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This dissertation documents work done in two different fields, both of which

are related through their studies of objects measured on the order of nano-

meters. The first part discusses efforts at automating image reconstruction of

objects studied through coherent X-ray imaging experiments. Data collected at

the Linac Coherent Light Source are used to reconstruct hundreds of images of

soot particles in flight. The second part discusses efforts at protein structure

prediction and generating collections of building blocks necessary for the pre-

diction algorithm. Data from the Protein Data Bank are processed to generate

large numbers of building blocks, which are then used to predict protein struc-

tures with some initial success.
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CHAPTER 1

INTRODUCTION

This dissertation is composed of two parts stemming from work done on

two very different projects. Broadly speaking, the two projects address ways

to understand and predict the structures of very small objects measured on the

order of nanometers and ångstroms. Both projects have focused on developing

tools and methods for processing large datasets with the hopes of streamlining

processes which would otherwise be handled by a human researcher.

The two projects make up two parts of this dissertation, each of which is

mostly self-contained. Part 1, consisting of Chapters 2 and 3, discusses au-

tomating image reconstruction from coherent X-ray imaging (CXI) experiments.

Chapter 2 provides an introduction to the field and the necessary details to un-

derstand Chapter 3, which delves into our efforts to automate the image recon-

struction process using CXI data from the Linac Coherent Light Source (LCLS)

at the SLAC National Accelerator Laboratory.

Part 2, consisting of Chapters 4 and 5, discusses efforts at protein structure

prediction and building the necessary datasets to assist in these efforts. In Chap-

ter 4, we describe an algorithm that takes a sequence of amino acid residues as

input and outputs a prediction of the three-dimensional structures of the protein

backbone. Chapter 5 details efforts at generating collections of building blocks

needed by the prediction algorithm.

Other than the study of small objects, another common thread tying the

two parts together is the approach taken to solve various constraint satisfaction

problems. There are many examples in the subsequent chapters of problems
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whose solutions are defined by meeting a number of different constraints. In all

these instances, we use an iterative method that searches the solution space for

regions where elements satisfy all the constraints. This approach to constraint

satisfaction lies at the heart of the image reconstruction and protein structure

prediction algorithms. The method is detailed in Chapter 2, specifically in sub-

sections 2.3.1 through 2.3.3. It is recommended that these two subsections be

read before reading Part 2.
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Part I

Coherent X-ray Imaging
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CHAPTER 2

PRINCIPLES OF COHERENT X-RAY IMAGING

The field of coherent X-ray imaging (CXI) is an active area of research whose

aim is to generate high resolution images of nanometer scale structures such

as viruses and proteins. While the theoretical foundations have been devel-

oped over decades with advances in X-ray crystallography, it was in 1980 when

the idea of extending the same methods to noncrystalline structures was pro-

posed [1]. It took two more decades before the technique was experimentally

demonstrated [2]. Since then, the field has seen tremendous advances where

microscopic particles such as yeast cells, viruses, and particulate matter have

successfully been imaged [3, 4, 5].

The basic premise of CXI involves two steps: scattering X-rays off an object

and using the scattered information, in the form of recorded diffraction pat-

terns, to reconstruct images (either in two or three dimensions) of the scattering

object. The scattering experiments generate tremendous amounts of data which

necessitate automated tools at many stages of the process from data collection

to reconstruction. Currently, there are considerable efforts devoted to building

these tools [6, 7, 8, 9, 10, 11, 12].

In this chapter, we discuss an overview of the experimental techniques be-

hind CXI as well as its theoretical foundations. We then discuss the methods

required to reconstruct images of the scattering objects. These discussions pro-

vide the context and background for understanding Chapter 3, which will delve

into efforts on automating reconstruction of two-dimensional images of small,

strongly scattering objects.
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2.1 Technique

Conceptually, the experiments are simple. A monochromatic X-ray pulse is in-

cident upon a scattering object, as shown in Figure 2.1. A small fraction of pho-

tons in the pulse scatters off the object, while the rest propagates as if it never

interacted with the object. The principle behind the interaction is not exclu-

sive to light in the X-ray regime, but resolving details on objects on the order

of nanometers in size requires light with extremely small wavelengths, mak-

ing X-rays the ideal candidates. A detector is set up some distance away from

where the pulse-object interaction takes place to record the scattered photons.

The detector usually has a gap in the middle in order to let the unscattered pulse

through without damaging the electronics.

Figure 2.1: A sketch of a CXI experiment. A high energy X-ray pulse, shown in
orange, interacts with a pair of nano-spheres. During the process, the spheres
will vaporize. A fraction of the photons in the X-ray pulse will scatter off and
land on the detectors, shown on the right, while the unscattered pulse will pass
through a gap. The diffraction pattern can be used to recover a two-dimensional
image of the nano-spheres.

Early experiments were successfully conducted at synchrotrons on large,

strongly scattering objects made of metals such as gold [13]. As interest shifted

toward imaging smaller, weakly scattering objects like biological specimens,
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synchrotrons could not adequately image them without significantly degrad-

ing the objects in the process. X-ray free electron lasers (XFELs), capable of

producing ultrafast pulses with fluences many orders of magnitude higher than

those generated at synchrotrons, show promise for studying weakly scattering

objects. The number of photons packed into a small pulse allows for significant

scattering to occur, even for delicate biological samples. There is a caveat, how-

ever, in that the XFEL pulses destroy any biological sample (and pretty much

any sample) that they pass through. However, if a pulse can traverse through

and scatter off an object before the object degrades significantly, the recorded

photons are viable for image reconstruction purposes. Studies using molecular

dynamics have been done to confirm the viability of the “diffract before de-

stroy” strategy, and found that pulses of 10 femtosecond duration can outrun

any significant damage [14].

2.2 Theoretical foundation

The way X-rays scatter off an object depends on the object’s morphology and

electron density. The next section treats the derivation of these relationships in

a mathematical and physical fashion. The discussions in the next subsections

are largely based on Chapter 13 of Principles of Optics by Born and Wolf [15].

2.2.1 Light scattering

We begin by considering a monochromatic electromagnetic field, E(r, ω), inci-

dent on a linear, isotropic, nonmagnetic medium occupying a finite volume Γ.
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Note that r is the spatial variable, ω = 2πc/λ is the angular frequency of the

wave with corresponding wavelength λ, and c is the speed of light. We can

consider this idealized model to be a good approximation of the XFEL pulse in-

teracting with an object of interest. Beginning with Maxwell’s equations, the t-

Fourier transformed, complex-valued electric field E(r, ω) will satisfy the equa-

tion

∇2E(r, ω) + k2ε(r, ω)E(r, ω) +∇[E(r, ω) · ∇(log ε(r, ω))] = 0 (2.1)

where k = ω/c is the wavenumber and ε(r, ω) is the relative permittivity of

the medium. If we allow for the variations in ε(r, ω) to be minimal over length

scales of λ, the third term in Equation 2.1 can effectively be neglected, yielding

the equation

∇2E(r, ω) + k2n2(r, ω)E(r, ω) = 0 (2.2)

where ε(r, ω) = n2(r, ω) and n(r, ω) is the refractive index of the medium.

We can assume that the electric field is linearly polarized due to how the

pulses are generated [16]. This allows us to consider each of the components of

E separately. Let U(r, ω) be one such component, and note that studying U is

enough to understand the behavior of the other components of E. This yields

the scalar inhomogeneous Helmholtz equation

∇2U(r) + k2n2(r)U(r) = 0 (2.3)

which we rewrite in the form

∇2U(r) + k2U(r) = −4πF (r)U(r) (2.4)
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where

F (r) =
1

4π
k2[n2(r)− 1] (2.5)

is defined as the scattering potential. Note that the ω has been dropped for the

sake of convenience as it remains fixed in the case of a monochromatic field.

If we appeal to physical intuition, we can reason that the field U can be de-

composed into an incident (i.e. unscattered) part U (i) and a scattered part U (s)

U(r) = U (i)(r) + U (s)(r), (2.6)

where the incident field can be described by a plane wave satisfying the homo-

geneous Helmholtz equation

(∇2 + k2)U (i)(r) = 0. (2.7)

Using these two facts, Equation 2.4 simplifies to

(∇2 + k2)U (s)(r) = −4πF (r)U(r). (2.8)

As is often the case when studying partial differential equations, reformulat-

ing them into integral forms can yield a means to solve the equations. We con-

sider that approach and let G(r − r′) be the Green’s function of the Helmholtz

operator, satisfying the equation

(∇2 + k2)G(r− r′) = −4πδ(3)(r− r′) (2.9)
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where δ(3)(r − r′) is the three dimensional Dirac delta function. We choose the

Green’s function to be of the form

G(r− r′) =
exp(ik|r− r′|)
|r− r′|2

(2.10)

because it is radially symmetric andG(r−r′)→ 0 as r→∞. The scattered wave

can then be written as

U (s)(r) =

∫
Γ

F (r′)U(r′)
exp(ik|r− r′|)
|r− r′|

dV ′. (2.11)

The integral for the scattered field can be further simplified depending on the

situation that is intended for study. In practical CXI experiments, the detectors

are placed far away from the scattering medium relative to its size. In studying

such a scenario, let Q be a point in the scattering medium Γ and P be a point far

away from it as depicted in Figure 2.2.

Γ

Figure 2.2: Note that r is a vector pointing from the origin O to a point P , r′ is a
vector pointing toQ in Γ, and P is a point far away from the scattering medium.
Given the “far” away assumption, the approximations in Equations 2.12 and
2.13 can be made.

Furthermore, let r′ be the position vector of point Q and r = rs be the vector
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of point P where s is a unit vector pointing in the direction of P . Then,

|r− r′| ∼ r − s · r′ (2.12)

and
exp(ik|r− r′|)
|r− r′|

∼ eikr

r
exp(−iks · r′). (2.13)

If we subsitute the appropriate factors in Equation 2.11 with 2.12 and 2.13, we

see that

U (s)(rs) =
eikr

r

∫
Γ

F (r′)U(r′)e−iks·r
′
dV ′ (2.14)

=
eikr

r
f(s) (2.15)

and define f(s) to be the scattering amplitude while the eikr/r factor is the outgoing

spherical wave.

2.2.2 Born approximation

We finally note that any interaction between the XFEL pulse and the scattering

medium will scatter a tiny fraction of the photons, and most will in fact traverse

through the medium unaffected. In such cases, we can assume that

U(r) ≈ U (i)(r) (2.16)

= eik(s0·r) (2.17)
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where s0 is a unit vector pointing in the direction of the incident field’s propa-

gation. The assumption made in Equation 2.16 is known as the first-order Born

approximation, and it is particularly useful in our study since it approximates the

scattering amplitude

fBorn(s, s0) =

∫
Γ

F (r′)e−ik(s−s0)·r′ dV ′ (2.18)

= F [F (r′)](k(s− s0)) (2.19)

to be the Fourier transform of the scattering potential F , with the reciprocal

variable quantifying the deviation of the scattered wave from the unscattered

wave. As a matter of notation, we define the vector

q = k(s− s0) (2.20)

to be the scattering vector. Equation 2.19 can then be rewritten as

fBorn(q) = F [F (r′)](q). (2.21)

Lastly, for r sufficiently large and fixed, the eikr/r factor can be taken to be a

constant, so Equation 2.19 is enough to describe the scattered wave.

The consequences of Equation 2.19 are profound, as modeling scattering

phenomena via Fourier transforms allows for the various properties of the trans-

form to be exploited in studying the scattering objects, often in very creative

ways. The most significant consequence is the determination of the scattering

potential simply by taking the inverse three-dimensional Fourier transform of
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the scattered wave

F (r) = F−1
3D [fBorn(q′)](r), (2.22)

which would then yield the structure of the scattering object in question. This

step is complicated by the fact, however, that when measurements are taken to

record the scattered wave, it is usually not the wave itself, but rather the intensity

of the wave, defined as

I(q) = |fBorn(q)|2 (2.23)

which gets measured. In other words, the recorded diffraction pattern contains

only the modulus of the complex scattered wave, but not the phase. This gives

rise to the phase problem, which is discussed in greater detail in Section 2.3.

2.2.3 Diffraction geometry and Ewald sphere

Given the Fourier transform formulation of the scattered wave and intensity, it

helps to think about the quantities as densities in a three-dimensional q-space,

much like how the density of the scattering object is defined in real space. The

intensity recorded on a two-dimensional detector, which is the sort of data we

study in the next chapter, can be thought of as a two-dimensional slice of the

three-dimensional intensity described by Equation 2.23, as shown in Figure 2.3.

Via the Fourier slice theorem, the two-dimensional slice is related to a two-

dimensional “flattened” projection of the scattering object, which we call the

object’s contrast.

To help relate the recorded intensity to the scattering object, we define a

sphere of radius k centered at the location of the scattering object as shown
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Figure 2.3: A pair of nano-spheres, top left, and the square of the three-
dimensional Fourier transform of the spheres, top right. The diffraction pat-
tern, resulting from a pulse passing through the nano-spheres in the direction
pointed by the arrow in the top left subfigure, recorded by a detector, bottom
center, can be thought of as a two-dimensional slice of the three-dimensional
Fourier intensity, as depicted by the yellow screen on the top right subfigure.

in Figure 2.4. This sphere is called the Ewald sphere, and its surface captures

all possible vectors ks [17]. This construction assumed that waves will largely

scatter elastically, so k does not change.

Getting back to the first point made in this subsection, the intensity distribu-

tion can be thought to reside in q-space. This space has its origin in O′, located
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scattered beam

incident beam

Figure 2.4: The Ewald sphere, with a radius k and its center located at O. The
three-dimensional Fourier intensity is centered at O′, and the detector can be
thought of sampling the three-dimensional Fourier intensity space which inter-
sects with a portion of the surface of the sphere.

2π/λ away fromO, along the direction of the incident wave. For a vector k = ks,

there is a corresponding q vector. The mapping from ks to q provides a way to

take recorded intensities and map them onto q-space.

Given a flat panel detector located a distance L away from the scattering

object, let the vector x = (x, y) be the coordinate of a particular point on the

detector, with the origin defined by where the incident pulse is expected to in-

tersect the detector, as shown in Figure 2.5. Note then that the mapping can be

obtained via the geometric relation

q = k− k0 =
2π

λ
(s− s0) (2.24)

=
2π

λ

(
(x, y, L)√
x2 + y2 + L2

− (0, 0, 1)

)
. (2.25)

Using Equation 2.24, it becomes possible to map the recorded intensities into
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scattered beam

incident beam

Figure 2.5: The geometric relation between between q-space and the “detector”
-space. This can be described by Equation 2.24.

q-space. It turns out that the intensities will map onto the surface of an Ewald

sphere, so the two-dimensional slice of the three-dimensional intensity we pre-

viously alluded to, especially in Figure 2.3, is not planar, but actually a curved

surface. This complicates efforts to recover the scattering object’s geometry,

but if the curvature of the Ewald sphere is insignificant over the range of the

recorded intensities, it can effectively be ignored and the slice can be approxi-

mated to be planar. The precise conditions under which this assumption can be

made are discussed in Chapter 3.

2.3 Image reconstruction via phase retrieval

As we observed in the previous section, a recorded diffraction pattern I(q) is

related to a two-dimensional, flattened version of the scattering potential of

the object, which we called the contrast, Ψ(r), via the two-dimensional inverse

Fourier transform relation,

Ψ(r) = F−1
2D [
√
I(q) exp(iφ(q))], (2.26)
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where φ(q) is the associated phase of the complex scattering amplitude. If the

nano-spheres configuration shown in Figure 2.6 is scattered by a high energy X-

ray laser, its two-dimensional modulus would be recorded, but its phase would

not. However, in order to make use of Equation 2.26 to recover the contrast,

the phase has to be recovered somehow. This scenario is known as the phase

problem, a problem well known to X-ray crystallographers.

Figure 2.6: A two-dimensional projection of two nano-spheres, top center. Its
two-dimensional Fourier modulus, bottom left, and corresponding phase, bot-
tom right. In a CXI experiment, the Fourier modulus would be observed, while
the phase would not be.
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2.3.1 The phase problem

It was in the 1970s, beginning with Gerchberg and Saxton’s alternating projec-

tion algorithm [18], that phase retrieval was addressed in an iterative manner,

followed later by Fienup’s seminal paper on the hybrid-input output (HIO) al-

gorithm [19]. The general idea behind iterative techniques is that there are con-

straints on what the phase can be due to prior knowledge of the scattering ob-

ject. In the case of CXI experiments, a crude approximation of the imaged object,

specifically the space it occupies, can often be a powerful constraint in drasti-

cally restricting the possible phases for a diffraction pattern obtained from a real

object.

In describing the phase retrieval problem in a more mathematical manner,

we are interested in finding a φ(q) such that, given I(q), it satisfies Equation 2.26

as well as an additional constraint based on the shape S of the particle. How-

ever, the caveat must be added that, although we are looking to recover φ(r),

ultimately, it is Ψ(r) that is of interest as that is the object’s contrast. Shifting the

focus to Ψ(r), referred henceforth as Ψ, also allows for a more intuitive interpre-

tation of the constraint satisfaction problem. From this different perspective, Ψ

is a candidate for an object’s contrast if the following two constraints are satis-

fied:

1. The magnitude of Ψ’s Fourier transform must match the observed diffrac-

tion pattern.

2. Ψ can be nonzero within some region S but must be zero outside.

17



2.3.2 Iterative methods

The way that the two constraints are imposed is via two projection operators,

PF and PS , known as the Fourier and support projections. They take as inputs

any Ψ, and output a version of Ψ with just one of the constraints having been

imposed. The Fourier projection is defined to be

PF [Ψ] = F−1 ◦MF ◦ F [Ψ] (2.27)

where

MF [Ψ̂] =


√
I(q)

Ψ̂(q)

|Ψ̂(q)|
if I(q) is known and |Ψ̂(q)| 6= 0

Ψ̂(q) otherwise.
(2.28)

As shown in Figure 2.7, PF rescales the Fourier magnitude of the input Ψ̂ to

match that of the square root of the measured intensity. The support projection

is defined to be

PS[Ψ] =

 Ψ(r) r ∈ S and Ψ(r) ≥ 0

0 otherwise
(2.29)

and it returns a modified input where any regions of Ψ outside of S and negative

values of Ψ(r) are set to zero, as shown in Figure 2.8.

A solution to the phase problem, Ψs, satisfies the relation

Ψs = PS[Ψs] = PF [Ψs], (2.30)
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Figure 2.7: The Fourier projection, PF [Ψ], takes an input, shown left, and re-
places its Fourier modulus with the diffraction pattern, shown center. It then
returns the inverse Fourier transform of the modified input, shown right.

Figure 2.8: The support projection, PS[Ψ], takes an input, shown left, and zeroes
any part of the input that lies outside the support, shown center, as well as any
negative values present in the input. It then returns the modified input, shown
right.

where the projections of both constraints on an input return the same input.

Such a fixed point is known to lie at the intersection of the two constraints sets,

and this, or a close approximation of this, is what we wish to find when solving

the phase problem.

Beginning with a random initial contrast Ψ0, iterative phase retrieval meth-

ods make use of the projections in various ways to “search” for solutions satisfy-

ing both constraints. There are a number of methods which have been proposed

over the years, all possessing different properties and quirks suitable for partic-

ular occasions. Some of the more widely used algorithms are tabulated in Table

2.1.

Gerchberg and Saxton’s alternating projections is one of the simplest ways
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of searching for a solution, where a contrast is updated via a straightforward

composition of both projections,

Ψn+1 = (PS ◦ PF )[Ψn] = PS[PF [Ψn]] (2.31)

=

 PF [Ψn] r ∈ S

0 r /∈ S.
(2.32)

The algorithm has been known to find “non-solutions” which do not satisfy

Equation 2.30 before effectively stopping its searching [20]. This phenomenon,

coined stagnation, prevents the method from exploring alternative solutions and

is one of the main reasons why the method has been superseded by more so-

phisticated ones.

Table 2.1: Some of the widely used phase retrieval algorithms. Note thatRo[Ψ] =
2Po[Ψ] − Ψ is defined as the reflection operator and β is a free parameter, usually
between 0 and 1.

Method Ψn+1 =

Alternating projections [18] (PS ◦ PF )[Ψn]

Hybrid input-output (HIO) [19]

 PF [Ψn] r ∈ S

Ψn − βPF [Ψn] r /∈ S

Difference map (DM) [21]

Ψn + β((PS ◦ fF )[Ψn]− (PF ◦ fS)[Ψn])

fF [Ψn] = PF [Ψn] + (PF [Ψn]−Ψn)/β

fS[Ψn] = PS[Ψn]− (PS[Ψn]−Ψn)/β

Relaxed averaged alternating

reflections (RAAR) [22]
Ψn + 1

2
β((RS ◦RF )[Ψn]−RF [Ψn])

Fienup’s HIO algorithm gets around the stagnation problem by updating the
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regions outside the support S with a term inspired from control theory,

Ψn+1 =

 PF [Ψn] r ∈ S

Ψn − βPF [Ψn] r /∈ S
(2.33)

where β is a free parameter between 0 to 1. Rather than zeroing the regions out-

side S, the HIO algorithm introduces a negative feedback effect which encour-

ages the iterate to get closer to zero by updating the region with the difference

between the previous iterate and the Fourier projection of the iterate.

A common way to check whether an algorithm has found a solution is by

keeping track of the change between iterates. The error metric quantifies this

change, and is defined as

||ε[Ψn]|| = ||Ψn −Ψn−1|| (2.34)

where || · || is the Euclidean norm. In successful phase retrieval methods, the er-

ror metric will decrease with increasing iterations, as shown in Figure 2.9. When

the metric falls below some small, fixed tolerance τ and consistently stays close

to τ over many iterations, this is an indication that the iterate does not change

much after each update. This generally happens when an iterate approximately

satisfies Equation 2.30, so iterations are usually stopped then.

There are no known convergence guarantees for these iterative methods be-

cause non-convex sets, like the constraint sets of the Fourier projection, have

not extensively been studied for their convergence properties. Furthermore,

recorded diffraction patterns are noisy due to the statistical nature of photon

hits and detector anomalies. Therefore, the appropriate number of iterations
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Figure 2.9: The error metric time series, ||ε[Ψn]||, as a function of the number
of iterations n. In most successful phase retrieval methods, the error metric
generally decreases with increasing iterations while exhibiting noticeable fluc-
tuations. It usually does not converge to zero when both constraints cannot
completely be satisfied.

niter until the error metric falls below τ is obtained heuristically.

With the most recent iterate at hand, Ψf , which satisfies

||ε[Ψf ]|| < τ (2.35)

one way a solution Ψsf can be found is by applying either projections on it. To

obtain a final solution Ψs, multiple solutions Ψsf1
,Ψsf2

, . . . ,Ψsfm
are obtained

and averaged. These solutions could either be obtained by prolonging the iter-

ations after Equation 2.35 has been reached and sampling m different iterates

which still satisfy that condition, or starting with m initial random iterates and

attempting m different reconstructions until Equation 2.35 is satisfied for each

attempt. Either step is necessary to obtain a reliable solution. As Figure 2.10

shows, the various Ψsfi
s all possess small and random differences among the

collection of solutions. Through averaging, these effects are minimized, as Fig-
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ure 2.11 shows.

Figure 2.10: Different attempts at reconstructions using the diffraction pattern
from Figure 2.3. For each of the nine reconstructions, a different, random initial
iterate was subjected to the difference map. Although all nine attempts have
successfully reconstructed the image of the nano-spheres, there are significant
variations between each of the reconstructions.

Figure 2.11: Final image reconstruction, obtained by averaging the nine differ-
ent reconstructions from Figure 2.10. Note that many of the variations have
been averaged away and the final image is smoother than the nine reconstruc-
tions that went into making it.
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2.3.3 Difference map

The difference map is an iterative method developed by Elser [21]. As stated in

Table 2.1, the difference map is of the form

Ψn+1 = Ψn + βD((PS ◦ fF )[Ψn]− (PF ◦ fS)[Ψn]) (2.36)

where

fF [Ψn] = PF [Ψn] + (PF [Ψn]−Ψn)/βD (2.37)

fS[Ψn] = PS[Ψn]− (PS[Ψn]−Ψn)/βD (2.38)

and βD is a free parameter. When βD = 1, the difference map reduces to a case

of the HIO where β = 1.

Much like the HIO algorithm, one of the main draws of the difference map

is its ability to avoid stagnation. There are potential regions in a solution space

where Equation 2.30 loosely holds, which are called near-intersections, and they

can often be places where algorithms like alternating projections stagnate. The

difference map will tend to send iterates away from near-intersections towards

other regions in the solution space where better near-intersections, or fixed points,

may exist. This is how stagnation is overcome, but this can often hinders the

map from settling near a solution.

In Chapter 3, we make use of the difference map, but in a modified fashion

that helps tame its eagerness to explore other near-intersections.
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2.3.4 Phase uniqueness

To have a reasonable chance at determining the correct phases and recovering

an accurate image, it helps to know as much about the object’s support. One

can imagine that it would be much more difficult to obtain the phases of the

nano-sphere contrast in Figure 2.6 if one started with a generous support in real

space whose area equals the area of the recorded diffraction pattern as opposed

to a support that tightly contains the two spheres.

It was shown by Elser et al. [23] that a sufficient criterion for ensuring unique

phase retrieval in most cases can be expressed via the constraint ratio

Ω =
Aauto

2Aobject
(2.39)

where Aauto is the area of the support of the autocorrelation of the object and

Aobject is the area of the object’s support. Note that the autocorrelation of the

object can be obtained via the relation

Ψ ∗Ψ = F [I(q)] (2.40)

and Aauto can be obtained from thresholding Equation 2.40. For Ω > 1, finding

a unique solution to the phase problem is in most cases tractable since Ω is the

ratio of the number of independent measurements to the number of contrast

variables to be determined. For the other case when Ω < 1,there is no unique-

ness without additional knowledge. Equation 2.39 suggests that a smallerAobject

will better ensure uniqueness over a larger Aobject.
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2.3.5 Dynamic support update (Shrinkwrap)

As discussed in the previous subsection, key to the phase retrieval process is a

tight support S. Smaller supports ensure that reconstruction algorithms will

stand a better chance at finding a unique solution. However, without prior

knowledge of the object’s shape, finding a tight support seems implausible. This

circular impasse seems to make the reconstruction problem intractable. Fortu-

nately, methods were developed to address this issue. One commonly used

technique is known as Shrinkwrap [25]. The method allows for S to be updated

during the reconstruction process via the outlined steps:

1. Define an initial support S0. In Marchesini et al. [25], the autocorrelation of

the object’s contrast is used to define S0. Mathematically, this is done as

follows:

S0 = Tα[F [I(q)]] (2.41)

where T is the indicator function that sets any regions of the input less

than α to 0 and the rest to 1.

In practice, any support that differs in size from the true support by a

factor as large as two or as small as a half in area has been shown to be a

viable S0.

2. Use S0 as the support and apply the phase reconstruction algorithm on an

initial guess for a fixed number of iterations.

3. After n number of iterations, take the reconstructed image Ψ, convolve

it with a Gaussian of narrow width to blur the image, and use that to
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determine a new support Su. Mathematically, that step translates to

Su = Tβ[Ψ(r) ∗Hγ(r)] (2.42)

where Hγ(r) is a Gaussian centered at the origin with a variance of γ2 and

β is some small percentage of the maximum value of Ψ(r).

4. Repeat step 2 using the updated support Su, then repeat step 3 while oc-

casionally adjusting the parameters n, β and γ.

Figure 2.12: Beginning with a square support, shown left in red, Shrinkwrap
dynamically updates the support between iterations by redefining the support
around regions of high contrast. In practice, given the right set of parameters,
Shrinkwrap will downsize an initially large support until it tightly defines a
region where the object’s contrast is expected to be, as the figure on the right
suggests.

These steps ensure that the support gets updated based on high contrast

regions of the iterate. In practice, as the iterates get updated, Shrinkwrap will

contract the support until it tightly contains the contrast, much like the packing

method from which it gets its name. Figure 2.12 shows how a square support

eventually contracts to an oval which contains the nano-spheres contrast.
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2.3.6 Reconstruction quality and PRTF

As was mentioned in Subsection 2.3.2, multiple reconstructed contrasts are ob-

tained and averaged to arrive at a final, reconstructed contrast. One popular

measure to gauge the quality of an averaged reconstruction is through the phase

retrieval transfer function (PRTF) [26], defined as

PRTF[Ψave](q) =
1

m

∣∣∣∣∣
m∑
j=1

exp(iφj(q))

∣∣∣∣∣ (2.43)

=
1

m

∣∣∣∣∣
m∑
j=1

F [Ψj](q)

|F [Ψj](q)|

∣∣∣∣∣ (2.44)

where φj(q) is the phase at q of the reconstructed contrast Ψj . For a value q, the

PRTF measures how well the phases agree over a set of reconstructed contrasts.

If there is near-perfect agreement between all the phases, the PRTF will tend

to 1, whereas disagreement will result in values closer to 0. This then gives a

good sense of regions of q where the reconstructed phases can be trusted more

so than others.

The PRTF, in general, decreases monotonically as |q| gets larger, as Figure

2.13 demonstrates. Smaller |q| values correspond to features on larger length

scales, which mostly agree in an ensemble of similar reconstructions. However,

as finer features are compared over the ensemble, there is more likelihood for

disagreement. Regions of large |q| values describe these finer features, so we

expect the PRTF to be lower there.

Angularly averaging the PRTF results from a two-dimensional plot has com-

monly been used to find the value |q| which serves as a cutoff c for where the

phases can no longer be considered reliable, as demonstrated in Figure 2.14.
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Figure 2.13: The PRTF of the averaged reconstruction shown in Figure 2.11,
in grayscale. Note that there is better agreement near the center, where |q| is
smaller. As diffraction patterns become noisier and fainter at regions of higher
|q|, the PRTF there will tend closer to zero.

|q|res
|q|

0

1/e

1

PRTF[Ψave](|q|)                

Figure 2.14: The rotationally averaged version of Figure 2.13, shown in blue.
Conventionally, the lowest |q| where the PRTF reaches c = 1/e, depicted as the
green line, is used to determine an effective resolution. The red dot shows where
the rotationally averaged PRTF and the cutoff c meet.

The value for which |q| first reaches c (commonly, c = 1/e is used) is then used

to determine an effective resolution for the averaged reconstruction, which is

given by the formula

|r|res =
π

|q|res
. (2.45)

29



CHAPTER 3

UNSUPERVISED IMAGE RECONSTRUCTION

The contents of this chapter are based on work published in Optics Express with

a multitude of coauthors [27].

3.1 Introduction

Single-shot diffraction imaging via X-ray free-electron lasers [28] has emerged

as a potentially significant tool for studying particles in the nanometer regime,

from biological samples [3, 4] to nanocrystals [29]. As particles of interest are

propelled into the path of short X-ray pulses of high fluence such as those gen-

erated at the Linac Coherent Light Source (LCLS), their interaction diffracts a

small fraction of the photons off the particle before the onset of significant ra-

diation damage. The resulting far-field diffraction patterns, recorded on X-ray

detectors, can be used to reconstruct real space contrasts of the diffracting par-

ticles via iterative phase retrieval methods [30]. Since the pulse-particle interac-

tions occur mid-flight, imaging individual particulate matter such as soot in situ

at nanometer resolution is made possible, allowing for morphological studies of

in-flight particles [31, 5] that have in the past relied on other imaging techniques

such as transmission electron microscopy [32], where substrate deposition could

potentially alter particles’ morphologies.

A typical imaging experiment could generate hundreds of thousands of us-

able diffraction patterns in a single day, compelling the need for an unsuper-

vised contrast reconstruction process requiring minimal user guidance. Due to

experimental realities such as variable pulse profiles and detector noise, how-
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ever, there are significant differences in the quality of the data from pattern to

pattern. Simply automating existing tools for reconstruction would be problem-

atic, and in some cases insufficient, especially when these tools rely heavily on

human supervision. Any scalable protocol ought to replace user guidance and

visual inspection with efficient unsupervised algorithms.

In this chapter, we present a series of measures that aim to facilitate the un-

supervised contrast reconstruction of a large collection of single shot diffrac-

tion patterns. We identified steps during the reconstruction process that require

user guidance and replaced them with reasonable algorithms. Through these

measures, we were able to successfully reconstruct hundreds of contrasts with

minimal guidance.

3.2 Experiment and data set

In this study we worked with highly variable diffraction patterns of soot par-

ticles of multiple length scales. Data was collected at the Atomic, Molecular

and Optical Science beam line at the LCLS. Two different kinds of soot particles

were considered for imaging: particles created by a Palas GFG100 spark source

generator [33] and NIST 2975 diesel soot particles [34]. In separate runs, the

Palas and NIST soot were propelled into the path of X-ray pulses by a differen-

tially pumped aerodynamic focusing inlet [35]. Some of the particles, when they

reached the interaction region with a velocity of 100−200 m/s, were intercepted

by a single X-ray pulse focused to an area of about 10µm2 with an average flu-

ence of 4 × 1012 photons, each with 1.24 keV of energy, per pulse, assuming a

transmission efficiency of 20%. The scattered photons were recorded on a pair of
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pn-junction charge coupled device (pnCCD) panels installed in the CFEL ASG

Multi-Purpose (CAMP) instrument [36]. Each panel contained 512×1024 pixels,

each of area 75 × 75µm2. A gap of 1.6mm between the panels and semicircular

cutouts of 1.2 mm diameter allowed for the passage of the pulse into a beam

dump. Further details can be found in Loh et al. [5].

Pulse generation and the detector readout rate coincided at 60 Hz, allowing

for a theoretically maximum data collection rate of 2.2 × 105 patterns per hour.

In practice, however, the sample hit rate was lower than the pulse generation

rate because of random particle injection. In the soot experiments, the hit rate

was observed, on average, to be 0.09 Hz. A total of 953 successful hits were

identified and considered for reconstruction.

3.3 Practical considerations

Any collection of diffraction patterns, even when sorted and classified [10], is

bound to show differences in quality from pattern to pattern. The pulse-particle

interaction contributes to much of this variability, as the profile of individual

pulses can differ from each other. Wavefront aberrations in pulses can result

in randomly shifted diffraction patterns which need to be corrected [37]. Also,

as each pulse’s transverse profile cannot be assumed to be a planar wave of

constant intensity, the position of each randomly injected particle during the

pulse-particle interaction, relative to the focus, has a noticeable effect on the

signal-to-noise ratio of the resulting pattern, a value that is already affected by

the variability in the pulse fluence.

Given the incomplete nature of phasing algorithms, successful contrast re-

32



construction is not guaranteed within a set number of iterations, even for ideal,

noiseless patterns. As a result, reconstructions from the same pattern can exhibit

significant differences. Noise can further frustrate the phasing process and en-

courage significant variability between reconstructions. A reliable check for the

confidence in a reconstruction is to see how often the algorithm will arrive at the

same, or similar solution, beginning from different initial conditions. This step,

often done visually, can be a major bottleneck in the reconstruction process.

In this section, we introduce techniques to address these various issues. In

the first part, we discuss ways of exploiting centrosymmetry to correctly center

each pattern. In the next part, we highlight a noise robust phasing algorithm

that can handle patterns with low signal-to-noise ratios. Then, we propose a

technique for assessing the reliability of a reconstruction algorithmically. Lastly,

we suggest a strategy to check the degree to which the missing data region could

affect the final reconstruction.

3.3.1 Centrosymmetry of diffraction patterns

While the detailed form of each X-ray pulse is lost as soon as it is absorbed into

the beam dump, the pulse variability is often noticeable in diffraction patterns.

Random phase tilts in the pulses is one such detail, and they were observed to

translate diffraction patterns of polystyrene nano-spheres by as much as six pix-

els [37]. These translations, when uncorrected, could potentially decrease the

overall resolution of the reconstructed contrasts, especially when the speckle

features are roughly on the same scale as the translations. Thus, correctly cen-

tering diffraction patterns before reconstruction is attempted is crucial.
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Figure 3.1: To find the center of a diffraction pattern (left), square regions, trans-
lated by a set of candidate shifts (exaggerated on the right), are tested for cen-
trosymmetry. An identical mask is applied to each of these square regions to
mask out the missing central intensities. The shifted square region that is most
centrosymmetric (see text for details) is presumed to be properly centered. This
diffraction pattern was found to be shifted to left by two pixels.

The diffraction pattern of a real (i.e., not complex-valued) object can be ap-

proximated as centrosymmetric when the extent of the Ewald sphere’s curva-

ture is less than half a speckle diameter, d/2, at the edge of the detector,

k(1− cos θmax)� d/2, (3.1)

where k = 2π/λ is the magnitude of the wave vector and θmax is the maximum

scattering angle. Equation 3.1 can be simplified to

θmax � 1/N, (3.2)

whereN = kθmax/d is approximately the number of speckles that can be counted

on a ray from the origin to the edge of the detector.
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When unshifted, the Fourier transform of the intensity I(q) is the autocor-

relation of the particle contrast Ψ. Mathematically, F [I(q)] should be real and

centrosymmetric if absorption effects are negligible. When shifted by an un-

known amount, qunknown,

F [I(q− qunknown)] = F [I(q)] exp(−iqunknown · x) (3.3)

the Fourier transform of the shifted intensity is equal to the Fourier transfer

of the unshifted intensity multiplied by a linear phase ramp. To identify the

shift that best approximates qunknown, the intensity I(q − qunknown) is shifted by

a known amount qC . Once the Fourier transform is then computed, the sum of

the absolute values of its imaginary components

∑
x

|Im[F [I(q)] exp(−iqunknown · x) exp(−iqC · x)]| (3.4)

will equal zero if

qC = −qunknown (3.5)

and the shifts are restricted to small values. Because actual recorded intensities

are not perfectly centrosymmetric due to noise and missing data regions, Equa-

tion 3.4 will most often equal a nontrivial value even when the proper shift is

found. Still, the sum should be smaller for Equation 3.5 than for other shifts.

To implement the shift locator, square regions of the pattern centered at dif-

ferent offsets qo are cut out as shown in Figure 3.1. A mask, fixed with respect

to the square cutout, is applied to cover up the CCD gap and the central, circu-
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lar region of unreliable photon count. The mask is made thicker so that it can

be applied uniformly on any square cutout and still cover up the appropriate

regions. The Fourier transform of these square cutouts is computed, and the

offset with the lowest sum of the absolute value of the imaginary components

is identified as the correct shift.

3.3.2 Noise robust difference map

In far-field diffraction theory, the contrast Ψ is the scattered wavefront imme-

diately past the scattering particle. It can be characterized by I via the inverse

Fourier transform relation,

Ψ = F−1[
√
I exp(iφ)], (3.6)

where φ is the associated phase of the complex exit wave. To recover Ψ, both the

magnitude and the phase of the observed wavefront must be known. However,

since the phase is not recorded, it is recovered using other information, such as

the size and shape of the scattering particle.

Phase retrieval methods in use today employ iterative schemes to find a φ

that best reflects all available information regarding the scattering particle. This

is done by finding a Ψ that satisfies the measured I as well as an additional

constraint based on the shape S of the particle. Two projection operators, PF

and PS , known as the Fourier and support projections, respectively, are defined

as follows,
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PF [Ψ] = F−1 ◦MF ◦ F [Ψ] (3.7)

where

MF [Ψ̂] =


√
I(q)

Ψ̂(q)

|Ψ̂(q)|
if I(q) is known and |Ψ̂(q)| 6= 0

Ψ̂(q) otherwise
(3.8)

rescales the Fourier magnitude of the input to match that of the square root of

the measured intensity and

PS[Ψ] =

 Ψ(r) r ∈ S and Ψ(r) ≥ 0

0 otherwise
(3.9)

sets to zero any region that lies outside of S and imposes positivity. Beginning

with a random initial contrast Ψ0, phase retrieval methods search for solutions

by projecting iterates onto the constraint sets through a combination of the pro-

jection operations and follow the form

Ψn+1 = Ψn + ε[Ψn], (3.10)

where ε[Ψn] is an additive update to the iterate which depends on the choice

of the phasing method. When the error metric ||ε[Ψn]|| falls below some fixed

tolerance, the iterations are stopped and the reconstruction is defined by the

estimate Ψ ≈ PF [Ψn+1].
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We use the β = 1 form of the difference map [21],

Ψn+1 = Ψn + PS [2PF [Ψn]−Ψn]− PF [Ψn] = Ψn + εD[Ψn], (3.11)

which is equivalent to the β = 1 form of Fienup’s hybrid input-output rule

[19]. The difference map is best suited for finding a true common element in

the constraint sets, on the assumption one exists. When dealing with measured

diffraction patterns, however, the presence of noise could shift the Fourier con-

straint set such that it does not exactly intersect the support constraint set. As

a result, the difference map’s propensity for guiding iterates away from near-

intersections to avoid stagnation works to its disadvantage as iterates are sent

elsewhere to look for solutions. Practically speaking, this results in a frustrated

search where reconstructions associated with each iterate fluctuate significantly

in shape and size.

In the face of variable signal-to-noise ratios, the phase retrieval process should

be robust so that the search does not so easily stray from near-intersections

[38, 39, 22]. Loh et al. [38] propose an intermediate step where Ψn is updated by

the formula

Ψ′n = αΨn + (1− α)PF [Ψn], (3.12)

where 0 ≤ α ≤ 1 is a “leash" parameter that reins in the iterate such that it is

brought closer to the Fourier constraint set before it is run through the difference

map:

Ψn+1 = Ψ′n + εD[Ψ′n]. (3.13)
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Figure 3.2: The stability of the modified difference map for various α’s around
a solution can be measured by the error metric, ||εD[Ψ′n]||. Starting with a final
reconstruction (i.e. solution) as the initial contrast and using a fixed support pre-
viously generated with Shrinkwrap [25], the modified difference map continues
on its search in the neighborhood of the solution. An α slightly decreased from
unity will significantly tighten the scope of the search and improve the stability
of the difference map around a solution.

In our trials, α = 0.85 was used. The choice for α reflects a desire to balance

out the need for preventing the search from deviating from a near-intersection

too much while also preventing it from settling too easily near a point which

may not necessarily best reflect the near-intersection. There is some latitude in

the choice of α as even a slight decrease from unity will significantly tighten up

the search neighborhood around a near-intersection, as Figure 3.2 suggests.

3.3.3 Reconstruction assessment

In iterative phase retrieval methods, convergence to a unique solution within a

set number of steps is not necessarily guaranteed, so the iterations are stopped

when the difference between iterates is small enough or a large number of itera-

tions, tmax, is reached. Consequently, an individual reconstruction will, at times,

seem like it has not converged or perhaps even converged to a seemingly dif-

ferent point when compared to a different reconstruction. When presented with

a collection of dissimilar reconstructions, visual inspection usually aids in as-
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sessing which reconstructions are successful, but this would be time consuming

when processing thousands of diffraction patterns.

Since the particle’s contrast is not known beforehand, assessing the success

of reconstructions presents another challenge as there are no training examples

to aid in assessing. In practice, given a set of m reconstructions, the largest

subset that contain similar looking reconstructions is usually deemed to be a

successful collection. This practice, however, relies on the assumption that the

phasing algorithm can guide iterates to the correct near-intersection most of the

time.

s1=0.99 s2=2.12 s3=1.02 s4=3.83 s5=8.96

s6=8.10 s7=1.37 s8=6.74 s9=0.95 s10=1.76

Figure 3.3: Ten individual reconstructed contrasts with overlaid outlines of their
supports, as found by Shrinkwrap, and their corresponding si values. The re-
constructions whose si’s exceed the threshold smax = 5% are marked in red and
were deemed failures.

The steps taken in visually assessing and rejecting reconstructions are used

to devise an algorithm that can perform the same task. Beginning with a set ofm

individual reconstructions, their corresponding supports, as found by Shrinkwrap

[25], are compared. The supports are preferred over the reconstructions as that

will emphasize during comparison the overall low-resolution shapes of the re-

constructed contrasts as opposed to their subtle high-resolution features which

40



188 nm

Figure 3.4: A final reconstruction Ψ (on the left) obtained from averaging ten
acceptable individual reconstructions. The measured diffraction pattern I (in
the middle) and reconstructed intensity |Ψ̂|2 (on the right) demonstrate similar
speckle structures in the low scattering angle regions, but differ considerably in
the higher scattering angle regions.

could vary greatly. Let yi be an n × n pixel array of binary values representing

an individual support appropriately translated and inverted and ȳ =
∑

i yi/m

be the mean of the supports. Translations and inversions can be identified rela-

tive to a reference support, which can be any of the m supports, by maximizing

the cross-correlation of the individual and reference supports. The % deviation

from the mean,

si =
||yi − ȳ||
||ȳ||

× 100, (3.14)

where || · || =
∑

j,k |(·)jk| is summed over pixels, also known as the L1 norm, is

obtained for each reconstruction and ordered from least to greatest. In the event

all m supports are similar, all si’s will generally be small. When some sup-

ports differ greatly from the majority, however, the % deviations will increase

across all i’s due to the inclusion of those dissimilar supports in computing the

mean. To mitigate the effects of these inflated % deviations, a new mean ȳnew

is computed based on the m/2 individual reconstructions with the lowest si’s,

which we consider to be the similar reconstructions. New % deviation values

si’s are then computed for each reconstruction. An absolute rejection criterion,
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smax = 5%, is set such that all reconstructions with si > smax are rejected, as

shown in Figure 3.3.

As subtle differences in shape and density can exist between similar individ-

ual reconstructions, these subtleties can be averaged away by adding the recon-

structions. The approach taken in this paper averages m = 10 reconstructions

from different phasing runs with random initial contrasts and different initial

circular supports of varying radii. For dissimilar reconstructions in the collec-

tion, new reconstructions are attempted using the same initial circular support

with which the reconstruction began but with a different initial contrast. After

the new reconstructions are obtained, the si’s are computed again for the set of

ten individual reconstructions consisting of the new as well as the previously

unrejected reconstructions, and those failing to meet the rejection criterion are

again discarded. This method is repeated until all the si’s fall below smax. Once

ten acceptable reconstructions are obtained, they are then averaged to obtain a

final reconstruction, as shown in Figure 3.4.

3.3.4 Missing data

Diffraction patterns will often have significant regions of missing data mainly

due to the gap between the CCDs and pixel saturation. When using information

about the particle’s support in phase retrieval, these missing data regions can be

problematic as they could give rise to unconstrained modes, which are spurious

features with enough power to exist in the support in real space and the missing

data region in Fourier space [40]. Depending on the size of the missing data re-

gions relative to the speckles, unconstrained modes could become problematic

42



as they superimpose themselves over the true particle contrasts and result in

inaccurate reconstructions.

Figure 3.5: A weakly constrained feature f in real space, shown in greyscale,
with most of its power contained within the support, regions not colored in red
(left). In Fourier space, the same feature, again shown in grayscale, has most of
its power contained within the missing data region, again regions not colored
in red (right).
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Figure 3.6: The power of an unconstrained feature as it is iteratively updated via
the variation of the modified difference map with S and M from Figure 3.5. The
feature’s power decreases by six decades in ∼ 60 iterations before it abruptly
falls effectively to zero. This suggests any unconstrained features that arise dur-
ing the reconstruction process will effectively be suppressed if the time scales
of their decay are much less than the time scales of the overall reconstruction
process.

The degree to which modes may be unconstrained can be measured by the

rate at which they lose power during the phase retrieval process. Given some

unconstrained feature in real space f we define its unconstrained power to be

W [f ] =
1

2

(∫
S

|f |2 dr +

∫
M

|f̂ |2 dq
)

(3.15)
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where S is the (previously defined) particle’s support in real space and M is the

missing data region in Fourier space.

Measuring the degree to which these features are constrained can be done

by separately running a variation of the phase retrieval process. We define the

missing data projection,

PM [Ψ] = F−1 ◦ SM ◦ F [Ψ] (3.16)

where

SM [Ψ̂] =

 Re[Ψ̂(q)] q ∈M

0 q /∈M
(3.17)

and substitute the Fourier projection PF with PM in the modified difference

map, while keeping everything else, such as the α parameter, the same. Be-

ginning with a random initial contrast f0, the modified difference map with the

missing data projection will search for features whose power are not constrained

within the S and M in real and Fourier space, respectively. When there are no

modes with significant unconstrained power, we expect any initial contrast to

decay quickly when the above scheme is iterated.

The rate of power loss gives a sense of how constrained the features are

during the phase retrieval process and of how severely they could distort the

final reconstruction. For power loss as shown in Figure 3.6, the decrease of six

decades in about sixty iterations followed by the abrupt drop to zero in total

power suggests that the support and missing data regions are too restrictive in

allowing any significant unconstrained features to persist. For phase retrieval

runs consisting of thousands of iterations, it can be expected that features as
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those described in Figure 3.5 will not contribute significantly to the final recon-

struction’s total power.

3.4 Results

Figure 3.7: A selection of reconstructed soot contrasts, arranged by increasing
shape eccentricity. The length of each square box is 573 nm.

The reconstruction process consists of the following steps: centering the

diffraction patterns, generating ten acceptable individual reconstructions, and

checking whether unconstrained modes and features could exist in the recon-

structions. All computations were performed on a standard desktop computer

equipped with a quad-core Intel i7-2600 with a clock cycle of 3.4 GHz and 8 GB
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RAM. Each individual reconstruction run with tmax = 2000 iterations took ap-

proximately 15 minutes on a single thread. By taking advantage of multithread-

ing, up to five threads ran simultaneous individual reconstructions, shortening

the computation of ten individual reconstructions to a minimum of 30 minutes.

A maximum of four attempts were made with each initial support. In the event

an individual reconstruction attempt was rejected a fourth time, the whole re-

construction process was deemed a failure.

The diffraction images recorded at the LCLS underwent preprocessing where

the running background was subtracted. They were then subjected to an intensity-

based thresholding routine to identify those that contained sufficient photon

signal likely to result from particle-pulse diffraction events and did not exhibit

pixel saturation effects. A collection of 953 patterns was generated, and 309 of

those patterns were chosen for phasing through visual inspection based on the

size of the speckles and good signal-to-noise ratio. An investigation on unbi-

ased pattern selection is underway.

The top and bottom halves of the patterns were added after centering to in-

crease the signal-to-noise ratio and to constrain the contrasts to be real, assum-

ing the patterns largely obeyed centrosymmetry. Given the maximum scatter-

ing angle, θmax = 0.075 rads, the condition for centrosymmetry as described in

Equation 3.2 to hold requires that the distance from the center of the detector to

the edge not exceed 13 speckles. A number of patterns did exceed that count by

a couple of speckles, but in most of those cases, noise made it difficult to clearly

discern any speckles close to the edge, making the effective maximal scattering

angle less than what the detector allows for.

Of those chosen, 36 patterns failed to produce 10 similar individual recon-
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Figure 3.8: Histogram of the effective resolution of the 273 reconstructions,
quantified by where the phase retrieval transfer function dips below 1/e. The
smallest effective resolution was determined to be 18 nm, and the largest was
89 nm.

structions. In 30 out of those 36 instances, at least 8 individual reconstructions

were deemed similar. A total of 273 patterns yielded averaged reconstructions,

and some these reconstructions are shown in Figure 3.7. The quality of the re-

constructions was assessed by computing the phase retrieval transfer function

(PRTF) and an effective resolution was characterized by where the PRTF drops

to 1/e [26]. There was great variability in the quality of the reconstruction, as

shown in Figure 3.8, with a resolution range of 18 nm to 89 nm.

Many of the diffraction patterns were shifted by various amounts as shown

in Figure 3.9. A considerable number of them demonstrated shifts as much as

4 pixels and only 19 patterns were unshifted by the pulse. None of the aver-

aged reconstructions had significant missing data problems as unconstrained

features all experienced power decay to zero when run through the procedure

outlined in Subsection 3.2.4 using averaged supports. Only in 3 cases did the

decay take over 100 iterations. Even then, the longest time it took for complete

power loss was 258 iterations. Since the overwhelming majority of patterns

chosen had speckles larger than the missing data region, which was indirectly a

consequence of Equation 3.1, this was to be expected.
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Figure 3.9: 2D histogram of the offsets, measured as outlined in Section 3.1, in
the 309 patterns due to random phase tilts in the X-ray wavefront. The distri-
bution of offsets displays a strong spread in horizontal deviations, particularly
those with no vertical deviations.

3.5 Conclusion

Data collection rate at facilities such as the LCLS makes it infeasible to carry out

a user guided reconstruction for each diffraction pattern. The ability to analyze

and extract meaningful results from single shot diffraction imaging experiments

will invariably require a speedy and reliable contrast reconstruction process,

ideally with no supervision. We presented measures aimed at facilitating data

processing and the contrast reconstruction steps, and they have shown that high

throughput, unsupervised reconstructions are possible. A desktop implemen-

tation of our methods quickly reaches its computational limits, however, and

orders of magnitude speedup is necessary for the data collection and processing

rates to reach parity. Graphical processing units (GPUs) [41] and other “multi-

core" computing solutions show promise in providing the necessary speedup.

The ability to generate a large collection of images via single shot diffraction

48



imaging enables the possibility for morphological studies analogous to those

performed on collections of images obtained through other imaging techniques

such as transmission electron microscopy. Diffraction imaging has an advan-

tage over those imaging techniques as it allows for observation in situ of air-

borne particles such as soot. A whole host of other aerosols, such as medicinal

nanoparticles to cloud seeds, could benefit from study via single shot diffraction

imaging as their airborne structures could yield new insight into their function.
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Part II

Protein structure prediction
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CHAPTER 4

ITERATIVE METHOD FOR PROTEIN STRUCTURE PREDICTION

The contents of this chapter are based in part on unpublished work by Veit Elser

[42].

4.1 Introduction

As proteins are some of the most studied molecules due to their wide range

of importance in biology, chemistry, medicine, having the ability to better un-

derstand their structures has been one of the main motivations for progress in

imaging on the nanoscale. Parallel to these direct imaging efforts, there has

been a significant push in the past few decades within the computational biol-

ogy community to study and determine protein structures not through direct

observations, but through predicting structures based on sequences of amino

acid residues as shown in Figure 4.1. These efforts largely fall under what is

called the protein structure prediction problem, and to this day it remains a

very active field of research.

Broadly speaking, there are two classes of prediction problems [43]. The first

class of problems is of cases where sequences of unknown proteins bear similari-

ties to those of known proteins. The known structures serve as templates used to

fashion the structures of the unknown cousins. This type of prediction problem

is known as comparative modeling. A number of widely used algorithms have

been developed over the years, and many of them have shown reliable results

for predicting structures of sequences similar to sequences of known structures

by as little as 30% [44, 45].
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VGVKP VGSDP DFQPE LSGAG SRLAV VKFTM RGCGP CLRIA PAFSS MSNKY
PQAVF LEVDV HQCQG TAATN NISAT PTFQF FRNKV RIDQY QGADA VGLEE
KIKQH LE

Figure 4.1: A ribbon diagram and the amino acid residue sequence of the protein
1GH2 [46], which is one of many proteins expressed during human fetal brain
development. In the structure prediction problem, one aims to determine the
three-dimensional structure of the protein (top) using its amino acid residue
sequence (bottom).

The other class of problems deals with cases where the unknown sequences

do not share similarities with known proteins, so templates cannot be used to

predict their structures. This type of problem is known as ab initio or de novo

protein modeling. Because these problems deal with unknown sequences with

no known homologs, methods for predicting their structures rely on approaches

such as “gluing” together smaller structures or letting an initial guess of the

structure interact with its environment via physical forces and minimizing en-

ergy functions [47, 48]. In general, de novo methods require greater computa-

tional resources than comparative modeling methods due to the need to explore

greater numbers of conformations.
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In this chapter, we detail a prediction algorithm of the de novo variety which

makes use of constraint satisfaction via iterating projections as described in

Chapter 2. Given a sequence of residues for a protein of unknown structure,

the algorithm identifies subsequences of fixed lengths and draws upon collec-

tions of known structures to best predict the structures of the subsequences. The

collections are generated by parsing known protein structures found in a widely

used, online repository called the Protein Data Bank (PDB) [49]. Work towards

building a comprehensive collection is discussed in Chapter 5.

4.2 A primer on proteins

Proteins are important biological molecules whose functions are numerous and

essential for living organisms. Structurally, they are mainly composed of chains

of residues from twenty different amino acids listed in Table 4.1. Chains are

formed through peptide bonds between consecutive amino acids, and the chains

wind and assemble themselves into elaborate structures, like in Figure 4.1.

Table 4.1: A list of the twenty amino acids that form the building blocks of
proteins. Their one-letter codes are used to conveniently describe the sequences
that make up protein chains.

A Alanine
C Cysteine
D Aspartic acid
E Glutamic acid
F Phenylalanine

G Glycine
H Histine
I Isoleucine
K Lysine
L Leucine

M Methionine
N Asparagine
Q Glutamine
P Proline
R Arginine

S Serine
T Threonine
V Valine
W Tryptophan
Y Tyrosine

Amino acids have a general structure that follow the form shown in Figure

4.2. They are composed of three parts: the amino group, the carboxyl group,

and a side chain, all of which are bonded to a central carbon atom called Cα.

Amino acids bond with other amino acids via condensation, where the amino
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group of one amino acid and the carboxyl group of the other amino acid come

together to form a peptide bond between the amino acid residues, as shown in

Figure 4.3. These bonds serve as the basis for the creation of chains.

Figure 4.2: A chemical diagram of tryptophan, one of the twenty amino acids
that serve as building blocks for proteins. Amino acids generally have the same
chemical structure, where a carboxyl group, an amino group, and a side chain
are all joined together via the Cα atom. The figure was generated using Mar-
vinSketch version 15.16.8 (2015) [50].

The peptide bonds impose both a periodicity and a directionality on the back-

bone of a chain. The backbone is made up of repeating units of NH - CαH - CO,

so all proteins conventionally “begin” at the N atom in the unbonded amino

group (the N-terminus), and ”end” at the C atom in the unbonded carboxyl

group (the C-terminus). A convenient, visual way to represent the backbone is

through the planar configuration shown in Figure 4.3. The Cα atoms on consec-

utive residues, as well as the remaining oxygen atom from the carboxyl group

and the hydrogen atom from amino group form a quadrilateral which contains

the peptide bond. On longer chains, the backbone can be represented via a se-

ries of connected quadrilaterals.

While getting a handle on how the global structure of a chain (also called

tertiary structure) arises is challenging, understanding how local structures arise

can be done mainly through studying the interatomic forces between relevant
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Figure 4.3: The popular artificial sweetener aspartame is a dipeptide composed
of two amino acids, aspartic acid (left) and phenylalanine (right). The two
amino acid residues are joined via a peptide bond (shown in teal). The grey
region, a quadrilateral defined by the four corner atoms, encloses the peptide
bond.

atoms. One of the more important forces in local structure determination is the

hydrogen bond, which is technically not a bond in the electron “sharing” sense,

but rather an electrostatic attraction between a hydrogen atom with an elec-

tronegative atom such as oxygen. Hydrogen bonds are responsible for the as-

sembly of structures like the coils and the long, tight, winding strands shown

in Figure 4.4. These secondary structures, called α-helices and β-sheets, are very

common structural motifs found in many proteins, and play an important role

in our discussions in Chapter 5.

Proteins need not be composed of a single chain, but could be made up of

multiple chains, giving rise to quaternary structures. Also, they could incorpo-

rate other molecules such ligands or nucleic acids into their structures to serve

elaborate functions. These additional components only give way to more com-

plexity and further challenge our ability to understand how such structures can

arise.
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Figure 4.4: Two proteins, 2MVJ [51] (left) and 2MWD [52] (right), composed
mainly of secondary structures. 2MVJ can be characterized as a single, long,
α-helix, and 2MWD as an anti-parallel β-sheet, shown as a sequence of arrows
in close proximity to each other.

4.3 Prediction problem

As previously stated, protein structure prediction is a process where a protein’s

three dimensional structure is determined from its residue sequence. Conven-

tionally, determining the three-dimensional coordinates of the Cα atoms is suffi-

cient in describing a proteins’ structure. The prediction algorithm to be outlined

in this chapter has been applied on single chains, and has initially shown suc-

cess in predicting structures of chains with roughly sixty residues. At the heart

of the algorithm is the “divide and concur” formalism [53]. It is a technique

which defines two projections that do the following: independently satisfy an

arbitrary number of constraints over multiple copies of solution attempts (the

divide projection) and reconcile the disagreements between different attempts

at satisfying all the constraints (the concur projection). It has been applied to a

number of problems, ranging from disk packing to 3SAT, and has performed on

par with other algorithms adept at solving these problems. Before discussing
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how this method can be applied to the protein prediction problem, we first dis-

cuss the method in generality.

4.3.1 Divide and concur

Divide and concur is a constraint satisfaction technique which overcomes the

two-constraint limit in the methods outlined in Chapter 2 and allows for prob-

lems with N constraints to be solved via iterated projections. The way this is

done is by reformulating problems in a way that requires the use of two partic-

ular projections, called the divide and concur projections.

The first of the projections involves satisfying each of the N original con-

straints independently, without regard for how satisfying any one will affect

satisfaction of the others. To accomplish this, a satisfaction problem, whose

solution usually resides in some space K, is reformulated by constructing ele-

ments in a space consisting of N “copies” of K. The space where the “meta-

solution” resides in is the N -fold Cartesian product space of K’s. An element of

this product space can be described as

y = x(1) × x(2) × . . .× x(N). (4.1)

where each x(i), an element of K, addresses a single constraint. This construc-

tion allows for each of the N constraints to be satisfied on each of the elements

in the Cartesian product without care for how the other constraints are satisfied.

To perform the independent satisfactions, we define the divide projection,

PD, which takes elements of the Cartesian product space as inputs and outputs
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modified elements residing in the same space. Each of the constraints are indi-

vidually and independently satisfied via their own projections, Pi, on each of

the N elements of y, through the following operation

PD[y] = P1[x(1)]× P2[x(2)]× . . .× PN [x(N)]. (4.2)

The second projection is meant to complement the first and impose consen-

sus among all the different attempts at individual constraint satisfaction. We

define the concur projection, PC , which takes N elements of y and brings all of

them to agreement without care for whether or not doing so compromises the

individual constraints. Mathematically, this is accomplished by first computing

the weighted average

x̄ =

∑n
i=1 λix

(i)∑n
i=1 λi

(4.3)

and returning the N -fold Cartesian product with each element consisting of

Equation 4.3

PC [y] = x̄× x̄× . . .× x̄. (4.4)

With these two projections defined, a solution which satisfies all N con-

straints can be thought to lie at the intersection of the divide and concur con-

straint sets. As in the case of phase retrieval, the meta-solution ys which lies at

the intersection of the two constraint sets satisfies the equation

ys = PD[ys] = PC [ys]. (4.5)

Finding an intersection of the two sets can be done via iteratively applying a
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composition of these projections, much like the approach discussed in Chapter

2. This will be discussed in detail in Subsection 4.3.5.

4.3.2 Structure prediction via divide and concur

To apply divide and concur to the protein structure problem, the prediction

algorithm divides up a sequence of m amino acid residues into smaller, over-

lapping subsequences of length p. It also begins with a random guess for what

the three-dimensional structure of the sequence looks like. Each subsequence

has a library of diverse three dimensional structures at its disposal, from which

it finds a particular structure that the current three-dimensional structure char-

acterizing the subsequence most “agrees” with, and then replaces the current

structure with the most agreeable one. In this step, the subsequence also con-

siders interactions between itself and residues as well as water in choosing its

preferred three-dimensional conformation.

Finding the “ideal” three-dimensional structure for a subsequence can be

thought of as a single constraint which needs satisfying, the details of which

will be described in the next subsections. This is done via defining a projection

for that particular subsequence which does what was described in the previ-

ous paragraph. The divide projection will take the projections on all the subse-

quences and apply them independently in each application of PD, as suggested

in Equation 4.2. Complementing this effort is the concur projection, which rec-

onciles the different copies via averaging.
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4.3.3 Subsequences and “litemotifs”

Consider a single sequence of length m. We define subsequences to be of length

p and note that there are m−p+ 1 possible subsequences to consider on a single

sequence if we allow for overlaps. If we again consider the single chain protein

1GH2 from Figure 4.1, we see it has a sequence consisting of m = 107 residues.

If we set p = 4, then the sequence has a total of 104 potential subsequences of

interest. Each subsequence in 1GH2 has a particular residue code. For instance,

the third subsequence of length 4 has the code ’VKPV’. To predict the three-

dimensional structure for this particular subsequence, a collection of known

three-dimensional structures from subsequences of length 4 with the same code

is needed.

When considering the three-dimensional structures of subsequences of a

particular code, there are bound to be numerous different structures due to con-

figurations resulting from interactions between the residues in the subsequence

and residues elsewhere on the chain or water molecules. It is important to keep

track of these additional residues or water molecules. This motivates the notion

of litemotifs, which serve as “building blocks” for the prediction algorithm. A

litemotif is defined to be a three dimensional configuration of p Cα atoms from

a subsequence of interest plus a set of q other atoms which the residues of the

Cα atoms are in contact with.

Generating collections of litemotifs requires finding them from known pro-

tein structures. The PDB is an online repository for known protein structures

with a collection of 109,457 molecular structures as of mid-2015 [49]. These

structures are obtained via numerous experimental techniques, from X-ray crys-

tallography to nuclear magnetic resonance (NMR). For our purposes, it is one
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Figure 4.5: Some examples of litemotifs. They consist of p = 4 Cα atoms, de-
picted in black, and q = 1 contact atoms, depicted in orange, which could either
be another Cα atom or an oxygen atom from a water molecule. These were
extracted from protein structures deposited in the PDB.

of the most comprehensive collections of protein structures from which we can

extract litemotifs. Figure 4.5 shows a small selection of litemotifs extracted from

a number of different proteins from the PDB.
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4.3.4 Divide and concur projections

Each of the subsequences in a chain, as previously stated, is subject to a sin-

gle constraint: it must match some litemotif. Let us suppose that there are

N = m − p + 1 subsequences of interest. There can be cases when certain

subsequences can be left out of consideration, but we shall assume that is not

the case. Furthermore, for simplicity’s sake, let us consider cases where subse-

quences are of length p = 4 and a subsequence is in contact with q = 1 atoms,

implying N = m − 3. Lastly, we leave out water molecules in our discussions,

but they could be incorporated as additional atoms whose coordinates need to

be determined.

We first consider the space in which the solution and “meta-solution” reside

in. As in Equation 4.1, we define N copies of the set of atoms characterizing the

protein structure via the Cartesian product

y = x(1) × x(2) × . . .× x(N) (4.6)

where x(i) = {xi,1, . . . , xi,m} is a set of m three-dimensional coordinates for all

the m Cα atoms, as shown in the simplified representation in Figure 4.6. The

(i) superscript is meant to denote the ith copy on which the ith subsequence is

modified in the divide step.

The projection Pj[x
(j)] replaces the jth subsequence and contact atom with

an element from some litemotif collection Lj . Suppose Lj = {l1, . . . , lµ} has

µ different litemotifs, where each li is composed of p = 4 three-dimensional

coordinates of Cα atoms and q = 1 additional coordinates to describe the contact
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Figure 4.6: A two-dimensional diagram depicting an initial guess, x(i), at a so-
lution for the Cα chain. A candidate “meta-solution” can be fashioned from this
guess by constructing an N -fold Cartesian product by making N copies of x(i).

atoms. More specifically, each li can be expressed as a set of coordinates:

li = {zi,1, . . . , zi,4, zi,5} (4.7)

where the first four zi,k’s are sets of coordinates from a subsequence of a known

structure and zi,5 is the coordinate of the contact atom.

The projection goes throughLj and finds the litemotif, lc = {zc,1, . . . , zc,4, zc,5}

that best aligns with the coordinates xj,j, . . . , xj,j+3, xj,j′ in x(j), where j′ is the

index of the contact atom. Since j′ is not known, the projection loops through

all indices except for those in the subsequence and chooses the index that best

aligns a fixed litemotif with the five positions in x(j), as shown in Figure 4.7. It

then does this for all litemotifs until lc and the best contact position for lc, j′c,

are found. Alignment is measured using the root mean squared deivation after

aligning the two sets of atoms’ coordinates via least-squares minimization. The

details of the RMSD and alignment calculations can be found in Appendix A.

With the litemotif lc and the best contact index j′c found, the projection modifies
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x(j) by replacing the coordinates xj,j, . . . , xj,j+3, xj,j′c with zc,1, . . . , zc,4, zc,5.

Figure 4.7: An individual projection, Pj[x(j)], will compare the j’th subsequence
against all the litemotifs, depicted in orange, found in the collection Lj . It then
finds lc, the litemotif most similar to xj,j, . . . , xj,j+3, xj,j′c , and replaces the latter
with the former. In this case, the litemotif in the green square is deemed most
similar to the subsequence and contact atom.

With the individual projections Pj’s defined, the divide projection PD[y] ap-

plies them on each element of the Cartesian product as indicated in Equation

4.2. Each element will only have one subsequence and contact atoms replaced

by a litemotif, while leaving the other coordinates untouched, as depicted in

Figure 4.8.

The concur projection, PC [y] is a straightforward application of Equation 4.4.

This step involves taking all N copies of the three-dimensional coordinates and

averaging them to produce one set of coordinates

x̄ =
1

N

N∑
i=1

x(i) =

{
1

N

N∑
i=1

xi,1, . . . ,
1

N

N∑
i=1

xi,m

}
. (4.8)
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Figure 4.8: The divide projection, PD[y], applies the individual projections
Pj[x

(j)] over all j subsequences and returns a Cartesian product of the N mod-
ified sequences. On the top row, the green circles represent the most favored
litemotifs from each of the individual projections. We only demonstrate the di-
vide projection applied on four subsequences in this figure.

The projection then returns a Cartesian product of the averaged coordinates

PC [y] = x̄× x̄× . . .× x̄. (4.9)

as shown in Figure 4.9.

4.3.5 Iterated projections and ADMM

Like the phase problem, using iterated projections to predict protein structures

follows the same general set of procedures, where a random initial iterate y0 is

updated through a composition of the divide and concur projections. Any of the

algorithms described in Table 2.1 could conceivably be used, and the iterations
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Figure 4.9: The concur projection, PC [y], computes the average of theN different
subsequences and returns an N -fold Cartesian product consisting of the aver-
age. The purple shadow demonstrates how much each of the original sequences
differs from the averaged sequence.

would stop when the error metric (which in this case is equivalent to the RMSD

between iterates) ε[yn] satisfies the inequality

ε[yn] < τ (4.10)

for some tolerance τ . As was the case with the phase problem, there is no con-

vergence guarantee for the prediction algorithm because the divide projection

is non-convex. Hence, the number of iterations required until Equation 4.10 is

satisfied is determined through trial and error.

Recent efforts have used a different algorithm than the ones listed in Table

2.1. The algorithm of choice has been the Alternating Direction Method of Mul-

tipliers (ADMM), a method developed by Boyd et al. [54] for solving convex

minimization problems. In the context of iterated projections, the method can
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be described by the following sequence of steps

dn = PD[cn + αfn] (4.11)

cn+1 = PC [dn − αfn] (4.12)

fn+1 = fn + cn+1 − dn (4.13)

where α is a free parameter and the algorithm is started with initial seeds c0 and

f0 = 0.

In one round of ADMM, the divide and concur projections are applied se-

quentially on iterates modified by the discrepancy fn scaled by α. Depending

on the choice of α, ADMM is equivalent to some of the other methods listed in

Table 2.1. When α = 0, ADMM reduces to the alternating projections method,

with the discrepancy not playing any role in how the iterates dn and cn get up-

dated. For α > 0, the discrepancy is “fed” into the next round of alternating

projections as a way to prevent stagnation, similar in spirit to the HIO method.

The difference between consecutive fn’s can be used to compute the error metric,

and when Equation 4.10 is satisfied, the concur iterate cn can be used to obtain

the solution.

4.4 Preliminary results

The first attempts at structure prediction used “4+1” litemotifs, which are com-

posed of four consecutive Cα atoms and an additional contact atom, which is

either another Cα atom or an oxygen atom from a water molecule. Contact is

defined via some distance cutoff dco, and is between side chains and other side
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chains or water molecules. To ensure the geometry of the 4 Cα atoms is heav-

ily influenced by the contact atom, at least two of the side chains of the corre-

sponding Cα atoms have to meet the distance cutoff with the contact atom. The

litemotifs shown in Figure 4.5 were constructed using these rules.

The choice of p = 4 was made so that the litemotifs are small enough that

many samples could be found in the PDB, but also large enough that they cap-

ture the geometrical diversity. Smaller litemotifs of length p = 3 would mainly

capture how the Cα atoms span a plane, but fail to capture the coils and kinks

of the backbones of the proteins they come from.

A total of 20,148 proteins were processed from the PDB to generate 23,593,246

different litemotifs with the help of the ProDy package [55]. For each litemotif,

the four-letter code was recorded, so that “subcollections” of litemotifs consist-

ing only of those with the same codes can be constructed. There are 11,505

different codes in the collection, representing a fraction of the 204 different pos-

sibilities. The subcollection sizes are not uniform, and range from some with

hundreds of thousands of litemotifs to others with just one litemotif. The me-

dian subcollection size is 831. Table 4.2 lists the codes with some of the smallest

and largest subcollections.

Initial prediction efforts centered on single chains of less than a hundred

residues in length. Sequences of known proteins, whose structures can be found

in the PDB, were tested using litemotif collections which excluded those ex-

tracted from the tested protein. Additional constraints were imposed on water

molecules, restricting them to the exterior of a compact region occupied by the

protein.
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Table 4.2: A listing of the codes with the largest and smallest subcollections.
Note that there are far many more codes with subcollections of size 1, but only
five are listed here.

Largest Smallest

Code Size

MRYF 548,854

TQSP 512,101

NLQG 398,175

VKFG 184,460

NMKR 157,786

Code Size

RITR 1

EQLN 1

IWEV 1

LALA 1

KLVF 1

One of the seemingly first successes came in predicting the structure of 2P5K

[56], a single chain protein of sixty-three residues. After roughly 150,000 itera-

tions, the algorithm was able to hone in on a structure which largely did not

change, minus rigid rotations, over the next 50,000 iterations. This is evident

in the time series of the RMSD between consecutive iterates, also known as the

error metric, as shown in Figure 4.10, where the RMSD value fluctuates around

a smaller value after 150,000 iterations. The final predicted structure, shown in

Figure 4.11, differed from the true structure as reported in the PDB by an RMSD

of 2.78Å.

When attempting to predict the structure of the human CD59 glycoprotein,

2J8B [57], another single chain protein but with seventy-eight residues, a prob-

lem arose. Much like 2P5K, the algorithm found a structure that it largely settled

on after a few hundred thousand iterations, as shown in Figure 4.12. However,

after auditing the subsequences to determine from which known proteins the

litemotifs responsible for the final structure came from, a large number of them

were associated with 1CDQ, 2OFS, 2UX2, and 4BIK. These four proteins are
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Figure 4.10: The RMSD between consecutive iterates from predicting 2P5K.
Note that the value generally decreases until after about 150,000 iterations, after
which it largely settles around an RMSD of 0.15Å. Reproduced with permission
from the creator [42].

either the same CD59 glycoprotein studied at different resolutions or with dif-

ferent methods, or contain the glycoprotein as part of their larger structures (in

the case of 4BIK).

After further pruning the collection of litemotifs to exclude those that come

from near-identical proteins, prediction was attempted on 1ULR [58]. In this

case, the prediction algorithm failed to find a structure that closely resembles

the actual structure. Many of the secondary structures present in the actual

version were missing, giving way to erratic coils as shown in Figure 4.13. Note

that large swaths of the β-sheets in the actual version are simply not present in

the predicted version.
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Figure 4.11: Snapshots of the predicted structure of 2P5K, shown in purple
with red connections, overlaid on the actual structure, shown in purple with
green connections, shown from different angles. The two structures differ by an
RMSD of 2.78Å. Reproduced with permission from the creator [42].
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Figure 4.12: The RMSD between consecutive iterates from predicting 2J8B.
Much like in Figure 4.10, the value gradually decreases over the course of hun-
dreds of thousands of iterations. The abrupt drop starting from about 340,000
iterations signals that the algorithm is close to finding a solution that satisfies
both the divide and concur constraints. Reproduced with permission from the
creator [42].

Figure 4.13: The actual structure of 1ULR, shown left, versus the predicted struc-
ture shown right. Note that many of the α-helices and β-sheets found in the
actual structure are not found in the predicted structure. Reproduced with per-
mission from the creator [42].
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4.5 Future work

While the latest attempts exposed certain shortcomings of the prediction strat-

egy using a particular set of litemotifs, it is worth noting that through the vari-

ous trials, the algorithm has a tendency to find the “right” litemotifs to represent

subsequences, despite looking through a large number of them. When given the

chance, the algorithm found most of the litemotifs which were associated with

near-identical versions of the predicted protein, which is promising if it contin-

ues to hold, but ideally on more properly curated collections.

Going forward, the two issues that need addressing are building litemotif

collections for testing that exclude those coming from near-identical proteins,

and also considering different litemotif constructions that better capture local

geometries. Although the “4+1” litemotifs fare reasonably in capturing the

backbone shapes, they do not effectively capture the elaborate structures borne

from secondary structures, as Figure 4.13 makes clear. Some of these issues are

addressed in the next chapter, and further results from these changes will be

forthcoming in the near future.
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CHAPTER 5

PROTEIN LITEMOTIF GENERATION

To complement the structure prediction method outlined in Chapter 4, pro-

tein structures from the PDB were used to extract litemotifs. Depending on the

rules of construction, collections with up to millions of litemotifs were gener-

ated. These collections represent a “complete” sampling of the possible litemo-

tifs given all the protein structures we know. While it is not entirely unreason-

able to take these complete collections and use them without further analysis in

the prediction studies, there are two issues that makes this approach problem-

atic. One is that many litemotifs could similar to each other. For such cases, it

may be appropriate to only keep one similar litemotif and remove the rest from

the collection. The other issue is that there is no way to know if a complete

collection contains a diverse enough number of litemotifs.

In this chapter, we discuss efforts to address these two issues. We first de-

fine the litemotifs of interest and extract them from the deposited proteins in

the PDB. We then quantify the pairwise closeness between the litemotifs and

use those values to build graphs where each litemotif is represented by a node.

The graph construction allows us to “compress” large collections through find-

ing dominating sets, which can loosely be thought to represent non-redundant

subcollections. These dominating sets are further analyzed using tools from in-

formation theory and dimensionality reduction methods to better understand

the “expansiveness” of the collections they represent.

The methods discussed in this chapter are applied to different sets of litemo-

tifs, described in the next section, based on the latest attempts at protein folding

via divide and concur. They could easily be applied and studied to conceivably
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any collection of litemotifs.

5.1 Litemotif definitions

After initial attempts at structure prediction with the “4+1” litemotifs, there was

a desire to build new collections based more firmly on configurations resulting

from hydrogen bonds as well as less stringent side-chain to side-chain contacts.

It is suspected that litemotifs based on these interactions would better capture

local secondary structures as well as residue-water contacts.

In this section, we define four new litemotifs. Unlike the “4+1” motifs from

before, keeping track of the code of each of these litemotifs is not required. The

use of different litemotifs in tandem in structure prediction through “divide

and concur” requires only a slight modification of the divide projection, where

the number of individual constraints increases by however many sets of lite-

motifs are necessary. This would only increase the Cartesian product space by

roughly a factor of the number of different sets of litemotifs. The concur projec-

tion would remain the same.

As was briefly discussed in the last chapter, litemotifs are extracted from

known protein structures deposited in the PDB. The files contain the coordinates

for most of the important atoms, save for the hydrogen atoms on the carboxyl

groups of residues. The locations of those atoms have to be inferred from their

neighbors.

• “3+3” via hydrogen bonding:

The first litemotif consists of a pair of three consecutive Cα atoms as shown

in Figure 5.1. The residues corresponding to the middle Cα atoms in each
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pair are in contact with each other, while the other four Cα are not con-

strained. Contact is determined via hydrogen bond, where the hydrogen

atom on the amino group on the middle residue is within some distance

cutoff dhb of an oxygen atom on the carboxyl group of the other middle

residue.

• “3+3” via side-chain to side-chain contact:

Much like the “3+3” hydrogen-bonded litemotifs, the side-chain to side-

chain litemotifs also consist of a pair of three consecutive Cα atoms as

shown in Figure 5.2. The difference is that the side chains attached to the

two middle Cα atoms are in contact. Contact in this case is defined by at

least three atom-to-atom pairings, where all three pairings have distances

which fall under some cutoff dsc. A single atom on one side chain can be

paired with atoms on the other side chain as long as the pairings meet the

distance cutoff.

• “3+1” side chain - solvent contact:

There are really two different kinds of litemotifs that can be constructed

from three consecutive Cα and a water molecule, as shown in Figures 5.3

and 5.4. The two share the same, general construction in that the residue

of the middle Cα atom is hydrogen-bonded to the water molecule. The

difference stems from whether the residue is a hydrogen donor or accep-

tor.

When the residue is a hydrogen donor, the hydrogen atom on the amino

group is bonded to an oxygen atom on a water molecule. This can be

determined via the same dhb distance cutoff criterion between the relevant

atoms, as discussed in the “3+3” via hydrogen bonding litemotifs.

When the residue is a hydrogen acceptor, the oxygen atom on the carboxyl
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group is bonded with a hydrogen atom on a water molecule. While contact

is defined in the same way as the previous case, the means of determining

it is trickier. The protein structure files contained in the PDB have coordi-

nates for the oxygen atoms from water molecules, but not their hydrogen

atoms. So, the hydrogen bond has to be inferred via proximity between

the oxygen atoms on the carboxyl group and on the water molecule, via

the distance cutoff doo.

As an added constraint, when considering both hydrogen bonding scenar-

ios, it is important for the hydrogen acceptor or donor on the residue, as

well as the atom it is covalently bonded to, to align with the oxygen atom

on the water molecule so that they all fall on a straight line.

A total of 12,308 single chain proteins with sequence similarities of less than

50% were considered for litemotif extraction. The total numbers obtained for

each kinds are listed in Table 5.1. Given that the “3+3” side-chain to side-chain

litemotifs are the most populous, subsequent sections will use their collection

to motivate discussions, and will be abbreviated as “3+3” SC-SC’s. A summary

of the important findings for the other kinds of litemotifs will be discussed in

Section 5.5.

Table 5.1: Number of litemotifs extracted for each type. A total of 12,308 proteins
provided the source. The most numerous are the “3+3” via side-chain to side-
chain variety.

Litemotif type Count

“3+3” side-chain contact 2,528,607

“3+3” hydrogen bonded 425,415

“3+1” O on residue 39,562

“3+1” H on residue 150,731
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Figure 5.1: Examples of “3+3” via hydrogen bonding. A pair of three consecu-
tive Cα atoms are brought together via hydrogen bonding, with the hydrogen
atom on one residue, indicated by the Cα shown in white, attracted to the oxy-
gen atom on another residue, indicated by the Cα shown in red.

Figure 5.2: Examples of “3+3” via side-chain to side-chain contact. A pair of
three consecutive Cα atoms are in contact through their middle Cα’s, depicted
in green. To ensure the side chains of the middle residues are strongly in contact,
at least three atom-to-atom pairings need to fall under the cutoff dsc.

Figure 5.3: Examples of “3+1” litemotifs with three consecutive Cα atoms and
an oxygen atom from a water molecule. The residue of the middle Cα atom acts
as a hydrogen donor, shown in white, while the oxygen atom acts as a hydrogen
acceptor, shown in red.
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Figure 5.4: Examples of “3+1” litemotifs with three consecutive Cα atoms and an
oxygen atom from a water molecule. The residue of the middle Cα atom, shown
in red, acts as a hydrogen acceptor, while the water molecule represented by the
oxygen atom acts as a hydrogen donor, shown in white.

5.2 Litemotif graphs and dominating sets

Using the litemotif definitions from the previous section, we noted in Table

5.1 that extracting litemotifs from known protein structures in the PDB have

yielded counts on the order of tens of thousands to millions. Whether or not

these numbers are sufficient and provide enough of a diverse sampling of lite-

motifs are questions that need to be addressed. Also important is getting a sense

of how many non-redundant litemotifs there are in a collection. For instance,

litemotifs extracted from α helices could plausibly be similar to each other. In

such groupings, it would be preferable to only keep one litemotif.

These issues can only be addressed when we consider how similar litemotifs

are to one another. A natural measure of similarity that was briefly discussed

last chapter is the RMSD. By computing the pairwise RMSDs for all possible

pairs of litemotifs, li and lj , one gets a clearer picture of the ensemble of litemo-

tifs. Figure 5.5 shows a histogram of the RMSD values computed from a random

collection of 10,000 “3+3” SC-SC litemotifs.

While the RMSD captures how similar all the litemotifs are to one another,

it can quickly become cumbersome to manage as the number of litemotifs in-
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Figure 5.5: Histogram of all the pairwise RMSDs of a random collection of
10,000 “3+3” SC-SC litemotifs. Each pair is optimally aligned, using the pro-
cedure outlined in Appendix A, before their RMSDs are computed. The mean
RMSD is 3.29Å.

creases. A way to simplify the representation of the collection is to construct

litemotifs graphs based on the RMSD calculations. Let each litemotif be charac-

terized by a node, and the “nearness” of two litemotifs by an edge. Unweighted

edges are constructed if the RMSD between two litemotifs falls under some

threshold c. The RMSD values could conceivably be used to compute weights

on each of the edges. For the sake of simplicity, we are interested in using the

edges to denote similarity and dissimilarity without regards to the degree of

similarity. Care must be taken to determine a threshold c that is not arbitrary,

and this is highly dependent on the structure prediction algorithm.

The unweighted litemotif graph, G, provides a simplified picture of how
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“close” litemotifs are to each other. It also allows us to use tools from graph

theory to answer some of the questions that were posed earlier in the section.

One of them, the problem of redundancy, involves finding a smaller collection

of litemotifs which are sufficiently dissimilar from each other, yet continue to

represent the collection as a whole. This problem can be addressed through

finding a dominating set of G.

Figure 5.6: A dominating set of a graph G is the set of nodes that are adjacent to
all other nodes in G. A graph can have multiple dominating sets, as shown in
the two figures above, where red nodes belong to dominating sets.

A dominating set D is a subset of nodes in G which are adjacent to all nodes

in G [59]. In our studies, the dominating set represents a smaller collection of

litemotifs to which all litemotifs are similar to. As shown in Figure 5.6, multi-

ple dominating sets can exist for a graph. Finding the smallest dominating set

would be preferable, but that problem is NP-complete for general graphs. Just

finding a dominating set, one whose node count is significantly smaller than

that of the entire graph can be done in polynomial time. Figure 5.7 shows how

the dominating set of a large graph has significantly fewer nodes than the graph.

The algorithm used to find dominating sets is described in detail in Appendix

A.
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Figure 5.7: A graph of 1500 “3+3” SC-SC litemotifs, with edges, shown in faint
grey, placed between litemotifs with RMSDs of less than c = 1.71Å. Litemotifs
belonging to the dominating set are colored in red, while the rest of the litemotifs
are in teal. The size of a node is proportional to its degree. The figure was
generated using Gephi [60].

5.3 Saturation of the litemotif collection

The first attempt at understanding the expansiveness of the litemotif collection

involved studying how a dominating set’s size grows as a function of the size

of the graph it represents. It seems plausible that as a litemotif graph grows
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larger, the rate at which a corresponding dominating set grows should slow

and hopefully converge to a saturation value.

Figure 5.8 shows how the dominating sets from the “3+3” SC-SC litemotif

graphs grow as the graphs themselve grow. The RMSD cutoffs for edge place-

ment were determined using the RMSD histogram from Figure 5.5, and are

RMSD values in the 5th, 10th, 25th, and 50th percentiles. Graphs constructed us-

ing generous cutoffs, such as c = 3.29Å and 2.64Å, have dominating sets which

seem to have converged, but those constructed using stricter cutoffs, c = 2.06Å

and 1.71Å, have dominating sets that show no signs of convergence.
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Figure 5.8: “3+3” SC-SC litemotif graphs are generated from random subcollec-
tions of fixed sizes. For fixed size and RMSD cutoffs, 10 random graphs were
generated, and the average of their dominating set sizes was used to generate
the plot. For generous RMSD cutoffs, the dominating set size seems to have
converged, but for stricter cutoffs, that seems not to be the case.

For more stringent RMSD cutoff values, there is an issue with determining

the saturation value in that convergence is difficult to observe when a “com-

plete” collection contains many rare litemotifs. From a graph perspective, these

litemotifs correspond to isolated nodes, which are expected to be numerous.

When a dominating set is found from a graph of a random subcollection, the
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chance that it contains some of the rare litemotifs can be small. Also, even when

considering all the litemotifs that can be extracted from all known proteins, it

is unclear whether all possible configurations have been accounted for. It is en-

tirely plausible that yet to be discovered proteins with unusual structures could

possess unique litemotifs. This makes it difficult to definitively quantify the

saturation value.

5.3.1 Shannon entropy

Instead of hoping to determine the saturation value, quantifying the number of

common litemotifs might stand a more reasonable chance at success. To do this,

we recall that in the graph G of a random subcollection of size m, each of the m

nodes “associates” with a dominating set node dj . For each node dj in D, there

is a corresponding countC(dj) denoting the number of nodes inG that associate

with it. The counts can be used to generate a probability distribution P (dj), of a

random node nrandom, selected from G, associating itself with dj .

An indirect way to quantify the number of common litemotifs is through

studying how the Shannon entropy of the probability distribution on the dom-

inating set D grows. The Shannon entropy is, much like its thermodynamic

counterpart, a measure of the uncertainty (or choice) contained within an in-

formation source [61]. In information theory, it characterizes how much uncer-

tainty is contained in an event when the outcomes are inherently probabilistic

in nature. In the discrete case, the quantity is defined by the formula

H = −
∑
j

pj log(pj). (5.1)
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where pj is the probability of an event j occurring.

A popular toy case that provides some intuition for the entropy is the coin

flip scenario. We characterize the coin flip via the Bernoulli distribution

P (X = x) = px(1− p)(1−x) (5.2)

where p is the probability of getting a head andX is a random variable denoting

whether a head (X = 1) or a tail (X = 0) is flipped. If we compute the Shannon

entropy for the coin flip, we find that

H(X) = −p log(p)− (1− p) log(1− p) (5.3)

which is shown in Figure 5.9. We can see that for p = 0 and p = 1, H = 0.

Considering there is no uncertainty (nor choice) in coin tosses with such proba-

bilities, such an entropy value makes sense. In the case when p = 1
2
,H attains its

maximum, which indicates that uncertainty is greatest when the coins are fair.

For studying the dominating sets of litemotifs, we note from discussions

earlier in the section that a probability distribution on the nodes of a litemotif

graph belonging to D can be constructed. The dominating set D is finite in size

with s nodes, soD can be thought of as a discrete random variable taking on the

realized values {d1, . . . , ds}. The entropy of the event of a node in G associating

with a dominating set node can be defined as

H(D) = −
∑
j

P (dj) log(P (dj)). (5.4)
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Figure 5.9: The entropy of a coin flip as a function of p. Note that when p = 0
and p = 1, H = 0, while H is maximized when p = 1/2. The entropy can be
thought of as quantifying uncertainty, so in the event that a coin flip will always
turn up heads or tails, it will have zero entropy.

If we study how this value behaves as the size of G increases and see that it

converges to some value, we have reason to suspect that the probability distri-

butions for D do not differ. Figure 5.10 shows the entropy calculations for the

same graphs studied in Figure 5.8. Regardless of the cutoff, the entropy values

level off.

5.3.2 Diversity index

Another way to interpret the entropy is through the diversity index,

W = eH (5.5)

which is a value of importance in ecology [62]. In that context, the diversity

index is a measure that balances both the “evenness” and the numbers of species
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present in an ecosystem and represents an effective species count [63].

The entropy H used in ecology can be computed in the same fashion as the

information theoretic version. However, its interpretation is different. Instead

of representing probability distributions, each pj represents the proportion of a

particular species within an ecosystem. So, instead of quantifying uncertainty in

random events, the entropy can be thought of as a measure of “diversity” within

an ecosystem. If we reconsider the coin flip example from the ecologists’ per-

spective, there is zero diversity (i.e. entropy) when p = 1 or p = 0, since all the

organisms within that ecosystem will belong exclusively to one species. In the

case when the probability distribution is uniform, pj = 1/q, W = q represents

the actual number of different species. For cases of non-uniform probability

distributions, W suppresses the proportion of the rarer species.

For our studies, calculating W gives us an approximate sense of the “effec-

tive” number of litemotifs in the dominating set. It addresses the main issue we

faced earlier in quantifying the saturation value because of the rare litemotifs.

Those litemotifs contribute little to the diversity index, as we can see in Figure

5.11. Much like the entropy values we saw in Figure 5.10, the diversity indices

quickly converge to a value regardless of the RMSD cutoffs.

5.4 Dimensionality reduction of dominating sets samples

Another way to study how litemotifs are related to each other is by finding

representations of them in lower dimensions. While litemotifs naturally reside

in R3n, where n is the number of atoms, their geometries most likely constrain

them in ways that require fewer degrees of freedom to fully characterize them.
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Figure 5.10: Using the “3+3” SC-SC litemotif graphs studied in Figure 5.8, the
entropies of the dominating sets were computed. Regardless of the RMSD cut-
off values, the entropy values quickly converge and stay more or less constant.
Entropy has units of nats when the log function is of base e.
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Figure 5.11: The diversity indicies for the dominating sets of the “3+3” SC-SC
litemotif graphs studied in Figure 5.8 and Figure 5.10. The entropy values com-
puted for the latter figure were used to compute the diversity indices. These
values represent the “effective” number of litemotifs needed to represent this
structure type at the specified resolution.
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Also, finding m ≤ 3 dimensional representations allows us to better visualize

and appreciate the degree of similarity and closeness between litemotifs which

are not possible with the graph representations we discussed in previous sec-

tions.

In this section, we first describe a low-dimensional embedding method that

is based on the constraint satisfaction methods we outlined in Chapters 2 and

4. The method could be applied to entire collections of litemotifs, but in prac-

tice the pairwise RMSD computations would prove to be expensive. For large

collections, it is better to first reduce the sample size by using dominating sets.

5.4.1 Lower dimensional embedding via constraint satisfaction

Let l1, . . . , lk be a collection of k litemotifs belonging to the dominating set, and

each li ∈ R3n We wish to find a collection x1, . . . ,xk, where xi ∈ Rm for m < 3n

is a low dimensional representation of the ith litemotif. We can represent the

collection as column vectors of the matrix X

X =


↑ ↑

x1 · · · xk

↓ ↓

 , (5.6)

and C = XTX is the k × k Gram matrix, where each entry Cij = xTi xj is the dot

product of the low-dimensional representations of li and lj . Instead of searching

in Rm×k where X resides, we search for C in Rk×k that satisfies two constraints.
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The first constraint is that the elements of C satisfy the equations

Cii + Cjj − 2Cij = ∆ij (5.7)

for i, j and ∆ij is the square RMSD between litemotifs li and lj . The second

constraint is that C should be of rank m. To satisfy these two constraints, we

define the projections Pdist[C] and Prank=m[C]. If Csol satisfies the relation

Csol = Pdist[Csol] = Prank=m[Csol] (5.8)

then Csol is the Gram matrix of k points in Rm that have the same distances as

the original litemotifs in R3n.

To construct the first projection, we note that for any input C, we wish to

find C′ = Pdist[C] which is closest to C and all the entries of C′ satisfy Equation

5.7. This can be done by defining a cost function

f(C,C′) = ||C′ −C||2F =
k∑
i=1

k∑
j=1

(C ′ij − Cij)2 (5.9)

where || · ||F is the Frobenius norm and f is minimized subject to the constraints

C ′ii + C ′jj − 2C ′ij = ∆ij (5.10)

for all i, j. To minimize Equation 5.9, we use the method of Lagrange multipliers
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to minimize the augmented function

g(C,C′,Λ) = f(C,C′) +
k∑
i=1

k∑
j=1

λij(C
′
ii + C ′jj − 2C ′ij −∆ij) (5.11)

where Λ is the matrix of λij’s. Note that taking the partial derivatives of g yields

the following equations,

∂g

∂C ′ij
= 2(C ′ij − Cij)− 2λij = 0 (5.12)

∂g

∂C ′ii
= 2(C ′ii − Cii)−

k∑
j=1
j 6=i

(λij + λji) = 0 (5.13)

∂g

∂λij
= C ′ii + C ′jj − 2C ′ij −∆ij = 0 (5.14)

from which we solve for C ′ijs. After much algebraic manipulation, it can be

shown that

C ′ii =

∑k
j=1 ∆ij − α + 2

∑k
j=1
j 6=i

Cij

k − 2
(5.15)

where

α =

∑k
i=1

∑k
j=1 ∆ij + 2

∑k
i=1

∑k
j=1
j 6=i

Cij

2(k − 1)
(5.16)

and

C ′ij =
1

2
(C ′ii + C ′jj −∆ij) (5.17)

where C ′ii and C ′jj come from Equation 5.15.

The second projection, Prank=m[C], computes the rank m projection of C via
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spectral decomposition,

Prank=m[C] = λ1v1v
T
1 + . . .+ λmvmvTm (5.18)

where λi is the ith largest eigenvalue of C and vi is its corresponding eigenvec-

tor. To see why this is the case, we wish to find a low-rank approximation that

minimizes the cost function

h(C,C′′) = ||C′′ −C||F (5.19)

where C′′ is the rank m approximation. We note that C is a symmetric matrix,

and we expect C′′ to also be symmetric. Both C and C′′ can be characterized via

the spectral decompositions,

C = VΛVT (5.20)

C′′ = UΓUT (5.21)

with which we can rewrite Equation 5.19 as

h(C,C′′) = tr((C′′ −C)T (C′′ −C)) (5.22)

=
n∑
k=1

λ2
k +

m∑
i=1

γ2
i − 2tr(C′′TC) (5.23)

=
n∑
k=1

λ2
k +

m∑
i=1

γ2
i − 2tr(ΓWΛWT ) (5.24)

where tr(A) is the trace operator, γi is the ith largest eigenvalue of C′′ and W =

UTV is an orthogonal matrix. To minimize h, we need to find C′′ such that the
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last two terms of Equation 5.24 are minimized. We see that

m∑
i=1

γ2
i − 2tr(ΓWΛWT ) =

m∑
i=1

γ2
i − 2

m∑
i=1

n∑
j=1

γiw
2
ijλj (5.25)

=
m∑
i=1

(
γ2
i − 2γi

n∑
j=1

w2
ijλj

)
(5.26)

where wij is an element of W. Note that
∑n

j=1 w
2
ij = 1 for all i is a constraint,

so again, we resort to the method of Lagrange multipliers and consider the aug-

mented function

z(Γ,W,Λ,Θ) =
m∑
i=1

[(
γ2
i − 2γi

n∑
j=1

w2
ijλj

)
+ θi

(
n∑
j=1

w2
ij − 1

)]
. (5.27)

We take the partial derivatives of z to get

∂z

∂γi
= 2γi − 2

n∑
j=1

w2
ijλj = 0 (5.28)

∂z

∂wij
= −4γiwijλj + 2θiwij = 0 (5.29)

∂z

∂θi
=

n∑
j=1

w2
ij − 1 = 0. (5.30)

If wij 6= 0, then Equation 5.29 simplifies to

2γiλj = θi (5.31)

for all j. There is no guarantee that λs = λt for all s, t, so the only way for

Equation 5.29 to hold while satisfying Equation 5.30 is if wij = 0 for i 6= j and

wii = ±1. From this, it follows that the ith columns of U and V must be parallel
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or antiparallel, meaning that U’s column vectors are effectively equal to V’s.

We finally note that based on the structure of W, we get from Equation 5.28 that

γi = λi for i = 1 . . .m. So, we see that the sum of the firstm spectral components

of C is a suitable, distance-minimizing projection operation.

The projections can be applied in an iterative fashion, like in Chapters 2 and

4, to find a Cf that approximately satisfies Equation 5.8. Once Cf is found, the

lower dimensional representation can be determined by noting

Cf ≈


↑ ↑

v1 · · · vm

↓ ↓



λ1

. . .

λm




↑ ↑

v1 · · · vm

↓ ↓



T

(5.32)

from which we can compute the lower dimensional coordinates

X =


√
λ1

. . .
√
λm



← v1 →

. . .

← vm →

 . (5.33)

5.4.2 Embedding the dominating set litemotifs

From a random collection of 252,860 “3+3” SC-SC litemotifs, with edge cutoff at

c = 1.71Å, 244 litemotifs were found to form a dominating set. Their squared

RMSDs were used to find m = 3 dimensional representations. The method of

alternating projections found Cf with a low error metric within 200 iterations,

and was fastest compared to other methods like ADMM.

As shown in Figure 5.12, the eigenvalues of Pdist[Cf ] decay rapidly and are
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small, relative to the largest eigenvalue, starting from the 6th largest. The ratio

λ1 + λ2 + λ3∑k=244
i=1 λi

= 0.618 (5.34)

however, suggests that there are still more significant directions with which to

describe the 244 litemotifs, particularly in the directions corresponding to the

4th and 5th largest eigenvalues, which are roughly of the same magnitude as

the 3rd largest.

0 5 10 15 20
i'th largest eigenvalue

101

102

103

|λi |        

Figure 5.12: The top twenty eigenvalues of Pdist[Cf ]. The firstm = 3 eigenvalues
contain 61.8% of the power. The 4th and 5th largest eigenvalues are roughly
similar in value to the 3rd largest, suggesting that more refined low-dimensional
embeddings should incorporate their directions as well.

Each of the 244 litemotifs li from the dominating set has a corresponding

three-dimensional representation xi, which can be further simplified by placing

the xi’s in a discrete three-dimensional grid where each voxel is of size 0.85Å×

0.85Å × 0.85Å. The choice of 0.85Å = c/2 for the size of the voxels is based on

using a scaled value of the edge cutoff c.

Given the voxel representation, it is possible to make a three-dimensional
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histogram of the entire litemotif collection. We recall that each litemotif in the

original collection associates itself with a single litemotifs li from the dominating

set. As a result, each li has a count for the number of litemotifs in the original

collection which associate with it. We use this count to assign a value to the

voxel where xi maps. The possibility for different xi’s occupying the same voxel

can be accounted for by simply adding up all their associated counts.
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Figure 5.13: Orthogonal projections of the three-dimensional histogram of a
“3+3” SC-SC litemotif collection. The numbering system is such that the each
integer represents the integer multiple of s = 0.85Å. The three bright regions,
numbered 1, 2, and 3, show high counts of litemotifs.

Figure 5.13 shows the orthogonal projections of the three-dimensional his-

togram. The colors represent the number of associated litemotifs contained

within the projected voxels. From these projections, it is clear that there are

three regions with high concentrations of associated litemotifs.
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One distinguishing feature between the different regions is the distance be-

tween the two middle Cα atoms of the litemotifs. By computing the mean of

these distances over all the litemotifs found in each region, we note that the

middle Cα atoms in voxel 1 seem closer to each other than the ones found in

region 2 (which spans two voxels) and voxel 3. These differences are made clear

based on the visualization of the litemotifs found in each of the regions, shown

in Figures 5.14, 5.15, and 5.16, as well as the values shown in Table 5.2.

Table 5.2: Three regions in the three-dimensional grid contain a high number of
associated litemotifs, with over 30,000 in each. There are 16 li’s in the region,
and they represent 38% of a 252,860 “3+3” SC-SC litemotif collection. Also, we
note that the mean distances of the middle Cα atoms are different for each of
the regions, with region 3 containing litemotifs which are “spread out”.

Region number
Number of
associated
litemotifs

Number of
dom. set elements
collapsed to this

voxel

Mean distance
between middle Cαs

1 31,260 2 3.83Å
2 34,169 8 5.75Å
3 30,788 6 9.40Å

Figure 5.14: Litemotifs in voxel 1. These litemotifs are actually made of four
Cα atoms, two of which are found in both three residue subsequences. Based on
the definitions in Section 5.1, such overlapping constructions are not prohibited,
and are in fact encouraged.
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Figure 5.15: Litemotifs in region 2. The yellow tube connects the two middle Cα

atoms of the three residue subsequences.
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Figure 5.16: Litemotifs in voxel 3. Like in Figure 5.15, the yellow tube connects
the two middle Cα atoms. The subsequences are spaced farther in these litemo-
tifs than those from litemotifs contained in the two other regions.

5.5 Results for the other litemotifs

Relative to the side-chain to side-chain contact, the hydrogen bond is a much

stricter contact which requires the participation of particular atoms falling within

a certain distance of each other. Furthermore, in the case of the the “3+1” lite-

motifs, there is an added constraint on not just the hydrogen and oxygen atoms,

but on the atoms they are covalently bonded to. Based on these considerations,

it is reasonable to see that the mean RMSDs computed from random collections

of 10,000 litemotifs, as shown in Table 5.3 are much lower than the mean RMSD

computed for the “3+3” SC-SC litemotifs.

Using a fixed resolution cutoff of c = 1.30Å, graphs and dominating sets

for each of the litemotif types were generated for collections of various sizes. At

that fixed resolution, the dominating sets and diversities indices for the litemotif
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Table 5.3: Mean RMSDs for the litemotifs. A histogram consisting of 10,000
random litemotifs was generated for each of the litemotif types, like in Figure
5.5. The mean RMSD between litemotifs constructed via hydrogen bonds are
lower than those constructed via side-chain contacts.

Litemotif type Mean RMSD

“3+3” side-chain contact 3.29Å

“3+3” hydrogen bonded 2.58Å

“3+1” O on residue 0.42Å

“3+1” H on residue 1.33Å

types grew at different rates. As shown in Figure 5.17, the dominating sets

largely seem to saturate for the “3+1” types at around 10,000 nodes, but seem to

grow unbounded for the “3+3” types. This is clear when we compare c to the

mean RMSDs of each types, since the 1.30Å cutoff is on par or greater than the

mean RMSDs for the “3+1” types, while it is less than the mean RMSDs for the

“3+3” types. However, the diversity indices, as shown in Figure 5.18, have all

saturated, with the “3+3” SC-SC types saturating at a significantly higher value

than the others.

Based on Figure 5.17, for collection sizes of around ∼ 105 nodes, the domi-

nating sets are on the order of 1% in size of the “3+3” SC-SC collections, 0.1%

in size of the “3+3” via HB collections, and 0.01% in size of the “3+1” collec-

tions. These represent significant reductions in the number of litemotifs needed

for the prediction algorithms, which would correspond to significant savings in

computation time. If we were only interested in the more common litemotifs,

we could roughly see a further order of magnitude reduction in the number of

litemotifs to include in our collections, based on Figure 5.18.
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Figure 5.17: Using a resolution cutoff value of c = 1.30Å, the dominating sets
for the graphs of the different litemotif types grow at different rates. The “3+1”
types seem to be close to saturation, with dominating sets staying below 10
litemotifs in the range of graph sizes studied. For the “3+3” types, there is sig-
nificant, unbounded growth, particularly for the SC-SC variety. Table 5.3 shows
that the mean RMSDs for the “3+1” types are either near or below the cutoff c,
but above for the “3+3” types.
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Figure 5.18: The dominating sets, whose sizes were computed in Figure 5.17,
were used to compute the diversity indices for the graphs of the different lite-
motif types. Saturation is observed for all types, but the SC-SC variety saturates
at a far higher value than the other litemotifs.
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5.6 Conclusion

Using tools from graph theory and dimensionality reduction, we showed how

large collections of litemotifs can be studied to assess whether they thoroughly

represent a distinct enough set of possible litemotifs. We noted the challenge

in assessing exactly how many possible litemotifs can be constructed because

rarity of certain litemotifs makes it difficult to count them all. But, we were

able to quantify a sense of how many “common” litemotifs exist through the

diversity index, and assess how that number grows as collections grow larger.

For the purposes of predicting protein structures, the non-redundant collec-

tion of litemotifs obtained through finding a dominating set helps cut down

on computational time, sometimes by many orders of magnitude. Also, the

collections we studied seem to be well-represented by the common litemotifs.

Perhaps future work could focus on exploring and better understanding the set

of possible rare litemotifs. The prediction algorithm would greatly benefit from

enlarging the collection of possible litemotifs it could consider, so developing

the tools to study and identify rare litemotifs seems like a natural next step in

building a more complete litemotif collection.
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APPENDIX A

PROTEIN ALIGNMENT AND GRAPH TOOLS

A.1 Comparing protein structures

A common measure to gauge similarity of proteins and their substructures is the

root mean squared deviation (RMSD). Given two equivalent sets of N atoms, P

and Q, the RMSD is defined as

RMSD(P,Q) =

√√√√ 1

N

N∑
i=1

dist(Pi, Qi)2 (A.1)

where Pi and Qi are the ith atoms in P and Q, respectively. In order to com-

pare a pair of structures, it is necessary to align one structure with respect to the

other. Assuming that the set of coordinates are rigid, the alignment can done by

minimizing the RMSD, or other similarity measures, via rotations and transla-

tions.

A.1.1 Alignment calculation

The following method, devised by Arun et al. [64], treats the alignment problem

of two sets of points as a least-squares minimization problem. Given two sets of

coordinates of N points,

P = {p1,p2, . . . ,pN}

Q = {q1,q2, . . . ,pN}
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the goal is to find a rotation matrix R and a vector t that minimizes the cost

function

C(P,Q) =
N∑
i=1

||pi − (Rqi + t)||2 (A.2)

which is equivalent to the RMSD.

Before any alignment is attempted, it is necessary to “center” each set of

coordinates by translating the center of mass to the origin, i.e.,

xi = pi − p

yi = qi − q

where p and q are the centers of masses of P and Q, respectively. Also, we

define the matrices

X =


← x1 →

...

← xN →

 Y =


← y1 →

...

← yN →


where X and Y are N × 3 matrices with coordinates of the ith atoms in their ith

rows. The details of the derivation can be found in [64], but the procedures for

finding R and t are as follows:

1. Compute the 3× 3 correlation matrix H = XTY .

2. Compute the singular value decomposition of H ,

H = UΣV T . (A.3)
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3. The rotation matrix R is given by

R = V


1

1

det(V UT )

UT . (A.4)

4. The translation t is given by the formula

t = q−Rp. (A.5)

A.2 Finding a dominating set

Given a list of litemotifs L = {l1, . . . , ln}, a dominating set D = {d1, . . . , dm} can

be found via the algorithm given in Algorithm 1. Note that the algorithm does

not calculate all pairwise RMSDs since any litemotif similar to a previously seen

one is not considered. This cuts down on the number of operations, often sig-

nificantly so. The run-time complexity is O(mn), which can be significantly less

than O(n2) when m � n. On various trials, performing pairwise RMSD calcu-

lations over all pairs within a reasonable timeframe on a single processor was

possible on graphs with a few tens of thousands of nodes. Bypassing the actual

graph construction and directly searching for a dominating set was possible on

graphs with hundreds of thousands of nodes.

One consequence of the approach outlined in Algorithm 1 is that no two

nodes in D are adjacent to each other. Depending on the graph structure, this

means that a dominating set could be much larger than the minimum dominat-
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ing set, as the example in Figure A.1 illustrates. Exactly how much larger such

dominating sets are expected to be compared to the smallest dominating set, on

average, is a question worth investigating.

Figure A.1: A limitation of the dominating set algorithm outlined in Algorithm
1 is that no two nodes in a dominating set are adjacent. This will cause the
algorithm to skip the smaller dominating set in this graph, shown left, in favor
of a larger dominating set, shown right. Note that the red nodes are part of the
dominating sets.

Using a slightly modified version of Algorithm 1, it is possible to assign

to every node, a node from the dominating set with which it is adjacent to.

This is used to generate the probability distributions of the frequency of certain

substructures with respect to the dominating sets, which are a crucial part of

computing the entropy in Chapter 5.
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Data: A list of substructures L, a list M , of length n, initialized to contain

1, and a distance cutoff dcutoff .

Result: The list M is changed where M [i] == 1 if substructure L[i] is in

the dominating set D, else M [i] == 0.

for i = 0 to n− 1 do

if M [i] then

for j = i+ 1 to n do

RMSD = compute_RMSD(M [i],M [j]);

if RMSD < dcutoff then

M [j] = 0;

end

end

end

end

Algorithm 1: Algorithm for finding a dominating set from a list L of sub-

structures.
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