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Abstract. A company wishes to estimate or predict its financial exposure in a reporting period of length
T (typically one quarter) due to warranty claims. We propose a fairly general random measure model
which allows computation of the Laplace transform of the total claim made against the company in the
reporting interval due to warranty claims. When specialized to a Poisson process of both sales and warranty
claims, statistical estimation of relevant quantities is possible. The methodology is illustrated by analyzing
automobile sales and warranty claims data from a large car manufacturer for a single car model and model
year.

1. Introduction

A retail company needs to budget for warranty claims as part of their risk management policies. Excessive
warranty claims indicate problems in manufacturing or procurement so distributional properties of the claims
are needed. Financial requirements for predicting and then reporting quarterly results make it desirable for
a company to be able to predict total quarterly warranty claims.

We analyze this problem using a random measure and clustered point process approach. A sale of an
item generates a random measure D(·) in which D((0, t]) represents the total warranty claim experienced by
the company for the sold item in the first t time units subsequent to the sale. Times of sales are treated as
a point process with only simple points. Specialization of both the sale times and times of warranty claims
relative to sales to non-homogeneous Poisson processes allows estimation of model parameters and, hence,
estimation of the Laplace transform of the distribution of total claim exposure to the company in, say, a
quarter. To guard against model risk arising from the Poisson assumptions, other tractable statistical models
should be developed. See Ja, et al (2002) for earlier work on warranty costs arising out of non-stationary
sales processes.

Similar models arise in other disciplines. For instance, in Internet modeling the times of user initiated
connections are followed by a cluster of machine initiated connections giving rise to cluster point processes.
Fitting realistic models to data in the face of a variety of statistical structures for the clusters is an important
issue. In particular, cluster characteristics may or may not be dependent on cluster size and gaps between
points in a cluster may or may not be independent.

Clearly there is a connection between warranty claims modeling developed here and insurance claims
modeling. Instead of giving references to this vast literature, we refer the readers to two excellent books
on this topic: Asmussen (2000), Rolski et al (1999). Insurance models typically do not account for non-
stationary policy-issuing processes, which is what makes our models different.

Our paper is organized as follows: Section 2 outlines the general sales and claims model. Section 3
offers a theoretical formula for the total warranty claim against the company in a time period of [0, T ].
This formula is specialized to the case where both times of sales and times of warranty claims follow non-
homogeneous Poisson processes. This specialization yields a sufficiently explicit formula for the Laplace
transform of the distribution of total warranty claims in a reporting interval; the Laplace transform can
be numerically inverted to obtain, for instance, quantiles of the distribution of total claims in a reporting
interval. Subsequent sections analyze two data sets of sales dates and times and costs of warranty claims
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from a major car manufacturer for a single car model and model year. We show how model parameters may
be estimated and use these estimates to compute the quantiles of the total warranty costs in each quarter
for a this manufacturer. The last section contains the summary and conclusions.

The security protocols of the manufacturing company that supplied us with data required that the sales
and warranty claim data be subjected to masking, scaling and some random deletions. Thus we view the
methodology developed in this paper as a demonstration of feasibility. More definitive conclusions would
require working closely with a manufacturer or retailer and obtaining more complete data records.

2. The sales and claims model

This section outlines the model.

2.1. Sales. Suppose there is a non-homogeneous Poisson process of sales. The Poisson counting process

(2.1)
∑

j

εSj
(·)

lives on R and has sales times {Sj}. The standard notation
∑

j εSj
for the counting function of the points

{Sj} is defined by

εS(I) =

{
1, if S ∈ I,

0, if S /∈ I,

for an interval I. The mean number of sales in an interval I is

µ(I) = E
(∑

j

εSj (I)
)
,

where µ is a measure on R which is finite on finite intervals. The Poisson assumption means that the Laplace
functional is of the form (Kallenberg (1983), Neveu (1977), Resnick (2006, 1987))

(2.2) E(exp{−
∑

j

f(Sj)} = exp
{
−

∫

R
(1− e−f )dµ

}

for any non-negative function f defined on R.

2.2. Warranty claims. For the jth sold item, we assume a general process of warranty claims. For the
jth item sold, suppose there exist times {Sj + T

(j)
i , i ≥ 1} at which warranty claims are made. The time

points {T (j)
i } are non-negative and non-decreasing in i. Assume there are finitely many points {Sj +T

(j)
i , i ≥

1,−∞ < j < ∞} in any finite interval. There is an iid sequence of claim sizes {D(j)
i , i ≥ 1} where we assume

D
(j)
i is the ith warranty claim for the jth sold item. For the jth item, there is a random measure Dj(·) on

[0,∞) giving the total claims:

(2.3) Dj(·) =
∑

i

D
(j)
i ε

T
(j)
i

(·),

so that Dj(I) is the total warranty claim amount during time interval I for the jth item sold. Later we will
assume a standard warranty is of length W and that each of the iid random measures Dj(·) concentrates on
[0,W ]. The random measure giving total exposure to warranty claims in a time period I is

(2.4) C(I) =
∑

j

∑

i

D
(j)
i ε

T
(j)
i +Sj

(I)

so that the total exposure in a reporting interval [0, T ] (eg, 1 quarter or 1 year) is

C([0, T ]) =
∑

j

∑

i

D
(j)
i ε

T
(j)
i +Sj

([0, T ]) =
∑

j

Dj

(
[(−Sj)+, T − Sj ]

)
,

the aggregate across items sold of claims incurred in [0, T ].
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3. The distribution of total claims.

3.1. General warranty claims process. Suppose f : [0,∞) 7→ [0,∞) is a test function; later it will be
the indicator of an interval. The random measures {Dj} given in (2.3) are iid. Define the Laplace functional
of the random measure D1(·) as

(3.1) ψD(f) = Ee−D1(f).

As f varies, this determines the distribution of the random measure D1(·). The Laplace functional of the
total warranty claims random measure is

Ee−C(f) =Ee−
R∞
0 f(s)C(ds) = Ee

−Pj

R
s≥Sj

f(s)Dj(ds−Sj)

=Ee−
P

j

R∞
0 f(y+Sj)Dj(dy).

Now we condition on {Sj}. Let the conditional expectation with respect to the σ-field generated by {Sj} be
E{Sj}. We get the above equal to

=E
(
E{Sj}(e−

P
j

R∞
0 f(y+Sj)Dj(dy)

))
= E

(∏

j

E{Sj}(e−
R∞
0 f(y+Sj)Dj(dy)

))
.

Write fs(·) = f(·+ s) and using (3.1), we recognize the forgoing as

=E
(∏

j

ψD(fSj )
)

= Ee−
P

j − log ψD(fSj
).

This being a function of Poisson points allows us to use the form in (2.2) and to write the above equal to

= exp{−
∫

R

(
1− e−(− log ψD(fs))

)
µ(ds)} = exp{−

∫

R

(
1− ψD(fs)

)
µ(ds)}

=exp{−
∫

R

(
1− ψD(f(·+ s))

)
µ(ds)}.

We summarize the above discussion in the following proposition.

Proposition 1. Suppose {Sj} are Poisson points with mean measure µ given by (2.1) and Laplace functional
(2.2). Suppose {Dj(·)} are iid random measures representing cumulative warranty claim amounts as given
by (2.3) with distribution determined by the Laplace functional (3.1). Then the total warranty claim random
measure C(·) defined in (2.4) has Laplace functional

(3.2) ψC(f) := exp{−
∫

R

(
1− ψD(f(·+ s))

)
µ(ds)},

for f ≥ 0.

3.2. Specialization. Setting f = ζ1[0T ] for ζ > 0 transforms

ψC(f) = E(e−ζC[0,T ]), ζ > 0,

into the Laplace transform of the random variable C[0, T ]. We now see how explicit formula (3.2) can be
made in certain special cases.

We assume the warranty claim sizes are iid random variables {D(j)
i , i ≥ 1, j ≥ 1} and suppose

(3.3) P [D(1)
1 ≤ x], x ≥ 0

is the distribution with Laplace transform

D̂(ζ) = E(e−ζD
(1)
1 ), ζ > 0.

Then the Laplace functional of the random measure D1(·) given in (3.1) can be expressed as

ψD(f) =E(e−D1(f)) = E(e−
P

i D
(1)
i f(T

(1)
i ))
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and conditioning on {T (1)
i } this is

=E
(
E{T (1)

i }(e−
P

i D
(1)
i f(T

(1)
i )

))

=E
∏

i

D̂(f(T (1)
i )) = E

(
e−
P

i − log D̂(f(T
(1)
i ))

)

ψD(f) =ψT (− log D̂ ◦ f),(3.4)

where
ψT (g) = E(e−

P
i g(T

(1)
i )), g ≥ 0,

is the Laplace functional of the point process with points {T (1)
i }. Thus the Laplace functional of the random

measure D1(·) can be represented in terms of the Laplace functional of {T (1)
i } and the Laplace transform of

the distribution D(x).
Next we suppose {T (1)

i } are the points of a non-homogeneous Poisson process on [0,∞) and slightly more
generally we suppose these are the points of a Poisson random measure with mean measure ν, a measure
giving finite mass to bounded sets. We assume the warranty duration is a fixed number W > 0, longer than
the length of the financial reporting interval T and so we assume ν concentrates on [0,W ] which amounts to
considering the point process of claims to be

∑
i ε

T
(1)
i

(· ∩ [0,W ]). (Variants where W is random with small
variance about the mean could also be considered but we leave this for elsewhere.) Then for g ≥ 0, the
Poisson assumption means the Laplace functional of

∑
i ε

T
(1)
i

(· ∩ [0,W ]) is

(3.5) ψT (g) = e−
RW
0 (1−e−g)dν .

See Kallenberg (1983), Neveu (1977), Resnick (2006, 1987). With this Poisson assumption we have from
(3.4),

ψD(f) =ψT (− log D̂ ◦ f) = exp{−
∫ W

0

(
1− e−(− log D̂◦f(s))

)
ν(ds)}

=e−
RW
0

(
1−D̂◦f(s)

)
ν(ds).(3.6)

So assuming {T (1)
i } are Poisson points as well as {Sj} being Poisson, and combining (3.2), (3.4) and (3.6),

we get

ψC(f) = exp{−
∫

R
1− ψD(f(s + ·))µ(ds)}

=exp{−
∫

R

(
1− e−

RW
0 (

(
1−D̂(f(s+u))

)
ν(du)

)
µ(ds)}(3.7)

To get the Laplace transform of C[0, T ], we set f = ζ1[0,T ] for ζ > 0 and get

Ee−ζC[0,T ] = exp{−
∫

R

(
1− e−

RW
0

(
1−D̂(ζ1[0,T ](s+u))

)
ν(du)

)
µ(ds)}

= exp{−
∫

R

(
1− e−

(
1−D̂(ζ)

) RW
0 1[0,T ](s+u)ν(du)

)
µ(ds)}.

To analyze this further, suppose W > T , that is, the warranty period is larger than the reporting period.
Decompose the integral over R as ∫

R
=

∫ T

s=0

+
∫

s<0

= A + B.

We find the term A is a standard convolution

(3.8) A =
∫ T

s=0

(
1− e−(1−D̂(ζ))ν([0,T−s])

)
µ(ds).
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For B, we get that s < 0 and |s| < u ≤ T + |s| and also u < W and therefore,

B =
∫

s<0

(
1− e−(1−D̂(ζ))

RW
0 1[0,T ](s+u)ν(du)

)
µ(ds)

=
∫

s<0

(
1− e−(1−D̂(ζ))ν(|s|,(T+|s|)∧W ]

)
µ(ds)

=
∫

s<0
0<|s|<W−T

(
1− e−(1−D̂(ζ))ν(|s|,(T+|s|)]

)
µ(ds) +

∫
s<0

W−T<|s|<W

(
1− e−(1−D̂(ζ))ν(|s|,W ]

)
µ(ds).(3.9)

To summarize, we find that when both sales and claims follow non-homogeneous Poisson processes, we get
an explicit formula for the Laplace transform of total warranty claims in a reporting period:

(3.10) Ee−ζC[0,T ] = e−(A+B),

where A is given by (3.8) and B is given by (3.9).
If we specialize further and let

∑
i ε

T
(1)
i

be homogeneous Poisson on R with ν(dt) = λdt and
∑

i εSi
be

homogeneous Poisson with µ(ds) = θds so that the rates are λ > 0 and θ > 0, we get

A =
∫ T

s=0

(
1− e−(1−D̂(ζ))λ(T−s)

)
θds

=θT − θ(1− e−(1−D̂(ζ))λT )
(1− D̂(ζ))λ

.

For B we get after transforming s 7→ −s,

B =
∫ W−T

s=0

(
1− e−(1−D̂(ζ))λT

)
θds +

∫ W

s=W−T

(
1− e−(1−D̂(ζ))λ(W−s)

)
θds

=θ(W − T )(1− e−(1−D̂(ζ))λT ) +
∫ T

0

(
1− e−(1−D̂(ζ))λs

)
θds

=θ(W − T )(1− e−(1−D̂(ζ))λT ) + θT − θ(1− e−(1−D̂(ζ))Tλ)
λ(1− D̂(ζ))

.

4. Analysis of the claim size data

In an attempt to analyze the distribution of claim sizes {D(1)
i } and also to understand the process of sales

{Sj}, we obtained and analyzed a year’s worth of claims and sales data for a specific car model from a major
car manufacturer. The claims data for model year 2000 comprises a spreadsheet called cost2000 of length
73,167. The analysis for the fourth column cost , representing the cost to the company of each warranty
claim, allows us to construct an estimate of the claim cost distribution P [D(1)

1 ≤ x] defined in (3.3). The
usual methods from the statistics of extremes and quantitative risk management construct a distribution
model using the empirical distribution for the center of the distribution and a generalized Pareto distribution
for the part of the distribution above a threshold. See Coles (2001), Embrechts et al. (1997), McNeil et al.
(2005).

4.1. Initial analysis of warranty claim costs. The time series plot for cost sizes shows a spikey structure
without apparent trends. The autocorrelation plot taken out to 30 lags shows little dependence though there
may be dependence at very small lags of 1 or 2 which may result from multiple claims for the same vehicle
on the same day.

Initial analysis of the cost data summarized in Table 4.1 shows that the data has a wide range. Twenty
four values in the data set are equal to 0. The units are unknown resulting from masking and scaling of the
data by the manufacturer. Presumably there is a rational choice of upper bound based on the total value of
a car. Despite the upper bound, it is still reasonable to model the cost data with a heavy tailed distribution
based on the frequency of extreme values and the fact that there is a mix of vehicles with differing total
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Figure 1. Time series plot of claims data (left) and autocorrelation plot (right) showing
little dependence.

replacement value. An alternative which could be explored would be to fit a truncated Pareto distribution
to threshold exceedances. This would produce similar statistical conclusions.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 6.573 11.650 35.610 31.830 2844.000

Table 1. Summary statistics for the data.

4.2. Heavy tail analysis. As a first step we made a QQ plot of the log transformed data against exponential
quantiles. The upper 10,000 largest values follow a line whose slope indicates a value of α = 1.51 for the
model

P [Cost > x] ≈ x−α,

for large x. However, examination of the plot indicates that the 55 largest upper order statistics follow a
line with slope which estimates α = 16.376. Considering that 55 is a small percentage of 73167 or 10,000, it
is reasonable to continue with the heavy tail analysis. Alternatively, one could consider a mixture model of
two Pareto distributions but this may result in overfitting.

As an alternative exploratory procedure we made a Hill plot (Csörgő et al. (1985), Hill (1975), Mason
and Turova (1994), Mason (1982), Resnick (2006, 1997)) of the cost data which plots the Hill estimator H−1

k,n

of α as a function of k, the number of upper order statistics used in the estimation; the parameter n is the
sample size. The plots in Figure 3 are quite stable. The altHill plot (Resnick and Stărică (1997), Resnick
(2006)) replaces k by [nθ] for 0.4 ≤ θ ≤ 1.

Next we fit a generalized Pareto distribution to the tail (see Coles (2001), Embrechts et al. (1997), McNeil
et al. (2005)) following the standard peaks over threshold philosophy described as follows. For a threshold
u and x > u write

P [Cost > x] =P [Cost > x|Cost > u]P [Cost > u]

=F̄ (u)F̄ [u](x),
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Figure 2. QQ plots for the log transformed data. The left plot considers only the 55 upper
order statistics while the right plot uses 10,000 upper order statistics.
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Figure 3. Hill plots for cost2000. The top plot plots estimates of α based on k, the number
of upper order statistics used in the estimation while the bottom plot is in alt scale and
replaces k by [nθ]; 0.4 ≤ θ ≤ 1 and n is the sample size.

where F (x) is the claim size distribution and F [u](x) is the conditional distribution of claim cost given the
claim is bigger than u; this is also the exceedance distribution. The exceedance distribution is approximated
by the generalized Pareto distribution, effectively allowing extrapolation beyond the range of the data,
yielding

≈F̄ (u)(1 +
1

αβ
(x− u))−α,(4.1)
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for a scale parameter β > 0 and the Pareto shape parameter α > 0. This means our estimate of the claim
size distribution is

P̂ [Cost > x] =




̂̄F (x), if x ≤ u,

̂̄F (u)(1 + 1
α̂β̂

(x− u))−α̂, if x > u.

For many purposes, an adequate estimate, ̂̄F (x), for x ≤ u is provided by the empirical distribution
( # observations > x)/(sample size); however, relying on the empirical distribution may present storage
problems when doing numerical Laplace transform inversion.

For the claim size data, we used the 10,000 upper order statistics, which corresponds to a threshold of
u = 60.262, with 86% of the observations less than this threshold. We obtained by the method of maximum
likelihood using the R-module EVIR, that α̂ = 1.54 (as opposed to the QQ estimate of 1.51) and β̂ = 41.4537.
The fitted excess distribution overlaid with the empirical distribution of excesses of the threshold is shown
in Figure 4.

50 100 200 500 1000 2000 5000

0.0
0.2

0.4
0.6

0.8
1.0

x (on log scale)

Fu
(x−

u)

Excess distribution for cost2000

Figure 4. GPD fitted distribution of excesses compared with empirical distribution of
excesses relative to the threshold 60.262.

We computed some some standard risk measures including quantiles of the fitted distribution and the
expected shortfall (sfall) for each quantile; that is the expected cost given that the cost is greater than the
quantile level. For example, from Table 2 we see that

P [Cost > 343.952] = 0.01

and the expected excess over 343.952 is 980.482-343.952=636.530.
For F̄ (x), x < u, in some circumstances, it is preferable to fit a parametric family rather than use the

empirical distribution. We call the subset of the claims data corresponding to claim sizes less than the
threshold u = 62.262 claims2000small . We fit a Gamma density

fa,s(x) =
1

Γ(a)
s−axa−1e−x/s, x > 0

with shape paramter a and scale parameter s. Using maximum likelihood via the R-function fitdistr we
obtained the estimates

ŝhape = â = 1.25000, ŝcale = ŝ = 11.846.
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p quantile sfall
0.800 46.276 138.001
0.900 74.619 218.218
0.950 118.993 343.804
0.990 343.952 980.482
0.999 1537.819 4359.364

Table 2. Quantiles of the fitted excess distribution and expected shortfalls.

This density assigns probability 0.9909 to values in [0, u]. Thus

P [Cost ≤ v|Cost ≤ u] =
F̂ (v)
F̂ (u)

=
∫ v

0

fâ,ŝ(y)dy, 0 ≤ v ≤ u,

and therefore, on [0, u] we estimate the density of F (v) as

F̂ (u)
∫ v

0

fâ,ŝ(y)dy,

where recall F̂ (u) = 0.862, the percentage of observations below the threshold u.
The histogram of the prethreshold data claims2000small and the fitted Gamma density are displayed in

Figure 5.
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Figure 5. Histogram of the claim sizes data below threshold with the Gamma fitted density superimposed.

5. Analysis of sales data

Having some understanding of the nature of warranty claims, we now turn to studying the sales process.

5.1. Initial analysis. The sales data for model year 2000 of a single car model consists of 34,807 records
stretching over 1116 days or 3.05 years with an earliest date of 08/20/1999 and a latest date of 09/9/2002.
Sales counts per day are given in Figure 6.
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Figure 6. Sales per day for the 2000 model year stretching over 1116 days.

5.2. The Bass sales rate model. Bass (1969) proposed the following parametric model for sales of con-
sumer goods after their market introduction. Let µ([0, t]) be the cumulative sales of a particular model in
t time units since the model introduction to the market. The sales rate model is then described by three
parameters a, b and M as follows:

dµ([0, t])
dt

= a(µ([0, t]) + b)(M − µ([0, t])),

with initial condition µ({0}) = 0. The solution is:

(5.1) µ([0, t]) = M
b(1− exp{−a(M + b)t}
b + M exp{−a(M + b)t} .

This model is designed so that the sales rate initially increases and then decreases and the total sales µ([0, t])
approaches M as t approaches infinity. We can estimate a, b, M from sales data. For our purposes, a more
convenient parameterization results from setting

a =
A

M
, ab = B, A + B = C,

and M , as before, is the total sales of the item. This gives

(5.2) µ([0, t]) = M
1− exp{−Ct}

1 +
(

C
B − 1

)
exp{−Ct} .

Examples of different Bass sales rate curves are given in Figure 7.
Our intent is to use µ([0, t]) as the mean measure of the Poisson process of sales. Comparing Figures

6 and 7, we see that there is excess variability in Figure 6 that is not captured by the smooth Bass sales
rate plots so smoothing the data might be considered to get a better fit. Without smoothing the data, we
perform maximum likelihood estimation of (B,C) using Poisson counts per day as the data. We use the
R-function nlm and find estimated values of

(B̂, Ĉ) = (0.00041, 0.0163).

The plot giving observed daily counts vs fitted expected counts is in Figure 8. The fitted model does not
capture all the variability, nor does it fit the big observed counts particularly well.



WARRANTY MODELLING 11

0 1000 2000 3000 4000 5000 6000

0   
e+0

0
1   

e−0
4

2   
e−0

4
3   

e−0
4

4   
e−0

4
5   

e−0
4

Index

diff(
ST(

seq
(1, 

600
, by

 = 0
.1),

 p =
 c(4

e−0
4, 0

.02
)))

Bass sales rate plots

Figure 7. Different sales rate curves. The thin curve achieving the biggest maximum value
correponds to (B, C) = (.0004, .02); the middle, heavy curve is for (B,C) = (.0004, .01); the
lowest curve is for (B,C) = (0.0004, 0.008).
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Figure 8. The spikey graph is the observed daily sales counts while the smooth curve gives
the fitted Bass model.

A better visual fit to the Bass model comes from smoothing the data by aggregation into 12 day bins and
considering sales per 12 day periods as the data. This yields very similar estimates of the parameters

(5.3) (B̂, Ĉ) = (0.00039, 0.0165)

and the observed 12 day sales counts vs expected plot looks better as shown in Figure 9. This increases our
confidence that the parameter estimates of (B, C) are very reasonable.
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Figure 9. The continuous graph is the observed 12 day sales counts while the circles
connected by lines gives the fitted Bass model.

6. Analysis of warranty claim data

This section analyzes warranty claim dates. We took warranty claim times of each vehicle and subtracted
the time of sale to create times relative to zero for each car. The unit of measurement is one day. Each of
these records was treated as a realization of a non-homogeneous Poisson process. Interestingly, this resulted
in times which were negative (warranty claims presumably made by the dealer prior to sale) and times which
exceeded the 3 year window. Owing to masking of the data by the manufacturer, not all sales dates could
be matched with claims and subsets of sales and claims were selected corresponding to the same vehicle
identification number.

6.1. Initial analysis. The amalgamation of all the warranty claim times relative to the vehicle purchase
time produced a data set of length 65,351. The summary statistics for this data set follow in Table 6.1. Note
the minimum is negative and the maximum exceeds 3 years or 1095 days.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-858.0 127.0 405.0 440.9 726.0 1459.0

Table 3. Summary statistics for the claim time data.

6.2. Warranty claim counts. The warranty claim times yield counts per day. The histogram of count
frequencies for all the data is in left hand graph of Figure 10 which exhibits daily counts in the range
(-900,1500). The right graph is a simplified histogram of count frequencies in which negative values are
lumped to 0 and values exceeding 1095 days are lumped with 1096.

6.3. Model fit. The linear appearance of the warranty claims counts in the region (0, 1095) exhibited in
the left histogram of Figure 10 suggests estimating the measure ν appearing in (3.5) by

ν({0}) = w1, ν({1096}) = w2, ν((i− 1, i]) = mi + b, 1 ≤ i ≤ 1095,

where ν({1096}) results from all counts in the region (1095,1500]. Figure 11 gives the claim counts for days
1 through 1095 with a least squares fitted line yielding estimates of the intercept and slope (75.69,−0.042).
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Figure 10. Histogram (left) of daily count frequencies in the range (-900,1500) and (right)
histogram of daily counts in which negative values are counted as 0 and values exceeding 3
years are counted as 1095.

Keeping in mind that the data has been amalgamated over the 34,807 sales of cars in the data record
provided, we divide these numbers by 34807 and get estimates of ν(·) to be

(6.1) ν̂({0}) = 0.1663, ν̂({1096}) = 0.0612, ν̂((i− 1, i]) = (−1.218e−06)i + 0.002174, 1 ≤ i ≤ 1095.
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Figure 11. Claim counts for days 1 through 1095 and the least squares line.
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7. Total Warranty Costs.

We assume that the sales start at time 0 and continue according to a non-homogeneous Poisson Process
with rate function given in Equation (5.2), with parameters given in Equation (5.3). The warranty period
is taken to be W = 3 years, and we compute the distribution of the total warranty costs for 12 quarters,
the i-th quarter being the interval [(i − 1) ∗ T, i ∗ T ), with T = 1/4 year. The warranty claims from a
single sale are assumed to arise according to a non-homogeneous Poisson process with mean measure given
by the estimate in Equation (6.1), appropriately converted to years. Finally the distribution of individual
claim size is assumed to be a combination of Gamma and generalized Pareto as described in Section 4.2.
Using these values in the analysis as presented in Section 3.2 we compute the Laplace transform of the total
warranty costs over different quarters. Then we use the numerical Laplace transform inversion program
invlap (Hollenback (1998)) written in Matlab to compute the distribution of the total cost.

The table below gives the results about the mean, median and various quantiles of the costs for the 12
quarters. It shows that the warranty costs increase in the beginning and then decrease, as expected. There
is a slight increase in the final quarter. This is due to the increase in the warranty claims at the end of
warranty period.

Quarter Mean Median 75% 90% 95% 99%
1 23081 23036 24237 25355 26040 27358
2 63126 63081 65056 66868 67970 70069
3 83200 83155 85418 87491 88749 91139
4 46902 46856 48560 50130 51086 52912
5 14857 14811 15778 16685 17244 18325
6 4069 4024 4537 5036 5350 5940
7 1384 1338 1642 1953 2155 2568
8 743 697 922 1162 1322 1655
9 570 523 720 937 1082 1387
10 501 454 638 845 985 1277
11 454 408 583 783 919 1203
12 1236 1320 1621 1928 2128 2537
Table 4. Total claim quantiles for the 12 quarters

8. Summary and Conclusions

In this paper we have developed stochastic and statistical models to compute the warranty costs for a
specified period, a quarter year in our case, arising out of a non-stationary sales process of the items under
warranty. We have used the Bass model to estimate the sales rate as a function of time and then used
this as the rate function of a non-homogeneous Poisson process representation of the sales process. We
then developed a non-homogeneous Poisson process to model the claims process arising out of a single item
during the warranty period. We also modeled the claim sizes as i.i.d. random variables with a combination
of Gamma and Generalized Pareto distributions to account for the heavy tails manifest in the data. Finally
we combined all these submodels to compute the quantiles of the warranty costs for the 12 quarters.

We believe that this methodology will help manufacturers with their financial planning in that they can
more accurately account for and predict warranty liabilities in a proper fashion.
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S. Csörgő, P. Deheuvels, and D. Mason. Kernel estimates for the tail index of a distribution. Ann. Statist., 13:
1050–1077, 1985.

P. Embrechts, C. Kluppelberg, and T. Mikosch. Modelling Extreme Events for Insurance and Finance. Springer-
Verlag, Berlin, 1997.

B.M. Hill. A simple general approach to inference about the tail of a distribution. Ann. Statist., 3:1163–1174, 1975.
Hollenbeck, K. J. INVLAP.M: A matlab function for numerical inversion of Laplace transforms by the de Hoog

algorithm, http://www.isva.dtu.dk/staff/karl/invlap.htm, 1998.
S.-S. Ja, V. G. Kulkarni, A. Mitra, and J. Patankar. Warranty Reserves for Non-stationary Sales Processes. NRLQ,

49, No. 5, 499-513, 2002.
O. Kallenberg. Random Measures. Akademie-Verlag, Berlin, third edition, 1983. ISBN 0-12-394960-2.
D. Mason and T. Turova. Weak convergence of the Hill estimator process. In J. Galambos, J. Lechner, and E. Simiu,

editors, Extreme Value Theory and Applications, pages 419–432. Kluwer Academic Publishers, Dordrecht, Holland,
1994.

D. Mason. Laws of large numbers for sums of extreme values. Ann. Probab., 10:754–764, 1982.
A.J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management. Princeton Series in Finance. Princeton

University Press, Princeton, NJ, 2005. ISBN 0-691-12255-5. Concepts, techniques and tools.
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