HEAIS AND VARIANCES OF TRTATMENTS FROM A RANDOMIZED COMPLETE BLCCK DESIGN WITH MISSING PLOTS

BU-Som
T. T. Federer and O. Nissen
necember, 1958

ABSTRACT

The estimated treatinent effects and variances have been developed for is number of cases in which plots are missing in the randomized complete olet design. In particular, treatment effect and variance formulas are given for (i) one missing plot, (ii) two missing plots for one treatment, (iii) k missing plots for one treatment, (iv) two missing plots for two treatments in one block, (v) k missing plots for each of k treatments in one block, (vi) two treatments each with one missing plot in different replicates, and (vii) k treatments each with a missing plot in different replicates. Numerical examples are presented for cases (i) and (ii).

Although the presence of a formula for estimating the yield of a missing, observation is of frequent occurrence in statistical literature, the procedure for obtaining the estimated treatnent effect or mean is rather infrequent. Therefore, in order to emphasize the estimation of treatment effects rathe: than the computational procedure for the analysis of variance and presumably the resulting tests of significance, the algebraic derivation of treatment effects is presented below for some situations where observations are missing.

One Missing Value
For the first jituation consider a randomized conplete block design with one missing observation, say for trcatment 1 in replicate 1 . The normal equation: for this design are given on page 128 of Federer's "Experimental Design." These equations reduce to the following when the yie].d. X_{11} is deleted from the array of yields:

$$
\begin{aligned}
(n-1)\left(\hat{\mu}+t_{1}\right)-r_{1} & =x_{1} . \\
a\left(\hat{\mu}+t_{i}\right) & =x_{i} \quad \text { for } i=2,3, \cdots, v \\
(v-1)\left(\hat{\mu}+r_{1}\right)-t_{1} & =x_{\cdot 1} \\
v\left(\hat{\mu}+r_{j}\right) \quad & =x_{\cdot j} \quad \text { for } j=2,3, \cdots, n \\
(v n-1) \hat{\mu}-t_{1}-r_{1} & =\tilde{x}_{\ldots} .
\end{aligned}
$$

From the above equation, the following olutions are obtained:

$$
\begin{array}{ll}
\hat{\mu}^{+} t_{i}=\bar{x}_{i}, & \text { for } i=2,3, \cdots, v ; \\
\hat{\mu}^{+} x_{j}=\bar{x}_{\cdot j} & \text { for } j=2,3, \cdots, r_{i} \quad
\end{array}
$$

The solutions for $\hat{\mu}, t_{1}$, and r_{1} are obtained from the following three equations:

$$
\begin{aligned}
& (n-1)\left(\hat{\mu}+t_{1}\right)-r_{1}=x_{1} \\
& (v-1)\left(\hat{\mu}+r_{1}\right)-t_{1}=x_{\cdot 1} \\
& (n v-1) \hat{\mu}-t_{1}-r_{1}=x_{\ldots}
\end{aligned}
$$

Bolving these equations we find that

$$
\begin{aligned}
& \hat{\mu}=\frac{X_{\ldots}(n v-v-n)+v X_{1}+n X_{\cdot 1}}{n v(n-1)(v-1)}, \\
& t_{1}=\frac{1}{v(n-1)}\left\{v X_{1}+X_{\cdot 1}-X_{\ldots}\right\},
\end{aligned}
$$

mad

$$
r_{1}=\frac{1}{n(v-1)}\left\{x_{1}+n x_{11}-x \cdot\right\}
$$

Therefore, the mean for treatment one is

$$
\begin{aligned}
\hat{1}+t_{1} & =\frac{1}{v(n-1)}\left\{v X_{1}+X_{\cdot 1}-X_{1}\right\} \\
& +\frac{X_{\ldots}(n v-v-n)+v X_{1}+n X_{11}}{n v(n-1)(v-1)} \\
& =\frac{1}{n}\left\{x_{1}+\frac{v x_{1}+n X_{1} \cdot 1^{-X} \ldots}{(n-1)(v-1)}\right\} \\
& =\frac{1}{n}\left\{X_{1}+\hat{X}_{11}\right\} \quad,
\end{aligned}
$$

where $\hat{\mathrm{X}}_{11}$ is the formula for a misbing plot for treatment one in replicate one. This means that the estimated treatment mean for treatment one is obtained by cumming the observations for treatment one and then adding the computed value for the missing plot to this total.

Also, it is stated that the treatment and block sums of squares are overestimated if the missing plot yicld is inserted in the yields and the anelysis
completed as for equal numbers. At least three methods for correcting these sums of squares are available (i.e., the method of fitting constants, covariance, and using a missing plot analysis together with an analysis where the squares are weighted by the number of observations). Since we now have all the t_{i} and can compute the $Q_{i} .=X_{i}$.- meass of blocks in which $i^{t h}$ treatment occurs, it is possible to obtain the adjusted sum of squares directly as $\sum_{i=1} t_{i} Q_{i}=$ treatment (eliminating blocks) effects. The analysis of variance table then becomes:

Source of variation	$\underline{ }$	Sum of squares
Blocks (ignoring treatment)	$n-1$	$\frac{X^{2} \cdot j}{v_{j}}-X_{0}^{2}\left(\Sigma v_{j}=v n-1\right)$
Treatments (eliminating blocks)	v-1	$\Sigma t_{i} Q_{i}$.
Residual	$(n-1)(v-1)-1$	by subtraction
Correction for mean	1	$x^{2} . /(n v-1)$
Total (uncorrected)	nv-1	${ }_{i=1 j}^{\sum_{i=1}^{r_{i}}} x_{i j}^{2}$

The Residual sum of squares obtained by subtraction above is identical to that obtaineu from the missing plot analysis or a covariance analysis.

The variance of a difference between two treatment means for treatments 2 to v is $2 \sigma_{\epsilon}^{2} / n$. The variance of a difference between treatment 1 and any other treatment, say 2 , is obtained as:

$$
\begin{aligned}
& E\left[t_{1}-t_{2}-E\left(t_{1}-t_{2}\right)\right]^{2} \\
&=E\left\{\frac{n v-n+1}{n(v-1)(n-1)} \quad \sum_{j=2}^{n} \epsilon_{i j}+\frac{1}{(n-1)(v-1)} \quad \sum_{i=2}^{\sum_{i} \epsilon_{i 1}}\right. \\
&\left.-\frac{1}{n(n-1)(v-1)}\left(\sum_{i=1} \sum_{j=1}^{n} \epsilon_{i j}-\epsilon_{11}\right)-\frac{1}{n} \sum_{j=1}^{n} \epsilon_{2 j}\right\}^{2} \\
&=\sigma_{\epsilon}^{2}\left\{\frac{2}{n}+\frac{v}{n(n-1)(v-1)}\right\}
\end{aligned}
$$

as given by Yates [1933].

The variance of the difference $t_{1}-t_{2}$ is

$$
\begin{aligned}
v\left(t_{1}-t_{2}\right) & =\sigma_{\epsilon}^{2}\left\{\frac{v-1}{v(n-1)}+\frac{1}{n}-\frac{(n v-n-v)}{n v(n-1)(v-1)}-2\left(\frac{-1}{v(n-1)}\right)\right\} \\
& =\sigma_{\epsilon}^{2}\left\{\frac{2}{n}+\frac{v}{n(n-1)(v-1)}\right\} .
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
v\left(t_{2}-t_{3}\right) & =\sigma_{\epsilon}^{2} \cdot\left\{2\left(\frac{1}{n}-\frac{(n v-n-v)}{n v(n-1)(v-1)}\right)-2\left(\frac{n v-n-v}{n v(n-1)(v-1)}\right)\right\} \\
& =2 \sigma_{\epsilon}^{2} / n
\end{aligned}
$$

We may contrast the above matrix with the matrix obtained when all yields are present, i.e.,

The variance of a difference between any two t_{i} is:

$$
v\left(t_{i}-t_{i} \prime, i \neq i^{\prime}\right)=\sigma_{\epsilon}^{2}\left\{\frac{v-1}{n v}+\frac{v-1}{n v}-2\left(\frac{-1}{n v}\right)\right\}=2 \sigma_{\epsilon}^{2} / n .
$$

The variances and covariances of effects are given on page 129 (loc. cited). Numerical example -- Consider the following example taken fron Federer's "Experimental Design," p. 510:

	Replicate			Total
Treatiuent	I	II	III	
A	6	5	4	15
B	15	10	8	33
C	15	15	\hat{X}_{33}	$30+\hat{X}_{33}$
	36	30	$12+\hat{X}_{33}$	$78+\hat{X}_{33}$

From the ordinary missing plot formula, we find

$$
\hat{x}_{33}=\frac{3(30)+3(12)-78}{(3-1)(3-1)}=12 .
$$

Substituting this value in the table of yields and completing the analysis of variance by the method of nissing plots results in the following:

Source of variation	di	Sumi of squares
Replicate	2	24
Treatment	2	126
Error or resilual	3	10
Total (corrected for mean)	7	160

Now, from the above formulae we find,

$$
\begin{aligned}
\hat{\mu} & =\frac{78(9-3-3)+3(30)+3(12)}{3(3)(3-1)(3-1)}=10 \\
t_{3} & =\frac{3(30)+12-78}{3(3-1)}=4 ; \\
\mathbf{r}_{3} & =\frac{30+3(12)-78}{3(3-1)}=-2 ; \\
\hat{\mu}_{+} t_{3} & =10+4 \\
& =\frac{1}{3}(30+12)=14 .
\end{aligned}
$$

The treatnent (eliminating block) sum of squares is computed as:

$$
\begin{aligned}
\sum_{i=1}^{3} t_{i} Q_{i} & =\frac{1}{3}(15-30)(15-(12+10-6)) \\
& +\frac{1}{3}(33-3(10))(33-(12+10+6))+4(30-12-10) \\
& =65+5+32=102
\end{aligned}
$$

which agrees with the adjusted sum of squares for treatments in Tables XVI-18 and XVI-21 in "Experimental Design."

The variance of a difference for various pairs of means is:

Actual variance

$$
\begin{aligned}
& v\left(\bar{x}_{A}-\bar{x}_{B}\right)=\frac{2}{3} \sigma_{\epsilon}^{2} \\
& v\left(\bar{x}_{A}-\bar{x}_{C}\right)=\sigma_{\epsilon}^{2}\left(\frac{2}{3}+\frac{3}{3(4)}\right) \\
& v\left(\bar{x}_{B}-\bar{x}_{C}\right)=\sigma_{\epsilon}^{2}\left(\frac{2}{3}+\frac{3}{12}\right)
\end{aligned}
$$

Estimated variance

$$
\mathrm{s} \frac{2}{x_{A}}-\bar{x}_{B}=\frac{2}{3}\left(\frac{10}{3}\right)=\frac{20}{9}
$$

$$
s_{x_{A}}^{\frac{2}{x}}-\bar{x}_{C}=\frac{10}{3}\left(\frac{2}{3}+\frac{3}{12}\right)=\frac{110}{36}=\frac{55}{18}
$$

$$
s \frac{2}{x_{B}}-\bar{x}_{C}=\frac{10}{3}\left(\frac{2}{3}+\frac{3}{12}\right)=\frac{55}{18}
$$

Two Missing Values for One Treatment
As a second illustration, consider the case where treatment one is missing in replicates one and two. The following normal equations for the effects (page 128, loc. cit.), after applying the equations $\Sigma r_{1}=\Sigma t_{1}=0$, are obtained:

$$
\begin{aligned}
(n v-2) \hat{\mu}-2 t_{1}-r_{1}-r_{2} & =X_{\ldots} . \\
(n-2)\left(\hat{\mu}+t_{1}\right)-r_{1}-r_{2} & =X_{1} . \\
n\left(\hat{\mu}+t_{i}\right) & =X_{i} . \quad i=2,3, \cdots, v \\
(v-1)\left(\hat{\mu}+r_{1}\right)-t_{1} & =X_{\cdot 1} \\
(v-1)\left(\hat{\mu}+r_{1}\right)-t_{1} & =X_{\cdot 2} \\
v\left(\hat{\mu}+r_{j}\right) & =X_{\cdot j} \quad i=3,4, \cdots, n
\end{aligned}
$$

Solving for r_{1} and r_{2} in terms of $t_{1}, \hat{\mu}$, and the observations and then substituting the solutions for r_{1} and r_{2} in the equation for t_{1} results in the following:

$$
\begin{aligned}
t_{1}\left(\frac{n v-n-2 v}{v-1}\right) & =x_{1} \cdot+\bar{x}_{\cdot 1}+\bar{x}_{\cdot 2}-n \hat{\mu} \\
n t_{i} & =x_{i}-n \hat{\mu}, \quad i=2,3, \cdots, v
\end{aligned}
$$

Now, divide through by the coefficient of t_{i} and the sum. Therefore, $\sum_{i=1}^{v} t_{i}=0$

$$
=\frac{(v-1)\left(x_{1}+\bar{x}_{\cdot 1}+\bar{x}_{\cdot 2}-n \hat{\mu}\right)}{n v-n-2 v}+\frac{1}{n}{ }_{i=2}^{v} x_{i} \cdot-(v-1) \hat{\mu}
$$

Solving,

$$
\hat{\mu}=\frac{x_{\ldots}(v n-n-2 v)+2 v x_{1}+n\left(x_{\cdot 1}+X_{\cdot 2}\right)}{n v(v-1)(n-2)}
$$

and we now have the solution for the individual t_{i}. Also, the equation in t_{1} now may be written as:

$$
t_{1}=\frac{v X_{1} \cdot+X \cdot 1^{+X} \cdot 2^{-X} \cdot .}{v(n-2)}
$$

and

$$
\begin{aligned}
\hat{\mu}+t_{1}= & \frac{x_{\ldots}(n v-n-2 v)+2 v X_{1}+n\left(X_{\cdot 1}+X_{\cdot 2}\right)}{n v(v-1)(n-2)} \\
& +\frac{v X_{1 \cdot}+X_{\cdot 1}+X_{\cdot 2}-X_{1}}{v(n-2)}=\frac{1}{n}\left\{x_{1}+\hat{X}_{11}+\hat{X}_{12}\right\}
\end{aligned}
$$

where \hat{X}_{11} and \hat{X}_{12} are obtained from the formulae on page 134 (oc. cit.). The solutions for the t_{i} in matrix form are:

where $Q_{1} \cdot=X_{1} \cdot-\sum_{j=3}^{n} \bar{x}_{\cdot j}$ and $Q_{i}=X_{i} \cdot \sum_{j=1}^{n} \bar{x}_{j}$ for $i=2,3, \cdots, v$.

The treatment (elininating block eifects) sum of squares is $\sum_{i=1}^{v} t_{i} Q_{i}$. ; the various variances are:

$$
\begin{aligned}
& v\left(t_{1}-t_{i}, 1=2,3, \cdots, v\right)=\sigma_{\epsilon}^{2}\left\{\frac{v-1}{v(n-2)}+\frac{1}{n}-\frac{n v-n-2 v}{n v(n-2)(v-1)}\right. \\
& \left.-2\left(-\frac{1}{v(n-2)}\right)\right\}=\sigma_{\epsilon}^{2}\left\{\frac{2}{n}+\frac{2 v}{n(n-2)(v-1)}\right\} ; \\
& v\left(t_{2}-t_{3}\right)=\sigma_{\epsilon}^{2}\left\{\frac{2}{n}-\frac{2(n v-n-2 v)}{n v(n-2)(v-1)}\right. \\
& \left.-2\left(-\frac{(n v-n-2 v)}{n v(n-2)(v-1)}\right)\right\}=2 \sigma_{\epsilon}^{2} / n .
\end{aligned}
$$

Numerical example -- Consider the previous example with treatment C missing in replicate I. The following yields remin:

	Replicate			
Treatment	I	II	III	Total
A	6	5	4	$X_{1 .}=15$
B	15	10	8	$X_{2 .}=33$
C	\hat{X}_{31}	15	\hat{X}_{33}	$X_{30}+\hat{X}_{31}+\hat{X}_{33}=15+\hat{X}_{31}+\hat{X}_{33}$
1	$21+\hat{X}_{31}$	30	$12+\hat{X}_{33}$	

Fron: missing plot formulae given on page 134 of Federer [1955] we find

$$
\begin{aligned}
\hat{X}_{31} & =\frac{v X_{3}+(n-1) x \cdot 1^{+X} \cdot 3^{-X} \cdot \cdot}{(n-2)(v-1)} \\
& =\frac{3(15)+(3-1)(21)+12-63}{(3-2)(3-1)=2}=18
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{X}_{33} & =\frac{v X_{3 \cdot}+X \cdot 1+(n-1) X \cdot 3^{-X} \cdot}{(n-2)(v-1)} \\
& =\frac{3(15)+21+(3-1)(12)-63}{(3-2)(3-1)=2}=13.5
\end{aligned}
$$

Substituting the missing plot values in the table of yields and completing the analysis of variance results in:

Source of variation	$\frac{d f}{}$	Sum of squares
Blocks	2	31.50
Treatments	2	166.50
Error	$4-2=2$	7.00
Correction for mean	1	992.25
Total uncorrected	7	1197.25

The "anova" using the "method of fitting constants" is:

where

$$
\begin{array}{ll}
\hat{\mu}=\frac{0+6(15)+3(21+12)}{3(3)(3-1)(3-2)=18}=10.5 & \frac{\text { Variance }}{} \\
t_{1}=\frac{15-(-0.0)(3)}{3}=-5.5 & s_{A-B}^{2}=\frac{7}{2}\left\{\frac{1}{3}+\right. \\
t_{2}=11-10.5=0.5 & s_{A-C}^{2}=\frac{7}{2}\left\{\frac{2}{3}+\right. \\
t_{3}=\frac{3(15)+21+12-63}{3(3-2)}=5.0 & \\
Q_{10}^{2}=15-10.5-10-6=-11.5 & \\
Q_{2}=33-10.5-10-6=6.5 & \\
Q_{3}=15-10 & =5.0 \\
\varepsilon t_{1} Q_{i}=(-5.5)(-11.5)+(.5)(6.5)+(5)(5.0)=91.50
\end{array} .
$$

k Missing Values for one of the Treatments
Aileh and Nishart [2930] and Yates [1933] were the first to present discussions for one and several missing values, respectively; Yates [1933] presents an iterative procedure for two or more missing velues. Federer [1951] gave:missing plot formulae for k different varieties missing $n k$ different replicates and for k varieties missing in one replicate (or alternatively, k replicate yields missing for one variety). Some time later Thompson [1956] presented the same formulae with a numericai application.

For the case of $k(k<n)$ values missing for one of the treatments, say one, solutions for the t_{i} are given by:

Were $\epsilon_{1}=X_{1}-\sum_{j=k+1}^{n} \bar{x}_{\cdot j}, Q_{i} \cdot X_{i}-\sum_{j=1}^{n} \bar{x}_{\cdot j}$ for $i=2,3, \cdots, v$. The variances become:

$$
v\left(t_{1}-t_{i}, i=2, \cdots, v\right)=\sigma_{\epsilon}^{2}\left\{\frac{2}{n}+\frac{k v}{n(n-k)(v-1)}\right\}
$$

and

The normal equations for this situation are, say for treatments 1 and 2 missing in block l:

$$
\begin{array}{ll}
(n v-2) \hat{\mu}-t_{1}-t_{2}-2 r_{1} & =X_{\ldots} \\
(n-1)\left(\hat{\mu}+t_{1}\right)-r_{1} & =X_{1} . \\
(n-1)\left(\hat{\mu}+t_{2}\right)-r_{1} & =X_{2} . \\
n\left(\hat{\mu}+t_{i}\right) & =X_{i} . \quad \text { for } i=3, \cdots, v \\
(v-2)\left(\hat{\mu}+r_{1}\right)-t_{1}-t_{2} & =X_{\cdot 1} \\
v\left(\hat{\mu}+r_{j}\right) & =X_{\cdot j} \text { for } j=2, \cdots, r
\end{array}
$$

Prom the above

$$
\hat{\mu}+r_{1}=\left(x_{\cdot 1}+t_{1}+t_{2}\right) /(v-2)=\bar{x}_{\cdot 1}+\frac{t_{1}+t_{2}}{v-2}
$$

Therefore, substituting the value for r_{1} in the t_{1} and t_{2} equations we obtain:

$$
\begin{aligned}
& (n v-v-2 n+1) t_{1}-t_{2}=(v-2) x_{1},+X \cdot 1-n(v-2) \hat{\mu} \\
& -t_{1}+(n v-v-2 n+1) t_{2}=(v-2) x_{2}+X \cdot 1-n(v-2) \hat{\mu}
\end{aligned}
$$

Solving

$$
\begin{aligned}
& t_{1}=\frac{n v-v-2 n+1}{(n v-v-2 n+1)^{2}-1}\left\{x_{1} \cdot(v-2)+\frac{x_{2} \cdot(v-2)}{n v-v-2 n+1}\right. \\
&\left.+\frac{(n-1)(v-2)}{(n v-v-2 n+1)}\left(x_{\cdot 1}-n(v-2) \hat{\mu}\right)\right\} \\
& t_{2}= \frac{n v-v-2 n+1}{(n v-v-2 n+1)^{2}-1}\left\{x_{2 \cdot}(v-2)+\frac{x_{1} \cdot(v-2)}{n v-v-2 n+1}\right. \\
&\left.+\frac{(n-1)(v-2)}{(n v-v-2 n+1)}\left(x_{\cdot 1}-n(v-2) \hat{\mu}\right)\right\}
\end{aligned}
$$

Also,

$$
t_{i}=\bar{x}_{i},-\hat{\mu} \quad \text { for } i=3, \cdots, v
$$

Now $\Sigma t_{i}=0$

$$
=\frac{X_{\ldots}}{n}+\frac{v\left(X_{1 \cdot}+X_{2 \cdot}\right)}{n(n v-v-2 n)}+\frac{2 X_{\cdot 1}}{n v-v-2 n}-\frac{\hat{\mu} v(v-2)(n-1)}{n v-v-2 n}
$$

Solving,

$$
\hat{\mu}=\frac{x_{\ldots}(n v-v-2 n)+v\left(x_{1}+X_{2 \cdot}\right)+2 n X_{\cdot 1}}{n v(v-2)(n-1)=n v(A+1)}
$$

Therefore, for $A=n v-v-2 n+1$ and $A+1=(n-1)(v-2)$

$$
\begin{aligned}
& t_{1}=\left\{\mathrm{vX}_{1} \cdot+\mathrm{X}_{\cdot 1}-\mathrm{X} \cdot .\right\} / v(\mathrm{n}-1) \\
& t_{2}=\left\{v X_{2}+X_{\cdot 1}-X \ldots\right\} / v(n-1) \\
& \hat{\mu}+t_{1}=X_{1} \cdot\left\{\frac{v-2}{A+1}+\frac{v}{n v(A+1)}\right\}+X_{2} \cdot \frac{v}{n v(\hat{A}+1)} \\
& +X .1\left\{\frac{v-2}{v(A+1)}+\frac{2 n}{n v(A+1)}\right\}+X \ldots\left(\frac{-v+2}{v(A+1)}+\frac{A-1}{n v(A+1)}\right. \\
& =\frac{1}{n}\left\{x_{1}+\frac{(v-1) X_{1}+X_{2}+n X_{1}-X_{\ldots \cdot}}{A+1}\right\} \\
& =\frac{1}{n}\left\{X_{1} \cdot+\hat{X}_{11}\right\} \text {. }
\end{aligned}
$$

Likewise,

$$
\hat{\mu}+t_{2}=\frac{1}{n}\left\{x_{2 \cdot}+\hat{X}_{21}\right\}
$$

where the formulae for the two missing plot values, $\hat{\mathrm{X}}_{11}$ and $\hat{\mathrm{X}}_{21}$, are those given by Federer [1955] in formulae (V-53) and (V-54).

The solutions for the t_{i} in matrix form are:

where $\quad Q_{1} \cdot=x_{1}-\sum_{j=2}^{n} \bar{x}_{\cdot j}$

$$
Q_{2 \cdot}=x_{2 \cdot}-\sum_{j=2}^{n} \bar{x}_{\cdot j}
$$

$$
Q_{i}=X_{i} \cdot-\sum_{j=1}^{n} \bar{x}_{\cdot j} \text { for } i=3,4, \cdots, v
$$

The variance of a difference between the two means baving a missing plot, say 1 and 2, is

$$
v\left(\hat{\mu}+t_{1}-\hat{\mu}-t_{2}=t_{1}-t_{2}\right)=2 \sigma_{\epsilon}^{2} /(n-1)
$$

The variance of a difference between two treatments with no missing plots, say 3 and 4, is

$$
V\left(t_{3}-t_{4}\right)=2 \sigma_{\epsilon}^{2} / n \quad .
$$

The variance of a difference between two treatment means, one with a missing plot and the other with no missing plots, say 1 and 3, is:

$$
\begin{aligned}
& v\left(\hat{\mu}+t_{1}-\hat{\mu}-t_{3}=t_{1}-t_{3}\right) \\
&=\sigma_{\epsilon}^{2}\left\{\frac{v-1}{v(n-1)}+\frac{1}{n}-\frac{n v-v-2 n}{n v(n-1)(v-2)}-\frac{2(-1)}{v(n-1)}\right\} \\
&=\sigma_{\epsilon}^{2}\left\{\frac{2}{n}+\frac{v-1}{n(n-1)(v-2)}\right\}
\end{aligned}
$$

\underline{k} Treatments Missing in One Replicate

Suppose that treatments $1,2, \cdots, k(k<v)$ are missing in replicate one and that the remaining $v-k$ treatments are present in all replicates. After substitution for the $\mu+r_{j}$, the solutions for the t_{i} are obtained by subtracting $1 /(n-1)(v-k)$ times the sum of the first k normal equations from each of the last $v a k$ equations, and then, dividing through by n to obtain
where $a=n(n-1)(v-k), Q_{i \cdot}=X_{i}-\sum_{j=2}^{n} \bar{X}_{\cdot j}$ for $i=1,2, \cdots, k$, and $Q_{i}=X_{i}-\sum_{j=1}^{n} \bar{X}_{\cdot j}$ for $1=k+1, k+2, \cdots, v$.

The above matrix may be rewritten as (remember that $\Sigma Q_{4_{0}}=0$):

where $b=(k n+v-n v) / n v(n-1)(v-k)$.
The various variances of differences between treatments are given below. The variance of a difference between two treatments each of which kas a missing value in the same block, say t_{1} and t_{2}, is:

$$
V\left(t_{1}-t_{2}\right)=2 \sigma_{\epsilon}^{2} /(n-1)
$$

The variance of a difference in means for two treatments which have no missing plots, say t_{k+1} and t_{k+2}, is:

$$
V\left(t_{k+1}-t_{k+2}\right)=2 \sigma_{\epsilon}^{2} / n
$$

The variance of a difference between two treatment means for a treatment with a missing plot and for one with no missing plots, say t_{1} and t_{k+1}, is:

$$
v\left(t_{1}-t_{k+1}\right)=\sigma_{\epsilon}^{2}\left\{\frac{2}{n}+\frac{v-k+1}{n(n-1)(v-k)}\right\}
$$

Two Missing Values for Different Treatments in Different Blocks
Assume that treatment one is missing in replicate one and that treatment two is missing in replicate two. Then, the normal equations become (after using the restrictions that $\left.\sum_{j=1}^{n} r_{j}=0=\sum_{i=1}^{v} t_{i}\right)$:

$$
\begin{aligned}
&(n v-2) \hat{\mu}-t_{1}-t_{2}-r_{1}-r_{2}=X_{\cdots} \\
&(n-1)\left(\hat{\mu}+t_{1}\right)-r_{1}=X_{1} \\
&(n-1)\left(\hat{\mu}+t_{2}\right)-r_{2}=X_{2} \\
& n\left(\hat{\mu}+t_{i}\right) \\
&(v-1)\left(\hat{\mu}+r_{1}\right)-t_{1}=X_{i} \quad \text { for } i=3,4, \cdots, v \\
&(v-1)\left(\hat{\mu}+r_{2}\right)-t_{2}=X_{\cdot 1} \\
& v\left(\hat{\mu}+r_{j}\right)=X_{\cdot j} \quad \text { for } j=3,4, \cdots, n
\end{aligned}
$$

After solving for r_{1} and r_{2} in terms of t_{2}, t_{2} and the observations the following equations in the t_{i} result:

$$
\begin{aligned}
& t_{1}=\frac{v-1}{n v-n-v}\left\{x_{1}+\frac{x_{\bullet 1}}{v-1}-n \hat{\mu}\right\} \\
& t_{2}=\frac{v-1}{n v-n-v}\left\{x_{2 \cdot}+\frac{x_{\cdot 2}}{v-1}-n \hat{\mu}\right\} \\
& t_{1}=\frac{x_{1}}{n}-\hat{\mu}, \quad \text { for } i=3,4, \cdots, v
\end{aligned}
$$

Since the $\sum_{i=1}^{v} t_{i}=0$, we sum the above equations and obtain

$$
\hat{\mu}=\frac{v\left(X_{1} \cdot+X_{2 \cdot}\right)+n\left(X_{\cdot 1}+X_{\cdot 2}\right)+X_{\bullet \cdot}(n v-n-v)}{n v(n v-n-v+2)}
$$

Also,

$$
\begin{aligned}
t_{1}= & \frac{v-1}{v(n v-v-n)(n v-n-v+2)}\left\{v(n-1)(v-1) x_{1} .\right. \\
& \left.\left.+X_{\cdot 1} \frac{v(n v-n-v+2)-n(v-1)}{(v-1)}\right)-v X_{2} \cdot-n x_{\cdot 2}-X_{\ldots}(n v-n-v)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{\mu}+t_{1} & =\frac{v-1}{n v-n-v}\left\{x_{1}+\frac{X_{\cdot 1}}{v-1}-n \hat{\mu}+\frac{n v-n-v}{v-1} \hat{\mu}\right\} \\
& =\frac{x_{1}}{n}+\frac{v X_{1}+n X_{\cdot 1}-n v \hat{\mu}}{n(n v-n-v)} \\
& =\frac{1}{n}\left\{x_{1}+\hat{X}_{11}\right\}
\end{aligned}
$$

where \hat{X}_{11} is obtained from formula ($V-55$) on page 134 (Ioc. cited). Likewise,

$$
\begin{aligned}
t_{2}= & \frac{v-1}{v(n v-v-n)(n v-v-n+2)}\left\{v(n-1)(v-1) x_{2}\right. \\
& +X \cdot 2\left(\frac{v(n v-n-v+2)-n(v-1)}{v-1}\right)-v X_{1}-n X \cdot 1 \\
& \left.-X^{\ldots}(n v-n-v)\right\}
\end{aligned}
$$

and

$$
\hat{\mu}+t_{2}=\frac{1}{n}\left\{x_{20}+\hat{X}_{22}\right\}
$$

where $\hat{\mathrm{X}}_{22}$ is computed from formula (V-56) on page 134 of Federer [1955].
In matrix form, the solutiors for the t_{i} are:
where

$$
\begin{aligned}
& a=(n-1)(v-1)^{2} /\left[(n-1)^{2}(v-1)^{2}-1\right] \\
& b=-1 / n(n v-n-v+2), \text { and } \\
& c=-(v-1) /\left[(n-1)^{2}(v-1)^{2}-1\right]
\end{aligned}
$$

The various variances are:

$$
\begin{aligned}
& V\left(t_{1}-t_{2}\right)=2 \sigma_{\epsilon}^{2}(a-c), \\
& V\left(t_{1}-t_{3}\right)=\sigma_{\epsilon}^{2}\left(a+n^{-1}-c\right), \quad \text { and } \\
& V\left(t_{3}-t_{4}\right)=2 \sigma_{\epsilon}^{2} / n,
\end{aligned}
$$

\underline{k} Treatments With One Missing Plot in Each of k Replicates

Suppose that treatments $1,2, \cdots \cdots, k$ ($k \leq$ the smaller of n and v) each have one yield missing in such a way that no two treatments have plots missing in the same replicate. The remaining vak treatments have no missing yields in the n replicates. Then, after substituting for $\mu+r_{j}$ values in the normal equations for the treatments, subtract the sum of the first k equations divided by $(n-1)(v-l)+(k-1)$
from each of the last equations, and subtract the sum of the other $k-1$ equations divided by $(n-1)(v-1)-(k-2)$ from each of the first k equations. After divioion by the coefficient for each of the t_{i} the following solutions are obtained:

where

$$
\begin{aligned}
& A=\frac{(v-1)[(n-1)(v-1)+k-2]}{(n-1)(v-1)[(n-1)(v-1)+k-2]-k+1} \\
& B=-\frac{1}{n[(n-1)(v-1)+k-1]} \\
& C=-\frac{(v-1)}{(n-1)(v-1)[(n-1)(v-1)+k-2]-k+1}
\end{aligned}
$$

The variance of a difference between two treatments with missing plots, say t_{1} and t_{2}, is:

$$
v\left(t_{1}-t_{2}\right)=2 \sigma_{\epsilon}^{2}(A-C)
$$

The variance of a difference between two treatments with no missing plots, say t_{k+1} and t_{k+2}, is :

$$
V\left(t_{k+1}-t_{k+2}\right)=2 \sigma_{\epsilon}^{2} / n
$$

The variance of a difference between a treatment with a missing plot and one with no missing plots, say t_{1} and t_{k+1}, is:

$$
V\left(t_{1}-t_{k+1}\right)=\sigma_{\epsilon}^{2}\left\{\frac{1}{n}+A-B\right\}
$$

Literature Cited

Allan, F. E. and Wishart, J., 1930, A method of estimating yield of a missing plot in field experimental work. Jour.Agric. Sci. 20:399m406.

Federer, W. T., 1951, Evaluation of variance components from a group of experiments with multiple clessifications. Iowa Agric. Exp. Sta. Res. Bul. 380:241-310.

Federer, W. T., 1955, Bxperimental design - theory and appiscation. Macmillan, N. Y.

Thompson, H. R., 1956, Extensions to missing plot techniques. Biometrics 12:241244.

Yates, F., 1933, The analysis of replicated expernents when field results are incomplete. Emp. Jour. Exp. Agric. 1:129-142.

