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Basic models in epidemiology 

Fred Brauert and Carlos Castillo-Chavez* 

Abstract. This chapter gives an introduction to epidemiological models for homogeneously mixing 

populations. A flexible framework for modeling deterministic and stochastic--continuous time Markov 

processes-- pair-formation processes is revisited. This framework is used to formulate demographic 

models for heterogeneous mixing populations which can be used in the construction of models for 

communicable and sexually-transmitted diseases. Extensions to stochastic epidemiological processes are 

outlined. 

1991 Mathematics Subject Classification: 92D30. 

1. Introduction 

There has been a long debate on whether or not chaotic dynamics occur in natural populations 

(see Hastings et a/. 1993). The controversy arises because various natural populations exhibit 

apparently "random" fluctuations in abundance. Furthermore, in several instances these fluctuations 

will look random not only through the naked eye but also through the "eyes" of some standard time­

series analysis (see Ellner 1989). Several simple nonlinear mathematical ecological models that exhibit 

chaos for apparently reasonable parameter values have been studied over the last few years . Initially 

chaos was found in simple discrete time models for single species (May 1974; May 1976; May and Oster 

1976). Chaotic dynamics have been also encountered in discrete models with age-structure (Ebenman 

1987; Guckenheimer et a/. 1977; Levin 1981; Levin and Goodyear 1980); in discrete models with two 

species (Allen 1989a, b; Allen 1990a, b; Allen 1991; Beddington et a/. 1975; Bellows and Hassell 1988; 

May 1974; May and Oster 1976; Neubert and Kot 1992); in simple discrete models of parasites (May 

1985); in models for host-parasitoid-pathogen systems (Hochberg et a/. 1990); in discrete demographic 

models with two sexes (Caswell and Weeks 1986); and in discrete models that include frequency .. 
dependent selection (Altenberg 1991; Cressman 1988; May and Anderson 1983a). Continuous-time 
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ecological models that exhibit chaos have also been found in Lotka-Volterra type models (Gilpin 1992; 

Schaffer 1985a, b; Gardini et al. 1987; Takeuchi and Adachi 1983) and in three species food web chain 

models (Hasting and Powell 1991). Chaos has also been found in epidemic models (Kot et al. 1988; 

Olsen and Schaffer 1990; Schaffer 1985a; Schaffer and Kot 1985; Schaffer et al. 1990). Reviews that 

include many more models that have exhibited chaos in ecology include those of May (1987) and 

Hastings et al. (1993), the organizing source of the above references. In summary, simple and strategic 

ecological models can exhibit chaotic dynamics for what appears to be likely regions of parameter 

space, and current research focuses on increasing our understanding of the mechanisms that are more 

likely to lead to chaos as well as their implications in theoretical biology. 

The study of chaos in ecology through the use of strategic models must be complemented with the 

analysis of time series because some parameters estimates will have errors, other parameters will not be 

measurable, and our results will be model dependent. Several time series methods have been used to 

detect chaos in epidemiological data including some based on dynamical systems theory-model-free 

approaches (Kot et al. 1988; Olsen and Schaffer 1990; Schaffer 1985a; Schaffer and Kot 1985; Ellner 

1989; Schaffer et al. 1990). Reviews of model-free and model based approaches are discussed m 

Hastings et al. (1993) and Ellner (1989). Because of the extensive use of epidemiological data in 

combination with dynamical systems theory to study the presence of chaos in real epidemiological 

systems, it has become important to gain some understanding of epidemic modeling. The rest of this 

chapter concentrates on a brief introduction to epidemic theory. 

Epidemiological models have been used to study ecological and epidemiological phenomena 

extensively (see Anderson 1982; Anderson and May 1991; Bailey 1975; Busenberg and Cooke 1993; 

Capasso 1993; Castillo-Chavez 1989; Gabriel et al. 1990; Hethcote and Yorke 1984; Hethcote and Van 

Ark 1992, Jewell et al. 1991; Kaplan and Brandeau 1994; and references therein). Their success is 

partly based on the fact that they provide an ideal tool to model tight coevolutionary interactions (see 

Levin 1983b, Levin and Castillo-Chavez, 1989 and references therein), that is, interactions in which the 

fate of the host (the resource) is intimately connected to the fate of the pathogen. Implicitly, hosts are 

modeled as dynamic patches (e. g. with their own life history) that are subject to invasions (by 

pathogens). These invasions affect temporarily or permanently the quality (even the life) of the patch. 

Furthermore, because pathogens compete for resources (patches) with other pathogens, epidemiological 

models are useful in addressing questions of coexistence and stability of biological systems. 

Patch dynamics usually takes place on a different time scale than the pathogen's dynamics. 

Furthermore, usually natural selection acts faster on the evolution of a pathogen than on the evolution 

of the host. At this time, there is no clear mathematical framework in which these questions can be 

properly addressed. However, epidemiological models have provided a useful framework to begin to 

study these evolutionary dynamics (see Levin 1983a, b; May and Anderson 1983a, b; Levin and 

Castillo-Chavez 1989; Anderson and May 1991;). Specific coevolutionary interactions such as those 
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experienced by the myxoma virus (fairly lethal) and the European rabbit have provided an excellent 

and challenging opportunity for the application of epidemiological models to questions in evolutionary 

biology (see Levin and Pimentel1981; Levin 1983a, b; May and Anderson 1983a, b). 

The goals of this chapter are limited. We provide a brief introduction to epidemiological models 

while, in the process, we try to provide an introduction to epidemiological "thinking" (e.g. we discuss 

the thought process that goes or that we think goes into building models that address specific 

epidemiological questions). Our introduction to epidemiological "thinking" is handled through the 

insertion of remarks and comments throughout the text. Many remarks are, in fact, obvious but 

nevertheless (we think) important. The prior neglect of some of the ideas inserted in these remarks was 

inspired by mathematical convenience. Unfortunately, it kept mathematical epidemiology away from 

the field of theoretical epidemiology a situation that has begun to change (see the recent encyclopedic 

volume of Anderson and May 1991). Section 2 of this chapter introduces the basic epidemiological 

models and we refer to Section 2 as the section on Alphabet Models because we follow the useful 

mnemonic description introduced by Hethcote (1976). The arrival of the HIV /AIDS epidemic re­

activated the study of the effects of long and variable periods of infection on disease dynamics. Section 

3 illustrates the incorporation of variable waiting and transition times into epidemiological models. A 

more general approach would include age-of-infection models (see Thieme and Castillo-Chavez 1989, 

1993) which would require a longer and more elaborate chapter, and it is therefore omitted. Section 4 

adds social structure in the context of population dynamics. We focus on the role of social structure in 

demographic processes (pair-formation and dissolution) because their extension to epidemiological 

processes (more or less straightforward) would lengthen this chapter. Section 5 provides an outline of 

how these ideas are incorporated into the stochastic world. We discuss these extensions in the realm of 

continuous time Markov chain processes while borrowing the language of percolation models (see Luo 

and Castillo-Chavez 1991; Castillo-Chavez et al. 1994a). Sections 4 and 5 are less detailed than prior 

sections because of space limitations. However, we provide a large set of references to help the 

interested reader fill in the gaps. Section 6 summarizes the contents of this chapter with a few closing 

thoughts. 

2. AJphabet~odeffi 

Alphabet models (see Hethcote, 1976) consider a population of susceptible individuals which is 

being invaded by an infectious agent. These models concentrate on the disease dynamics that result if 

a small number of members of the population become infected and (eventually) infectious. The 

population is usually divided into three epidemiological subclasses: labeled S, I, and R. S(t) denotes 

those individuals who are susceptible to the disease at time t, I(t) denotes the number of infected 

individuals (here assumed infectious and hence capable of spreading the disease) at time t, and R(t) 

denotes the number of individuals who at time t no longer contribute to the direct spread of the 
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disease because they have been removed through isolation or immunization, or through recovery from 

the disease with immunity against re-infection, or through death caused by the disease. The 

characterizations of R(t) are very different from an epidemiological point of view, however, they are 

equivalent in a modeling sense because these individuals do not contribute further to the spread of 

disease and because the models do not incorporate demographic effects. For models that also involve 

demographic effects the situation can be very different. The total population involved in the disease 

dynamics at time t will be denoted by N(t) where N(t) may be equal to S(t) + I(t) or S(t) + I(t) + 

R(t). 

A model was proposed by Kermack and MacKendrick in 1927 to explain the rapid rise and 

fall of cases observed frequently in epidemics such as the Great Plague in London (1665-1666), the 

cholera epidemic in London (1865) and the plague in Bombay (1906). The simplest version of their 

model with a trivial modification is given by the following set of nonlinear ordinary differential 

equations (ODE's): 

S' = - {3 S I/N, 

I' {3 S I/N - t I, 
R' - 1 I - T ' 

where (usually) N(t) = S(t) + I(t) + R(t). 

This model is based on the following three assumptions: 

(i) There are no deaths unrelated to the disease and no births. This assumption is 

reflected in the relation (S + I + R)' = 0 , so that total population size N(t) is constant. 

It is a reasonable assumption for epidemics of short duration. [If there are disease-related 

deaths or if R is used to label individuals that are permanently removed from the 

population and, hence, unable to interact with S- and !-individuals, then a better definition 

of N(t) would be N(t) = S(t) +I (t)]. 

(ii) The homogeneous mixing assumption, that is, the probability that a susceptible has a 

contact with an infective is 1/N. The contact process for spreading the infection is based 

on contacts between infectives and susceptibles and these contacts occur at random 

(homogeneous mixing). Here {3 = {J(N) denotes the per capita effective contact rate which 

in general is a function of the size of the active population. It is common to assume that 

,B(N)=p</>(N) where p denotes the probability of transmission per contact and </>(N) denotes 

the per capita contact rate. Hence </>S gives the average number of contacts that the 

population of susceptibles experience per unit time. These susceptibles have contacts with 

S-, 1-, and R-individuals but under the homogeneous mixing assumption the proportion of 

contacts with infectives is 1/N. The total average contact rate (handshakes, kisses, etc.) is 
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¢SI/N, but not all contacts lead to infection. The effective contact rate or the incidence 

(new cases of infection per unit of time) is P(N)SI/N. [If N is constant, then the rate of 

new infections is proportional to both the number of susceptibles and infectives; this is also 

the case if N is not constant but P(N) = pN-a linear function of N. The use of a bilinear 

incidence rate corresponds to the use of the the mass-action law]. 

(iii) The per capita recovery rate is constant, that is, infectives are removed from the I-class 

into the R-class at the constant rate ~ (per individual and per unit of time). [This 

assumption implies that the distribution of time spent by individuals in the I-class has an 

exponential distribution with mean r]. 

A key question is whether or not a population experiences an epidemic, that is, whether or not a 

pathogen can successfully invade a population. Success here means that the number of patches 

occupied, that is, the number of infective· individuals, increases temporarily over time after the initial 

introduction of a pathogen into a population of purely susceptible patches. Under some conditions, the 

pathogen succeeds and there is an epidemic (the number of infected patches rises); otherwise it fails. 

These conditions are usually formulated in terms of a threshold value: the basic reproductive number 

or the contact number. If this value exceeds a critical value (usually one) there is an epidemic. 

Otherwise there is no epidemic (for a mathematical definition of this concept that is well grounded in 

the biology the reader is referred to Diekmann et a/. (1990). 

From the above model, Kermack and MacKendrick (1927) deduced their threshold theorem. The 

importance of their result is due in part to the fact that most epidemic models exhibit similar threshold 

phenomena. Kermack and MacKendrick found a dimensionless quantity called the contact, or the 

basic reproductive number, whose magnitude determines whether the infection will die out (I 

decreases monotonically to zero) or there will be an epidemic (I first increases to a maximum and 

then decreases to zero). 

Since S + I + R is constant, we may either let S + I + R = K , the constant total 

population size, or we may measure S, I, and R in units of K , effectively dividing S, I, and R by 

K so that they now represent fractions of the population in each class with S + I + R = 1 . In either 

case, we may eliminate R from the system by substituting R = K - S - I or R = 1 - S - I. We 

choose to work with the original variables and obtain the two-dimensional system: 

S' = - p S 1/K, 

I' = p S 1/K - ~ I. 

Here P is measured in units of contacts per unit time and r is measured in units of time. 
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We observe that S' < 0 for all t and I' < 0 if and only if S < f;. . This implies that if 

S(O)< f;.. then I' <0 for all t and the infection dies out, but if S(O) > f;.. then I' > 0 while S 

decreases to f;. , after which I' < 0 . If we "think" of introducing a small number of infectives into a 

susceptible population at time zero, so that I(O) = f > 0, R(O) = 0, S(O) = K - f ~ K . then we 

have a threshold dimensionless quantity 

~0 f3 T. 

If ~O < 1 the infection dies out and if ~O > 1 there is an epidemic. This is the threshold theorem 

of Kermack and MacKendrick. [Kermack and MacKendrick used the mass-action law, that is, they 

implicitly assumed that f3 = pK]. To simplify the notation we assume without loss of generality that 

K=1 during the mathematical analysis of the Kermack and MacKendrick model. [Note that this 

assumption does not alter the value of ~O as f3 is assumed to be a constant; however, it does make a 

quantitative difference if we assume, as Kermack and MacKendrick probably did that f3 = pK, in which 

case f3 would have to be measured in different units]. 

A qualitative analysis of the system of differential equations (here we take K=1 to simplify the 

analysis) shows that equilibria are solutions (Sao , lao) of Sao lao = 0 , Iao(/3 Sao - ~) = 0 . Thus 

there is a line of equilibria (Sao , 0) with arbitrary Sao , 0 $ Sao $ 1 . The linearization at an 

equilibrium (Sao , 0) is 

u' = - f3 Sao v 

v1 = (/3 Sao - ~) v 

with matrix 

0 

0 

having eigenvalues 0 and f3 Sao - ~ . The zero eigenvalue means that linearization is useless for the 

direct mathematical analysis of the system. However, it is not difficult to show that the phase portrait 

is as in Figure 1. 

Hence we observe, that the limiting value S(ao) of each orbit depends on the starting point S(O), but 
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S( oo) > 0 for all S(O) . This means that in an epidemic not all members of the population become 

infected, a deduction that agrees with recorded data for many epidemics. It is not difficult to show 

that for an orbit which goes from the point (S(O), 0) to the point (S(oo), 0), 

S(oo) - )r en S(oo) = S(O) - )r en S(O) . 

To see this, we observe that 

..Q..[s+r-...Lens] dt {Jr 
S' +I'- ...L S' 

{Jr S 

= S' [ 1 - {J;S ] + I' 

- {3 S I [ 1 - - 1- ] + I' {JrS 

- {3 S I + t I + I' 0 . 

Thus S(t) + I(t) - Jr en S(t) is a constant and 

S(oo) + I(oo) - )r en S(oo) = S(O) + I(O) - )r en S(O) . 

Since I(oo) = I(O) = 0 it follows that 

S(oo) - )r en S(oo) = S(O) - )r en S(O) . 

The contact rate {3 in the model we are considering (assumed constant), depends on the particular 

disease being studied, and may also depend on social and behavioral factors. In general, it is difficult 

to estimate {3, or equivalently c:R.0 (since T can be estimated experimentally). However, as S(O) """K 

as a disease is invading a purely susceptible population and S(oo), that is, the proportion of individuals 

with antibodies, can be estimated from serological data. The above relation gives a means of 

calculating {3 T for a given epidemic from knowledge of S(O) and S(oo). For example, an influenza 

epidemic has been reported with S(O) = 0.911, S(oo) = 0.513. From 

S(O) - S(oo) = )r [en S(O) -en S(oo)] = )r en ;g;) , 
we derive 

{Jr 

II S(O) 
c.n 5(00) 

S(O)- S(oo)' 
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and the given data yields {3 T = 1.44 , and since Tis about 3 days then {3 "'0.48/day. Note that as 

long as S(O)> JT' that is, as long as the proportion of susceptibles exceeds a critical value, an epidemic 

is possible (the data is from Evans 1982 as reported in Hethcote 1989). 

The Kermack-MacKendrick model considered above is an example of a simple model in which 

the population is divided into different compartments and the transitions between compartments are 

modeled. The understanding derived from simple models is useful in describing general properties and 

outlining the possible effects of control programs. It is also possible to formulate complex models with 

detailed assumptions incorporating more structure appropriate to a particular disease or situation. For 

example, compartments may be subdivided further to describe situations in which different subclasses 

have different transmission rates corresponding to different behavior (as in sexually transmitted 

diseases), age dependence, seasonal variations, or spatial dependence. Such more complex models may 

give more specific quantitative predictions. 

The Kermack-MacKendrick model is described as an SIR model because the transitions are from 

susceptible to infective to removed, with the removal coming through recovery with full immunity (as 

in measles) or through death (as in rabies and many other animal diseases). Another type of model is 

an SIS model, in which infectives return to the susceptible class on recovery because the disease 

confers no immunity. Such models are appropriate for most diseases transmitted by bacterial or 

helminth agents, and for some sexually transmitted diseases including gonorrhea but not for others like 

HIV or herpes that infect individuals for life. 

The simplest SIS model, also due to Kermack and MacKendrick (1932), is 

where S+ I= N. 

S' = - {3 S I/N + t I 
I' = {3 S I/N - t I, 

The SIS model differs from the SIR model because recovered members return to the class S at 

a rate t I instead of passing to the class R. Again, the total population size is a constant N=K , 

and we may measure it in units of K (that is, we can assume that K=1). We may use the relation I 

= K - S to reduce the model to the single equation 

S' (1 - S/K) ( -{3S + ~) 

with two equilibria, 

S = K and S = J:r . 



-9-

If Jr < ~ , or f3 r > 1 both these equilibria are in the interval 0 < S :::; K but if Jr > ~ or 

f3r<1 only the equilibrium S = K is relevant. The threshold quantity f3 r again distinguishes 

between two qualitatively different possible behaviors, but the possibilities are different from the SIR 

model. To simplify the analysis we now K=l. Note that our modification of the incidence rate and 

the fact that f3 is a constant implies that K plays no role in the discussion. 

The linearization about the equilibrium S = 1 (or I = 0), obtained with the aid of the change of 

variable u = 1 - S , is 

u' = (!3 - t) u 

Thus the equilibrium is asymptotically stable if f3 - t < 0 , or f3 r < 1 , and unstable if f3 r > 1 . 

The linearization about the equilibrium S = Jr , (K=1) is of interest only if f3 r > 1, and it is 

obtained through the change of variable u = S - Jr . It is 

u' = (t- f3 ) u , 

and thus the equilibrium is asymptotically stable if t - f3 < 0 , or f3 r > 1. The result of this 

analysis is that there is always a single asymptotically stable equilibrium to which all solutions tend. 

If f3 r < 1 , this equilibrium is S = 1 , I = 0 , corresponding to the disappearance of the disease. If 

f3r> 1 , the asymptotically stable equilibrium 1s S = Jr' I = 1 - Jr > 0 , called an endemic 

equilibrium, in which the disease persists. 

Measles is a disease for which endemic equilibria have been observed in many places, with 

oscillations about the equilibrium. In an attempt to formulate an SIR model which could give such 

behavior, Soper proposed a model in 1929 which assumed a constant birth rate p K in the susceptible 

class and a constant death rate p K in the removed class, 

S' = - f3KS I + p K 

I' = f3KS I - t I 
R' = t I - p K 

This model is unsatisfactory because the linkage of births of susceptibles to deaths of removed members 

is unreasonable. It is also an improper model mathematically because if R(O) and I(O) are sufficiently 
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small then R(t) will become negative. Furthermore, as discussed before, this model implicitly 

assumes that f3 is a function of K and hence one must be careful with the units. For any disease model 

to be plausible, it is essential that the problem be properly posed in the sense that the number of 

members in each class must remain non-negative. [A full analysis of a model should include a 

verification of this property]. 

The difficulties in Soper's model were resolved by the assumption of deaths in each class 

proportional to the number of members in the class, keeping the total population size constant 

(Hethcote 1976) 

S' = - {3 S I/K + t (K - S) 

I' = f3 S I/K - t I - t I 
R' = t I - t R 

Here L represents the average life span (to be justified later) because 1/L is the death rate. 

Because S + I + R = K , we can eliminate R and consider the two-dimensional system 

S' = - {3 S I/K + t (K - S) 

I' = {3 S I/K - t I - t I. 
From the equilibrium conditions f3 S I/K = t (K - S) and I(f3S/K - t - f) = 0 , we see that 

there is always an equilibrium S = K , I = 0 (vanishing of the disease), and if I'> 0, that is, if 

or (if everybody is susceptible, that is, if S(O) ~ K) if 

f3r (L~r)>1, 

there is a second equilibrium S = rf3~LL K with I > 0 (endemic equilibrium). Using linearization, it 

is not difficult to show that if 

f3r(L~r)<1, 

the equilibrium S = K, I = 0 is asymptotically stable, while if 

then is unstable. 

The threshold 

'!R,O = f3 T ( L ~ r ) 
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is the analogous of the Kermack-MacKendrick model except that T needs to be corrected to take into 

account the effects of natural mortality on the length of the infectious period, that is, 

denotes the death-adjusted mean infectious period. 

The equilibrium S = K, I = 0 is unstable and the endemic equilibrium is asymptotically stable 

if ~o> 1 . Thus the model allows endemic equilibria. In conclusion, the SIR model with births and 

deaths and the SIS model both support endemic equilibria, and hence, we may also conclude that the 

requirement for the support of an endemic equilibrium is the flow of new susceptibles, either through 

births or through recovery without immunity. 

In general, if ,B(N) = p<f>(N) then the condition ~o> 1 is equivalent to 

or if ¢> has an inverse, to the condition 

T+L 
</>(S(O))> pTL ' 

S(O) >Ncritical = ¢>-I( Tp~LL ), 

that is, the susceptible population must reach a critical value for an epidemic to occur. This is a useful 

concept; however the estimation of the critical value of N depends on our knowledge of the functional 

form of ,B(N). Rough values of Ncritical have been estimated implicitly assuming that ,B(N)=pN, that 

is, Ncritical has been computed (indirectly from data) using the formula 

N - T + L 
critical = pTL · 

These estimates have led to the conclusion that influenza will persist in continental cities with at least 

300,000 individuals but it will only persist in islands with at least 500,000 individuals (for explicit 

details see Anderson, 1982). The values are different because the p's are probably different as well as 

the average age of first infection. An alternative way of reading these results (using available data) is 

as follows: if N is at least 300,000 (for cities) then p (the probability of transmission per contact) is 

high enough to have an infection that will remain endemic. The same result holds for islands as long 

as N is at least 500,000. To summarize these results to make the data consistent with the same 

functional form for ,B(N) we must accept different values of p for islands and continental cities. 

Thresholds are useful as they help us determine approaches for disease eradication or control. In 

order to eradicate an infection, it is necessary to reduce the contact number ~O below 1. This may 
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sometimes be achieved by immunization, which has the effect of transferring members from the 

susceptible class to the removed class and thus reducing K (here K=1). The effect of immunizing a 

fraction (which could be a function) q of the population is to replace K by K(1 - q) , and thus to 

replace the contact number c:Jb0 = f3 r ( L ~ T ) by f3 r ( L ~ T ) (1 - q) . The condition 

f3 T ( L ~ T )(1 - q) < 1 gives 1 - q 1 1 -R , or q > 1 - ;;;;-
0 ~o 

guarantees that success has been achieved 

A population is said to have herd immunity if a large enough fraction has been immunized to 

assure that the disease will not spread if an infective case is introduced. The only infection for which 

this has actually been achieved worldwide is smallpox (there are still 600 laboratory samples in Russia 

and the USA that were supposed to be destroyed by the end of 1993). Th<~t is, through vaccination we 

will have eliminated a species (we have just learned that they were not destroyed and that an extension 

has been obtained). For measles, epidemiological data in the U.S. indicates that c:Jb0 for rural 

populations (using models for which f3=pN, see later sections) ranges from 5.4 to 6.3, requiring 

vaccination of 81.5% to 84.1% of the population. In urban areas, c:Jb0 ranges from 8.3 to 13.0, 

requiring vaccination of 88.0% to 92.3% of the population. In Great Britain, c:Jb0 ranges from 12.5 to 

16.3, requiring vaccination of 92% - 94% of the population. As vaccine efficacy for measles vaccination 

at age 15 months is approximately 95%, it is effectively impossible to achieve herd immunity for 

measles (this information is taken from Anderson 1982). Smallpox has a lower value of Ro and 

requires about 80% immunization. As the consequences of the disease are more serious, this is 

achievable. [The situation is not as simple as the above models assume homogeneous mixing. In fact, 

the difficulties experienced in eradicating smallpox were due to heterogeneity in the contact rates, for 

an earlier paper on immunization see Hethcote (1978) and references therein. Only after an intensive 

campaign that took into account these heterogeneities was it possible to eradicate smallpox.] The 

homogeneous mixing model only says that it is feasible. It also says that it is nearly impossible to 

eradicate measles. 

The SIR model with births and deaths predicts part of what is observed for measles but does 

not support the possibility of sustained oscillations about the endemic equilibrium. To explain 

oscillation~ about the endemic equilibrium as observed, we might assume seasonal variations in the 

contact rate f3 - not an unreasonable supposition for a childhood disease most commonly transmitted 

through school contacts, especially in winter in cold climates. 

The SIR model with births and deaths is quite inappropriate for a disease such as rabies from 

which recovery is rare. For such a disease, the class R consists of members removed by death, and 

the total population size is S + I . Thus the number of births should be proportional to (S + I), or 

possibly proportional to S to reflect the fact that such diseases are sufficiently debilitating that 
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infective members do not reproduce. It is not possible to assume this and also keep the total 

population size constant in the absence of disease. A plausible model for such a disease will necessarily 

assume a nonlinear birth rate and will imply that the total population size must vary in time whether 

or not the disease is present. The formulation and mathematical analysis of general models that 

include these features can be found in the works of Brauer (1990, 1991) and Pugliese (1990a, 1990b). 

3. Transition Rates and Waiting Times 

In the models we have been considering, we have assumed rates of transition between classes 

which are proportional to the size of the class, such as recovery rates ~ I . Such assumptions do not 

really mean that recovery depends on the size of the infective class. A more realistic formulation is 

obtained if we replace the differential equation 

I' f3 S I/N - ~ I 

I(t) 
t 1 I f3 S(t) [I(x)/N(x)] e- 1' (t- x) d x-

by the integral equation 

0 

If t is large enough for members who were initially (at time t = 0) infective to have recovered and 

we assume that N(x)=K, a constant, then this integral equation is equivalent to the differential 

equation because differentiation under the integral sign gives 

' It d _l(t-x) 
I (t) = f3 S(t) I(t)/K + f3 S(x) [I(x)/K] dt e r dx 

0 
t 1 

= f3 S(t) I(t)/K - ~ I f3 S(x) [I(x)/K) e- 1' (t- x)d x 

0 

= {3 S(t) I(t)/K - ~ I(t) 

- 1 s 
The interpretation of the integral equation is that e r is the probability of remaining infective at 

time s after having become infective. Then 

{3 S(x) [I(x)/K] e-~ (t- x) 

represents the number of members who became infective at time x and remain infective (t - x) time 

units later, and 
t 1 I f3 S(x) [I(x)/K] e- 1' (t- x) d x 

0 

is the integral over all times x < t of this number or the total number of infectives at time t . The 
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mean length of the infective period is 

r~ _ls 
e T d s T. 

0 

A similar interpretation applies to the constant of proportionality t in the death rate in each 

class in the S - I - R model with births and deaths. The reinterpretation is that 

_ls 
e L 

is the probability of survival to age s , and thus the average life expectancy is L. 

We can also give a waiting-time interpretation to the rate of infection in the SIR model 

with births and deaths. At the endemic equilibrium (S00, I00) the rate of new infections is 

,BS00[I00/K) . This means that ,B [I00/K) is the rate of infection per susceptible. If we assume an 

exponential distribution of probability of infection of an individual, the average time spent in the 

susceptible class before infection is ,B ~00 • Thus the average age at infection, which we denote by A , 

is ,B ~00 • As we have seen for this model, the endemic equilibrium (S00 , 100) is the solution with 

I00 > 0 of the pair of equations 

from which we obtain 

FF 

Also, the contact number is 

c:R,o 

with c:R,O > 1 . From these relations, we see that 

The relation 

L 
A 

,B L [100/K) t (1 - [S00/K]) 
00 

K 
s• 00 

.K... - 1- c:R,o - 1. Soo -

is a useful means of estimating contact numbers since L and A can be measured. Note that this 
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derivation assumes the existence of an endemic state and, consequently that ~O > 1. The estimates 

given earlier for contact numbers in various measles outbreaks were derived from this relation. One of 

the effects of immunization programs is to reduce the number of infectives at equilibrium, and this 

means that the average age of infection will increase. This could have serious consequences in 

childhood diseases for which the danger of complications increases with age. However, immunization 

programs will tend to reduce the total number of cases in older individuals even though they tend to 

increase the proportion of older cases. 

Instead of assuming exponentially distributed recovery rates, we could assume that there is a 

probability P(s) of remaining infective a time s after becoming infective, where P(s) is a monotone 

decreasing function with P(O) = 1 . We will let 00 

T = I P(s) d s, 

0 

the average length of the infective period. An important special case is the choice 

P(•) = { 

1 ,O<s<r 

0 , S > T 

corresponding to an infective period of fixed length T In this case, the integral equation for I(t), 

namely 

becomes 

t 

I(t) = I (J S(x) I(x) P(t - x) d x 

0 

I(t) 

t I (J S(x) I(x) d x , 

t-T 

which is equivalent to the differential-difference equation 

I'(t) (J S(t) I(t) - (J S(t- r) I(t- r) . 

The 

chokes P(•) = .- t ' and P(•) = { 
1 ,O~s<r 

represent extremes, 
0 ' s > 1' 

and there is some reason to conjecture that models with different choices of the distribution function 

P(s) with the same average infective period T should have the same qualitative behavior. Whether 

this is true is of some mathematical interest, but is of epidemiological interest only if it is false and 
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there are differences in behavior for different choices of P(s). At this point, we must remark that a 

differential-difference model is not completely formulated until the initial conditions are given. The 

situation is different than for ordinary differential equations as the proper formulation of a delay­

differential equations requires the specification of initial conditions over the delayed period, that is, we 

must specify a real valued function that is defined over [- T, 0]. From the theory of differential­

difference equations it is well known that solutions will exist under very general conditions for almost 

all initial conditions. The situation may be different for integral equations, which are, in fact, more 

general than differential-difference equations. The problem of existence of solutions is more delicate, 

and it is intimately connected to the kernel P(s). Sometimes it is not possible to prescribe initial 

conditions, and sometimes solutions may not exist for almost all initial conditions. So when we claim 

that in some sense the above two choices represent two extremes, we are in fact providing a practical 

rule of thumb rather than a precise mathematical statement. However, this rule works quite well in 

some situations. The HIV /AIDS models analyzed by Castillo-Chavez et al. (1989b, c, d) provide a good 

example. 

It is also possible to introduce an exposed period of fixed length w , or more generally with a 

probability Q(s) of remaining in the exposed class a time s after becoming exposed. The analysis of 

disease models with exposed and infective periods of ftxed length reduces to the analysis of systems of 

differential-difference equations with two delays, and this leads to questions of whether all roots of a 

transcendental characteristic equation have a negative real part. We shall describe an example namely, 

an S - E - I - R model (where E denotes the exposed class, that is, individuals that have acquired 

the disease but are not yet infectious). The model without an exposed class is a special case with the 

exposed period w equal to zero. 

Example: The S- E- I- R model, without births or deaths where S+E+I+R = K. 

The S - E - I - R model with an exposed period of ftxed length w and an infective period 

of ftxed length T is 

S'(t) = - {3 S(t) I~) 

t 

E'(t) {3 S(t) I~)- {3 S(t- w) I(t ~ w), or E(t) = J {3 S(x) I~) d x 

t- w 

t-w 
I(t-w) I(t-r-w) J I(x) 

I'(t) = {3 S(t-w) -K-- {3 S(t-r-w) K , or I(t) = {3 S(x) K d x 

t-T-W 

R'(t) = {3 S(t - T - w) I(t - ~- w) • 
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Since E and R are determined when S and I are known, this can be reduced to the pair of 

equations 

S'(t)- = - {J S(t) I~) , 
t-w 

I(t) = J {J S(xl~) d x, 

t-r-w 

and then to a single equation by writing 

t- w-

I(t) = - J S'(x) d x = S(t - r - w) - S(t - w) 

t-r-w 

and substituting into S'(t) = - {J S(t) I~) to obtain 

[S(t - r - w) - S(t - w) ] 
S'(t) = - {J S(t) K . 

To this single differential-difference equation with two delays we must add some initial data for 

(r+w) :::; t :::; 0 to give a well-posed problem, because every constant is a solution of the differential­

difference equation. It is possible to prove that S( t) is non-increasing and tends to a limit S00 > 0 

as t -+ oo ; the limiting value will depend on the initial data. The analysis of this model is 

considerably more difficult than the analysis of the original Kermack-MacKendrick S - I - R model, 

but the results are qualitatively the same, that is, there is a threshold number that determines whether 

or not there is an epidemic. 

Obviously, diseases for which variable and long infectious periods are important must be modeled 

using the approach of this section. An example is provided by the modeling of the sexual transmission 

of the HIV I AIDS virus in a homosexually-active population. Castillo-Chavez et al. (1989b, c, d) have 

shown that the results are qualitatively the same for all incubation period distributions (also see Blythe 

and Anderson, 1988a, b). However, the results may be different if the transmission probability per 

(sexual) contact, that is p, depends on how long an individual has been infected {see Thieme and 

Castillo-Chavez 1989, 1993). In some sense, this is the kind of results that one may expect from 

mathematical models, that is, their use helps us focus on factors that do affect the qualitative dynamics 

of a disease. For HIV I AIDS in a homosexually-active and homogeneously mixing population only the 

age of infection has the potential of changing the qualitative dynamics. Of course, epidemiologists are 

also interested in quantitative results (predictions). These results are more difficult to obtain as 

specific data is needed. Furthermore, the above discussion makes it clear that quantitative predictions 

under a simple epidemic model (which requires less parameters and hence less data) would be based on 

specific assumptions, such as homogeneous mixing (all individuals behave in the same average way), 

and the functional form of the contact function ¢{N). However, the same situation is true if one uses 
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statistical models. For long-term predictions dynamic models seem to be the best choice while for 

short-term predictions statistical models are sufficient. This division is somewhat simplistic as other 

methods are available such as time series analysis. Efforts to combine time series analysis, statistical 

methods, and dynamical systems have been the focus of intensive research in epidemiology (or more 

generally in theoretical biology). For some recent results on this active area of research, we recommend 

the articles by Ellner (1989), Hastings et al. (1993), and references therein. 

4. Models with social structure 

Classical mathematical models in demography (Leslie 1945; Lotka 1922; MacKendrick 1926) 

concentrate on the dynamics of birth and death processes of female populations. They ignore the 

mating/marriage structures and their effect on social dynamics. The incorporation of mating 

structures or marriage functions was pioneered by both Kendall (1949) and Keyfitz (1949). Their work 

was extended by Fredrickson (1971), McFarland (1972), Parlett (1972), and Pollard (1973) two decades 

ago but with very limited impact. The HIV f AIDS epidemic attracted theoreticians' attention to the 

study of the effects of social dynamics on the spread of epidemics. Questions raised primarily by 

researchers interested in HIV f AIDS epidemiology have brought back interest in the modeling of 

marriage functions and their connection to social dynamics {Anderson et al. 1989; Blythe and Castillo­

Chavez 1989, 1990; Blythe et al. 1991, 1992; Busenberg and Castillo-Chavez 1989, 1991; Castillo­

Chavez 1989; Castillo-Chavez et al. 1989d; Castillo-Chavez et al. 1991; Dietz 1988; Dietz and Hadeler 

1988; Gupta et al. 1989; Hadeler 1989a, b; Hadeler and Nagoma 1990; Huang 1989; Huang et al. 1992; 

Hyman and Stanley 1988, 1989; Jacquez et al. 1988, 1989; May and Anderson 1989; Sattenspiel 1987a, 

b; Sattenspiel and Simon 1987; Sattenspiel and Castillo-Chavez 1990; Waldstatter 1989). Research on 

the social spread of disease has grown at a very fast pace over the last decade. 

The contact or social structure of a population plays a fundamental role on the transmission 

dynamics of diseases, cultural traits, genetic traits, etc. In the past, it has been modeled by assuming 

that the rate of transmission of the trait in consideration is directly proportional to the product of the 

number of those that have the trait and those that do not, that is, it is assumed the the incidence rate 

is a bilinear function of susceptibles and infecteds (see Anderson 1982; Anderson and May 1991; Bailey 

1975; and references therein). The assumption that the rate of new "cases" (the incidence) is 

proportional to the product of "susceptibles" and "converts" (those infected), the mass-action law, is 

useful but only as described before in limited circumstances. In fact, it is not useful in the modeling of 

sexually transmitted diseases (STD's). A thorough analysis of the modeling assumptions involved in 

the construction of the incidence rate or "force" of infection has been carried out in a systematic 

fashion by Busenberg and Castillo-Chavez {1989, 1991). 

The importance of the contact process on frequency dependent systems was recognized by Ross as 

early as 1911 in his work on malaria (see also Lotka, 1923) . The contact/social structure of the 
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population must respond to demographic/epidemiological changes in the population. A flexible 

framework for the modeling of population interactions is being developed because several questions of 

theoretical and practical importance cannot be properly studied under the existing framework. Some 

recent applications to this new framework include those to food web dynamics (Velasco-Hernandez and 

Castillo-Chavez 1993), and those to cultural dynamics (Lubkin and Castillo-Chavez 1993). 

Busenberg and Castillo-Chavez (1989, 1991) defined the contact/social structures. through 

mixing/pair-formation matrices. In addition, they provided a useful characterization of these matrices, 

which constitutes the basis of our further analysis. Following Castillo-Chavez and Busenberg (1991) we 

introduce this framework within a two-sex mixing population. We begin with some needed notation 

and definitions: 

Pij(t) =probability that a male in group i mixed with a female in group j at timet 
given that he mixed with somebody; 

qji(t) = probability that a female in group j mixed with a female in group i at time t 
given that she mixed with somebody; 

Ti(t) = number of males in group i at timet; 

T~(t) = number of females in group j at time t; 

hi = average (assumed constant) number of female partners per group i male per time unit 
= per capita pair-formation rate for group i males; 

b~ =average (assumed constant) number of male partners per group j female per time unit 
= per capita pair-formation rate for group j females. 

Definition. (Pi;(t), qji(t)) is called a mixing/pair-formation matrix if and only if it satisfies the 

following properties at all times: 

(A1) Pij(t);::: 0 and qji(t);::: 0 for i=1, ... , L, j=1, ... , N. 

(A2) 
N 
2: Pi ·(t) = 1 
. 1 J 

J= 

for i=1, ... , L; 
N 

L 
2:q3·i(t) = 1 for j=1, ... , N. 
i=l 

2: b. Tf(t) 
j=l J J 

(A3) ci Ti(t) Pij(t) ~N,..---- = bi T~(t) qi;(t) for i=1, ... , L, j=1, ... , N. 
2: C• T~(t) 
j=l ' ' 

(A4) Pij(t) = q;;(t) = 0 by definition if ci bj Ti(t) T~(t) = 0 for some i, 1 ~ i ~ L, and/or 

some j, 1 ~ j ~ N. 

The fraction in Property (A3) is the total sexual-activity ratio between females and males. This ratio 

is obviously not equal to 1 at all times. In fact, it expresses the fact that the total average rate of pair 

formation between males of type i and females of type j must be equal. A possible interpretation of 

our explicit formulation of the equality of these rates is that we assume that the partnership system 
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favors females (that is, they will tend to achieve their desire optimal average) while males will have to 

modify their desired optimal rates ( c/s) to take into account the total sexual-activity ratio. Or in 

other words, if we assume that the average pairing rates for females are constant then the male pairing 

rates cannot be arbitrary. Property (A4) asserts that individuals from populations that do not interact 

cannot possibly mix. An immediate consequence of the above properties is that the total effective 

average rates of male and female activity must agree at all times, that is, 

L N 
"'C· T~ = "'b. Tl 
L..t1 1 L..t3 3' 
i=l j=l 

where ~ I L..t b · T ·(t) 
j=l 3 3 

C; = C; =;N.,-----

E C• T~(t) 
j=l I I 

The only separable solution to (A1)- (A4) is the Ross solution (named after Ross in recognition of his 

implicit knowledge of the above axioms, see Lotka (1922)) given by ( (pj(t), <i;(t) ), where 

biTI(t) b~T~(t) 
- (t) - 3 J - (t) I I 
Pj - E biTI(t) ' qi = E b'?lT'?l(t). 

i=l I I k=l 3 3 

Castilla-Chavez and Busenberg (1991) characterized all solutions to axioms (A1)-(A4) as 

multiplicative perturbations of the Ross solution. These perturbations are defined in terms of two 

matrices, 4_;m={ ¢ij} and 4_;/ ={ ¢~;}. The matrices 4_;m and 4_;/ define the preferences and/or 

affinities of types of individuals of one gender for other types (here of the opposite gender), and these 

preferences may change with time directly or through changes in the frequency of the types. We refer 

to these two matrices as the male and female preference matrices, respectively. To formulate this 

representation theorem the following expressions are needed: 
N em-"'- ..~,m 

i = !-- Pj V'ij • 
J=l 

L et. = "'-q . ..~,f.. 
3 - /-t I V'31 I 

1=1 

Theorem 1. 

RJ. = 1- nf 
3- c.,' 

L 
vm= E<i; Rf'' 

i=l 

N 
vt = ~Pj R~. 

J=l 

For each marriage function (P, Q), matrices 4_;m and 4_;/ can be found so that 

L 

(4.1) 

(4.2) 

with 0 ::=:; Rf' ~ 1 and 0 ~ R~ ::=:; 1 
N l= e~ Pj < 1 if and only if 

for i=1, ... , L, j=1, ... , N, and E er <i; < 1 and 
i=l 

J=l 

..1.'7! = ..~.t. + R~ at. [...L_...L] 
'{'IJ '{'JI I J vm vf • (4.3) 
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Condition (4.3) shows the implicit frequency (and time) dependent relationship forced by (A3) between 

the elements of •m and~. Using vector notation, 

~ ( ~1) p= : 
PN 

and ~ ( ~1) q - . - . ' 
qL 

we can combine the constraints imposed by ( 4.3) through an implicit nonlinear relationship 

m .1/~ ~ ~~ .&m) • =Y'\p, q, cr, "~ ' 

where the elements of .,P are defined component-wise by ( 4.3). 

(4.4) 

We proceed to outline some useful results (see Hsu Schmitz et al. 1993; Hsu Schmitz 1994) which 
gives an insight into the role of •m and ~: 

Theorem 2. 

If either </>ij =a, 0::::; a< 1 V i, j, or <t>§i = {3, 0::::; f3 < 1 V j, i, where a and {3 are 

constants, then Pij=P; and qji=<Ii· That is, Equation (4.2) reduces to the unique separable 

Ross solution in (2). 

It may be argued that this representation just passes the buck by transferring the difficulties from 

one set of matrices, (P, Q), to another, ( •m, ~). However, the use of preference matrices ( •m, ~) 

helps increase our understanding of the marriage/social structure of a population because they facilitate 

the modeling of specific, non-trivial mixing patterns between subpopulations. Our data (see Rubin et 

al 1992; Castilla-Chavez et a/. 1992; Hsu Schmitz and Castilla-Chavez 1993, 1994; Hsu Schmitz 1994) 

shows that females mix with older males and males mix with younger females. In the past, these 

mixing patterns were not modeled because either they led to intractable mathematical models or there 

was no obvious way of doing it. The use of affinity matrices ( •m, ~)facilitates the construction of 

these "unusual" mating/social structures. The following result (Hsu Schmitz et al. 1993; Hsu Schmitz 

1994) provides a parametric family of mixing matrices that allows to model age-dependent mixing. 

Theorem 3. y/ = ym if and only if •m = ( ~)T, where T denotes transposition. 

The above result implies that the only solutions to axioms (A1)-(A4) with frequency-independent 
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4)m and ()! are those with 4)m = ( ()f)T. This situation occurs when males and females have matching 

preferences that do not change with the dynamics of Tf'(t) and Tt(t). Although the class of solutions 

with 4)m = ( ()i)T is quite restrictive, this class extends, considerably, the mixing/mating structures 

available in the literature. If we use constant preference matrices ~m and +f, then the class of 

parametric mixing models generated with this selection becomes quite rich and flexible. Figure 2 shows 

a real mixing matrix while Figure 3 shows the corresponding Ross solutions. Both were constructed 

using our data from a known population of undergraduate students and their partners (see Rubin et al 

1991; Castillo-Chavez et al. 1992; Hsu Schmitz and Castillo-Chavez 1993, 1994; Hsu Schmitz 1994) and 

both can be fit to matrices that satisfy the relationship 4)m = ( +f)T. 

Theorem 2 requires the relationship (4.3). This relation implies the existence of a function 1/J such 

that 

m .tf~ ~ ~I m) ~ ='f\p, q, 'P', ~ ' 

or, in other words, the preferences of males for females and viceversa satisfy a complex relationship. 

Common sense dictates that if the set of preference of one gender (e.g., +f) is known then so must be 

the other (e.g., ~m) and in fact it can be shown (see Hsu Schmitz and Castillo-Chavez 1993a; Hsu 

Schmitz 1994) that this is the case. Hence there exists a function W such that 

m (~ ~ ~f) 4) = \]i" p, q, cp' • 

This result will be referred as the "T3 Theorem" because it reminds us that, in all situations, it "Takes 

Two to Tango" (this theorem got this colorful name from Stavros Busenberg). In this Section we 

assumed that the pair-formation rates bf' and bt are both constants. This was done to simplify the 

exposition because a consistent theory with constant pair-formation rates for both genders only holds 

under very particular circumstances. In general one has that bf' = bf' (T;, Tf') and bi ::hi (T;, 

Tf'). For a further discussion of this general case the reader is referred to Castillo-Chavez et a/. (1992, 

1994b), Hsu Schmitz and Castillo-Chavez {1993, 1994) and Hsu Schmitz {1994). Castillo-Chavez et 

al. (1994b) shows explicit ways of incorporating arbitrary mixing patterns into demographic and 

epidemiological models. The mathematical analysis of these general models is progressing (see Huang 
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1989; Huang et al. 1993). Section 5 deals with applications of this framework in an stochastic setting. 

We formulate a stochastic pair-formation model for a treatable sexually-transmitted diseases based on 

the deterministic epidemic model presented in Blythe eta/. (1991). 

5. Stochastic Models with social structure 

In this section, we formulate a stochastic pair-formation epidemiological model by using the 

approach that is common to interacting particle systems {for details, see Luo and Castillo-Chavez 1991; 

Castillo-Chavez et al. 1994a, 1994b). Extensions of this model to cover other scenarios should be quite 

evident from the following description. 

We define 

X= {0, 1, · · ·, 1} X {0, 1} X {0, 1, · · ·, N} X {0, 1}/{0} X {0, 1} X {0} X {0, 1} 1 

and consider the explicit stochastic process 

et:X-+{o, 1, 2, ···}, t~O. 

Let x = (i, u; j, v) EX, where i and j denote the groups of males and females and u and v denote the 

epidemiological statuses of males and females, respectively. If we consider an STD that does not have 

a long latent period, does not provide permanent immunity, and does not cause significant mortality 

(e.g., gonorrhea, see Hethcote and Yorke 1984), then the possible values of u and v are either 0 

(susceptible) or 1 (infected). For i > 0 and j > 0, x gives the type of pair; that is, the male is from group 

i with epidemiological status u and the female is from group j with epidemiological status v. If i = 0 

but j > 0, then x represents a single female in group j with epidemiological status v (the value of u is 

not relevant) and therefore we can define x = {0; j, v) = {0, 0; j, v) = (0, 1; j, v). Similarly, if j = 0 but 

i > 0, then x represents a single male in group i with epidemiological status u and again we can define 

x = (i, u; 0) = (i, u; 0, 0) = (i, u; 0, 1). Note that the case of i = 0 and j = 0 is not included in the 

domain of X. Consequently, the stochastic process et(x) gives the number of pairs of type X at timet 

if i > 0 and j > 0; it gives the number of single males of type x at time t if i > 0 and j = 0; and it gives 

the number of single females of type x at time t if i = 0 and j > 0. 

To complete the characterization of et(x), we define s = {0, 1, 2, .. ·}X and let c: s X s-+ (0, oo) 

be a real-valued function that models the flip rate. We view { et: t ~ 0} as an S-valued Markov process 
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With flip rate c( • I • ), i.e., if et = e for SOme t ~ 0, then c(e, 1J) denotes the instantaneoUS rate at Which 

et may change to state '7· Explicitly, 

Prot{ et+h = '71 et =e)= c(e, 7J)h + o(h) , 'v't ~ 0 . 

The more specific definition of flip rates is as follows: for e E S, A C X, B C X, and A n B = 0, we 

define e~(x) E S as 

{ 
e(x) + 1 

e~(x) = e(x) - 1 
e(x) 

ifxeA 
ifx E B 
otherwise 

Thus, the system { {t} consists of a series of changing elements in the set S, which is the set of all 

functions on X. The dynamics of the system is described by the rates {c({, 7J): { f: 7J, {, 7J E S} at 

which the system changes. 

We assume the existence of an underlying mixing/pair-formation matrix ( P;;({t), q;;({t)) as 

described in Section 4. Since {tis a function oft, the mixing matrix is also a function oft. We further 

assume that paired individuals do not look for other partners before they separate. As the time t 

changes, singles may form pairs, pairs may dissolve, the disease may be transmitted within pairs from 

an infective to a susceptible, the infectives may be cured, etc. 

We use the indices m and f to identify the parameters associated with males and females 

regardless of their epidemiological status, and use M and F to characterize those parameters only 

associated with infected males and females, respectively. Then the flip rate c( ·, ·) is calculated as 

follows: 

a) Pair formation 

For i > 0, j > 0, 

( (i,u;j,v) ) _ f ( . . ) ( ) {(i, u; 0) 
c {, e(i,u;O),(O;j,v) - b;e O, J, V qji e e(i, Uj 0) +e(i, 1-u; 0) 

= b'!lt(i u· 0) . -(~) {(O; j, v) · 
' .. ' ' P,, .. e(O;j, v)+e(O;j, 1-v)' 

b) Pair dissolution (u denotes the constant pair dissolution rate) 

For i > 0, j > 0, 

c(e e(!,u;~),(O;j,v)) = 0"· ·e(i u· j v)" 
I (t,U;J,V) IJ I I I I 

c) Transmission (6 denotes the constant transmission rate) 



-25-

For i > 0, j > 0, 

d) Recovery ( 1 denotes the constant recovery rate) 

For i > 0, j > 0, the recovery flip rates for one paired individual are 

( c c(i,O;j,o)) c(' 0 · 1) 
c.,,.,(i,O;j,l) =!F., 1• iJ,' ( c c(i,O;j,O)) c(' 1 • O) 

c "'' "'(i,l;j,O) = JM<, 1• i J, i 

( c c(i,l;j,O)) c(' 1 · 1) 
c.,,.,(i,l;j,l) =1F"' 1' iJ,' ( c c(i,O;j,l)) c(' 1 · 1) 

c "'' "'(i,l;j,I) = 'YM"' 1• i J, i 

and the flip rate for both individuals is 

( c c(i,O;j,O)) c(' 1 · 1) 
c "'' "'(i,l;j,l) = 'YFM" 1• i J, i 

while for single infected individuals (j = 0 or i = 0) we have 

e) Removal (J.l denotes the constant removal rate from sexual activity) 

For i > 0, j > 0, 

( c c(i,u;O) ) c(' · ) c .,, "'(i,u;j,v) = J.lj<, 1, u; J, v , ( c c(O;j,v) ) _ c(' . · ) . 
c .,, "'(i,u;j,v) - J.lm<, 1, u, J, V ' 

while for single individuals (j = 0 or i = 0) we have 

f) Recruitment (A denotes the constant recruitment rate for susceptible singles) 

For i > 0, j > 0, 

g) Other 

For any other 71 f= e, we assume c({, 77) = 0. 

h) c(e, e) = L: c(e, 7J). 
rr=foe 

This concludes the characterization of our stochastic epidemiological model with pairs. Next, we 

outline the simulation procedure of a general stochastic process including the, above. From the 

construction of the flip rates we know that 

c(e) = L: c(e, 77) < 00. 

rr:/=e 
If we let the sequence 0 = Po< p1 < · · · denote the jump times of the process, then r n = Pn- Pn-l has 

an exponential distribution with rate c( ePn_J. Thus, the process can be simulated as follows: 
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1) First, set the initial state eo and assume that a sequence of n jump times 0 = Po< p1 < · · · < Pn and 

their corresponding states eP·' 1 $ i $ n, have been determined. 
I 

3) Set eP = 11 with probability c(eP , 17)/c(ep ). 
n+l n n 

4) Define et = eP for Pn $ t < Pn+l" 
n 

In Castillo-Chavez et a/. (1994a) extensive simulations are carried out for pair-formation 

demographic models where individuals have distinct preferences. We found (later justified analytically 

in some simple cases in Hsu Schmitz, 1994) that the parameters with a bigger impact on the 

determination of the stable pair distribution are the dissolution rates. If these rates are identical for all 

groups then the system stabilizes asymptotically to a pair-distribution that is in agreement with 

individual preferences. However, if the dissolution rates differ, then there is no clear connection 

between the "observed" mating preferences/affinities and the observed mixing patterns (stable pair­

distribution). This is quite analogous to what is observed in population genetics where there is no 

unique correspondence between genotype and phenotype. In fact, higher variance on the dissolution 

rates may reduce our ability to identify individual affinities from observed mixing patterns. 

6. Conclusions. 

In this chapter we provide an overview on the use, formulation, and analysis of epidemiological 

models. The introduction briefly touches on ways in which models can help us understand the 

mechanisms behind the (underlying) dynamics of observed time series (see Hethcote and Levin 1989; 

Castillo-Chavez et al. 1988, 1989 for specific examples). Section 2 provides a concise introduction to a 

large class of simple and useful epidemiological models. A complete mathematical analysis of these 

models is not provided but, we take the time to illustrate the role that the basic reproductive number 

plays in epidemiology. 

The HIV f AIDS epidemic has forced us to look at models that incorporate long and variable 

periods of infectiousness and hence, we must deal with systems of difference-differential and integral 

equations (the topic of Section 3). These models are more difficult to handle but their analysis has 

been carried out in many situations. In fact, there has been a great deal of progress since the first 

articles on the transmission dynamics of HIV (see Anderson et a/. 1986; Anderson and May 1987; 

Pickering et a/. 1986) appeared almost a decade ago. 

If one wishes to construct more realistic models for the transmission dynamics of HIV f AIDS then 

one has to incorporate other factors including the social structure of a population. Section 4 outlines 
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ways in which this can be accomplished as well as some of the difficulties encountered in the process. 

To limit the level of complexity, we abandon epidemics and concentrate on the development of 

methods for modeling the (dynamic) contact/pairing structure of a population. The usefulness of our 

approach has yet to be determined albeit the fact, that it has already been applied with some degree of 

success to data on mixing patterns of college undergraduates (see Blythe et al. 1992; Castillo-Chavez et 

al. 1992; Rubin et al. 1992; Hsu Schmitz and Castillo-Chavez 1994, Hsu Schmitz et al. 1993, Hsu 

Schmitz 1994). Section 5 deals with the formulation of stochastic pair-formation epidemic models. 

The analysis of stochastic models is difficult but their simulation can be easily carried out (we provide 

an outline of the simulation method). References to the extensive work that is being carried out on 

(the very active field of) stochastic epidemics can be found in Gabriel et al. (1990), Castillo-Chavez et 

al. (1994a,b), and Luo and Castillo-Chavez (1991). 

This chapter focussed on modeling rather than on mathematics yet we have not completely run 

away from all the technicalities. In fact, we have tackled some of them while providing extensive 

references to those wishing to learn the basic tricks. However, the time used on this chapter will not 

be well spent unless it helps the reader formulate (preferably simple) models that are capable of 

addressing important biological questions. The references provide ample documentation of the successes 

that mathematics has had when it is driven by biological research. 
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Figure 1. Kermack-MacKendrick Model. Phase Plot with Basic 
Reproductive Number= 3 (Runge-Kutta 2, fixed time-step solution). 
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S(O) denotes the initial proportion of susceptibles, while S(oo) denotes the susceptible proportion 
after the epizootic event. 



Figure 2. Real Mixing Matrices for Males and Females 
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Figure 3. Ross Solution for Males and Females 
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