10−4 1.9 × 10−2 sec 2.9 × 100 6.1 × 10−12

Euler ∆ = 10−5 1.9 × 10−1 sec 3.2 × 10−1 6.7 × 10−13

n = 15 Run Time Absolute Error Relative Error
Matryoshkan 2.6 × 10−4 sec · ·

Euler ∆ = 10−2 2.2 × 10−4 sec 1.6 × 1039 8.4 × 10−10

Euler ∆ = 10−3 2.0 × 10−3 sec 1.8 × 1038 9.1 × 10−11

Euler ∆ = 10−4 2.0 × 10−2 sec 1.8 × 1037 9.2 × 10−12

Euler ∆ = 10−5 2.0 × 10−1 sec 2.0 × 1036 1.0 × 10−12

n = 20 Run Time Absolute Error Relative Error
Matryoshkan 3.4 × 10−4 sec · ·

Euler ∆ = 10−2 2.1 × 10−4 sec 2.1 × 10115 1.1 × 10−9

Euler ∆ = 10−3 2.1 × 10−3 sec 2.3 × 10114 1.2 × 10−10

Euler ∆ = 10−4 2.1 × 10−2 sec 2.3 × 10113 1.2 × 10−11

Euler ∆ = 10−5 2.1 × 10−1 sec 2.5 × 10112 1.3 × 10−12

Table 5.2: Comparison of run time and errors for shot noise process moment
calculation via Matryoshkan matrix method and via Euler differential equation
methods as the moment size increases.

In Table 5.3 we perform these computational experiments for the moments

of a Cox-Ingersoll-Ross (CIR) process, which is an Itô diffusion with parameter
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γ = 1. Moreover we assume that µ = 1, θ = 1, and σ = 1, and we compute

the moments at time t = 5 for n = 4, 10, 20, and 100. Like in the Hawkes

process example, the Matryoshkan approach outperforms Euler’s method in

terms of calculation time in this example in all moment scenarios and step sizes.

Moreover we again see that as the step size decreases the error between the two

methods decreases while the Eulerian computation time becomes much larger

than the Matryoshkan run time. Specifically for the first 4, 10, and 20 moment

calculation experiments the Matryoshkan is faster by 4 orders of magnitude and

in the n = 100 setting is is 3 orders of magnitude faster.

n = 4 Run Time Absolute Error Relative Error
Matryoshkan 2.3 × 10−4 sec · ·

Euler ∆ = 10−2 1.4 × 10−3 sec 6.8 × 10−3 9.3 × 10−4

Euler ∆ = 10−3 1.3 × 10−2 sec 4.8 × 10−4 6.6 × 10−5

Euler ∆ = 10−4 1.3 × 10−1 sec 4.9 × 10−5 6.6 × 10−6

Euler ∆ = 10−5 1.3 × 100 sec 6.8 × 10−6 9.4 × 10−7

n = 10 Run Time Absolute Error Relative Error
Matryoshkan 2.4 × 10−4 sec · ·

Euler ∆ = 10−2 1.4 × 10−3 sec 8.2 × 102 2.3 × 10−3

Euler ∆ = 10−3 1.3 × 10−2 sec 5.8 × 101 1.6 × 10−4

Euler ∆ = 10−4 1.3 × 10−1 sec 5.8 × 100 1.6 × 10−5

Euler ∆ = 10−5 1.3 × 100 sec 8.3 × 10−1 2.3 × 10−6

n = 20 Run Time Absolute Error Relative Error
Matryoshkan 2.7 × 10−4 sec · ·

Euler ∆ = 10−2 1.4 × 10−3 sec 1.8 × 1011 4.3 × 10−3

Euler ∆ = 10−3 1.3 × 10−2 sec 1.3 × 1010 2.9 × 10−4

Euler ∆ = 10−4 1.3 × 10−1 sec 1.3 × 109 2.9 × 10−5

Euler ∆ = 10−5 1.3 × 100 sec 1.8 × 108 4.3 × 10−6

n = 100 Run Time Absolute Error Relative Error
Matryoshkan 2.0 × 10−3 sec · ·

Euler ∆ = 10−2 2.8 × 10−3 sec 4.8 × 10127 1.3 × 10−2

Euler ∆ = 10−3 2.7 × 10−2 sec 2.1 × 10126 5.6 × 10−4

Euler ∆ = 10−4 2.8 × 10−1 sec 2.1 × 10125 5.6 × 10−5

Euler ∆ = 10−5 2.7 × 100 sec 4.7 × 10124 1.2 × 10−5

Table 5.3: Comparison of run time and errors for CIR process moment calcula-
tion via Matryoshkan matrix method and via Euler differential equation meth-
ods as the moment size increases.
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We evaluate the Matryoshkan matrix method for the growth-collapse pro-

cess in Table 5.4. Like in Section 4 of Boxma et al. (2006), we take λ = 1 and we

also set µ = 1
2 . We evaluate the moments at time t = 8 and the moments n = 5, 10,

15, and 20. In addition to observing that the Matryoshkan approach is an order

of magnitude faster than any of the differential equation methods, we can also

note that the relative errors are the largest we have seen in these experiments

across all the Eulerian step sizes. At best, the relative error is of order 10−6, and

in this case the Matryoshkan method run time is four orders of magnitude faster.

As was the case for each of the other processes, we can observe that as the step

size is decreased, the increased precision in Euler’s method yields results closer

and closer to the moments calculated by the Matryoshkan approach.

As a final table of computation comparisons, we now evaluate the moments

of the Affine Queue-Hawkes process with baseline intensity ν∗ = 1, intensity

jump size α = 2, and duration rate µ = 3. Table 5.5 contains the calculation times

and errors for computing the first 4, 10, 20, and 100 moments of this process

at time t = 5. Again a familiar pattern emerges, as the Matryoshkan method

performance is comparable or better relative to Euler’s method across all exper-

iment scenarios. At the largest Eulerian step size the run times are of the same

order but for each order of magnitude decrease in step size the method’s step

size becomes approximately a factor of 10 times slower than the Matryoshkan

calculation. As this step size decreases the error between the two computations

again decreases, implying that the Matryoshkan method also outperforms the

differential equation approach in accuracy.
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n = 5 Run Time Absolute Error Relative Error
Matryoshkan 2.2 × 10−4 sec · ·

Euler ∆ = 10−2 1.9 × 10−3 sec 4.9 × 100 1.4 × 10−3

Euler ∆ = 10−3 1.1 × 10−2 sec 7.3 × 10−1 2.1 × 10−4

Euler ∆ = 10−4 1.1 × 10−1 sec 4.9 × 10−2 1.4 × 10−5

Euler ∆ = 10−5 1.1 × 100 sec 4.9 × 10−3 1.4 × 10−6

n = 10 Run Time Absolute Error Relative Error
Matryoshkan 2.2 × 10−4 sec · ·

Euler ∆ = 10−2 1.2 × 10−3 sec 1.1 × 106 1.7 × 10−2

Euler ∆ = 10−3 1.2 × 10−2 sec 1.6 × 105 2.6 × 10−3

Euler ∆ = 10−4 1.2 × 10−1 sec 1.1 × 104 1.7 × 10−4

Euler ∆ = 10−5 1.2 × 100 sec 1.1 × 103 1.7 × 10−5

n = 15 Run Time Absolute Error Relative Error
Matryoshkan 2.4 × 10−4 sec · ·

Euler ∆ = 10−2 1.2 × 10−3 sec 9.7 × 1010 6.3 × 10−2

Euler ∆ = 10−3 1.2 × 10−2 sec 1.2 × 1010 7.9 × 10−3

Euler ∆ = 10−4 1.2 × 10−1 sec 9.9 × 108 6.4 × 10−4

Euler ∆ = 10−5 1.2 × 100 sec 9.9 × 107 6.4 × 10−5

n = 20 Run Time Absolute Error Relative Error
Matryoshkan 2.6 × 10−4 sec · ·

Euler ∆ = 10−2 1.2 × 10−3 sec 5.7 × 1015 1.3 × 10−1

Euler ∆ = 10−3 1.2 × 10−2 sec 6.9 × 1014 1.6 × 10−2

Euler ∆ = 10−4 1.2 × 10−1 sec 6.1 × 1013 1.4 × 10−3

Euler ∆ = 10−5 1.2 × 100 sec 6.1 × 1012 1.4 × 10−4

Table 5.4: Comparison of run time and errors for growth-collapse process mo-
ment calculation via Matryoshkan matrix method and via Euler differential
equation methods as the moment size increases.

5.5 Conclusion

In this work, we have defined a novel sequence of matrices called Matryoshkan

matrices that stack like their Russian nesting doll namesakes. In doing so, we

have found a computationally efficient manner of calculating the moments of

a large class of Markov processes that satisfy a closure condition for the time

derivatives of their transient moments. Furthermore, this has yielded closed

form expressions for the transient and steady state moments of these process.

Notably, this includes the intensity of the Hawkes process, for which finding
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n = 4 Run Time Absolute Error Relative Error
Matryoshkan 2.0 × 10−4 sec · ·

Euler ∆ = 10−2 3.3 × 10−4 sec 1.7 × 10−1 7.8 × 10−4

Euler ∆ = 10−3 3.2 × 10−3 sec 1.2 × 10−2 5.6 × 10−5

Euler ∆ = 10−4 3.2 × 10−2 sec 1.2 × 10−3 5.6 × 10−6

Euler ∆ = 10−5 3.1 × 10−1 sec 1.7 × 10−4 7.9 × 10−7

n = 10 Run Time Absolute Error Relative Error
Matryoshkan 2.3 × 10−4 sec · ·

Euler ∆ = 10−2 3.5 × 10−4 sec 8.5 × 106 1.9 × 10−3

Euler ∆ = 10−3 3.3 × 10−3 sec 6.1 × 105 1.3 × 10−4

Euler ∆ = 10−4 3.3 × 10−2 sec 6.1 × 104 1.3 × 10−5

Euler ∆ = 10−5 3.3 × 10−1 sec 8.6 × 103 1.9 × 10−6

n = 20 Run Time Absolute Error Relative Error
Matryoshkan 2.6 × 10−4 sec · ·

Euler ∆ = 10−2 3.6 × 10−4 sec 6.2 × 1022 3.6 × 10−3

Euler ∆ = 10−3 3.5 × 10−3 sec 4.3 × 1021 2.5 × 10−4

Euler ∆ = 10−4 3.5 × 10−2 sec 4.3 × 1020 2.5 × 10−5

Euler ∆ = 10−5 3.5 × 10−1 sec 6.2 × 1019 3.6 × 10−6

n = 100 Run Time Absolute Error Relative Error
Matryoshkan 4.3 × 10−3 sec · ·

Euler ∆ = 10−2 1.9 × 10−3 sec 5.3 × 10193 1.2 × 10−2

Euler ∆ = 10−3 1.8 × 10−2 sec 2.7 × 10192 6.3 × 10−4

Euler ∆ = 10−4 1.8 × 10−1 sec 2.7 × 10191 6.2 × 10−5

Euler ∆ = 10−5 1.7 × 100 sec 5.1 × 10190 1.2 × 10−5

Table 5.5: Comparison of run time and errors for Affine Queue-Hawkes process
moment calculation via Matryoshkan matrix method and via Euler differential
equation methods as the moment size increases.

an expression for the nth moment had been an open problem. Other examples

we have discussed include Itô diffusions from the mathematical finance liter-

ature and shot noise processes from the physics literature, which showcases

the breadth of this methodology. Furthermore, our computational experiments

have demonstrated the efficiency of computing at a point in time rather than

through time, which is a key benefit of this method over traditional approaches

for solving differential equations numerically.

We can note that there are many applications of this methodology that we
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have not explored in this chapter and are thus opportunities for future work.

For example, the vector form of the moments arising from this matrix based

method naturally lends itself to use in the method of moments. Thus, Ma-

tryoshkan matrices have the potential to greatly simplify estimation for the myr-

iad of Markov processes to which they apply. Additionally, this vector of solu-

tions may also be of use in providing computationally tractable approximations

of moment generating functions. That is, by a Taylor expansion one can ap-

proximate a moment generating function by a weighted sum of its moments.

Because this chapter’s Matryoshkan matrix methods enable efficient calculation

of higher order moments, this enables higher order approximations of the mo-

ment generating function.

As another important direction of future work, we are also interested in ex-

tending these techniques to multivariate Markov processes. This is of practical

relevance in many of the settings we have described, such as point processes

driven by the Hawkes or shot noise process intensities. The challenge in this

case arises in the fact that a moment’s differential equation now depends on

the lower product moments rather than just the lower moments, so the nesting

structure is not as neatly organized. Nevertheless, addressing this generaliza-

tion is an extension worth pursuing, as this would render these techniques even

more applicable.
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CHAPTER 6

STAFFING A TELEOPERATIONS SYSTEM FOR AUTONOMOUS

VEHICLES

6.1 Introduction

With apologies to the likes of Bruce Springsteen and Frank Ocean, it seems that

the car may not be a symbol of individual experiences for much longer. A recent

market report from Intel and Strategy Analytics (Lanctot (2017)) sees a “gener-

ational sea change” in which consumers and businesses alike shift from vehi-

cle ownership towards mobility-as-a-service. This study projects that in 2050

this passenger economy will generate a global revenue of $7 trillion, defined and

driven by the proliferation of shared autonomous vehicles. Such potent pre-

dictions for the value of autonomous vehicles are not uncommon. For exam-

ple, a recent report from Allied Market Research (Jadhav (2018)) projects that

the market value of autonomous vehicles will grow from $54.23 billion in 2019

to $556.67 billion in 2026. This valuation includes the sale and development of

driverless car technology, as well as revenue from mobility-as-a-service applica-

tions such as taxis/ride share, freight, and public transit. Even taking economic

values aside, autonomous vehicles are also poised to bring broad societal ben-

efits, offering safer, smarter, and more sustainable transit, as detailed in Burns

(2013). These landmark changes expected from autonomous vehicles are predi-

Contents of this chapter are, at the time of this dissertation’s writing, under review for
publication and are publicly available as a preprint (Daw et al., 2019). Robert C. Hampshire is
also a co-author of that paper, and his contributions, guidance, and insights on this chapter are
greatly appreciated.
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cated on a projected progression in their capability. The Society of Automotive

Engineers (SAE) has created an industry standard for classifying driving au-

tomation, distilled into six levels in SAE On-Road Automated Vehicle Standards

Committee (2018). These classifications are based around the relative responsi-

bilities of humans and automation, ranging from no automation (level 0) to full

automation (level 5). Level 4, the most advanced classification that has been

achieved, is characterized by the vehicle handling all driving functionality so

long as the current conditions satisfy some constraints, such as the route being

within a specific well-mapped, geo-fenced area. Whenever these constraints

are not satisfied, a human driver must assume the vehicle’s operation or other-

wise the car cannot function. Level 4 automation is exemplified by the localized

driverless shuttle or taxi services that have been offered in test by companies

such as Uber and Waymo (Google’s self driving effort). To achieve the full mar-

ket earnings projected in Lanctot (2017), driverless car technology must advance

from level 4 to level 5; all constraints must be removed.

However, there have been recent concerns that this might be an impossi-

ble goal. In November 2018, Waymo CEO John Krafcik said publicly that au-

tonomous vehicles won’t ever be able to drive in all conditions, meaning that

level 5 automation will never be achieved Tibken (2018). Recently, Kalra and

Paddock (2016) have also found that it may take up to hundreds of billions of

miles to be driven by autonomous vehicles before we can confidently conclude

that driverless cars are as reliable as human drivers. The underlying source of

these concerns is that there are too many exceptional circumstances vehicles can

encounter and too many different situations that can occur while driving. Fur-

ther complicating this predicament is that there are unknown unknowns, or as

stated by Krafcik, “you don’t know what you don’t know” Tibken (2018). In a
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sense, this means that the constraints in the vehicles’ level 4 capability may not

be known, or that knowing the constraints may require particularly restrictive

conditions. Hence, the presence of these edge cases has shifted the expectation

for autonomous vehicles; they are now projected to remain at level 4 auton-

omy for the foreseeable future. While the constraints may become less strict as

the technology improves, the prevailing thought is that these limitations will

continue to exist, and this persistence means that autonomous vehicles must

continue to rely on human expertise to be able to function.

In level 4 automation, the times at which an autonomous vehicle needs hu-

man help are called disengagements, meaning that the vehicle disengages its

autonomous operation. By definition, disengagements occur when the car is

faced with an unacceptable level of uncertainty, effectively exceeding the con-

straints of its abilities. Currently, the standard practice of handling disengage-

ments is to have an in-car safety driver, meaning a person in the drivers seat

who takes control of the autonomous vehicle when needed. This is of course in-

efficient at scale, as it is a one-to-one pairing of people to cars at all times. What

else can be done to safeguard driverless cars? This question has been of interest

to both government and industry; legislation and LLC’s alike are being created

in response to it. At their core, the common idea behind these new ventures is

essentially a call center for driverless cars. Referred to as autonomous vehicle

teleoperations systems, these remote support centers move the human opera-

tors from behind the wheel to a centralized location, so that one person has the

potential to help many different vehicles across the course of the day.

As an example of the development of teleoperations centers, the state of

California has recently introduced regulations requiring a remote operator –
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Figure 6.1: An example remote operation setup used by the startup Designated
Driver (2019).

meaning a person not in the vehicle who can monitor and control the car when

needed – for testing autonomous vehicles that are truly driverless and do not

have a safety driver onboard (California Department of Motor Vehicles (2018)).

Other states are beginning to follow California’s lead. As of July 2019, five more

states require teleoperation systems in the absence of drivers and another five

allow teleoperation but do not mandate it, per Rosenszweig (2019). Outside of

the U.S., five other countries have legislation allowing or mandating teleoper-

ation: Canada (Ontario specifically), Japan, Finland, the Netherlands, and the

United Kingdom Rosenszweig (2019). As described in Davies (2019), this is

also seen in the private sector, where both startups and major car companies

are engineering new technology to ensure the safety, reliability, and efficiency

of these remote teleoperation systems for autonomous vehicles. By introducing

the opportunity to have human driver input in uncertain scenarios, these re-

mote operator centers enable autonomous vehicles to function in environments

they otherwise could not. Based on the mission statements of recent startups,

this modern service system can cater to its driverless car customers in differ-
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ent ways. One type of teleoperation explored by these companies is real-time

remote operation, such as what is offered by start-ups like Designated Driver

and Phantom Auto. This involves a remote operator taking over the driving

of the car for a period of time via a teleoperations system. An example of this

technology as used by Designated Driver is given in Figure 6.1.

A recent line of promising and continuing development in teleoperations

technology incorporates human-in-the-loop approaches in which the remote

operators provide input without directly driving the vehicle. For example, the

startup Ottopia offers a service which they refer to as “advanced teleoperation,”

as described in Sawers (2018). Rather than having teleoperators assume full

control of the driving, Ottopia’s advanced teleoperation utilizes “path choice”

or “path drawing,” in which remote operators either select or draw a path for

the vehicle to take. In this way, this service combines human expertise and ma-

chine execution rather than switching between the two. An artistic rendering

of Ottopia’s path choice procedure is shown in Figure 6.2. Major car companies

are also pursuing combinations of this type. For example, Nissan has recently

unveiled a teleoperation service they refer to as “Seamless Autonomous Mobil-

ity,” which was inspired by NASA’s interplanetary robot supervision software,

Visual Environment for Remote Virtual Exploration. Like Ottopia’s path draw-

ing, Nissan’s Seamless Autonomous Mobility also uses a line drawing interface

for the teleoperations, which they refer to as the operator painting a path for the

vehicle to take. This interface is visualized in Figure 6.3, in which the teleoper-

ator’s painted path can be seen in the center of the image.

Because this type of passive input pairs machine execution and human ex-

pertise without requiring direct driving control by the remote operator, it creates
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Figure 6.2: A visualization of “path choice” within Ottopia’s advanced teleop-
eration Ottopia Team (2019).

Figure 6.3: The line-drawing interface used in Nissan’s Seamless Autonomous
Mobility Designated Driver (2019).

an opportunity for assistance that is faster than the time to drive. Through the

recent work in Lundgard et al. (2018); Chung et al. (2019), this type of teleop-

eration service can even be instantaneously crowdsourced by pre-fetching input

on possible future scenarios simulated from the current state of a vehicle. The

idea of this technique for driverless car assistance is visualized in Figure 6.4.

When the autonomous vehicle is approaching uncertainty ahead, it sends its

current state information to the teleoperations center and requests support. Us-

ing this information, simulations of the car’s future environment are generated

and passed to a pool of remote operators. These operators then supply quick
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and specific driving instructions, such as path choice or path drawing, for each

of the simulated scenarios, and this input is then passed back to the vehicle be-

fore it encounters the time of the simulated scenarios. At that point in time, the

autonomous vehicle can now reduce its uncertainty and determine an action via

its library of human assistance, which spans a variety of possible environments.

Using language from Lundgard et al. (2018), we refer to this human-supported

AI service as look-ahead assistance. By this construction, one can note that

look-ahead assistance offers a just-in-time policy training and generation proce-

dure within a reinforcement learning framework.

The autonomous vehicle 
sees unacceptably high 
uncertainty ahead and 
sends request

The vehicle’s current 
state is passed to the 
operation center

Possible future scenarios 
are simulated based on 
this state information Remote operators 

respond to each of 
the possible futures

The library of human 
assistance inputs is 
sent to the vehicle, 
which draws from it 
when the unknown 
state is reached

Figure 6.4: A visual guide to the human-in-the-loop AI look-ahead assistance,
as based on the description in Lundgard et al. (2018).

At each disengagement, look-ahead assistance creates batches of tasks to be

handled by the teleoperators. Because the simulation step generates a collection

of possible future scenarios to be evaluated, each time a vehicle requests human

support it will actually engage many people at once. From the core compo-

nents of look-ahead assistance, we can actually reason that the support system

becomes safer and safer if the batches in this procedure are to become larger
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and larger. For example, from the fact that the simulation is generating differ-

ent future states the vehicle could encounter, increasing the batch size from this

perspective would mean that additional possible scenarios are being explored

and evaluated. Even if these tail events are highly unlikely to occur, this still

provides added human assurance for the vehicle and can even be used for ad-

ditional training of the vehicle. As another source of larger batch sizes, it has

been seen that adopting intentional redundancy and assigning the same job to

multiple workers can increase the accuracy of the crowd-sourced response, as

noted in Lundgard et al. (2018). Hence, by duplicating scenarios within the

batch of simulated future environments, look-ahead assistance becomes more

robust.

This dynamic underscores the tradeoff between in-car safety drivers and re-

mote teleoperations. An in-car safety driver is a one-to-one pairing of operators

and vehicles at all times. By comparison, look-ahead assistance is a many-to-one

relationship of operators and vehicles, but only when the vehicles need help.

Naturally, this raises the question: which pairing is more efficient? Further-

more, this leads to the important long run concern: can teleoperations systems

help lift level 4 automation to achieve the vision of the potentially unattainable

level 5? To answer these questions, we must first solve the problem of staffing a

teleoperations system. As motivated by the preceding discussion, the structure

of look-ahead assistance leads us to model the teleoperations service system as

a queue with batch arrivals, particularly one in which the batches are large in

size. We will study the GB(n)
t /GI/cn model, i.e. a queue receiving batch arrivals

of size drawn from an i.i.d. sequence at epochs generated by some general, pos-

sibly correlated and time-varying point process, in which each job in the batch

receives service of general i.i.d. duration from one of a finitely many servers. In

210



spirit, our approach is effectively a batch analog of well-known multi-server

heavy traffic limits for queueing models, such as in the seminal work from

Halfin and Whitt (1981). By comparison to those limits in which the arrival

rate and the number of servers both grow linearly, in the large batch analysis

we conduct, we will study how the queue length process changes as both the

batch size and the number of servers grow linearly.

In this limiting analysis, we prove new connections between queues and

storage processes, and these connections enable us to develop staffing method-

ologies for queues with large batch arrivals. In the context of the teleoperations

system, we will use these results to determine the number of remote opera-

tors needed to reliably support the center’s autonomous vehicles. In doing so,

we find that self-driving technology is already at a level of performance that

suggests that teleoperations systems are substantially more efficient than in-car

safety drivers. Moreover, in a long-term view this motivates teleoperations sys-

tems as the key to helping the tractability of level 4 automation achieve the high

value impact of the ideal but potentially unachievable level 5. Human expertise

offers the assurance to assist driverless vehicles when unexpected, uncertain sit-

uations occur, and we find that teleoperations systems offer ways to deliver this

assistance efficiently. While the teleoperations context will be the focus of this

chapter, our large batch analysis of course need not only apply in this setting.

Large batches of jobs can occur in data processing centers, mass-transit systems,

and disasters or mass casualty emergencies.
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6.1.1 Review of Relevant Literature

The large batch setting in this chapter separates this work from previous queue-

ing theoretic studies on batch arrival multi-server queues, which either assume

a less general arrival process than we consider here or, perhaps more critically,

assume bounded batch sizes. For example, Neuts (1978) and Baily and Neuts

(1981) each use matrix-geometric approaches to study the GIB/M/c queue under

the assumption that the batch size distribution B is bounded, with Neuts (1978)

considering the stationary setting and Baily and Neuts (1981) the transient. In

each setting, the bounded-ness of the batch size is essential, as this bound dic-

tates the size of the underlying matrices. This bounded batch size assumption

is also used to study the GIB/M/c model in Zhao (1994) and Chaudhry and Kim

(2016), with the former giving explicit expressions for the generating function

and an equation satisfied by the steady-state probabilities and the latter pro-

viding efficient computational methods while also simplifying the approach of

the former. Again the bound is essential, as these approaches are built upon

root-finding methods where the number of roots is equal to the batch size. By

comparison, the general unbounded batch size setting has often called for ap-

proximate approaches, such as the bounds on the GIB/G/c system that were con-

structed in Yao et al. (1984) through comparison to single arrival queues. Yao

(1985) then gives tighter bounds for the MB/M/c queue using the MB/G/1 system

and demonstrates that these bounds can be used to approximate the GIB/G/c.

Computational methods have also been provided in Cromie et al. (1979) for the

fully Markovian setting, the MB/M/c queue, although these were only done for

three specific batch distributions: constant size, geometric, and Poisson.

In studying this large batch setting we will prove batch scaling limits of the

212



queue, in which the batch size and the number of servers grow large and the

queue length is scaled inversely. Through the batch scaling limits, we connect

the general batch arrival queueing models to storage processes, another class

of stochastic processes. Similar albeit less general scalings have been explored

recently in de Graaf et al. (2017) and in Chapter 3 of this dissertation, although

the limiting process was not characterized in Chapter 3 . Specifically, the lim-

its we prove in this work for the GB(n)/GI/cn queue generalize the batch scaling

results of MB(n)/M/∞ queueing systems shown in de Graaf et al. (2017) and in

Chapter 3, which converge to shot noise processes with exponential decay. The

limiting relationship between infinite server queues and shot noise processes

was also discussed as motivation in Kella and Whitt (1999), although this rela-

tionship was presented without proof. This connection allows us to make use

of a broad literature on storage processes, which can be seen as a generalization

of shot noise processes.

Storage processes, which can also be referred to as dams, content processes,

or even fluid queues, are positive valued, continuous time stochastic processes

in which the process level will jump upwards by some amount at epochs given

by a point process. Between jumps the process will decrease according to some

function of its state. That is, there is a function, often denoted r : R+ → R+, such

that the rate of the process’s decline when in state x is r(x). For example, r(x) ∝ x

would recover the exponential decay of a shot noise process. In generality, the

release dynamics may also be a function of the history of the process rather than

just the current state, such a setting will be necessary to study the multi-server

queue’s limiting form in the case of non-Markovian service.

Because storage processes have a long history of study, we are able to draw
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upon a rich literature of interesting ideas. Many of the results that will be most

relevant to us are focused on the stationary distributions of storage processes.

Even on its own the study of stationary distributions of storage processes has

a rich history, with early work including expressions of stationary distributions

for shot noise processes given in Gilbert and Pollak (1960). Later work found

similar results for more general settings, including Cinlar and Pinsky (1972); Yeo

(1974, 1976); Rubinovitch and Cohen (1980); Kaspi (1984). A line of study that

will be particularly useful for us can be found in Brockwell (1977); Brockwell

et al. (1982), as these works find integral equations for the stationary distribu-

tions of storage processes with a general release rule r(·). These forms will be of

great use to us in our staffing analysis. For precursors to this work in a different

but no less interesting setting, see Harrison and Resnick (1976, 1978). Another

elegant area of study is the duality of the storage processes, for example see

Kaspi and Perry (1989); Perry and Stadje (2003). Connections between queues

and storage processes are not new in general, as the single server queue has

been known to be directly related to storage processes. For an overview of these

connections and the related ideas, see Prabhu (2012).

Our analysis of the multi-server queueing model is predicated on an un-

derstanding of the infinite server model, and thus we also prove a generaliza-

tion of the limits in de Graaf et al. (2017) and in Chapter 3 for the GB(n)
t /GI/∞

model. To prove this generalization beyond the Markovian setting, we de-

velop an approach that is entirely agnostic to the arrival epoch process, which

is what enables our results to be immediately applicable to queues with time-

varying and/or correlated inter-arrival times. This approach of leveraging the

infinite server queue to understand the multi-server system is similar to the

techniques used by Reed (2009) to extend the Halfin-Whitt heavy traffic lim-
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its to non-Markovian service durations. In particular, Reed (2009) serves as a

key predecessor and inspiration for our proof methodology. The infinite server

model offers a natural counterpart for studying multi-server queues because it

features the same arrival process with every job beginning its service immedi-

ately, meaning each job’s time in system has no dependency on the current level

of the process. Hence, comparisons to infinite server queues are often power-

ful tools for multi-server queueing analysis, for example in other works such

as Eick et al. (1993); Massey and Whitt (1994); Jennings et al. (1996).

A key tool in our calculations will be the convergence of a sum of exponen-

tial functions to the indicator function 1{x ≤ c}, as shown in Sullivan et al. (1980).

This is of particular use to us in calculating the probability of a storage process

exceeding a threshold, through which we drive our staffing analysis. One can

note that an alternative approach to this would be to leverage asymptotic nor-

mality results, such as those in Lane (1984); Rice (1977) for shot noise processes.

While this may work well in some settings, we can note that for systems that

require a very rapid service rate, such as in the look-ahead service, the rate of

arrivals may not be fast enough to justify a Gaussian approximation. This is of

particular concern for approximating the tails of the distribution, which is at the

heart of this problem. However, such an approximation could be promising in

areas large enough to have a significant number of miles driven, and thus we

discuss a normal-based approximation in our numerical studies in Section 6.4.

Moreover, this simple approximation helps us build intuition for our general

results on how batches impact service systems.

Because batches can be thought of as particularly rapid bursts of arrivals,

our work aligns with recent studies of queueing models with bursty arrival
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processes, such as Gao and Zhu (2018a); Koops et al. (2017, 2018); L’Ecuyer

et al. (2018); Boxma et al. (2018) and as in Chapter 2. In these works, there

are two main model characteristics that produce temporal clusters of arrival

epochs: self-excitement and external stimuli. The classic examples of these pro-

cesses are the Hawkes and Cox processes, respectively. Originally defined in

Hawkes (1971), the Hawkes process (in its simplest form) has an arrival inten-

sity that jumps upward by a fixed amount when each arrival occurs and decays

exponentially towards a baseline rate between epochs. Thus, this process is

said to be self-exciting as the occurrence of an event increases the likelihood

that another will occur soon after. Self-excitement has often been thought of

as a contagion or viral process, and this has recently been formalized in Rizoiu

et al. (2018) and in Chapter 4. Similarly, the analogous Cox process also has an

arrival intensity with upward jumps and exponential decay, see e.g. Daley and

Vere-Jones (2003). However, the times of these jumps are not the same as the

arrival epochs; they are instead given by an external Poisson process. For this

reason, the Cox process can be thought of a non-stationary Poisson process with

stochastic intensity driven by another, exogenous Poisson process, and thus is

often referred to as a doubly-stochastic Poisson process. We can note that self-

excitement and external stimuli need not be mutually exclusive, as discussed

briefly in Hawkes (1971) and explored in depth in the “dynamic contagion pro-

cess” introduced in Dassios and Zhao (2011). While our attention in this work

will focus on batches of arrivals rather than bursts of arrivals, our results apply

naturally to these settings either through the batch arrivals or the general arrival

process we consider.

For an interesting concurrent work that also uses queueing theory to ad-

dress problems in the management of autonomous vehicles, we refer the reader
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to Mirzaeian et al. (2018). In that work, the authors compare policies for regulat-

ing the mix of autonomous vehicles and human-driven vehicles on highways,

analyzing designated lane and integrated traffic policies across various levels of

vehicle arrival rates to the highway and proportions of autonomous vehicles in

the market. As the authors note, autonomous vehicles have the ability to form

platoons on highways, meaning batches of cars that travel together with small

gaps between them. Using this idea, the authors find that autonomous vehi-

cles can make highways significantly more efficient. This potential for societal

improvement aligns with the empirical findings in Zhang et al. (2019), which ob-

serves a decrease in traffic accidents following the introduction of autonomous

vehicles.

6.1.2 Contributions and Organization

The remainder of this chapter is organized as follows. In Section 6.2, we develop

general queueing models for autonomous vehicle teleoperations systems. With

batch arrivals as the salient feature of these service systems, we also then es-

tablish connections from these queueing systems to storage processes, another

type of stochastic process, as part of our analysis of the large batch regime. Then

in Section 6.3, we leverage this connection to storage processes and develop

methodology for staffing these batch arrival queueing models of the teleopera-

tion systems. Finally in Section 6.4, we calculate necessary staffing levels using

a variety of public data on driving and on autonomous vehicles, including the

2018 California disengagement reports (GM Cruise LLC (2019); Waymo LLC

(2019)), the 2017 National Household Travel Survey Federal Highway Admin-

istration (2017), the 2014 and 2018 New York City Taxi Factbooks New York City
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Taxi & Limousine Commission (2014, 2018), and a 2019 taxi study from the Los

Angeles Department of Transportation Sam Schwartz Engineering (2019). Addi-

tionally, we also numerically investigate the effect of dependence within batches

of jobs and observe how this can affect the large batch setting. Broadly speak-

ing, the proofs contained in the main body of this chapter are in the context of

using an infinite server queue to understand a multi-server queue, a recurring

theme to this work. We note that we also consider a blocking model in which

jobs that would have to wait are lost, and this analogous but adjacent analysis is

conducted in the appendix. The appendix also contains technical lemmas and

proofs for our Legendre computational techniques, as well as an exploration of

a specialized batch distribution setting.

This work leads us to the following contributions:

i) Our analysis finds that even at the current level of driverless vehicle tech-

nology, teleoperations are already substantially more staffing-efficient than

in car safety drivers and thus offer a desirable autonomous vehicle safety

system. Moreover, the efficiency of this way humans can support level 4

driverless vehicles promotes teleoperations systems as the potential solu-

tion for helping these constrained vehicles achieve the long term goals of

the potentially infeasible level 5 automation.

ii) This analysis is conducted through the study of queueing systems that re-

ceive large batches of arrivals. As a general queueing theoretic takeaway,

we find that batches have a pronounced effect on the performance of the

service system, and thus are important for any service manager to consider.

iii) Methodologically speaking, our large batch analysis is based around what

is, to the best of our knowledge, the first batch scaling limit of a multi-
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server queueing system, specifically the GB(n)
t /GI/cn queue. We also provide

a batch scaling limit for the GB(n)
t /GI/∞ queue, which constitutes a signifi-

cant generalization over previous batch scaling results, which only existed

for the MB(n)/M/∞ system.

6.2 Modeling the Remote Support Center Using Queueing

Theory

In the introduction, we have described possible arrangements of autonomous

vehicle teleoperations systems, including the pre-fecthing look-ahead assistance

method introduced in Lundgard et al. (2018). This simulation-based method-

ology will be the motivating scenario for the queueing model we define and

analyze in this section, as its instantaneous crowd-sourcing structure offers the

potential to engage many human driving experts for each autonomous vehi-

cle. Additionally, this structure leads to a service system that differs from many

models commonly studied in the literature. Because the simulation yields mul-

tiple future scenarios at each request for support, jobs arrive to the system in

batches rather than in single-file fashion. Furthermore, this arrangement even

differs from other batch arrival service systems in that there is a benefit to receiv-

ing batches that are large in size. As we have discussed, the crowdsourcing and

simulation components within look-ahead assistance imply that large batches

of jobs will produce a safer and more robust teleoperations system. From the

crowdsourcing perspective, this is because taking on intentional redundancy

and assigning the same task to multiple people is known to yield more accurate

collective answers. From the simulation perspective, this is because simulating
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more scenarios means that the vehicle is prepared for additional possible future

states, further protecting the vehicle against the tail of what can occur. On top of

this, simulating additional unlikely scenarios can also provide valuable driving

input for training the autonomous vehicle, as the challenges observed on real

roads are the edge cases that have prevented autonomous vehicle technology

from progressing from level 4 to level 5. In this way, look-ahead assistance re-

sembles a rare event simulation of sorts for autonomous vehicles, as it is gener-

ates possible future states once the vehicle has encountered the periphery of its

understanding. It is also worth noting that although we focus on the simulation

structure as the source of batches, batch arrivals may occur for other reasons as

well, such as the bursty arrival processes or the dense platoons of autonomous

vehicles that we have discussed in the introduction. In conjunction with the

simulation, these sources would create batches of batches, again implying large

batches of arrivals.

As a service system, the look-ahead teleoperations model seeks to provide

timely human input for each of these future scenarios so that the vehicle is well-

equipped to navigate the uncertainty. Hence, the objective of our study is to

staff this system so that there are sufficiently many human experts available to

inform the machine’s driving execution. In our analysis this amounts to staffing

a multi-server queueing system receiving large batches of arrivals. Hence, in

Subsection 6.2.1 we precisely define a general delay queueing model with batch

arrivals. In addition to this, we will also define a general infinite server queue-

ing model. While this system constitutes an idealized variant of the multi-sever

model in which there is always sufficiently many teleoperators, it is not neces-

sarily meant to represent the teleoperations scenario. Rather, we will make use

of the infinite server model as a tractable first step towards understanding the
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finite server model. A recurring theme throughout this work, we use this com-

parison as tool for analyzing the multi-server queue with large batch arrivals in

Subsection 6.2.2, in which we connect these queueing systems to storage pro-

cesses.

6.2.1 Defining the Queueing Model

For n ∈ Z+, let QC
t (n) be the number of jobs in the system at time t ≥ 0 in a

GB(n)
t /GI/cn queueing model. That is, suppose that arrivals to the queue oc-

cur according to some general point process {Nt | t ≥ 0} with arrival epochs

{Ai | i ∈ Z+}, where the distributions of the inter-arrival times may be correlated

and time-varying. A batch of jobs enters the system at each arrival epoch, with

the size of the ith batch being the ith element of the sequence of positive inte-

ger random variables {Bi(n) | i ∈ Z+}, which is i.i.d. across i and independent

across n. Moreover, suppose that that the mean batch size grows linearly with

n, i.e. E [B1(n)] ∈ O(n). Then, suppose that there are cn servers for some constant

c > 0, and that any job that finds all servers busy waits, meaning that QC
t (n)

is a delay model. Because n indexes the size of the batches, we can note the

constant c corresponds to ratio between the number of agents and this relative

batch size. Let {S i, j | (i, j) ∈ Z+ × Z+} be a sequence of i.i.d. positive real ran-

dom variables such that S i, j is the service duration of the jth job within the ith

batch. We let G(·) be the CDF of these random variables with Ḡ(·) as the com-

plementary CDF: Ḡ(x) = 1 − G(x) for all x > 0. We will refer to this system as

the delay model, as jobs will be delayed before beginning service if there are no

immediately available servers. Similarly, let us define Qt(n) as the queue length

process for the infinite server analog of QC
t (n), which is the GB(n)

t /GI/∞ system.
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We again take Nt as the arrival process, {Bi(n) | i ∈ Z+} as the batch sizes, and

{S i, j | (i, j) ∈ Z+ × Z+} as the service durations, where by comparison to the delay

model this system has infinitely many servers. Because no jobs wait to begin

service, this means that this infinite server model will give us a tractable first

step towards understanding the delay model under large batch arrivals.

We can interpret these models in terms of the teleoperations systems as fol-

lows. Each arrival epoch represents a disengagement, i.e. Ai is the time of the

ith disengagement. At the ith disengagement, Bi(n) jobs enter the system simul-

taneously to be handled by the teleoperators. In the delay model there are cn

teleoperators in total, so jobs may have to wait before receiving assistance from a

teleoperator. By comparison, the infinite server model represents the unachiev-

able ideal of having as many teleoperators as could possibly be needed, and no

job will have to wait to be handled. This strikes to the heart of the problem we

consider in this work, as there is an inherent time-sensitivity within look-ahead

assistance. Hence, we seek to staff the teleoperations center so that the prob-

ability that the system exceeds its capacity achieves some low target. One can

consider the probability that the number of jobs in system is above the num-

ber of teleoperators, i.e. P
(
QC

t (n) ≥ cn
)
, or the probability that an entering batch

would cause the system to exceed its capacity, P
(
QC

t (n) + B1(n) > cn
)
. Or, as a

generalization of this, one could also consider the probability

P
(
QC

t (n) + pB1(n) > cn
)
,

for some p ∈ (0, 1]. It is worth noting that although these events are the

same in the single arrivals case, in the case of batch arrivals they are not. In

our analysis, we will focus on the extreme cases, using either P
(
QC

t (n) ≥ cn
)

or

P
(
QC

t (n) + B1(n) > cn
)

within our staffing problem objective. The complements

of each of these events can be seen to plainly represent their performance goals.

222



For the former this is that at least some part of the batch is able to begin service

immediately, and for the latter this is that all jobs in the batch begins service

immediately. Thus, for a target probability ε > 0, our goal is to find a number

of agents such that these exceedance probabilities are no more than ε, which is

to say that the corresponding complementary events occur with probability at

least 1 − ε. This amounts to finding a constant c such that the given exceedance

probability is sufficiently small. Because this quantity converts the relative batch

size n to the number of teleoperators cn, we will refer to c as the operator to batch

size ratio. To find such a staffing level in the presence of large batch arrivals, we

first need to develop theory on how these queues behave in such conditions. To

do so, we now prove connections between the queueing models QC
t (n) and Qt(n)

and storage processes in Subsection 6.2.2.

6.2.2 From Queues to Storage Processes

To motivate the concept of what we will refer to as a “batch scaling” of a queue-

ing system, let us make an informal comparison to a queue’s fluid limit. Like

in a fluid limit, imagine shrinking the size of each arriving entity in a queueing

model. However, rather than increasing the rate that entities arrive, like in the

fluid limit, suppose that instead we increase the number of entities that enter the

system at each arrival epoch. In this way, we isolate the arrival epoch process.

The distribution of the inter-arrival times is the same for all n, yet the distribu-

tion queue’s departure process changes with n. In the limit, we find that these

batch scaled queueing processes converge to storage processes, which have also

been referred to as dams or even fluid queues. Informally, the idea of these con-

tinuous time processes is as follows. Much like how in this work we think of a
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queue by its queue length, i.e. the number of entities present in the system at the

given time, a storage process is concerned with the total “content” currently in

system. By comparison to the queue this content is a non-negative real number,

rather than a non-negative integer. Like a queue, the content in the storage pro-

cess jumps upward at times given by some point process, but unlike the queue,

the content in the storage process simply drains or releases deterministically

between the jump epochs. We will refer to the manner in which the content

drains as the “release rule” of the storage process, which may depend on the

current content level or even on the history of the process. In this way one can

see how these processes have been a natural fit in the literature for modeling

dams. The jumps can represent an amount of water added to the reservoir in

sudden large amounts, such as from rainfall, whereas the release from draining

or evaporation is gradual and continuous.

As a preliminary, let us now introduce the terms and assumptions that we

will use throughout our batch scaling analysis. At the risk of overloading no-

tation, we will let Nt be a point process that is equivalent in distribution to the

process for the queue arrival epochs (thus we do not use distinguishing no-

tation) and we let Ai be the corresponding ith arrival epoch. We suppose that

there is an i.i.d. sequence of positive random variables {Mi | i ∈ Z+} such that

B1(n)
n

D
=⇒ M1 as n → ∞, with B1(n)

n2

p
−→ 0. In this assumption, the batch scaling of

the queue converts discrete batches of entities to continuous jumps in content,

or “marks.” Furthermore, we suppose that the known initial value of the infinite

server queue converges to an analogous initial value in the limit, i.e. Q0(n)
n → ψ0.

Using these definitions, we now prove our batch scaling results. To first gain

understanding in a tractable setting, we start with the infinite server model.
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That is, for Qt(n) we will now show the convergence of GB1(n)
t /GI/∞ queues to

general shot noise processes, which can be viewed as infinite capacity storage,

or dam, processes. Let the shot noise process ψt at time t ≥ 0 be defined as

ψt = ψ0Ḡ0(t) +

Nt∑
i=1

MiḠ(t − Ai), (6.1)

which will jump upward according to the sequence {Mi | i ∈ Z+} and then decay

downward according to the complementary CDF Ḡ(·) = 1 − G(·). This can be

thought of as an infinite capacity storage process, as there is no bound on the

amount of content that can enter the system at once. Furthermore, as in an

infinite server queue, the manner in which the content brought by one arrival

departs has no dependance on any of the arrivals before it or on the amount of

the content currently in the system. Following this intuition, we now formalize

the connections between the shot noise process and the general infinite server

queue in Theorem 6.2.1.

Theorem 6.2.1. As n→ ∞, the batch scaling of the GB(n)
t /GI/∞ queue Qt(n) yields

Qt(n)
n

D
=⇒ ψt, (6.2)

pointwise in t ≥ 0, where ψt is a shot noise process as defined in Equation 6.1, i.e. an

infinite capacity storage process. If Nt is a stationary Poisson process with rate λ > 0,

this implies that the moment generating function of Qt(n)
n converges to

E
[
e
θ
n Qt(n)

]
−→ eθψ0Ḡ0(t)+λ

∫ t
0

(
E
[
eθM1Ḡ(x)

]
−1

)
dx, (6.3)

as n→ ∞.

Proof. We will show the convergence of the batch scaling of the queue through

analyzing its moment generating function. To begin, we note that the infinite
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server queue length can be expressed in terms of indicator functions as

Qt(n) =

Q0(n)∑
j=1

1{t < S 0, j} +

Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j},

where S i, j is the service duration of the jth customer within the ith batch and S 0, j

is the remaining service time of the jth job that was in service at time 0. In this

way, the first term on the right hand side represents the number of jobs in the

system at time 0 that remain in the system at time t, whereas the double summa-

tion counts the number of jobs from each batch that remain in service at time t.

Because there are infinitely many servers, we can note that the number jobs re-

maining since time 0 is independent from the number of jobs in the system that

entered after time 0. Hence, we will consider these groups separately. Starting

with those jobs initially present, we can note that since {S 0, j | 1 ≤ j ≤ Q0(n)} are

the only stochastic terms, the law of large numbers yields that

1
n

Q0(n)∑
j=1

1{t < S 0, j} =
Q0(n)

n
1

Q0(n)

Q0(n)∑
j=1

1{t < S 0, j}
a.s.
−→ ψ0Ḡ0(t)

Thus, without loss of generality, we will hereforward assume that the queue

starts empty. We then write the moment generating function of Qt(n) at θ
n as

E
[
e
θQt (n)

n

]
= E

exp

θn
Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j}


.

By conditioning on the filtration of the counting process F N
t , total expectation

yields that

E

exp

θn
Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j}


 = E

 Nt∏
i=1

E

exp

θn
Bi(n)∑
j=1

1{t < Ai + S i, j}

 ∣∣∣∣F N
t


.

Focusing on the inner expectation, we again use the tower property. We now

condition on the batch size Bi(n), which leaves the service duration as the only

uncertain quantity. The indicator is thus a Bernoulli random variable with suc-

cess probability Ḡ(t − Ai), and since these are i.i.d. within the batch we have
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that

E

exp

θn
Bi(n)∑
j=1

1{t < Ai + S i, j}

 ∣∣∣∣F N
t

 = E

Bi(n)∏
j=1

E
[
e
θ
n 1{t<Ai+S i, j}

∣∣∣∣F N
t , Bi(n)

]∣∣∣∣F N
t


= E

[(
G(t − Ai) + Ḡ(t − Ai)e

θ
n
)Bi(n) ∣∣∣∣F N

t

]
= E

[(
1 + Ḡ(t − Ai)(e

θ
n − 1)

)Bi(n) ∣∣∣∣F N
t

]
.

By now using the identity x = elog(x), we can transform this to

E
[(

1 + Ḡ(t − Ai)(e
θ
n − 1)

)Bi(n) ∣∣∣∣F N
t

]
= E

[
exp

(
log

((
1 + Ḡ(t − Ai)(e

θ
n − 1)

)Bi(n)
)) ∣∣∣∣F N

t

]
= E

[
eBi(n) log

(
1+Ḡ(t−Ai)(e

θ
n −1)

)∣∣∣∣F N
t

]
,

which we can now re-express further through two series expansions. Specif-

ically, using a Taylor and a Mercator series expansion on e
θ
n − 1 and

log
(
1 + Ḡ(t − Ai)(e

θ
n − 1)

)
, respectively, we simplify to

E
[
eBi(n) log

(
1+Ḡ(t−Ai)(e

θ
n −1)

)∣∣∣∣F N
t

]
= E

[
e
θBi(n)Ḡ(t−Ai)

n +O
(

Bi(n)
n2

)∣∣∣∣F N
t

]
.

Returning to the original expectation, we now have that

E

 Nt∏
i=1

E

exp

θn
Bi(n)∑
j=1

1{t < Ai + S i, j}

 ∣∣∣∣F N
t


 = E

[
e
∑Nt

i=1
θBi(n)Ḡ(t−Ai)

n +O
(

Bi(n)
n2

)]
,

and as n→ ∞, this converges to

E
[
e
∑Nt

i=1
θBi(n)Ḡ(t−Ai)

n +O
(

Bi(n)
n2

)]
−→ E

[
eθ

∑Nt
i=1 MiḠ(t−Ai)

]
,

which yields the stated result for the queue. To now yield the specific form

of the generating function when Nt is a Poisson process, we note that when

conditioned on the quantity Nt we have

E
[
e
∑Nt

i=1 θMiḠ(t−Ai)
]

= E
[
E

[
e
∑Nt

i=1 θMiḠ(t−Ai) | Nt

]]
= E

[
E

[
eθM1Ḡ(U1(0,t))

]Nt
]
,
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where Ui(0, t) ∼ Uni(0, t) are i.i.d and independent of Mi. Then, conditioning on

M1, this inner expectation can be expressed

E
[
eθM1Ḡ(U1(0,t))

]
= E

[
E

[
eθM1Ḡ(U1(0,t)) | M1

]]
= E

[
1
t

∫ t

0
eθM1Ḡ(x)dx

]
.

By exchanging the order of integration and expectation via Fubini’s theorem

and substituting into the moment generating function for the Poisson process,

we achieve the corresponding stated form. �

For a visual example of this convergence, in Figure 6.5 we plot the empir-

ical distributions of four infinite server queues with different batch sizes and

compare them to the simulated distribution of the limiting shot noise process.

In this scenario the batches are Poisson distributed with rate n. Through the

scaling, this produces deterministic jumps of size 1 in the storage process. As

one can observe, as the batch size increase the queue’s cumulative distribution

function becomes increasingly similar to the cumulative distribution function

for the shot noise process.

Following the convergence shown in Theorem 6.2.1, we have noted that the

infinite server queue and the limiting shot noise process share a key similarity.

In both models, the manner that new arrivals leave the system has no depen-

dence on the rest of the process. In the infinite server queue, each job immedi-

ately enters service without waiting regardless of the number of jobs already in

the system. In the shot noise process, a new jump immediately begins to drain,

and the manner in which this content is released is determined only by the time

that has elapsed since its arrival. Of course, this is not true for the delay queue-

ing model QC
t (n). Some of the jobs within an arriving batch may have to wait

if there are not sufficiently many available servers. Moreover, the time that a

job has to wait is dependent on the status of the jobs that have entered service
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Figure 6.5: Simulated demonstration of convergence in distribution of an
MB(n)/M/∞ queue to a shot noise process, based on 100,000 replications with
t = 10, λ = 1, µ = 1, and B1(n) ∼ Pois(n).

ahead of it. If a job does not have to wait, its movement within the system is the

same as if there were infinitely many servers, but if it does have to wait this will

not be the case. Thus, we can categorize jobs as either having entered service

immediately or having needed to wait. This observation will guide the proof of

our multi-server batch scaling limit in Theorem 6.2.2, and it will also now serve

as inspiration for our definition of the limiting storage process.

Using the same arrival process definitions used in the shot noise process, let

us now define the generalized c-threshold storage process ψC
t at time t ≥ 0 as

ψC
t =

(
ψC

0 ∧ c
)
Ḡ0(t) +

(
ψC

0 − c
)+

Ḡ(t) +

Nt∑
i=1

MiḠ(t − Ai) +

∫ t

0

(
ψC

t−s − c
)+

dG(s), (6.4)

where we let ψC
0 be the limit of the normalized initial value of the delay model

queue length, meaning QC
0 (n)
n → ψC

0 . In comparing the definitions of this pro-

cess and the shot noise process given in Equation 6.1, we can note that there
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are similar terms between the two. In particular, each process has terms for the

decay of the initial value and of the marks according to the tail CDF of the ser-

vice distribution. However, Equation 6.4 also includes terms that adjust these

values, notably the integral over the history of the process’s exceedance of the

threshold level c, from which this process gets its name. As we now prove in

Theorem 6.2.2, this correction integral arises in the batch scaling of the delay

model as the limiting adjustment for the content that has to wait to drain. Just

as this construction is cast in comparison to the shot noise process, this proof

is centered around the relationship between the infinite server queue and the

multi-server delay model.

Theorem 6.2.2. As n→ ∞, the batch scaling of the GB(n)
t /GI/cn queue QC

t (n) yields

QC
t (n)
n

D
=⇒ ψC

t , (6.5)

pointwise in t ≥ 0, where ψC
t is a generalized threshold storage process as defined in

Equation 6.4.

Proof. In a manner similar to the proof of the infinite server to shot noise con-

vergence in Theorem 6.2.1, we begin by decomposing the queue length process

into a sum of indicators. By comparison to the infinite server decomposition

however, these indicators depend not only on the batch arrival epochs and the

individual service durations, but also on the lengths of time that jobs wait to

begin service while the servers were occupied. Defining Wi, j as the total time

the jth job within the ith batch spends waiting, we can express the queue length
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in the delay model queue at time t as

QC
t (n) =

Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j} +

Nt∑
i=1

Bi(n)∑
j=1

1{Ai + S i, j ≤ t < Ai + S i, j + Wi, j}

+

(QC
0 (n)∧cn)∑

j=1

1{t < S 0, j} +

(QC
0 (n)−cn)+∑

j=1

1{t < W·, j + S ·, j}. (6.6)

One can interpret this decompositions as follows. The first double summation

across arrival epochs and batch sizes gives an idealized infinite server repre-

sentation that would be accurate if no jobs had to wait to begin service. The

second double summation then corrects that under-counting for any jobs that

had to wait and have not yet completed service at time t. The third and fourth

terms then capture the initial state of the system, with the third term counting

which jobs have remained in service from time 0 to time t and with the fourth

term counting the number of jobs that were waiting at time 0 and have not com-

pleted service by t. Here we use S 0, j to represent the remaining service times

of the jobs that are in service at time 0 and we use W·, j and S ·, j to represent the

waiting and service times for the jobs that are present in the system at time 0

but were not in service. In this notation, the residual service time S 0, j need not

be equivalent in distribution to S i, j for i ∈ Z+, whereas S ·, j is equivalent to S i, j.

To begin moving towards the storage process limit, we first show a batch-

arrival-queue analog of Proposition 2.1 from Reed (2009). That is, we seek to

justify ∫ t

0

(
QC

t−s − cn
)+

dG(s) =

Nt∑
i=1

Bi(n)∑
j=1

(
Ḡ(t − Ai −Wi, j) − Ḡ(t − Ai)

)

+

(QC
0 (n)−cn)+∑

j=1

(
Ḡ(t −W·, j) − Ḡ(t)

)
, (6.7)

and this follows from a generalization of the arguments from Reed (2009). Start-

ing with the summations over the tail CDF terms, one can re-express these in
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terms of integrals over the service distribution measure, and these integrals can

then be adjusted to a standard interval of [0, t] through the introduction of indi-

cator functions:

Nt∑
i=1

Bi(n)∑
j=1

(
Ḡ(t − Ai −Wi, j) − Ḡ(t − Ai)

)
+

(QC
0 (n)−cn)+∑

j=1

(
Ḡ(t −W·, j) − Ḡ(t)

)

=

Nt∑
i=1

Bi(n)∑
j=1

∫ t−Ai

(t−Ai−Wi, j)+

dG(s) +

(QC
0 (n)−cn)+∑

j=1

∫ t

(t−W·, j)+

dG(s)

=

Nt∑
i=1

Bi(n)∑
j=1

∫ t

0
1{Ai ≤ t − s < Ai + Wi, j}dG(s) +

(QC
0 (n)−cn)+∑

j=1

∫ t

0
1{t − s < Wi, j}dG(s).

Then, one can recognize that the number of jobs waiting at an arbitrary time

u ≥ 0 can be written

(
QC

u (n) − cn
)+

=

Nu∑
j=1

Bi(n)∑
j=1

1{Ai ≤ u < Ai + Wi, j} +

(QC
0 (n)−cn)+∑

j=1

1{u < W·, j},

as the first term on the right-hand side captures the number jobs still waiting

across each batch of arrivals and the second term captures the number of jobs

that have been waiting since time 0. Thus, by exchanging the order of summa-

tion and integration, we can now observe that

Nt∑
i=1

Bi(n)∑
j=1

∫ t

0
1{Ai ≤ t − s < Ai + Wi, j}dG(s) +

(QC
0 (n)−cn)+∑

j=1

∫ t

0
1{t − s < Wi, j}dG(s)

=

∫ t

0

 Nt∑
i=1

Bi(n)∑
j=1

1{Ai ≤ t − s < Ai + Wi, j} +

(QC
0 (n)−cn)+∑

j=1

1{t − s < Wi, j}

 dG(s)

=

∫ t

0

(
QC

t−s(n) − cn
)+

dG(s),

and thus we achieve Equation 6.7.

Returning now to the decomposition of the queue length in Equation 6.6, we
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can use the equality from Equation 6.7 to re-express the queue length as

QC
t (n) =

Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j} +

Nt∑
i=1

Bi(n)∑
j=1

1{Ai + S i, j ≤ t < Ai + S i, j + Wi, j}

−

Nt∑
i=1

Bi(n)∑
j=1

(
Ḡ(t − Ai −Wi, j) − Ḡ(t − Ai)

)
−

(QC
0 (n)−cn)+∑

j=1

(
Ḡ(t −W·, j) − Ḡ(t)

)

+

∫ t

0

(
QC

t−s(n) − cn
)+

dG(s) +

(QC
0 (n)∧cn)∑

j=1

1{t < S 0, j} +

(QC
0 (n)−cn)+∑

j=1

1{t < W·, j + S ·, j}

=

Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j} +

(QC
0 (n)∧cn)∑

j=1

1{t < S 0, j} +

∫ t

0

(
QC

t−s(n) − cn
)+

dG(s)

+
(
QC

0 (n) − cn
)+

Ḡ(t) +

Nt∑
i=1

Bi(n)∑
j=1

(
1{t − Ai −Wi, j < S i, j} − Ḡ(t − Ai −Wi, j)

)

−

Nt∑
i=1

Bi(n)∑
j=1

(
1{t − Ai < S i, j} − Ḡ(t − Ai)

)
+

(QC
0 (n)−cn)+∑

j=1

(
1{t −W·, j < S ·, j} − Ḡ(t −W·, j)

)
.

Through this decomposition, we will now prove that the batch scaling of the

queue length converges to the generalized storage process. We proceed through

induction on the arrival times. For the base case, let 0 ≤ t < A1. Then, the

normalized queue length at time t can be written

QC
t (n)
n

=
1
n

(QC
0 (n)∧cn)∑

j=1

1{t < S 0, j} +
1
n

∫ t

0

(
QC

t−s(n) − cn
)+

dG(s) +
1
n

(
QC

0 (n) − cn
)+

Ḡ(t)

+
1
n

(QC
0 (n)−cn)+∑

j=1

(
1{t −W·, j < S ·, j} − Ḡ(t −W·, j)

)
,

which we now analyze piece by piece. By the law of large numbers, the assump-

tion on the initial values, and the continuous mapping theorem, we have that as

n→ ∞
1
n

(QC
0 (n)∧cn)∑

j=1

1{t < S 0, j}
D

=⇒
(
ψC

0 ∧ c
)
Ḡ0(t),

where Ḡ0(·) is the complementary CDF of the residual service durations of the
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initial jobs in service at time 0. We can also similarly observe that

1
n

(
QC

0 (n) − cn
)+

Ḡ(t)
D

=⇒
(
ψC

0 − c
)+

Ḡ(t),

as n→ ∞. Now, for the summation over jobs that were waiting to begin service

at time 0, we can employ a martingale argument such as that used in e.g. An-

drews (1988). Let S j for 0 ≤ j ≤
(
QC

0 (n) − cn
)+

be the filtration generated by the

collection of service times of the jobs initially in service at time 0 and of the first

j jobs to enter service after time 0, i.e. S j = σ
(
{S 0,1, . . . , S 0,cn, S ·,1, . . . , S ·, j}

)
. Then,

one can note that for j <
(
QC

0 (n) − cn
)+

, W·, j+1 is S j measurable, as the previous

service durations dictate the time that this job waits. Thus, we can recognize

that E
[
1{t −W·, j < S ·, j} | S j

]
= Ḡ(t − W·, j). This implies that the summation is a

martingale difference sequence, and thus we have that

1
n

(QC
0 (n)−cn)+∑

j=1

(
1{t −W·, j < S ·, j} − Ḡ(t −W·, j)

) D
=⇒ 0,

as n→ ∞. Thus, as n→ ∞ the queue length on 0 ≤ t < A1 converges to a process

z(·) satisfying

z(t) =
(
ψC

0 ∧ c
)
Ḡ0(t) +

(
ψC

0 − c
)+

Ḡ(t) +

∫ t

0
(z(t − s) − c)+ dG(s).

We can observe that on this time interval each of these terms are deterministic,

and thus Proposition 3.1 of Reed (2009) yields that the function z(·) that solves

this equation is unique. Since this matches the expression for ψC
t on 0 ≤ t < Ai

as given by Equation 6.4, we have that QC
t (n)
n

D
=⇒ ψC

t as n → ∞ for 0 ≤ t < A1. At

the precise epoch of the first arrival, we can note that we furthermore have the

convergence of the process immediately after the batch of jobs arrives, which is a

direct consequence of the preceding arguments and assumption that B1(n)
n

D
=⇒ M1

as n → ∞. Thus, QC
t (n)
n

D
=⇒ ψC

t as n → ∞ for 0 ≤ t ≤ A1, satisfying the base case of

our inductive argument.
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For the inductive step, we now assume that QC
s (n)
n

D
=⇒ ψC

s as n → ∞ for s such

that 0 ≤ s ≤ Ai and some i ∈ Z+. Let us now take t such that Ai ≤ t < Ai+1. We

have established that we can decompose the normalized queue length as

QC
t (n)
n

=
1
n

Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j} +
1
n

(QC
0 (n)∧cn)∑

j=1

1{t < S 0, j} +
1
n

∫ t

0

(
QC

t−s(n) − cn
)+

dG(s)

+
1
n

(
QC

0 (n) − cn
)+

Ḡ(t) +
1
n

Nt∑
i=1

Bi(n)∑
j=1

(
1{t − Ai −Wi, j < S i, j} − Ḡ(t − Ai −Wi, j)

)

−
1
n

Nt∑
i=1

Bi(n)∑
j=1

(
1{t − Ai < S i, j} − Ḡ(t − Ai)

)
+

1
n

(QC
0 (n)−cn)+∑

j=1

(
1{t −W·, j < S ·, j} − Ḡ(t −W·, j)

)
,

and we can again analyze this piece-by-piece. By the batch scaling convergence

of infinite server queues to shot noise processes in Theorem 6.2.1, we can ob-

serve that as n→ ∞

1
n

Nt∑
i=1

Bi(n)∑
j=1

1{t < Ai + S i, j}
D

=⇒

Nt∑
i=1

MiḠ(t − Ai),

and

1
n

Nt∑
i=1

Bi(n)∑
j=1

(
1{t − Ai < S i, j} − Ḡ(t − Ai)

) D
=⇒ 0.

Similarly, analogous arguments to the base case show that the initial condition

terms are such that

1
n

(QC
0 (n)∧cn)∑

j=1

1{t < S 0, j}
D

=⇒
(
ψC

0 ∧ c
)
Ḡ0(t),

1
n

(
QC

0 (n) − cn
)+

Ḡ(t)
D

=⇒
(
ψC

0 − c
)+

Ḡ(t),

and
1
n

(QC
0 (n)−cn)+∑

j=1

(
1{t −W·, j < S ·, j} − Ḡ(t −W·, j)

) D
=⇒ 0.

For the remaining double summation over arrival epochs and batch sizes, we

can again make use of a martingale structure. For i ∈ Z+ and j ∈ Z+, let us define
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the sigma algebra generated by the arrival times and service times of all jobs up

to and including to the jth job within the ith batch, which is

Si, j = σ

(
{S 0,1, . . . , S 0,cn, S ·,1, . . . , S ·,(cn−QC

0 (n))+} ∪ {A1, . . . , Ai}

∪

 i−1⋃
k=1

{S k,1, . . . , S k,Bk(n)}

 ∪ {S i,1, · · · , S i, j}

)
.

Then, we have that Wi, j+1 is Si, j measurable since the queue is operating under

first-come-first-serve, meaning that only the previous jobs determine how long

the jth job in the ith batch waits. Thus, E
[
1{t − Ai −Wi, j+1 < S i, j+1} | Si, j

]
= Ḡ(t −

Ai −Wi, j). Therefore through martingale differences we have that

1
n

Nt∑
i=1

Bi(n)∑
j=1

(
1{t − Ai −Wi, j < S i, j} − Ḡ(t − Ai −Wi, j)

) D
=⇒ 0,

as n → ∞. Bringing these pieces together we now have that for t ∈ [Ai, Ai+1) the

queue length process converges to a process zi(·) satisfying

zi(t) =
(
ψC

0 ∧ c
)
Ḡ0(t) +

(
ψC

0 − c
)+

Ḡ(t) +

Nt∑
i=1

MiḠ(t − Ai) +

∫ t

0
(zi(t − s) − c)+ dG(s).

From the inductive hypothesis and the uniqueness given by Proposition 3.1 of

Reed (2009), we have that zi(s) = ψC
s must hold for all s ≤ Ai. One can then

observe that zi(t) is deterministic for Ai < t < Ai+1, meaning that Proposition

3.1 of Reed (2009) further implies that zi(t) = ψC
t on this interval as well. To

complete the inductive step, we can note that by the given convergence of the

batch sizes to the jump sizes, we also have that Qn
Ai+1

(n)/n
D

=⇒ ψC
Ai+1

as n→ ∞, and

this completes the proof. �

To provide some intuition about this stochastic process, let us consider the

case of exponentially distributed service. For the sake of this example, suppose

that Ḡ(x) = e−µx for some µ > 0. Then, Equation 6.4 yields that

ψC
t = ψC

0 e−µt +

Nt∑
i=1

Mie−µ(t−Ai) +

∫ t

0

(
ψC

t−s − c
)+
µe−µsds.
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Multiplying and dividing by e−µt inside the integral, we can re-express this as

ψC
t = ψC

0 e−µt +

Nt∑
i=1

Mie−µ(t−Ai) + e−µt
∫ t

0

(
ψC

t−s − c
)+
µeµ(t−s)ds,

and by changing the variable of integration to be s instead of t − s, we further-

more have

ψC
t = ψC

0 e−µt +

Nt∑
i=1

Mie−µ(t−Ai) + e−µt
∫ t

0

(
ψC

s − c
)+
µeµsds.

Since we know that the process jumps by Mi at the ith arrival, let us take

t ∈ (Ai, Ai+1) and focus on the behavior between jumps. Because storage pro-

cesses are deterministic on inter-jump intervals, we can take the derivative with

respect to time and observe that for t ∈ (Ai, Ai+1),

dψC
t

dt
= −µψC

0 e−µt − µ

Nt∑
i=1

Mie−µ(t−Ai) − µe−µt
∫ t

0

(
ψC

s − c
)+
µeµsds + µ

(
ψC

t − c
)+

= −µψC
t + µ

(
ψC

t − c
)+

= −µ
(
ψC

t ∧ c
)
.

Hence, in the case of exponential service the inter-jump dynamics of this process

can be easily summarized. If ψC
t is above the threshold c it drains linearly, if it

is below c it decays exponentially. This corresponds to a storage process with

threshold release rule r(x) = µ(x ∧ c), which further motivates why we refer to

the general limiting object as the generalized c-threshold storage process.

Just as we gave a visual example of the convergence of infinite server queues

to shot noise processes in Figure 6.5, we now plot a series of simulated delay

model distributions in Figure 6.6 and compare them to a c-threshold storage

process. For this example we suppose that the batch sizes are geometrically

distributed with probability of success 1
n , and this yields jumps that are expo-

nentially distributed with unit rate in the batch scaling limit. As an additional
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Figure 6.6: Simulated demonstration of convergence in distribution of an
MB(n)/M/cn queue to a c-threshold storage process, based on 100,000 replications
with t = 10, λ = 3, µ = 2, c = 2, and B1(n) ∼ Geo

(
1
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)
.

example of the limiting threshold dynamics, in Figure 6.7 we plot a simulated

scaled queue length sample path along with the calculated storage process val-

ues when given the same arrival epochs. One can observe the change in release

behavior as the process crosses the capacity level c. Above the level c, the con-

tent drains linearly and below c it decays exponentially towards zero.
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Figure 6.7: A comparison of the simulated scaled queue length process and the
calculated storage process sample paths defined on the same arrival process.
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6.3 Staffing the Teleoperations System

Now that we have developed an understanding of queues with large batch ar-

rivals through connections to storage processes, in this section we will leverage

this insight and use the storage process models to staff the teleoperations sys-

tem. In Section 6.2, we defined the staffing problem as finding a operator to

batch size ratio c such that the desired exceedance probability, P
(
QC

t (n) ≥ cn
)

or

P
(
QC

t (n) + Bi(n) > cn
)
, is smaller than some target ε > 0. By normalizing these

events by n, we can see that the batch scaling limit in Theorem 6.2.2 yields that

P
(
QC

t (n) ≥ cn
)
→ P

(
ψC

t > c
)

and P
(
QC

t (n) + Bi(n) ≥ cn
)
→ P

(
ψC

t + Mi > c
)
,

as n → ∞, allowing us to “staff” the storage process instead. One general ap-

proach to this problem would be to take a simulation-based approach, such as

the well-known iterative staffing algorithm introduced in Feldman et al. (2008).

It is thus worth noting that the results of Theorems 6.2.1 and 6.2.2 have an imme-

diate consequence of greatly simplifying the simulation of batch arrival queue-

ing systems. For large batch sizes, one can simply simulate a storage process

instead. This only requires generating random variables for the arrival epochs

and jump sizes; one need not simulate service durations. In the large batch set-

ting, this can deliver substantial savings in computation complexity, as large

batches mean that a large number of service durations must be generated.

To draw upon results from the storage process literature and calculate ex-

plicit staffing levels, we will now assume that we are in the Markovian setting

with Nt as a Poisson process with rate λ > 0 and with exponential service at

rate µ > 0. In the c-threshold storage process this corresponds to a release rule

of r(x) = µ(x ∧ c). Similarly in the shot noise process the release rule would be

r(x) = µx. Following standard stability assumptions for multi-server queueing
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models we will also suppose λE [B1(n)] < cnµ for all n ∈ Z+ and we suppose that

in the limit we have λE [M1] < cµ as well. Thus, the objects we use to determine

the staffing levels will be the storage and shot noise processes in steady-state.

We denote these as ψC
∞ and ψ∞, respectively. We now cite a result from the stor-

age process literature providing integral equations for the steady-state densities

of ψ∞ and ψC
∞ in Lemma 6.3.1.

Lemma 6.3.1. The steady-state density of the shot noise process f∞(·) exists and is given

by the unique solution to the integral equation

f∞(x) =
λ

µx

∫ x

0
P (M1 > x − y) f∞(y)dy, (6.8)

for all x > 0. Furthermore, the steady-state density of the c-threshold storage process

fC(·) exists and is given by the unique solution to the integral equation

fC(x) =
λ

µ(x ∧ c)

∫ x

0
P (M1 > x − y) fC(y)dy, (6.9)

for all x > 0.

Proof. This follows directly from Theorem 5 of Brockwell et al. (1982). �

As an alternate representation of the integrals in Lemma 6.3.1, we can ob-

serve that in the case of the threshold storage process, for example, we have∫ x

0
P (M1 > x − y) fC(y)dy = P

(
M1 + ψC

∞ > x
)
− P

(
ψC
∞ > x

)
, (6.10)

since
∫ ∞

0
P (M1 > x − y) fC(y)dy = P

(
M1 + ψC

∞ > x
)

and P (M1 > x − y) = 1 for all

y > x. This expression will be of use to us in relating the two processes, further

enabling us to use the shot noise process to understand the c-threshold stor-

age process, just as we have used the infinite server queue to understand the

multi-server queue. To begin, in Theorem 6.3.2 we will now use this alternate
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expression to justify our study of the stationary setting through a validation of

the interchange of the limits of time and of the batch scaling.

Theorem 6.3.2. In the stationary Markovian infinite server and delay queueing mod-

els, the interchange of limits of time and batch scaling is justified. That is,

lim
n→∞

lim
t→∞

P
(

Qt(n)
n
≤ x

)
= lim

t→∞
lim
n→∞

P
(

Qt(n)
n
≤ x

)
, (6.11)

and

lim
n→∞

lim
t→∞

P
(

QC
t (n)
n
≤ x

)
= lim

t→∞
lim
n→∞

P
(

QC
t (n)
n
≤ x

)
, (6.12)

for all x > 0.

Proof. For the infinite server queueing model, this interchange can be quickly

observed through differential equations for the moment generating functions

of Qt(n) and ψt. Let Mn(θ, t) be the moment generating function of the scaled

Markovian infinite server queue, i.e. Mn(θ, t) = E
[
e
θ
n Qt(n)

]
. Then,Mn(θ, t) satisfies

∂Mn(θ, t)
∂t

= λ
(
E

[
e
θ
n B1(n)

]
− 1

)
Mn(θ, t) + nµ

(
e−

θ
n − 1

) ∂Mn(θ, t)
∂θ

,

since ∂Mn(θ,t)
∂θ

= E
[

Qt(n)
n e

θ
n Qt(n)

]
. Then, we have that for any n ∈ Z+ the moment

generating function of the steady-state queue, sayMn(θ,∞), will be given by the

solution to the time-equilibrium ordinary differential equation

0 = λ
(
E

[
e
θ
n B1(n)

]
− 1

)
Mn(θ,∞) + nµ

(
e−

θ
n − 1

) dMn(θ,∞)
dθ

.

As n→ ∞, the limiting steady-state object will then satisfy

0 = λ
(
E

[
eθM1

]
− 1

)
M∞(θ,∞) − µθ

dM∞(θ,∞)
dθ

.

By comparison, the moment generating function of the shot noise process that

yielded in the Markovian case of the batch scaling in Theorem 6.2.1, sayMψ(θ, t),
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will satisfy

∂Mψ(θ, t)
∂t

= λ
(
E

[
eθM1

]
− 1

)
Mψ(θ, t) − µθ

∂Mψ(θ, t)
∂θ

,

which implies that in steady-state the shot noise process moment generating

function, sayMψ(θ,∞), is given by the solution to

0 = λ
(
E

[
eθM1

]
− 1

)
Mψ(θ,∞) − µθ

∂Mψ(θ,∞)
∂θ

.

Hence, Mψ(θ,∞) = M∞(θ,∞), justifying Equation 6.11. To now prove Equa-

tion 6.12, we start with describing the balance equations for the queue. Letting

πn
i = limt→∞ P (Qt(n) = i) for every i ∈ N, we have that these steady-state proba-

bilities satisfy

(λ + µ(i ∧ cn)) πn
i = λ

i∑
j=1

P (B1(n) = j) πn
i− j + µ(i + 1 ∧ cn)πn

i+1,

for any n ∈ Z+. By induction, we can observe that this implies that the probabil-

ities satisfy the recurrence relation

πn
i =

λ

µ(i ∧ cn)

i∑
j=1

P (B1(n) ≥ j) πn
i− j,

for all i ∈ Z+. At i = 1 this follows immediately from the global balance equation

for πn
0, so we proceed to the inductive step and assume that the hypothesis holds

on i ∈ {1, . . . , k} for some k ∈ Z+. Then, through this assumption and the balance

equation for πn
k , we can observe that

λπn
k + λ

k∑
j=1

P (B1(n) ≥ j) πn
k− j = λ

k∑
j=1

P (B1(n) = j) πn
k− j + µ(k + 1 ∧ cn)πn

k+1,

and since P (B1(n) ≥ 1) this simplifies to

µ(k + 1 ∧ cn)πn
k+1 = λπn

k + λ

k∑
j=1

P (B1(n) ≥ j + 1) πn
k− j = λ

k+1∑
j=1

P (B1(n) ≥ j) πn
k+1− j,
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which completes the induction. With this confirmation of the recursion, let us

now observe an alternate representation of the summation within it. That is, for

QC
∞(n) as the delay model in steady-state, one can note through the law of total

probability that

P
(
B1(n) + QC

∞(n) ≥ i
)

=

∞∑
j=0

P (B1(n) ≥ i − j) πn
j

=

i−1∑
j=0

P (B1(n) ≥ i − j) πn
j + P

(
QC
∞(n) ≥ i

)
,

since P (B1(n) ≥ i − j) = 1 for all j ≥ i. This then implies that one can re-express

the recurrence relation as

πn
i =

λ

µ(i ∧ cn)

(
P
(
B1(n) + QC

∞(n) ≥ i
)
− P

(
QC
∞(n) ≥ i

))
,

and we can now use this to give a representation for Fn(x) ≡ P
(
QC
∞(n) ≤ xn

)
.

Since Fn(x) =
∑bxnc

i=0 π
n
i , we have that

Fn(x) = πn
0 +

bxnc∑
i=1

λ

µ(i ∧ cn)

(
P
(
B1(n) + QC

∞(n) ≥ i
)
− P

(
QC
∞(n) ≥ i

))
.

By changing the step size of the summation to being in increments of 1
n , this sum

becomes

Fn(x) = πn
0 +

bxnc/n∑
i= 1

n ,

∆= 1
n

λ

nµ(i ∧ c)

(
P
(

B1(n)
n

+
QC
∞(n)
n
≥ i

)
− P

(
QC
∞(n)
n
≥ i

))
.

Letting X∞ be equivalent in distribution to the limiting object of QC
∞(n)
n as n → ∞,

we have that F∞(x) = P (X∞ ≤ x) is given by

F∞(x) =

∫ x

0

λ

µ(z ∧ c)
(P (M1 + X∞ ≥ z) − P (X∞ ≥ z)) dz, (6.13)

for all x > 0, since πn
0 → 0 and B1(n)

n

D
=⇒ M1 as n → ∞. Using Lemma 6.3.1 and

the alternate representation of the integral in Equation 6.10, one can note that
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FC(x) = P
(
ψC
∞ ≤ x

)
will be given by

FC(x) =

∫ x

0

λ

µ(z ∧ c)

(
P
(
M1 + ψC

∞ ≥ z
)
− P

(
ψC
∞ ≥ z

))
dz.

From Lemma 6.3.1 we have that FC(x) is the unique distribution satisfying this

equation and thus X∞
D
= ψC

∞, completing the proof. �

Having now justified the interchange of limits, we will now develop an

asymptotic approach to calculate the exceedance probabilities for general batch

sizes in Subsection 6.3.1 through use of the results from the storage process

literature. It is worth noting that in specific settings the integral equations in

Lemma 6.3.1 can yield results directly. An example of this is in the case of expo-

nential distributed marks, which arise as the limit of geometrically distributed

batches. The resulting equations in this setting are straightforward to solve, and

we demonstrate this in Section C.3 of the Appendix.

6.3.1 Asymptotic Analysis for General Batch Sizes

To calculate the exceedance probabilities for ψC
∞, we will again draw upon its

relationship with the tractable shot noise process, ψ∞. Furthermore, we will

also make use of a transform method for computing the cumulative distribu-

tion function and truncated expectation of a random variable through use of

orthogonal Legendre polynomials. This approach is based on an generaliza-

tion of Sullivan et al. (1980), in which the authors provide a representation for

the indicator function through a sum of exponential functions. In Section C.1

of the Appendix, we extend this result for use in studying continuous random

variables. Through use of the resulting Lemma C.1.1, we derive the following

expressions for the exceedance probabilities in Theorem 6.3.3.
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Theorem 6.3.3. In the Markovian case, the threshold exceedance probabilities for ψC
∞

are given by

P
(
ψC
∞ > c

)
= lim

m→∞

λ
µ
E [M1] − σ(C1)

m,c

c − σ(C1)
m,c

, (6.14)

and

P
(
ψC
∞ + M1 > c

)
= lim

m→∞

λ
µ
E [M1] − σ(C2)

m,c

c − σ(C2)
m,c

+
σ(C1)

m,c

(
cµ
λ
− E [M1]

)(
c − σ(C1)

m,c

) (
c − σ(C2)

m,c

) , (6.15)

where for m ∈ Z+ and c as the capacity threshold, σ(C1)
m,c is given by

σ(C1)
m,c =

m∑
k=1

cλ
µk

(
1 − E

[
e−

k
c M1

]) am
k e−λ

∫ ∞
0

(
1−E

[
e−

k
c M1e−µx

])
dx

∑m
i=1 am

i e−λ
∫ ∞

0

(
1−E

[
e−

i
c M1e−µx

])
dx
, (6.16)

and σ(C2)
m,c is given by

σ(C2)
m,c =

m∑
k=1

E
[
M1e−

k
c M1

]
+ E

[
e−

k
c M1

]
cλ
µk

(
1 − E

[
e−

k
c M1

])
∑m

i=1 am
i E

[
e−

i
c M1

]
e−λ

∫ ∞
0

(
1−E

[
e−

i
c M1e−µx

])
dx

am
k e−λ

∫ ∞
0

(
1−E

[
e−

k
c M1e−µx

])
dx
, (6.17)

with am
k as defined in Equation C.1.

Proof. To begin, we first recall that Equation 6.10 gives us that

(x ∧ c) fC(x) =
λ

µ

(
P
(
M1 + ψC

∞ > x
)
− P

(
ψC
∞ > x

))
,

and by integrating each side across all x this further implies that

E
[
ψC
∞ ∧ c

]
=
λ

µ

(
E

[
M1 + ψC

∞

]
− E

[
ψC
∞

])
,

yielding that E
[
ψC
∞ ∧ c

]
= λ

µ
E [M1]. This same expectation can also be expressed

through conditioning as

E
[
ψC
∞ ∧ c

]
= cP

(
ψC
∞ > c

)
+ E

[
ψC
∞ | ψ

C
∞ ≤ c

] (
1 − P

(
ψC
∞ > c

))
,
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and thus by setting these two expressions equal to one another we find that

P
(
ψC
∞ > c

)
=

λ
µ
E [M1] − E

[
ψC
∞ | ψ

C
∞ ≤ c

]
c − E

[
ψC
∞ | ψ

C
∞ ≤ c

] . (6.18)

Although we do not know this truncated mean of ψC
∞ in closed form, we can

observe that

E
[
ψC
∞ | ψ

C
∞ ≤ c

]
= E

[
ψ∞ | ψ∞ ≤ c

]
,

because the integral equations of the these truncated densities are equivalent for

all x ∈ (0, c], as can be observed through Lemma 6.3.1. Now, by total probability

we can recognize that

E
[
ψ∞ | ψ∞ ≤ c

]
=

E
[
ψ∞1{ψ∞ ≤ c}

]
P (ψ∞ ≤ c)

.

For m ∈ Z+, we now define the quantities σ(1)
m,c and σ(2)

m,c as

σ(1)
m,c =

m∑
k=1

am
k e−λ

∫ ∞
0

(
1−E

[
e−

k
c M1e−µx

])
dx
,

and

σ(2)
m,c =

m∑
k=1

cλam
k

µk

(
1 − E

[
e−

k
c M1

])
e−λ

∫ ∞
0

(
1−E

[
e−

k
c M1e−µx

])
dx
.

Using Theorem 6.2.1 and Lemma C.1.1, we have that σ(1)
m,c → P (ψ∞ ≤ c) and

σ(2)
m,c → E

[
ψ∞1{ψ∞ ≤ c}

]
as m → ∞. Thus, by substituting σ(C1)

m,c = σ(2)
m,c/σ

(1)
m,c into

Equation 6.18 and simplifying, we achieve the stated form in Equation 6.14.

To now prove Equation 6.15, we start by finding an identity for

E
[
ψC
∞ + M1 ∧ c

]
. Because Lemma 6.3.1 implies that the threshold storage pro-

cess density fC(x) satisfies

(x ∧ c) fC(x) =
λ

µ

(
P
(
ψC
∞ + M1 > x

)
− P

(
ψC
∞ > x

))
,
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we are able to observe that

E
[
ψC
∞1{ψC

∞ < c}
]

=

∫ c

0
(x ∧ c) fC(x)dx

=
λ

µ

∫ c

0
P
(
ψC
∞ + M1 > x

)
dx −

λ

µ

∫ c

0
P
(
ψC
∞ > x

)
dx

=
λ

µ
E

[
ψC
∞ + M1 ∧ c

]
−
λ

µ
E

[
ψC
∞ ∧ c

]
.

Because we know that E
[
ψC
∞ ∧ c

]
= λ

µ
E [M1] and E

[
ψC
∞ | ψ

C
∞ ≤ c

]
= E

[
ψ∞ | ψ∞ ≤ c

]
,

we can note that this now implies that expectation of the minimum of the thresh-

old and the storage process plus a jump is equal to

E
[
ψC
∞ + M1 ∧ c

]
=
µ

λ
E

[
ψ∞ | ψ∞ ≤ c

]
P
(
ψC
∞ ≤ c

)
+
λ

µ
E [M1],

all of which on the right-hand side we now know how to calculate. Then, by

mimicking the conditioning decomposition we used previously on E
[
ψC
∞ ∧ c

]
,

we can note that E
[
ψC
∞ + M1 ∧ c

]
is also equal to

E
[
ψC
∞ + M1 ∧ c

]
= cP

(
ψC
∞ + M1 > c

)
+E

[
ψC
∞ + M1 | ψ

C
∞ + M1 ≤ c

] (
1 − P

(
ψC
∞ + M1 > c

))
.

By setting these two expressions for E
[
ψC
∞ + M1 ∧ c

]
equal to one another and

solving for P
(
ψC
∞ + M1 > c

)
, we have that

P
(
ψC
∞ + M1 > c

)
=

µ

λ
E

[
ψ∞ | ψ∞ ≤ c

]
P
(
ψC
∞ ≤ c

)
+ λ

µ
E [M1] − E

[
ψC
∞ + M1 | ψ

C
∞ + M1 ≤ c

]
c − E

[
ψC
∞ + M1 | ψC

∞ + M1 ≤ c
]

(6.19)

Again through the integral equations, we can recognize that E
[
ψC
∞ + M1 | ψ

C
∞ + M1 ≤ c

]
=

E
[
ψ∞ + M1 | ψ∞ + M1 ≤ c

]
. Because M1 is independent from the state of the shot

noise process ψ∞, we have that

E
[
eθ(ψ∞+M1)

]
= E

[
eθψ∞

]
E

[
eθM1

]
= E

[
eθM1

]
e−λ

∫ ∞
0

(
1−E

[
eθM1e−µx ])

dx,

by use of Theorem 6.2.1. Then, for m ∈ Z+ let us additionally define σ(3)
m,c and σ(4)

m,c

such that

σ(3)
m,c =

m∑
k=1

am
k E

[
e−

k
c M1

]
e−λ

∫ ∞
0

(
1−E

[
e−

k
c M1e−µx

])
dx
,
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and

σ(4)
m,c =

m∑
k=1

am
k

(
E

[
M1e−

k
c M1

]
+ E

[
e−

k
c M1

]cλ
µk

(
1 − E

[
e−

k
c M1

]))
e−λ

∫ ∞
0

(
1−E

[
e−

k
c M1e−µx

])
dx
.

Through these definitions, Lemma C.1.1 yields that σ(3)
m,c → P

(
ψC
∞ + M1 ≤ c

)
and

σ(4)
m,c → E

[
(ψ∞ + M1)1{ψ∞ + M1 ≤ c}

]
as m → ∞. Thus we have that σ(C2)

m,c = σ(4)
m,c/

σ(3)
m,c → E

[
ψ∞ + M1 | ψ∞ + M1 ≤ c

]
, and this completes the proof. �

The derivations behind this computational methodology also enable us to

provide a closed form expression for the utilization of the teleoperators, mean-

ing the ratio between the mean number of busy servers and the total number

employed. Because the number of busy servers is the minimum of the number

of jobs in the system and the staffing level, we can make use of the expected

value of the minimum of the storage process and the threshold c. In Corol-

lary 6.3.4, we observe that with this expectation in hand, the utilization is easy

to compute.

Corollary 6.3.4. In the Markovian case, the steady-state utilization of the teleoperators

in the large batch setting is given by 1
c E

[
ψC
∞ ∧ c

]
= λ

cµE [M1].

Proof. In the proof of Theorem 6.3.3, we have seen that E
[
ψC
∞ ∧ c

]
= λ

µ
E [M1].

Through the batch scaling in Theorem 6.2.2, the teleoperation utilization con-

verges to

E
[

1
cn

(
QC
∞(n) ∧ cn

)]
−→

1
c

E
[
ψC
∞ ∧ c

]
=

λ

cµ
E [M1],

as n→ ∞. �

As a side consequence of the proof of Theorem 6.3.3, we can also identify a

practical, closed-form upper bound on P
(
ψC
∞ > c

)
. To do so we bound first find
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a lower bound for the truncated mean E
[
ψC
∞ | ψ

C
∞ ≤ c

]
= E

[
ψ∞ | ψ∞ ≤ c

]
. Letting

f̄ (x) be the truncated density on (0, c], through Lemma 6.3.1 we then have that

E
[
ψ∞ | ψ∞ ≤ c

]
=

∫ c

0
x f̄ (x)dx =

∫ c

0

λ

µ
(P (M1 + ψ∞ > x | ψ∞ ≤ c) − P (ψ∞ > x | ψ∞ ≤ c)) dx.

Because
∫ c

0
P (ψ∞ > x | ψ∞ ≤ c) dx = E

[
ψ∞ | ψ∞ ≤ c

]
, we have

E
[
ψ∞ | ψ∞ ≤ c

]
=

λ

λ + µ

∫ c

0
P (M1 + ψ∞ > x | ψ∞ ≤ c) dx.

Then, by observing that P (M1 + ψ∞ > x | ψ∞ ≤ c) ≥ P (M1 > x) through the inde-

pendence of the two quantities and the fact that each is positive, we furthermore

have

E
[
ψ∞ | ψ∞ ≤ c

]
≥

λ

λ + µ

∫ c

0
P (M1 > x) dx =

λ

λ + µ
E [M1 ∧ c].

Using the decomposition in Equation 6.18, this now yields the upper bound

P
(
ψC
∞ > c

)
≤

λ
µ
E [M1] − λ

λ+µ
E [M1 ∧ c]

c − λ
λ+µ

E [M1 ∧ c]
.

This bound is most helpful in cases of small λ, as in that case ψ∞ is likely to be

small. This small arrival rate setting is practical for our motivating teleopera-

tions scenario. As we have discussed, jobs arrive to the teleoperations system at

disengagements. As self-driving technology improves, disengagements should

become increasingly rare. In fact, based on the public statistics of industry lead-

ing organizations, disengagements may already be quite rare. In the following

section, we will explore this data in greater detail. Using the theoretical results

we have obtained for these system, in Section 6.4 we will calculate the neces-

sary staffing levels for teleoperations systems in a variety of real world settings

through a collection of public data sets on autonomous vehicles and driving

behavior.
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6.4 Numerical Results and Experiments

Before exploring the practical implications of our theoretical results, let us first

review the data we use in the subsequent calculations. These data sets are of

two main types: data on autonomous vehicle performance and data on driving

behavior in the United States. The former comes from the California disen-

gagement reports, which are disclosures of all autonomous vehicle disengage-

ments required from every company testing driverless cars on the state’s public

roads. We will focus our analysis on the reports from two industry leaders, GM

Cruise LLC (2019) and Waymo LLC (2019). These reports allow us to calcu-

late a disengagement rate, meaning the average number of miles driven between

autonomous vehicle disengagements, which enables us to convert from num-

ber of miles driven per hour to number of disengagements per hour, which is

the arrival rate to the teleoperations queueing system. Using the most recently

available data, Waymo leads the industry with a rate of 11,154.3 miles per dis-

engagement and GM Cruise is in second with 5,204.9 miles per disengagement.

It is worth noting though that GM Cruise tests exclusively in downtown San

Francisco, and we will use this rate to address urban driving situations.

For driving behavior data, we will consider two different types of drivers:

individuals and taxis. As we have discussed in the introduction, taxis are likely

to be the first widespread public deployment of autonomous vehicles, since the

technology involves expensive hardware that may be prohibitively expensive

for individual consumers and is more cost-effective in a highly utilized vehicle

like a taxi. For taxi data, we turn to the 2014 and 2018 New York City Taxicab

Factbooks and their accompanying datasets New York City Taxi & Limousine

Commission (2014, 2018), which document the driving activity in NYC in ex-
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tensive detail, and a 2019 taxi study from the Los Angeles Department of Trans-

portation with a focus on key arterial roadways Sam Schwartz Engineering

(2019). For individual driving behavior, we use the most recent National House-

hold Travel Survey (NHTS) from the Federal Highway Administration, which

contains summary statistics on driving in major census designated geographic

areas in the United States Federal Highway Administration (2017). From this

data, we know that the average American drives approximately 13,476 miles

each year, which puts the performance of Waymo’s and GM Cruise’s disen-

gagement rates in an impressive context.

6.4.1 Staffing the Teleoperations System from Data

As an opening numerical experiment, let us consider the early phases of au-

tonomous vehicle public deployment. In Figure 6.8, we plot the number of re-

mote operators needed to support an urban fleet of driverless taxis as the num-

ber of vehicles increases. In terms of the teleoperations system, as the number

of vehicles grows so will the rate of arrivals for service grow. Based on the 2014

NYC Taxi Factbook New York City Taxi & Limousine Commission (2014), we

assume that each vehicle drives 70,000 miles per year. Furthermore, we are con-

sidering the PM shift, in which NYC taxis average 63.0% of their daily driven

miles per the 2018 NYC Taxi Factbook New York City Taxi & Limousine Com-

mission (2018). To capture disengagements in a dense urban road network, we

use GM Cruise’s 2018 San Francisco disengagement rate. Then, we conserva-

tively assume an average service time of 1 minute, and we suppose that the

scaled limit of batch distribution leads to a jump size distribution that is log

normally distributed with mean 1 and variance 0.5. Although the moment gen-
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Figure 6.8: Number of teleoperators needed to support an autonomous taxi
fleet as the fleet size grows, based on data from the 2014 and 2018 NYC Taxi
Factbooks New York City Taxi & Limousine Commission (2014, 2018) and GM
Cruise’s 2018 CA disengagement reports GM Cruise LLC (2019).

erating function of the log normal is not known in closed form, we are able to

use the approximation provided in Asmussen et al. (2016), which performs quite

well in simulation comparisons. We calculate the operator to batch size ratio c

needed to achieve an ε = 0.001 exceedance probability for P
(
ψC
∞ > c

)
through use

of Theorem 6.3.3. Then, the three dashed and dotted curves in Figure 6.8 are the

corresponding number of operators for relative batch sizes of n ∈ {100, 250, 500}.

For comparison, we also plot a 45◦ line that represents a one-to-one pairing of

operators and vehicles, capturing the requisite staffing of either standard taxis

or the in-car safety driver autonomous vehicle support method. As can be ob-

served, by fleets of size 1,000, even the most extreme batch size setting (n = 500)

has at least as efficient staffing as the number of vehicles, if not substantially
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more efficient. For reference, in the lowest hour of activity there was still an

average of over 30,000 taxis actively providing service in NYC New York City

Taxi & Limousine Commission (2018). This suggests that teleoperations sys-

tems have significant potential for efficiency, and may be the key to unlocking

the benefits of the ideal but potentially unreachable level 5 autonomous vehicles

at level 4.
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Figure 6.9: Necessary staffing-to-batch ratio across time to support (a) typi-
cal traffic on major arterial roadways in Los Angeles using LADOT data Sam
Schwartz Engineering (2019) and (b) medallion taxi demand in New York City,
based on data from the 2018 NYC Taxi Factbook New York City Taxi & Limou-
sine Commission (2018).

This leads us to consider the necessary staffing ratios for supporting a much

larger network of taxis and in time varying settings. Thus, in Figure 6.9 we

compute the operator to batch size ratios needed to support the demand in each

hour of the day for all vehicles on key arterial roadways in Los Angeles (Fig-
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ure 6.9a) and for all medallion taxis in New York City (Figure 6.9b), using the

same disengagement rate, service time, and jump distributions as in Figure 6.8.

In the Los Angeles setting, the staffing ratio is compared to the total number

of vehicles (taxis or otherwise) in motion per hour in the 14 arterial corridors

as provided on page 73 of Sam Schwartz Engineering (2019). In the New York

setting, this is compared to the total number of trips served by medallion taxis

(i.e. yellow cabs) in each hour of each day of the week using data from New

York City Taxi & Limousine Commission (2018).

Table 6.1: Staffing ratios and utilizations as calculated for total peak hour traffic
in the ten largest U.S. metropolitan areas, based on data from the 2017 National
Household Travel Survey Federal Highway Administration (2017).

Metropolitan
area

Annual
miles driven
(M)

Number of
vehicles
(M)

Operator
to batch
size
ratio
(p = 0)

Operator
to batch
size
ratio
(p = 1)

Teleoperator
utilization
(p = 0)

Teleoperator
utilization
(p = 1)

1 New York, NY 93,512 9.33 27.1 28.5 87.3% 83.0%
2 Los Angeles, CA 71,791 7.80 21.5 22.9 84.4% 79.2%
3 Dallas, TX 50,231 4.81 15.9 17.3 79.9% 73.3%
4 Chicago, IL 49,348 5.75 15.7 17.1 79.7% 73.0%
5 Atlanta, GA 42,547 3.86 13.9 15.3 77.6% 70.3%
6 Houston, TX 42,431 3.99 13.8 15.3 77.6% 70.3%
7 Washington, DC 41,199 4.57 13.5 14.9 77.2% 69.8%
8 Minneapolis,

MN
34,540 3.14 11.7 13.2 74.6% 66.5%

9 Philadelphia, PA 32,781 3.60 11.2 12.7 73.8% 65.5%
10 Phoenix, AZ 31,408 2.97 10.9 12.3 73.1% 64.6%

This now motivates us to project the total staffing level needed to support

all vehicle traffic at peak hour in the ten largest US metropolitan areas in terms

of annual miles driven, as per the 2017 NHTS Federal Highway Administration

(2017). Since this is an idealized long term scenario, we will now use Waymo

LLC (2019)’s industry leading rate of 11,154.3 miles per disengagement and to

compute both P
(
ψC
∞ > c

)
and P

(
ψC
∞ + M1 > c

)
, abbreviated as cases p = 0 and

p = 1 based on our discussion in Subsection 6.2.1, we will now assume that
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the scaled limit of the batch size distribution produces a deterministic jump

size. Note that this occurs for any batch size distribution that at n the batch size

can be equivalently decomposed into n i.i.d. random variables, and this family

of “finitely divisible” random variables includes commonly used distributions

such as the Poisson and the binomial, see Chapter 3. We will again take a mean

service time of 1 minute and a target exceedance probability of ε = 0.001. We

can observe from New York City Taxi & Limousine Commission (2018) that ap-

proximately 6.1% of the miles driven occur in the most active hour, and thus

we will use this as the base of our peak hour analysis. In Table 6.1 we give

the resulting operator to batch size ratios for these two performance measures

in each metropolitan area, and we compare it to the known number of miles

driven annually and the total number of vehicles owned in the area Federal

Highway Administration (2017). Through use of Corollary 6.3.4, we also com-

pute the utilization of the teleoperators in each city. One can note that in this

high volume setting, the utilization is also fairly high. Because Figure 6.9 and

Table 6.1 list the operator to batch size ratio, it is important that note that this

ratio c does not outright depend on the batch size itself and only requires that

the batch size is large enough. Thus, the ratios in Table 6.1 hold for any relative

batch size n that is sufficiently large, and these staffing levels can be found by

simply multiplying c by n.

By inspecting Figure 6.8 or Table 6.1, we can observe an important fact about

not only this teleoperations system, but also batch arrival service systems in

general. As one can observe in Table 6.1, the operator to batch size ratio does not

increase linearly with the annual miles driven (which is proportional to the rate

of disengagements). For example, the number of miles driven each year in the

Minneapolis metropolitan area is less than half of how many miles are driven
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in the L.A. area each year (34.5B to 71.8B), yet the resulting ratios of operators

to batch size do not exhibit the same relationship (11.7 to 21.5 for p = 0, and

13.2 to 22.9 for p = 1). This effect is perhaps even more noticeable in Figure 6.8,

as each curve in the graph is eventually dominated by the 45◦ line. It is worth

noting that this sub-linear effect of the arrival rate on the staffing level is com-

mon in queueing theory, as can be seen in the literature on the pooling principle

or square root staffing rule, for example. This same idea is what tips the scale

towards teleoperations in the trade-off between its many-to-one when needed

staffing level and the one-to-one always pairing when using drivers or in-car

safety operators, and, moreover, in comparison with Theorems 6.2.1 and 6.2.2

this shows us the strong impact that batches can have on a service system. Un-

like the arrival rate’s sublinear effect on the staffing level, these results imply

that batches have a precisely linear effect. Since the staffing level grows lin-

early with n, doubling the batch size will exactly double the necessary staffing

level. This can be seen in Figure 6.8, as the curve for n = 500 is precisely double

the curve for n = 250. This emphasizes one of the key take-aways our work:

batches of arrivals have a pronounced impact on service systems and thus must

be addressed with care.

6.4.2 Observations from Normal Approximations

This comparison with the square root staffing rule also motivates an approxi-

mation for the staffing level. Just as Gaussian approximations of infinite server

queues can be used to study multi-server queues à la works like Halfin and

Whitt (1981); Jennings et al. (1996); Garnett et al. (2002), we can combine central

limit theorem results for the infinite capacity shot noise process and the batch
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scaling results of Theorems 6.2.1 and 6.2.2 to propose a normal-based approxi-

mation for multi-server queues with large batch arrivals. Using Theorem 6.2.1,

we can note that the steady-state mean and variance of a Poisson-driven shot

noise process are

ρψ ≡ E
[
ψt

]
= λE [M1]

∫ ∞

0
Ḡ(x)dx and σ2

ψ ≡ Var (ψt) = λE
[
M2

1

] ∫ ∞

0
Ḡ2(x)dx.

Then, central limit results in Rice (1977); Lane (1984) yield that

ψt − ρψ

σψ

D
=⇒ N(0, 1),

as λ → ∞. Then, the normal approximation yields a storage process analog of

the square root staffing rule such that

c̃ε = ρψ + zεσψ

is an approximate threshold level for the c-threshold storage process ψC
t so that

P
(
ψC

t > c̃ε
)
≈ P (ψt > c̃ε) ≈ 1 − Φ(zε) = ε,

where Φ(·) is the CDF of a standard normal distribution. Then, to convert from

storage processes to large batch arrival queues, Theorem 6.2.2 suggests multi-

plying c̃ε by the relative batch size n to receive an approximate queueing staffing

level of

nc̃ε = n
(
ρψ + zεσψ

)
for the target exceedance probability ε. While this is only an approximation, it

does capture the sublinear growth of the staffing level with increase in λ as well

as the precisely linear growth of the staffing with n. This is an important ob-

servation, as a seemingly plausible approach to staffing the multi-server queue

with batches of size n could be to use well-known staffing levels for the single

arrival multi-server queue with arrival rate λn. While the infinite server analogs
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of these systems will be equal in mean, we can see through the preceding analy-

sis that addressing batch arrivals as if they merely constituted an increase in the

arrival rate will always lead to inadequate staffing.

It is also worth noting that we can verify this linear-in-n and sublinear-in-

λ behavior from known expressions for the infinite server batch arrival queue,

e.g. in Chapter 3. For example, for the simple case of the Mn/M/∞ model with

arrival rate λ and service rate µ, the mean and variance are known to be nλ
µ

and

n(n+1)λ
2µ . A corresponding normal approximation would thus be

nλ
µ

+ zε

√
n(n + 1)λ

2µ
= nρψ + nzε

√
n + 1

n
σψ > nc̃n.

Therefore through these approximations, the standard deviation multiplier√
n+1

n gives us insight into how the staffing level of the queue converges to

threshold level of the storage process and demonstrates that this normal ap-

proximation of the shot noise process should be expected to be smaller than the

true batch arrival queue. However, in considering either of these derivations of

normal-based approximations, it is important to recall our previous discussion

that the rate that jobs arrive to the teleoperations system may not be significantly

larger than the rate of service, thus implying that the needed central limit theo-

rem conditions may not apply. In fact, one should expect for these conditions to

be decreasingly applicable as driverless technology continues to improve and

the rate of disengagements decreases. Given this disclaimer, we emphasize that

we have included these Gaussian approximations as a guide for intuition, and

they need not hold in practice.
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Figure 6.10: A comparison of queue length sample paths with dependent service
durations within each arriving batch for various dependence structures. In all
experiments, the service distribution is unit rate exponential service and the
batch sizes are deterministic, with n = 1000 and c = 1.5.

6.4.3 Exploration of Dependence within Batches

For a final numerical experiment, let us now explore dependence within batches

of jobs. Because the simulated future scenarios are generated from a common
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initial state in the look-ahead teleoperation, it is possible that the operators’ re-

sponse times could be correlated. As an empirical exploration of this, in Fig-

ure 6.10 we plot normalized queue length processes under three different de-

pendency structures. In each setting, there is a probability ρ ∈ [0, 1] that each

successive service time will be dependent. In the first case, (a), each service time

in a batch has probability ρ of being equal to the first duration within that batch

and otherwise will be drawn independently, i.e. for an arbitrary batch i and

j ≥ 2,

S i, j =


S i,1 with probability ρ,

S̃ i, j otherwise,

where S̃ i, j is an independent draw from the service distribution. In case (b)

this is instead equal to the previous time with probability ρ and independent

otherwise, meaning

S i, j =


S i, j−1 with probability ρ,

S̃ i, j otherwise,

and in (c) each time is an average over all previous service times within the

batch with probability ρ and again otherwise independently drawn:

S i, j =


1

j−1

∑ j−1
k=1 S i,k with probability ρ,

S̃ i, j otherwise.

In each of these settings, we plot simulated sample paths for ρ ∈

{0, 0.1, 0.5, 0.9, 1} and we hold the arrival epochs fixed across all the experiments.

When ρ = 0 all durations are independent regardless of the dependency setting,

and thus these processes are effectively identical on this sample path due to the

results in Theorem 6.2.2. Similarly, if ρ = 1 the service times within each batch
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are perfectly correlated. Moreover, these processes are equivalently distributed

across the dependency settings. In the case of infinitely many servers, the nor-

malized queue length process can be trivially identified as a piecewise constant

jump process (and in the case of deterministic batch sizes, this is an infinite

server queue). However in the multi-server case the batch arrival queue is not

as easily understood, and even more insight is lost in the intermediate settings

of ρ ∈ {0.1, 0.5, 0.9}. The previous time dependency in case (b) shows a subdued

system level dependency, as the difference in sample paths between ρ = 0 and

ρ ∈ {0.1, 0.5, 0.9} is not as pronounced as in cases (a) and (c). This illustrates that

batch scaling limits subject to dependency within batches may merit its own fu-

ture study. It is worth noting though that in the infinite server setting there are

immediately available extensions of Theorem 6.2.1. For example, for each arriv-

ing batch in case (a), there is a binomially distributed number of jobs that are

identical in duration, with the remaining jobs independently drawn. Under the

batch scaling limit, this means that a ρ fraction of each jump will contribute to a

piecewise constant jump process while the remaining 1 − ρ will function as part

of a shot noice process. Moreover, because the limits in Theorem 6.2.1 make use

of the law of large numbers, one could recover the infinite server batch scaling

if the service durations are weakly dependent.

It is also worth noting that even though the jobs within look-ahead assis-

tance are simulated from the same initial states, evidence from the pioneering

implementations of this methodology suggests that job durations can vary sig-

nificantly even on the same simulated future scenario. In fact, Lundgard et al.

(2018) finds that the best of the instantaneously crowdsourced decisions often

come from the operators who take the most time to respond. With this variance

within batch in mind, perhaps it is more appropriate to consider a generalized
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model that addresses the effect of the underlying initial state through service

duration distributions that change across batches. In the infinite server model

this can still be understood in the large batch setting, as this would correspond

to a service distribution that changes with each arrival epoch, i.e. Ḡi(·) for the

ith arrival. In this way, Theorem 6.2.1 can be naturally extended. This gener-

alization is more challenging to address in the multi-server setting, however,

and thus this non-identically distributed model makes for an interesting and

important direction of future study.

6.5 Conclusion, Discussion, and Future Work

In this chapter we have studied the staffing performance of a teleoperations sys-

tem for autonomous vehicles. We model this modern service system as a queue

with batch arrivals, as each disengagement of a vehicle’s autonomous operation

creates a batch of jobs through the pre-fetching look-ahead assistance method.

Because this safety support methodology is based on instantaneously crowd-

sourced input on simulated future scenarios, we have noted that larger batches

actually imply a safer teleoperations system. Thus, we study this queueing sys-

tem in the presence of large batch arrivals. Through our large batch analysis, we

connect the queueing models to storage processes through novel scaling results.

Via these storage processes, we are able to calculate the probability of the sys-

tem exceeding capacity, which drives our staffing methodology. We are able to

compute these quantities by leveraging the storage processes literature and in-

troducing a technical lemma that connects sums of evaluations of the moment

generating function to quantities such as the cumulative distribution function

and the expectation of a random variable multiplied by an indicator function.
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Through our numerical experiments, we have both validated these analytic re-

sults and uncovered interesting relationships. In particular, based on industry

and government data we have found that teleoperations centers offer substan-

tial staffing efficiencies, making them the potential key for achieving the dreams

of level 5 automation at the more realistic level 4. More generally, we also have

verified the intuition that the size of the batches of arrivals has more impact

on a system’s performance than the arrival rate does, a key takeaway for batch

arrival service systems broadly.

We believe that there are a variety of opportunities for directly related fu-

ture work. For example, we are also interested in studying networks of tele-

operations centers that support different coverage regions, in which cars may

frequently cross into different areas of support. Additionally, we would like to

investigate how job and server types affect this teleoperations system, as in prac-

tice there may be both different classes of jobs and different skill sets of remote

operators. In this case, we can draw upon queueing results such as in Gurvich

and Whitt (2009, 2010); Adan et al. (2010); Adan and Weiss (2012). As another

potential direction of work, we could seek to extend the storage processes litera-

ture that we have used here. For example, we are interested in using something

such as a lack of bias assumption to extend some Poisson based results to non-

Poisson settings Melamed and Whitt (1990). We also believe that there is op-

portunity for clever numerical implementations of the sums in Lemma C.1.1, as

we discuss briefly in the appendix. We also intend to investigate different batch

scalings of these models and we remain interested in extending these scalings

to other related systems. Our insight on the strong effect of batches may also ex-

tend to systems with bursts of arrivals that occur in quick succession but are not

quite simultaneous, as sufficiently rapid bursts may closely resemble batches.
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This effect amounts to an important managerial insight, particularly when the

arrival data is discretely observed and it is unclear whether bursts or batches

occur. This is of great interest to us, and this relationship is another direction

we intend to pursue.

As a closing comment, we note that this work is only among the first steps

in planning and managing a driverless vehicle teleoperation system. Many im-

portant questions remain across a variety of different disciplines. For example,

the look-ahead service requires sophisticated pairings of artificial intelligence

and human expertise and this will necessitate careful study and attention to de-

tail to be implemented at scale. Furthermore, this service system asks a great

deal of its remote operators, and the profession of repeatedly performing high

stakes driving tasks is certainly strenuous enough to prompt study of how to

manage this cognitive load. Additionally, there are of course challenges in the

design of the communication system supporting this center and there are ques-

tions on how to structure the market of the teleoperations services and regulate

their operation. Moreover, wide-spread automation is poised to redefine many

aspects of society, and it is important to ensure that people aren’t displaced by

these changes. Because of the variety of the relevant issues, these teleoperations

centers pose questions that are not just important and intriguing, but also ones

that are well suited to the breadth of the operations research community and we

hope that this marks the beginning of wide study of teleoperations systems for

autonomous vehicles in OR.
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APPENDIX A

ADDENDUM FOR CHAPTER 4

A.1 Lemmas and Auxiliaries

In this section of the appendix we give technical lemmas to support our analysis

and brief auxiliary results that are of interest but not within the narrative of the

body of this report. We begin by giving the infinitesimal generator form for time

derivatives of the expectations of functions of our process. This is a valuable

tool available to us because the ESEP is Markov, and it supports much of our

analysis throughout this work.

Lemma A.1.1. For a sufficiently regular function f : (R+ × N) → R, the generator of

the ESEP is given by

L f (ηt,Nt) =

n∑
i=1

ηt ( f (ηt + α,Nt + 1) − f (ηt,Nt))︸                                        ︷︷                                        ︸
Arrivals

+ β

(
ηt − η

∗

α

)
( f (ηt − α,Nt) − f (ηt,Nt))︸                                           ︷︷                                           ︸

Expirations

.

(A.1)

Then, the time derivative of the expectation of f (ηt,Nt) is given by

d
dt

E
[
f (ηt,Nt)

]
= E

[
L f (ηt,Nt)

]
(A.2)

for all t ≥ 0.

Proof. This is a direct result of the ESEP belonging to the family of piece-wise

deterministic Markov processes, as defined in Davis (1984). Moreover, the spe-

cific regularity conditions are given in Theorem 5.5 of that work. �

Note that this is also immediately applicable to the active number in system

process perspective of the ESEP, as Qt = (ηt − η
∗)/α. Thus, we will leverage this
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infinitesimal generator for studying each of ηt, Qt, and Nt throughout both the

main body of the text and these appendices.

As another supporting lemma, let us summarize a result that can be used

with the infinitesimal generator to relate two different Markov processes.

Throughout this work we make comparisons between different processes, in

particular between the ESEP and the Hawkes process. One way that we do this

is to investigate the differential equations found with use of Lemma A.1.1. In

Lemma A.1.2 we provide the method by which we make such comparisons.

Lemma A.1.2 (A Comparison Lemma). Let f : R2 → R be a continuous function in

both variables. If we assume that initial value problem

dx(t)
dt

= f (t, x(t)), x(0) = x0 (A.3)

has a unique solution for the time interval [0,T ] and

dy(t)
dt
≤ f (t, y(t)) for t ∈ [0,T ] and y(0) ≤ x0 (A.4)

then x(t) ≥ y(t) for all t ∈ [0,T ].

Proof. The the proof of this result is given in Hale and Lunel (2013). �

For a result that is both auxillary on the surface and beneficial in proofs, in

Proposition A.1.3 we give the probability generating function for the number in

system and the number of departures, or expirations, in the ESEP. The departure

process is largely outside of the scope of this work, but this result is instrumental

in the proof of the probability generating function for the counting process in

Proposition 4.2.4, which is given in Appendix A.4.

Proposition A.1.3. Let Qt be the active number in system at time t ≥ 0 of an ESEP

with baseline intensity η∗ > 0, intensity jump size α > 0, and expiration rate β > α.

266



Then, let Dt be the number of arrivals by time t that are no longer active. Then, the joint

probability generating function of Qt and Dt, denoted G(z1, z2, t) ≡ E
[
zQt

1 zDt
2

]
, is given

by

G(z1, z2, t) = zD0
2 e

η∗(β−α)
2α t

1 −
tanh

 t
2

√
(β + α)2 − 4αβz2 + tanh−1

 β + α − 2αz1√
(β + α)2 − 4αβz2

2
η∗

2α

·

β + α

2α
−

√
(β + α)2 − 4αβz2

2α
tanh

 t
2

√
(β + α)2 − 4αβz2 + tanh−1

 β + α − 2αz1√
(β + α)2 − 4αβz2

Q0

·

cosh

tanh−1

 2αz1 − β − α√
(β + α)2 − 4αβz2


η∗

α

, (A.5)

where Q0 and D0 are the active number in the system and the count of departures at

time 0, respectively.

Proof. We will show this through the method of characteristics. We can first

observe through Lemma A.1.1 that

d
dt

E
[
zQt

1 zDt
2

]
= E

[
(η∗ + αQt)(z1 − 1)zQt

1 zDt
2 + βQt

(
z2

z1
− 1

)
zQt

1 zDt
2

]
,

and so G(z1, z2, t) is given by the following partial differential equation:

∂

∂t
G(z1, z2, t) +

(
α(z1 − z2

1) + β(z1 − z2)
) ∂

∂z1
G(z1, z2, t) = η∗(z1 − 1)G(z1, z2, t).

To simplify our analysis, we will instead solve for log(G(z1, z2, t)), which through

the chain rule will by given by the solution to the partial differential equation

expressed

∂

∂t
log(G(z1, z2, t)) +

(
α(z1 − z2

1) + β(z1 − z2)
) ∂

∂z1
log(G(z1, z2, t)) = η∗(z1 − 1),

with initial condition log(G(z1, z2, 0)) = log(zQ0
1 zD0

2 ). This now gives us the charac-
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teristic equations as follows:

dz1

ds
(r, s) = α(z1 − z2

1) + β(z1 − z2), z1(r, 0) = r

dt
ds

(r, s) = 1, t(r, 0) = 0

dg
ds

(r, s) = η∗(z1 − 1), g(r, 0) = log(rQ0zD0
2 ).

Solving the first two equations we see that

z1(r, s) =
β + α

2α
+

√
(β + α)2 − 4αβz2

2α
tanh

 s
2

√
(β + α)2 − 4αβz2 − tanh−1

 β + α − 2αr√
(β + α)2 − 4αβz2


t(r, s) = s,

which allows us to now solve for g(r, s). Using the solution to z1(r, s), the ordi-

nary differential equation for g(r, s) is given by

dg
ds

(r, s) =
η∗

√
(β + α)2 − 4αβz2

2α
tanh

(
s
2

√
(β + α)2 − 4αβz2 − tanh−1

 β + α − 2αr√
(β + α)2 − 4αβz2

 )
+
η∗(β − α)

2α
,

which yields a solution of

g(r, s) = log(rQ0zD0
2 ) +

η∗(β − α)
2α

s +
η∗

2α
log

(
1 −

(β + α − 2αr)2

(β + α)2 − 4αβz2

)
+
η∗

α
log

cosh

 s
2

√
(β + α)2 − 4αβz2 − tanh−1

 β + α − 2αr√
(β + α)2 − 4αβz2

 .
Now, from these equations we can express the characteristics variables in terms

of the original arguments as s = t and

r =
β + α

2α
−

√
(β + α)2 − 4αβz2

2α
tanh

 t
2

√
(β + α)2 − 4αβz2 − tanh−1

 2αz1 − β − α√
(β + α)2 − 4αβz2

 .
Then, by performing the substitution G(z1, z2, t) = eg(r(z1,z2,t),s(z1,z2,t)) and simplify-

ing, we achieve the stated result. �

As another auxiliary result, in Proposition A.1.4 we give the steady-state

moment generating function for the 2-GESEP with exponentially distribution

activity durations and deterministic batch sizes, meaning pairs of arrivals.
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Proposition A.1.4. Consider the following 2-GESEP: arrivals occur at rate ηt(2) =

η∗ + α
2 Qt(2), where Qt(2) receives arrivals batches of size 2. Each activity duration is

independent and exponentially distributed with rate β > α > 0. Then, the steady-state

moment generating function of Qt(2) is given by

E
[
eθQ∞(2)

]
≡ lim

t→∞
E

[
eθQt(2)

]
= exp

 2η∗√
α(α + 8β)

(
tanh−1

((
2eθ + 1

) √
α

α + 8β

)
− tanh−1

(
3
√

α

α + 8β

)) ( 2β − 2α
2β − α(eθ + e2θ)

) η∗

α

(A.6)

Proof. Using Lemma A.1.1, we see that the moment generating function will be

given by the solution to

d
dt

E
[
eθQt(2)

]
= E

[(
η∗ +

αQt(2)
2

) (
eθ(Qt(2)+2) − eθQt(2)

)
+ βQt(2)

(
eθ(Qt(2)−1) − eθQt(2)

)]
,

which can be equivalently expressed in PDE form as

∂

∂t
M2(θ, t) = η∗

(
e2θ − 1

)
M2(θ, t) +

(
α

2

(
e2θ − 1

)
+ β

(
e−θ − 1

)) ∂
∂θ
M2(θ, t),

where M2(θ, t) = E
[
eθQt(2)

]
. To solve for the steady-state moment generating

function we consider the ODE given by

d
dθ
M2(θ,∞) =

η∗
(
1 − e2θ

)
M2(θ,∞)

α
2

(
e2θ − 1

)
+ β (e−θ − 1)

,

with the initial condition that M2(0,∞) = 1. Through taking the derivative of

the expression in Equation A.6, we verify the result. �

A.2 Exploring a Hybrid Self-Exciting Model

In the main body of the text we have defined the ESEP, a model that features

arrivals that self-excite but only for a finite period of time. By comparison to
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the traditional Hawkes process models for self-excitement, the effect from one

arrival does not decay through time but is fixed at a constant value for as long as

it remains active. In this way, the ESEP features ephemeral but piecewise con-

stant self-excitement whereas the Hawkes process has eternal but ever decreas-

ing self-excitement. One can note though that ephemeral self-excitement need

not be piecewise constant. A model could feature both decay and down-jumps

as manners of regulating its self-excitement. In this section of the appendix, we

will consider such a model, specifically a Markovian one. To begin, let us now

define the hybrid ephemerally self-exciting process (HESEP) in Defintion A.2.1.

Definition A.2.1 (Hybrid ephemerally self-exciting process). Let t ≥ 0 and sup-

pose that ν∗ > 0, α > 0, β ≥ 0, and µ ≥ 0. Then, define νt, Nt,ν, and Qt,ν such

that:

i) Nt,ν is an arrival process driven by the intensity νt,

ii) Qt,ν is the number of arrivals from Nt,ν that have not yet expired according

to their i.i.d. Exp(µ) activity durations,

iii) νt is governed by

dνt = β(ν∗ − νt)dt + αdNt,ν −
νt − ν

∗

Qt,ν
dDt,ν

where Dt,ν = Nt,ν − Qt,ν.

Then, we say that the intensity-queue-counting process triplet (νt,Qt,ν,Nt,ν) is a

hybrid ephemerally self-exciting process (HESEP) with baseline intensity ν∗, inten-

sity jump size α, decay rate β, expiration rate µ, and initial values (ν0,Qν
0,N

ν
0).

By definition, one can view the HESEP as a hybrid between the ESEP and

Hawkes process models. If β = 0 then we recover the ESEP; if µ = 0 then we re-

cover the Hawkes process. In this way, much of the dynamics are quite familiar:
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up-jumps of size α at teach arrival, exponential decay between events at rate β,

and down-jumps upon each activity duration expiration. Perhaps the least intu-

itive part of this definition is the size of the down-jump, as this depends on the

current levels of the intensity and the number of active exciters in the system.

This draws inspiration from Markovian infinite server queues. In an M/M/∞,

all jobs currently in the system are equally likely to be the next to leave, regard-

less of the order they entered the system. Similarly, in the HESEP, each exciter

in the system is equally likely to be the next to leave. Moreover, the down-jump

size is the same regardless of which exciter is next to leave. When an expira-

tion of an activity durations means that there are no longer any presently active

exciters, by definition the intensity will return to the baseline value. One can

note that this down-jump size is actually always bounded below by 0 since the

intensity decays down towards the baseline ν∗ and bounded above by α since

νt − ν
∗ ≤ αQt,ν due to the fact that each arrival increases νt by α before it decays.

As a quick interesting fact regarding this process, in Proposition A.2.1 we show

that the size of a downjump, (νt − ν
∗)/Qt,ν, does not have down-jumps itself.

Proposition A.2.1. Let φt = νt−ν
∗

Qt,ν
be the size of a down-jump occurring at time t ≥ 0.

Suppose that b ≥ a ≥ 0 is such that Qt,ν is positive for all t ∈ [a, b]. Then, the φt has no

downward jumps on [a, b].

Proof. Suppose that [a, b] is such as interval, and then for t ∈ [a, b] we note that

νt −
νt−ν

∗

Qt,ν
− ν∗

Qt,ν − 1
=

Qtνt − νt + ν∗ − Qt,νν
∗

Qt,ν(Qt,ν − 1)
=
νt − ν

∗

Qt,ν
,

and this is equal to φt. �
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A.2.1 Sandwiching the Hybrid Model

As one might expect for a so-called “hybrid” model, the HESEP can be con-

nected to the ESEP and the Hawkes process in many different ways. In Propo-

sition A.2.2, we show that one can actual sandwich this model between its two

extremes. That is, we show that the means of the processes are equal when

given the same parameters, whereas the variances are ordered with Hawkes as

the smallest and ESEP as the largest.

Proposition A.2.2. Let α > 0, β > 0, and µ > 0 be such that µ + β > α > 0.

Additionally, let ν∗ > 0. Let νt be an HESEP with baseline intensity ν∗, intensity jump

size α, decay rate β, and service rate µ. Similarly, let λt be the intensity of a Hawkes

process with baseline intensity ν∗, intensity jump α, and decay rate µ + β. Finally, let

ηt be the intensity of an ESEP with baseline intensity ν∗, intensity jump α, and service

rate µ + β, then the means of these process intensities are all equal:

E [λt] = E [νt] = E
[
ηt
]
. (A.7)

Furthermore, the process variances are ordered such that

Var (λt) ≤ Var (νt) ≤ Var (ηt). (A.8)

Additionally, let Nt,ν, Nt,λ, and Nt,η be the counting processes of the HESEP, Hawkes

process, and ESEP, respectively. Then, the means of these counting process are equal

E
[
Nt,λ

]
= E

[
Nt,λ

]
= E

[
Nt,η

]
, (A.9)

and the variances of these counting processes are again ordered such that

Var
(
Nt,λ

)
≤ Var

(
Nt,ν

)
≤ Var

(
Nt,η

)
. (A.10)
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Finally, the covariances among each intensity and counting process pair are likewise

ordered such that

Cov
[
λt,Nt,λ

]
≤ Cov

[
νt,Nt,ν

]
≤ Cov

[
ηt,Nt,η

]
, (A.11)

where t ≥ 0 and where all intensities have the same initial value.

Proof. By a quick check of the differential equations for each mean, we can di-

rectly observe that E [νt] = E
[
ηt
]

= E [λt]. To show the variance ordering we

begin by considering the ODE for the second moment of νt:

d
dt

E
[
ν2

t

]
= 2β

(
ν∗E [νt] − E

[
ν2

t

])
+ α2E [νt] + 2αE

[
ν2

t

]
+ µE

(νt −
νt − ν

∗

Qt,ν

)2

− ν2
t

 Qt,ν

.
Now, let’s observe that

E
(νt −

νt − ν
∗

Qt,ν

)2

− ν2
t

 Qt,ν

 = 2
(
ν∗E [νt] − E

[
ν2

t

])
+ E

[
(νt − ν

∗)2

Qt,ν

]
,

which follows by expanding the squared term. Because (νt−ν
∗)2

Qt,ν
≥ 0, this gives us

that

E
(νt −

νt − ν
∗

Qt,ν

)2

− ν2
t

 Qt,ν

 ≥ 2
(
ν∗E [νt] − E

[
ν2

t

])
. (A.12)

This inequality now allows us to directly compare d
dt E

[
ν2

t

]
to d

dt E
[
λ2

t

]
and d

dt E
[
η2

t

]
.

First, we can use Equation A.12 to see that

d
dt

E
[
ν2

t

]
= 2β

(
ν∗E [νt] − E

[
ν2

t

])
+ α2E [νt] + 2αE

[
ν2

t

]
+ µE

(νt −
νt − ν

∗

Qt,ν

)2

− ν2
t

 Qt,ν


≥ 2(µ + β)

(
ν∗E [νt] − E

[
ν2

t

])
+ α2E [νt] + 2αE

[
ν2

t

]
.

Because we have already shown that E [λt] = E [νt], we see that d
dt E

[
λ2

t

]
≤ d

dt E
[
ν2

t

]
when evaluated at the same point and thus by Lemma A.1.2, Var (λt) ≤ Var (νt).

By analogous arguments for ηt, we achieve the stated result. For the counting
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process means, we can now observe that all the differential equations are such

that
d
dt

E
[
Nt,λ

]
= E [λt] =

d
dt

E
[
Nt,ν

]
= E [νt] =

d
dt

E
[
Nt,η

]
= E

[
ηt
]
.

We assume that all counting processes start at 0 and thus we have that the count-

ing process means are equal throughout time. This also implies that the prod-

ucts of means, E [λt]E
[
Nt,λ

]
, E [νt]E

[
Nt,ν

]
, and E

[
ηt
]
E

[
Nt,η

]
, are equal. Hence to

show the ordering of the covariances we will focus solely on the expectations of

the products. This differential equation is given by

d
dt

E
[
νtNt,ν

]
= −(µ + β − α)E

[
νtNt,ν

]
+ (µ + β)ν∗E

[
Nt,ν

]
+ αE [νt] + E

[
ν2

t

]
,

and we can note that the coefficients are the same for each of the processes. Not

including the function for which we want to solve, E
[
νtNt,ν

]
, we can also observe

that every function is equivalent across the processes other than the second mo-

ments of the intensities. We have shown that these second moments are in fact

ordered and therefore we receive the stated ordering of the covariances. Finally,

we observe that the differential equation for the second moment of each count-

ing process is of the form

d
dt

E
[
(Nt,ν)2

]
= E [νt] + 2E

[
νtNt,ν

]
.

From the ordering of the covariances and the equivalences of the means, we can

conclude the proof. �

As a simple consequence of Propositon A.2.2, we can note that because the

Hawkes process is over-dispersed, i.e. its variance is larger than its mean, so too

are the ESEP and HESEP. One can note that these bounds on the variance of the

HESEP are not only useful for comparison but also practical for the study of the

HESEP itself, as the differential equations for the variance via the infinitesimal

generator is not closed.
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A.2.2 Strong Convergence of the HESEP Counting Process

In the final three subsections of analysis of the HESEP, we obtain a trio of lim-

iting results. We begin with the almost sure convergence of the ratio of the

HESEP counting process and time, which is an elementary renewal result in the

style of Blackwell (1948) or Lindvall (1977), for example. However, by com-

parison to the context of such works, we can bound the mean and variance of

the HESEP via the ESEP and we are instead solely interested in establishing

the convergence, as we will obtain additional results by consequence. Using

these expressions for the first two moments, the proof of Theorem A.2.3 follows

standard approaches using the Borel-Cantelli lemma. In Corollary A.2.4 we use

this renewal result to find a strong law of large numbers for the dependent and

non-identically distributed inter-arrival times of the HESEP by way of the con-

tinuous mapping theorem, which is another standard technique.

Theorem A.2.3. Let (νt,Qt,ν,Nt,ν) be a HESEP with baseline intensity ν∗, intensity

jump α > 0, intensity decay rate β ≥ 0, and rate of exponentially distributed service

µ ≥ 0, where µ + β > α. Then,

Nt,ν

t
a.s.
−→ ν∞ (A.13)

as t → ∞, where ν∞ =
(µ+β)ν∗

µ+β−α
.

Proof. We will show this through use of the Borel-Cantelli Lemma. Let ε > 0 be

arbitrary and define the event Es for s ∈ N as

Es =

 sup
t∈(s2,(s+1)2]

|Nt,ν − E
[
Nt,ν

]
|

t
> ε

 .
We now note that Nt,ν −E

[
Nt,ν

]
is a martingale by definition, and so |Nt,ν −E

[
Nt,ν

]
|
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is a sub-martingale. Additionally, we can observe that

P (Es) ≤ P
 sup

t∈(s2,(s+1)2]
|Nt,ν − E

[
Nt,ν

]
| > s2ε


because s2 ≤ t for any t. By Doob’s martingale inequality, we have

P
 sup

t∈(s2,(s+1)2]
|Nt,ν − E

[
Nt,ν

]
| > s2ε

 ≤ E
[
|N(s+1)2,ν − E

[
N(s+1)2,ν

]
|2
]

s4ε2 =
Var

(
N(s+1)2,ν

)
s4ε2 .

From Proposition A.2.2, we note that the variance of an HESEP counting process

with baseline intensity ν∗, intensity jump size α, decay rate β, and service rate µ

is upper-bounded by the variance of an ESEP counting process with baseline ν∗,

jump size α, and service rate µ+ β. Using the explicit form of the ESEP counting

process variance as computed through Lemma A.1.1, we have the bound

Var
(
N(s+1)2,ν

)
≤ Var

(
N(s+1)2,η

)
=

((µ + β)2 + α2)ν∞
(µ + β − α)2 (s + 1)2 −

2αµ(ν0 − ν∞)
(µ + β − α)3

(
e−(µ+β−α)(s+1)2

+ (µ + β − α)(s + 1)2e−(µ+β−α)(s+1)2
)

+

(
ν0 − ν∞
µ + β − α

−
αµν∞

(µ + β − α)3 −
(α2 + α(µ + β))ν0

(µ + β − α)3

)
·
(
1 − e−(µ+β−α)(s+1)2)

+

(
(α2 + α(µ + β))ν0

2(µ + β − α)3 −
α(µ + β)ν∞

2(µ + β − α)3

) (
1 − e−2(µ+β−α)(s+1)2)

.

Together, this implies that P (Es) ∈ O
(

1
s2

)
. Therefore

∑∞
s=0 P (Es) < ∞, and so by

the Borel-Cantelli Lemma, |Nt,ν−E[Nt,ν]|
t

a.s.
−→ 0. Since limt→∞

E[Nt,ν]
t = ν∞, we complete

the proof. �

As an immediate consequence of this, we achieve a law of large numbers for

the dependent inter-arrival times.

Corollary A.2.4. Let (νt,Qt,ν,Nt,ν) be an HESEP counting process with baseline inten-

sity ν∗ > 0, intensity jump α > 0, intensity decay rate β ≥ 0, and rate of exponentially

distributed service µ ≥ 0, where µ + β > α. Further, let S ν
k denote the kth inter-arrival

time for k ∈ Z+. Then,

1
n

n∑
k=1

S ν
k

a.s.
−→

1
ν∞

(A.14)

as n→ ∞, where ν∞ =
(µ+β)ν∗

µ+β−α
.
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Proof. Let Aν
n denote the time of the nth arrival for each n ∈ Z+, which is to say

that Aν
n =

∑n
k=1 S ν

k. Now, observe that the time of the most recent arrival up to

time t, Aν
Nt,ν

, can be bounded as

t − S ν
Nt,ν+1 ≤ Aν

Nt,ν
≤ t,

since if t − S ν
Nt,ν+1 > Aν

Nt,ν
, then arrival Nt,ν + 1 would have occurred before time t.

Now, we also note that because ν∗ > 0 then Nt,ν → ∞ as t → ∞ and this implies

that
S Nt,ν+1

Nt,ν

a.s.
−→ 0

as t → ∞. From Proposition A.2.3 and the continuous mapping theorem, we

know that t
Nt,ν
→ 1

ν∞
and t−S Nt,ν+1

Nt,ν
→ 1

ν∞
almost surely. By the sandwiching ANt,ν ,

this yields the stated result. �

Because the Hawkes process and the ESEP are special cases of this hybrid

model, we can note that both the renewal result and the law of large numbers

apply directly to each.

Corollary A.2.5. Let (λt,Nt,λ) be the intensity and count of a Hawkes process with

baseline intensity λ∗ > 0, intensity jump α > 0, and decay rate β > α. Similarly, let

(ηt,Nt,η) be the intensity and counting process pair for an ESEP with baseline intensity

ν∗ > 0, intensity jump α > 0, and rate of exponentially distributed service µ > α. Then,

for S λ
k and S η

k as the kth inter-arrival times for the Hawkes process and the ESEP process,

respectively, we have that

Nt,λ

t
a.s.
−→ λ∞,

Nt,η

t
a.s.
−→ η∞, (A.15)

and

1
n

n∑
k=1

S λ
k

a.s.
−→

1
λ∞

,
1
n

n∑
k=1

S η
k

a.s.
−→

1
η∞
, (A.16)

where λ∞ =
βλ∗

β−α
and η∞ =

µν∗

µ−α
.
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A.2.3 Baseline Fluid Limit of the HESEP

In this subsection and in the sequel, we consider a baseline scaling of the HESEP.

That is, we investigate limiting properties of the process as the baseline inten-

sity grows large and the intensity and queue length are normalized in some

fashion. To begin, we take the normalization as directly proportional to the

baseline scaling, which is the fluid limit. The derivation of this is empowered

by the following lemma, which allows us to make use of Taylor expansions.

Lemma A.2.6. Suppose that for some b > 0, −b ≤ zn(t) ≤ 0 for all values of n. Then

there exists constants C1 and C2 where C1 ≤ C2, which imply the following bounds for

sufficiently large values of n

zn(t) +
C1

n
≤ n ·

(
e

zn(t)
n − 1

)
≤ zn(t) +

C2

n
. (A.17)

Proof. The proof follows by performing a second order Taylor expansion for the

exponential function and observing that since zn(t) lies in a compact interval, we

can construct uniform lower and upper bounds for the exponential function. �

With this lemma in hand, we now proceed to finding the fluid limit in The-

orem A.2.7. In this case, we scale the baseline intensity by n, whereas we scale

the intensity and the queue length by 1
n . As one would expect to see, we find

that the fluid limit converges to the means of the intensity and queue.

Theorem A.2.7. For n ∈ Z, let the nth fluid-scaled HESEP (νt(n),Qt,ν(n)) be defined

such that the baseline intensity is nν∗, the intensity jump size is α > 0, the intensity

decay rate is β ≥ 0, and the rate of exponentially distributed service is µ > 0, where µ +

β > α. Then, for the scaled quantities ( νt,ν(n)
n ,

Qt,ν(n)
n ), the limit of the moment generating
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function

M̃∞(t, θν, θQ) ≡ lim
n→∞

E
[
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
, (A.18)

is given by

M̃∞(t, θν, θQ) = eθνE[νt]+θQE[Qt,ν], (A.19)

for all t ≥ 0.

Proof. The proof will follow in two steps. The first step is to show that the

limiting moment generating function converges to a PDE given by M̃∞ using

properties of the exponential function and Lemma A.2.6. The second step is to

solve this PDE using the method of characteristics. Finally, by the uniqueness of

moment generating functions, we can assert that the random variables to which

our limit converges are deterministic functions of time, which are also known as

the fluid limit. We begin with the infinitesimal generator form which simplifies

through the linearity of expectation as

∂

∂t
M̃n(t, θν, θQ) ≡

∂

∂t
E

[
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
= E

[
β(ν∗n − νt(n))

θν
n

e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
+ E

[
νt(n)

(
e
αθν

n +
θQ
n − 1

)
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
+ E

[
µQt,ν(n)

(
e−

θν(νt (n)−ν∗n)
nQt,ν(n) −

θQ
n − 1

)
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
= βν∗θνE

[
e
θν
n νt(n)+

θQ
n Qt(n)

]
− βθνE

[
νt(n)

n
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
+ n

(
e
αθν

n +
θQ
n − 1

)
E

[
νt(n)

n
e
θν
n νt(n)+

θQ
n Qt(n)

]
+
µ

n
E

[
Qt,ν(n)n

(
e−

θν(νt (n)−ν∗n)
nQt,ν(n) −

θQ
n − 1

)
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
= βν∗θνM̃(t, θν, θQ) +

(
n
(
e
αθν

n +
θQ
n − 1

)
− βθν

)
∂

∂θν
M̃(t, θν, θQ)

+
µ

n
E

[
Qt,ν(n)

(
−
θν(νt(n) − ν∗n)

Qt,ν(n)
− θQ +

εn

n

)
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
,
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where the last equality holds for sufficiently large n, where εn is in some

bounded interval as according to Lemma A.2.6. Then, by rearranging further

we can see that in limit this becomes

∂

∂t
M̃n(t, θν, θQ)

= βν∗θνMn(t, θν, θQ) +

(
n
(
e
αθν

n +
θQ
n − 1

)
− βθν

)
∂

∂θν
M̃n(t, θν, θQ) − µθνE

[
νt(n)

n
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
+ µθνν

∗E
[
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
− µθQE

[
Qt,ν(n)

n
e
θν
n νt(n)+

θQ
n Qt,ν(n)

]
+
µεn

n
E

[
Qt,ν(n)e

θν
n νt(n)+

θQ
n Qt,ν(n)

]
= (µ + β)ν∗θνM̃n(t, θν, θQ) +

(
n
(
e
αθν

n +
θQ
n − 1

)
− (µ + β)θν

)
∂

∂θν
M̃n(t, θν, θQ)

− µθQ
∂

∂θQ
M̃n(t, θν, θQ) +

µεn

n2 E
[
Qt,ν(n)e

θν
n νt(n)+

θQ
n Qt,ν(n)

]
n→∞
−→ (µ + β)ν∗θνM̃∞(t, θν, θQ) +

(
θQ − (µ + β − α)θν

) ∂

∂θν
M̃∞(t, θν, θQ) − µθQ

∂

∂θQ
M̃∞(t, θν, θQ).

We now solve this partial differential equation for M̃∞(t, θν, θQ) through the

method of characteristics. For simplicity’s sake we will instead use this pro-

cedure to solve for G(t, θν, θQ) = log
(
M̃∞(t, θν, θQ)

)
. This PDE is given by

(µ + β)ν∗θν =
∂

∂t
G(t, θν, θQ) + µθQ

∂

∂θQ
G(t, θν, θQ) +

(
(µ + β − α)θν − θQ

) ∂

∂θν
G(t, θν, θQ),

with boundary condition G(0, θν, θQ) = θQQ0 + θνν0. This corresponds to the fol-

lowing system of characteristics equations:

dθQ

dz
(x, y, z) = µθQ, θQ(x, y, 0) = x

dθν
dz

(x, y, z) = (µ + β − α)θν − θQ, θν(x, y, 0) = y

dt
dz

(x, y, z) = 1, t(x, y, 0) = 0

dg
dz

(x, y, z) = (µ + β)ν∗θν = (µ + β − α)ν∞θν, g(x, y, 0) = xQ0 + yν0.
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If β , α, the solutions to these initial value problems are given by:

θQ(x, y, z) = xeµz,

θν(x, y, z) = ye(µ+β−α)z +
x

β − α

(
eµz − e(µ+β−α)z

)
,

=

(
y −

x
β − α

)
e(µ+β−α)z +

xeµz

β − α
,

t(x, y, z) = z,

g(x, y, z) = xQ0 + yν0 + ν∞

(
y −

x
β − α

) (
e(µ+β−α)z − 1

)
+

xν∞(µ + β − α)(eµz − 1)
µ(β − α)

.

Now, we can solve for the characteristic variables in terms of the original vari-

ables and find x = θQe−µt, y = θνe−(µ+β−α)t +
θQ

β−α

(
e−µt − e−(µ+β−α)t

)
, and z = t, so this

gives a PDE solution of

G(t, θQ, θν) = g
(
θQe−µt, θνe−(µ+β−α)t +

θQ

β − α

(
e−µt − e−(µ+β−α)t

)
, t
)

= Q0θQe−µt + ν0

(
θνe−(µ+β−α)t +

θQ

β − α

(
e−µt − e−(µ+β−α)t

))
+ ν∞

(
θν −

θQ

β − α

) (
1 − e−(µ+β−α)t

)
+
θQν∞(µ + β − α)(1 − e−µt)

µ(β − α)
.

If instead β = α, the solutions to the characteristic ODE’s are as follows:

θQ(x, y, z) = xeµz,

θν(x, y, z) = eµz (y − xz) ,

t(x, y, z) = z,

g(x, y, z) = xQ0 + yν0 + ν∞y (eµz − 1) −
xν∞
µ

(eµz(µz − 1) + 1) .

This makes our expressions for the characteristic variables x = θQe−µt, y = θνe−µt +

θQte−µt, and z = t . This now makes the PDE solution

G(t, θQ, θν) = g
(
θQe−µt, θνe−µt + θQte−µt, t

)
= Q0θQe−µt + ν0θνe−µt + ν0θQte−µt + ν∞

(
θν + θQt

) (
1 − e−µt) − ν∞θQ

µ

(
µt − 1 + e−µt) ,

and we can observe that each of these cases simplify to the corresponding means

of the queue and the intensity, which yields the stated result. �
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A.2.4 Baseline Diffusion Limit of the HESEP

To now consider a diffusion limit we will still scale the baseline intensity by n,

but we now instead scale the process intensity and the queue length by 1
√

n . More

specifically, we scale the centered version of the processes by 1
√

n . While we can

make use of some of the techniques used for the fluid limit in Theorem A.2.7,

the diffusion scaling also involves second order terms. It is challenging to cal-

culate such quantities for the HESEP. Thus, we will use the same idea bound the

quantities above and below via

0 ≤
(νt − ν

∗)2

Qt,ν
≤ α(νt − ν

∗), (A.20)

which follows from our previously discussed bounds on the down-jump size.

By doing so, we create upper and lower bounds for the true diffusion limit of the

HESEP. To facilitate a variety of approximations that fit within these bounds, we

introduce the parameter γ ∈ [0, 1], with γ = 0 corresponding to the lower bound

and γ = 1 as the upper.

Theorem A.2.8. For n ∈ Z, let the nth diffusion-scaled HESEP (νt(n),Qt,ν(n)) be defined

such that the baseline intensity is nν∗, the intensity jump size is α > 0, the intensity

decay rate is β ≥ 0, and the rate of exponentially distributed service is µ > 0, where

µ + β > α. For the scaled quantities ( νt(n)
√

n ,
Qt,ν(n)
√

n ), let M̂∞(t, θν, θQ) be defined

M̂∞(t, θν, θQ) ≡ lim
n→∞

E
[
e

θν√
n

(νt(n)−nν∞)+
θQ
√

n

(
Qt,ν(n)− nν∞

µ

)]
, (A.21)

if the limit converges. Then for β , α, this is bounded above and below by B0(t, θν, θQ) ≤

M̂∞(t, θν, θQ) ≤ B1(t, θν, θQ), where Bγ(t, θν, θQ) is given by

Bγ(t, θν, θQ) = eν0θνe−(µ+β−α)t+
ν0θQ
β−α (e−µt−e−(µ+β−α)t)+Q0θQe−µt+

(
θν−

θQ
β−α

)2(
γαµ(ν∞−ν∗)

2 +
α2ν∞

2

)
1−e−2(µ+β−α)t

2(µ+β−α)

· e

θνθQ−
θ2Q
β−α

(( γαµβ−α+µ
)
(ν∞−ν∗)+

αβν∞
β−α

)
1−e−(2µ+β−α)t

2µ+β−α

· eθ
2
Q

(
γαµ(ν∞−ν∗)

2(β−α)2
+
µ(ν∞−ν∗)

β−α +
ν∞
2 +

ν∞β
2

2(β−α)2

)
1−e−2µt

2µ , (A.22)
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whereas if β = α, it is instead

Bγ(t, θν, θQ) = e
ν0θνe−µt+ν0θQte−µt+Q0θQe−µt+

((
γα(θν+θQt)2

2 +θνθQ+θ2
Qt

)
1−e−2µt

2 −
(
γα(θνθQ+θ2

Qt)+θ2
Q

) 2µt−1+e−2µt
4µ

· e
γαθ2Q

2

(
2µt(µt−1)+1−e−2µt

4µ2

))
(ν∞−ν∗)+

ν∞
2

((
θ2

Q+(θQ+αθν)2+2
(
α2θνθQ+αθ2

Q

)
t+α2θ2

Qt2
)

1−e−2µt
2µ

· e
−2

(
α2θνθQ+αθ2

Q+α2θ2
Qt

)( 2µt−1+e−2µt

4µ2

)
+α2θ2

Q

(
2µt(µt−1)+1−e−2µt

4µ3

))
, (A.23)

for γ ∈ [0, 1] with t ≥ 0 and ν∞ =
(µ+β)ν∗

µ+β−α
.

Proof. We begin by bounding the quantity Qt,ν(n)
(
νt(n)−nν∗

Qt,ν(n)

)2
above and below by

observing

0 ≤ Qt,ν(n)
(
νt(n) − nν∗

Qt,ν(n)

)2

= (νt(n) − nν∗)
(
νt(n) − nν∗

Qt,ν(n)

)
≤ α(νt(n) − nν∗).

To consolidate the development of the two bounds into one approach, we intro-

duce the extra parameter γ ∈ {0, 1} and replace Qt,ν(n)
(
νt(n)−nν∗

Qt,ν(n)

)2
by γα(νt(n) − nν∗)

in the following diffusion limit derivation. In this notation, γ = 0 yields the

lower bound and γ = 1 the upper. These two cases share the same start –

identifying the moment generating function form of the pre-limit object. By

Lemma A.1.1, this is

∂

∂t
M̂n(θν, θQ, t) =

∂

∂t
E

eθν( νt (n)−nν∞√
n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
= E

νt(n)
(
e
αθν+θQ
√

n − 1
)

e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+ E

µQt,ν(n)
(
e−

θν√
n

(
νt (n)−nν∗

Qt,ν(n)

)
−
θQ
√

n − 1
)

e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+ E

βθν√n
(nν∗ − νt(n)) e

θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

).
As a first step, we simplify this expression through the linearity of expectation.
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Moving deterministic terms outside of the expectation and re-scaling, we have

∂

∂t
M̂n(θν, θQ, t) =

√
n
(
e
αθν+θQ
√

n − 1
)

E

νt(n)
√

n
e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+ E

µQt,ν(n)
(
e−

θν√
n

(
νt (n)−nν∗

Qt,ν(n)

)
−
θQ
√

n − 1
)

e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+ βθνν

∗
√

nE

eθν( νt (n)−nν∞√
n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

) − βθνE νt(n)
√

n
e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

).
For the terms on the first and third lines in the right-hand side of the above

equation, we are able to re-express the expectation in terms of the moment gen-

erating function or its derivatives. For the first and second lines, we perform

Taylor expansions and truncate terms from the third order and above. This now

yields

∂

∂t
M̂n(θν, θQ, t) =

(
αθν + θQ +

(αθν + θQ)2

2
√

n
+ O

(
1
n

)) (
∂

∂θν
M̂n(θν, θQ, t) + ν∞

√
nM̂n(θν, θQ, t)

)
+ E

[
µQt,ν(n)

− θν
√

n

(
νt(n) − nν∗

Qt,ν(n)

)
−
θQ
√

n
+

1
2n

(
θν

(
νt(n) − nν∗

Qt,ν(n)

)
+ θQ

)2

+ O
(
n−

3
2
)

· e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)]
+ βθνν

∗
√

nM̂n(θν, θQ, t) − βθν

(
∂

∂θν
M̂n(θν, θQ, t) + ν∞

√
nM̂n(θν, θQ, t)

)
.

We now begin distributing and combining like terms through linearity of expec-

tation. Moreover, we distribute within the expectation on the second line and
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cancel Qt,ν(n) across the numerator and denominator where possible.

∂

∂t
M̂n(θν, θQ, t) =

(
αθν + θQ +

(αθν + θQ)2

2
√

n
− βθν + O

(
1
n

)) (
∂

∂θν
M̂n(θν, θQ, t) + ν∞

√
nM̂n(θν, θQ, t)

)
− µθνE

νt(n)
√

n
e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

) + µθνν
∗
√

nE

eθν( νt (n)−nν∞√
n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
− µθQE

Qt,ν(n)
√

n
e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+
µθ2

ν

2n
E

Qt,ν(n)
(
νt(n) − nν∗

Qt,ν(n)

)2

e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+
µθνθQ
√

n
E

νt(n)
√

n
e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

) − µθνθQν
∗E

eθν( νt (n)−nν∞√
n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+
µθ2

Q

2
√

n
E

Qt,ν(n)
√

n
e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

) + O
(
1
n

)
E

Qt,ν(n)
√

n
e
θν

(
νt (n)−nν∞√

n

)
+θQ

(
Qt,ν(n)− nν∞

µ
√

n

)
+ βθνν

∗
√

nM̂n(θν, θQ, t).

For all remaining components of this equation that are still expressed in terms

of the expectation, we substitute equivalent forms in terms of the moment gen-

erating function or its partial derivatives. Furthermore, we will now replace

Qt,ν(n)
(
νt(n)−nν∗

Qt,ν(n)

)2
by γα(νt(n) − nν∗) inside the expectation and re-express the ex-

pectation in terms of the moment generating function accordingly. To denote

that we have now made this replacement and changed the function, we add γ
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as a subscript to the moment generating function, i.e. M̂n
γ(θν, θQ, t).

∂

∂t
M̂n

γ(θν, θQ, t) =

(
αθν + θQ +

(αθν + θQ)2

2
√

n
− βθν + O

(
1
n

)) (
∂

∂θν
M̂n

γ(θν, θQ, t) + ν∞
√

nM̂n
γ(θν, θQ, t)

)
− µθν

(
∂

∂θν
M̂n

γ(θν, θQ, t) + ν∞
√

nM̂n
γ(θν, θQ, t)

)
+ µθνν

∗
√

nM̂n
γ(θν, θQ, t)

− µθQ

(
∂

∂θQ
M̂n

γ(θν, θQ, t) +
ν∞
√

n
µ
M̂n

γ(θν, θQ, t)
)

+
γαµθ2

ν

2
√

n

(
∂

∂θν
M̂n

γ(θν, θQ, t) + ν∞
√

nM̂n
γ(θν, θQ, t)

)
−
γαµν∗θ2

ν

2
M̂n

γ(θν, θQ, t)

+
µθνθQ
√

n

(
∂

∂θν
M̂n

γ(θν, θQ, t) + ν∞
√

nM̂n
γ(θν, θQ, t)

)
− µθνθQν

∗M̂n
γ(θν, θQ, t)

+
µθ2

Q

2
√

n

(
∂

∂θQ
M̂n

γ(θν, θQ, t) +
ν∞
√

n
µ
M̂n

γ(θν, θQ, t)
)

+ O
(
1
n

) (
∂

∂θQ
M̂n

γ(θν, θQ, t) +
ν∞
√

n
µ
M̂n

γ(θν, θQ, t)
)

+ βθνν
∗
√

nM̂n
γ(θν, θQ, t).

Before we find the limiting object, we first combine like terms of the moment

generating function, consolidating coefficients and absorbing into O(·) notation

where possible.

∂

∂t
M̂n

γ(θν, θQ, t) =

(
θQ − (µ + β − α)θν + O

(
1
√

n

))
∂

∂θν
M̂n

γ(θν, θQ, t) −
(
µθQ − O

(
1
√

n

))
∂

∂θQ
M̂n

γ(θν, θQ, t)γαµ(ν∞ − ν∗)θ2
ν

2
+ µθνθQ(ν∞ − ν∗) +

θ2
Qν∞

2
+

(αθν + θQ)2ν∞

2
+ O

(
1
√

n

) M̂n
γ(θν, θQ, t).

Taking the limit as n→ ∞, we receive

∂

∂t
M̂∞

γ (θν, θQ, t) =
(
θQ − (µ + β − α)θν

) ∂

∂θν
M̂∞

γ (θν, θQ, t) − µθQ
∂

∂θQ
M̂∞

γ (θν, θQ, t)

+

γαµ(ν∞ − ν∗)θ2
ν

2
+ µθνθQ(ν∞ − ν∗) +

θ2
Qν∞

2
+

(αθν + θQ)2ν∞

2

 M̂∞
γ (θν, θQ, t).

We will now solve this limiting partial differential equation through the

method of characteristics. To simplify this approach, we let Gγ(θν, θQ, t) =

log
(
M̂∞

γ (θν, θQ, t)
)
, which is the cumulant generating function. The resulting PDE
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for the cumulant generating function is then

∂

∂t
Gγ(θν, θQ, t) +

(
(µ + β − α)θν − θQ

) ∂

∂θν
Gγ(θν, θQ, t) + µθQ

∂

∂θQ
Gγ(θν, θQ, t)

=
γαµ(ν∞ − ν∗)θ2

ν

2
+ µθνθQ(ν∞ − ν∗) +

θ2
Qν∞

2
+

(αθν + θQ)2ν∞

2
,

with initial condition Gγ(θν, θQ, 0) = θνν0 + θQQ0. Thus, the resulting system of

characteristic equations is

dt
dz

(x, y, z) = 1, t(x, y, 0) = 0,

dθν
dz

(x, y, z) = (µ + β − α)θν − θQ, θν(x, y, 0) = x,

dθQ

dz
(x, y, z) = µθQ, θQ(x, y, 0) = y,

dg
dz

(x, y, z) =

(
γαµθ2

ν

2
+ µθνθQ

)
(ν∞ − ν∗) +

(
θ2

Q + (αθν + θQ)2
) ν∞

2
, g(x, y, 0) = xν0 + yQ0.

Assuming β , α, we can solve these first three ordinary differential equations to

find that

t = z, θQ = yeµz, θν =

(
x −

y
β − α

)
e(µ+β−α)z +

y
β − α

eµz,

which we now use to solve the remaining equation. Re-writing the characteristic

equation for g, we have

dg
dz

(x, y, z) =
γαµ(ν∞ − ν∗)

2

(x −
y

β − α

)2

e2(µ+β−α)z +
2

β − α

(
xy −

y2

β − α

)
e(2µ+β−α)z +

y2

(β − α)2 e2µz


+ µ(ν∞ − ν∗)

((
xy −

y2

β − α

)
e(2µ+β−α)z +

y2

β − α
e2µz

)
+
ν∞
2

(
α2

(
x −

y
β − α

)2

e2(µ+β−α)z

+
2αβ
β − α

(
xy −

y2

β − α

)
e(2µ+β−α)z +

(
1 +

β2

(β − α)2

)
y2e2µz

)
,

and so by grouping coefficients of like exponential functions and then integrat-
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ing with respect to z, this solves to

g(x, y, z) = xν0 + yQ0 +

(
x −

y
β − α

)2 (
γαµ(ν∞ − ν∗)

2
+
α2ν∞

2

)
e2(µ+β−α)z − 1
2(µ + β − α)

+

(
xy −

y2

β − α

) ((
γαµ

β − α
+ µ

)
(ν∞ − ν∗) +

αβν∞
β − α

)
e(2µ+β−α)z − 1
2µ + β − α

+ y2
(
γαµ(ν∞ − ν∗)

2(β − α)2 +
µ(ν∞ − ν∗)
β − α

+
ν∞
2

+
ν∞β

2

2(β − α)2

)
e2µz − 1

2µ
.

From the solutions to the characteristic equations, we can express each of x, y,

and z in terms of the three cumulant generating function parameters:

z = t, y = θQe−µt, x = θνe−(µ+β−α)t +
θQ

β − α

(
e−µt − e−(µ+β−α)t

)
.

Thus, we can then solve for Gγ(θν, θQ, t) via

Gγ(θν, θQ, t) = g
(
θνe−(µ+β−α)t +

θQ

β − α

(
e−µt − e−(µ+β−α)t

)
, θQe−µt, t

)
= ν0θνe−(µ+β−α)t +

ν0θQ

β − α

(
e−µt − e−(µ+β−α)t

)
+ Q0θQe−µt

+

(
θν −

θQ

β − α

)2 (
γαµ(ν∞ − ν∗)

2
+
α2ν∞

2

)
1 − e−2(µ+β−α)t

2(µ + β − α)

+

θνθQ −
θ2

Q

β − α

 (( γαµβ − α
+ µ

)
(ν∞ − ν∗) +

αβν∞
β − α

)
1 − e−(2µ+β−α)t

2µ + β − α

+ θ2
Q

(
γαµ(ν∞ − ν∗)

2(β − α)2 +
µ(ν∞ − ν∗)
β − α

+
ν∞
2

+
ν∞β

2

2(β − α)2

)
1 − e−2µt

2µ
.

By Lemma A.1.2, we have that M̂∞
0 (θν, θQ, t) ≤ M̂∞(θν, θQ, t) ≤ M̂∞

1 (θν, θQ, t) and

since M̂∞
γ (θν, θQ, t) = eGγ(θν,θQ,t), we have completed the proof of the joint moment

generating function bounds when β , α. We now apply this to the two marginal

generating functions by setting the opposite space parameter to 0. That is, for

the intensity we let θQ = 0, yielding

M̂∞
γ (θν, 0, t) = exp

(
ν0θνe−(µ+β−α)t +

θ2
ν

2

(
γαµ(ν∞ − ν∗) + α2ν∞

) 1 − e−2(µ+β−α)t

2(µ + β − α)

)
,

288



whereas for the queue we take θν = 0 and receive

M̂∞
γ (0, θQ, t) = exp

(
ν0θQ

β − α

(
e−µt − e−(µ+β−α)t

)
+

θ2
Q

(β − α)2

(
γαµ(ν∞ − ν∗)

2
+
α2ν∞

2

)
1 − e−2(µ+β−α)t

2(µ + β − α)

+ Q0θQe−µt −
θ2

Q

β − α

((
γαµ

β − α
+ µ

)
(ν∞ − ν∗) +

αβν∞
β − α

)
1 − e−(2µ+β−α)t

2µ + β − α

+ θ2
Q

(
γαµ(ν∞ − ν∗)

2(β − α)2 +
µ(ν∞ − ν∗)
β − α

+
ν∞
2

+
ν∞β

2

2(β − α)2

)
1 − e−2µt

2µ

)
.

Now if β = α, the solution to the characteristic ODE for θν is instead

θν = xeµz − yzeµz,

whereas the solutions for θQ and t are unchanged: θQ = yeµz and t = z. This then

implies that ODE for g is given by

dg
dz

(x, y, z) =

(
γαµ

2

(
x2e2µz − 2xyze2µz + y2z2e2µz

)
+ µ

(
xye2µz − y2ze2µz

))
(ν∞ − ν∗)

+
ν∞
2

(
(2y2 + α2x2 + 2αxy)e2µz − 2(α2xy + αy2)ze2µz + α2y2z2e2µz

)
,

which yields a solution of

g(x, y, z) = xν0 + yQ0 +

( (
γαx2

2
+ xy

)
e2µz − 1

2
−

(
γαxy + y2

) e2µz(2µz − 1) + 1
4µ

+
γαy2

2

(
e2µz (2µz(µz − 1) + 1) − 1

4µ2

) )
(ν∞ − ν∗) +

ν∞
2

( (
2y2 + α2x2 + 2αxy

) e2µz − 1
2µ

− 2(α2xy + αy2)
(
e2µz(2µz − 1) + 1

4µ2

)
+ α2y2

(
e2µz (2µz(µz − 1) + 1) − 1

4µ3

) )
.

In this case the inverse solutions are

z = t, y = θQe−µt, x = θνe−µt + θQte−µt,
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and so Gγ(θν, θQ, t) is given by

Gγ(θν, θQ, t) = g(θνe−µt + θQte−µt, θQe−µz, t)

= ν0θνe−µt + ν0θQte−µt + Q0θQe−µt +

( (
γα(θν + θQt)2

2
+ θνθQ + θ2

Qt
)

1 − e−2µt

2

−
(
γα(θνθQ + θ2

Qt) + θ2
Q

) 2µt − 1 + e−2µt

4µ
+
γαθ2

Q

2

(
2µt(µt − 1) + 1 − e−2µt

4µ2

) )
(ν∞ − ν∗)

+
ν∞
2

( (
2θ2

Q + α2θ2
ν + 2α2θνθQt + α2θ2

Qt2 + 2αθνθν + 2αθ2
Qt

) 1 − e−2µt

2µ

− 2
(
α2θνθQ + α2θ2

Qt + αθ2
Q

) (2µt − 1 + e−2µt

4µ2

)
+ α2θ2

Q

(
2µt(µt − 1) + 1 − e−2µt

4µ3

) )
.

By taking M̂∞
γ (θν, θQ, t) = eGγ(θν,θQ,t), we complete the proof. �

As a consequence of these diffusion approximations, we can give normally

distributed approximations for the steady-state distributions of the HESEP in-

tensity and queue length. These are stated below in Corollary A.2.9 again in

terms of γ. One can note that the approximate intensity variance in Equa-

tion A.24 can be used to provide upper and lower bounds on the HESEP vari-

ance that may be tighter than the bounds from the ESEP and the Hawkes process

in Proposition A.2.2

Corollary A.2.9. Let (νt,Qt,ν) be an HESEP with baseline intensity ν∗ > 0, intensity

jump α > 0, decay rate β > 0, and rate of exponential service µ > 0, with µ + β > α.

Then, the steady-state distributions of processes νt and Qt,ν are approximated by the

random variables Xν(γ) ∼ N(ν∞, σ2
ν(γ)) and XQ(γ) ∼ N( ν∞

µ
, σ2

Q(γ)), respectively, where

σ2
ν(γ) =

γαµ(ν∞ − ν∗) + α2ν∞
2(µ + β − α)

, (A.24)

and if β , α then

σ2
Q(γ) =

γαµ(ν∞ − ν∗) + α2ν∞
2(β − α)2(µ + β − α)

−
(2γαµ + 2µ(β − α)) (ν∞ − ν∗) + 2αβν∞

(β − α)2(2µ + β − α)

+
γαµ(ν∞ − ν∗) + ν∞β

2

2µ(β − α)2 +
ν∞ − ν

∗

β − α
+
ν∞
2µ
, (A.25)
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whereas if β = α then

σ2
Q(γ) =

(
1

2µ
+
γα

4µ2

)
(ν∞ − ν∗) +

(
1
µ

+
α

2µ2 +
α2

4µ3

)
ν∞, (A.26)

with ν∞ =
(µ+β)ν∗

µ+β−α
and γ ∈ [0, 1].

In Figures A.1 and A.2 we plot the simulated steady-state distributions of an

HESEP with large baseline intensities, as calculated from 100,000 replications.

We then also plot the densities corresponding to the upper and lower approx-

imate diffusion distributions as well as an additional candidate approximation

with γ =
µ

µ+β
. We motivate this choice by a ratio of mean approximations of the

terms in Equation A.20:

(ν∞−ν∗)2
ν∞
µ

α(ν∞ − ν∗)
=
µ(ν∞ − ν∗)

αν∞
=

µ

µ + β
.

In Figure A.1 the baseline intensity is equal to 100, whereas in Figure A.2 it is

1,000. While there are known limitations of Gaussian approximations for queue-

ing processes such as is discussed in Massey and Pender (2013), we see that

these approximations appear to be quite close, particularly so for the ν∗ = 1, 000

case. The upper and lower bounds predictably over- and under-approximate

the tails, while the case of γ =
µ

µ+β
closely mimics the true distribution.
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Figure A.1: Histogram comparing the simulated steady-state HESEP intensity
(left) and queue (right) to their diffusion approximations evaluated at multiple
values of γ, where ν∗ = 100, α = 3, β = 2, and µ = 2.
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Figure A.2: Histogram comparing the simulated steady-state HESEP intensity
(left) and queue (right) to their diffusion approximations evaluated at multiple
values of γ, where ν∗ = 1, 000, α = 3, β = 2, and µ = 2.

A.3 An Ephemeral Self-Exciting Process with Finite Capacity

and Blocking

Drawing inspiration from the works that originated queueing theory, we will

now consider the change in the ESEP if there is an upper bound on the total

number of active exciters. That is, we suppose that there is a finite capacity and

no excess buffer beyond them, so that any entities that arrive and find the sys-

tem full are blocked from entry, thus not registering an arrival nor causing any

excitement. As an employee of the Copenhagen Telephone company, A.K. Er-

lang developed these pioneering queueing models to determine the probability

that a call would be blocked based on the capacity of the telephone network

trunk line. Often referred to as the Erlang-B model, this queueing system re-

mains relevant not just modern telecommunication systems, but broadly across

industries as varied as healthcare operations and transportation. For English

translations of the seminal Erlang papers and a biography of the author, see

Brockmeyer et al. (1948). In those original works, Erlang supposed that calls

arrive perfectly independently, that they have no influence or relationship with

one another. In the remainder of this subsection we investigate the scenario
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where these calls instead exhibit self-excitement, which is a potential explana-

tion for the over-dispersion that has been seen in industrial call center data,

as detailed in e.g. Ibrahim et al. (2016). Another potential application for this

model is a website that may receive viral traffic but is also liable to crash if there

are too many simultaneous visitors. Additionally, this finite capacity model

could be used to represent a restaurant that becomes more enticing the more

patrons it has in its limited seating area, like we have discussed in the introduc-

tion. To begin, we find the steady-state distribution of this process in Proposi-

tion A.3.1. Drawing further inspiration from Erlang’s work, we will refer to this

finite capacity ESEP model as the blocking ephemerally self-exciting process (ESEP-

B).

Proposition A.3.1. Let ηB
t = η∗ + αQB

t be a ESEP-B, with baseline intensity η∗ > 0,

intensity jump α > 0, expiration rate β > α, and capacity c ∈ Z+. That is, if QB
t = c any

arrivals that occur will be blocked and not recorded. Then, the steady-state distribution

of the active number in system is given by

P
(
QB
∞ = n

)
=

P
(
Qη
∞ = n

)
1 − I α

β

(
c + 1, η

∗

α

) =
Γ
(
n +

η∗

α

) (
β−α

β

) η∗
α
(
α
β

)n

Γ
(
η∗

α

)
n!

(
1 − I α

β

(
c + 1, η

∗

α

)) , (A.27)

for 0 ≤ n ≤ c and 0 otherwise, where P
(
Qη
∞ = n

)
is as stated in Theorem 4.2.2. Further-

more, the mean and variance of the number in system are given by

E
[
QB
∞

]
=
η∞
β

 1 − I α
β

(
c, η

∗+α

α

)
1 − I α

β

(
c + 1, η

∗

α

) , (A.28)

Var
(
QB
∞

)
=
η∞
β

(
η∞
β

+
α

β − α

) 1 − I α
β

(
c − 1, η

∗+2α
α

)
1 − I α

β

(
c + 1, η

∗

α

)  − η2
∞

β2

 1 − I α
β

(
c, η

∗+α

α

)
1 − I α

β

(
c + 1, η

∗

α

)
2

+
η∞
β

 1 − I α
β

(
c, η

∗+α

α

)
1 − I α

β

(
c + 1, η

∗

α

) , (A.29)
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where η∞ =
βη∗

β−α
and Iz(a, b) =

Γ(a+b)
Γ(a)Γ(b)

∫ z

0
xa−1(1 − x)b−1dx for z ∈ [0, 1], a > 0 and b > 0

is the regularized incomplete beta function.

Proof. To show each of these, we first note that for k ∈ Z+, x > 0, and p ∈ (0, 1),
k∑

n=0

Γ (n + x)
Γ (x) n!

(1 − p)x pn = 1 − Ip (k + 1, x) . (A.30)

Hence, we can use Equation A.30 to see that

c∑
n=0

P
(
Qη
∞ = n

)
=

c∑
n=0

Γ
(
n +

η∗

α

)
Γ
(
η∗

α

)
n!

(
β − α

β

) η∗

α
(
α

β

)n

= 1 − I α
β

(
c + 1,

η∗

α

)
.

Because the ESEP is a birth-death process it is reversible. Thus, by truncation

we achieve the steady-state distribution, see e.g. Corollary 1.10 in Kelly (2011).

Then, the steady-state mean of the number in system is given by

E
[
QB
∞

]
=

c∑
n=1

nΓ
(
n +

η∗

α

) (
β−α

β

) η∗
α
(
α
β

)n

Γ
(
η∗

α

)
n!
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1 − I α

β
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∗

α
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=
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=
η∞
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(
c + 1, η

∗

α

) ,
where we have again used Equation A.30 to simplify the summation. Likewise,

the second moment in steady-state can be written

E
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)2
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=
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where once more these sums have been simplified through Equation A.30. �

As a demonstration of these findings, we now plot both the steady-state dis-

tribution and the mean and variance of this blocking system in Figure A.3. As

can be observed in the figure, this system remains over-dispersed even when

truncated. We can observe further that this holds in generality as follows. To

observe this, we state two known properties of the regularized incomplete beta

function:

Iz(a, b) = Iz(a + 1, b) +
za(1 − z)b

aB(a, b)
, Iz(a, b + 1) = Iz(a, b) +

za(1 − z)b

bB(a, b)
, (A.31)

where B(a, b) =
Γ(a+b)

Γ(a)Γ(b) is the beta function. Using these together, we can observe

that

Iz(a, b) > Iz(a + 1, b − 1).

Thus, we can see that I α
β

(
c + 1, η

∗

α

)
< I α

β

(
c, η

∗+α

α

)
< I α

β

(
c − 1, η

∗+2α
α

)
< 1, and this

implies

1 >
1 − I α

β

(
c, η

∗+α

α

)
1 − I α

β

(
c + 1, η

∗

α

) > 1 − I α
β

(
c − 1, η

∗+2α
α

)
1 − I α

β

(
c + 1, η

∗

α

) .

We now note that the variance is written as the sum of the mean and a positive

term and is thus over-dispersed.

We can also note that in the classical Erlang-B model, the famous “Poisson

arrivals see time averages” (PASTA) result implies that the steady-state fraction

of arrivals that are blocked is equal to the probability that the queue is at capac-

ity in steady-state, see Wolff (1982). This is not so for the ESEP-B, as the arrival

rate is state-dependent and, more specifically, increases with the queue length.

However, in Proposition A.3.2 we find that an equivalent result holds asymptot-

ically as the baseline intensity and the capacity grow large simultaneously. We

note that large baseline intensity and capacity are realistic scenarios for many
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Figure A.3: Steady-state distribution (left) and mean and variance (right) of the
ESEP-B with η∗ = 5, α = 2, β = 3, and c = 8 (Right), based on 10,000 replications.

practically relevant applications, including the aforementioned website crash-

ing scenario.

Proposition A.3.2. Let ηB
t = η∗ + αQB

t be an ESEP-B, with baseline intensity η∗ > 0,

intensity jump α > 0, exponential service rate β > α, and capacity c ∈ Z+. Then, the

fraction of arrivals in steady-state that are blocked πB is given by

πB =
(η∗ + αc)P

(
Qη
∞ = c

)∑c
k=0(η∗ + αk)P

(
Qη
∞ = k

) =
(η∗ + αc)P

(
QB
∞ = c

)
η∗ + αE

[
QB
∞

] , (A.32)

where P
(
Qη
∞ = k

)
is as given in Theorem 4.2.2 and P

(
QB
∞ = c

)
and E

[
QB
∞

]
are as given

in Proposition A.3.1. Moreover, if the baseline intensity and the capacity are redefined

to be η∗n and cn for n ∈ Z+, then

πB

P
(
QB
∞ = c

) −→ 1, (A.33)

as n→ ∞.

Proof. The expression for steady-state fraction of arrivals blocked πB in Equa-

tion A.32 follows as a direct consequence from observing that the η∗ + αk is the

arrival rate when the queue is in state k. We are thus left to show Equation A.33.
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By use of Equation A.32, we have that the ratio of πB and P
(
QB
∞ = c

)
is

πB

P
(
QB
∞ = c

) =
η∗ + αc

η∗ + αE
[
QB
∞

] =
η∗ + αc

η∗ +
αη∗

β−α

(
1−I α

β

(
c, η
∗

α +1
)

1−I α
β

(
c+1, η

∗

α

)
) ,

by use of Proposition A.3.1. Substituting in the scaled forms of the baseline

intensity and capacity η∗n and cn and then dividing the numerator and denom-

inator by cn, this is

η∗n + αcn

η∗n +
αη∗n
β−α

(
1−I α

β

(
cn, η

∗n
α +1

)
1−I α

β

(
cn+1, η

∗n
α

)
) =

η∗

c + α

η∗

c +
η∗

c

(
α
β−α

) ( 1−I α
β

(
cn, η

∗n
α +1

)
1−I α

β

(
cn+1, η

∗n
α

)
) .

From the definition and symmetry of the regularized incomplete beta function,

we can note that the ratio of these functions is such that

1 − I α
β

(
cn, η

∗n
α

+ 1
)

1 − I α
β

(
cn + 1, η

∗n
α

) =
I1− αβ
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∫ 1− αβ

0
x

nη∗
α (1 − x)cn−1 dx∫ 1− αβ

0
x

nη∗
α −1 (1 − x)cn dx

 .
We can now recognize an identity for the hypergeometric function 2F1(a, b; c; z),

and thus re-express this ratio as

αc
η∗


∫ 1− αβ

0
x

nη∗
α (1 − x)cn−1 dx∫ 1− αβ

0
x

nη∗
α −1 (1 − x)cn dx

 =
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η∗


1
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(
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β
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)
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(
c +
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) .
As n→ ∞, this yields

αc
η∗

(
η∗n

η∗n + α

) (
β − α

β

)
2F1

(
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)
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(
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+ 1, 1; cn + 1; 1 − α
β

) −→ αc
η∗

(
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α

)
,

which thus implies that

η∗

c + α

η∗

c +
η∗

c

(
α
β−α

) (1−I α
β

(
cn, η
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α +1

)
1−I α
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(
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c +
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)
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(
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) = 1,

and this completes the proof. �
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As an example of the convergence stated in Proposition A.3.2, we compare

the probability of the system being at capacity and the fraction of blocked ar-

rivals below in Figure A.4. In this figure, η∗ and c are increased simultaneously

according to a fixed ratio. Although at the initial values it is clear that a PASTA-

esque result does not hold, as the baseline intensity and capacity both increase

one can see that the two curves tend toward one another in each of the different

parameter settings.
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Figure A.4: Comparison of the ratio of blocked arrivals (BR) and the probability
of system being at capacity (CP) when increasing η∗ and c simultaneously, where
α = 2 and β = 3.
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A.4 Proof of Proposition 4.2.4

Proof. Using Proposition A.1.3, we proceed through use of exponential identi-

ties for the hyperbolic functions. Specifically, we will make use of the following:

tanh(x) =
ex − e−x

ex + e−x , (A.34)

cosh(x) =
ex + e−x

2
, (A.35)

and

tanh−1(x) =
1
2

log
(
1 + x
1 − x

)
. (A.36)

Using these identities we can further observe that

cosh
(
tanh−1(x)

)
=

etanh−1(x) + e− tanh−1(x)

2
=

(
1+x
1−x

) 1
2

+
(

1−x
1+x

) 1
2

2
.

Now, for any time t ≥ 0 we can note that Nt = Qt + Dt. Thus, we have that

E
[
zNt

]
= E

[
zQtzDt

]
= G(z, z, t),

where G(z1, z2, t) is as given in Proposition A.1.3. Setting z1 = z2 = z and D0 =

N0 − Q0, this is

G(z, z, t) = zN0−Q0e
η∗(β−α)

2α t

1 −
tanh

 t
2

√
(β + α)2 − 4αβz + tanh−1

 β + α − 2αz√
(β + α)2 − 4αβz

2
η∗

2α

·

β + α

2α
−

√
(β + α)2 − 4αβz

2α
tanh

 t
2

√
(β + α)2 − 4αβz + tanh−1

 β + α − 2αz√
(β + α)2 − 4αβz

Q0

·

cosh

tanh−1

 2αz − β − α√
(β + α)2 − 4αβz


η∗

α

. (A.37)
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Using the hyperbolic identities and simplifying, this is

G(z, z, t) = zN0−Q0e
η∗η∗(β−α)

2α t


2e

t
2

√
(β+α)2−4αβz

1 − β+α−2αz√
(β+α)2−4αβz

+

(
1 +
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)
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)
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Q0

,

which is the stated result. However, the simplifications used to reach this form

require multiple parts and several steps and so we can these individually now.

We start with the hyperbolic tangent function that appears on the first and sec-

ond lines of Equation A.37. Using Equations A.34 and A.36, this is

− tanh

 t
2

√
(β + α)2 − 4αβz + tanh−1
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Thus, the second line of Equation A.37 simplifies asβ + α

2α
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Following the same approach, the first line of Equation A.37 rearranges to
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Finally, the third line of Equation A.37 is simplified through use of Equa-

tions A.35 and A.36. This expression is then given by
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(β+α)2−4αβz

)

η∗

2α

=

 √
(β + α)2 − 4αβz

2α
√

z − z2


η∗

α

.

Together these forms give the stated result. �
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APPENDIX B

ADDENDUM FOR CHAPTER 5

B.1 Proof of Proposition 5.2.1

Proof. For clarity’s sake and ease of reference, we will also enumerate the proofs

of each statement.

i) Suppose Xn and Yn are each Matryoshkan matrices. Then, by Equation 5.1,

we have that

Xn + Yn =

Xn−1 0n−1×1

xn xn,n

 +

Yn−1 0n−1×1

yn yn,n

 =

Xn−1 + Yn−1 0n−1×1

xn + yn xn,n + yn,n

 ,
and

XnYn =

Xn−1 0n−1×1

xn xn,n


Yn−1 0n−1×1

yn yn,n

 =

 Xn−1Yn−1 0n−1×1

xnYn−1 + xn,nyn xn,nyn,n

 .
We can now again invoke Equation 5.1 to observe that these forms satisfy

this definition and thus are also Matryoshkan matrices.

ii) Let Mn ∈ R
n×n be a Matryoshkan matrix with all non-zero diagonal ele-

ments mi,i for i ∈ {1, . . . , n}. By definition Mn is lower triangular and hence

its eigenvalues are on its diagonal. Since all the eigenvalues are non-zero

by assumption, Mn is invertible. Moreover, it is known that the inverse of a

lower triangular matrix is lower triangular as well. Thus, we will now solve

for lower triangular matrix Wn ∈ R
n×n such that In = MnWn where In ∈ R

n×n

is the identity. This can be written In−1 0n−1×1

01×n−1 1

 = In = MnWn =

Mn−1 0n−1×1

mn mn,n


A 0n−1×1

b c

 ,

304



where A ∈ Rn−1×n−1, b ∈ R1×n−1, and c ∈ R. Because mi,i , 0 for all i ∈

{1, . . . , n − 1}, we also know that Mn−1 is non-singular. Thus, we can see that

A = M−1
n−1 from Mn−1A = In−1. Likewise, cmn,n = 1 implies c = 1

mn,n
. Then, we

have that

01×n−1 = mnA + mn,nb = mnM−1
n−1 + mn,nb,

and so b = − 1
mn,n

mnM−1
n−1. This completes the solution for Wn, and hence

provides the inverse of Mn.

iii) To begin, we will prove that

Mk
n =

 Mk
n−1 0n−1×1

mn
∑k−1

j=0 M j
n−1mk−1− j

n,n mk
n,n


for k ∈ Z+. We proceed by induction. The base case, k = 1, holds by defini-

tion. Therefore we suppose that the hypothesis holds at k. Then, at k + 1 we

can observe that

Mk+1
n = MnMk

n

=

Mn−1 0n−1×1

mn mn,n


 Mk

n−1 0n−1×1

mn
∑k−1

j=0 M j
n−1mk−1− j

n,n mk
n,n


=

 Mk+1
n−1 0n−1×1

mnMk
n−1 + mn

∑k−1
j=0 M j

n−1mk− j
n,n mk+1

n,n


=

 Mk+1
n−1 0n−1×1

mn
∑k

j=0 M j
n−1mk− j

n,n mk+1
n,n

 ,
which completes the induction. We now observe further that for matrices

A ∈ Rn×n and B ∈ Rn×n such that AB = BA and A − B is non-singular,

k−1∑
j=0

A jBk−1− j = (A − B)−1
(
Ak − Bk

)
.
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This relationship can verified by multiplying the left-hand side by A − B:

(A − B)
k−1∑
j=0

A jBk−1− j =

k−1∑
j=0

A j+1Bk−1− j −

k−1∑
j=0

A jBk− j = Ak − Bk.

This allows us to observe that

Mk
n =

 Mk
n−1 0n−1×1

mn(Mn−1 − mn,nI)−1
(
Mk

n−1 − mk
n,nI

)
mk

n,n

 ,
and thus

eMnt =

∞∑
k=0

tkMk
n

k!
=

∞∑
k=0

tk

k!

 Mk
n−1 0n−1×1

mn(Mn−1 − mn,nI)−1
(
Mk

n−1 − mk
n,nI

)
mk

n,n


=

 eMn−1t 0n−1×1

mn(Mn−1 − mn,nI)−1
(
eMn−1t − emn,ntI

)
emn,nt

 ,
which completes the proof. Note that because Mn−1 is triangular and be-

cause we have assumed m1,1, . . . ,mn,n are distinct, we know that Mn−1 −mn,nI

is invertible.

iv) From the statement, we seek a matrix A ∈ Rn−1×n−1, a row vector b ∈ R1×n−1,

and scalar c ∈ R such thatMn−1 0n−1×1

mn mn,n


A 0n−1×1

b c

 =

A 0n−1×1

b c


 Dn−1 0n−1×1

01×n−1 mn,n


where Dn−1 ∈ R

n−1×n−1 is a diagonal matrix with values m1,1, . . . ,mn−1,n−1.

From the triangular structure of Mn, we know that Dn contains all the

eigenvalues of Mn. We will now solve the resulting sub-systems. From

Mn−1A = ADn−1, we take A = Un−1. Substituting this forward, we see that

mnUn−1 + mn,nb = mnA + mn,nb = bDn−1

and so b = mnUn−1(Dn−1 − mn,nI)−1, where as in step (iii) we are justified in

inverting Dn−1 − mn,nI due to the fact that m1,1, . . . ,mn,n are distinct. Finally,

we take c = 1, as any value will satisfy cmn,n = cmn,n.
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B.2 Proof of Lemma 5.2.2

Proof. The vector solution in Equation 5.5 is known and is thus displayed for

reference. Expanding this expression in bracket-notation form, by use of Propo-

sition 5.2.1 this issn−1(t)

sn(t)

 =

 eMn−1t 0n−1×1

mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
emn,nt


sn−1(0)

sn(0)


−

 M−1
n−1 0n−1×1

− 1
mn,n

mnM−1
n−1

1
mn,n


 I − eMn−1t 0n−1×1

−mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
1 − emn,nt


cn−1

cn

 .
Thus, we can find sn(t) by multiplying each left side of the equality by a unit row

vector in the direction of the nth coordinate, which we denote vT
n . This yields

sn(t) = vT
n

sn−1(t)

sn(t)


=

[
mn

(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
emn,nt

] sn−1(0)

sn(0)


−

[
− 1

mn,n
mnM−1

n−1
1

mn,n

]  I − eMn−1t 0n−1×1

−mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
1 − emn,nt


cn−1

cn


=

[
mn

(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
emn,nt

] sn−1(0)

sn(0)


−

[
− 1

mn,n
mnM−1

n−1
1

mn,n

] 
(
I − eMn−1t

)
cn−1

−mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
cn−1 + cn(1 − emn,nt)

 .
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Then by taking these inner products, we receive

sn(t) = mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

)
sn−1(0) + sn(0)emn,nt + mnM−1

n−1

(
I − eMn−1t

) cn−1

mn,n

+ mn
(
Mn−1 − mn,nI

)−1
(
eMn−1t − emn,ntI

) cn−1

mn,n
−

cn

mn,n

(
1 − emn,nt) ,

and this simplifies to the stated solution. �
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APPENDIX C

ADDENDUM TO CHAPTER 6

C.1 Technical Lemmas and Proofs

To support our general batch analysis we will now introduce a technical lemma,

which extends Sullivan et al. (1980) to a probabilistic context. In Sullivan et al.

(1980), the authors use shifted, asymmetric Legendre polynomials to produce

a sum of exponential functions of x ≥ 0 that converges to the indicator func-

tion 1{x ≤ c} for any constant c > 0. These approximations make use of the

generalized hypergeometric function 3F2(·), which is defined

3F2(a1, a2, a3, b1, b2, x) =

∞∑
i=0

(a1)i(a2)i(a3)i

(b1)i(b2)i

xi

i!
,

where (c)i =
∏i−1

j=0(c+ j) is a rising factorial. By use of the dominated convergence

theorem, in Lemma C.1.1 we generalize this result using a sum of moment gen-

erating functions of a continuous non-negative random variable. We find con-

vergence to the cumulative distribution function of the random variable, as well

as to the expectation of the product between the random variable and an indi-

cator function. Therefore, this lemma provides a method to find this cumulative

probability and expectation when one only has access to the moment generat-

ing function of the random variable. This is paramount to our staffing analysis,

and because of its generality we believe it may also be of use in other applica-

tions. For clarity’s sake, we note that the moment generating functions used in

this technique are for strictly negative space parameters and thus will exist for

all distributions. These functions can thus be viewed as Laplace transforms of

the density with real, negative arguments. It is worth noting that the batch scal-
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ings enable us to use this lemma, as the storage processes satisfy the required

condition of continuous support but the queueing models do not.

Lemma C.1.1. Let X be a non-negative continuous random variable and letM(·) be its

moment generating function and letM′(·) be its first derivative, i.e.M(z) = E
[
ezX

]
and

M′(z) = d
dθE

[
eθX

]
|θ=z. Then, for the sequence {am

k | m, k ∈ Z
+} given by

am
k = (−1)k+1

(
m
k

)(
m + k

k

)
3F2

(
k,−m,m + 1; 1, k + 1;

1
e

)
, (C.1)

the summation over the products between am
k andM

(
− k

c

)
is such that

lim
m→∞

m∑
k=1

am
k M

(
−

k
c

)
= P (X ≤ c) , (C.2)

whereas the summation over the products between am
k andM′

(
− k

c

)
is such that

lim
m→∞

m∑
k=1

am
k M

′

(
−

k
c

)
= E [X1{X ≤ c}], (C.3)

for all c > 0.

Proof. For x ≥ 0 and m ∈ Z+, let the function Lm(x) be defined as

Lm(x) =

m∑
k=1

am
k e−

kx
c , (C.4)

where each am
k is as given in Equation C.1. By Sullivan et al. (1980), we have that∫ ∞

0
(Lm(x) − 1{x ≤ c})2 dx −→ 0,

as m → ∞, which implies that Lm(x) −→ 1{x ≤ c} pointwise for x ∈ [0, c) and

x ∈ (c,∞) as m → ∞. Furthermore, from Sullivan et al. (1980) we also have that

Lm(x) can be equivalently expressed

Lm(x) = −

∫ 1

0
P̃m

(w
e

) d
dw

P̃m

(
we−

x
c
)

dw, (C.5)
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where P̃m(·) is a shifted, asymmetric Legendre polynomial defined by

P̃m(w) =

m∑
k=0

(
m
k

)(
m + k

k

)
(−w)k,

for w ∈ [0, 1]. For reference, this can be connected to a standard Legendre poly-

nomial Pm(·) via the transformation P̃m(w) = Pm(1 − 2w). To employ the domi-

nated convergence theorem, we now bound |Lm(x)| as follows. Via the integral

definition in Equation C.5, we can observe that the values of this function at

the origin are Lm(0) = 1 + (−1)m+1P̃m(1/e), meaning that Lm(0) ∈ (0, 2) for all m.

Hence, we now focus on the quantity when x is positive. In this case, we can see

that

sup
x>0

∣∣∣∣∣∣
∫ 1

0
P̃m

(w
e

) d
dw

P̃m

(
we−

x
c
)

dw

∣∣∣∣∣∣ ≤ sup
x>0

∣∣∣∣∣∣
∫ 1

0

d
dw

P̃m

(
we−

x
c
)

dw

∣∣∣∣∣∣ ,
which can be explained as follows. Note x dictates how much or how little to

integrate along d
dw P̃m(we−

x
c ). That is, at x = 0, the integral evaluates d

dw P̃m(w) at

every point in its domain [0, 1] but for positive x the derivative is only evalu-

ated from 0 to e−
x
c . Because we know that the shifted Legendre polynomial is

bounded on −1 ≤ P̃m(·) ≤ 1, the integral on the left hand side is subject to neg-

ative values in both P̃m(w/e) and d
dw P̃m(we−

x
c ), whereas the right hand side only

has d
dw P̃m(we−

x
c ). Note furthermore that P̃m(w/e) and d

dw P̃m(we−
x
c ) cannot match in

sign at every w ∈ [0, 1], as P̃m(w/e) is a polynomial of degree m while d
dw P̃m(we−

x
c )

is a polynomial of degree m − 1. Thus, any interval that the integral on the left

hand side evaluates over can be improved upon in the right hand side by eval-

uating only on a subinterval in which the derivative is positive, and it does so

with a larger value as P̃m(w/e) ≤ 1. Integrating on the right hand side now leads

us to the simpler form

sup
x>0

∣∣∣∣∣∣
∫ 1

0

d
dw

P̃m

(
we−

x
c
)

dw

∣∣∣∣∣∣ = sup
x>0

∣∣∣∣1 − P̃m

(
e−

x
c
)∣∣∣∣ ≤ 2,

where the final bound again follows through the observation that −1 ≤ P̃m(·) ≤ 1.

With this bound in hand, to use the dominated convergence theorem we now
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review the specific convergence from Sullivan et al. (1980). From Sullivan et al.

(1980), we have that Lm(x) → 1{x ≤ c} pointwise for x ∈ [0, c) and x ∈ (c,∞). At

the point of discontinuity in the indicator function at x = c, it can be observed

that Lm(c) → 1
2 as m → ∞. Because the random variable X is assumed to be

continuous, the singleton {c} is of measure 0 and thus Lm(x) → 1{x ≤ c} almost

everywhere, justifying use of the dominated convergence theorem. Using this,

we now have that

E [Lm (X)] −→ E [1{X ≤ c}] = P (X ≤ c) and E [XLm (X)] −→ E [X1{X ≤ c}],

as m → ∞. Using the definition of Lm(x) in Equation C.4 and linearity of expec-

tation, one can write

E [Lm (X)] =

m∑
k=1

am
k E

[
e−

kX
c
]

and E [XLm (X)] =

m∑
k=1

am
k E

[
Xe−

kX
c
]
,

and by observing thatM′
(
− k

c

)
= E

[
Xe−

kX
c

]
, we complete the proof. �

As a related numerical discussion, let us demonstrate how we perform ap-

proximate implementations of the expressions in Theorems 6.3.3 and C.2.4 as

based on the Legendre exponential forms given in Lemma C.1.1. As an initial

observation, we can note that as m grows large, calculations of the coefficients

given in Equation C.1 become subject to numerical inaccuracies, such as over-

flow, due to the large binomial coefficients. While this could potentially be as-

suaged by use of Stirling’s approximation or something similar, in our numer-

ical experiments we have seen that such techniques may not be necessary for

strong performance. However, we can note that the convergences in these re-

sults need not be monotone, hence we will not simply take the expression for the

largest m before numerical instability is observed. To explain through example,

we will calculate the empirical exceedance probability in the delay queueing
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Figure C.1: Comparison of Legendre approximations and the empirical ex-
ceedance probability in a simulated queue with fixed size batches of size n =

100, λ = 3, and µ = 2.

model via simulation and compare it to various approximate Legendre sums.

Based on Theorem 6.3.3, we have that

P
(
QC
∞(n) > cn

)
≈ P

(
ψC
∞ > c

)
≈

λ
µ
E [M1] − σ(C)

m,c

c − σ(C)
m,c

,

and so we will consider candidate m values, which we plot in Figure C.1.

As one can see, for relatively small values of m the approximation performs

quite well, as the simulated values and the approximation are virtually indistin-

guishable before the true probability is approximately of order 10−5. However,

if desired we can improve this further by taking the average among the candi-

date approximations. We can see that this does well in this example, and we

can quickly show it will do no worse than the worst individual approximation.

For p as the true probability and pσm as the approximation at m, by the triangle
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inequality we have that∣∣∣∣∣∣∣
m1∑

k=m0

pσk

m1 − m0 + 1
− p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m1∑

k=m0

pσk − p
m1 − m0 + 1

∣∣∣∣∣∣∣ ≤
m1∑

k=m0

∣∣∣pσk − p
∣∣∣

m1 − m0 + 1
≤ max

m0≤k≤m1

∣∣∣pσk − p
∣∣∣ .

Thus, a loose description of an approximation heuristic based on these Legendre

limits is as follows: compute multiple candidate approximations, remove clear

errors caused by numerical instabilities and pre-convergence gaps, and take the

average of the remaining candidates. While our experiments suggest that this

simple approach does well, we can note that it could be possible to develop

more sophisticated numerical approximations based on these limits and we find

this to be an interesting direction of future research.

C.2 Analysis of Blocking Model Queue

As we referred to in the introduction, the analysis that we have performed in

the main body of this work can easily be extended to a blocking batch arrival

queueing model. In this section of the appendix, we will briefly reproduce key

results for this system. In a similar definition to the delay multi-server model,

let QB
t (n) be the queue length process for a GB(n)

t /GI/cn/cn queueing system. That

is, we will take the same general assumptions on the arrival epochs, batch distri-

bution, and service distribution as in QC
t (n) and Qt(n), but we will now assume

that there are cn servers with no space for waiting. Thus, any arriving batch

that contains more jobs than available servers will experience partial blocking,

meaning that the excess jobs that do not find an available server will be blocked

and will not enter the system. It is worth noting that a blocking system could

be an acceptable model for the look-ahead teleoperations system, as the pre-

fetching context could imply that there is no time for a job to wait. We will also
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define a finite capacity storage process ψB
t for t ≥ 0 such that

ψB
t = ψB

0 Ḡ0(t) +

Nt∑
i=1

(
Mi ∧ ψ

B
A−i

)
Ḡ (t − Ai) , (C.6)

where ψB
A−i

= limt↑Ai ψ
B
t and QB

0 (n)
n → ψB

0 as n → ∞. Then, in Theorem C.2.1 we

prove the analogous batch scaling limit for the blocking queueing model, which

converges to this finite capacity shot noise process.

Theorem C.2.1. As n→ ∞, the batch scaling of the GB(n)/GI/cn/cn queue QB
t (n) yields

QB
t (n)
n

D
=⇒ ψB

t , (C.7)

pointwise in t ≥ 0, where ψB
t is a finite storage process as defined in Equation C.6.

Proof. We will again take an inductive approach and show convergence on the

inter-arrival times. As a base case, let t ∈ [0, A1). Then, we can observe through

the law of large numbers and the assumed initial conditions that

QB
t (n)
n

=
1
n

QB
0 (n)∑
j=1

1{t < S 0, j} =
QB

0 (n)
n

1
QB

0 (n)

QB
0 (n)∑
j=1

1{t < S 0, j}
a.s.
−→ ψB

0 Ḡ0(t),

as n → ∞. Then, at the time of first arriving batch, we can note that the new

queue length will be QB
A1

(n) =

(
QB

A−1
(n) + B1(n) ∧ cn

)
. Taking this as a difference

from the moment just before the batch arrives, we can observe that as n→ ∞

QB
A1

(n)

n
=

QB
A−1

(n)

n
+

B1(n)
n
∧ c −

QB
A−1

(n)

n

 D
=⇒ ψB

A−1
+

(
M1 ∧ c − ψB

A−1

)
,

by the previous observation and the assumed convergence of the batch size dis-

tribution. Hence, we proceed to the inductive step. We now take t ∈ [Ak, Ak+1)

and assume convergence for all time less than or equal to Ak as an inductive

hypothesis. Then, on this time interval we can decompose the queue length as

QB
t (n) =

QB
0 (n)∑
j=1

1{t < S 0, j} +

Nt∑
i=1

B̃i(n)∑
j=1

1{t < S i, j},
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where

B̃i(n) = QB
Ai

(n) − QB
A−i

(n) =
(
Bi(n) ∧ cn − QB

A−i
(n)

)
.

Scaling inversely by n, we find that

QB
t (n)
n

=
1
n

QB
0 (n)∑
j=1

1{t < S 0, j} +
1
n

Nt∑
i=1

B̃i(n)∑
j=1

1{t < S i, j}

=
QB

0 (n)
n

1
QB

0 (n)

QB
0 (n)∑
j=1

1{t < S 0, j} +

Nt∑
i=1

B̃i(n)
n

1
B̃i(n)

B̃i(n)∑
j=1

1{t < S i, j}

D
=⇒ ψB

0 Ḡ0(t) +

Nt∑
i=1

(
Mi ∧ c − ψB

A−i

)
Ḡ(t − Ai),

as n→ ∞, since

B̃i(n)
n

=

Bi(n)
n
∧ c −

QB
A−i

(n)

n

 D
=⇒

(
Mi ∧ c − ψB

A−i

)
by the inductive hypothesis and the continuous mapping theorem. Then, at the

arrival epoch Ak+1 the admitted batch size converges to

1
n

(
QB

Ak+1
(n) − QB

A−k+1
(n)

)
=

1
n

(
Bk+1(n) ∧ cn − QB

A−k+1
(n)

)
D

=⇒

(
Mk+1 ∧ c − ψB

A−k+1

)
,

which completes the proof. �

Just as we have visualized the convergence of the infinite server and delay

model queues in Figures 6.5 and 6.6, respectively, we plot the analogous demon-

stration for the blocking model queues and finite capacity storage processes in

Figure C.2. For this example the batches are binomially distributed with num-

ber of trials n and probability of success 1
2 , and this yields deterministic jumps

of size 1
2 in the finite capacity storage process storage process. One can observe

that the scaled queue lengths and the finite capacity storage process all lie on

the interval [0, 2], and that as the batch size grows large the distributions of the

queue appear to approach that of the storage process.
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Figure C.2: Simulated demonstration of convergence in distribution of an
MB(n)/M/cn/cn queue to a finite capacity storage process, based on 100,000 repli-
cations with t = 10, λ = 5, µ = 1, c = 2, and B1(n) ∼ Bin

(
n, 1

2

)
.

Likewise in the blocking model, we want to compute the probability that

some portion of an arriving batch is blocked, which means that the sum of the

pre-arrival queue length and the incoming batch size exceeds the number of

servers. Again we find a connection to the corresponding storage process, as

this converges to the probability that the finite storage processes ψB
t is above its

capacity as the relative batch size grows large:

P
(
QB

t (n) + B(n) > cn
)

= P
(

QB
t (n)
n

+
B(n)

n
> c

)
−→ P

(
ψB

t + M > c
)
. (C.8)

To compute this in the Markovian setting, we make use of a second lemma from

the storage process literature. We cite a truncation result for the steady-state

density of ψB
∞, which we can view as analogous to several known queueing re-

sults. It is known that the reversibility of the M/M/∞ queue implies that trunca-

tion yields the stationary distribution of the M/M/c/c Erlang-B model. This can

even be observed in non-reversible models, as the steady-state distribution of
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a batch arrival blocking model can be obtained via truncating the steady-state

distribution of an infinite server queue with batch arrivals. This can be seen as

a result of Chapter 3. Now in Lemma C.2.2 we see that this is also known in the

storage process literature, as the density of a finite dam with Poisson process

epochs can be found via truncation of a shot noise process.

Lemma C.2.2. In the Markovian setting, the steady-state density of the finite capacity

storage process fB(·) exists and is given by

fB(x) =
f∞(x)∫ c

0
f∞(y)dy

, (C.9)

for all 0 < x ≤ c, where f∞(·) is the steady-state density of the shot noise process.

Proof. See Section 8 of Brockwell (1977). �

This truncation also immediately yields validity to an interchange of limits,

which we can now quickly state in the following proposition.

Proposition C.2.3. In the stationary Markovian blocking queueing model, the inter-

change of limits of time and batch scaling is justified. That is,

lim
n→∞

lim
t→∞

P
(

QB
t (n)
n
≤ x

)
= lim

t→∞
lim
n→∞

P
(

QB
t (n)
n
≤ x

)
, (C.10)

for all x ∈ [0, c].

Proof. Because the distribution of QB
t (n) is a truncation of the distribution of

Qt(n) to [0, cn], we can write the cumulative distribution function as

P
(

QB
t (n)
n
≤ x

)
=

P
(

Qt(n)
n ≤ x

)
P
(

Qt(n)
n ≤ c

) ,
implying that this interchange is an immediate consequence of Theorem 6.3.2.

�
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Using this relationship between the finite capacity storage process and the

shot noise process, we can now find a Legendre-based computation for the ex-

ceedance probability that can be expressed in terms of quantities that we have

identified already in the main text.

Theorem C.2.4. In the stationary Markovian setting, the exceedance probability for

ψC
∞ is given by

P
(
ψB
∞ + M1 > c

)
= lim

m→∞

λ+µ

λ
σ(C1)

m,c − σ
(C2)
m,c

c − σ(C2)
m,c

, (C.11)

where σ(C1)
m,c and σ(C2)

m,c are as given in Theorem 6.3.3 and with am
k as defined in Equa-

tion C.1.

Proof. Again by conditioning, we can observe that the mean of the minimum

between the threshold c and the jump-added steady-state content is

E
[
ψB
∞ + M1 ∧ c

]
= cP

(
ψB
∞ + M1 > c

)
+ E

[
ψB
∞ + M1 | ψ

B
∞ + M1 ≤ c

] (
1 − P

(
ψB
∞ + M1 > c

))
.

Then, by use of the integral equations for the density, we can see that the mean

of the finite capacity storage process satisfies

E
[
ψB
∞

]
=

∫ c

0
x fB(x)dx =

∫ c

0

λ

µ

(
P
(
ψB
∞ + M1 > x

)
− P

(
ψB
∞ > x

))
dx,

which implies that
λ + µ

λ
E

[
ψB
∞

]
= E

[
ψB
∞ + M1 ∧ c

]
.

Hence, we can then express the exceedance probability as

P
(
ψB
∞ + M1 > c

)
=

λ+µ

λ
E

[
ψB
∞

]
− E

[
ψB
∞ + M1 | ψ

B
∞ + M1 ≤ c

]
c − E

[
ψB
∞ + M1 | ψB

∞ + M1 ≤ c
] .

Both the finite storage process mean and the truncated mean of the jump-

added storage process can be calculated using Lemma C.1.1. By the dis-

tributional equivalence of the finite storage process and the truncated shot
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noise as stated in Lemma C.2.2, we can note that E
[
ψB
∞

]
= E

[
ψ∞ | ψ∞ ≤ c

]
and

E
[
ψB
∞ + M1 | ψ

B
∞ + M1 ≤ c

]
= E

[
ψ∞ + M1 | ψ∞ + M1 ≤ c

]
, and thus through the re-

sults of Theorem 6.2.2 we complete the proof. �

C.3 Exact Analysis for Geometrically Distributed Batches

As an example of an approach to this staffing problem under more specific as-

sumptions, in this subsection we will suppose that the batch size distribution in

the queueing models is geometric, i.e. we let B1(n) ∼ Geo
(
α
n

)
for some α > 0. We

can observe that having geometrically distributed batch sizes implies that the

jumps in the storage process will be exponentially distributed, as

E
[
e
θ
n B1(n)

]
=

α
n

1 −
(
1 − α

n

)
e
θ
n

=
α

αe
θ
n − n

(
e
θ
n − 1

) −→ α

α − θ
= E

[
eθM1

]
,

with M1 ∼ Exp(α). In this situation, the assumed stability condition simplifies to

λ < αcµ. As is often the case for exponential random variables, we will find that

this leads to significant tractability. Thus, throughout this section we will use

the assumption that M1 ∼ Exp(α) together with Lemmas 6.3.1 and C.2.2 to find

the steady-state densities of ψ∞, ψC
∞, and ψB

∞ in closed form. The assumption of

exponential marks will be explicitly stated at the beginning of each statement

for clarity’s sake. Because the shot noise process will again be the cornerstone

for the c-threshold and finite storage processes, we begin by showing that its

steady-state value is gamma distributed.

Proposition C.3.1. Suppose that M1 ∼ Exp(α). Then, ψ∞ ∼ Gamma
(
λ
µ
, α

)
in the

Markovian setting.

Proof. By Lemma 6.3.1, we know that for all x > 0 the density f∞(x) will satisfy
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the integral equation

x f∞(x) =
λ

µ
e−αx

∫ x

0
eαy f∞(y)dy.

By taking the derivative of each side with respect to x and simplifying, we find

the ordinary differential equation

f ′∞(x) =
1
x

(
λ

µ
− 1

)
f∞(x) − α f∞(x),

which yields a solution of f∞(x) = k1e−αxx
λ
µ−1 for some constant k1. By requiring

that
∫ ∞

0
f∞(x)dx = 1 and solving for the normalizing constant k1, we find the

density of a Gamma
(
λ
µ
, α

)
random variable. �

Using this same technique, we can also derive the steady-state density of

the c-threshold storage process ψC
∞. In this case, we find in Proposition C.3.2

that the threshold release rule manifests itself as a piecewise stationary den-

sity. In particular, the shape of the distribution below the threshold is propor-

tional to a gamma distribution like what was shown in Proposition C.3.1 and

above the threshold the density is proportional to an exponential distribution.

We can note that this then resembles the conditional distribution of the condi-

tional waiting time in an M/M/c queue and the conditional distribution of the

workload process in an M/M/1 queue, which is one of the classic connections

between queues and storage (or dam) processes with linear drain; see for ex-

ample Prabhu (2012). Thus, just as a multiserver queue can be seen as a hybrid

between an infinite server queue and a single server queue, the c-threshold stor-

age process can be connected to the storage processes corresponding to the infi-

nite and single server queues, and the structure of each can be plainly observed

in the steady-state density of ψC
∞ under these assumptions.
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Proposition C.3.2. Suppose that M1 ∼ Exp(α). Then, in the Markovian setting ψC
∞

has probability density function given by

fC(x) =


αλ/µ(αcµ−λ)e−αx x

λ
µ −1

(αcµ−λ)Γ
(
λ
µ

)
−αcµΓ

(
λ
µ ,αc

)
+µΓ

(
λ
µ+1,αc

) 0 ≤ x ≤ c,(
α− λ

cµ

)(
µΓ

(
λ
µ+1,αc

)
−λΓ

(
λ
µ ,αc

))
e−(α− λ

cµ )(x−c)

(αcµ−λ)Γ
(
λ
µ

)
−αcµΓ

(
λ
µ ,αc

)
+µΓ

(
λ
µ+1,αc

) x > c.
(C.12)

Proof. From the integral equation given in Lemma 6.3.1, we can note that the

density fC(x) satisfies

x fC(x)eαx =
λ

µ

∫ x

0
eαy fC(y)dy,

for x ≤ c, which we have seen yields fC(x) = k1e−αxx
λ
µ−1 for some constant k1

through the proof of Proposition C.3.1. Similarly for x > c, Lemma 6.3.1 also

implies that

fC(x)eαx =
λ

cµ

∫ x

0
eαy fC(y)dy,

and thus this first derivative satisfies the equation

f ′C(x) = −

(
α −

λ

cµ

)
fC(x).

By consequence, fC(x) = k2e−
(
α− λ

cµ

)
x for x > c and some constant k2. To solve for k1

and k2, we can use the fact that the density must integrate to 1 to observe

1 =

∫ ∞

0
fC(x)dx = k1α

− λµ

(
Γ

(
λ

µ

)
− Γ

(
λ

µ
, αc

))
+

k2

α − λ
cµ

e−
(
α− λ

cµ

)
c.

Similarly, because E
[
φC
∞ ∧ c

]
= λ

µ
E [M1] = λ

αµ
as seen in the proof of Theo-

rem 6.3.3, we can also note that

λ

αµ
=

∫ ∞

0
(x ∧ c) fC(x)dx = k1α

− λµ−1
(
Γ

(
λ

µ
+ 1

)
− Γ

(
λ

µ
+ 1, αc

))
+

ck2

α − λ
cµ

e−
(
α− λ

cµ

)
c.

This now gives us a system of linear equations of k1 and k2. By solving and

simplifying, we achieve the stated form. �
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For the finite storage process ψB
∞, we will now derive its steady-state density

by use of the density for ψ∞ in Proposition C.3.1 and the truncation equation

given in Lemma C.2.2. Thus, as we have found that the shot noise process

steady-state is equivalent to a gamma random variable, we find in Proposi-

tion C.3.3 that we can view the resulting density for ψB
∞ as a truncated gamma

distribution.

Proposition C.3.3. Suppose that M1 ∼ Exp(α). Then, ψB
∞ has probability density

function given by

fB(x) =
α

λ
µ x

λ
µ−1e−αx

Γ
(
λ
µ

)
− Γ

(
λ
µ
, α

) , (C.13)

for all 0 < x ≤ c.

Proof. By Proposition C.3.1, we know that the shot noise process is gamma dis-

tributed in steady-state, i.e. it has a density that is proportional to e−αxx
λ
µ−1. By

Proposition C.2.2, we can normalize this expression so that
∫ c

0
fB(x) = 1, and this

yields the stated form. �
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