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In this dissertation we develop a comprehensive Bayesian Ranking and Selec-
tion (R&S) modeling framework for single and multi-objective Network Design
Problem with Uncertainty (NDPU). NPDU is a classical problem in transporta-
tion sciences and engineering. Due to the complex bi-level nature, NDPU is
usually solved with heuristic algorithms where the objective value of many can-
didate solutions are “simulated” for evaluation. As the size of the transportation
network can be large, the evaluation of objective values often become the com-
putational bottleneck and should be kept to minimum numbers. On the other
hand, most current formulations for (NDPU) characterize uncertainty as a dis-
crete scenario set and tend not to fully explore the inherent correlations among
alternatives. Therefore, we feel there is room for improving the efficiency of
NDPU solution algorithms with a more rigorous statistical learning model.

In Chapter 2, we formulate the NDPU problem as a Constrained Bayesian
Ranking and Selection (& S) problem with exact correlated beliefs. In this for-
mulation, each solution to the NDPU problem represents an “alternative” and
the corresponding objective value represents a “reward” we want to maximize.
Uncertainties in the objective values are modeled by normal distributions of the
rewards and constraints of the NDPU problem are utilized for pre-eliminating

infeasible solutions. At each sampling iteration, we update our belief about the



distribution of all alternative performances and use the cumulative sampling
history to make the next sampling decision. We use a customized version of the
Knowledge Gradient policy with Correlated Beliefs (KGCB) to account for con-
straints and unknown variances of the rewards. Case studies are conducted on
transportation networks of different sizes, using popular heuristics such as Ge-
netic Algorithm and Simulation Annealing as comparisons. Results show that
the Bayesian R&S model generally provide better accuracy and convergence
rate, particularly in scenarios with uncertainty and larger networks.

In Chapter 3, we build upon our model Bayesian R&S model in Chapter 2 to
improve its performance under large number of projects/alternatives. The new
model features 1) a recursively updated linear approximation of the upper-level
objective function using Gaussian-binary basis functions, and 2) A surrogate-
assisted knowledge gradient sampling policy which utilizes the optimal solu-
tion of the approximated surrogate objective function to constraint the scale of
the expensive knowledge gradient calculation. With the two features the com-
putational complexity of our algorithm is reduced to only a low degree (typi-
cally < 2) polynomial of the number of projects. Case studies are conducted on
the Sioux Fall network and Anaheim network with as many as 20 projects and
over 1,000,000 possible network configurations. Results showed that this para-
metric Bayesian R&S model is able to identify highly optimal solutions in only
around 100 iterations, significantly outpacing our bench-marking Genetic Algo-
rithm and Simulated Annealing Algorithm in both convergence speed and com-
putational cost. Our new method provides a highly scalable framework for dis-
crete NDPU without sacrificing much of the performance advantage of Bayesian
R&S models. It also extends the Bayesian R&S model and the knowledge gra-

dient sampling policies to generic large-scale discrete optimization problems,



which provides valuable insights for a large class of similar optimization and
learning problems.

In Chapter 4, we further extend the Bayesian R&S model to the Multi-
Objective discrete Network Design Problem with Uncertainty (MONDPU), an
emerging area in transportation planning due to the need for sustainable trans-
portation systems. In this formulation, we put independent parametric beliefs
on the expected reward of each objective function like we did in Chapter 3 and
update them in parallel through sequential samples. We define a multi-objective
version of the Knowledge Gradient policy with Correlated Beliefs which use a
crowding distance metric to ensure the diversity of the Pareto optimal front.
Case studies are conducted on the Sioux Fall network and Anaheim network.
Results showed that our multi-objective Bayesian k&S model is able to identify
a very diverse set of highly optimal solutions under very limited budget, signif-
icantly out-performing the bench-marking NSGA-II algorithm in both solution
quality and practicality. Our model is also the first to extend the Bayesian R&S
model and the knowledge gradient sampling policies to generic multi-objective
problems.

In summary, the Bayesian R&S formulation is well-suited for NDPU and
MONDPU due to its uncertainty management capabilities and the sampling
efficiency of knowledge-gradient related policies. The models provide an inno-
vative statistical learning perspective to NDPU, which has mainly been studied
as an optimization problem. The new formulation is intuitive to understand
and easily applicable to similar discrete optimization problems such as the Op-
timal Sensor Location problem, Uncapcitated Fixed Charge Facility Location
problem, etc. The global Bayesian belief structure and the sequential value-

of-information sampling policies make the model especially efficient for black-



box, gradient free optimization problems where the evaluation of each objective
value take up the majority of the computational burden. We believe the models
themselves as well as this unique statistical perspective is of great interest and
value for transportation network modelers and simulation optimization practi-

tioners.
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CHAPTER 1
INTRODUCTION

In this dissertation we develop a Bayesian Ranking and Selection modeling
framework for single and multiple objective distrete Network Design Problems
with Uncertainty (NDPU). NDPU is a classical problem in combinatorial opti-
mization with numerous applications in transportation sciences and engineer-
ing. The generic idea of improving system performance through a few design
variables is also widely applied in other areas including water resource man-
agement [25], communication networks [56], sensor network design [10], pre-
positioning of emergency supplies [63], drug discovery [52] and etc. Given
a network and its users (demand), NDPU is formulated to choose among a
set of “projects” (modifications to the network) to optimize system-wide ob-
jective(s) over the network, subject to uncertainty in travel demand, travel cost,
etc. Examples of those objectives include total travel time, system capacity [79]
and in recent studies environmental impact or total energy consumption [26] of
the network. The intricacy of NDP/NDPU lies in the fact that each “project”
not only affects the structure of the network, but also alters the way users uti-
lize the network once they are aware of the changes. To capture such interac-
tions, NDP/NDPU are typically formulated as Bi-level programs [23], which

are known to be NP-hard even in their simplest forms [87].

1.1 (Single Objective) NDPU

The most common formulation of NDPU involves a single upper level objective

function, while the lower level problem is typically modeled as a deterministic



User Equilibrium traffic assignment problem [75]. Research in NDPU started
with its deterministic version, the NDP problem. Earlier solution methods for
NDP tended to treat or convert the upper and lower level as an integrated opti-
mization problem. Due to the proven computationally complexity, these studies
focused mainly on relaxing various aspects of the problem (e.g. objective func-
tions [58], constraints [18], lower-level problems [18], etc.). Exact solutions were
only available in special cases with nice properties, e.g. when the volume-delay
function is assumed to be constant [7]. A good review of these methods can be
found in [93] and [59]. In recent years, iterative meta-heuristic algorithms have
been another popular branch of methodology for solving NDP. Applications
of such heuristic algorithms include Genetic Algorithms (GA) [94], Simulated
Annealing (SA) [32], Tabu Search [9], Ant Systems [57], etc. Meta-heuristic al-
gorithms treat the lower level problem as a computational component of the
upper-level objective function. They usually start with a few arbitrary feasible
solutions and move towards better ones via local or stochastic search rules in-
spired by physical, biological, evolutionary processes, etc. As the computational
cost of lower level problems reduces dramatically due to advances in both algo-
rithm design and computing power, heuristic methods is becoming increasingly
practical for real-world problems. One can usually find reasonably optimal so-
lutions with meta-heuristic methods. However, the convergence rate of those

methods are usually very low [48, 28, 38, 17, 69] in finite iterations.

Many NDPU solution algorithms are derived from their NDP counterparts.
Most formulations characterize uncertainty as probability distributions over a
tinite domain/scenario set (e.g. [79]). If the scenario set is small, one can af-
ford to convert the NDPU into a larger NDP with multiple lower level prob-

lems [79, 72]. When the scenario set becomes large or infinite (e.g. governed



by continuous probability distributions), scenario approximation methods such
as Single Point Approximation, Monte Carlo sampling, and Sample Average
Approximation are needed. In Single Point Approximation, one tries to con-
struct an input for which the optimal solution closely matches the true optimal
solution [84, 82]. In Monte Carlo sampling, one generates repeated samples
for a particular candidate solution to estimate its true expected objective value
[73]. More sophisticated sampling scheme like Randomized Quasi-Monte Carlo
Sampling or Antithetic Sampling can also be used to improve sampling effi-
ciency [73]. In Sample Average Approximation (SAA) [72], the NDPU problem
is solved repeatedly under a smaller scenario set sampled from the full scenario
set and the best solution generated in this process is used to approximate the
true optimal solution [55]. With the exception of single point approximation, all
the aforementioned methods require simulating hundreds to thousands of can-
didate solutions during the computational process. Meanwhile, NDPU in prac-
tice can be imposed on large networks with tens of thousands of links, making
each evaluation of the objective function computationally expensive. In extreme
cases where traffic demand is modeled by activity-based travel demand mod-
els such as NYMTC (New York Metropolitan Transportation Council)’s NYBPM
[53], even one user equilibrium run can take hours. Therefore, there is strong

motivation to reduce the number of samples/simulations as much as possible.

Although the mathematical formulation of NDPU is explicit, the upper level
objective function is an implicit function of the lower level problem and thus
has no close form in terms of the upper-level decision variables. From this per-
spective, we can also view NDPU as a simulation optimization problem [44]
where the lower level problem is the “simulator” and the upper level problem

is a black-box objective function. Simulation optimization methods were rarely



applied in NDP/NDPU, but have had numerous applications in other areas
such as engineering design, water resources management, modeling calibra-
tion, etc. Popular methods in this category include EGO [40], Sequential Kridg-
ing [24], Response Surface Modeling [44], Radius basis functions [64, 51, 39],
Splines [70], Gaussian Process regression [62], etc. As the exact form of the ex-
pensive objective function is usually very difficult to specify, many of the afore-
mentioned methods use a parametric approximation (most commonly a linear
regression model) to characterize the shape of the black-box objective function.
Unlike meta heuristic methods, simulation optimization algorithms are usually
designed with the computational cost of the objective function in mind and aim
to exploit as much information as possible in each evaluation of objective value.
Indeed, most of the aforementioned algorithms have reported to be able to iden-
tify highly optimal solutions with relatively few iterations. However, many of
them are designed primarily for deterministic optimization problems and can-
not be naturally extended to handle sampling noises or complex uncertainty

structures.

1.2 Multi-Objective NDPU

The efficiency of transportation networks used to be measured primarily by
congestion-related metrics such as total travel time, demand/capacity ratio,
maximum capacity and etc. In recent years, there has been increased em-
phasis on the externality (e.g. environmental impact, energy consumption)
of transportation systems and thus attempts to design sustainable transporta-
tion systems [26, 2, 6, 95, 35]. As a result, environmental/energy objectives are

now often considered in parallel with congestion management goals, making



NDP/NDPU inherently multi-objective. As objectives in MONDP/MONDPU
sometimes conflict with each other (e.g. system capacity vs. financial budget),
the optimal solution of MONDP/MONDPU is typically not a single point but
a set of solutions with non-dominated objective values know as Pareto Optimal
set [8]. Due to the non-uniqueness of optimal solutions, population-based evo-
lutionary algorithms especially NSGA-II [22] have been very popular choices
for solving MONDP/MONDPU [74, 77, 12, 50]. Meanwhile, MONDPU were
also studied in the context of water resources systems [25, 1], petro-chemical
sensor networks [11], green supply chain [89], and sales networks [27], where
alternative solution algorithms such as ParEGO [45], parallel variable neighbor-
hood search [27] and GOMORS [1], etc. were proposed. Similar to the single-
objective case, most aforementioned methods were designed under a determin-
istic setting with no natural extension to handle complex uncertainty structures.
Moreover, evolutionary algorithms typically require simulating the objective
values of hundreds to thousands of candidate solutions, which can be compu-
tationally intensive for MONDPU problems on large networks. Therefore, we
are also motivated to design a MONDPU modeling framework with minimal
number of objective value evaluations and efficient management of uncertainty

scenarios.

1.3 Limitations of Current NDPU/MONDPU Algorithms

It is worth noticing that we can view most aforementioned heuristic or simula-
tion optimization-based NDPU/MONDPU solution algorithms as “information
collection” procedures where we iteratively “learn” about and “search” for the

optimal solution by sampling “promising” candidate solutions. Then, there are



a few aspects in the structure of NDPU/MONDPU that current methods have
not fully exploited. First, due to the combinatorial nature of NDPU/MONDPU,
we would expect high correlations among different candidate solutions: for ex-
ample, solution that share a common subset of projects or solutions with sim-
ilar numbers of projects. As a result, knowing the performance of one solu-
tion implicitly gives us a lot of information about other similar alternatives,
which would be worth keeping track of. Second, in existing methods especially
heuristic algorithms, the sampling decisions are usually derived from fixed lo-
cal/stochastic search rules without utilizing the information collected from pre-
vious iterations. In reality, it is often possible to identify unattractive solutions
at early iterations and explicitly concentrate on more promising alternatives. In
summary, if we can design an NDPU model to lever the correlation structure
among alternatives and the historical information contained in early samples,
we would be able to avoid wasting simulation samples on alternatives with

lower or similar performances.

1.4 Overview of Ranking and Selection Methods

In this dissertation, we adapt the Bayesian Ranking and Selection procedure
[37] from the statistical learning community to model NDPU and MONDPU.
Ranking-and-selection (R&S) procedures [42] compare a finite number of al-
ternatives with stochastic performances through a limited sampling budget.
Bayesian (R&S) models places a probabilistic prior belief on the mean perfor-
mances of all alternatives, update the belief through sequential samples, and
select the candidate with the best posterior belief. Unlike many other learn-

ing/optimization models, R&S methods are inspired by multiple comparison



procedures in the statistics literature (e.g. [5]), and can generally accommo-
date various uncertainty structures via different families of probability distri-
butions. R&S models, especially their frequentist versions, were traditionally
solved by the Indifference Zone (IZ) approach (e.g. [41]). IZ procedures ensure
that the best alternative will be correctly selected with probability 1 — o when
the best solution is at least  better than all other alternatives in reward. In re-
cent years, value-of-information (VOI) based methods such as [15] and [14] have
also been very popular. Most VOI policies consist of a series of “myopic” (i.e.
one-step look-ahead) sampling decisions made at each iteration to maximize the
expected information gains of the next iteration. The sequential nature of VOI
policies is highly analogous to iterative algorithms for optimization problems

and is thus ideal for the development of NDPU/MONDPU models.

The sampling policies we adapted to solve NDPU/MONDPU in Bayesian
R&S formulation is a class of VOI policy known as knowledge gradient (KG)
policies. Roughly speaking, the knowledge gradient of an alternative repre-
sent the expected improvement in the proceeding posterior reward if that par-
ticular alternative is sampled next. Many studies, from as early as [36], have
developed computational procedures for knowledge-gradient policies where
the prior beliefs on alternative performances are assumed to be independent.
In recent years, knowledge gradient policies in Bayesian R&S problems with
correlated belief structure were also studied [29, 71, 68], which greatly im-
proved the number of alternatives KG polices and Bayesian R&S models can
efficiently handle. KG policies have the flexibility to incorporate both discrete
[29] and continuous[71] decision variables, as well as parametric [52] or non-
parametric [49, 4] approximations of the objective function. Its computational

efficiency is comparable or better than many aforementioned simulation op-



timization algorithms (see [29]), with the additional capability to characterize
and utilize the problems’ uncertainty structure. Due to the combinatorial na-
ture of NDPU/MONDPU and its non-uniform uncertainty structure, we think
Bayesian R&S model and the knowledge gradient policies can be a potentially
suitable choice for modeling NDPU/MONDPU.

1.5 Organization of Dissertation

In this section we briefly describe the organization of the dissertation.

Chapter 2 In Chapter 2, we introduce a Bayesian R&S model with correlated
beliefs for single-objective NDPU. This model is based on a very generic formu-
lation in [29], where our belief of all alternative performances is a fully specified
random vector with explicit means and covariance matrices. We extended the
formulation of the Bayesian R&S model to account for constraints and nonuni-
form alternative variances, and adopted the Knowledge Gradient algorithm
with Correlated Belief (KGCB) [29] as our sampling policy. The accuracy of
the Bayesian R&S model proved to be much better than a number of popular
heuristic algorithms. Nevertheless, the expensive computation of the KGCB
policy and update of Bayesian beliefs limit the practical problem size to a few

thousand alternatives.

Chapter 3 In Chapter 3, we further improve the computational efficiency of
the Bayesian R&S model for single-objective NPDU with two powerful approx-

imations: 1) a linear, parametric representation of our belief on the performance



of alternatives as well as their variances and 2) A surrogate-assisted knowledge
gradient sampling policy which constructs a surrogate optimization problem
with the approximated objective function and uses its solutions to constraint
the scale of the knowledge gradient calculation at each iteration. The parametric
belief structure allows us to perform learning on the compact parameter space
instead of the entire solution space, while the surrogate-assisted sampling pol-
icy enables us to neglect the majority of the solution space without losing much
insight about the value of information of each sample. These approximations
limit the additional computational cost of our model to only a low-degree poly-
nomial of the number of projects, which in practice only adds a fraction of a sec-
ond per iteration even in our stylized Matlab implementation. The new model
was extensively tested for various scenarios on the Sioux Falls and Anaheim
network, and was found to be able to save 80% ~ 90% of the samples compared
with heuristic methods. Its performance is comparable or sometimes even bet-
ter than the exact-belief model we developed in Chapter 2. Bayesian k&S mod-
els with parametric beliefs has been studied for continuous decision variables
in the context of linear programming with unknown coefficients [67] and for
discrete decision variables with special structures in drug-discovery [52]. We
believe our new Bayesian R&S model for NDPU complements the previous
studies with a more generic and practical framework for large-scale problems

with discrete and possibly continuous decision variables.

Chapter 4 In Chapter 4, we extend our new formulation in Chapter 3 to
MONDP/MONDPU by proposing a multi-objective Bayesian Ranking and Se-
lection (R&S) model. In this model, each objective function has its own inde-

pendent parametric Bayesian belief, while the sampling decisions are made by



jointly considering the value of information of all objective functions. The can-
didate pool for the sampling alternative at each iteration is generated by solv-
ing for the Pareto optimal front of the surrogate problem. The sampling de-
cision is then based on a multi-objective KG policy, which defines the knowl-
edge gradient of an multi-objective optimization/learning problem as the vec-
tor of single-objective knowledge gradients. Solutions in the Pareto front of
the knowledge gradient vectors are selected or ranked further by their relative
crowding distances to match the per-iteration sampling budget. We tested this
mutli-objective Bayesian R&S model again on the Sioux Fall network and the
Anaheim network with the NSGAII algorithm serving as a benchmark. Results
showed that the multi-objective Bayesian R&S model outperforms NSGAII not
only in its convergence speed, but also in the spread, number and diversity of fi-
nal solutions. The set of solutions provided by the Bayesian R&S model are also
much more reflective of the patterns of the true Pareto optimal set, which greatly
enhances the practicality of MONDPU models in real-world multi-objective de-

cision making.

Chapter 5 Chapter 5 summarizes our findings and conclusions in the previ-
ous chapters. In particular, we will discuss the advantage and limitation of the
Bayesian R&S model in modeling NDP/NDPU problems, future improvements

for the models, and possible extension of the model to other problem classes.
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CHAPTER 2
A SEQUENTIAL BAYESIAN MODEL FOR THE DISCRETE NETWORK
DESIGN PROBLEM WITH UNCERTAINTIES

2.1 Introduction

The Network Design Problem (NDP) is a classical problem in combinatorial op-
timization with numerous applications in transportation sciences and engineer-
ing. Given a network and its users (demand), NDP is formulated to choose
among a set of “projects”(modifications to the network) to optimize certain
system-wide objective(s) over the network. Examples of those objectives in-
clude total travel time on the network, system capacity of the network and in
recent studies its environmental impact or energy consumption [26]. If we al-
low the NDP formulation to include randomness in travel demand, travel cost,
etc., we obtain the Network Design Problem with Uncertainties (NDPU). The
intricacy of the NDP/NDPU problem lies in the fact that each “project” not
only affects the structure of the network, but also alters the way users utilize
the network once they are aware of the changes. Indeed, to capture such inter-
actions, NDP/NDPU are typically formulated as Bi-level programs [23], which

are known to be NP-hard even in their simplest forms [87].

Due to its proven complexity, earlier methods for solving the deterministic
NDP problem focused on relaxing various aspects of the problem (e.g. objective
functions [58], constraints [18], lower-level problems [18], etc.). Exact solutions
were only available in special cases with nice properties, e.g. when the volume-
delay function is assumed to be constant [7]. A good review of these methods

can be found in [93] and [59]. In recent years, iterative meta-heuristic algorithms

11



have been another popular branch of methodology for solving the NDP. Ap-
plications of such heuristic algorithms include Genetic Algorithms (GA) [94],
Simulated Annealing (SA) [32], Tabu Search [9], Ant Systems [57], etc. These
algorithms usually start with a few arbitrary feasible solutions and move to-
wards better ones via local and/or stochastic search rules. The performances of
those algorithms were usually satisfactory although their convergence speeds

are known to be rather slow [48, 28, 38, 17, 69].

The NDPU problems were first solved also by heuristic methods [79], in
which uncertainty was characterized by probability distributions over a finite
scenario set. The objective function of the NDPU problem then becomes the ex-
pected system performance under that probability distribution. If the scenario
set is small, one can afford to convert the NDPU into a larger NDP problem
with multiple lower level problems and solve it with NDP solution algorithms
[79, 72]. When the scenario set becomes large or infinite (e.g. the governing
probability distribution is continuous), approximation methods such as Single
Point Approximation, Monte Carlo sampling, and Sample Average Approxi-
mation are needed. In Single Point Approximation, one tries to construct an
input for which the optimal solution closely matches the true optimal solution
[84, 82]. In Monte Carlo sampling, one generates repeated samples for a partic-
ular candidate solution to estimate its true expected objective value [73]. More
sophisticated sampling scheme like Randomized Quasi—Monte Carlo Sampling
or Antithetic Sampling can also be used to improve sampling efficiency [73]. In
Sample Average Approximation (SAA) [72], the NDPU problem is solved re-
peatedly under a smaller scenario set sampled from the full scenario set and
the best solution generated in this process is then used to approximate the true

optimal solution [55].

12



With the exception of single point approximation, all the aforementioned
procedures require simulating hundreds to thousands of candidate solutions
during the computational process. Meanwhile, network design problems in
practice can be imposed on large networks with tens of thousands of links,
making each evaluation of the objective value computationally expensive. In
extreme cases where traffic demand is modeled by activity-based travel de-
mand model such as NYMTC (New York Metropolitan Transportation Coun-
cil)’s NYBPM[53], even one simulation run can take hours or days. There-
fore, there is strong motivation to reduce the number of samples/simulations

as much as possible.

In order to reduce the simulation burden of the NDP/NDPU, it is worth
noticing that we can view all aforementioned heuristic algorithms as “informa-
tion collection” procedures, where we iteratively “learn” about and “search”
for the optimal solution by sampling “promising” candidate solutions. From
this perspective, there are a few aspects in the structure of NDP/NDPU that
current methods have not fully exploited. First, due to the combinatorial na-
ture of NDP/NDPU, we would expect high correlations among different can-
didate solutions: for example, solution that share a common subset of projects
or solutions with similar numbers of projects. As a result, knowing the perfor-
mance of one solution implicitly gives us a lot of information about other sim-
ilar alternatives. Second, in existing methods especially heuristic algorithms,
the alternatives to be simulated at each iteration are usually derived from fixed
local/stochastic search rules without utilizing the information in the sampling
history. In reality, it is often possible to identify unattractive solutions at early
iterations and explicitly concentrate on more promising alternatives. In sum-

mary, if we can design a sequential sampling policy that efficiently leverages
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the correlation structure among alternatives, we would be able to avoid wast-

ing simulation samples on alternatives with lower or similar performances.

In this paper, we propose a Bayesian Ranking and Selection formulation
to the NDP/NDPU problem. Ranking-and-selection (R&S) procedures [42] at-
tempt to compare a finite number of alternatives with stochastic performances
through a finite sampling budget. Under the Bayesian R&S setting, we view
each candidate solution to the NDPU problem as an alternative and place prior
beliefs on the expected objective value of each alternative. The belief of each
alternative is then updated by taking “samples” (simulations) from selected
alternatives. Solving the NDPU problem is then equivalent to designing a
sampling policy that will quickly identify the alternative with the largest ex-
pected reward. Early research on R&S problems have focused on situations
where the prior beliefs on alternative performances are assumed to be indepen-
dent. In recent years, R&S problems with correlated prior belief structure were
studied [29, 71, 68] and the corresponding solution algorithms exhibited close
similarities to iterative optimization algorithms. To solve the NDP/NDPU in
the new Bayesian R&S formulation, we adopt the Knowledge Gradient algo-
rithm with Correlated Belief (KGCB) [29], which has great computational per-
formance and rigorous mathematical properties. We believe such a new formu-
lation can in general provide alternative insights to the construction and solu-
tion of NDP/NDPU problems or even other stochastic optimization problems

with combinatorial structures.

In Section 2, we first describe the traditional formulation of the NDP/NDPU
problem and show how they can be viewed as a Bayesian Ranking and Selec-

tion problem. Then we describe the KGCB sampling policy and customize it for
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NDP/NDPU. Section 3 provides computational examples and Section 4 pro-

vides conclusions and discusses directions for future research.

2.2 Methodology

2.2.1 The Network Design Problem with Uncertainty

Assume a generic network (graph) G = (V, £), with V and E being the vertex set
and the edge set respectively. For each link in the edge set E, we have informa-
tion about its capacity, length and other attributes. A network design problem
(NDP) is formulated when the decision maker wants to optimize certain objec-
tives (e.g. maximizing throughput, minimizing congestion, etc.) over the net-
work by modifying the edge set E with k improvement “projects”. The projects
can come in the form of adding new links to the network (Discrete NDP), mod-
ifying the attributes of existing links (Continuous NDP) or both (Mixed NDP).
In this paper we focus on Discrete NDP for demonstration purposes. Let the
vector a = (aq, as, ...ax) be an overall decision (solution) with each element q;
representing the binary decision on project i, and let ¢ = (¢4, ¢2, ...c;;) be the cor-
responding project costs. In the discrete case, each element q; is a binary number
indicating whether project i is implemented or not. The NDP then seeks a de-
cision a* to optimize the pre-defined system performance measure, subject to a

total budget cap B.

Uncertainty in the NDPU problem is usually characterized by a countable
scenario space (), with the probability of each scenario {p(w) : w € Q} well

defined. Parameters in the NDPU problem can take random values based on w,
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and the objective of a NDPU is to choose the decision a* that will optimize the
expected value of the objective function (or in some cases a convex combination

of the higher moments of the objective function [83]).

The NDPU problem is usually formulated as a Bi-level mathematical pro-
gram. The upper level problem models the decision makers” objectives while
the lower level models the network users’ responsive behavior under changes
to the network. Without loss of generality, in this paper we focus on a typical
formulation of the NDPU problem to maximize reduction in total travel time
over the network, assuming that uncertainty only exists in travel demands. The

corresponding formulation is then given as below:

(Upper Level) max E(Ta) =T — u%p(w) : (i,j)eZEUE; i (w)tij (75(w)) (2.1)
CT-a:Zk:ci-aigB (2.2)
a; € {0, 1;, Vi e {1,2..k} (2.3)
{zij(w)": (1,)) € E} (2.4)

is the optimal solution for the lower level problem:

(2.5)
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where

A:

T()Z

P.:

fT’S .
D .

Oijp :

(Lower Level) Min Z / § tij(u)du (2.6)
r 0

(i,j)eEVE,

s.t.: > £ =d(w)ys,Y(r,s) €D (2.7)

PEPrs

mi= Yy > frreep, (2.8)

(r,8)€D pEPrs
Lij

C;

tiy =ty - (1+a-( )%) (2.9)

[y >0,Vp € Py, ¥(r,s) € D (2.10)

the set of all network configurations, i.e. {0, 1}*

expected total travel time on the base network

: the set of additional links selected by decision a.
; : the equilibrium traffic flow on link (i,j).

: travel time on link (i,j) when flow is x

: free-flow travel time on link (i,j)

 : capacity of link (i,j)

: parameters for calculating travel time

: the set of traffic demands indexed by Origin(r) and Destination(s).

the set of paths (contiguous links) which starts in node r and ends in node s

the flow between origin r and destination s on path p

: equals 1 if link (i,j) belongs to path p and 0 otherwise

Equations 2.1-2.5 define the Upper level problem. Equation 2.1 is the objec-

tive function to maximize improvement in total travel time and Equation 2.2 is

the budget constraint. Equations 2.6-2.10 specify the lower level problem which
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is assumed to be the deterministic User Equilibrium Problem [75] in this exam-
ple. In particular, Equation 2.9 assumes the volume-delay function follows the
traditional BPR formula, which can be replaced by other volume-delay func-
tions. We can also replace the entire lower level problem with other models

such as stochastic user equilibrium[75] or system capacity maximization [79].

In practice, many lower level problems of NDPU have efficient solution
methods that are too sophisticated to be integrated into the bi-level structure
of NDPU. Therefore, an alternative approach to the NDPU problem is to treat
the Lower Level problem as part of an expensive evaluation of the objective
value in the Upper level problem. Then, the NDPU problem becomes a discrete
optimization problem whose objective function has no closed-form with respect
to the decision variables. This viewpoint is at the heart of the Bayesian Ranking

& Selection model we develop in next section.

2.2.2 NDPU as a Bayesian Ranking and Selection Problem

The Bayesian Ranking and Selection Problem

In a Bayesian Ranking and Selection (R&S) problem, we have M alternatives
whose rewards are random with mean 6 = {6,...6,,}. Our objective is to iden-
tify the alternative with the maximum expected reward through sample mea-
surements. We have a prior belief about 0, denoted as u° = {uf...,}, and
possibly a prior belief about the correlation structure of 8, characterized by an
M x M positive semi-definite matrix 3. We are given the opportunity to make
N sample decisions, X = {z;...z5}, and obtain the corresponding sample ob-

servations Y = {y;...yn}. Let F" be the sigma-algebra generated by {z;...z,}
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and {y;...y, }. After taking all the samples, our belief about the means and the
covariance matrix is updated to pV := E(0|F") and £V := Cov(0|F") respec-
tively via Bayes’ Rule [33]. When sampling is completed, we select the alter-
native with the largest posterior mean (i.e., 3, = argmax, x2') as the optimal
solution. The goal for a Bayesian Ranking and Selection problem is to maximize
the posterior expected reward after N measurements through a sampling policy

m = {z7]...27% }. This objective can be written as:

sup E™[max 1] (2.11)
well z

Where II is the set of all possible sampling policies with sampling budget N,
and E™ denotes the conditional expectation under policy 7. For R&S problems
we are usually interested in sequential sampling policies under which z] is mea-
surable with respect to F"~! for all n = 1...N. In other words, our measure-

ment decision z,, at time n depends only on the sampling history z;...x,_; and

Y1---Yn—-1-

The Bayesian Ranking and Selection Model for NDPU

Prior and Likelihood We can formulate the NDP/NDPU problem in Section
2.1 as a Bayesian Ranking and Selection problem by viewing each network con-
tiguration (decision) a as an alternative. More specifically, we can think of a as a
k-digit binary variable, the i;, digit of which indicates whether project i will be
implemented. The decimal value of a can be viewed as an index for the alterna-
tive set A and we can assume without loss of generality that alternatives in A
are ordered by the decimal value of a. As we simulate alternatives a;, a;...ay, we
obtain (perfect) measurements of the random “reward” of those “alternatives’,

denoted as 75, ,7,,, ... T

Lan-
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For the NDP/NDPU problem, we further assume our prior belief about the
expected “reward” of all alternatives follows a multi-variate normal distribution
and that the sequence of measurements follow normal distributions with known

variances conditioned on the parameter values:

0 := (E(T}), E(Th)...E(Tja) ~ N (1, 5°) (2.12)

T, |0 ~ N(0a,, M), Vi € 1..N (2.13)

It is easy to see that the deterministic NDP problem is a special case of the
formulation where \,, = 0, Vi € 1...N. For most stochastic problems, {\,, }¥,
is usually unknown and needs to be estimated either from samples or from our
prior understanding of the problem (to be discussed in Section 3). In addition, it
is worth noticing that although the actual objective value for each alternative can
be correlated, the sequence of measurements where we place our probabilistic
beliefs are drawn from independent simulations. Therefore, the likelihood func-

tion of those measurements in Equation 2.13 are independent.

Posterior Distribution It is a well-known result [33] that under Equation 2.12

and 2.13 the posterior distribution of 8 will also be normal, i.e.:
O|F" ~ N(u",X"), ¥n e 1..N (2.14)

where ;" and 3" can be updated through the recursive equations:
Tan — !
Aa, + 0,
¥ le,, ey X

n—1
)\an + Oana,

yrle, (2.15)

n

Iun — Iun—l +

=yt - (2.16)

Here a,, is the alternative sampled at iteration n, e,,, is the column vector with

the a, th (in terms of a,,’s decimal value) element set to 1 and all others set to 0,

20



and 0,,,, is the a,th diagonal element of ¥"~!. Consequently, it is sufficient to
summarize our progressive belief about 6 in the sequence (u;, 2;)Y ;. As a large
class of distributions can be approximated or transformed into normal distri-
butions, maintaining (p;, 2;)~, can usually be much more efficient and infor-
mative than the traditional scenario-based, discretized uncertainty formulation
(even if normality is strongly violated, we still have the option to use Equations
2.15 and 2.16 to learn about each discrete scenario with A set to 0). Moreover, if
3 is non-diagonal, then at each iteration Equations 2.15 and 2.16 enable us to

update our estimate of the entire (u™, ¥") from a single observation.

Decision After we have exhausted N simulation samples, we select the net-
work configuration with the best posterior reward as the proposed optimal so-
lution:

a}y € argmax E(T,|FY) (2.17)
acAf

Here A/ denotes the set of feasible alternatives. Note that ay, the best so-
lution conditioned on the knowledge collected by the sampling policy at time
N, is often different from a* € argmax,f, := argmax, E(7,), the best solution
given perfect knowledge. This difference is analogous to the optimality “gap” of

an iterative algorithm executed in finite iterations.

Constraint Handling in NDPU with Bayesian R&S Formulation

In traditional Bayesian Ranking and Selection problems, every alternative is as-
sumed to be feasible, which does not apply to NDP/NDPU with the budget

constraint (Equation 2.2). Instead, we can utilize the coefficients of the budget
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constraint (i.,e. project costs) to reduce |A|. A reduced alternative set, as we will

see in Section 3, will greatly improve the performance of our sampling policy.

Partial Elimination of Infeasible Alternatives The problem of approximat-
ing the size of the feasible solution set constrained by Equation 2.2 is sometimes
referred to as Knapsack Counting [34]. For the NDPU problem with Bayesian
R&S formulation, we apply a simple bound on the size of the feasible solution
set by limiting the maximum number of active projects in any feasible alter-
native. The procedure is described in Algorithm 2.1, which uses the subset of
least expensive projects to bound the number of active projects. Admittedly,
the actual effectiveness of Algorithm 2.1 depends on specific values of {c;...c; },
but it will be generally effective as long as the variability within {c;...c;} is not

dramatic.

Algorithm 2.1: Find the maximum number of projects in any alternative

Require: Project costs {c;...c;} and budget cap B

—_

: Sort {c;...c; } in ascending order to {c(y)...c) }-

2: fori=1tokdo

3 if Y'_i(c(;)) > B then
4: return ¢ as ¢,,,,,.

5:  end if

6: end for

imaz defines a new set A’ := {a : Zle a; < imar} C A. We can quickly verify
that the true feasible set A/ C A4/, since any alternative in A\ A’ (i.e. with greater

than i,,,, active projects) must have already violated the budget constraint and
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is thus infeasible. We may also have A’ = A’in some special cases, e.g. when the
cost of projects are the same. The time complexity of Algorithm 2.1 is O(klog k).

The size of A’ is |A'| = 374 (*) by construction.

2

Re-indexing of the Reduced Alternative Set The natural indices of elements
in |A’| no longer corresponds to the configuration of the network in their binary
forms as they do in the original alternative set A. To efficiently (that is, without
a “brute-force” mapping of O(|A’|) space complexity) keep track of the corre-
spondence between each alternative’s network configuration and its new index
in |A|’, we can arrange the alternatives (in ascending order) first by the number
of active projects then by the decimal value of the network configuration. The
arrangement to index any arbitrary n-choose-k combination set is also known
as the Combinatorial Number System [46]. There exists an efficient procedure
(Algorithm 2.2) to “decode” the configuration of the network from the natural

index of the elements in |A’| [76].
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Algorithm 2.2: Retrieve the network configuration of an alternative from
its index in A’

Require: Natural index i and maximum number of projects k
1: Step 1: Determine the number of active projects r in alternative i and its
position n" in the k choose r combination set.
2271, n" <1
3: while n” > (*) do
4: n"(—nr—(f),r<—7’+1
5: end while
6: Step 2: Retrieve the corresponding network configuration a(i) = (a1, as...ax)
7: forj=rto1do
8 ifj>randr >0
ye ()

10: elsey <« 0

®

11:  ifn" >=y

12: n=n"—-y, a1 r<r—1
13:  elsea; + 0

14: end for

15: return a(i)

The time complexity of Algorithm 2.2 is O(k). Before we start the sampling
process, we use Algorithm 2.1 to determine the size of the reduced A’. In each
sampling iteration, we apply Algorithm 2.2 to retrieve the configuration of the

network.
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2.2.3 Solving NDP/NDPU with Bayesian R&S Formulation

Overview of Solution Procedure

The solution procedure for NDP/NDPU with Bayesian Ranking and Selection
formulation (Equations 2.11-2.13) can be summarized in Algorithm 2.3 below.
In short, we iteratively update our Bayesian belief about the alternative rewards
through adaptive sequential simulation decisions. At the end of the last itera-
tion, we select a feasible solution with the best posterior mean. In the next two
sections we describe the KGCB sampling policy we use for Line 3 and the vari-

ance update procedure in Line 7 of the algorithm.

Algorithm 2.3: Solving NDPU with Bayesian R&S formulation

Require: Inputs 1, X°, budget cap B, Project costs ¢
1: Pre-eliminate infeasible solutions using Algorithm 2.1.
2: forn=1— Ndo
3:  Determine i,, the index of the next alternative to sample.
4. Apply Algorithm 2.2 to decode the network configuration a,, from ¢,
5. Simulate network configuration a,, and obtain objective value 7,
6:  Update alternative variance )\Z}n
7. Given a,, \? and T,,, update posterior belief ("=, 2"") to (", X" us-
ing Equations 2.15 and 2.16.
8: end for

9: return arg max,c o5 piY
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The KGCB Sampling Policy for NDPU

In this section we introduce the KGCB sampling policy [29] for Bayesian R&S
problem with correlated beliefs. The core idea of the KGCB policy is that at each
iteration one should choose to sample the alternative from which the “Knowl-

edge Gradient” is maximized. That is, we should choose

KGmn

a € arg max v*%"(a) = arg max (E"(r%zzx p ™, Y a, = a) — max pf)

acA acA €A

(2.18)

Note that maz; 1 is the optimal value we would receive if we stop at time n
and max; ,u:-“rl |z,, is the optimal value we would obtain if we take an additional
sample z,,. The knowledge gradient represents the expected improvement in
posterior optimal value obtained from measuring a particular alternative, which
we want to maximize at each iteration. By calculating the conditional predictive
expectation of maz; u?“, we can forecast the value of information of all alter-
natives without taking actual samples of them. It is presented in [29] that the

KGCB policy is almost-surely optimal for N=1 or N— oo (i.e. both myopically

and asymptotically optimal) and has sub-optimality bounds when N is finite.

With the presence of infeasible solutions in NDP/NDPU, we need to slightly

modify the definition of the KGCB sampling policy to:

KG
a; " € argmaxv

KG
acA’ f

) _ +1 _
(a) = arg max (E"(max ;™| ", X", 2, = a) — max yi})

(2.19)

In short, we now select the alternative which maximizes the expected im-
provement of the constrained optimal value instead. Note that in the argmax
operator we do include infeasible solutions in A’, as they could potentially have

higher v{*“(.) value (e.g. due to the common active projects they share with
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some highly optimal feasible solutions). Fortunately, the computational proce-
dure to calculate a®“™ in [29] still applies to affG’” after minor adjustments. In
specific, a,, in Algorithm 2.3 can be determined via the following Algorithm 2.4
at each iteration. The time complexity of Algorithm 2.4 is O(log(]A7|)|A7|| A'|).

Algorithm 2.4: The KGCB sampling policy for NDPU

Require: Inputs p"" and X".
1: foreacha € A’ do

20 p=plhy, g (X" ea)ar/\/Aa + ol

3:  (vars returns the feasible sub-vector of the vector v)

AT
=1

i

>

Sort the sequence of pairs (p;, ¢;);—, so that the ¢; are in non-decreasing

order and ties in q are broken so that p; < p;41 if ¢; = gi1.
1A

.. !
5:  Remove all entry iin (p;, qi)izl‘ where ¢; = ¢;11

6: o4 —00, Clar| < +09, ¢ < —(pip1 — pi)/(qie1 — @), Vi € 1.|AT| — 1
Lii‘ where ¢; > ¢; 11

8: U?G’"(a) — log(ZLiﬁ‘_l(QiH —¢i)(p(—lail) — |ci| ®(—|ail)))

9:  (p(.) and @(.) is the pdf and the cdf of a standard normal variable)

7. Remove all entry iin (p;, g;, ¢;)

10: end for

11: return a,, = a]IfG’" € arg maxXae 4/ vfG’"(a)

Approximation and Update of Unknown Alternative Variances

In Algorithm 2.4 and the Bayesian R&S model described in Equations 2.12 and
2.13, we assume that the alternative variances \; are known for all : € {1...|A’|}.
In reality, ()\;) L‘ill‘ are usually unknown and non-uniform across alternatives.

While there exist Bayesian models that jointly consider unknown multi-variate
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alternative means and variances, few (except the very recent work of [61]) can
possibly update beliefs through single scalar observations as required by the for-
mulation of NDPU. For NDPU, we develop a separate light-weighted approxi-
mation/update procedure inspired by the Bayesian normal model with known
mean and unknown variance [33] to estimate the variances of the “rewards” of

all alternatives.

We estimate ();) Lill‘ first by a hierarchical “prior” belief that \; depends only

on the number of projects in alternative i and a deviation term, i.e.
A = OO 4 €y, Ya € A’ (2.20)

Where pCount(a) returns the number of active projects in alternative a. €,count(a)

is usually set to a random fraction of \?“°*"@) for each a.

As the algorithm proceeds, we can collect more samples for a particular al-
ternative a and update our estimate of A,. For an iteration n € 1...N in which

we sampled alternative a, we have:

cn AT (g Ny = 3) + (Y — p)?

A= 2 2.21
a UO ‘I’ N _ 2 ( )
0 _ o, n(@)y2
— ,UO)\ + Z’L l(ya :ua ) (2.22)
Vo + Na -2
oA+ S0 (5" — 6.)?
=~ 2 = M . 2.23
U0+Na—2 ae{al aN} ( )

where N, is the number of samples collected for alternative a at iteration n, n(i)
is the iteration at which the iy, sample of alternative a is collected, ,ua ) is the
posterior mean for alternative a at iteration n(7) and v, is a non-negative weight
parameter. Equation 2.21 is mathematically equivalent to the “posterior” mean
of A, (i.e. Equation 2.23) if we put a scaled-inverse chi-square prior on A, (i.e.

A ~ Scale-inv-x?(vy, \0)), except that the true mean 6, is approximated by the
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sequence of posterior means ,uf(l)... M:(Na). To marginalize the inaccuracy from

the posterior means, we require n, to be at least larger than a threshold 7,

(typically 3-5) before Equation 2.21 can be applied.

Equations 2.20 and 2.21 reduce the number of variance parameters from | A’
to k. In practice, we sample one alternative from each pCount € 1...k before run-
ning Algorithm 2.3 and use these variance estimates as (S\Z’CO“M)’;COumzl. Then
we plug in the corresponding j\an into Algorithm 2.4 in each sampling iteration.
Inaccurate variance estimation will likely affect the performance of the KGCB
sampling policy and the posterior update in earlier iterations. However, as the
number of samples accumulates, it is easy to see that the variance estimates will

converge to the true variances {), : a € A'}, and consequently the asymptotic

accuracy of the entire Algorithm 2.3 will be guaranteed.

2.3 Computational Examples

2.3.1 Data Source and Simulation Design

We conducted three sets of computational experiments: deterministic tests,
stochastic tests and large network tests. For the deterministic and stochastic
tests, we use the famous Sioux Fall network [3] as the underlying transporta-
tion network. On top of the base network, we define 10 candidate projects,
whose (fictitious) costs are summarized in Table 2.1. According to Table 2.1,
the maximum number of feasible network configurations/alternatives is 1023,
which makes the problem non-trivial but still manageable for experimental pur-

poses. To test the constraint-handling techniques, we run the problem over two
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budget levels: $6000, which represents a scenario with less (398/1023) feasible
solutions, and $10000, which represents a scenario with more (950/1023) feasi-
ble solutions. Algorithm 2.1 calculates the maximum number of active projects

to be 6 and 8 for the two budget levels respectively.

Table 2.1: List of Projects

ProjectID | Budget ($) | ProjectID | Budget ($)
1 1800 2 1500

3 1000 4 1950

5 1650 6 2100

7 1200 8 625

9 650 10 850

For the large-scale network tests, we use two additional larger testing net-
works of Anaheim and Chicago (sketched version), with the same project costs
and budget selection as in Table 2.1. The absolute size of the network is mod-
erate, but they are “large” in the sense that we need to run the lower level User
Equilibrium problem on them for hundreds of iterations and tens of repetitions.
Projects are typically constructed as bi-directional links that connect OD paths
with high volumes. Information about the two networks along with the Sioux
Fall network is presented in Table2.2. Data for all three networks are publicly

available at [3].

Table 2.2: Size of Networks

Network Name # of Nodes | # of Links | # of OD Pairs
Sioux Fall 24 76 576

Anaheim 416 914 1444

Chicago ”“Sketch” | 933 2950 ~ 140,000
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For all tests, the lower level User Equilibrium problem (Equation 2.6-2.10)
is solved by an open-source solver [78] with the relative gap of convergence
fixed at 107°. The implementation of the KGCB sample policy is based on the
MatlabKG library available at [30]. For the KGCB algorithm, a non- informative
prior is set with p° = 0 and X% = (0.5 + 0.5 - Jj4/|) - 10", where J) 4| is the | 4’|

by |A’| matrix of ones and 0 is the |A’|-dimensional zero vector.

For bench-marking, we solve the same problems using Genetic Algorithm
(GA) and Simulated Annealing [43], both of which are very popular for solving
NDP/NDPU and other similar discrete optimization problems. The Genetic
Algorithm uses evolutionary strategies to evolve a population of alternatives
to the optimal solution while Simulated Annealing uses a random walk in the
solution space to generate a stream of candidate solutions converging to the
optimal solution. For the GA algorithm we use the package from [21]. This
package applies an Elitist policy where the best alternative in each generation is
always preserved to the next generation. The population size of the GA solver is
set to the number of projects in the test, the crossover probability is set to 0.9, and
the mutation probability is set to 0.02. Our custom-made SA algorithm is similar
to the original version presented in [43], with the additional feature that at each
iteration the algorithm will keep searching the neighborhood of the previous
solution for a feasible solution to move to. The initial “temperature” of the SA
algorithm is set to 100, and decreases by 5% after each simulation evaluation.
The “neighborhood” of each solution in the SA algorithm is defined by the set
with the active/inactive status of 3 projects flipped. Infeasible solutions are
penalized in their objective value in the GA solver and rejected during state

transition in the SA algorithm.
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The primary performance measure of our experiments is the Relative Oppor-
tunity Cost (RelOC) of each algorithm at given iterations. RelOC is defined as
the percentage difference between the expected optimal value of the true opti-
mal solution and the expected objective value evaluated at the “best” alternative
proposed by the algorithm when it terminates. Thus, once the RelOC is zero, the
algorithm has found the best solution possible. We also define the RelOC of all
infeasible solutions to be 1, as recommending an infeasible solution does not
help our decision-making at all. RelOC is a more reliable performance measure
for our Bayesian R&S model than the commonly used difference of objective
values, since each of our random samples has the potential to randomly gener-
ate large optimal values. In our experiments, the “true” objective value for each

alternative is approximated by the mean of 100 Monte Carlo samples.

2.3.2 Results for the NDP (Deterministic) Tests

We first test the performance of the Bayesian R&S model for the determinis-
tic NDP problem. This is the case where \; = 0,Vi € {1...|4'|} in Equations
2.13 and thus requires no variance approximation. This test serves as a bot-
tom line for performance of the Bayesian R&S model without its advantage in
managing uncertainties yet, and can also gauge the model’s potential to solve
discrete scenario-based NDPU formulations. We assume the NDP problem is
formulated as in Equations 2.1-2.10 with the uncertainty in demand removed.
We then run the Bayesian R&S model, the GA solver and the SA solver on the
same problem for 30 repetitions and 100 iterations each (note that 100 iterations
in KGCB and SA means | 100/populationsize | generations in the GA solver).

Comparison of the mean RelOC of the three algorithms are presented below in
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Figure 2.1.
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Figure 2.1: Performance comparison for NDP: 100 simulation budget.

Figure 2.1 shows clearly that while all three algorithms performed reason-
ably well under each scenario, the Bayesian R&S model out-performs GA and
SA in all combinations of project numbers and budget levels. It is more effective
in discovering solutions with lower relative opportunity costs (e.g. 0.02. 0,01 or
< 0.01) while the SA and GA often converge to locally optimal solutions with
RelOC values between 0.05 and 0.10. The superior performance of the Bayesian
R&S model is mainly due to the fact that it places beliefs on the potential re-
wards of all alternatives and fully utilizes the sample history to direct future
samples via the KGCB sampling policy. The advantage of the Bayesian R&S
model is also noticeably larger in cases with more infeasible solutions (lower
budget) and smaller project numbers. This is very indicative of the trade-offs

the Bayesian R&S model make between accuracy and efficiency: by maintain-
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ing, updating and inferring about the objective values for all alternatives, the
Bayesian R&S model can avoid local optima and identify globally optimal so-
lutions much more easily. However, under a deterministic setting, as the num-
ber of possible alternatives increase, the relative significance of the additional
information collected in limited samples is reduced, and the performance of the
Bayesian R&S becomes only marginally better than local-search-based heuristic

algorithms for NDP.

2.3.3 Results for the NDPU (Stochastic) Tests

We then test the performance of the Bayesian R&S formulation on the NDPU
problem described in Section 2.1. More specifically, we assume that d,, : (r,s) €
D, the demand for each Origin-Destination pair in Equation 2.7, is subject to
a p% perturbation. p follows a normal distribution with mean 0 and standard
deviation cv (coefficient of variation), where cv > 0 controls the magnitude of
uncertainty. p is generated prior to each simulation and applied to all OD pairs
in the testing network. If any d,; becomes negative after the perturbation, it is
truncated to 0. Other settings for Bayesian R&S model are the same as in the de-
terministic case, except that we applied the variance approximation technique
described in Equations 2.21 and 2.20. The €,c0unt(a) deviation terms in Equation
2.20 were sampled from a normal random variable with mean 0 and a standard

deviation of 5% of the corresponding \*Cou(@),

To adjust the GA and SA solver for NDPU, we instead use the mean of a few
Monte Carlo samples to approximate the expected objective value for a partic-

ular alternative. While probably not the most efficient strategy, this method is
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representative of the large class of methods (e.g.[79],[82],[73],[72] etc.) which all
in some sense used multiple random samples to account for uncertainty. For the
experiments we set the number of Monte Carlo samples for the GA algorithm
to be 2. We test the performance of the three algorithms through two budgets
levels (6000, 1000) and three cv values (0.1, 0.3 and 0.5). The number of projects
is set to be 10. Each algorithm is run for 20 repetitions with a budget of 200 eval-
uations of objective value for each run. The Bayesian R&S model will use 30
and 40 samples for the 6000 and 10000 budget levels in the first-stage variance
estimates. The GA and SA algorithm will use all 200 samples in search of the

optimal solution.
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Figure 2.2: Performance comparison on NDPU: 150 simulation budget.

Performance comparisons of the GA, SA and the Bayesian R&S model are
presented in Figure 2.2. To better illustrate the difference we use the log (base 10)
of the RelOC on the y-axis. Note also that the x-axis of Figure 2.2 starts at 30/40

due to the first stage variance estimation of the Bayesian R&S model. Despite
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the additional budget spent on variance estimation, the Bayesian R&S model
still catches up very quickly and out-performs both the SA and GA in all sce-
narios. Across different levels of uncertainty, the performance of the Bayesian
R& S model is also more stable. On the other hand, the SA algorithm, which
performed rather competitively in the deterministic tests, suffered a significant
performance drop when the level of uncertainty increases. This is because the
SA algorithm tracks only one solution at any given iteration, and can there-
fore be easily misguided by randomly large objective value from sub-optimal
alternatives. Meanwhile, GA stores a population of alternatives at each itera-
tion, which greatly reduces the impact of random variation from individual so-
lutions. However, the population-based approach adds significant simulation
budget in each generation and greatly slows down the progress of the algorithm
under a given simulation budget. In the Bayesian R&S model, each sample not
only updates the mean estimate of all alternatives, but also their distributions. By
utilizing information about the variances of all alternatives, the Bayesian R&S
model properly acknowledges the level of randomness in the objective values
and is able to separate alternatives with high variability from the “true” optimal

alternatives with high expected objective value.

The benefit of the Bayesian R&S model is better illustrated in Table 2.3,
where we run all three algorithm for a simulation budget of 500 and compare
the number of simulations required for the mean RelOC to reach practical lev-
els of optimality (For the Bayesian R&S model the samples for variance estima-
tion is included in the count). For both budget levels, the Bayesian R&S model
exhibits satisfactory accuracy and greater performance stability under various
levels of uncertainty. For a given RelOC, the Bayesian k&S model can generally

reduce the number of necessary simulations by up to 50% ~ 80% and is often
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Table 2.3: Average Sample Number Needed for Different RelOC

B= 6000 cv: 0.1 cv: 0.3 cv: 0.5

RelOC 10% | 5% 25% | 10% | 5% 25% | 10% | 5% 2.5%

GA 140 | > 500 | > 500 | 100 | 420 > 500 | 140 | 380 > 500
SA 32 80 178 40 > 500 | > 500 | 104 | > 500 | > 500
R&S 34 45 135 35 41 102 32 34 116
B=10000 | cv: 0.1 cv: 0.3 cv: 0.5

RelOC 10% | 5% 25% | 10% | 5% 25% | 10% | 5% 2.5%

GA 20 120 200 40 140 > 500 | 80 200 > 500
SA 18 104 332 52 > 500 | > 500 | 112 | > 500 | > 500
R&S 44 60 191 42 60 190 44 190 > 500

able to discover low RelOC (i.e. highly optimal) solutions when the other two

algorithms failed to make further progress.

2.3.4 Large Network Tests

It is evident that the additional book-keeping of the Bayesian R&S model and
KGCB sampling policy can significantly increase the per-iteration computa-
tional time. Naturally, if the underlying network is larger and each evaluation
of the lower-level problem takes longer, the additional cost of the Bayesian R&S
model will be much more justified. Although of great practical concern, com-
puting times were rarely presented or discussed in previous studies of Bayesian
R&S models. In this last experiment we aim to produce some quantitative re-
sult about the trade-off between computational time and accuracy for using the

Bayesian R&S model. Similar to the stochastic tests, we run the three compet-
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Table 2.4: Average Processing and Simulation Times per Iteration

Time (sec) Update Decision || Network SimTime (sec)
GA < 0.0001 0.0127 Sioux Falls 0.15
SA < 0.0001 0.00079 Anaheim 0.23

R&S (6000/10000) | 0.016/0.018 | 0.72/0.80 || Chicago Sketch | 3.20

ing algorithms over three networks at the 6000 and 10000 budget levels for 30
replications each. cv is set to 0.1 for the Sioux Falls and Anaheim Networks and
(for faster convergence) 0.05 for the Chicago Sketch network. We use 7, the
time for each algorithm to reach a mean RelOC of 0.1 as the measure of time
efficiency. Table 2.4 summarizes the per-iteration computational time for each
algorithm and per iteration “simulation” time needed to evaluate each network.
The “update” step includes Equations 2.15 and 2.16 for the Bayesian R&S model
and in GA and SA only involves updating the best solution so far. The “deci-
sion” step for the Bayesian R&S model is mainly Algorithm 2.4. For GA, it in-
cludes the crossover and mutation operations and for SA includes the selection
of the next candidate solution and the calculation of the transition probability.
All computations were conducted on a workstation with two six-core Intel Xeon

processor @2.40Ghz and 32 GB of ram.

In Figure 2.3 we present the comparison of computational times over the
three networks and two budget levels. In each plot we stack the total time spent
in sampling(simulation), update and sampling decision for each algorithm. In
general, the “simulation” portions of the Bayesian R&S model are much shorter
than the other two algorithms, demonstrating a consistent saving of simulation
budgets. The Bayesian R&S model delivered much more competitive compu-

tational times in the 6000-budget scenarios for all three networks, as both its
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Figure 2.3: Comparison of time needed to achieve 0.1 RelOC

updating equations sampling policy were computed over fewer alternatives.
The performance of the 1000-budget scenarios were less ideal for the Sioux Falls
and Anaheim network due to their relatively low computational cost compared
with the overhead of Bayesian updates and sampling policies. Nevertheless,
the time saved from fewer samples becomes more significant as the computa-
tional cost of each simulation exceeds the cost of the Bayesian R&S model, as is
the case for the ChicagoSketch network. Therefore, we can confidently project
a substantial time saving when the underlying traffic network requires minutes

or hours for each user-equilibrium (i.e. “simulation”) evaluation.
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2.4 Conclusion

We have developed a Bayesian Ranking and Selection model for the Network
Design Problem with Uncertainty (NDPU). With this formulation, each solution
to NDPU represents an “alternative” with a prior belief on its expected objec-
tive value (i.e. “reward”). Uncertainties in the objective functions are modeled
by probabilistic (normal) distributions whose non-uniform variances are esti-
mated and updated from samples. At each iteration, we make sequential deci-
sions about the next alternative to simulate by utilizing reward and correlation
information collected in previous iterations. We used constraints in NDPU to
pre-eliminate infeasible alternatives and also to defined a constrained version
of the KGCB policy. With the Bayesian R&S formulation, we are able to view
NDP/NDPU problems from a statistical learning /simulation optimization per-
spective and focus our effort on directly exploring the inherent relationships

between the performances of different network configurations.

The advantages of this new Bayesian R&S formulation of the NDP/NDPU
problem are mainly: 1) It explicitly records and updates the correlations among
all candidate solutions to efficiently leverage the information collected from
each sample; 2) It enables us to use sequential sampling policies like KGCB,
in which later simulation decisions can directly benefit from earlier samples; 3)
It models uncertainty with continuous probability distributions, which are more
efficient and flexible than discrete scenario sets. Indeed, our computational ex-
periments on the studied networks suggest that the Bayesian R&S model per-
formed better than both the Genetic Algorithm and the Simulated Annealing
Algorithm in both deterministic and stochastic settings. The superior perfor-

mance of the Bayesian &S model also implies its potential in solving similar
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discrete optimization problems such as the Optimal Sensor Location problem

[10], Uncapcitated Fixed Charge Facility Location problem [19], etc.

The major limitation of our model is its computational burden in both time
and space, due to the fact that it is committed to keeping track of all feasible
alternatives: for NDP/NDPU problems, computing time and space can grow
exponentially in the number of projects in the worst case. Nevertheless, if the
cost of each network simulation is large enough or the budget constraint is tight
enough, then the trade-off between simulation time and decision time will gen-
erally be worthwhile. As illustrated in our large-scale network tests, if each
lower-level user-equilibrium problems takes as little as a few seconds to eval-
uate, we can expect the the Bayesian R&S formulation to help reduce the to-
tal computational burden significantly. For problems with smaller sampling
budget, we could also apply a more efficient approximation like [71], in which

Bayesian beliefs were maintained only on sampled alternatives.

In conclusion, we believe our Bayesian R&S model will provide valuable
insights to the formulation and computation of NDP/NDPU or even other sim-
ilar discrete optimization problems with expensive objective functions. For fu-
ture work, we are currently working on a Bayesian &S model with parametric
beliefs and approximated KGCB policy, which will reduce the computational
complexity of both the update and decision step and potentially still retains the
model’s competitiveness. Meanwhile, we will also seek to expand our method-

ology to multi-objective NDPU problems.

41



CHAPTER 3
A BAYESIAN RANKING AND SELECTION MODEL WITH PARAMETRIC
BELIEFS AND SURROGATE-ASSISTED KNOWLEDGE GRADIENT
POLICY FOR THE DISCRETE NETWORK DESIGN PROBLEM WITH
UNCERTAINTIES

3.1 Introduction

The Network Design Problem with Uncertainty (NDPU) is a classical problem
in transportation sciences and engineering. Given a network and its users (de-
mand), NDPU optimizes network-wide objective(s) (e.g. total travel time, sys-
tem capacity, environmental impact, etc.) through a set of candidate “projects”
(modifications to the network), subject to randomness in traffic demand, travel
cost, etc. The intricacy of NDPU lies in the fact that each “project” not only
affects the structure of the network, but also alters the way users utilize the
network once they are informed of the changes. To capture such interactions,
NDPU problems are typically formulated as Bi-level programs [23], which are

known to be NP-hard even in their simplest forms [87].

Earlier studies of NDPU focused on its deterministic version, NDP. Due to
its proven complexity, most of these methods adapted alternative formulations
which relaxed various aspects of the problem (e.g. objective functions [58],
constraints[18], lower-level problems [18], etc.). In recent years, iterative meta-
heuristic algorithms such as Genetic Algorithms (GA) [94], Simulated Anneal-
ing (SA) [32], Tabu Search[9], Ant Systems[57], etc. have been another popular
branch of methodology. A good review of both category of methods can be
found in [93] and [59]. Many NDPU solutions methods were derived from their
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NDP counterparts plus a mechanism to manage uncertainty. The m ost pop-
ular formulation characterizes uncertainty as a probability distribution over a
tinite scenario set (e.g. [79, 72]). When the size of the scenario set becomes
large or infinite (e.g. when the governing probability distribution is contin-
uous), scenario approximation methods such as Single Point Approximation
[84, 82], Monte Carlo sampling ([73]) and Sample Average Approximation [72]
are applied. Most aforementioned procedures require simulating hundreds to
thousands of candidate solutions during the computational process. As NDPU
in practice can be imposed on very large networks, there is strong motivation to
improve the computational efficiency of NDPU solution algorithms by reducing

the number of evaluated solutions.

In a previous study [90], we introduced a Bayesian Ranking and Selection
(R&S) model with exact correlated beliefs. In the Bayesian R&S setting, we
place a probabilistic prior belief on the expected performance of each NDPU
solution (aka. “alternative”). The beliefs are then recursively updated by evalu-
ating alternatives selected by KGCB [29], a value-of-information-based sequen-
tial sampling policy [29]. The accuracy of our model proved to be much better
than a number of popular heuristic algorithms. However, the expensive com-
putational cost of the update of Bayesian beliefs and the KGCB policy limits the
practical problem size to a few thousand alternatives. Although there exists a
method ([71]) that maintains beliefs on only the sampled alternatives, its effi-
ciency can only be achieved for relatively small sampling budgets. Moreover,
the accuracy of the approximation in [71] would likely never exceed our old

study in [90].

In this paper we further improve the computational efficiency of the
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Bayesian R&S model with two powerful approximations: 1) a parametric rep-
resentation of our belief on the expected objective value of each alternative,
and 2) A surrogate-assisted knowledge gradient sampling policy which con-
structs a surrogate optimization problem with the approximated objective func-
tion and uses its solutions to constraint the scale of the knowledge gradient
calculation. The parametric belief structure allows us to perform learning on
the compact parameter space instead of the entire solution space, while the
surrogate-assisted sampling policy enables us to neglect the majority of the
solution space without losing much insight about the value of information of
each sample. Bayesian R&S models with parametric beliefs has been studied
for continuous decision variables in the context of linear programming with
unknown coefficients [67] and for special cases with discrete decision vari-
ables in drug-discovery [52]. We believe our parametric Bayesian R&S model
and the surrogate-assisted sampling policy complements the previous studies
with a more generic and practical framework for large-scale problems with dis-
crete decision variables. Our new method can also be classified as a stochas-
tic Bayesian version of a large class of black-box optimization/simulation op-
timization methods such as EGO [40], Sequential Kridging [24], Radius basis
functions [64, 51, 39], Splines [70], Gaussian Processes [62], etc. Most of the
aforementioned methods also utilized parametric approximations of the objec-
tive function and sequential “sampling” policies, but generally lack an inher-
ent formulation to characterize complex uncertainty structures. Therefore, our
model will provide not only an efficient model for NDP/NDPU, but also valu-
able insights to a larger class of discrete stochastic optimization problems in-
volving black-box objective functions, response surface modeling and surrogate

optimization.
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In Section 2, we first describe the traditional formulation of the NDP/NDPU
problem and how it can be formulated as a Bayesian Ranking and Selection
problem with parametric beliefs. Then we describe the design of our parametric
approximation and the surrogate-assisted knowledge gradient sampling policy.
Section 3 provides computational examples and Section 4 provides conclusions

and discussions.

3.2 Methodology

3.2.1 The Network Design Problem with Uncertainty

Assume a generic network (graph) G = (V, E), with V and E being the vertex set
and the edge set respectively. A NDPU is formulated when the decision maker
wants to optimize certain objectives (e.g. maximizing throughput, minimizing
congestion and etc.) over the network by modifying the edge set E with k im-
provement “projects”. In this paper we focus on discrete NDPU where projects
are binary decisions (e.g. link addition). Let the vector a = (a1, as, ...a;) be a de-
cision (solution) with each element a; representing the decision on whether to
implement project i, and let ¢ = (¢, ¢y, ...cx;) be the corresponding project costs.
Uncertainty in the NDPU problem is usually characterized by a countable sce-
nario space €2, with the probability of each scenario {p(w) : w € Q} well defined.
Attributes in NDPU (e.g. link flows) can take random values based on w, and
the goal of a NDPU is to choose the decision a* that will optimize the expected

objective function subject to a budget cap B.

The NDPU problem is usually formulated as a Bi-level mathematical pro-
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gram. The upper level problem models the decision makers” objectives while
the lower level models the network users’ responsive behavior to changes of
the network. Without loss of generality, in this paper we focus on a representa-
tive formulation of the NDPU problem to maximize improvement in total travel
time over the network, assuming that uncertainty only exists in travel demands.

The corresponding formulation is then given as below:

(Upper Level) max E(T,) =T, — Zp Z wi(w)ti(2g;(w)) (3.1)
we (4,j)€EUE}
k
"a=> c¢-a;<B (3.2)
i=1
a; € {0,1}, Vi € {1,2...k} (3.3)
{zij(w)": (1,)) € E} (3.4)

is the optimal solution for the lower level problem:

(3.5)
(Lower Level) Min Z / ’ tij(u)du (3.6)
v (4,j)€EEUE] 0
s.t.: Z o =d(w),s, Y(r,s) € D (3.7)
PEPrs

= > D> o, (3.8)

(r,s)€D pEPrs
Lij

Cij
[y >0,Vp € Py, V(r,s) €D (3.10)

by =10 (1 a- (22)7) (3.9)
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where

A:

T()Z

the set of all network configurations, i.e. {0, 1}*

expected total travel time on the base network

: the set of additional links selected by decision a.

: the equilibrium traffic flow on link (i,j).

: travel time on link (i,j) when flow is x

: free-flow travel time on link (i,j)

: capacity of link (ij)

: parameters for calculating travel time

: the set of traffic demands indexed by Origin(r) and Destination(s).

: the set of paths (contiguous links) which starts in node r and ends in node s
: the flow between origin r and destination s on path p

: equals 1 if link (i,j) belongs to path p and 0 otherwise

Equation 3.1-3.5 define the Upper level problem. Equation 3.1 is the objec-

tive function to maximize improvement in total travel time and Equation 3.2 is

the budget constraint. Equation 3.6-3.10 specify the lower level problem which

is assumed to be the deterministic User Equilibrium problem [75] in this exam-

ple. In particular, Equation 3.9 assumes the volume-delay function follows the

traditional BPR formula, which can be replaced by other volume-delay func-

tions. We can also replace the entire lower level problem by other formulations

such as stochastic user equilibrium[75] or system capacity maximization [79].
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3.2.2 NDPU as a Bayesian Ranking and Selection Problem

NDP/NDPU as a Bayesian Ranking and Selection Problem

The Bayesian R& S formulation of NDPU treats each network configuration (so-
lution) a as an alternative in the finite alternative set (denoted as A) and their
expected upper-level objective values as the corresponding “reward” of sam-
pling that alternative. We can think of a as a k-digit binary variable, the 7, digit
of which indicates whether project i will be implemented. The decimal value
of this binary variable can also be viewed as an index for the alternative set A
and in this paper we will assume elements in A is ordered by this index. As we
simulate alternatives a;,as...ay, we obtain (perfect) measurements of the ran-
dom “reward” of those “alternatives’, denoted as 7,,, T4,, ...T,, and recursively
update our beliefs of all alternatives rewards through Bayesian inferences. Af-
ter we exhausted all N samples, we select the alternative with the best posterior

expected reward.

Prior and Likelihood For NDP/NDPU, we further assume our prior belief
about the expected objective value of all alternatives follows a multi-variate
normal distribution. The sequence of measurements a,...ay follow normal dis-

tributions with known variances conditioned on the parameter values:.

0 := (E(T}), E(Th)...E(Tja)) ~ N (1, 5°) (3.11)

T, |0 ~ N(0a,, M), Vi € 1..N (3.12)

It is easy to see that the deterministic NDP problem is a special case of the for-
mulation where A, = 0, Va € A. For most stochastic problems, {\,,}, is

unknown and needs to be approximated/estimated from samples and prior be-
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liefs. It is worth noticing that although the actual objective value for each alter-
native may be correlated, the sequence of measurements on which we place our
Bayesian beliefs are drawn from independent simulations. Therefore, the likeli-

hood function of those measurements in Equation 3.12 are all independent.

Parametric Prior We can directly apply the exact, “look-up table” belief struc-
ture of Equation 3.11 on # (as we did in [90]) if | 4| is not too large. However,
as |A| can be of order 2* in NDPU in the worst case, it is inefficient to maintain
our belief about 0 as a discrete set even for moderate value of k. Instead, we can
try to approximate 6 as a parametric function of the alternative a and place our

Bayesian beliefs on the parameters instead. More specifically, we can assume

ba=Par=> ¢i(a)-a; VacA (3.13)
=1
and o = (a...00,) ~ N(5°, C°) (3.14)

where ¢;(-)...¢.,(-) is a series of deterministic basis functions (e.g. polynomial
basis, Fourier basis, Radius basis Function [39], etc.) and « is the vector of pa-
rameters we place our normal beliefs on. By the property of multivariate normal

distribution, the prior belief induced on 8 via Equation 3.13 and 3.14 becomes
0 = da ~ N (95°, oC 07 (3.15)

where @ is the |A| by m matrix with elements ®;; = ¢;(i). Equation 3.13 is
analogous to a “Value Function Approximation” in the approximated dynamic
programming literature [60] or a Response Surface in the design of experiment

literature [44]. Equation 3.14 adds the Bayesian interpretation.

Posterior Update of the Parametric Belief From results in recursive least

squares for linear regression models [60], the posterior distributions of o will
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still be normal under the likelihood function of Equation 3.12. Define a,, as the
alternative sampled at iteration n and ®,, (1 by m) as the a, th (in terms of the
decimal value of a,) row of ®. The corresponding hyper-parameters 5" and C"

can then be recursively updated as:

A

Tan - (I)anﬁn_l
Aa, + @, C"H(D,,)
C" (@) ®,, C7 !
Ao, + @y C (D, )T

ﬁn — 571—1 + Tc«n—l(q)an)T (316)

Cn — Cn—l _

(3.17)

As % and C? are updated to 8" and C", the posterior belief induced on 0 is
implicitly updated to N (5", 2C"®T) as well. The clear advantage of updating
B" and C™ is its computational efficiency compared with updating p™ and X"
directly: " and C" are only of size m and m x m respectively where m is typi-
cally polynomial to the number of projects k. The potential downside, however,
is that ®3" is only an approximation of the true reward ¢, and there is typically

no analytical guidelines to determine the suitable structure of the basis function.

Construction of Basis Functions As discussed in [60], the design and con-
struction of a parametric Value Function Approximation is usually problem-

specific. Our parametric prior for NDPU is based on two observations:

e Linear Dependence. The “reward” of a particular alternative (i.e. a collec-
tion of projects) is usually correlated with the “reward” of the individual

active projects in that alternative.

e Diminishing Return. The “reward” of an individual project is usually
“discounted” when implemented together with other projects. The dis-

count factor may grow as the number of project increases.
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Therefore, it is natural to model the “reward” of a particular alternative in the
NDPU as a discounted linear combination of the “reward” of each individual
active project. Indeed, for a NDPU problem with a maximum of k projects, our

proposed parametric approximation is:

llafl®—1

k
O = Bo + Zﬁz’ e lggm1y, VaeA (3.18)
i=1

Here {f3i,...0;} can be interpreted as the “main effect” of including each
project in an alternative, and f is a nuisance “intercept” term we incorporated
to increase the flexibility of the approximated objective function. Our basis func-
tion for {3, ...5;} consists of two parts: a binary indicator 1,,—1} to label the
active projects in the alternative, and a Gaussian discount factor e‘% which

depends on the number of projects in alternative a (i.e. ||a||) and a “bandwidth”

parameter b.

The structure of the Gaussian-binary basis functions presents a straightfor-
ward method to set up an informative prior for 8° = (50...0). Since the dis-
count factor is 1 when there is only one active project in an alternative (i.e. when
|al|?* = 1), we can set 3] = 0, generate sample estimates of the expected objec-
tive values of each individual projects {éy 17t and set 80 = fgi-1,Yi € 1...k. The
bandwidth b can also be estimated by simulating an additional b, (ie. the
alternative with all projects implemented). According to Equation 3.18, we will
have

k k

A _laj?-1 - k=1

Oy = 68 + E BZQ cem b =y = g Ogicr -0 (3.19)
i=1

=1
1 92k_1

o b= - In( L) (3.20)
S i

1—-k
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Estimating b and 3° would require an additional n(k+1) samples, where n is
the number of replications needed to generate relatively reliable {6, }*~}. Here
we assume the value of b will be fixed for all subsequent iterations, but we can
definitely update it recursively through Equation 3.20 if desirable. Though a
non-trivial overhead, b and {6, }%=} can be re-used in replication runs. As it
is common practice to run randomized optimization/learning algorithms for
multiple replications for enhanced stability, the average computational cost dis-

tributed to each replication will be much less significant.

Estimation and Approximation of Alternative Variances Estimating and ap-
proximating the variances of alternatives is an important aspect of Bayesian
R&S models and knowledge gradient sampling policies. In our model, since
we have already used multiple samples to generate {6, }=!, we can use the
very same samples to estimate their respective variances {\,}¥=}. Similar to
our belief on 6, we can put a parametric belief structure on the “prior” of the

variance of any alternative by setting

k
~ I
MN=0)p=) dyr-e " Loy VacA (3.21)

The corresponding bandwidth by can be estimated in a similar fashion to Equa-
tion 3.20. As the algorithm proceeds, we can collect more samples for a particu-
lar alternative a and update our “posterior” estimate of ), as in [90]. That is, for

an iteration n € 1...N when we sampled alternative a, we set:

A — UO)‘O+ZZ 1(ya —MZ(Z))
a UQ—I—N -2

(3.22)

where N, is the number of samples collected for alternative a at iteration n, n(i)
is the iteration at which the i, sample of alternative a is collected, ,ua ) is the

posterior mean for alternative a at iteration n(¢) and v, is a non-negative weight
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parameter. To marginalize the inaccuracy from the posterior means, we require
na to be at least larger than a threshold n,,;, (typically 3-5) before Equation3.22
can be applied. Equation 3.22 can be viewed as a weighted average of the prior
estimate in Equation 3.21 and the subsequent sample estimate. As the number
of samples accumulates, it is easy to see that the variance estimates will con-

verge to the true variances.

Decision After we have exhausted all N samples, we select the network con-

tiguration with the best posterior reward as the proposed optimal solution:

aly € argmax E(T,|FY) = argmax yi)' = argmax &4 (3.23)
acAf acAf acAl

Here A’ C A denotes the set of feasible solutions in A. As |A/| becomes large,
Equation 3.23 itself becomes a discrete optimization problem. However, as the
objective function in Equation 3.23 is deterministic and computationally cheap,
we can afford to run a generic iterative algorithm like Simulated Annealing [43]
or Genetic Algorithms for many iterations/replications to obtain high-accuracy
solutions. With the power of modern computers, the optimal solution can even
be enumerated in a few seconds for practical-sized NDPU problems with mil-
lions of network configurations. aj, will often be different from the true optimal
solution a* € argmax, 6, due to two sources of errors: 1 )the inaccuracies from
the approximated parametric belief, and 2) the imprecision due to imperfect
knowledge from finite samples. Therefore, our goal in practice is usually to

identify a} such that 6, is as close as possible to 0,-.
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3.2.3 Solving NDP/NDPU with Bayesian R&S Formulation

Overview of Solution Procedure

The solution procedure for NDP /NDPU with parametric Bayesian Ranking and
Selection formulations can be summarized in Algorithm 3.1 below. In short, we
iteratively update our Bayesian belief about the alternative rewards through
sequential simulation decisions. After exhausting all evaluation budgets, we
select the feasible alternative with the best expected posterior reward. In next
section we describe the surrogate-assisted knowledge gradient sampling policy

used on Line 3 of Algorithm 3.1.

Algorithm 3.1: Solving NDPU with Bayesian R&S formulation

Require: Inputs 5%, C°, budget cap B, sampling budget N
1: forn=1— N do
2:  Determine a,, the next sample to simulate via a sampling policy.
3:  Simulate network configuration a, and obtain objective value T},
4:  Update alternative variance )\fjn using Equation 3.22
5. Givena,, A2 and 7T,,, update posterior belief (5", C"') to (5", C"") with
Equations 3.16 and 3.17.
6: end for

Ak
7. return ay € arg max,c 4s P8Y
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Surrogate-Assisted Knowledge Gradient Sampling Policy

The KGCB Sampling Policy Our surrogate-assisted policy is inspired by a
value of information sampling policy known as the Knowledge Gradient pol-
icy with Correlated Beliefs (KGCB) [29]. Given an intermediate iteration n, the
KGCB policy selects the alternative with the largest “Knowledge Gradient”. In

the case of the constrained NDPU, it is presented in [90] that we should choose:

KG KG
a; " € argmax v; () = argmax E"(max ™, X" a, = a) — max plf
acA acA i€ Af icAf

(3.24)

The knowledge gradient of each alternative represents the expected im-
provement in the posterior optimal value from sampling that alternative. By
calculating the conditional predictive expectation of ma;u}*

2

for each alterna-
tive, we can project the value of information of all alternatives without taking
actual samples of them. The KGCB policy can be described in NDPU nota-
tions in Algorithm 3.2. For each feasible alternative, Algorithm 3.2 computes
its knowledge gradient (i.e. v}*“(a)) and records the solution with maximum

v$%(a). The time complexity of Algorithm 3.2 is O(log(|A/|)|Af||A|), which can

be a quite substantial as | A| grows to a few thousand.
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Algorithm 3.2: The KGCB policy for NDPU with parametric belief

Require: Inputs 5", ® and C".
1: foreacha e A’ do

2 (DB ar, ¢ 4 (PO - ea) ar [/ Aa + (PCT )

3:  (vy4s returns the feasible sub-vector of the vector v)
| AT
=1

4:  Sort the sequence of pairs (p;,¢;);—, so that the ¢; are in non-decreasing

order and ties in q are broken so that p; < p; 41 if ¢; = gi11.

|Af| h _
i=1 Where g; = gq;+1

5:  Remove all entry iin (p;, ¢;)

6 Co 4 —00, Clas| < +00, ¢; + —(piy1 — pi) /(@i — @), Vi € 1...|AT| =1

7. Remove all entry iin (p;, ¢;, ci)ﬁi‘ where ¢; > ¢;11

8 v(a) « log(XI " (g1 — a0 (e (—lail) — [eil@(—ei]))

9:  (¢(.)and @(.) is the pdf and the cdf of a standard normal variable)
10:  return a, = arg max,c4s v5 “(a)

11: end for

Surrogate-Assisted Knowledge Gradient Sampling Policy The computa-
tional burden of Algorithm 3.2 comes both from the outer for-loop that iterates
over all |A| feasible solutions and the individual knowledge gradient calcula-
tion from line 3 to line 8 of Algorithm 3.2 which manipulates the full mean
vector p of size |A’|. However, empirical studies [65] have suggested that mea-
surement policies like KGCB often spend most of their efforts among a small
group of “promising” alternatives. [66] proposed a Monte-Carlo knowledge
gradient sampling policy in which K Monte Carlo samples of the (stochastic)
posterior means are simulated and only the optimal solution in each simulation

is included in the subsequent knowledge gradient calculation. This approxima-
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tion reduces the computational cost of Algorithm 3.2 to O(In(K)K?), but incurs
the additional cost of simulating the a full random posterior mean vector for
K times. For our NDPU study, the mean vector is usually too large to be fully
simulated, so we instead solve the auxiliary “surrogate” optimization problem

for its optimal solution:
max (PF"), (3.25)
st. c-a<B (3.26)

Equations 3.25 and 3.26 form a simplified NDPU problem with a deterministic
and explicit objective function. They are sometimes known as surrogate models
in the heuristic optimization literature (e.g. [1]). Solving Equations 3.25 and 3.26
would give us a “surrogate” optimal solution a;,. Rather than using the random
outcome of stochastic simulations to maintain diversity of the candidate set as
[65] did, we propose to include alternatives in the neighborhood of a;, instead.

Define a d-degree neighborhood of an alternative a as:
k
N(a) Z a; ®i;) < d} (3.27)

Where @ is the XOR operator which takes value 0 when a; = i; and 1 otherwise.
In other words, N%(a) is the set of alternatives with at most d different project
status from a. We can then construct the localized approximate knowledge gra-

dient policy over N%(a) as

~KGmn ~KGn
a €a (a 3.28
; rg ag}vad?)vf (a) (3.28)
—arg max E"( max pu"u", X" a,=a)— ma " 3.29
g;:16Nd(a) <26Nd(a)ﬂAf Hi ‘,M ) iENd(a)}r{WAf Hi ( )

As shown in Equation 3.29, © AKG ""(a) is defined as the one-step expected im-
provement in posterior optimal value in the localized region of N“(a) if alterna-

tive a is sampled. We can also quickly verify that aK Gn — aff “™ if and only if
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a; " € N4y ") and argmaxear (it 1", 27, a, = ay ©") € N(a;“"). Nev-

ertheless, since most solutions in N%(a) have relatively high posterior means,

they are likely highly correlated with (or even contain) the set of potential poste-

rior optimal solutions at iteration n+1. Therefore, a large @J{m’”(a) value would

be a good indication of a large expected increment in the true posterior optimal
KGn

value (i.e. v, ""(a)) as well, ensuring the relative effectiveness of our approxi-

mated sampling policy at Equation 3.28.

Algorithm 3.3: Surrogate-assisted knowledge gradient policy for NDPU

Require: Inputs 5", ®, C". Neighborhood degree d.

1: Solve the surrogate problem (Equations 3.25 and 3.26) to obtain a,

2: Generate the index set for N(a}), the d-degree feasible neighborhood of a.
3: for each a € N%(a}) do

4:  Calculate @]‘f{ “m(a) on N4(a") using Algorithm 3.2

KG,
5 return a, = argmax,enag:) 0; ' (a)

6: end for

The surrogate-assisted knowledge gradient sampling policy then follows in
Algorithm 3.3. ﬁ]{{ “(a) in Equation 3.28 can be calculated like vf “"(a) by pass-
ing only the sub-vector containing elements of N¢(a}) as inputs to Algorithm
3.2. Algorithm 3.3 reduces the computational complexity of the sampling pol-
icy to only O(In(|N4(a})|)|N4(a})|?) = O(dIn(k)k*?), where typically d < 2. As
Algorithm 3.2 can efficiently handle vector size of a few thousand, Algorithm

3.3 will remain tractable for NDPU with at least 40~50 projects and billions of

feasible solutions.
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3.3 Computational Examples

3.3.1 Data Source and Simulation Design

For our case studies we use the famous Sioux Fall network and a larger Anaheim
network [3]. Data for both networks are publicly available at [3]. Summary in-
formation about the two networks is presented in Table3.1. The absolute size of
the network is moderate but they are already quite computationally expensive
for NDPU as we need to solve the corresponding lower level User Equilibrium
problem for hundreds of iterations and tens of repetitions in the experiments.
For the sources of uncertainty, we assume that d,, : (r,s) € D, the demand for
each Origin-Destination pair in Equation 3.7, is subject to a p% perturbation.
p follows a normal distribution with mean 0 and standard deviation cv (coef-
ticient of variation), where cv > 0 controls the magnitude of uncertainty. p is
generated prior to each simulation and applied to all OD pairs in the testing net-
work. If any d,; becomes negative after the perturbation, it is truncated to 0. On
top of the base network, we define 20 candidate projects, whose (fictitious) costs
are summarized in Table 3.2. Projects are typically constructed as bi-directional
links that connect OD paths with high volumes. The time for each User Equi-
librium evaluation in Table 3.1 as well as the other computational times later
reported are based on a workstation with two quad-core Intel Xeon processor

@2.40Ghz and 12 GB of ram.

The primary performance measure of our experiments is the Relative Op-
portunity Cost (RelOC) of each algorithm. RelOC is defined as the percentage
difference between the expected optimal value of the true optimal solution and

the expected objective value evaluated at the “best” alternative proposed by
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Table 3.1: Size of Networks

Network Name | # of Nodes | # of Links | # of OD Pairs | Sim Time(sec)

Sioux Fall 24 76 576 0.096
Anaheim 416 914 1444 0.202

Table 3.2: List of Projects

ProjectID | Budget ($) | ProjectID | Budget (3)
1 1800 2 1500
3 1000 4 1950
5 1650 6 2100
7 1200 8 625
9 650 10 850
11 100 12 1250
13 1300 14 1450
15 1600 16 750
17 850 18 950
19 1150 20 1250

the algorithm when it terminates. Thus, once the RelOC is zero, the algorithm
has found the best solution possible. We also define the RelOC of all infeasi-
ble solutions to be 1, as recommending an infeasible solution does not help our
decision-making at all. For our Bayesian R&S model, RelOC is a more reliable
performance measure than the traditional “difference in objective values” mea-
sure, since each of our samples has the potential to randomly generate large
optimal values. In our experiments, the “true” objective value for each network

configuration is approximated by the mean of 50 Monte Carlo samples.

For all tests, the lower level User Equilibrium problem (Equation 3.6-3.10) is
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solved by an open-source solver [78] with the relative gap of convergence fixed
at 107%. The implementation of the KGCB subroutine (i.e. Algorithm 3.2) is
based on the MatlabKG library available at [30]. We use a modified Simulated
Annealing algorithm [43] as the solver for our auxiliary surrogate optimization
problem at each iteration. The modified SA algorithm will reject all infeasible
solutions in the neighborhood of the candidate solution during the state transi-
tion calculation. The initial “temperature” of the SA algorithm is set to 100, and
decreases by 5% after each simulation evaluation. The degree of neighborhood
for each solution is set to 3. Except for the GA solver which is coded in C, all

other computational procedures are coded in Matlab.

For bench-marking, we solve the same problems using Genetic Algorithm
(GA) and Simulated Annealing, both of which are very popular for solving
NDP/NDPU and other similar black-box optimization problems. The Genetic
Algorithm uses evolutionary strategies to evolve a population of alternatives
to the optimal solution while Simulated Annealing generates a random walk
in the solution space to approach the optimal solution. For the GA algorithm
we use the package from [21]. The population size of the GA solver is set to
the number of projects in the test, the crossover probability is set to 0.9, and the
mutation probability is set to 0.02. Infeasible solutions are penalized in their
objective value in the GA solver. The SA algorithm is identical to the one used

to solve the surrogate problem.
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3.3.2 Computational Performance

In our first experiment we compare the computational performance of the
Bayesian R&S model with parametric beliefs over different project numbers
and uncertainty levels. For each of our two testing networks, we test the al-
gorithm under three scenarios: 10 projects with cv=0.3, 15 projects with cv=0.3,
and 20 projects with cv=0 (we were unable to test either network for uncer-
tainty scenarios with 20 projects due to the months of computational time ex-
pected to simulate the “true” expected objective value of every alternative for
multiple replications). The corresponding budget levels are 6000 and 10,000
for the 10 project scenarios and 10,000 and 15,000 for the 15 and 20 project sce-
narios. They correspond to 398/1023, 950/1023, 16,645/32,768, 32,544/32,768,
313,267/1,048,575 and 942,259/1,048,575 feasible solutions respectively. All
three algorithms (R&S, GA and SA) were executed for 20 replications for each
of the six scenarios. For our parametric Bayesian k&S model, we use 5 replica-
tions per project to estimate 3° and b for stochastic scenarios and 1 sample per
project for deterministic ones. Consequently, the initial estimation requires an
additional 50, 75, and 20 samples respectively for our three project/uncertainty
levels, which is prorated to an overhead of less than 5 samples per replication.
In this experiment, the surrogate optimization problem is solved for 1000 iter-
ations and the degree of neighborhood is set to 2 for the subsequent approxi-

mated knowledge gradient calculation.

Performance comparisons of the GA, SA and the Bayesian R&S model are
presented in Figure 3.1. To better illustrate the difference we use the log (base
10) of the RelOC on the y-axis. Reference lines are plotted aty = —1and y = -2,

which indicate 10% and 1% RelOC respectively. It is evident that the Bayesian
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Figure 3.1: Performance comparison for NDPU: 120 simulation budget

R&S model significantly out-performs both the SA and GA algorithm in all
scenarios. It converges to around 1% of the true optimal solution in about 100
iterations, while GA and SA have only approached 7 ~ 10% RelOC. A recur-
ring feature for the convergence path of the Bayesian R&S model in Figure 3.1
is the initial “spike” of RelOC around the first 20-30 iterations. This behav-
ior, well documented in the approximate dynamic programming literature [60],
represents a learning phase when the approximated Bayesian parametric be-
lief actively adjusts the parameter values to mimic the true objective function.
On the other hand, the parametric belief structure provides great flexibility to
account for randomness in the samples and inaccuracies in the approximations,
resulting in very stable performances across all budget levels, uncertainty levels,

project numbers, even in presence of the approximated alternative variances.
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Table 3.3: Average Number of Samples Needed for Different RelOC Levels

SiouxFalls| k=10, B=6000, cv=0.3 | k=15, B=10000, cv=0.3 | k=20, B=15000, cv=0

RelOC 5% 2% 1% 5% 2% 1% 5% 2% 1%

GA >1000 | >1000 | >1000 | 196 520 >1000 | 140 | 440 >1000
SA >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | 367 | >1000 | >1000
R&S 16 75 142 28 85 137 24 | 40 101

Anaheim | k=10, B=10000, cv=0.3 | k=15, B=15000, cv=0.3 | k=20, B=10000, cv=0

RelOC 5% 2% 1% 5% 2% 1% 5% 2% 1%

GA 170 810 >1000 | 154 490 >1000 | 460 | >1000 | >1000
SA >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | 903 | >1000 | >1000
R&S 37 75 114 36 105 129 28 |30 64

The efficiency of the Bayesian R&S model is better summarized in Table 3.3,
where we run all three algorithms for a larger simulation budget of 1000 and
compare the number of simulations required for the mean RelOC to reach (i.e.
never rise above) practical levels of optimality. For all scenarios, the Bayesian
R&S model uses less than 150 samples to reach an RelOC level of 1%. On the
other hand, the GA and SA algorithm converged very slowly beyond %5 RelOC,
making little to no progress thereafter for several hundred iterations. As the
total number of alternatives and the level of uncertainty increases, local search
algorithms like GA and SA can suffer from their “ myopia” and are more likely
to be trapped in local optima due to both the large state space and the stochastic
objective values. In contrast, our Bayesian R&S model is able to keep track of
the distributions of all alternatives through the updated parametric beliefs. Our
model accounts for the shape of the objective function as well as the level of
variability for each alternative, and is therefore able to identify highly optimal

solutions in large solution spaces and high uncertainty level.
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Table 3.4: Average Processing Time (sec) per Iteration

Time (sec) | k=10 k=15 k=20
GA 0.00299 0.00202 0.00184
SA 0.00017 0.000176 | 0.000195
R&S 0.440 0.445 0.512
Surrogate 0.413 0.39 0.417
Policy 0.0271 0.055 0.0951
Update 0.00029 0.00036 0.00041

Table 3.4 further compares the per-iteration computational overhead of the
three algorithms. Although the R&S model takes about more time to solve
the surrogate model and calculate the approximated KG policy, its faster con-
vergence speed can potentially save hundreds of simulations/objective value
evaluations, each of which already takes 0.1~0.2 sec for our toy examples. In
addition, the computational time of the Bayesian R&S model is dominated by
the surrogate optimization procedure. As the SA surrogate solver (as well as
most heuristic solvers which we could substitute) applies a myopic local search
heuristic, the computational cost of the entire Bayesian R&S model grows very

slowly as the number of project increases.

Lastly, in Figure 3.2 we present the relative efficiency of the surrogate-
assisted KGCB algorithm (Algorithm 3.3) with respect to the exact KGCB policy
(Algorithm 3.2). For this comparison we use the two previous scenarios with 10
projects, whose exact knowledge gradients are still tractable. Each scenario was
run for 5 replications. In each sampling iteration, we first propose a solution via
the surrogate-assisted KGCB policy, then calculate another solution from the ex-

act KGCB policy, and finally take the ratio of their knowledge gradients as the
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Figure 3.2: Value Of Information (VOI) ratio (6%%(-)/vX%(-)) of the
surrogate-assisted KGCB policy

measure of relative effectiveness. As Figure 3.2 (a) and (b) illustrate, the ratios
display a “V” shape along the sampling iterations. This is likely due to that
most learning algorithms tend to make smaller progresses in intermediate iter-
ations, and therefore the surrogate-assisted KGCB policy has a higher chance
to miss a few insignificant improvements. In Figure 3.2 (c) and (d) we display
the VOI ratio histogram of iterations where the exact KGCB has improved the
objective value by at least 0.1%. As illustrated by the red dashed quartiles lines,
the surrogate-assisted KGCB policy is able to generate a median VOI ratio of
0.600 and 0.726 for the two networks respectively. Given that the approximated
knowledge gradients are computed on a 2nd-degree neighborhood of 56 alter-
natives, the surrogate-assisted KGCB policy have roughly reached 60% ~ 70%
of the exact KGCB policy’s performance using only 5.5% (i.e. 56/1023) of the

available alternatives.
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3.3.3 Sensitivity Analysis

In our next set of experiments we examine the impact of key parameters in our
surrogate-assisted knowledge gradient policy, namely the number of iterations
in each surrogate optimization run and the degree of neighborhood d for the
approximated knowledge gradient calculation. We fix our testing scenario as
the Sioux Falls network with 15 projects, 0.3 cv and 10000 budget. We then run
our Bayesian R&S model over the 16 combinations of 4 degree of neighborhood
(0,1,2,3) and 4 surrogate iterations (250, 500, 1000, co). When the surrogate iter-

ation is 0o, we enumerate the true surrogate optimal solution.

Sensitivity Analysis: d=0 Sensitivity Analysis: d=1

I
=
I
=

|
=
)
|
=
)

log10(RelOC)
e rl- =
N 0 O >

log10(RelOC)
e rl- =
N 0 O >

-2.2 -2.2
0 50 100 150 0 50 100 150
Iteration Number Iteration Number
(a) d=0 (b) d=1

|
=
N =

log10(RelOC)
| B »L =
N 0 O »

-2.2¢

Sensitivity Analysis: d=2

0 50 100

150
Iteration Number

(c) d=2

|
=
N =

log10(RelOC)
| B »L =
N 0 O >

-2.2¢

Sensitivity Analysis: d=3

0 50 100

Iteration Number

(d) d=3

Figure 3.3: Impact of surrogate iterations and degrees of neighborhood

Figure 3.3 shows the RelOCs of our algorithm over different d value and sur-

rogate iterations. Scenarios with non-zero d value all performed significantly
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better than those with d = 0, demonstrating the value of our approximated
knowledge-gradient policy. The performance of the algorithm also generally
improves as d increases from 1 to 3. This is expected as a larger degree of neigh-
borhood not only includes more candidate solutions into the knowledge gradi-
ent comparison, but also increases the accuracy of each approximated knowl-
edge gradient (i.e. 0;“(-)) itself. On the other hand, the number of iterations
of the surrogate optimizer demonstrates a subtle trade-off between exploration
and exploitation. While high surrogate iteration somewhat improves the quality
of the approximated knowledge gradient, they are also more likely to focus on a
constrained areas of the solution space. In particular, selecting the best surrogate
solution at each iteration consistently produces the worst performance across
all degrees of neighborhood. This observation corroborates with earlier stud-
ies in response surface modeling [39] in which ”greedily” selecting the optimal
surrogate solution at each iteration actually decreases the performance of the al-
gorithm. On the other hand, low-surrogate iterations can explore more areas of
the solution space, which could sometimes over-compensate the relatively poor
quality of the surrogate solutions. As presented in Figure 3.3 (a), algorithms
with low (i.e. 250 or 500) surrogate iterations often slightly out-perform those

with high surrogate iterations.
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Figure 3.4: Time-RelOC trade-off of surrogate iterations and d
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Figure 3.4 further depicts the trade-off between accuracy and computational
time of different parameter configurations. Most importantly, the computa-
tional time of the surrogate solver is proportional to the number of surrogate
iterations, but the approximated KG iteration has computational complexity of
O(dlog(k)k?), which grows more than exponentially in d. Indeed, as Figure
3.4 (b) illustrates, the computational time of the our algorithm is dominated
by the surrogate solver for small d until it dramatically increases at d=3 due to
the soaring cost of the approximated knowledge gradient calculation. Overall,
scenarios with d value of 2 enjoyed great computational efficiency without sig-
nificant computational cost. Moderate surrogate iterations (e.g. 500) also seems

to produce more stable performance across different d levels.

3.3.4 Comparison with the Bayesian Ranking & Selection

model with Correlated Belief

In our last experiment we compare the performance of our new parametric
Bayesian R&S model (labeled PKG) with the Bayesian R&S model in [90] with
exact correlated beliefs and constrained KGCB sampling policy (labeled CKG).
We choose the scenario of the Sioux Fall Network, with 10 projects, 6000 budget
and cv=0.3. Figure 3.5 compares the convergence speed and per-iteration com-
putational time of both algorithms. For RelOC, the PKG algorithm converges
slightly faster than the CKG algorithm but was less stable due to the inaccurate
parametric belief. For computational time, the combined time of the surrogate
optimization and the localized approximated knowledge gradient calculation is

already lower than directly applying the KGCB sampling policy. Moreover, the
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update of parametric beliefs through Equations 3.16 and 3.17 is also much faster
than directly updating the posterior mean in CKG. Although the difference in
computational time is relatively small in Figure 3.5 (b) , we shall bear in mind
that the complexity of the PKG algorithm is polynomial in the number of projects
while that of the CKG algorithm is exponential. In fact, when we have 15 candi-
date projects, the total time for one iteration of the CKG algorithm would exceed

5 minutes, while the computational cost of the PKG algorithm still remains to be

0.5 seconds.
Number of Projects: 10 Budget: 6000 cv: 0.3 Comparison of Per—Iteration Computational Time
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Figure 3.5: Performance Comparison between CKG and PKG

Figure 3.6 shows a more interesting comparison on the final posterior mean
of the CKG and PKG algorithm. For both algorithms we select the replication
with median terminal RelOC. The objective function of the CKG algorithm looks
different due to pre-elimination and rearrangement of the alternatives (see [90]).
While the CKG algorithm did utilize information of all alternatives in its sam-
pling decisions, its posterior update is relatively unbalanced: sampled alterna-
tives are updated to around their true values while un-sampled alternatives are
estimated to a flat aggregated value. This is especially true for problems with
non-informative priors, where the correlation between alternatives needs to be

gradually learned. Nevertheless, the posterior mean of all sampled alternatives
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are symmetrically distributed around the diagonal reference line, showing the

asymptotic unbiasedness of the posterior belief.
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Figure 3.6: Comparison of Posterior Means: CKG vs. PKG

In sharp contrast, the posterior means of unsampled alternatives in the PKG

model is very close to their true mean values albeit a mild deviation from the

theoretical reference line. This is because the parametric belief by default in-

troduces linear dependence among alternatives through their shared 3 param-

eters, which updates un-sampled alternatives as accurately as sampled ones.

As Figure 3.6 (c) illustrates, the PKG algorithm quickly captured the global

shape of the objective function in limited iterations. Computationally, a more

informative belief can further improve the effectiveness of surrogate-assisted
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knowledge-gradient-related policies, which rely on posterior and predictive
distributions of the objective function. In real-world applications, a globally
well-approximated objective function is also more informative for the decision

makers than an isolated optimal solution.

In summary, our new PKG model trades off a little unbiasedness and per-
formance stability for significant improvement in scalability and a more global
approximation of the objective function. For problems like NDPU whose com-
binatorial structure to some extent dictates the shape of the objective function,
setting up a parametric model is straightforward and can be very beneficial.
Nevertheless, the CKG model assumes no prior knowledge about the problem

and can usually produce more stable convergence results.

3.4 Conclusion

We proposed a new Bayesian Ranking and Selection (R&S) model for the Net-
work Design Problem with Uncertainty (NDPU). The model adapts an approx-
imated parametric representation of the belief of the objective function, which
is exponentially faster to update than the traditional exact “lookup-table” belief
structure. It also features a surrogate-assisted knowledge gradient sampling
policy which uses solutions of an auxiliary surrogate optimization problem and
a localized approximated knowledge gradient to balance between the effective-
ness and computational cost of the expensive KGCB calculation. The explo-
ration vs. exploitation trade-off of our sampling policy can be customized with
the degree of neighborhood in the approximated knowledge gradient calcula-

tion and the number of iterations used to solve the surrogate problem.
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The parametric Bayesian R&S model inherits most of the advantages of the
traditional Bayesian R&S models with correlated beliefs, namely: 1) It keeps
track of the means and correlations of all candidate solutions (via parame-
ters) and is thus more likely to identify globally optimal solutions; 2) It en-
ables the use of sequential sampling policies like KGCB, in which later simu-
lation decisions can directly benefit from information gathered in earlier sam-
ples; 3) It models uncertainty with continuous probability distributions, which
are more efficient and flexible than discrete scenario sets. In addition, the new
model’s parametric belief and approximated sampling policy reduced the per-
iteration computational complexities to a low degree polynomial in the number
of projects. This greatly improves the scalability of the Bayesian R&S formula-
tion for large numbers of projects and alternatives. Indeed, our computational
experiments on the studied networks suggest that the parametric Bayesian R&S
model converged more than 10 times faster than both the Genetic Algorithm
and the Simulated Annealing Algorithm in all scenarios. It even outperformed
the old Bayesian R&S model with exact correlated beliefs by a slight margin,
although the latter has a smoother convergence path. Compared with the old
model, our approximations delivers significant computational efficiency at the

expense of very little bias and performance fluctuation.

Our new method demands a parametric approximation of the objective func-
tion. Anideal parametric approximation should have 1) a flexible structure with
the potential to quickly capture the shape of the true objective function, 2) an ef-
ficient procedure to update parameter values and 3) little overhead to initialize
the prior parameter values. For our NDPU problem with k candidate projects,
we are able to use only O(k) basis functions and O(k) additional samples to con-

struct a fairly accurate linear value function approximation. While the design of
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parametric approximations adds a prerequisite to the model, it is shown in our
study that parametric approximations can facilitate better global characteriza-
tion of the objective function, which may provide more information to the final

decision makers.

In conclusion, we believe our parametric Bayesian R&S model provide valu-
able insights to the formulation and computation of NDP/NDPU and other
stochastic discrete optimization problems. The surrogate-assisted knowledge
gradient policy also greatly extends the potential applicability of Bayesian R&S
models in large-scale optimization problems. For future work, we are currently
seeking to adapt a more rigorous treatment of the unknown alternative vari-
ances (e.g. [61]) to our model and also expand our methodology to multi-

objective NDPU problems.
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CHAPTER 4
BAYESIAN RANKING AND SELECTION MODEL FOR
MULTI-OBJECTIVE DISCRETE NETWORK DESIGN PROBLEM WITH
UNCERTAINTIES

4,1 Introduction

The Network Design Problem with Uncertainty (NDPU) is a classical problem
in transportation sciences and engineering. Given a network and its users (de-
mand), NDPU optimizes network-wide objective(s) (e.g. total travel time, sys-
tem capacity, environmental impact, etc.) through a set of candidate “projects”
(modifications to the network), subject to randomness in traffic demand, travel
cost and etc. The effectiveness of NDPU used to be measured primarily by
congestion-related metrics such as total travel time, demand/capacity ratio,
maximum capacity and etc. In recent years, there has been increased emphasis
on the externality (e.g. environmental impact, energy consumption) of trans-
portation systems and thus attempts to design sustainable transportation sys-
tems [26, 2, 6, 95, 35]. As a result, environmental/energy objectives are now of-
ten considered in parallel with congestion management goals, making NDPU in-
herently multi-objective. As objectives in multi-objective network design prob-
lems (MONDP/MONDPU) usually do not align with each other (e.g. system
capacity vs. financial budget), the optimal solution of MONDP/MOND{PU
is typically not a single point but a set of solutions with non-dominated ob-
jective values know as Pareto Optimal front. Due to the non-uniqueness and
non-dominance of Pareto Optimal solutions, it is generally desirable for deci-

sion makers to obtain at least a diverse set of optimal solutions. Therefore,
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population-based evolutionary algorithms especially NSGA-II [22] are very
popular choices for solving MONDP/MONDPU [74, 77, 12, 50]. Meanwhile,
MONDP/MONDPU were also studied in the context of water resources sys-
tems [25, 1], petro-chemical sensor networks [11], green supply chain [89], and
sales networks [27], where alternative solution algorithms such as ParEGO [45],
parallel variable neighborhood search [27] and GOMORS [1], etc. were pro-
posed. However, most aforementioned methods were formulated under a de-
terministic setting and often most suitable for problems with continuous deci-
sion variables. Moreover, evolutionary algorithms typically require simulating
the objective values of hundreds to thousands of candidate solutions, which can
be computationally intensive for MONDPU problems on large networks. There-
fore, we are motivated to design a modeling framework for discrete MONDPU
with minimal objective value evaluations and efficient management of uncer-

tainty scenarios.

In this paper, we propose a novice Multi-Objective Bayesian Ranking and
Selection (R&S) formulation to the MONDP/MONDPU problem. Ranking and
Selection procedures [42] compare the stochastic performances of finite number
of alternatives through limited sampling budget. Under the Bayesian R&S set-
ting, we view each candidate solution to the MONDPU as an alternative. The
random performances (i.e. “reward”) of every alternative is learned by taking
“samples” from selected alternatives and updating the beliefs we place on each
alternative and each objective function through Bayesian inferences. The up-
dated Bayesian belief is then utilized by the sampling policy to determine the
most “informative” alternative to sample in the next iteration. Bayesian R&S
model with scalar rewards have been extensively studied [29, 71, 68, 52, 67]

in various belief structures and both discrete and continuous decision vari-
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ables. In our recent studies [90, 91], it was also successfully adapted to model
single-objective NDP/NDPU and have demonstrated superior performances in
both sampling efficiency and uncertainty management. On the other hand,
R&S/ Bayesian R&S studies on multi-objective problems have so far mainly
focused on adaptive scalarization [31] or independent rewards [13, 81], either
of which fit very well with the structure or motivation of MONDPU. To solve
MONDP/MONDPU in Bayesian R&S formulation, we extend the model to
model multi-dimensional rewards and also generalize the Knowledge Gradi-
ent(KGCB) [29] sampling policies to multi-objective problems. We believe our
new formulation can be a valuable addition to existing Bayesian R&S mod-
els and can in general provide great insights to the construction and solution
of MONDP/MONDPU problems or even other multi-objective stochastic opti-

mization problems.

4.2 Methodology

4.2.1 The MONDPU Problem

Assume we have a generic network (graph) G = (V, E), with V and E being the
corresponding vertex set and edge set. MONDP/MONDPU optimizes multiple
objectives over the network by modifying the edge set E with k improvement
“projects”. In this paper we focus on discrete NDP, where each project adds
a few new links to the network. Let the vector a = (a4, as, ...a;) be an over-
all decision (solution) with each element a, representing the binary decision on

whether to implement project i, and let ¢ = (¢q, ¢3, ...c;) be the corresponding
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project costs. Uncertainty in MONDPU is usually characterized by a countable
scenario space €2, with the probability of each scenario {p(w) : w € Q} well de-
tined. The objective of a MONDPU problem is to identify the decision(s) a* with

Pareto optimal expected objective values.

NDPU/MONDPU can be viewed as a Stackelberg game [88] in which the
“leader” (transportation agencies) initiates modifications to the network and
the “follower” (network users) behave responsively to those changes. Con-
sequently, they are typically formulated as Bi-level programs [23], which are
NP-hard even in their simplest forms [87]. In this paper we focus on a styl-
ized MONDPU formulation to optimize three objectives: 1) reduction in total
travel time 2) reduction in PM10 emissions and 3) total financial budget of the
projects. We also assume that uncertainty only exists in travel demands. The

corresponding formulation is then given as below:

(Upper Level) max E(Ty) =Tp— Y plw) > ajw)ty)w)) 41)
weN (4,j)€eEUE]
k
p— . — — . T . — — . .. .
r?eaAX 1-E(B,) 1-¢'-a 1 ; ci - a; (4.2)
max E(R) =P — ZP(W) Z erijri;(w) tij(z;(w))
weN (4,j)€EUE}
4.3)
s.t. a; € {0,1},Vi € {1,2...k} (4.4)
{zij(w)": (1,4) € B} (4.5)

is the optimal solution for the lower level problem:

(4.6)
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(Lower Level) Min Z / h tij(u)du 4.7)
r 0

(i,7)EEUE}
s.t.: > £ =d(w)ys,Y(r,s) €D (4.8)
pGP’I‘S
= DL 2 b, ®9)
(r,8)€D pEPrs
T
tiy =ty - (1+a- (C;')ﬂ) (4.10)

f,>=0,Vpe P.s,¥(r,s) € D (4.11)
where

A : the set of all network configurations, i.e. {0, 1}*
Ty : expected total travel time on the base network
Py : expected total emission inventory on the base network
E : the set of additional links selected by decision a
z;; : the equilibrium traffic flow on link (i j)
er;; : emission rate (grams/ mile) of pollutants on link (i,j)
tij(x) : travel time on link (i,j) when flow is x
t2. : free-flow travel time on link (i,j)
C;; + capacity of link (i,j)
a, 3 : parameters for calculating travel time
D : the set of traffic demands indexed by Origin(r) and Destination(s).
P, : the set of paths (contiguous links) which starts in node r and ends in node s
f,° : the flow between origin r and destination s on path p

dijp : equals 1 if link (i,j) belongs to path p and 0 otherwise

Equation 4.1-4.6 define the Upper level problem. Equation 4.1-4.3 are the
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objective functions in congestion management, financial budget and environ-
mental impact respectively. Equation 4.7-4.11 specify the lower level problem
as deterministic User Equilibrium [75], a very common lower-level formulation

for NDPU/MONDPU.

4.2.2 MONDPU as a Bayesian R&S Problem

The Bayesian R&S formulation of the MONDPU problem treats the lower level
problem as part of an expensive evaluation of the upper-level objective func-
tions. Our goal is to identify a set of alternatives with Pareto optimal rewards
through N sample measurements. In this setting, each solution to the MONDPU
becomes an alternative a in the alternative set A. More specifically, we can think
of a as a k-digit binary variable, the i,, digit of which indicates whether project
i will be implemented. The decimal value of this binary variable can also be
viewed as an index for the alternative set A and we will assume elements in A
is ordered by this index. The upper-level objective values of each alternative, i.e.
R, := (T,, Ba, P,)is modeled as a multi-dimensional “reward” we receive from
sampling that alternative. The Bayesian R&S model starts by placing a prob-
abilistic prior belief on © := (E(R,))...E(R4))), the expected vector reward of
all alternatives. As we sample alternatives a;, a,...ay, we obtain measurements
of the random “rewards” R,,, R,,, ...Ra, and can update our knowledge of all
alternatives recursively through Bayesian inferences. After we exhausted all N
samples, we select the set of alternatives with Pareto optimal posterior mean

rewards.
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Prior and Likelihood For MONDP/MONDPU, we assume our prior belief on
the expected value of all alternatives rewards is independent across objectives.
In particular, each of them follows a multi-variate normal distribution and that
the sequence of measurements follow independent normal distributions condi-

tioned on the parameter values, i.e.:

E(Ty) --- E(T|A\) ! N(MToa ETO)
©:=|E(B) -+ EBua)| ~ |N@wk, k) (4.12)
E(P) - E(Pa) N (", 5)
Ra|® ~ N(@a, Ay, ), Vi € 1N (4.13)
Az, 000
where A, := (0 A 0 ) is the variance-covariance matrix for the likelihood
0 0 AL

of the three objectives. For most stochastic problems, {A,, }, is unknown and

needs to be approximated /estimated, which we discuss in a subsequent section.

Parametric Prior To improve computational efficiency for large numbers of al-
ternatives, we further assume an approximated linear dependency structure on
the beliefs of each objective. The resulting model is generally known as Bayesian
R&S model with parametric beliefs [60] and is analogous to other optimization
methods (e.g. [39, 1, 40]) in which a response surface is fitted to approximate
the expensive objective function(s). More specifically, we can assume that:
P
O = oo™ =Y ¢"(a)- o' Va€ A me{T B, P} (4.14)
i=1
and o™ = (af'...a?) ~ N(B™,C™) Vm € {T,B, P} (4.15)

P

where 07" is the expected reward of alternative a at objective m, ¢1"(-)...¢}'(+) is

a series of deterministic basis functions and o™ is the vector of parameters we
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place our normal beliefs on. According to [91], for MONDPU we can set

k al?-1
E(T,) = A0+ B¢ gy, VacA (4.16)
=1
i llal)® ~1
E(P)=8"+> BFe o7 -1y, VacA (4.17)
i=1
k
E(B,) =8+ B Lig-1y, VYacA (4.18)
=1

Here the corresponding {7", ...3;" } for each objective m can be interpreted as
the “main effect” of including each project in an alternative, and 3’ is a nuisance
“intercept” term we incorporated to improve the flexibility and account for the
inaccuracy of the parametric approximation. 5™ is a “bandwidth” parameter.
By the property of multivariate normal distributions, the prior beliefs induced
on O via Equation 4.14 and 4.15 still follows independent multivariate normal
distributions for each objective. As discussed in [91], the initial values of each
sequence of {1, ...0;} can be estimated by setting the corresponding /3§ to 0 and
generating sample estimates of the expected objective values of each individual
projects {07:}5=} as our initial values for {#J...32}. The bandwidth b can also be

estimated by simulating an additional ézmk_l (i.e. the alternative with all projects

implemented) and setting

b = In(—2=—) Vme{T, B,P} (4.19)

For objectives where a strict linear structure is apparent (e.g. Equation 4.18) , we

can also set b to oo directly.

The parametric prior structure implicitly introduces linear dependence
among alternatives. According to [91], such dependence structure could fa-

cilitate better estimation the global shape of each objective function. For
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MONDPU, this feature can be very useful for identifying Pareto optimal so-
lutions, in which each objective function can take a range of values in the Pareto

Optimal set.

Posterior Update The diagonal structure of A,, in Equation 4.13 and the inde-
pendent assumption in Equation 4.12 ensure that we can update the beliefs of
each objective function separately. As discussed in [60], the posterior distribu-
tions of a will still be normal under the likelihood function of Equation 4.13.
Define a,, as the alternative sampled at iteration n and ®,, = (¢o(a,),...¢x(an))
as the vector of basis functions for each objective of alternative a,. The corre-
sponding 5" and C” for each objective can then be recursively updated as:
Ry — @ grn=
AR 4 Om Cmin=l(pm )T

Cm,n—l ((I)ZZ;)T(I)ZZ; Cm,n—l
Am 4 m Cman—1(Qrm )T

ﬁm,n — ﬁm,n—l + Cm,n—l(q);r;)T VYm € {T, B,P} (420)

Cm,n — Cm,n—l -

Ym € {T, B, P} (4.21)

Our belief of each objective function is thus compactly stored in the sequence
{B™*,C™"},_o. n. By the linearity of multi-variate normal distribution, our be-

lief of each objective function is implicitly updated to N (®™ 3™ &mC™i(d™)T).

Prior Estimation and Update of Alternative Variances We can recycle the
samples used to estimate {ézm}fz_ol to estimate their respective variances {\7}}1— .
Similar to our belief on ©, for each objective we can put a parametric belief struc-

ture on the “prior” of the variances of any alternative by setting

lla)2~1

k
MO =N"A e Loy Ya€ Ame{T B,P} (4.22)
i=1

The corresponding bandwidth b, can be estimated in a similar fashion to Equa-

tion 4.19. As the algorithm proceeds, we can collect more samples for a particu-
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lar alternative a and update our “posterior” estimate of ), as in [90]. That is, for

an iteration n € 1... N when we sampled alternative a, we set:

_ UO)\0 + Zz 1(ya Mg(i))2

jmin A Vac {a..ay},m e {T,B, P} (4.23)

where N, is the number of samples collected for alternative a at iteration n,
n(i) is the iteration at which the i, sample of alternative a is collected, ug(i) is
the posterior mean for alternative a at iteration n(i) and v, is a non-negative
weight parameter. Equation 4.23 can be viewed as a weighted average of the
prior estimate in Equation 4.22 and the subsequent sample estimate. As the

number of samples accumulates, it is easy to see that the variance estimates will

converge to the true variances.

Decision After we exhaust all N samples, we select the network configura-

tions with Pareto optimal posterior rewards as the proposed optimal solution:
T
* N
Ay € arg mixE(R |FY) = arg max (MaTN uBN ,qu) (4.24)

Here A’ C A denotes the set of feasible solutions, and the arg max operator is
defined to return the set with non-dominated posterior objective values. [22]
gives an algorithm to identify all the Pareto optimal solutions in a discrete solu-
tion set of size N in O(mN?) time, where m is the number of objectives. When
N is large, we can run a regular multi-objective optimization package for many
iterations and replications to recover most solutions in A},. A} will usually be
different from the true Pareto optimal set A* € arg max, ©, due to both the inac-
curacy from the approximated parametric belief and the imperfect knowledge
from finite samples. Therefore, our practical goal is usually to identify a diverse

set of A}, such that every solution in © Ay isas close to © 4~ as possible.
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4.2.3 Solving the multi-Objective Bayesian R&S Model

Overview of Solution Procedure

Algorithm 4.1: Solving MONDPU with Bayesian &S formulation

Require: Inputs {3"°, C™, ®™},, c(r p p}, sampling budget N
1: forn=1— N do
2:  Determine A,, the next set of samples to simulate.
3:  Sample each solution in A,, and obtain their rewards {R., ra, € A,}
4:  Update alternative variances {/A\Qn :a, € A,} using Equation 4.23
5. Given A4,, {A:n ra, € A,} and {Ji’an :a, € A,}, update posterior beliefs
of each objective from (3™"~1, C™" 1) to (g™, C™")
6: end for

T
7: return arg max,c 4s <<1>Z“5aTN ‘I)aBﬁ?N (I)fﬁz“N)

The solution procedure for the multi-objective Bayesian R&S model can be
summarized in Algorithm 4.1 [91]. At each iteration n, we use information from
the posterior belief at iteration n-1 to make our next sampling decision, then
use the last set of samples to update our posterior beliefs. The most impor-
tant step in Algorithm 4.1 is arguably the sequential sampling policy. In next
section we describe the surrogate-assisted multi-objective knowledge gradient

sampling policy used on Line 3 of Algorithm 4.1.
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The Multi-Objective Knowledge Gradient Sampling Policy

The KGCB Sampling Policy Our sampling policy is inspired by the Knowl-
edge Gradient policy with Correlated Beliefs (KGCB) [29, 90]. Given an interme-
diate normal posterior belief N (1", X"), the KGCB policy selects the alternative

which maximizes the “Knowledge Gradient” function. That is, we choose

KG,
a; " € argmax v} “(a) = argmax E"(max p*|u", X", a, = a) — max pf
acA a icAf i€Af

(4.25)

The knowledge gradient of each alternative represents the expected ”one-
step” improvement in the constrained posterior optimal value if it is sam-
pled next. By calculating the corresponding conditional predictive expectation
max;pft', we can forecast the knowledge gradient of all alternatives without
taking any actual sample. The KGCB policy can be described in the nota-
tions of NDP/NDPU in Algorithm 4.2 ([91]). For each alternative, Algorithm
4.2 computes its knowledge gradient (i.e. v{“(a)) and returns the alterna-
tive with the largest. v “(a) value. The time complexity of Algorithm 4.2 is
O(log(]A])|A7]|A]). Algorithm 4.2 is executed at each iteration of the outer Al-

gorithm 4.1.
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Algorithm 4.2: The KGCB sampling policy for NDPU with parametric be-

lief

Require: Inputs 5", ® and C".

1: foreacha ¢ Ado

20 p+ BB, g PO - e,/ /Ay + (PCD),,

3:  Sort the sequence of pairs (p;, qi)ﬁi‘ so that the ¢; are in non-decreasing
order and ties in q are broken so that p; < p;41 if ¢; = gi1.

4:  Remove all entry i in (p;,, qi)ﬁi‘ where ¢; = ¢;11

50 Cp & —00, Casf| & +00, ¢ —(Pit1 — 0i)/(Gis1 — @), Vi € 1---|Af| —1

6:  Remove all entry iin (p;, ¢, ci)y:“] where ¢; > ¢;11

7. o) — log(SA (g — a)(e(—lel) — leal@(—lei)))

8: (p(.) and @(.) is the pdf and the cdf of a standard normal variable)

9:  return a, = argmax,c4s v5 “(a)

10: end for

The Multi-Objective KGCB Sampling Policy Our multi-objective KGCB al-

gorithm is constructed by analogously maximizing the multi-objective knowl-

edge gradient VXY (.). VKC()) is defined as the vector containing the knowledge

gradient of each objective. At each iteration, we select

Gn G,n
Af € arg max VfK (a) (4.26)
z“(n+1) (,UTna ZT") max; M?&f
= E" B(n+1) Bn Bn — — ., Bn
arg max (23}; 1 | (u°m, X5 | an a) MaX; [l
P(n+1 n n n
pf D )\ (e 2 max; il

(4.27)

Here again we define the argmax operator to return the set of solutions with

non-dominated VfK “(.) values. Similar to the single-objective case, the multi-
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objective knowledge gradient of each alternative represents the expected im-
provement in objective values for the subsequent posterior objective functions.
As the optimal value of each objective improves, the parametric beliefs will au-
tomatically updates the reward of other solutions through their assumed linear
dependency structure and push the entire posterior Pareto optimal front for-
ward. Since every solution in A? “" has non-dominated VfK “n() values, we
can use the Crowding Distance metric (with respect to the iteration-n posterior
beliefs) from [22] to further limit the maximum number of candidate solutions
we sample at each iteration when necessary. The crowding distance of a solution
is defined as the normalized sum of its distances to its adjacent solutions with
respect to each objective function. Solutions with larger crowding distance are
more isolated from other solutions and thus have better potential to maintain

the diversity of the final solution set.

Algorithm 4.3: Multi-objective knowledge gradient policy for MONDPU

1: Inputs: {57, C™ "} ci7.8,P}, Smaz-

2: for each alternative do

3:  Calculate VfK %" (a) using Algorithm 4.2

4: end for

5: Find AfG’" € arg maxX,c o7 VfKG’"(a)

6: if |A?G’”| < Smay Yeturn A, = A?G’”

7: else for each a € Aff G

8:  Calculate crowding distance cd? with respect to ('™ 2 pm )"

9: return solutions with top s,,,., largest cd} as A,
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With the new multi-objective knowledge gradient definition, our MOKGCB
algorithm is sketched in Algorithm 4.3. In each iteration, we first generate the
set A? " then select the top Smae solutions with largest crowding distances as
the candidate solutions to sample in the next iteration. When the size of AffG’"
is no larger than s,,,,, the entire A?G’" is returned directly. The computational
complexity of Algorithm 4.3 is O(mlog(|A|)|AJ?), where m is the number of ob-
jectives in the MONDPU problem.

The Surrogate-Assisted MOKGCB Sampling Policy The computational bur-
den of Algorithm 4.3 can be very high if |A| is large. In this section we propose
a surrogate-assisted approximation for Algorithm 4.3 above. This approxima-
tion can be viewed as a multi-objective extension of the method we developed
in [91]. Similar works for surrogate-assisted multi-objective optimization algo-
rithms can also be found in [1, 47, 80, 54]. The general idea of our surrogate-
assisted policy is to compute the expensive knowledge gradient only on a set of
“promising” (i.e. surrogate optimal) solutions recommended by the surrogate
optimizer. Our approximated policy starts by solving the surrogate optimiza-

tion problem constructed from the approximated objective functions:

T T
m%? (MTn IuBn IuPn) = (q)TﬁTn (I)BﬁBn (I)PﬁPn) (428)
ac

Equations 4.28 forms a simplified MONDPU with a deterministic and com-
putationally cheap objective function, which we can efficiently solve via many
multi-objective optimization packages. Solving Equation 4.28 would give us the
set of “surrogate” solutions A*. A* is then used as the candidate set on which

we apply the approximated knowledge gradient calculation. We can estimate
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the approximated knowledge gradient over A* as

TeD ) [ (T, ST maxe 4, ;"

VKG,n(a) _ En(mix MZB(nH) | (MBn7 EBn) ,dp = a) | max; 4. ,uf”
P :L n

ZP(n—i—l) (uFr, ) max; ;. "

29)

Note that the similarity between Equation 4.25 and Equation 4.29 ensures
that VX" (a) can be calculated like V" (a) via Algorithm 4.2. The surrogate-

assisted multi-objective KGCB policy is summarized in Algorithm 4.4 below.

Algorithm 4.4: Surrogate-assisted multi-objective knowledge gradient
policy for MONDPU

Require: Inputs: {3™", C™", " },c(7.8,P}s Smaz-
1: Solve Equation 4.28 for the surrogate optimal solution set A*
2: for each alternative do
3:  Calculate VX%"(a) using Algorithm 4.2
4: end for

R VKG,n(a)

5. Compute flffc’" € argmax,e .

6: if |[AKC) < 5,0, return flfG’" as A,
7. else for each a € Aff Gn
8: calculate crowding distance cd? with respect to (u'™ " pfm )"

9: return solutions with top s,,4, largest cd}

Algorithm 4.4 reduces the computational complexity of the sampling pol-
icy to only O(m In(|A*|)|A%|?) at each iteration. |A*| is typically similar to |A*],
the size of the true Pareto optimal set, which is much smaller than |A/|. |A*|
can be strictly limited by applying a population-based surrogate optimizer like

NSGAII, where |A*| is at most the pre-defined population size.
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4.3 Computational Experiments

4.3.1 Testing Data and Algorithm Packages

For our computational experiments we use the famous Sioux Fall network and a
larger Anaheim network as the testing bed. Data for both networks are publicly
available at [3]. Summarized information about the two networks is listed in

Table 4.1.

Table 4.1: Size of Networks

Network Name | # of Nodes | # of Links | # of OD Pairs | Sim Time(sec)

Sioux Fall 24 76 576 0.084
Anaheim 416 914 1444 0.243

For the uncertainty structure, we assume that d, : (r, s) € D, the demand for
each Origin-Destination pair in Equation 4.8, is subject to a p% perturbation. p
follows a normal distribution with mean 0 and standard deviation cv (coefficient
of variation), where cv > 0 controls the magnitude of uncertainty. p is gener-
ated prior to each simulation and applied to all OD pairs in the testing network.
On top of the base network, we define 12 candidate projects, whose (fictitious)
costs are summarized in Table 4.2. To fully test the uncertainty management
capability of our model, we add the financial objective an artificial normal per-
turbation with mean 0 and standard deviation at 10% of the mean budget. Our
PM10 emission rate er;; in Equation 4.3 is adapted from the AP42 procedure

[85], which calculates road-dust PM10 emission rate as:
er = k- (sL)> x (W) (4.30)
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where k is a particle size multiplier that equals 1 for PM10, sL is the road
surface silt loading(g/m?), and W is the average weight (tons) of the vehicles
traveling the road. For our experiments W is set to be 8 and sL is set to be 0.03

for freeways and 0.09 for arterial and local roads.

Table 4.2: List of Projects

ProjectID | Expected Budget ($) | ProjectID | Expected Budget (%)
1 1800 2 1500

3 1000 4 1950

5 1650 6 2100

7 1200 8 625

9 650 10 850

11 100 12 1250

For all tests, the lower level User Equilibrium problem (Equation 4.7-4.11) is
solved by an open-source solver [78] with the threshold relative gap of conver-
gence fixed at 107%. The implementation of the KGCB subroutine (i.e. Algorithm
4.2) is based on the MatlabKG library at [30]. For bench-marking, we conduct
the same tests with NSGAII, which is arguably one of the most popular solution
algorithms for MONDP /MONDPU and perhaps the only viable method which
can be easily adapted for our discrete formulation. For the implementation of
NSGAII we use the package from [21]. The crossover probability is set to 0.9,
and the mutation probability is set to 0.02. The NSGAII algorithm is also used
as the surrogate optimizer in Algorithm 4.4, where its default population size

and generation number are both set to 50.
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4.3.2 Performance Measures

Unlike in single-objective optimization, there is no single metric to measure the
effectiveness of a multi-objective algorithm. Ideally, solutions of multi-objective
problems should possess: 1) Close proximity to the true Pareto optimal front.
2) Good coverage over the full range of the true Pareto optimal solution set and
3) Good internal distribution/diversity. Previous studies have proposed many
useful metrics such as the Hyper-volume Index [16], Inverted Generational Dis-
tance Index [86] and various diversity measures [92]. [96] and [20] have detailed
reviews about the performance metrics used for multi-objective optimization.
Nevertheless, many performance measures are deigned primarily for contin-
uous decision variables and some only for two-dimensional problems, which
does not ideally fit in the structure of discrete MONDPU. In the next few para-
graphs we describe our modified performance metrics for the MONDPU model.
To balance the impact of different objectives, we assume each objective of our
final solution set A} has been normalized by the true Pareto optimal set A* to

take values between 0 and 1 before the performance metrics are computed.

Point-wise Convergence To measure the average distance between A}, and
A*, we use the Inverted Generational Distance (IGD) Index [86]. This metric
is defined as the average distance between each solution in the A} and their

nearest point in A%, i.e.

O — O4l1/d

ZaeA MiNg e Ax

I (4.31)

IGD(A) =

Here d is the dimension of the objective functions. We define the distance
between two solutions as the L1-norm (i.e. sum of absolute values) of the dif-

ferences in their objective values. The IGD index can take values between 0 and
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1. Unlike problems with continuous Pareto front where the shortest distance
is simulated with a large set of equally spaced Pareto Optimal solutions, the
nearest element of A* to each solution in A} is exact for our discrete MONDPU.

Therefore, the IGD index can take value 0 if A} matches exactly with A*.

Spread The spread of a solution set A with respect to A* is defined as the
average differences between the minimum or maximum objective values of the
two sets in each objective dimension:

d . . d . . . .
1 Imaz g c 4Ok — Mmax e a©L| + > | IMingrca=Ole — Minge 4O} |

2d

SPD(A) = 2

(4.32)
The spread of a solution set measures its convergence in terms of range in each
objective dimension. It can take values between 0 and 1, with 0 taken if the

range of A} matches with A* in every dimension.

Diversity The most common diversity measure for a multi-objective solution
set is the standard deviation of the distance between adjacent solutions [22].
However, the “adjacency” of solutions is only uniquely-defined for bi-objective
problems. For discrete optimization problems, elements in A* are not expected
to be equally spaced either. To adjust the diversity measure for discrete and

high dimensional problems, we propose the combined diversity metric as
Div(A) := (1 —n(A, A")) - std(CrowdingDistance(A)) (4.33)

The second term is the standard deviation of the crowding distance of the can-
didate solution set, which is well-defined for any number of objectives. For the
first term, we define

{arg mina*eA*, acA |®a* - @a|1}‘

A4 = A

(4.34)
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In other words, (A, A*) is the percentage of Pareto Optimal solutions chosen as
the nearest neighbor to solutions in the candidate set A. n(A, A*) measures the
diversity of A in terms of the number of Pareto optimal solutions it “covers”.
Nevertheless, given the same 7(A, A*) value, we still prefer solution sets that
are more equally spaced, as they tend to provide decision makers with a larger
variety of choices. Div(A) can also take value between 0 and 1 with 0 taken if

Ay, is identical to A*.

4.3.3 Result Analysis

Comparison of Performance Measures

In our first set of analysis we focus on the comparison of the three quantita-
tive performance measures between NSGAII and our multi-objective Bayesian
R&S model. We run both models for 20 replications on the Sioux Falls and the
Anaheim networks. The sampling budget per replication is fixed at 160. The
population size of the NSGAII algorithm is set to 10, 20 and 40. To off-set the
impact of uncertainty, we use the mean of two Monte-Carlo samples to evaluate

the fitness (objective values) of each solution in the NSGAII population.

Figure 4.1 plots the three performance measures over the number of sam-
ples. Note that we used log;, scale on the y axis. The error bars and the dashed
lines indicate standard deviation of the performance measures. It is apparent
that our MO Bayesian R&S model outperformed the NSGAII algorithm in all
three aspects, especially in spread and diversity. The performance advantage
of our model comes from both the high value of information per sample and

its more flexible sampling scheme. The NSGAII algorithm simulates a fixed
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Figure 4.1: Comparison of Performance Measures between NSGAII and
Multi-Objective Bayesian R & S

number of samples at each iteration. This approach limits the information we
maintain to only alternatives in each population and may also force the algo-
rithm to sample large number of redundant alternatives. When sampling bud-
get is low, this population-based approach also forces an unnecessary trade-off
between the diversity (population size) and accuracy (generations number) of
the final solution set. On the other hand, the multi-objective Bayesian R&S
model maintains information about the entire objective functions through the
parametric beliefs. The final solution set is inferred from the parametric beliefs,
and the diversity of solutions is automatically maintained as the accuracy of
the beliefs improves. Moreover, the number of samples in each iteration of the
multi-objective Bayesian R&S model is totally based on the knowledge gradi-
ent front at each iteration. As a result, alternatives are sampled only when their

value of information is high, which greatly improves its sampling efficiency.
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A recurring feature for all convergence paths of the multi- objective Bayesian
R&S model in Figure 4.2 is the initial “spike” around the first 20-30 iterations.
This behavior represents a learning phase in which the approximated para-
metric belief actively adjusts the parameter values to capture the dynamic of
the true objective functions. This behavior is well documented in the (single-
objective) approximate dynamic programming literature [60] and also observed

in our previous studies [91].

Decision Support Capability

In this section we illustrate the effectiveness of our model in practical multi-
objective decision making. Unlike in single-objective NDPU where a single al-
ternative is recommended and then simulated, it is usually impractical to simu-
late every solution proposed by the MONDPU solver due to their large numbers
and high computational cost. Instead, it is more sensible to use the final poste-
rior objective values supplied by the solution algorithm as the guideline for the
subsequent decision making. For our MO Bayesian R&S model, the posterior
objective values are generated by the approximated posterior objective func-
tion. For direct sampling algorithms like NSGAII, the posterior objective value

of each solution is their corresponding Monte Carlo estimation.

Figure 4.2 plots the three 2-dimensional trade-off curves of the two networks.
The trade-off curves illustrated the typical negative correlations between finan-
cial budget and network design goals, while a more convoluted relationships
is found between PM10 reduction and total travel time reduction. While the
two goals are positively correlated in general, their correlation structure vary

between networks. In the Anaheim network, PM10 reduction and Total Travel
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Figure 4.2: Visual Analysis of Median Posterior Goodness of Fit
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time reductions aligned well with each other, making the final design decision
relatively straightforward. However, in the Sioux Falls network, there are typ-
ically multiple Pareto optimal solutions for each budget level, not to mention
the almost stagnant PM10 reduction in sub-figure e) after the budget level hits
10,000. Although our testing networks and the calculation of objective functions
are highly stylized, these observed dynamics still showcased the level of compli-
cation involved in multi-objective decision making and the need to understand

the interaction among objectives through MONDPU models.

The posterior means of the final solutions set from NSGAII with population
size 40 (NSGAII-40) and our multi-objective Bayesian R&S model are plotted
along with the trade-off curves. For both algorithms we choose the replication
with median combined rank of the IGD, SPD and DIV values. For the two net-
works with 95 and 78 respective Pareto Optimal solutions, NSGAII-40 was only
able to generate 26 and 12 solutions. This corroborates with the low SPD and
DIV values we observed in the previous analysis. We can also observe especially
in sub-figure d) and f) a few extremely deviated NSGAII solutions with much
larger objective values. The deviations most likely comes from the randomness
in the Monte Carlo simulation of objective values, which could greatly distort
the decision makers” understanding of the problem. In short, the applicability
of the NSGAII algorithm in MONDPU is largely constrained by both the limited

sampling budget and the randomness in samples.

Meanwhile, it is clear from all plots that the posterior mean of our multi-
objective Bayesian R&S model is able to supply a large variety of solutions. In
fact, our posterior mean was able to supply 80 and 85 solutions respectively. As

our MO Bayesian R&S algorithm explicitly keeps track of the variances of the
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objective values of each alternatives, our posterior objective values also closely
mimic the dynamics of the true Pareto Optimal set. Our proposed solutions
would most likely give potential decision makers a much complete picture of

the problem at hand.

Sensitivity Analysis of MOKGCB Parameters

In this section we conduct a few sensitivity analysis on the tunable parameters
of the multi-objective Bayesian R&S model, namely, the maximum number of
samples per-iteration (s;,.,), the population size (nPop) and generation num-
ber (nGen) of the NSGAII surrogate solver, and the number of surrogate solvers
(nSur). S,,4, controls the number of calls to the sampling policy and is thus di-
rectly associated with the computational cost of the algorithm. nPop, nGen and
nSur are associated with the both the accuracy and the diversity of the surro-
gate optimal solutions. We run the multi-objective Bayesian R&S model for 10
replications for each tested parameter configuration and record the average per-
formance measures of the last 10 samples in each replication. The performance
measures are then further averaged over replications for presentation. The best

value in each performance measure and each network is bolded.

Table 4.3: Impact of 5,4, (Sioux Falls/Anaheim)

Smaz | IGD SPD DIV Time (sec/sample)

1 0.0188 / 0.0158 | 0.0643 / 0.0280 | 0.0219 / 0.0108 | 0.263 / 0.302
3 0.0194 / 0.0149 | 0.0651 / 0.0299 | 0.0177 / 0.0108 | 0.138 / 0.126
5 0.0192 / 0.0151 | 0.0629 / 0.0279 | 0.0203 / 0.0083 | 0.116 / 0.084
10 0.0211 / 0.0145 | 0.0672 / 0.0270 | 0.0194 / 0.0089 | 0.112 / 0.091

00 0.0171 / 0.0139 | 0.0587 /0.0292 | 0.0202 / 0.0099 | 0.096 / 0.078
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Table 4.3 lists the three performance measures as we change s,,,, from 1 to
oo (i.e. the sampling policy will sample every solution the surrogate optimizer
recommends at each iteration n). As we allow more alternatives to be sampled
at each iteration, the per-sample computational cost of our sampling policy is
reduced. Quite interestingly, almost all the performance measures also improve
as Smaq increases albeit the fact that higher s,,,,, calls the sampling policy fewer
times. This indicates that our MO Bayesian R&S model favors a more myopic
sampling scheme. Indeed, large numbers of earlier samples can help construct
better parametric approximations of the objective functions, which will in turn

increase the value of information of later samples.

Table 4.4: Impact of nGen and nPop (Sioux Falls/ Anaheim)

nGen | nPop | IGD SPD DIV Time (sec/sample)
10 10 0.0196 /0.0158 | 0.0674 / 0.0218 | 0.0176 / 0.0088 | 0.1190 / 0.0792
20 20 0.0188 / 0.0156 | 0.0592 / 0.0304 | 0.0163 / 0.0125 | 0.0841 / 0.0563
50 50 0.0169 / 0.0131 | 0.0512 / 0.0292 | 0.0205 /0.0078 | 0.0826 / 0.0515
100 100 | 0.0200 / 0.0142 | 0.0655 / 0.0324 | 0.0182 / 0.0116 | 0.1496 / 0.0865
00 00 0.0192 / 0.0145 | 0.0786 / 0.0450 | 0.0305 / 0.0135 | 0.3433 /0.3345

Table 4.4 summarizes the analysis on nPop and nGen. The s,,,, value in
this set of tests is set to 10. The co parameter value is defined to enumerate all
the Pareto optimal solutions from the approximated objective function without
calling the surrogate optimizer. The testing results showed that our sampling
policy performed relatively stably over the different surrogate configurations.
The per-sample computational time of the sampling policy is dominated by fre-
quent calls to the knowledge gradient calculation in small surrogate popula-
tion/generation numbers and dominated by the extensive surrogate optimiza-

tion solution process for large population/generation numbers. Similar to sin-
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gle objective surrogate optimization [39, 91], “greedily” exploiting the optimal
surrogate solutions (i.e. large or infinite population/generation numbers) at
each iteration slightly decreases the diversity and robustness of surrogate can-

didate solutions, which in turn decreases the performance of the algorithm.

Table 4.5: Impact of Parallel Surrogate Optimizer (Sioux Falls/ Anaheim)

nPop | nSur | IGD SPD DIV Time (sec/sample)
120 |1 0.0196 / 0.0151 | 0.0501 / 0.0291 | 0.0209 / 0.0142 | 0.1242 / 0.0921
60 2 0.0165 / 0.0186 | 0.0780 / 0.0270 | 0.0206 / 0.0104 | 0.0971 / 0.0779
40 3 0.0164 / 0.0160 | 0.0617 / 0.0271 | 0.0213 / 0.0102 | 0.0915 / 0.0754
30 4 0.0188 / 0.0147 | 0.0744 / 0.0330 | 0.0208 / 0.0122 | 0.0896 / 0.0770
20 6 0.0187 / 0.0142 | 0.0680 / 0.0296 | 0.0201 / 0.0103 | 0.0945 / 0.0880

Table 4.5 summarizes the comparison on nSur given the same total surrogate
population size of 120. The s,,,, value in this test is set to 10 and nGen to 50.
The surrogate optimizers are executed in parallel using the multiple cores of our
workstation. In general, multiple surrogate optimizers performed better than
single ones, as they tend to provide more diverse surrogate optimal solutions.
The diversity of surrogate optimal solutions will likely increase the number of
solutions Algorithm 4.4 recommends, which reduces the computational time
per sample. However, as the degree of parallelism increases, the population size
in each surrogate optimizer become too small to maintain satisfactory accuracy,

and the performance of the sampling policy is slightly decreased.

In summary, we feel that the multi-objective Bayesian R&S model has rela-
tively robust performances over the large range of parameter values we tested.
Most importantly, the effectiveness of the surrogate optimizer has very little

impact on the performance of the MOKGCB policy, which illustrates the great
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flexibility of our surrogate-assisted MOKGCB sampling policy. For better com-
putational performances, it may be desirable to set s,,,, to a large value and

apply a small number of parallel surrogate optimizers.

4.4 Conclusion

We proposed a Bayesian Ranking and Selection (R&S) model for the Multi-
Objective Network Design Problem with Uncertainty (MONDPU). In this
model we place an independent approximated linear Bayesian belief on each
objective function and recursively updates our parametric beliefs from samples.
The alternatives to sample at each iteration are selected through a surrogate-
assisted multi-objective version of the knowledge gradient sampling policy,
which extends the value of information definition to multiple dimensions. To
the best of our knowledge, our model is the first to generalize the Bayesian
R&S model and the knowledge gradient sampling policies to discrete multi-
objective optimization problems. Compared with traditional population-based
multi-objective optimization algorithms, our Bayesian R&S model has an inher-
ent uncertainty management capability from its statistical formulation, a dy-
namic “population size” depending on the value of information of samples,
and a parametric belief structure which compactly keeps track of the global
curvature of each objective function and the Pareto optimal front. In our test-
ing examples, the multi-objective Bayesian R&S model overcame the limited
evaluation budget and the uncertainty structure of MONDPU to recommend a
highly Pareto optimal and diverse set of solutions. These solutions would give
transportation policy makers a much more comprehensive understanding of

the trade-offs between various financial, environmental and congestion-related
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objectives and enable the design of more sustainable transportation systems.

In conclusion, we believe our multi-objective Bayesian R&S model and the
surrogate-assisted MOKGCB policy provide valuable insights to the formula-
tion and computation of MONDPU and other discrete multi-objective optimiza-
tion problems. For future work, we are currently seeking to adapt a more rigor-
ous treatment of the unknown alternative variances (e.g. [61]) to our model and

also extend our formulation to multi-period problems.
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CHAPTER 5
CONCLUSION

In this dissertation we have introduced the Bayesian Ranking and Selection
formulation for single objective and multi-objective discrete Network Design
Problem with Uncertainty (NDPU). With this formulation, each solution to the
NDPU problem represents an “alternative” with a stochastic “reward” (i.e. ob-
jective value). We start the Bayesian R&S process by placing a prior belief on the
mean and correlation structure of the expected rewards of all alternatives. At
each iteration, we make sequential sampling decisions based on the sampling
history maintained by the recursively updated Bayesian beliefs. Constraints in
the NDP/NDPU problems can be utilized to pre-eliminate infeasible alterna-
tives. Uncertainty structures are modeled by probability (normal) distributions
whose non-uniform variances are estimated and updated from samples. With
the Bayesian R&S formulation, we are able to view NDPU/MONDPU from a
statistical learning/simulation optimization perspective and focus our effort on

directly exploring the inherent relationships among different solutions.

The advantages of this new Bayesian R&S formulation for NDPU/MONDPU
are mainly: 1) It allows us to incorporate prior belief structure into the solutions
procedure, which could significantly narrow down the search space and conse-
quently improve convergence speed 2) It records and updates the means and
correlation structures of all candidate solutions, which gives us a more global
understanding of the objective functions to avoid local optima and also to iden-
tify Pareto optimal solutions for multi-objective problems 3) It enables us to use
sequential sampling policies like KGCB, in which later simulation decisions can

directly benefit from information collected via earlier samples and 4) It models
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uncertainty with continuous probability distributions, which are more efficient
and flexible than discrete scenario sets. Indeed, in our first study of Bayesian
R&S model with exact correlated beliefs in Chapter 2, our computational exper-
iments have already suggested that our model performed better than both the
Genetic Algorithm and the Simulated Annealing Algorithm for both NDP and
NDPU. The superior performance of the Bayesian R&S model also implies its

potential in solving similar discrete optimization problems.

Chapter 3 further extended the basic ideas of Chapter 2 by adding a paramet-
ric (linear) belief structure and a surrogate-assisted knowledge gradient sam-
pling policy. The parametric approximation allows us to set up a more infor-
mative prior for both the expected rewards and the corresponding variance of
all alternatives. It is exponentially faster to update than the traditional exact
“lookup-table” belief structure in Chapter 2 and has the potential to closely
mimic the global shape of the objective function in just a few iterations. The
surrogate-assisted sampling policy uses the approximated objective function to
construct a surrogate optimization problem, whose solution and its neighboring
alternatives are then passed to a localized approximated knowledge gradient
computation. The policy combines the efficiency of off-the-shelf optimization
algorithms with the predictive power of knowledge gradient calculations, and
have achieved great balance between accuracy and computational cost. Alto-
gether, the two powerful approximations reduced the per-iteration computa-
tional complexities of our Bayesian R&S model to a low degree polynomial in
the number of projects, which greatly improved the scalability of Bayesian R&S
models. In fact, our computational experiments with as many as 1 million alter-
natives suggest that the parametric Bayesian R&S model converged more than

10 times faster than both the Genetic Algorithm and the Simulated Annealing
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Algorithm in all scenarios, adding only minimal additional computational cost
per iteration. Compared with our old model in Chapter 2, our approximated
model in Chapter 3 delivered significant computational efficiency at the expense

of very little bias and performance fluctuation.

The advantage of the parametric belief structure to quickly capture the
global shape of the objective function further motivated us to extend the
Bayesian R&S formulation to posteriori MONDPU. Posteriori multi-objective op-
timization methods aim to propose a set of alternative or trade-off solutions to
the decision maker, after which he/she can make an informed decision. As
solutions in the Pareto optimal front can take a range of objective values in
each objective dimension, the objective function approximations need to be
uniformly accurate across the domain of the decision variables. In our multi-
objective model, we place an independent parametric Bayesian belief on each
objective function. The alternatives to sample at each iteration are selected via
a surrogate-assisted multi-objective version of the knowledge gradient sam-
pling policy, which extends the knowledge gradient definition to multiple di-
mensions. Compared with traditional population-based multi-objective opti-
mization algorithms, our multi-objective Bayesian R&S model has an inherent
uncertainty management capability from its statistical formulation, a dynamic
“population size” (i.e. number of samples per iteration), and a parametric be-
lief structure which compactly keeps track of the global curvature of the Pareto
optimal front. In our testing examples, the multi-objective Bayesian R&S model
overcame the limited evaluation budget (i.e. 160) and the uncertainty structure
of MONDPU to recommend a highly diverse set of Pareto optimal solutions,
while the bench-marking NSGAII failed to adequately illustrate the trade-offs

among objectives. Our Bayesian R&S model demonstrated great potential for
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real-world multi-objective decision making. To the best of our knowledge, our
study is the first to generalize the Bayesian R&S model and the knowledge gra-
dient sampling policies to discrete multi-objective optimization problems. It is
also one of the first studies which formally incorporated randomness in posteri-

ori multi-objective optimization problems.

The main contributions of the dissertation are threefold. Firstly, we have in-
troduced the idea of modeling NDPU/MONDPU as a simulation optimization
problem through the Bayesian R&S models. Due to their explicit mathemati-
cal form, NDPU/MONDPU problems have been studied mostly from a math-
ematical programming perspective. This viewpoint often limits us to model
the uncertainty structure of NDPU/MONDPU as discrete scenario sets, which
typically leads to inefficient solution algorithms. Previous heuristic methods
such as genetic algorithms, simulated annealing and NSGAII have implicitly
treated NDPU/MONDPU as a single-level information collection procedure,
but none has effective mechanisms to account for either the expensive evalua-
tion cost or the randomness of the upper-level objective function(s). With the
Bayesian R&S formulation, uncertainty can be characterized flexibly by prob-
ability distributions and samples can be saved via the one-step forecasts from
knowledge-gradient policies. While this simulation-optimization interpretation
of NDPU/MONDPU might overlook some subtle structures of bi-level prob-
lems, the computational improvement in convergence speed, computational
time, and even the solution diversity for MONDPU is significant. As a result,
the Bayesian R&S formulation have greatly extended the practicality of NDPU
and MONDPU and related problems in real-world decision making.
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Our next contribution is the introduction of surrogate-assisted knowledge
gradient sampling policies to Bayesian R&S models. Surrogate-assisted sam-
pling policies/decision rules have been actively used in earlier studies of sim-
ulation optimization/black-box optimization algorithms (e.g. [1]). However,
most previous studies about Bayesian R&S models focused more on the math-
ematical rigor of the sampling policies instead of their potentials in real-world
large-scale applications. We developed the surrogate-assisted knowledge gra-
dient policy by chaining a surrogate optimizer with a localized knowledge gra-
dient calculation. The surrogate optimizer can quickly rule out the majority
of “unpromising” alternatives, after which the knowledge gradient calculation
compares in detail the value of information of a small group of highly compe-
tent solutions. Although the theoretical grantee for surrogate assisted policies
are likely loose, they have demonstrated superior performance in our case stud-
ies. Coupled with the Bayesian parametric belief, we were also able to extend
the Bayesian R&S models to mutli-objective problems, which essentially united
the formulation of MONDPU and NDPU under a single framework. The para-
metric belief + surrogate-assisted knowledge gradient policy can be viewed as
a stochastic Bayesian version of response surface modeling [44], which greatly
extended the applicability of Bayesian R&S models in generic black-box opti-

mization/simulation optimization problems.

The last contribution is our inclusion of non-uniform alternative variances in
Bayesian R&S models. At the time of writing, most earlier studies in Bayesian
R&S models (e.g. [29, 52] ) still assumed a simple known constant “measure-
ment noise” for all alternatives. As such assumption is generally invalid for
NDPU/MONDPU, we established a separate prior estimate and posterior up-

date procedure to learn about the variability of objective function(s) from the
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very limited samples. Albeit the general lack of accuracy in variance estimates,
the Bayesian R&S models in our studies all performed reasonably well, espe-
cially with parametric beliefs. This performance stability may be attributed
to the uncertainty “buffer” provided by the covariance of the Bayesian beliefs
and has also demonstrated the robustness of the Bayesian R&S formulation.
The success of the light-weighted variance estimation procedure also enables
Bayesian R&S models to be applied to stochastic optimization problems whose
uncertainty structure cannot be efficiently described via traditional optimiza-

tion models.

Nevertheless, this dissertation still leaves plenty of room for further im-
provements of the Bayesian R&S models and the expansion of their potential
application areas. The first area of improvement is the variance estimation pro-
cedure. Our current models all require a non-trivial number of “first stage”
samples, which could create overhead for large-scale problems. The knowl-
edge gradient sampling policy we adapted from [29] also assumed known al-
ternative variances, which could generate unpredictable biases if the variance
estimates are directly plugged in as did in all our studies.Therefore, it would
be very desirable for future studies to adapt a more rigorous treatment of the
unknown alternative variances (e.g. [61]). Next, to generalize the Bayesian
R&S model to other classes of optimization problems, we may also need to
conduct more experiments with non-parametric Bayesian beliefs (e.g. [49, 4]),
high-dimensional /integer decision variables and high-dimensional objectives
to stress-test the effectiveness of both the approximated Bayesian beliefs and
the surrogate-assisted knowledge gradient sampling policies. A third interest-
ing direction would be to extend the Bayesian R&S formulation to multi-period

optimization problems.
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In conclusion, we believe our Bayesian R&S models and the surrogate-
assisted knowledge gradient sampling policy provide a highly practical alter-
native for applying NDPU and MONDPU in real-world, large scale, single and
multi-objective decision making. The new formulation is intuitive to under-
stand and easily applicable to similar classes of optimization problems. We
believe the models themselves as well as this unique statistical learning per-
spective is of great interest and value for network modelers and simulation op-

timization practitioners.
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