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ABSTRACT 

The usual confidence set, based on an observation, X, from a multi-

variate normal distribution with mean 8 and identity covariance 

matrix is CX(8) = t9 : (9 -X)' (9 -X) s; c2 } • We consider confidence 

sets of the form C0(9) = [e: [9 -5(X)]'[e -5(X)]s;c2 }, where 5(X) 

is either the James-Stein estimator or its positive part version. 

The exact formulas for the coverage probability of c5(e) are 

derived and evaluated numerically. The numerical ev~dence sug­

gests that, for all lei, the coverage probability of C0(9) exceeds 

that of cx(9) . 

KEY WORDS: James-Stein estimator; Multivariate normal distribu-

tion; Confidence sets. 
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1. INTRODUCTION 

The classic confidence set for the mean, 9, of a p-variate normal distri-

bution with identity covariance matrix, based on the observation X, is Given 

by 

c ( e ) =-= [ e : ( 8 - x) ' ( 8 - x) s c2 } 
X 

(1.1) 

If c2 is chosen to satisf'y P(X2 :s; c2 ) = 1- a, where X2 denotes a central p p 

chi-square random variable with p degrees of freedom, then the sphere CX(8) 

has probability 1 -a of covering the true value of e . CX(8) has the optimal 

property that, among the class of procedures with coverage probability at 

least 1- a, CX(e) minimizes the maximum expected volume. 

Stein (1962) wondered if CX(8) was unique in having this property. He 

conjectured that, for p ~ 3, confidence sets of the form 

(1.2) 

where 5(X) = [1- (p- 2)/X'X]X, should have coverage :probability which ex-

ceeds 1- a for all values of 9 . Joshi (1969) proved that for p = 1 or 2, 

CX(e) is admissible, which is to say, there does not exist a procedure with 

coverage probability at least 1 - a and smaller volume than CX( 8 ) . For 

p ~ 3, Brown (1966) and Joshi (1967) independently established the existence 

of a dominating procedure. They showed that if 5(X) = [ 1- [a/(b + X'X) ]}X, 

then c5 (e) dominates CX(e) for sufficiently small a and sufficiently large 

b . This result was not established for any definite values of a and b, 

but Olshen (1977), for selected values of a and b, calculated the coverage 

probability of these sets by simulation. The numerical evidence showed 

that these confidence sets had higher coverage probability than CX(8) for 

small 1e I . 
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More recent work on this problem has been done by Faith (1976), Morris 

(1977), and Berger (198o). Faith derives Bayes confidence sets and shows 

that, for p = 3 or 5, these sets have smaller volume and greater coverage 

probability than CX(e) for all je I excepting a small interval of middle 

values. His numerical evidence suggests that, even for the middle values, 

CX(e) can be dominated. Morris starts with a generalized Bayes estimator 

of e and, using the posterior variances, constructs confidence intervals 

for each coordinate of e • His simulations of coverage probabilities sug-

gest that these intervals are superior to the usual ones. Berger proceeds 

by first developing a robust generalized Bayes estimator, 58 (X), of e, then 

considering a confidence set of the form 

where ~(X) is the posterior covariance matrix. He shows that this set can 

have smaller volume than CX(e) for all jej, and greater coverage probability 

for sufficiently large lei . 

We proceed here in a relatively simple fashion, and consider confidence 

sets of the form (1.2) where o(X) is either 

o(X) = [1- (a/X'X) ]X or 

where '+' denotes the positive part. We derive formulas for the exact 

coverage probability of these confidence sets. Since the volumes of these 

sets are the same as that of CX(e), only coverage probability need be con­

sidered. As a result of these formulas it is immediately seen that if 

le I2 :S c2 , the confidence set centered at o+(X) is superior to CX(e) • The 

integrals are difficult to deal with analytically, but can be evaluated 

numerically. Tables are constructed which give coverage probabilities for 
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selected values of p and je I . In all cases, the numerical evidence SUf,­

gests that these confidence sets are superior to CX(a) • 

2. EVALUATION OF COVERAGE PROBABILITIES 

In evaluating the coverage probability of the confidence set 

c5 (e) = [a : [a - 5(X)] I [e - 5(X)] s;; c2 } ' 

it is easier to work with the a section 

Since X E c9 (5) if and only if 9 E c5 (e), it follows that 

(2.1) 

(2.2) 

To evaluate P9 [c9 (5)] we proceed in a manner similar to Faith (1976). First 

consider the case I e / > 0 • For fixed a and r, the intersection of Ca (5) and 

the shell s9 = Lx: jx- el 2 =r2J, is the set ,r 

I 6 (5) = (X:XEC9 (5),XESe } ,r ,r 

Given e and r, the distribution of X is uniform on the shell s9 . Hence, ,r 

the conditional coverage probability, given e and r, is the ratio of the 

(2.4) 

surface area of I9 (5) to that of s9 • If we denote this ratio by A (5), ,r ,r -ll,r 

it then follows that 
CIO 

(2.5) 

where G(·) is the cdf of a central X2 random variable with p degrees of 

freedom. 

We will work with the estimator 5(X) = [1- (a/X'X)]X. The equivalent 

formulas for the positive part version are obtained in a similar manner. 

For fixed e and r we can write 
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x = (1+-2-)e +y , 
leI 

where y'e = o . Then for X E se ' we have ,r 

le -5(X)I 2 = ~- 2a+2a(lel 2+zlel)+a2 d~f g(z,r) 

I e l2 +2z I e I +~ 

Notice that, for~< lel 2 +a, g(z,r)~z and, for~> /el 2 +a, g(z,r)fz. 

Let z0 =z0 (r) satisfy g(z0,r) =c2 • 

location of z0 with respect to r . 

The form of 19 (5) depends on the ,r 

A little algebra will verify that 

g(r, r) = [r(r+l9 I )-aJ2 

(r+le I )2 

It then follows that g(r,r) = c2 if and only if r is equal to one of 

the following four roots: 

~ 

r 1 = [-r + (-r2 +4a)2 ]/2, 
- + 

~ 

r 3 = [-r + (-r2 +4a)2]/2, 
+ -

(2.6) 

where -r = I e I + c and -r = I e I - c . The ordering of the roots depends on the 
+ 

relationship among I e 12 , c2 , and a2 /c2 • We ignore the case where I e 12 > c2 

and lel 2 <a2 /c2 since in most applications it will be vacuous. We obtain 

the following representation for 19 (5): 
,r 

19 (5) = ,r 

otherwise 
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ii) If I e 12 :s; c2' I e 12 > a2 I c2' 

s e,r 
r2 :s; r2 

4 or rf< r2< r? 

AR :ri< r2 :s; rf 
I 9 (a) (2.7) ,r 

~ ~<r2:s:~ 

¢ otherwise 

iii) If I e 12 :s; c2' I e 12 :s; a2 I c2, 

rf<r2:s:r5 

Ie,r(5) 
~<r2:s:rf 

= 
~<r2:s;~ 

otherwise 
' 

The last step in computing the coverage probability is finding the 

ratio of the surface area of~ and ALto se,r • Notice that AR and~ are, 

respectively, the surface of the shell s9 to the right and left of a plane ,r 

perpendicular to the z-axis through z0 • By elementary calculus we find 

that the surface ratio of AR to s9, r' which we denote by h( z0, r2), is 

given by r 

r(pl2) J (r2-x2)(p-3)12dx 
zo 

This can also be expressed in terms of the incomplete Beta function ratio, 

or if pis odd, the binomial formula can be used to express h(z0,r2 ) as a 

finite sum. The surface area ratio of ~ to s9 , r is given by 1 - h( z0, r2) . 

Let G(·) be the cdf of a central chi-s~uare random variable with p 

degrees of freedom. From (2.7) we obtain the following formulas for the 

coverage probabilities. 
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~ 
= P(X2 s: rf) +J h(z0,x)dG(x) 

p r2 
4 

P8 [c5(e)J = P(x~s::rf)+P(:rfs:x~s:~) 

rf s 
+ r h(z0,x)dG(x) + s [1- h(z0,x)]dG(x) 

·:rt ~ 

.rf 
= P(:rf s; X2 s; S) +J h(z0, x)dG(x) 

p r2 
4 

xi 
+ J [1- h( z0, x) ]dG(x) 

~ 

If jej = 0, the coverage probability is given by 

where w0 and w1 are the roots of (w- a)2 = c2 w • It is straightforward to 

verify that 0 s; wos; c2 s; wl • 

As /e I ..... co, both ~ and ri converge to c2 , while rf and~ approach infin-

ity. Thus, from the above formulas it follows that 

It is also true, however, that ri s; c2 , so that the above fon:nulas do not 



-10-

explicitly show that the set c5(e) has higher coverage probability than 

CX(e) . For a= p- 2, these integrals have been evaluated numerically for 

selected values of lei and p. In all cases examined the coverage proba-

bility of c5 (e) is at least as high as that of CX(e) and, in some cases, 

the difference is quite substantial. These coverage probabilities are 

given in Table 1. 

I Insert Table 1 here 

The positive part James-Stein estimator is defined by 

(2.8) 

The advantage over the ordinary James-Stein estimator is that the singular­

+ i ty at X 'X= 0 has been removed, and the coordinates of 5 (X) have the same 

sign as those of X • While 5+(X) is not an admissible estimator of e, it is 

known to be difficult to improve upon. 

The derivation of the coverage probability of C (e) follows quickly 
~/ 

from that of c5(e) • If we define g+(z,r) = je- 5+(x)j 2 , it follows from 

the monotonicity of g(z,r) and the fact that g(z,r) = je j2 at jxj 2 =a, that 

+ __ {min [ I e 12 , g ( z, r) ] 
g ( z, r) 

max[jej 2 ,g(z,r)] 

r2s:jej 2 +a 

r2> IBI2+a 

The intersection Ie (5+), of the sphere C (e) and the shellS is given 
,r 5+ e,r 

by 

r2s:le12+a 

r2> le 12 +a 

r2s:lel 2 +a 

r2>1812+a 
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where I (5) is defined in (2.7). Recall that G(·) is the cdf of a central e,r 
chi-square random variable with p degrees of freedom. Using (2.7), the 

coverage probability of C (e) is 
5+ 

ri 

[1- h(z0,x)]dG(x) 

= P(X~ s; ~) +J ~ h( z0, x)dG(x) 
4 

If I 8 I = 0, the coverage probability is given by 

where w1 is the largest root of (w- a) 2 = c2 w . 

' 

These formulas are slightly simpler than those for the ordinary James-

stein estimator, and one can easily see that C (e) dominates both C~(e) 
5+ u 

If je j2 > c2 then, surprisingly, c5(e) dominates 

C (e); however, the difference in coverage probabilities is negligible. 
5+ 

c5 (e) dominates because if e has large positive coordinates and X has small, 

+ negative coordinates (X'X<< a), then 5(X) will be close to 8 but 5 (X) will 

be zero. The fact that this type of occurrence happens with small probabil-

ity is reflected in the negligible gain in the coverage probability. 

For a= p- 2, P [ C (e)] was computed for selected values of j e I and p • 
e 5+ 

In all cases examined the coverage probability exceeded that of CX(e) . 

The results are presented in Table 2. 

I Insert Table 2 here r 
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4. CONCLUSIONS 

The calculations of coverage probabilities for confidence sets centered 

at James-Stein type estimators provide strong evidence that there is much to 

be gained over the usual confidence set. The implementation and interpreta­

tion of these confidence sets is straightforward, and even lends itself to 

coordinatewise interpretations. 
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Table l. Coverage Probabilities for the Set co (e) = [e : [9 - o(X)] I [9 - o(X)] ::;; c- 2 }' 

where o(X) = [l- (p- 2)/X'X]X and c2 Satisfies P(X2 ::;; c2 ) = l-ex 

a= .10 

le~ _ 3_ _5 _ _]_ _2_ 11 13 _l2_ ~ 

0 .9455 .9752 .9869 .9925 .9955 .9972 .9982 .9998 

2 .9356 .9698 .9846 .9917 .9952 .9911 -9982 .9998 
4 .9062 .9343 .9622 .9808 .9903 .9948 .9910 .9998 

6 .9026 .9162 .9337 .9510 .9661 .9780 .9866 .9993 
8 .9014 .9093 .9202 .9323 .9443 .9556 .9657 .9943 

10 .9009 .9060 .9133 .9218 .9307 .9397 .9484 .9819 

15 .9004 .9027 .9061 .9102 .9148 .9196 .9247 .9502 

20 .9002 .9015 .9035 .9058 .9085 .9114 .9145 .9317 

25 .9001 .9010 .9022 .9038 .9055 .9075 .9095 .9214 

50 .9000 .9002 .9006 .9010 .9014 .9019 .9024 .9058 

100 .9000 .9001 .9001 .9003 .9003 .9005 .9006 .9015 

500 .9000 .9000 .9000 .9000 .9000 .9000 .9000 .9001 

1000 .9000 .9000 .9000 .9000 .9000 .9000 .9000 .9001 

a =. 05 

[e[ \.,_: 
_3_ _5_ _.1_ _9_ 11 _]]_ _l2_ ~ 

.9703 .9849 .9916 -9950 .9910 .9981 .9988 .9999 
2 .9605 .9846 .9918 .9953 .9972 .9983 .9990 .9999 
4 .9540 .9706 .9842 .9925 .9960 .9978 .9987 .9999 
6 .9516 .9600 .9701 -9794 .9868 .9921 .9955 .9998 
8 .9509 .9558 .9623 .9692 .9757 .9818 .9865 .9984 

10 .9505 .9538 -9582 .9631 .9682 .9131 .9778 .9938 

15 -9502 .9517 .9538 .9562 .9589 .9618 .9647 .9785 
20 .9501 .9510 .9521 .9536 .9552 .9569 .9588 .9685 

25 .9500 .9506 .9574 .9523 .9534 .9545 .9558 .9627 

50 .9500 .9501 .9503 .9506 .9509 .9512 .9515 .9535 
100 .9500 .9500 .9501 .9501 .9502 .9503 .9504 .9509 

500 .9500 .9500 .9500 .9500 .9500 .9500 .9500 .9501 

1000 .9500 .9500 .9500 .9500 .9500 .9500 .9500 -9500 
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Table 2. Coverage Probabilities for the Set C +(e) = ( 9 : [9 - o +(X)]' [9 - o +(X) J:::; c2}, e 0 
where c/(x) = [1- (p- 2)/X'X]+X and c2 Satisfies P(x2 ::;; c2 ) = 1- Ci 

a = .10 

~p _3_ _5_ _7_ _9_ ll _n__ _1.2.__ _12_ 
lei .9565 .9879 -9959 .9985 -9994 .9998 -9999 .9999 0 

2 .9458 .9809 .9926 .9972 -9989 .9995 -9998 .9999 
4 .9062 .9343 .9622 .9808 -9949 -9977 -9989 .9999 
6 .9026 .9162 .9337 .9510 .9661 .9780 .9866 .9993 
8 .9014 .9093 .9202 .9323 .9443 .9556 .9567 .9943 

10 .9009 .9060 .9133 .9218 -9307 .9397 .9484 .9819 

15 .9004 .9027 .9061 .9102 .9147 .9196 .9247 .9502 

20 .9002 .9015 .9035 .9059 -9085 .9114 .9145 .9317 

25 .9001 .9010 .9022 .9038 .9055 .9075 .9095 .9214 

50 .9000 .9002 .9006 .9010 .9014 .9019 .9024 .9058 

100 .9000 .9001 .9001 .9002 .9004 .9005 .9006 .9015 

500 .9000 .9000 .9000 .9000 .9000 .9000 .9000 .9001 

1000 .9000 .9000 .9000 .9000 .9000 .9000 .9000 .9000 

a = .05 

le0P _3_ _5_ _ 7_ _9 _ 11 _1]_ _12.__ _12_ 

0 -9788 -9945 -9983 -9994 -9998 -9999 .9999 -9999 
2 .9745 -9917 -9970 .9989 -9996 .9998 .9999 .9999 
4 .9540 .9706 .9847 .9960 -9982 .9992 .9997 .9999 
6 -9516 .9600 -9701 .9794 .9868 .9920 -9955 .9999 
8 .9509 .9558 .9623 .9692 .9757 .9816 .9865 .9984 

10 .9505 .9538 .9582 .9631 .9682 .9731 -9778 .9938 

15 .9502 .9517 -9538 .9562 -9589 .9618 .9647 .9785 

20 .9501 .9510 -9521 .9536 .9552 .9569 .9588 .9685 

25 .9500 -9506 .9514 .9523 -9534 .9545 .9558 .9627 

50 .9500 .9501 .9503 -9506 -9509 .9512 -9515 -9535 
100 -9500 .9500 -9501 -9501 -9502 .9503 -9504 -9509 
500 .9500 -9500 .9500 -9500 .9500 .9500 -9500 .9501 

1000 .9500 .9500 -9500 -9500 .9500 -9500 .9500 .9500 


