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Abstract

Let Sn(Vh) =
{<r, Q)vi.--0 v, 83> |
I is a finite presentation ot;ﬁﬂ Ql"'ok is a
string of quantifiers with n alternations, the
outermost an a(v)hﬁ{r °1"1"'°x"u ast},
It is shown that S (V) is complete for xP(nP). and
- n''n n''n

ng sn u Vn i8 complete for PSPACE, answering a question of

(1) and generalizing a result of Stockmeyer and Meyer (2],

.rhi. research has been supported in part by National Science
Foundation grant DCR75-09433.




0. Introduction

In (1) we discussed the importance of finitely presented
algebral:with respect to finite tree automata, context free
derivations, and logic. We showed that several decision
problems previously known to be complete for various complexity
classes were in fact special cases of natural decision problems
about finitely presented algebras. Here we continue on this track.

Stockmeyer and Meyer ([2) proved that deciding truth of
closed quantified Boolean expressions with n alternations of
quantifiers, n21, the outermost a 3(V), is a problem complete
for Is(n:), the nth L(N) level of the polynomial time hierarchy.
There is, however,a pathological twist to their result, namely
that it fails for n=0, since Boolean trees can be evaluated
in deterministic logspace. This suggests that sets of quantified
Boolean expressions are perhaps not the proper canonical complete
sets for tﬁ and nﬁ. ‘

In this paper we answer a question left open in [1] and
generalize the result of Meyer and Stockmeyer mentioned above.
Let

Sn(Vn) = {<r, Q) vy+e:Q v, 85t> |

I' is a finite presentation ot.jl, ol...ok is a string
of quantifiers with n alternations, the outermost

an 3(V), the sentence Qyv)---Q v, 85t {8 true in 7).
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Sets of quantified Boolean expressions are special cases of
these sets, since I' can be taken to present the two-element

Boolean algebra. We show that sn(vn)in sTo -complete for

g
PPy v m
zn(un), and n=0 sn v Vn is slog complete for PSPACE. The
pathology noted above disappears, since as shown in 1], sot-vo)
m
is slog complete for P.
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J 1. Preliminaries

' We will review briefly the basic definitions. The reader

should consult [1]) for a more extensive treitnent.

3 Definition 1.0

i An algebra 4 is finitely presented if there is a finite

set G of generator symbols, a finite set O of operator symbols

of various finite arities, and a finite set I' of axioms or

defining relations of the form xZy, where x and y are terms over

G and 0, such that 7 is isomorphic to the free algebra (algebra
of terms) over G and O modulo the congruence induced by I'. The

-

triple <G,0,I'> is a presentation of . a

Example 1.1

The two-element Boolean algebra is presented by
G= (0. 1)
0= (a, v, =} ’

I = {ovoz0, Ovl=1, 1vo=1, 1vi:=l,
04020, 0A1=0, 1020, 1al:=1,

2120, +0=1).

For computational purposes we shall consider terms to be
represented by labeled dags; e.g. the term Ovl would be represented
by the tree ®
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We also allow a more efficient repreaentaétzn by "factoring out”

common subterms, e.g. terms with tree representations

S AN

a b

become, after factoring, the dag

A presentation will be given by a labeled dag representing the
terms appearing in G and ', with an extra undirected edge set
connecting the roots of x an§ y., where xZy is an axiom of T.
Let <G,0,I'> be a presentation. We will reuse the symbol T

to stand for the presentation <G,0,I'>. We will dendte the set
of terms by 1, and write xSy when the congruence of terms x and
y follows from the axioms of I'. We will denote by 1/r the

algebra presented by T.

i
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pefinition 1.2

The word problem is the set
WP = (<I', x, y> | x=y}.
The finiteness problem is the set
FIN = (I | T presents a finite algebra). L

As shown in (1], both WP and FIN are s:;g-complete for P.

Definition 1.3

Let D = {6k | 6¢0, 1sks arity of 6}. Let a,B8,... represent
strings in D.. A will represent the null string. Strings in
D. will be used to specify the position of a subterm in a term,

according to the following examples lf x is the term

KRN
A
VAN

then y occurs as a subterm of x at position 036°'1l. We will

write xay if y occurs as a subterm of x at position a. [ |
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Definition 1.4
x{a\y) is the term x with the subterm at position a
(1f it exists) replaced by y.
x[{wWy) is the term x with all occurrences of the subterm

w in x replaced by y. n

Definition 1.5
x +y if there is an axiom z:w of T and a such that xas
and y = x[a\w].
s is the reflexive transitive closure of -+. n
The relation H constitutes a convenient proof system for

congruence of termss

Lerma 1.6

®
x + y iff x=zy.

Proof
Easy induction on definition of =. n

The following sets are of fundamental importance.

Definition 1.7
R = {subterms of terms appearing in T')}.
r = {[x) | (x) is the congruence class of x, xeR).

R = {y | Iy} e r ) = {y | axeR xzy). . n

Definition 1.8

xaz iff dy xay and y=z. [



———— i
" -7

The following oleignt‘gy properties are easy to prove,

using the technigques of [1)..

Lemma 1.9
(1) 1f s=t, say, tapz, & 2{R, then yla & ygz.
(11) 1f xay, ygz, & :{ﬁ. then xagz.
(114)  1if xaBz, xay, & :la. then y}ﬁ & yBz.
(1v) 1f xpz & :la then x‘ﬁ.
(v) 4if xzy, xaz, & z{R, then yaz.
(vi) if s=t, say, taz, & z{i, then y:=z.
(vii) 1if a=t, say, & ylﬁ, then s(a\ z]zt(c\ 2] for any z.

(viii) if yaz, y=z, and y{R, then a=).
(ix) 1if exl...x-EOyl...y- and Oxl...x-{R, then X 2y, l<ism.

Proof
We will prove (i) as an illustration of the techniques;

the rest are equally straightforward and are left as exercises.
Assume s=t, say, tafz, & :li.

In a proof t-t1 + tz + eee * tn-a of t=s, if there is a minimal

1 such that ti - t1+1, tlyw, t1+1 - tily\xl where wsx is an

axiom, and y is an initial substring of a8, then t,az and =

is congruent to a subterm of w. But this subterm of w is in R,

contradicting the assumption :lﬁ. Thus no such i can exist.

This says that safz. But say, so gw saw and wsy, but then

wfz, and as above, ypz.




To show le, note yfz implies yBx & xzz for some x; but if

YeR then x¢R, contradicting the assumption that z{R. -

Definition 1.10

Let T be given. Let V = (vl.yz,...) be a set of variables.
Let G = 6w, t* = (terms over G* ana o). Thus ¥ is the'set
of terms with occurrences of variables. A schema is a formula
8=t, s,t£T+. A closed formula is one of the form
lel cee kak 8t
where each o1 is either @ or ¥, and all variables occurring

in s and t are among vl,...,vk.

Definition 1.11
A closed formula ¢ is true in ‘/r (denoted t/r ¢ if
either
(1) ¢ is of the form s=t (note in this case s,te¢t since
¢ is closed) and s is congruent to t.
(11) ¢ is of the form wvy and for all xer, */r b odinix).
(111) ¢ is of the form dvy and there is an xet such that
/r Fovinx. _ .
Let vl,...,vk be the variables occurring in s and t. We
will write x for a k-tuple of terms in T, and s(x) for
s[vl\xll...lvk\xkl. By the definition of truth above,
Yk Qvy---Q v, sst ™
iff
Q%) ...Q %, 8(x)=t(x). (4#)
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Note that (*) is an assertion about the truth of a gentence

in some language interpreted over the domain t/r (here the o1
are symbols in the language), while (**) is a metastatement about
congruence of terms in t (here the Q1 represent the English

“for all” and "there is® in Definition 1.11 (ii) and (1i1)).

This is a subtle distinction which should be recognized, but

vwhich we will find convenient to ignore in general.
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2. Main Results
Definition 2.0
Let sn(vn) = {<r, olvl...okvk sst> |

Q.-.Q is a string of quantifiers with n
alternations, the outermost a I(V), and

1/r [ °1"1"'°x"u sst)., [}
In the following, let I' and °1"1"'°x"k 8t be fixed.

Definition 2.1
RY = {subterms of 8 and t}.
Rl - Ru(R+n 1)

= ([xllxchl)

Ry = (yllyler,) = (y|axer, xsy). »

We wish to develop a means of describing the syntactic

interdependence of terms in R*.

Definition 2.2

Let ~be defined on (lt*)2 as the smallest equivalence
relation satisfying

(1) s~t

(i1) exl...xn'-ayl...yn

X) " YpeeeooX ~y,

Note that (i) and (ii) plus the axioms



-]ll=

(141) x~x -
(lv) x~y
y~x

(v) x~y, y~s
X~z

constitute a complete proof system for ~ .
The purpose of ~ is to determine which subterms of s & t
are forced by syntax to be congruent under most interpretations

of the variables,

Lemma 2.3

If s(x)st(x), u~w, and u(x) ¢ ;l, then u(x)=w(x).

Proof

Easy induction onh proof of u~w, using Lemma 1.9. |

The axioms and rules (i) - (v) above for ~ allow us to

decide whether u~w in polynomial time. More 1lporta_nt1y,

Lemma 2.4
There is a polynomial time algorithm to construct ~

+
on R,

Proof
Construct edges between subtrees representing terms in R*
as in the proof of Theorem 1 of (1). a
The following technical lemma establishes the relationship
between ~ and the ternary relation of Definition 1.3..
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Lemma 2.5

If x~x', xBy, and x'By*', then y~y’'.

Proof

Induction on length of 8. | |

At this point we introduce two éasential concepts. Let

vy be a variable.

Definition 2.6
vy is immune if any of the following hold:
(1) 3du v;~u and uch (i.e. u contains no variables);
(i1) du v;~u and vy is a proper subterm of uj
(i1i) 3du,w such that vy is a proper subterm of u, u~w, and

the labels at the xoots of u and w differ.

| ]
Definition 2.7
vy is principal if there is no proper term u (one not in
G or V) with vy~ u. n

Intuitively, immunity is a sufficient condition that a

variable be forced syntactically to assume a value in r, in

1
any assignment to the variables satisfying the schema s=t.

Lemma 2.8

If v, is immune and s(xX)zt(x), then [xllerl.
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Proof
We consider the 3 cases of immunity separately. Suppose
s (x) =t (x).
(1) &u Vi~ Uu & ucR,.
1f xllal. then by Lemma 2.3, xisu(f)au, thus (x;)=[u]er,.
(11) gu vi~u s vy is a proper subterm of u.
If xilal, then by Lemma 2.3, xliu(x) and u(i')ux1 for some
afA. But this contradicts Lemma 1.9 (viii).
(ii1) gu,w, ay¥) such that uav,, u~w, and labels at the
roots of u & w differ. If xilﬁl. then u(?){ﬁ by
Lemma 1.9 (iv), hence u(x)=w(x) by Lemma 2.3. But
by Lemma 1.9 (v), v(?)g;l. thus the root of w is the

same as the root of u, contradicting the assumption.

Using the algorithm of Lemma 2.4, .it is very easy to
decide immunity and principality for a variable \E In fact,

Lemma 2.9
There is a polynomial flme algorithm to
(1) decide whether vy is immune;
(11) decidé whether vy is principal;
(i11) 1if neither (i) nor (ii), produce a proper tree u
such that v;~u and u contains occurrences of

variables, but no occurrence of vy

Proof

Exercise.
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Finally we introduce a ternary relation on wn‘xv defined

inductively as follows:

Definition 2.10

viavy iff (1) & vl'-u and uavkl or

(ii) a=By and ivj vdvjka. ]

This relation is meant to represent the syntactic interdependence
of .the variables. Its essential properties are outlined in the

following 3 lemmas:

Lemma 2.11

1f vi8Vy and aylA, then vy is not principal.

Proof
By Definition 2.10 there must be a vj, an initial substring
8 of a, B#\, and v, .U, ,...,V, .U such that
’ ’ 11 11 ’ 1_ 1.
vi’.“ilxvll"“izhi ~eee~uy ij, i.e.
V,~*V, ~...~Vv, ~u, Bv,, hence v,~u, Bv,. } ]
i 11 1" 1n b] i 1- 3
Lemma 2.12

If v,gv,, s(x)=t(x), and xkh;, then x ax, .

Proof

Induction on definition of v,avy s

Basis
By Lemma 2.3, xisu(i) axy» and the conclusion follows

from Lemma 1.9 (v).
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Induction step vlgvj;v and a=fy.
By the induction hypothesis, x jIFk' and by Lemma 1.9 (iv),

j}n. Again by induction hypothesis, xig;j The conclusion
follows from Lemma 1.9 (ii).

Lemma 2.13

1f v,gfv, and vlgvj then ngvk.

Proof

Induction on definition of v,gfv,., using Lemma 2.5. "

The following lemma is key to the proof of the main
theorem. It asserts the "independence® of principal variables

from other variables.

Lemma 2.14
Let v, be principal and let x), y,{R,. Let }( wySuy
be a conjunction of schemata with each vj¢n1 (1.0. 'j contains
no variables) and uj¢n+. Then
/p F AV, v, sIvAxlstiviix ] & 5 50y v\ %))
izt
/- QVy. .0 vy slvl\yllat(vl\yll [ 1/51 ujsuj(vl\yll.

Proof
Let x,, yll§1 and assume x,7y,, otherwise the result is
immediate. Let XgresorXy €T be arbitrary.
For 2si<k, let

Yy = xy lul\ Yl, (02\ Yll coe [d,‘\ Yll (2.15)
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yhera the uj are all strings a such that viav,y and X ax,. Note
that no “j is an initial substring of another aye since distinct
terms congruent to xy must be incomparable with respect to

the subterm relation, by Lemma 1.9 (viii); thus Yy is well-
defined.

Y; is then just x; with some subterms congruent to xy
replaced by ¥y The subterms replaced are determined by the
dependence of vy on v;.

We now claim that

s(x)=t(x) + s(y)=t(y). (2.16)
Note s(y) is just s(X) with some subterms congruent to x,
replaced by y,, and similarly for t(y). Since s(?)g;l ifg
t(;)g_x1 by Lemma 1.9 (v), it suffices to show that

(a) if s(;)gxl and n(i)gyl then t(F)gyl, and

(b) if t(x)ax, and t(y)ay, then s(y)ay,,

i.e. if a subterm of s(Xx) is replaced by Y, in s(y), then the
subterm in the corresponding position of t(x) is replaced by
Y, in t(y), and vice versa; for, it follows from several
applications of Lemma 1.9 (vii) that s(y)=t(y). We will show
(a); (b) is analogous.

Let s(;)gxl and s(?)uyl. There must v,,B8,y with
a = By, stl' xilxl' and vixv, - Since t(I)gxl. one of the
following three cases must hold:

(a) ij df € is a substring of a and tEvj,
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(b) ﬂvj a8 tucvj, or

(c) HueR, tau.
But (c) is impossible, since xllal,and (b) is not possible,
since if it were true,'and u were such that tBuycvj. then
S by Lemma 2.5, hence legvj: but ViXVys 8O by Lemma 2.13,
vlgvj, which by Lemma 2.11 contradicts the principality of vy
This leaves (a). Then 3n a=fn and xjgxl.
We have

a=gy, ""1' viXvye

a=En, tzvj. xjﬂxl‘

If 8 is a substring of {, let (=88. Then y=8n, and .
tscvj and aavl, 80 vlgvj by Lemma 2.5, thus vjnv1 by Lemma 2.13.
If £ is a substring of 8, let B=(§. Then n=8y, and

lEGV1 and ttvj, so vj_ by Lemma 2.5, thus ngv
Thus in either case we have yjnyl, hence t(y)qyl, as was
to be shown, and claim (2.16) is verified.
Note also that
j‘“j(x) -+ wj—uj(y),
since if uj(x) # uj(y) then both contain subterms not in R1
hence both ijuj(;) and ijuj(f) dre false, by Lemma 1.9 (iv)
& (V).
Let ¢ be the formula
8zt & jfiszuj
Proceeding by induction on quantifiers, assume that for all

terms X,,...,x,
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°l+1 l+1...0 X 0(!1,22,...,xl.xl+l,.;.,xk)

* Oy Xpans Ok $F e ¥peeree¥peXpyyoeeaiy)y
where Ypeeeesy are defined by (2.15). tor any fixed XpreeesXg g0

the existence of some x, satisfying

Q1 %041 "Xy Q(xl,xz.....xl.....xk)
implies the existence of a 3z satisfying

Qper¥pers QX $U o ¥preeeedy g oBeXypgoeeeindy
namely z = Yy Therefore

BxgQy 1 X g a1 Xy $0%p0eeemy)

hd ﬁx.Q'.*lX“_l---kak 0(yl,...,y._l,x‘,....xk).

For any fixed x2""'xg-l' .
i W Q) X, 000.0 %, $(X), then since ‘1‘“1' 1/, is infinite
(see Lemma 9 of (1)), and since for any a, an x, can be con-
structed such that not x 2 2%y 0 by Lemma 2.12 it follows that
not vlgvl. Thus Yy = X%, But then

‘”lol+lxl+l"'°kxk o(xl,xz....,xz....,xk)

»* mlqlilxlfl.“'Qkxk O(Ylvyza--.o0Yl_le!nx.+11---'xk)

b d wl°l+lxl+1"°°kxk O(yl.....Yl-l.xl.xl+1,...,xk).
We have shown by induction that )

szz"'okxk o(xl,xz,...,xk)

-+ °2x2'°'okxk Q(yl,xz,...xk),

and the converse follows from symmetry. n

Parallel algorithms were introduced in (3,5]. It was
shown in (3,5) that parallel polynomial time computations

accept exactly the sets in PSPACE, and in (3] that such

.-J“—M‘
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computations restricted to n alternations of A-and v-branches,
starting with an v-branch (A-branch), accept exactly the sets
in £ (1P), where P (1P) 1s the nth I () 1evel of the poly-
nomial time hierarchy [2). Here we apply such a computation
to the closed formula

lel...okvk sst,
using a-branching to eliminate v quantifiers, and v-branching
to eliminate g quantifiers.

Theorem 2.17
There is a parallel polynomial time algorithm to decide,
given I' and °1"1"'°u'x s3t, whether
t/r - lel...okvk szt.

Proof
Let vj!yj. 1sjst, be a set of schemata, chnl. yj¢R+.
The schemata vjzyj may be represented by an extra undirected
edge set on the dag representing szt and '. We show how to
decide truth of formulas of the form
0%y -+ -0, %, [8(Dze(® & 41 vysy (D). (2.18)
On input I’ and (2.18), run the word problem qlgorlthn of
Theorem 1 of (1) to determine all congruent pairs of terms in
Rl‘ and run the finiteness algorithm of Theorem 12 of (1) to
determine if 14,11 finite. Use the algorithm of Lemma 2.9
to determine immunity and principality of variables.
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Suppose 01 = ¥. Then
¥x Q)X .00, X, (s(x)=t(x) & 1/51 sy, (x)1
1L
W (X ler) + Qyx,...0 X (s(x)=t(x) & jél vyEYy (x))
& Vi, [x,){r) » Q% QX (s(X)=t(x) & jél sy, (x))

iff
- - [ -
Q. X....0. % [8(x)zt(x) & . w, sy, (x)]) (2.19)
’4‘\!‘1 2%2 % *x {_\ Y5
¢ %Ry 0 L0 X, [s(RzE(R) & 351 vy, (D)1, (2.20)

At this point in the algorithm a series of A-branches is made,
spawning n+l independent parallel processes, where n is the
cardinality of Rl. The first n processes will each pick a
different xlrkl
algorithm recursively with input

and verify one clause of (2.19), by calling the

<T, szz...okvk ls(vl\xllit[vl\xll & ;51 szyj[vl)x1]]>.
The size of the problem is not increased, since consolidation
of common subterms is allowed; occurrences of Vi in the repre-
sentation of s, t, and yj may be replaced with pointers to Xy

The remaining process will verify (2.20). If T/r is
finite, then the process may immediately accept, since by
Theorem 9 of [1}, r,= 1/r, hence (2.20) holds vacuously.
Suppose then that 1/r is infinite. 1If vy is immune, then the
process may immediately reject, since by Lemma 2.8, there is

no satisfying assignment with [xll‘rl.



-21-

b 8 vy appears in any of the Yj' then the process may
immediately reject, by Lemma 1.9 (iv) and (v). If vy is not
immune and does not appear in any Yj' but vy is principal, then
by Lemma 2.14, (2.20) holds iff

0%y 0%, R i Avyry@ @
where x is anhy term not in Rl. In polynomial time, the process
may find such an x‘ by locating an m-ary 6 and terms ul....,umcn
such that Dul...umla. The algorithm is exactly the one used
to decide finiteness (see [l), Theorem 12). The word problem
algorithm may be run to determine ‘if eul...u.Ex for some xeR,’
if not, take x. = 0uj.eoud if so, let u be the largest tery in
Ry containing x as a subterm and take x. = 6u...u. It is
easily verified that x.{al. but all proper subterms of x. are
in Rl.

Now the process determines whether (2.21) holds, by
calling the algorithm recursively with input.

<r, szz...o'kvk (s[vl\x.)st[vl}x'l & éi szyj]>'

As before, the size of the problem is not increased; we may
replace each occurrence of vy in the dag representing s and’t
with the label ® and edges to each of the immediate subterms of
x., which all lie in R,.

Finally, 1if vy is neither immune nor principal, then
Lemma 2.9’guarantees us a ucR* such that vy~ u is a proper

tree containing occurrences of variables, and v1 does not occur

in u. Then by Lemma 2.3, (2.20) is equivalent to
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v:llﬁl Q,%;. .- QX (8 (X) =t (x) “él szyj(:-:) & x =u(X)), (2.22)
and since xlin(f) implies s(v,\u] X)=s(X) and tivy\u) (x) st (x),
(2.22) is equivalent to )
"‘1‘;1 Q,%,...0,x, [slv)\u) (i)st(vl\u] (x) & /51 szyj(i')

& xlin(;)] . (2.23)
Note that schema l[vl\ u) Et[vl\ u)} may be represented as
concisely as s=t, by replacing occurrences of v with pointers
to u. Since u contains no occurrences of vy the graph remains
a dag.

At this point the process may reject immediately if there
is more than one operator symbol in 0; otherwise there would
certainly be an xllal with its root symbol differing from that
of u, thus xlfu(i) for any X by Lemma 1.9 (v;. Hence assume
0 is the only operator symbol, and let 6 be m-ary.

The process may reject immediately if uab and beG, since
if y is any term not in R and x,ay, then xllﬁ and xlfu(i) by
Lemma 1.9 (iv), (v). Therefore we may assume all leaves of u
are variables. .

Finally, the process may reject immediately if uav, , \lei.
and a7B8, since if yl.yzla, ¥,#Y,, X,0Y,, X By,, then xll; and
xlfu(i), as above. vy, and Y, exist, since we have assumed Tlr
.infinite. Thus we may assume that each leaf of u is labeled
with a different variable name. This says that no two subterms
of u are identical, hence the physical representation of the
term u is a tree, not just a dag. This observation will be

instrumental in achieving a good time analysis below.
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Now, since u is a proper tree, say u = Onl-...u‘. and since
every element of G is in Rl' (2.23) is equivalent to
LEIT\ LIPTIR LRSS i N .
Qpxge. 0 x, [slvy\ul (x)stv)\ul(x) & Y wyy, (x)
& Oxn. o .xl-EOul (x).. .u-(x) 1,
which by Lemma 1.9 (ix) is equivalent to
Vx VX, ....¥x  Ox ...xl-Jnl + -

1112 1 1
Qg%pe -0 %, [8Lv)\ul (D) ztlv\ul (B) & 51 v sy, (®)
& 51 xuiuj(x)], | (2.24)

which in turn is equivalent to
/\ (%50 ¥, 0X)y ooy IR
n" Qp%,e+-Qrx, [81v)\ @) (%) 2t v\ ul (%) & /\1 v -yj(x)
o & j".l xlj-uj(x))) (2.25)
[ vxuln L IPPRR TR Gn -
0y%pe..0px, [slv)\u) ()= tlvl\ul 0 s J}\ v sy, ()

f\ x, 4=uy (3 (2.26)
and as above, the process A—branches into n+l processes, the
first n of which each verify a clause of (2.25) for some
xncnl, and the remaining process verifies (2.26). Since

xn“l *0x Xy ‘Rl’ (2.26) is equivalent to

Vx lln Yxn... 1m %20 Q% [slv)\u) (x)= stiv,\u} (x)
aﬁ j‘yj"‘) & Rz lj‘“j(x)
[ xu~u1(x)]. (2.27)

Now each process attempting to verify a clause of (2.25)

for some xuclll may take Vo4l ™ X1 Y ™ Y. and verify that
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LIPTTRL NPt A JR - '
Q,%,.+.0 % [slv,\u) (x)zt[v)\u] (x)
& s{i w _yj(x) & fgz xleuj(;)]
by attacking X}, in the same way x,, was attacked in (2.24).
Eventually, there are some processes attempting to verify

0x ...xlm{R1 +

11
0%, .Q';xk [slv)\ul (X)st(v,\ u] (%)
& 521 ijyj(x) & 551 xljiuj(x)),
with xll""'xlmtﬁl' The process may use the word p¥oblem
algorithm to dispoge of the antecedent.

As for the process verifying (2.27), if v, is a proper
tree, x4, and u, are broken up in the same way x and u were in
(2.23). This procedure continues until all subterms of u have
been broken up. Since variables reside at the leaves of u,
we are left with formulas of the form
"1 lR RN JR Q,%,-..0.x, [slv \ul(x) t[vl\ul(X)

r

. A Ty, (%) & }{ z, j'xijl' (2.28)

It follows from the fact that the size of u was no bigger

than the size of its physical representation that the above

was a polynomial time A-computation. Moreover, since no two
subterms of u were identical, each Xy occurs among the X at

most once. If some xg is universally quantified, then the process

can immediately reject, since (2.28) would imply Vz1 in z, Ex1
I b

which is false in any infinite (or for that matter,
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any nontrivial) structure.
Let X* be x with each x, replaced by z, . Since z, =x;
is in conjunction with the rest of the formula, (2.28) is equiva-
lent to
\l:1 ‘R ...Vlzl IR Q%5000 % [slv)\u) (x*)ztlv,\u] (xX')

& K w _yj(x°) & K N jgxij]. (2.29)

But now, since each x, occurs only in the atomic formula

i
2, Ex1 and each x;. i8 existentially quantified, (2.29) is
equivalent to

*11"‘1“"‘1-2‘“1 Q3x3...Qpexy, [8lvi\u] (i")st[vl\ u) (x')

z x!
& ;&1 wj-yj(x 1} (2.30)
vhere Q3xj...Qp, X , is Q;x,...0 X with all the ﬂxij removed.

(2.30) is similar to (2.18), with the exception that
some quantifiers are bounded (this constitutes no problem, as
the reader may easily verify). The new string of quantifiers
has one less quantifier than the old string, and has no more
altermations than that of (2.18); and if the new string begins
with an g, it has fewer. Moreover, the physical representation
of (2.30) is no bigger than that of (2.18). Thus the algorithm
may be reapplied to (2.30).

Eliminating a leading @ is similar in most respects, and
we leave this case as an exercise.

Finally, when all quantifiers have been eliminated, we

are left with a formula
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w,Su,, Wg,u.€T,
jﬁl 3 3
which can be solved by the word problem algorithm of Theorem 1
of [1). ]

Theorem 2.31 .
n

- PP -
sn(vn) is ‘log complete for tn(lln), and ngo snuvn
n
is slog-complete for PSPACE.
Proof

That S (V) is in z:(ng) follows the observation that
executing the algorithm of Theorem 2.17 on an input in ﬂn(vn)

PnP -
results in a l:n(lln) computation ([3]; that nL-Jo snuvn is in

PSPACE follows from the fact that //PTIME = PSPACE {3}, and

O snuvn- is in //PTIME by the algorithm of Theorem 2.17.

n=o To show these problems are hard for their relpe.ctiv.
classes, there are trivial reductions from the corresponding sets
of ql;antlfled Boolean expressions, shown in (2] to be complete,
to »sn and Ve by taking I' to present the two-element Boolean

algebra, as in Example 1.1. )



3. Directions for Further Research

The proofs in the precéding section are far from elegant.
It would perhaps be instructive to exploit the relationship
between finitely presented algebras and the finite tree automata
of Thatcher and Wright [4] and others, to smooth things out a
bit. It is conjectured that, given schema s=t and ', the set

(<x1...xk> | l(xl...xk)ét(xl...xk))
is a regular set of k-tuples of trees.

If the above is the case, what can be said if we limit
our attention to monadic operators? Trees become strings in this
case, and it is known that the membership problem for regular
sets is complete for deterministic logspace and the emptiness
problem is complete for nondeterministic logspace. Do these
results generalize to an analog of Theorem 2.31 for the logspace
hierarchy in the monadic case?

Finally, what is the 1mpért of Theorem 2.31 with respect
to first order logic with equality? Can Theorem 2.17 be extended
easily to include atomic formulas s=t connected by the Boolean
connectives A,v? The conjecture is yes, based on the fact that
first order predicate logic with equality but without negation
is NP-complete [6]. ’
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