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Migration is not only one of the very fundamental functions of cells, it is also 

crucial for immune cells to be at the right place at the right time to mount an effective 

immune response. Mast cells are the primary mediators of immunoglobulin E (IgE)-

dependent allergic disorders, and they also function as effector and 

immunomodulatory cells in innate and adaptive immune responses. Crosslinking of 

IgE-Fc!RI complexes at the mast cell surface by antigen activates a signaling cascade 

that causes mast cell activation, resulting in Ca2+ mobilization and granule exocytosis. 

Mast cells accumulate in the sites of inflammation in response to parasite and bacterial 

infections and in allergic reactions, but very little is known about the molecular 

mechanisms of this process. In this work, we use real-time video microscopy and a 

novel cell tracking analysis to probe this understudied area of mast cell biology. Using 

these methods, we demonstrate that rat basophilic leukemia (RBL) and bone marrow-

derived rat mast cells exhibit spontaneous motility and directed migration up a 

gradient of antigen, and Ca2+ influx via the CRAC channel protein Orai1 plays an 

important role in regulating both of these processes. A mutant RBL cell line that lacks 

Syk tyrosine kinase shows reduced spontaneous motility and chemotaxis toward 

antigen, suggesting a role for Syk in these processes. To gain insights into the 



physiological functions of mast cell migration, we investigated the dynamic interactions 

between mast cells and intestinal epithelial cells in vitro and in situ. Mucosal mast cells 

show transepithelial migration when these cells are introduced from either the apical 

and basolateral side of the polarized epithelial monolayers, suggesting dynamic 

interactions between mucosal mast cells and epithelial cells. Furthermore, using 

multiphoton imaging, we show endogenous and adoptively transferred mast cells 

localized in the intraepithelial regions of the intestinal villi in response to parasite 

infection in situ. Taken together, our results show that Orai1-dependent Ca2+ influx 

plays an essential role in the mechanism of directed mast cell migration, and they 

demonstrate distinct interactions between mast cells and intestinal epithelium, 

providing new insights into this process.   
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CHAPTER 1 

INTRODUCTION 

 

 

 Allergic diseases have reached epidemic proportions worldwide, with their 

prevalence continuously increasing, especially in developed countries (1). Allergic 

diseases include asthma, food allergy, atopic dermatitis, anaphylaxis, and drug allergy. 

All of these allergic diseases can occur alone or in combination (2). Mast cells are a key 

cell type in the hematopoietic lineage that were first described by Paul Ehrlich in late 

1800s (3), and they have long been recognized as a primary mediator of 

immunoglobulin E (IgE)-associated allergic reactions (4). Allergic reactions are 

described as symptomatic responses to a normally innocuous environmental antigen. 

More recently, mast cells are also acknowledged for their key role in recognizing 

pathogens and modulating appropriate immune responses (5), suggesting adaptable 

and multifunctional nature of these cells. Crosslinking of IgE bound to its high affinity 

receptor, Fc!RI, activates a signaling cascade that results in the release of preformed 

granules in mast cells. Mast cells produce variety of biologically active products, 

including histamine, proteases, eicosanoids, cytokines, and chemokines. Histamine and 

proteases are stored in secretory granules, whereas eicosanoids and cytokines can be 

generated de novo after stimulation. This array of mediators as well as the expression of 

multiple types of receptors allows mast cells to participate in diverse functions (6).  
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Mast cell heterogeneity 

 

Mast cells are derived from pluripotent hematopoietic stem cells in the bone 

marrow, and in particular, human mast cells are believed to arise from CD34+ stem 

cells.  Mast cells circulate in the blood as progenitors, but acquire their differentiated 

mature phenotype within tissues, where they ultimately reside. These processes are 

regulated by stem cell factor (SCF), interleukin-3 (IL-3), IL-4, IL-9, nerve growth factor, 

and probably other factors (7). The mast cell growth factor SCF is produced mainly by 

stromal cells and either expressed on the cell surface or released in soluble form (8). The 

receptor for SCF is known as Kit (CD117) and is expressed on hematopoietic stem cells 

and is retained on mast cells throughout their development and differentiation but is 

down-regulated in other bone marrow-derived cells during differentiation. Unlike mast 

cells, basophils reach their mature phenotype in bone marrow before their release into 

blood (9). Mast cells are long-lived cells, and can proliferate in response to appropriate 

stimuli, despite their terminally differentiated phenotype (10).  

 

Original observations of two histochemically distinct populations of mast cells 

(11), and the capacity of only one of these subsets to respond to compound 40/80 (12), 

led to the idea of mast cell heterogeneity. These distinct subsets express different 

proteoglycans and proteases (13, 14) and are commonly called mucosal mast cells and 

connective tissue (or serosal) mast cells. Mouse mucosal mast cells express chymases 

mMCP-1 (RMCPII in rat), and mMCP-2, and are mainly localized in the mucosal 
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epithelium and lamina propria. On the other hand, mouse connective tissue mast cells 

express chymases mMCP-4, -5, and tryptases and are thought to predominantly localize 

within submucosa composed of loose connective tissues (15). This heterogeneity 

probably contributes to the multifunctional roles that mast cells play. For example, 

mouse mMCP-4 expressing mast cells contribute to the regulation of homeostatic 

intestinal epithelial barrier function via this protease (16), whereas mice lacking mast 

cells and mice lacking mMCP-1 are defective in regulating intestinal permeability and 

parasite expulsion (17). Nonetheless, these two subsets of mast cells exhibit some 

‘plasticity’. When bone marrow derived mast cells from wild type mice were 

transferred to mast cell deficient mice, the cells show either mucosal or connective 

tissue phenotype depending on the tissue site to which they migrate, adopting the 

phenotype of mast cells that normally reside in that tissue site (18). IL-3 and SCF drive 

mast cell differentiation to mouse mucosal (19) or connective tissue (20) mast cells, 

respectively, and it is believed that under both normal and pathological situations, mast 

cells are conditioned by their cytokine environment (21). Human mast cells also show 

heterogeneity with two different protease types in their granule contents, but with less 

stringent tissue-type specificity (22). 
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Mast cells in immune response to pathogens 

 

 Mast cells are strategically located at the interface between host and environment 

such as skin and mucosa, which makes these cells ideally localized for immune 

surveillance (5). They are localized near blood vessels, lymphatic vessels, and nerve 

fibers. Especially at the earliest stages of infection, mast cells communicate the presence 

of a pathogen to many other cell types, including immune cells (23-26), epithelial cells 

(27), smooth muscle cells (28), and endothelial cells (29, 30) located nearby in the site of 

infection, and in the draining lymph nodes. Because their numerous granules contain 

preformed mediators, mast cells have great potential to be the first responders 

following pathogen recognition. These cellular communications by mast cells contribute 

to immune surveillance and host defense.  

 

 To initiate appropriate immune response against invading pathogens, 

mobilization of various cell types are required. Mast cells induce or increase cell 

trafficking of many different cell types under diverse pathological conditions that is 

mainly mediated by the release of their granule contents. At sites of bacterial infection, 

mast cell-derived tumor necrosis factor (TNF) promotes the influx of dendritic cells 

(DCs) and neutrophils (23, 29), and the production of the chemokine CCL20 by mast 

cells likely contributes to DC precursor recruitment from the blood into the tissues (31). 

In viral infection, mast cells induce the chemotaxis of CD8+ T cells by activation of Toll-
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like receptor 3 (TLR3) on the mast cell surface and subsequent upregulation of CXCL10 

(IP10) and CCL5 (RANTES) (25).   

 

 The first observation that mast cells could play a role in host defense came from 

the models of helminth infection in the gut (32, 33). In these early studies, mast cells 

were observed as clusters around sites of parasite infection, with many cells undergoing 

degranulation (32, 34-36). Different from bacteria, protozoa, fungi and viruses, most 

helminths do not replicate in the mammalian host. The infective stages must establish 

infection and then grow to sexual maturity, producing eggs or live offspring for 

transmission to the next host. The adult stages of these parasites can be long-lived, even 

for decades, and they adapt to the attack of host immune system. These distinct 

features, along with the multicellular nature of these pathogens, may explain why 

helminth induces a very different immune response profile from microbial pathogens. 

In mammals, this response belongs to the T helper cell type 2 (Th2) type, and it involves 

expanded populations of mast cells, eosinophils, basophils, and certain subtypes of 

macrophages, the antibodies IgG1, IgG4, and IgE, and the cytokines IL-3, IL-4, IL-5, IL-

9, IL-10, and IL-13 (37-39).  

 

The control or clearance of parasites by mast cells involves diverse mechanisms, 

including the recruitment of central immune cells, regulation of gut permeability and 

parasite expulsion, and containment of chronic infection (34-36, 40, 41). During 

protozoan parasite skin infection by Leishmania, mast cells are important for promoting 
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protective immunity which results in decrease skin lesion size (36). Mast cell 

proliferation, or mastocytosis, during gut infection by the parasite Schistosoma was 

shown to depend on SCF (42) or IgE (43). Mucosal mast cells proliferate in the infected 

gut in response to IL‐9 (17) and IL‐18 (44), and they release mast cell proteases that can 

degrade tight junctions (17), to increase fluid flow. Apparently, the requirement for 

mast cells during parasite infection varies greatly depending on the type of challenge. 

Expulsion of hookworm from the gut during secondary challenge depends on basophils 

rather than on mast cells, in contrast to expulsion during primary challenge (35). 

Rodents are natural hosts for a parasitic nematode, Trichinella spiralis, and primary 

infection induces a potent Th2 response leading to intestinal mastocytosis (45), and mast 

cell degraulation can be observed at the time of adult worm expulsion (32, 46). Mice 

deficient in IgE show a deficiency in parasite expulsion from the gut that might be 

explained by the decreased levels of mMCP-1, which were shown to influence the speed 

of explusion from the gut (40). On the other hand, rapid expulsion of T. spiralis from the 

gut during secondary infection can occur in the absence of either mastocytosis or 

RMCPII release (47), suggesting that mast cells may play different roles depending on 

the type of challenge. In addition, differentiated mucosal mast cells are known to 

redistribute from the submucosa or crypt area to the lamina propria and intraepithelial 

regions of jejunal villi, and reversibly alter their protease phenotype during the course 

of an immune response to T. spiralis infections (48). 
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Immunoglobulin E (IgE) and Fc!RI 

 

Immunoglobulin E (IgE) is the fifth and final class of human antibody to be 

discovered (49), and it is produced by B cells following antigen presentation by antigen 

presenting cells (APC) to T helper type 2 (Th2) cells. Interleukin-4 (IL-4) and IL-13 

secretion from Th2 cells induce B cells to switch production of IgM and other isotypes 

to antigen-specific IgE (6).  

 

The receptor for IgE was initially identified by Metzger and colleagues using the 

rat basophilic leukemia (RBL) tumor mast cell line (50, 51). This receptor is abundantly 

expressed on both normal and RBL-2H3 mast cells (up to 3x105 receptors/cell), and it 

binds IgE with high affinity (Kd"10-10 M) (50), referred to as the high affinity receptor for 

IgE, or Fc!RI. Fc!RI is a heterotetrameric receptor expressed on the mast cell surface 

composed of three different subunits: an IgE-binding #-subunit, a membrane-

tetraspanning $-subunit which amplifies the signal, and two identical %-subunits linked 

by a disulfide bond contain immunoreceptor tyrosine-based activation motifs (ITAMs) 

that are essential for signal initiation (52).  
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Fc!RI-mediated signaling 

 

Mast cell signaling mediated by Fc!RI has proven to be a useful model for 

understanding fundamental molecular mechanisms in immune cell activation. This is in 

part because of the relative simplicity of Fc!RI-mediated signal initiation through its 

tyrosine phosphorylation cascade, and also the relatively immediate response of mast 

cell degranulation activated by this receptor. 

 

Upon aggregation of IgE-Fc!RI complexes by multivalent antigen, active Src 

family tyrosine kinase Lyn in ordered lipid microdomains (53), known as lipid rafts, 

becomes proximal to the cross-linked receptors and phosphorylates its ITAMs (54). This 

results in activation of tyrosine kinase Syk after ITAM binding. Activated Syk 

phophorylates several downstream adaptor molecules and enzymes, including the 

linker for the activation of T cells (LAT). LAT is an adaptor protein with multiple 

tyrosines that serve as binding sites for SH2 domain-containing proteins when 

phosphorylated (55), including phospholipase C% (PLC%). PLC% is phosphorylated by 

Syk after recruitment to the plasma membrane via interactions with LAT (56). Activated 

PLC% hydrolyzes PIP2 to produce inositol 1,4,5-trisphosphate (IP3), and with protein 

kinase C (PKC) activation by diacylglycerol (DAG) production, initiates Ca2+ 

mobilization. These stimulated events lead to degranulation and release of mediators of 

the allergic response including histamine. Additionally, cross-linking of Fc!RI activates 

a second Src family kinase Fyn that phosphorylates the adaptor protein Gab2 to activate  
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Figure 1.1. Fc!RI-mediated signaling pathways in mast cells. A simplified schematic 
diagram of Fc!RI signaling is shown. After antigen stimulation, IgE-Fc!RI crosslinking 
at the cell surface leads to a tyrosine phophorylation cascade, that results in 
downstream consequences of mast cell activation, such as Ca2+ mobilization and 
degranulation events.  
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the phosphatidylinositol-3-OH kinase (PI3K) pathway (57). Defects in Fc!RI signaling in 

a mutant RBL cell line were reconstituted by activated Rho-family GTPases, Cdc42 and 

Rac, suggesting that activation of Cdc42 and/or Rac is also crucial for Fc!RI-mediated 

signaling that leads to Ca2+ mobilization and degranulation (58, 59)  (Figure 1.1). 

 

 

Syk tyrosine kinase in immune cell adhesion 

 

Syk is a 72 kDa non-receptor tyrosine kinase that contains two tandem Src 

homology 2 (SH2) domains and a kinase domain and is most highly expressed in 

hematopoietic cells. Syk also has a homolog protein, ZAP70, which is mostly restricted 

to the expression on T cells and natural killer (NK) cells. Syk has also been implicated in 

immune cell adhesion though integrin signal transduction (60). Integrins are a family of 

heterodimeric transmembrane receptors that play a key role in leukocyte adhesion and 

migration (60). Integrins and classical immunoreceptors were long believed to signal by 

conceptually different mechanisms, due to their structural and functional differences, 

but more recent data point otherwise. Syk-deficient neutrophils, monocytes, and 

macrophages (61-63) have defective integrin-mediated signaling; moreover, Syk is 

essential for firm leukocyte adhesion to the inflamed endothelium (64). Whether the 

mechanism underlying Syk activation in these processes is dependent on ITAMs (61, 65, 

66) or not (65, 67) is still unresolved. However, it has been proposed that these two 
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mechanisms of integrin-Syk coupling may cooperatively regulate the activity of Syk 

(66).  

 

Syk also plays a role for selectin mediated functions in immune cells. Selectins 

are transmembrane glycoproteins that participate in leukocyte rolling on the 

endothelium. Syk is involved in signal transduction by P‐selectin glycoprotein ligand 1 

(PSGL1), the major selectin receptor on leukocytes. Syk is activated by, and associated 

with PSGL1 in these cells (68, 69), and slow rolling is compromised in Syk-deficient 

neutrophils (69). These studies show that PGSL1-mediated Syk activation depends on 

an ITAM-mediated pathway (68, 70), however, one report suggested that Syk is 

activated via an ITAM‐like motif in ezrin, radixin and moesin (ERM) family proteins 

(68), whereas the other suggested that phosphorylation of the ITAM-bearing adaptors 

such as DAP12 and FcRγ by the Src family kinase Fgr is involved (70).  

 

 

Cell motility, migration, and chemotaxis 

 

 Cell migration is critical for various biological functions, such as embryogenesis, 

wound healing, and immune responses, and it can also contribute to the pathogenesis 

of diseases including cancer and transplant rejection. The basic mechanism of cell 

motility has been an interest of scientific investigations since the emergence of optical 

microscopy. Cell motility requires the actin cytoskeleton, asymmetric morphology of 
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the cell, and polarized intracellular signaling (71, 72). Polarization and development of 

leading and trailing edges of the cell mediates cell locomotion by dynamic extension 

and retraction of cellular protrusions, such as pseudopods, filopodia (73), or 

lamellopodia. 

 

 When cells are presented with a gradient of external factors or asymmetric 

environmental cues, a compass or steering mechanism coupled to basal motility 

machinery responds and cells undergo directed migration (74, 75). The types of the 

asymmetric environmental cues often define the kind of directed migration. Cells go 

through chemotaxis in response to soluble cues, electrotaxis in response to electric 

fields, durotaxis in response to mechanical signals in the environment, and haptotaxis 

in response to a gradient of cellular adhesion sites or substrate-bound chemoattractants. 

During embryogenesis, chemotaxis provides a key mechanism for individual and group 

cell migration, organ formation, and wiring of the nervous system. In the adult, 

chemotaxis is crucial for immune cell trafficking and in inflammation, regenerative 

processes such as wound healing, and maintenance of tissue architecture. Chemotaxis 

also seems to allow stem cells to target to and persist in their niches (76).  

 

Even though an increasing number of cell types that carry out chemotaxis are 

being discovered, the signal transduction events mediating directed migration have 

been most comprehensively studied in Dictyostelium and neutrophils (77, 78). 

Chemotaxis requires the cell to sense the external soluble gradient and orient according 
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to the source of the signal. The known processes after initial activation by a chemotactic 

signal include signaling intermediate redistribution, GTPase-regulated actin 

polymerization (79), and activation of lipid kinases (80), which consequently generate 

asymmetric pools of phosphoinositides and F-actin that result in stable cell polarization 

and directionality (81, 82). Intracellular signaling mediated at the leading edge by the 

Rho family GTPases are involved in regulating directional migration by modulating 

leading edge formation. One member, GTPase Cdc42, is thought to be a regulator of cell 

polarity (81, 83). Polarized cells develop a small leading edge consisting of pseudopods, 

followed by the cell body that contains the nucleus, and a rear, near cylindrical tail 

termed the uropod. The leading edge is particularly sensitive to receptor engagement, 

including that by Fc receptors (FcRs), T cell antigen receptors (TCRs) and chemokine 

receptors (84). The interplay and non-overlapping distribution of PI3K and the lipid 

phosphatase PTEN (phosphatase and tensin homologue) generates 

phosphatidylinositol-3,4,5- trisphosphate (PtdIns(3,4,5)P3, PIP3) at the leading edge of 

chemotaxing cells (85). Rac1, a member of Rho family GTPases, may be a critical target 

of PI3K signaling at the leading edge (86). In neutrophils, phopholipase D (PLD) 

cooperates with PI3K-mediated signaling to activate Rac1 during chemotaxis (86).  

The process that restricts lateral protrusions underlies directional migration. 

New protrusions are preferentially generated from the pre-existing leading edge, rather 

than in different locations around the cell (74, 87). Local signaling in a protrusion can 

direct the formation of new protrusions in response to an external guidance factors (74). 

Recently, some cells have been shown to migrate using plasma membrane blebbing 
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without lamellipodia, but the generality of this mechanism is yet unclear (88). Actin 

polymerization at the leukocyte lamellipodium is controlled in a way similar to what 

has been described in other cell types, and is locally triggered by signal amplification of 

the chemoattractant gradient that constitutes the polymerization stimulus. While 

lamellipodium extension is regulated by both actin polymerization and actomyosin-

based contraction, posterior detachment seems to depend on contraction only (89).  

 

 

Ca2+ mobilization and store operated Ca2+ entry in immune cells 

 

Ca2+ is one of the most well studied second messengers, and is widely used by all 

eukaryotic cell types, including immune cells. Before stimulation through antigen, 

resting immune cells maintain a low concentration of Ca2+, but activation of immune 

cells via antigen engagement induces Ca2+ influx from the extracellular environment.  In 

electrically non-excitable cells like immune cells, store-operated Ca2+ entry (SOCE) is a 

major mechanism in Ca2+ entry.  

 

The initial signaling events are quite similar in T and B lymphocytes and mast 

cells. Antigen recognition in these cells commonly triggers the tyrosine phosphorylation 

of immunoreceptor ITAM motifs and the recruitment and activation of protein tyrosine 

kinases. Crosslinking of antigen receptors causes phophorylation and activation of  
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Figure 1.2. Store operated Ca2+ entry in mast cells. A simplified schematic diagram is 
shown. IP3 produced by PLC% in response to Fc!RI aggregation binds to IP3 receptors in 
the ER membrane, causing the release of Ca2+ from these stores. Depletion of ER Ca2+ 
stores triggers the oligomerization of STIM1 and subsequent concentration at the ER-
plasma membrane junctions causing Orai1 channels to open and mediate Ca2+ entry.   
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phopholipase C (PLC), and activated PLC generates inositol-1,4,5-trisphosphate 

(Ins(1,4,5)P3) and diacylglycerol (DAG) by breaking down phosphatidylinositol-4,5-

bisphosphate (PIP2). IP3 in turn binds to its receptor on the surface of internal Ca2+ 

stores, typically the endoplasmic reticulum (ER), and initiates the release of Ca2+ into 

the cytoplasm. This event is known as ‘store depletion’, and it triggers store-operated 

Ca2+ (SOC) channels in the plasma membrane to bring in more Ca2+ (Figure 1.2). Ca2+ 

release-activated Ca2+ (CRAC) channels are the most well characterized SOC channels in 

immune cells (90). CRAC channels are highly Ca2+ selective, have a very low 

conductance, and show inwardly rectifying current-voltage relationship.  

 

The molecular compositions of CRAC signaling complex was identified less than 

a decade ago, when high-throughput, genome-wide screening of RNA-mediated 

interference (RNAi) began to be widely used as a method for unbiased discovery of 

proteins in biological pathways. Orai1 (also called Ca2+ release-activated Ca2+ modulator 

1, CRACM1) has been identified as a pore-forming subunit of CRAC channels, and 

stromal interaction molecule 1 (STIM1) as the ER resident Ca2+ sensor (91-95). Orai1 has 

two homolog proteins, Orai2 and Orai3, while STIM1 has one homolog, STIM2, in mice 

and humans.  

 

The canonical transient receptor potential (TRPC) family of protein channels 

have also been described to trigger elevation of intracellular Ca2+ either directly via 

coupled plasma membrane receptor stimulation, or possibly through store depletion 
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(96-98). TRPC channels have seven homologs in mammalian cells (TRPC1 – TRPC7). 

Direct involvement of TRPC proteins in SOCE is somewhat controversial, with no 

conclusive reports of TRPC store-operated Ca2+ currents in lymphocytes.  

 

Orai (CRACM) The Orai1 monomer is a small protein of ~33 kDa with four 

transmembrane domains and amino and carboxyl ends that face the cytosol (93-95). 

Glycosylation increases its molecular weight on SDS gels (99, 100). Orai1 assembles as a 

tetrameric CRAC channel (101-103), and this channel opens in response to the signal 

communicated by STIM1. Orai1 can also form heteropolymers with Orai2 and Orai3, 

and possibly with some TRPC channel subunits (104, 105).  

 

STIM STIM1 is a ~77 kDa single transmembrane protein that is mainly localized 

in the ER and in some reports at the plasma membrane. STIM1 was originally thought 

to be a secreted or plasma membrane protein of bone marrow stromal cells, giving rise 

to the name stromal interaction molecule (106). STIM1 predominantly resides in the ER 

(91, 92, 107, 108) and it is believed that ER-resident STIM1, not plasma membrane 

localized STIM1, regulates CRAC channel opening (91, 107, 109-111). STIM1 has an ER-

luminal portion of ~22 kDa after cleavage of its signal sequence, with a single 

transmembrane sequence, and a ~51 kDa cytoplasmic region. ER-resident STIM1 carries 

out two basic functions in the CRAC signaling pathway: it senses ER store depletion 

and repletion, and it communicate the level of Ca2+ in the stores to the Ca2+ channels 

residing in the plasma membrane.  
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Orai1-STIM1 communications It has been proposed that STIM1 senses the 

depletion of Ca2+ stores via its amino-terminal Ca2+-binding EF hand domain. 

Dissociation of Ca2+ from its binding site triggers a structural change in STIM1. STIM1 is 

localized throughout the ER membrane prior to store depletion, and store depletion 

induces the formation of oligomers of STIM1 in the ER through the EF-SAM region and 

ensuing translocation to discrete ‘puncta’ at ER-plasma membrane junctions (112, 113). 

The interactions that retain STIM1 at ER-plasma membrane junctions are not fully 

understood. One interaction maps to the short polybasic sequence at the carboxyl 

terminus of STIM1 (113-115), and involvement of this polybasic sequence has led to the 

hypothesis that STIM1 is recruited by negatively charged phospholipids such as PIP2 

and PIP3 (113). A key upstream signaling mechanism for puncta formation is 

oligomerization of the STIM1 luminal domain, but how this oligomerization occurring 

in the ER lumen results in STIM1 relocalization to the ER-plasma membrane junctions is 

less clear. STIM1 redistribution in cells shows prominent cooperativity with respect to 

ER-luminal Ca2+ concentration (116, 117). Since each STIM1 monomer has a single Ca2+ 

binding site, the cooperativity suggests that oligomeric STIM1 is involved in at least one 

step of redistribution. However, reported data do not discriminate between whether the 

oligomer is stable or transitory. Physiological stimuli can elicit significant Ca2+ entry 

without the presence of large puncta. For example, mast cells stimulated by crosslinking 

of IgE-Fc!RI by antigen do not exhibit prominent puncta and only limited average 

proximity of STIM1 and Orai1 (118). Also in stimulated HEK293 cells, detectable STIM1 
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redistribution is modest or absent (119), even though these conditions are sufficient to 

elicit robust STIM1-Orai1 dependent elevation of Ca2+ or Ca2+ oscillations (118-120). 

 

Orai1 is localized throughout the plasma membrane before store depletion. After 

store depletion, STIM1 relocation to puncta leads to the recruitment of Orai1 to the 

puncta, activating CRAC channels. Recruitment of Orai1 depends on its carboxyl 

terminus cytoplasmic tail (121, 122), and the basis for recruitment is thought to be a 

direct protein-protein interaction between Orai1 carboxyl terminus with STIM1 (114, 

121, 123). Calloway et al. showed that a positively charged sequence of STIM1 in its 

CRAC channel activating domain (CAD) is necessary for SOCE activation, and this 

sequence directly interacts with an acidic coiled-coil of Orai1 in its C-terminal segment 

to gate Ca2+ influx, and gating Ca2+ depends on electrostatic interaction between Orai1 

and STIM1 (118, 124). 

 

 

Ca2+ mobilization and cell motility  

 

Local changes in the intracellular Ca2+ concentration modulate directionally 

persistent cell migration in many cell types. Transient, spatially localized increases of 

intracellular Ca2+ guide neuronal growth cone migration during chemotaxis and 

haptotaxis (125, 126), and local Ca2+ influx can activate Cdc42 and Rac1 while 

inactivating RhoA to regulate growth cone motility (127). TRPM7 Ca2+ channels open 
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and induce local bursts of intracellular Ca2+, termed ‘Ca2+ flickers’ at the leading edge in 

migrating fibroblasts undergoing chemokinesis. Symmetric addition of PDGF not only 

increases random migration of fibroblast but also increases number and amplitude of 

the Ca2+ flickers, and TRPM7 inhibition blocks chemotaxis of fibroblast toward PDGF 

(128). TRPC5 and TRPC6 channels play antagonistic roles in regulating fibroblast and 

kidney podocyte motility. Whereas TRPC5-mediated Ca2+ influx activates Rac1 to 

promote cell migration, TRPC6-mediated Ca2+ influx increases RhoA activity and 

inhibits cell migration (129). The downstream target of Ca2+ in fibroblast directional 

migration is yet unknown.  

 

For immune cells, the role of Ca2+ in leukocyte migration is still not entirely clear. 

Polymorphonuclear leukocytes (PMNs) orient correctly across the chemoattractant 

gradient without extracellular Ca2+ (130, 131), and they migrate faster under these 

conditions (130). On the other hand, extracellular Ca2+ depletion causes leukocyte 

migration to slow and eventually stop (132-134), and buffering intracellular Ca2+ slows 

migration (135, 136). For mast cells, buffering of intracellular Ca2+ also causes a decrease 

in mast cell migration toward antigen (137, 138). To generate sustained signals 

necessary for cell activation efficiently, motile T cells must stop after they encounter 

APCs presenting specific antigen/MHC complexes. Intracellular Ca2+ rises after T cells 

interact with APCs in vitro, and consequently T cells round up and stop crawling. Ca2+ 

is sufficient to induce these processes, as ionomycin and thapsigargin show similar 

effects on T cell motility independent of the T cell receptor (TCR) (139, 140). 
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Furthermore, high K+ and BAPTA/AM loading to inhibit elevation of intracellular Ca2+ 

reversibly blocks the immobilization of T cells (140). In contrast, Ca2+ is less effective at 

stopping naïve T cells interacting with APC, as naïve T cells still extend and retract 

lamellopodia after increases in intracellular Ca2+ (141). A Ca2+-independent stop signal 

has been reported (142), suggesting that multiple signals may be involved in regulating 

naïve T cell motility.  

 

More recently, a role for Orai1 and STIM1 in cell motility and migration has 

begun to emerge. Orai1 and STIM1 are essential in regulating breast tumor cell 

migration, and metastasis in mice (143). Orai1 regulates neutrophil arrest and 

polarization during recruitment (144), and Orai1 and STIM1 also play essential roles in 

PDGF-induced smooth muscle cell migration (145, 146). In intestinal epithelial cells, 

STIM1 redistribution to the plasma membrane enhances TRPC1 mediated Ca2+ 

signaling and cell migration after wounding (147). 

 

 

Current studies 

 

Trafficking of immune cells is pivotal for the immune system to carry out its 

functions. Evidence published more than a decade ago showed that mucosal mast cells 

must redistribute inside the tissue site, from the lamina propria to the jejunal villi of the 

gut, in response to parasite infection. This response requires mast cell motility and 
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likely driven by a chemotactic response, but very little has been characterized regarding 

the molecular mechanisms of mast cell motility or directed migration. RBL-2H3 mast 

cells and bone marrow- derived mast cells from the rat both have similar biochemical 

and functional characteristics of mucosal mast cells in vivo (148, 149). This dissertation 

examines the basal motility and chemotaxis of these mast cells, providing new insights 

into how immune cell migration is regulated.  

 

In Chapter 2, we characterize the basal motility and chemotaxis of mast cells.  

Using real-time imaging, we demonstrate that RBL-2H3 cells and rat BMMCs show 

spontaneous motility on glass surfaces, and that these cells show chemotaxis toward 

antigen. This spontaneous motility of mast cells depends on actin polymerization, Rho 

family GTPases, and PI3K activity. We further show that Ca2+ influx and Syk tyrosine 

kinase play important roles in regulating both mast cell basal motility and chemotaxis 

toward antigen, and the Ca2+ influx channel protein Orai1 participates in these 

processes. Furthermore, we observe previously uncharacterized Ca2+ transients in non-

stimulatory conditions in these cells. Ca2+ influx contributes to these Ca2+ transients with 

properties that correlate with its role in cell motility, suggesting a potential relationship 

between localized Ca2+ transients and mast cell motility. 

 

Chapter 3 investigates the dynamic interactions between mast cells and intestinal 

epithelia in vitro and in situ. RBL mast cells show intimate interactions with the 

intestinal epithelial cell line SLC-44, and they exhibit transepithelial migration when 
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they are introduced from either apical or basolateral side of these polarized epithelial 

cells. In addition, transepithelial protrusions can be observed when rat BMMCs are 

introduced from the basolateral side and allowed to migrate overnight. Using 

multiphoton microscopy, transferred RBL-2H3 mast cells are detected in the 

interaepithelial region of the jejunal villi in the rat small intestine after T. spiralis 

infection in situ, further suggesting unique and dynamic interactions between mucosal 

mast cells and intestinal epithelia. 
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CHAPTER 2 

MOLECULAR MECHANISMS OF SPONTANEOUS AND DIRECTED MAST CELL 

MOTILITY 

 

Abstract 

Migration is a fundamental function of immune cells, and a role for Ca2+ in 

immune cell migration has been an interest of scientific investigations for many 

decades. Mast cells are the major effector cells in IgE-mediated immune responses, and 

crosslinking of IgE-Fc!RI complexes at the mast cell surface by antigen activates a 

signaling cascade that causes mast cell activation, resulting in Ca2+ mobilization and 

granule exocytosis. These cells accumulate in the sites of inflammation in response to 

parasite and bacterial infections. Here, we show that Ca2+ influx via Orai1 plays an 

important role in regulating both spontaneous motility and directional migration of 

mast cells. Using real-time imaging, we observed that rat basophilic leukemia (RBL-

2H3) and bone marrow-derived rat mast cells exhibit both spontaneous motility and 

chemotaxis toward antigen. Inhibition of Ca2+ influx, or knockdown of the Ca2+ entry 

channel protein, Orai1, by shRNA causes inhibition of both of these processes. In 

addition, a mutant RBL cell line that lacks tyrosine kinase Syk shows impaired 

spontaneous motility and chemotaxis toward antigen, whereas expression of Syk 

rescues the capability of these Syk- cells to chemotaxis to antigen. Our data identify a 

novel Ca2+ influx-mediated, Orai1 dependent mechanism in mast cell migration.  
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Introduction 

  

Mast cells are key effector cells in IgE-associated immune responses, including 

allergic disorders and protective immune responses against certain bacteria and 

parasites (1). Mast cells carry out adaptive immune functions through antigen- and IgE-

dependent clustering of the high affinity IgE receptor, Fc!RI (2). Crosslinking of IgE-

Fc!RI complexes at the mast cell surface activates a signaling cascade that causes mast 

cell activation, resulting in Ca2+ mobilization and consequent release of preformed 

mediators of the allergic response and inflammation (3). The RBL-2H3 mast cell line has 

structural and functional characteristics of differentiated mucosal mast cells (4), and has 

been utilized for comprehensive biochemical and cell biological investigations of mast 

cell function. Mast cell recruitment into the site of inflammation is associated with 

helminth and bacterial infections (5, 6), and chronic allergic disorders (7). In particular, 

differentiated mucosal mast cells are known to redistribute from the submucosa or 

crypt area to the lamina propria and intraepithelial regions of jejunal villi during the 

course of an immune response to certain parasitic infections (8). This process depends 

on mast cell motility and is likely to be driven by chemotactic responses, but the 

mechanisms underlying this process are poorly understood. 

The directed migration of leukocytes in response to soluble cues, known as 

chemotaxis, is induced by various extracellular signals, including chemokines and 

cytokines, lipid mediators, bacterial factors and ECM degradation products (9-11). 

Chemotactic ligands have been identified for mast cells, including sphingosine 1-
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phosphate (S1P) (12), stem cell factor (SCF) (13), arachidonic acid metabolites 

leukotriene B4 (14), and PGE2 (15) as well as several chemokines (16). In addition, mast 

cell chemotaxis toward IgE-specific antigen was first described with MC/9 mouse mast 

cells (17), followed by others (17-19). 

A role for Ca2+ in directed hematopoietic cell migration has been implicated (20-

22) but is controversial (23, 24). Leukocyte migration slows and stops when the 

extracellular Ca2+ is depleted (20, 21, 25), and similarly, migration slows when the 

intracellular Ca2+ is buffered (26, 27). In contrast, polymorphonuclear leukocytes 

(PMNs) orient correctly across the chemoattractant gradient without extracellular Ca2+ 

(23, 24), and migrate faster (24). In T cells, a rise in intracellular [Ca2+] after APC 

interaction causes T cells to stop crawling (28, 29). All of these observations suggest that 

the role of Ca2+ in hematopoietic cell polarization and migration maybe different for 

different cell types. One of the key mechanisms in mammalian cells to regulate Ca2+ 

influx is through the Ca2+ release-activated Ca2+ (CRAC) channel, in which the depletion 

of intracellular Ca2+ stores triggers sustained Ca2+ influx through the coupling of ER 

store Ca2+ sensor STIM1 to the plasma membrane channel protein Orai1 (CRACM1). 

Recently, evidence linking Orai1 and STIM1 to cancer cell migration and metastasis 

(30), neutrophil recruitment and polarization (31), and vascular smooth muscle cell 

migration (32, 33) have been described. 

In the course of investigating mast cell motility and directional migration, we 

found that Ca2+ influx plays a key role in regulating mast cell random motility via the 

store operated Ca2+ entry channel protein Orai1. Furthermore, we show that antigen 
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directly elicits a chemotactic response from mast cells, and this directed migration is 

dependent on tyrosine kinase Syk, extracellular [Ca2+], and Orai1 as assessed using real-

time imaging. These results demonstrate the importance of Ca2+ homeostasis in both 

mast cell motility and directed migration toward antigen, while revealing a novel role 

for Syk and Orai1 in these processes. 

 

 

Materials and Methods 

 

Chemicals, reagents, and constructs 

Cytochalasin D, wortmannin, U-73122, 2-aminoethoxydiphenyl borate (2-APB), and 

GdCl3 were purchased from Sigma-Aldrich Chemical Co. (Saint Louis, MO). 

Recombinant rat SCF and IL-3 were from Peprotech Inc. (Rocky Hill, NJ). Sphingosine-

1-phosphate (S1P) is from Enzo Life Sciences, Inc. (Farmingdale, NY). Mouse 

monoclonal anti-dinitrophenyl (DNP) IgE was purified as previously described (34). 

Multivalent antigen (DNP-BSA) contained an average 15 DNP groups per protein and 

was prepared as previously described (35). GFP-(PLC-"1)-(SH2)2 (36) and Syk-CFP 

(ATCC id: 10373748) cDNA constructs were gifts from Dr. Tobias Meyer (Stanford 

University). Small hairpin RNA (shRNA) plasmids targeting Orai1, STIM1, and TRPC1 

(OriGene, Rockville, MD) were previously described and characterized in RBL cells 

(37). GCaMP3 construct (38) was obtained from Addgene (Cambridge, MA). 
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Cell Culture 

The RBL-2H3 and other cell lines were maintained as monolayers in minimal essential 

medium supplemented with 20% (vol/vol) fetal bovine serum and 10 µg/ml 

gentamicin. All tissue culture reagents were obtained from Invitrogen Corp. unless 

otherwise noted. For transient transfection, cells were plated in 35 mm culture dish at 70 

- 80 % confluence and transfected with fluorescent tagged Syk or tandem SH2 domain 

of PLC" using FuGENE HD (Roche Diagnostics, Indianapolis, IN) per manufacturer’s 

instructions with modifications to enhance transfection efficiency in the RBL cells as 

previously described (39). For knock-down studies, cells were transiently transfected 

with either using FuGENE HD or by electroporation using Gene Pulser X (Bio-Rad) 

with 20 µg each of inhibitory shRNA plasmids against Orai1 or STIM1 which also 

contains genetically encoded fluorescent protein expression sequence, or with 20 µg of 

inhibitory plasmids targeting TRPC1 along with 8 µg of the expression vector that 

encodes monomeric red fluorescent protein (mRFP) as previously described (40). Cells 

were used 48 hours after transfection. Rat BMMCs were differentiated from bone 

marrow-derived stem cells of Lewis strain rats by culturing for 14 - 28 days in the 

presence of rat stem cell factor (SCF, 50 ng/ml) and rat IL-3 (100 ng/ml) as previously 

described (41). 

  

Motility assay 

RBL-2H3 cells or rat BMMCs were plated at low density (~1.5x105 cells/dish) overnight 

in 35-mm dishes with cover slip inserts (MatTek Corp., Ashland, MA). Time-lapse video 
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microscopy of live cells was collected for 2-3 hours with images taken in every 1-2 

minutes. Images were collected using 40x/0.65NA or 10x/0.22NA dry objectives with a 

Leica DMIR microscope with a Photometrics Quantix CCD camera (Roper Scientific, 

Tucson, AZ), and a thermally regulated air gun (ASI 400 Air Stream Incubator, Nevtek, 

Williamsville, VA) was used to maintain the temperature at 37°C throughout the 

experiment. To quantify cell migration, we developed an automated tracking and 

analysis algorithm using MATLAB1, in which the cell bodies were tracked 

automatically, then mean squared displacement (MSD) was calculated based on 

migration tracks. MSD measures average displacement of the cell body between two 

time points in the cell migration tracks. MSD was calculated for each time interval # as 

follows where j represents a frame number and each frame corresponds to 2 min: 

MSD = 4D(#)# =

! 

< r(( j) " r( j +#))2
j=0

final frame"#

$ >  

D is a diffusion coefficient and r is a position of the cell body. MSD was plotted versus # 

to determine the motility coefficient as a measure of how much area the cells cover in a 

unit of time. The slope of the linear segment of the curve (between # = 10 min to # = 20 

min under these conditions) were used to represent the motility coefficient, and 

calculated as follows: 

Motility coefficient = 4D = $MSD/#  

 

 

                     
1 S. Veatch developed the MATLAB code. S. Shelby modified the code. 
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Live Cell Calcium Imaging 

In preparation for Ca2+ imaging, RBL cells were transiently transfected with Ca2+ sensor 

GCaMP3 by electroporation, then plated onto 35 mm MatTek dishes. After 24 hours, 

cells were washed with buffered salt solution (BSS; 135 mM NaCl, 5 mM KCl, 1.8 mM 

CaCl2, 1 mM MgCl2, 1 mg/ml glucose, 20 mM HEPES (pH 7.2-7.4)), and imaged using a 

heated (37°C) stage with 25x oil immersion objective on a Zeiss 710 confocal 

microscope. GCaMP3-transfected cells were excited at 488 nm, and fluorescence was 

monitored at 473 - 590 nm. Time-lapse images were taken every 2 seconds for 10 – 20 

min. For measurement without extracellular Ca2+, cells were washed in BSS without 

Ca2+ (135 mM NaCl, 5 mM KCl, 3 mM MgCl2, 1 mM EGTA, 1 mg/ml glucose, 20 mM 

HEPES (pH 7.2-7.4)) and imaged in the same buffer. Pharmacological reagents 2-APB 

(final concentration of 10 µM) or GdCl3 (final concentration of 2 µM) were added just 

prior to initiating data collection. 

  

Chemotaxis assay 

RBL-2H3 cells or rat BMMCs were plated into the narrow observation channel 

separating the two reservoirs in an Ibidi chemotaxis µ-slide (Ibidi LLC, Madison, WI) in 

complete medium. RBL mast cells were plated into uncoated Ibidi µ-slide, and rat 

BMMCs into collagen IV coated Ibidi µ-slide. In the cases indicated, cells were 

sensitized overnight with anti-DNP IgE (final concentration of 2 µg/ml). After 24 hours 

of incubation, one of the reservoirs was filled with complete medium with 25 mM 

HEPES, pH 7.2-7.4. The lower reservoir was filled with potential chemoattractant-
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containing media as indicated. Chemoattractant concentrations indicated represent the 

final concentration used to fill the reservoir. For cells without extracellular Ca2+, cells 

cultured overnight were washed in media containing 4 mM EGTA and 3 mM MgCl2, 

then equilibrated with the same media for the duration of the experiment. Images were 

collected using 10x/0.22NA dry objective with a custom built Leica microscope as 

described above and maintained at 37°C throughout the experiment. After 16 hours of 

collecting time-lapse images every 10 min, cells were tracked using the Manual 

Tracking Plugin for ImageJ. Manual Tracking Plugin provides a way to retrieve XY 

coordinates and velocity by manually clicking on the structure of interest. Then 

chemotactic index (y Forward Migration Index, yFMI) was determined by using the 

Chemotaxis Tool Plugin for ImageJ for the tracked cells. Using XY coordinates retrieved 

by Manual Tracking Plugin, Chemotaxis Tool Plugin provides a way to visualize and 

quantify chemotaxis process. yFMI is calculated to quantify chemotactic response of 

cells, by dividing the net y value of a given track by accumulated distance. The value 

for yFMI was calculated as follows: 

yFMI = Forward progress / Total path length = %$y / %(($x2 + $y2)-1/2) 

with $x and $y assessed for each 10 min interval throughout the observation period of 

16 h (42). For all the experiments with transiently transfected cells, only the fluorescent 

protein-tagged cells were analyzed. 
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Statistical analysis 

Statistical analysis was performed using unpaired two-tailed Student t test. Summary 

data were represented as means ± SEM. A value of P < 0.05 was considered significant.   

 

 

Results 

 

Mast cells exhibit spontaneous motility. 

 

Using RBL-2H3 mast cells as a model, we initially characterized the motility of 

mast cells using real time video microscopy. RBL-2H3 mast cells often exhibit 

distinctive extended protrusions after several hours in culture on glass surfaces (Fig. 

2.1A left panel), and they show spontaneous random migration in which the cell body 

moves, often along tracks that are defined by the elongated protrusions (Fig. 2.1A left 

panel, Fig. 2.1B and Supplementary Movie 2.1). To evaluate motility characteristics of 

mast cells, we developed an automated tracking method, which yields a motility 

coefficient for cells tracked as described in Materials and Methods. The motility 

coefficient is a measure of the area an average cell surveys per unit time, and it is 

analogous to a two-dimensional diffusion coefficient (43). In agreement with previous 

findings with other hematopoietic cells, inhibition of actin polymerization by 1 µM 

cytochalasin D completely blocked cell motility, and inhibition of phosphoinositide 3-

kinase (PI3K) by 200 nM wortmannin substantially reduced cell motility as shown by  
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Figure 2.1. Morphology and motility properties of RBL-2H3 mast cells and rat 
BMMCs. (A) Phase contrast images of RBL-2H3 cells (left) and rat BMMCs (right) in 
media. Note polarized morphologies with extended protrusions that are common for 
these cells after several hours on glass surfaces (arrows). (B) Representative images of a 
first (left) and last (right) snapshots of time-lapse images of RBL-2H3 cells that 
automatically tracked using MATLAB as described in Materials and Methods. Numbers 
identify identical cells in both images, and colored lines on right panel represent the cell 
migration tracks. (C, D) Average motility coefficients of RBL-2H3 cells analyzed using 
MATLAB as described in Materials and Methods. Error bars show standard error of 
mean (SEM) for n =15 - 97 cells for each sample. Cell motility was monitored for 1.5 - 3h 
in media (C) or in BSS with 1 mg/ml BSA (D). Inhibitors (1 µM cytochalasin D, 1 µM 
bisindolymaleimide I hydrochloride (BiM), or 200 nM wortmannin) were added just 
prior to motility measurements. For wortmannin, cell motility was monitored in the 
absence of BSA. C1, the mutant RBL cell line RBL-C1. Syk-, the mutant RBL cell line 
lacking tyrosine kinase Syk. (E) Average motility coefficients of rat BMMCs ± SEM for n 
= 30 - 67 per each sample. Cytochalasin D (1 µM) was added just prior to motility 
measurements. * P < 0.05, ** P < 0.01, **** P < 0.0001 compared to untreated control.  
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average motility coefficient (Fig. 2.1C, D). To further investigate the molecular bases of 

mast cell motility, we utilized the mutant RBL cell line RBL-C1, which is deficient in 

Fc!RI-mediated activation of Cdc42 and Rac1, as well as in Cdc42-dependent 

biosynthetic trafficking (44). These cells exhibit substantially reduced motility, 

suggesting significant roles for these Rho family GTPases in this process (Fig. 2.1C). In 

addition, we used an RBL cell variant that lacks the tyrosine kinase Syk (45) to show 

that this protein contributes to spontaneous RBL cell motility. In contrast, inhibition of 

protein kinase C (PKC) with bisindolylmaleimide I (BiM) does not alter cell motility 

(Fig. 1C, D), suggesting selectivity in the intracellular signaling pathway that regulates 

mast cell motility.  

Similar to RBL mast cells, primary rat bone marrow derived mast cells (BMMC) 

have IgE receptors and the mast cell-specific ganglioside detected with monoclonal 

antibody against AA4, and they exhibit a mucosal mast cell phenotype (46). Even 

though they have more heterogeneous morphology than RBL cells, we observed 

extended protrusions in a subset of these cells, very reminiscent of those seen with RBL-

2H3 mast cells (Fig. 2.1A, right panel). Rat BMMC also show spontaneous migration on 

glass, and have similar motility characteristics as RBL-2H3 mast cells, with a slightly 

lower average motility coefficient value in media (Fig. 2.1E). As for RBL cells, 

cytochalasin D completely inhibit this motility. These results provide clear evidence that 

mast cells migrate spontaneously, and actin polymerization, Rho GTPases, protein 

tyrosine kinase Syk, and PI3K are involved in regulating this motilty. 
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Figure 2.2. Extracellular Ca2+ is important for mast cell motility. Motility of RBL-2H3 
cells (A) and rat BMMCs (B) was monitored for 1.5 h in BSS, and average motility 
coefficients ± SEM (n = 14 - 88 per each sample) are shown. No Ca2+; BSS without CaCl2 
+ 1 mM EGTA and 2 mM MgCl2. SOCE inhibitor 2-APB (10 µM), Orai1 channel 
inhibitor GdCl3 (2 µM), and the phospholipase C inhibitor U-73122 (2 µM) were added 
prior to motility measurements. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 
compared to control. 
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Ca2+ influx regulates basal mast cell motility. 

 

As Ca2+ mobilization contributes to a diverse range of cell functions, including 

cell motility and adhesion, and is vital to several mast cell functions (3, 47), we next 

investigated whether Ca2+ plays a role in mast cell spontaneous migration using 

pharmacological inhibitors. All the experiments shown in Figure 2.2 were carried out in 

BSS, as serum components in media can bind pharmacologic agents to interfere with 

their activity. Without the growth factors that are present in media, mast cells in BSS 

exhibited reduced motility, as evidenced for RBL cells in Figure 2.1C vs. D. RBL mast 

cells in the absence of extracellular Ca2+ exhibit substantially reduced cell motility in 

comparison to control cells in BSS (Fig. 2.2A). Chelating intracellular Ca2+ by BAPTA-

AM did not further reduce their migration (data not shown), so we hypothesized that 

impaired Ca2+ influx might be responsible for the reduction in motility. 2-APB was first 

described as an inhibitor of IP3 receptor (IP3R)-mediated Ca2+ release (48), but 

subsequently shown to inhibit store operated calcium entry (SOCE) in T cells at the 

concentrations between 10-50 µM (49). In RBL-2H3 cells, 2-APB has an inhibitory effect 

on Ca2+ influx, but fails to inhibit IP3R-mediated Ca2+ release from ER stores at 

concentrations up to 40 µM (40). As shown in Figure 2.2A, 10 µM 2-APB causes a large 

reduction in RBL cell motility. Because RBL cells do not express voltage gated Ca2+ 

channels (50), Gd3+ can be used to specifically block Ca2+ release-activated Ca2+ (CRAC) 

channels in these cells (51). When 2 µM Gd3+ was added to assess the role of CRAC 

channels in RBL cell motility, we observed a significant reduction in motility, although 
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not as severe as when 2-APB was used. In addition, the phospholipase C (PLC) 

inhibitor, U-73122, also caused a decrease in cell motility at a final concentration of 2 

µM (Fig. 2.2A).  

These same trends of reduced motility are observed in primary rat BMMCs as 

well (Fig. 2.2B). For these cells, spontaneous motility in BSS is only about one third the 

rate it is in full media (Compare Fig. 2.2E to Fig. 2.1E), suggesting the factors in the 

serum contribute even more substantially to this process. Collectively, these data 

demonstrate that absence of extracellular Ca2+ and pharmacological inhibition of Ca2+ 

influx causes reduction in spontaneous motility of RBL mast cells and rat BMMCs.  

To further evaluate the molecular bases of Ca2+ influx in mast cell motility in RBL 

cells, we knocked down Orai1 and STIM1, the major components of CRAC channel 

activation. A previous study showed that these shRNA vectors resulted in substantial 

reduction in antigen-stimulated SOCE (36). We found that expression of the shRNA for 

Orai1 significantly reduced RBL cell motility to about 50 % decrease in average motility 

coefficient compared to control vector transfected cells (Fig. 2.3). By comparison, STIM1 

shRNA caused a smaller, statistically insignificant reduction in motility to about 25%, 

and TRPC1 shRNA did not reduce this compared to controls. These results support a 

role for Ca2+ influx via Orai1 in mast cell motility.  
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Figure 2.3. Involvement of Orai1/CRACM1 in RBL mast cell motility. RBL-2H3 cells 
were transiently transfected with shRNA specific for Orai1, STIM1, or parallel control 
empty vectors, respectively. TRPC1 shRNA was co-transfected with mRFP, and in 
control experiments RBL cells were transiently transfected with mRPF only. Cell 
motility was monitored for 1.5h in media, and the percent decreases in motility 
coefficients are shown ± SEM (n = 45 - 75 cells per each sample).  
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RBL-2H3 mast cells exhibit spontaneous Ca2+ transients. 

 

Changes in intracellular Ca2+ through stimulated events including Ca2+ puffs, 

waves, and oscillations follow Fc!RI-mediated activation in mast cells as previously 

described (40), but spontaneous Ca2+ events have not been previously characterized. As 

spontaneous motility in mast cells is regulated by Ca2+ influx, we investigated Ca2+ 

mobilization events in non-stimulatory conditions using the genetically encoded Ca2+ 

indicator, GCaMP3, and real-time confocal microscopy. GCaMP3 has been reported to 

have increased fluorescence quantum yield, higher affinity for Ca2+, and significantly 

better signal-to-noise ratio than GCaMP2 (38), making it potentially better suited for 

monitoring transient Ca2+ mobilization events. As represented in Figure 2.4A, we found 

short-lived, localized intracellular Ca2+ transients, that are frequently seen in extended 

protrusions (Fig. 2.4A and Supplementary Movie 2.2). During the 20 min of real-time 

confocal microscopy, an average of 62.3% ± 7.4% of GCaMP3 transfected cells exhibited 

Ca2+ transients (Figure 2.4B). Strikingly, when the cells were monitored in the absence of 

extracellular Ca2+, the number of cells that show spontaneous Ca2+ transients was 

markedly decreased to 14.3% ± 6.4% SEM. Adding 2-APB also caused substantial 

reduction in number of cells with Ca2+ transients (8.9% ± 6.5% SEM), and Gd3+ caused a 

smaller reduction to 40.7% ± 10.6% SEM (Fig. 2.4B), reminiscent of trends observed in 

RBL cell motility under these conditions (Fig. 2.3A). 

 

and the  
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Figure 2.4. RBL-2H3 mast cells exhibit spontaneous Ca2+ transients with influx 
dependence that correlates with motility. (A) Confocal images of representative RBL-
2H3 mast cells expressing GCaMP3. Time-lapse images were taken every 2 seconds for 
20 min. Note localized, transient Ca2+ transients frequently occurring in protrusions 
(arrows). No Ca2+; BSS without CaCl2 + 1 mM EGTA and 2 mM MgCl2. Inhibitors 2-APB 
(10 µM), or GdCl3 (2 µM), were added just prior to collecting time-lapse images. (B) 
Summary of average percentages of cells with Ca2+ transients out of total GCaMP3 
expressing cells ± SEM (n = 27 - 42 per each condition) monitored in 3 experiments. 
Cells with at least one Ca2+ transient during 20 min were scored for all cases shown.  ** P 
< 0.01, *** P < 0.001 compared to control. 
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Mast cells show directed migration toward antigen. 

 

To directly visualize mast cell chemotaxis in real time, we established a 

chemotaxis assay using the chemotaxis µ-slide chamber (Ibidi Corp.). RBL-2H3 cells 

were plated into the narrow observation channel separating the two 40 µL reservoirs, 

and the putative chemoattractant was added to one of the reservoirs to establish 

a spatially well defined chemotactic gradient. After imaging cells for 16 hours, the cells 

were manually tracked using the Image J Manual Tracking Plugin (Fig. 2.5A and 

Supplementary Movie 2.3), and then the tracked information was processed using the 

Chemotaxis Tool Plugin for ImageJ. As shown in the representative experiments in 

Figure 2.5B and the corresponding Supplementary Movie 2.4, anti-DNP IgE sensitized 

RBL-2H3 cells exhibit net chemotaxis toward antigen (10 ng/mL DNP-BSA), when the 

cell migration tracks are plotted after normalizing the start point to x = 0 and y = 0. In 

this representation, the y axis is the direction between reservoirs, and the red tracks 

represent the cells with net migration toward the lower, chemoattractant containing 

reservoir.  

To measure directed migration in a more quantifiable manner, we calculated y 

Forward Migration Index (yFMI), where yFMI was determined by dividing the net y 

value of a given cell track by accumulated distance. As summarized in Figure 2.6, RBL 

cells migrated toward antigen in a dose dependent manner, with a maximal response at 

10 ng/ml DNP-BSA, but they did not migrate significantly toward a higher dose of 

antigen. As expected, RBL cells did not chemotax toward antigen when the cells were  
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Figure 2.5. Monitoring and analyzing mast cell chemotaxis in real time. (A) 
Representative image of RBL-2H3 cells in Ibidi chemotaxis µ-slide after 16 h. Colored 
lines show migration tracks derived from ImageJ Manual Tracking plugin program. (B) 
Representative plots from single experiment showing migration tracks of RBL-2H3 cells 
with and without 10 ng/mL DNP-BSA. (C) Representative plots for rat BMMCs with 
and without 100 nM SCF. The migration tracks were plotted after normalizing the 
starting point to x = 0 and y = 0 using ImageJ plugin Chemotaxis Tool. Red tracks 
indicate cells with net migration toward the lower (chemoattractant)-containing 
chamber. 
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Figure 2.6. RBL-2H3 mast cells show chemotaxis toward antigen. Mast cell chemotaxis 
is represented as the average y Forward Migration Index (yFMI) ± SEM (n = 36 - 137 
cells per each condition). yFMI is determined by dividing the net y value of a given 
track by accumulated distance. RBL-2H3 cells (black bars) or rat BMMCs (open bars) 
were sensitized with anti-DNP IgE, plated onto Ibidi chemotaxis µ-slide chambers 
overnight, then monitored for 16 hours in the absence (control) or presence of varying 
doses of DNP-BSA or SCF as indicated. SCF; BMMCs with 100 nM SCF.  ** P < 0.01, *** 
P < 0.001, **** P < 0.0001 compared to respective control.      

 

 



 63 

not sensitized with anti-DNP IgE (data not shown). Rat BMMCs showed only a small 

chemotactic response toward antigen over a similar dose range, but they exhibited 

substantial directed migration toward stem cell factor (SCF), which is a known 

chemoattractant for BMMCs (Fig. 2.5C and Fig. 2.6, ref. 13). RBL mast cells express 

constitutively active c-kit (1), a ligand for SCF, making directed migration of RBL cells 

toward SCF unlikely. These results provide compelling evidence that mast cells can 

sense and directly migrate in response to an antigen gradient. 

    

Syk plays an important role in mast cell chemotaxis toward antigen.  

 

To investigate whether directed migration is affected by the absence of tyrosine 

kinase Syk, we assessed the chemotactic ability of Syk- cells. As shown in Figure 2.7, 

Syk- cells sensitized with IgE failed to show chemotaxis toward antigen at 10 ng/ml. A 

chemotactic response could be obtained by transiently expressing Syk-CFP (Fig. 2.7), 

indicating a key role for Syk in the chemotactic response toward antigen. In contrast, 

when the tandem SH2 domain of phospholipase C" (GFP-(PLC"1)-(SH2)2) was 

transiently expressed, cells failed to chemotax toward antigen, supporting a role for the 

kinase domain of Syk in this process. Chemotaxing cells turn forward and backward 

repeatedly during observation period. Both Syk- cells in the absence or presence of 

antigen as a chemoattractant, as well as Syk- cells transiently expressing GFP-(PLC"1)-

(SH2)2 in the presence of antigen show final yFMI values that are negative, indicating  
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Figure 2.7. Directed migration of RBL-2H3 cells toward antigen is dependent on Syk 
kinase. Syk- cells were sensitized with anti-DNP IgE, plated onto Ibidi chemotaxis µ-
slide chambers overnight, then monitored for 16 hours in the absence (control) or 
presence of 10 ng/mL DNP-BSA (+Ag). +Syk: Syk- cells transiently expressing Syk-CFP 
cells. +SH2: Syk- cells transiently expressing PLC"-(SH2)2-GFP. Average yFMI ± SEM (n 
= 27 - 108 cells per each condition) are shown. * P < 0.05, **** P < 0.0001 compared to 
respective control as indicated. 
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that their net direction is backward when compared to their initial starting point (Fig. 

2.7). The reason for this is unclear at the present time.  

 

Ca2+ channel protein Orai1 is important for RBL-2H3 cell migration toward antigen.  

 

Because we observed decreased random motility of RBL-2H3 mast cells in the 

absence of extracellular Ca2+ and when the Ca2+ channel protein Orai1 was knocked 

down, we next asked whether the absence of extracellular Ca2+ or a reduction in Orai1 

also impairs mast cell chemotaxis toward antigen. As shown in Figure 2.8, when RBL-

2H3 cells were monitored in excess EGTA, they show significantly reduced chemotaxis 

toward 10 ng/ml antigen when compared to cells in normal media. Cells transiently 

transfected with shRNA specific for Orai1 also show markedly reduced chemotaxis 

toward 10 ng/ml antigen when compared to untransfected cells and to control empty 

vector shRNA transfected cells. These data strongly support that Ca2+ influx via Orai1 

plays an important role not only in spontaneous mast cell motility (Fig. 2.3) but also in 

directed migration to antigen. Previous reports have shown that mast cells generate and 

secrete shpingosine-1-phosphate (S1P) upon crosslinking of Fc!RI (12, 19, 51), and S1P 

can act as a chemoattractant for mast cells (12). It has been speculated that mast cell 

chemotaxis toward antigen might be due to S1P secreted by Fc!RI activation of cells. 

 When S1P was used as a chemoattractant, RBL-2H3 mast cells show directed migration 

toward S1P as previously demonstrated (12). However, this chemotaxis fails to show a 

dependence on extracellular Ca2+, suggesting an alternative molecular basis for this  
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Figure 2.8. Orai1/CRACM1 contributes to RBL-2H3 mast cell chemotaxis toward 
antigen. RBL-2H3 cells were sensitized with anti-DNP IgE, plated onto Ibidi chemotaxis 
µ-slide chambers overnight, then monitored for 16 hours in the absence (control) or 
presence of 10 ng/mL DNP-BSA (+Ag). +S1P: chemotaxis of RBL cells in the presence 
of 1 uM S1P. No Ca2+: RBL-2H3 cells in media with 4 mM EGTA and 3 mM MgCl2. RBL-
2H3 cells were transiently transfected with shRNA against Orai1 (Orai1 KD) or with 
corresponding empty vector (Vector), sensitized with anti-DNP IgE, plated onto Ibidi 
chemotaxis µ-slide chambers overnight, then monitored for 16 hours. Average yFMI ± 
SEM (n = 11 - 108 cells per each condition) are shown. * P < 0.05,  ** P < 0.01, **** P < 
0.0001 compared to respective control as indicated. 
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process. Moreover, the velocities of RBL cells chemotaxing toward S1P are decreased in 

excess EGTA, indicating that extracellular Ca2+-does influence this aspect of migration 

in the presence of S1P (Fig. 2.9).  

 

 

Discussion 

 

Involvement of Ca2+ in regulating leukocyte migration has been an interest in the 

field for many decades (20, 24). Our results using real-time video microscopy provide 

direct evidence that Ca2+ influx is important for mast cell spontaneous motility and 

directed migration toward antigen. Using pharmacological inhibitors as well as genetic 

manipulations, we present compelling evidence that SOCE, in particular Orai1, is 

important for regulating these processes (Fig. 2.2, 2.3 and Fig. 2.8).  

 

In agreement with the view that phosphatidylinositol 3-kinases (PI3K) is a key 

regulator in chemotaxis and cell polarity in T cells and neutrophils (52-56), mast cell 

spontaneous motility was blocked by PI3K inhibition with 200 nM wortmannin 

treatment (Fig. 2.1). More recently, this view has been challenged with equally 

compelling reports demonstrating that PI3K is dispensable and only important under 

certain conditions (57-59). Currently, there are emerging theories attempting to bridge 

these seemingly inconsistent results, including the possibility that the PI3K requirement 

in chemotaxis depends on the differentiation state or primed status of cells (60). Since 



 68 

 

 

 

 
 
Figure 2.9. Average velocity and chemotactic index of chemotaxing mast cells under 
various conditions. Average velocity (blue rectangle) and y Forward Migration Index 
(yFMI, chemotactic index, red circle) of mast cells in Ibidi chemotaxis µ-slide are shown 
± SEM (n= 11 – 137). Same experiments were used to acquire both velocity and yFMI. 
yFMI of these cells are also separately shown in Fig. 2.6 – Fig. 2.8.  
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we saw inhibition of basal motility with PI3K inhibition, it will be interesting to 

determine if more “primed” condition, i.e., cells undergoing chemotaxis, would make 

the PI3K requirement differ from that of spontaneously migrating cells. Additionally, 

by studying the motility properties of RBL-C1 mutant cell line, which is deficient in 

Cdc42-dependent biosynthetic trafficking and Fc!RI-mediated activation of Cdc42 and 

Rac1, we demonstrated that Rho family GTPases also play a significant role in mast cell 

motility (Fig. 2.1). 

 

It was previously shown that Ca2+ influx is necessary for maintaining 

phosphatidylinositol-3,4,5-triphosphate (PIP3) at the leading edge in spontaneously 

polarizing macrophages through positive feedback-loop consists of PI3K, F-actin, and 

extracellular Ca2+ influx (22). Furthermore, adding exogenous PIP3 stimulates Ca2+ 

influx, and inhibiting PI3K blocks Ca2+ influx in RBL-2H3 mast cell (61), T cells (62), and 

neutrophils (63). Since we observed inhibitory effects on mast cell motility by inhibiting 

either PI3K or Ca2+ influx, it will be interesting to determine whether spatial regulation 

of PI3K and its subsequent preferential localization of PIP3 to the leading edge is a 

downstream target of Ca2+ influx through Orai1 in regulating mast cell basal motility.  

We characterized spontaneous Ca2+ transients that have not been previously 

described in mast cells using genetically encoded Ca2+ indicator GCaMP3 with real-time 

confocal microscopy. Interestingly, we observed local Ca2+ transients in unstimulated 

cells, often more frequently in extended cell protrusions, and these can be inhibited by 
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chelating extracellular Ca2+ or by blocking SOCE or Orai1 (Fig. 2.4). These trends are 

similar to those observed in cell motility (Fig. 2.2). A recent study by Wei et al. reported 

that high Ca2+ microdomains, ‘Ca2+ flickers’, are asymmetrically localized to the leading 

edge of migrating fibroblasts and promote the turning behavior of these cells (64). 

Similarly, we observed some tendency of more frequent stimulated Ca2+ mobilization 

events in the protrusions of RBL cells to which the cell body is moving (R. Cohen and J. 

Lee, unpublished results), suggesting a possibility of correlation between localized Ca2+ 

transients and RBL cell motility. 

 

 We investigated chemotaxis of mast cells by establishing real-time imaging of 

this process utilizing Ibidi µ-slide chemotaxis chambers. This method allows us to 

directly visualize and analyze directed cell migration, and is especially well suited for 

long-term studies of slow migrating cells (65). We demonstrated that mast cells exhibit 

chemotaxis toward antigen (Fig. 2.5 and Fig. 2.6), and this process depends on tyrosine 

kinase Syk and Ca2+ influx via Orai1 (Fig. 2.7 and Fig. 2.8). We observed RBL mast cells 

chemotax toward antigen in a dose dependent manner, with a maximal response 

toward 10 ng/ml antigen, but did not observe chemotaxis toward a 10-fold higher dose 

of antigen. Mast cells show similar average velocity in the presence or absence of 

various doses of antigen as a chemoattractant, implying that antigen directly elicits a 

chemotactic response by altering the directionality and sensing of mast cells, rather than 

causing enhancement of chemokinesis in these cells (Fig. 2.9). However, relations 

between velocity and directionality and sensing of mast cells under other conditions 
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seem to be more complicated (Fig. 2.9). With 100 ng/ml antigen, mast cells begin to halt 

their migration and undergo degranulation. When higher dose of 1 µg/ml antigen was 

added globally to RBL mast cells, cells flatten out, ruffle, and stop crawling (data not 

shown). Similarly, RBL mast cells initially flatten out and stop crawling when 100 

ng/ml antigen was used as a chemoattractant (data not shown). At this concentration of 

antigen, mast cells show near maximal degranulation response (data not shown). These 

data suggest that there might be an antigen dose-sensitive mechanism that regulates the 

chemotactic response of mast cells and intersects with mast cell degranulation response.  

 

Syk negative mutant RBL cells (Syk- cells) are deficient in their directed 

migration toward antigen, and this defect can be restored by transient overexpression of 

Syk-CFP (Fig. 2.7). Involvement of Syk in mouse BMMC chemotaxis toward antigen has 

been described previously (18), but little has been explored about their detailed 

mechanism. Syk contains two tandem SRC homology 2 (SH2) domains and a 

carboxy‐terminal tyrosine kinase domain. When we transiently overexpress two 

tandem SH2 domains of PLC" (GFP-(PLC"1)-(SH2)2) to Syk- mutant cells, it fails to 

reconstitute the deficiency in Syk- cell chemotaxis toward antigen (Fig. 2.7), indicating 

that binding of tandem SH2 domain to Fc!RI ITAMs (35) is not sufficient for this 

reconstitution, implicating the kinase activity of Syk. 

 

Syk has been implicated in macrophage chemotaxis (66), lamellipodium 

formation and chemotaxis of human leukocytes (67), and integrin-mediated signal 
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transduction leading to leukocyte adhesion and migration (68-70). Syk is also important 

in Fc"RI mediated signaling in macrophages and neutrophils (71, 72), and essential for 

Fc!RI mediated signaling in mast cells (73). Together with our finding that Syk plays a 

key role in mast cell basal motility and chemotaxis toward antigen, it seems to imply a 

universal role for Syk in immune cell migration.  

Mast cell chemotaxis toward antigen has been demonstrated previously, 

including RBL-2H3 cells and mouse BMMCs (12, 17-19, 74), and involvement of Ca2+ in 

this process was suggested recently (75, 76). Our principle new finding is that this 

process is mediated by Ca2+ influx via Orai1 (Fig. 2.8). Evidence for a role for Orai1 

and/or STIM1 in cell migration has just began to emerge in various cell types. Yang et 

al. have reported that breast cancer cell migration and tumor metastasis depend on 

Orai1 and STIM1 (30), and Orai1 has been shown to regulate integrin dependent arrest 

and migration of neutrophils (31). A role for Orai1, STIM1, and TRPC1 in vascular 

smooth muscle cell migration has been described as well (32, 33). We observed smaller 

inhibition of basal motility of mast cells by knocking down Orai1 when compared to the 

inhibition of chemotaxis toward antigen, suggesting that Orai1 might be playing a more 

significant role in regulating mast cell chemotaxis toward antigen. Knockdown of 

TRPC1 by shRNA failed to cause inhibition in mast cell basal motility, and with STIM1 

knockdown, we only saw relatively small inhibition. It is possible that Orai1 may 

couple to STIM2 under these conditions, but we cannot rule out the possibility of 

insufficient knockdown of STIM1 as an explanation for the results we obtained.  
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Rat BMMCs show smaller, statistically insignificant chemotaxis toward similar 

antigen dosages that are optimal for RBL-2H3 cells (Fig. 2.6). It is possible that the 

heterogenous expression of Fc!RI on the surface of BMMCs, in which a substantial 

subpopulation of BMMCs does not express detectable surface expression of Fc!RI (D. 

Holowka, unpublished results) could contribute to these results, thus limiting the 

average chemotaxis response.  

S1P is a known chemoattractant for mast cells (12). Indeed, we were able to 

confirm directed migration of RBL-2H3 cells toward S1P (Fig. 2.8). S1P generation and 

secretion succeeds Fc!RI aggregation in mast cells following activation of sphingosine 

phosphate kinase (SphKs). In dendritic cells, secreted S1P can act in autocrine and 

paracrine fashion, binding to its G-protein coupled receptor S1PR1, then activating one 

of its downstream target Rac to enhance migration (77). It was previously reported that 

in RBL-2H3 cells, knocking down either S1PR1 or SphK1 caused reduction in their 

chemotaxis toward antigen (12), which led to the idea that secreted S1P after Fc!RI 

aggregation might be mediating mast cell chemotaxis toward antigen. Whether 

autocrine-paracrine action of chemotactic factors that are released from the activated 

mast cells after Fc!RI crosslinking is required (12, 18) or not (17, 74) is unclear. Although 

we cannot rule out the possibility that secreted S1P is mediating chemotaxis toward 

antigen, our data clearly demonstrates that, in contrast to chemotaxis toward antigen, 

RBL-2H3 chemotaxis toward S1P is independent of extracellular Ca2+, suggesting 

different pathway(s) are involved in these processes. This discrepancy could be at least 
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in part attributed to the different time scale of these experiments: Jolly et al. looked at 

migration after 3 hours, but we observed migration for 16 hours. The suggested 

mechanisms involved are not necessarily mutually exclusive. Perhaps, secreted S1P 

mediated chemotaxis toward antigen is more important for initial, shorter time period, 

but that Ca2+ influx becomes more important over longer time periods. 

The present study shows that Ca2+ influx plays an essential role in mast cell basal 

motility and directed migration toward antigen and that Orai1 contributes to these 

processes. Basal motility also depends on Rho GTPases, protein tyrosine kinase Syk, 

and PI3K. Furthermore, we observed spontaneous Ca2+ transients that are inhibited by 

SOCE and Orai1 inhibitors, with a trend resembling that of cell motility. Antigen can 

directly induce a chemotatic response from IgE-sensitized mast cells. To understand the 

molecular mechanisms underlying this process, we compared chemotaxis toward 

antigen in the presence or absence of extracellular Ca2+, or with knock down of Orai 

with specific shRNA, using real-time imaging. Our results reveal that without 

extracellular Ca2+ or with Orai1 knocked-down, mast cells exhibit markedly reduced 

chemotaxis toward antigen, suggesting a role for Ca2+ influx via Orai1 in regulating 

mast cell motility, providing new insight into the mechanism of immune cell migration.  
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CHAPTER 3 

INVESTIGATING THE DYNAMIC INTERACTIONS OF MUCOSAL MAST CELLS 

AND INTESTINAL EPITHELIAL CELLS 

 

Abstract 

Mucosal mast cells play an important role in host defense against helminth 

infection. These cells are suggested to redistribute from the lamina propria of the small 

intestine to jejunal villi in response to Trichinella spiralis infection, implying a role for 

mast cell migration in pathological conditions. In this study, we investigated the 

dynamic interactions between mucosal mast cells and intestinal epithelial cells in vitro 

and in situ. We show that RBL-2H3 mast cells exhibit adhesion and transepithelial 

migration on cultured intestinal epithelial monolayers when introduced from the apical 

surface. Furthermore, rat BMMCs show transepithelial migration with extended 

protrusions when introduced from the basolateral side of the polarized epithelial 

monolayers using a Transwell co-culture system. We further explored these interactions 

in live tissue by observing labeled mast cells in intestinal segments from T. spiralis 

infected rats using multiphoton microscopy. We find endogenous cells expressing mast 

cell-specific ganglioside on their surface, as well as cells labeled with monoclonal anti-

IgE in these segments. In addition, we detect labeled, adoptively transferred RBL-2H3 

mucosal mast cells in the intraepithelial region of the intestinal villi. Together, these 

results provide evidence for dynamic interactions between mucosal mast cells and 

intestinal epithelial cells. 
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Introduction 
 

Mast cells are the primary mediators of immunoglobulin E (IgE)-dependent 

allergic disorders, but they also play key roles as effectors and immunomodulatory cells 

in innate and adaptive immune responses against pathogens (1). Mast cells are 

strategically located at the interface between host and environment such as skin and 

mucosal surfaces, which makes these cells ideally localized for immune surveillance (1). 

Rodent mast cells can be broadly categorized into two types: mucosal and connective 

tissue mast cell types. Mucosal mast cells in the mouse express chymases mMCP-1, 

which is equivalent to rat RMCPII, and mMCP-2, and these cells are predominantly 

localized in the mucosal epithelium and lamina propria. In contrast, connective tissue 

mast cells in the mouse express chymases mMCP-4, -5, and tryptases, and primarily 

localize within submucosa which is composed of loose connective tissues (2). It has 

been documented that while mouse mMCP-4-expressing mast cells contribute to the 

regulation of homeostatic intestinal epithelial barrier function (3), mice lacking mMCP-1 

or mast cells are defective in modulating intestinal permeability and parasite expulsion 

(4), suggesting that the two different subpopulations of mast cells might be playing a 

distinct role in non-disease and disease states in mice.  

Whereas homing of mast cell progenitors is relatively well studied (5), little is 

known about the motility and migration of fully mature mast cells at specific tissue 

sites. Previous studies provided evidence that mucosal mast cell precursors migrate to 

mucosal tissues in response to appropriate stimuli (5), but interaction with mucosal 

tissue is required for these precursors to fully differentiate (5). Intestinal infection of 
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animals by parasitic nematodes, including Trichinella spiralis, induces intestinal 

mastocytosis during the effector phase of the inflammatory response. Furthermore, 

differentiated mucosal mast cells are known to redistribute from the submucosa or 

crypt area to the lamina propria and intraepithelial regions of jejunal villi during the 

course of an immune response to certain parasitic infections (6), and mast cell 

infiltration in to the submucosa of asthmatic airways has been reported (7). Although 

migration of fully differentiated mucosal mast cells inside mucosal tissue was suggested 

several decades ago (6), surprisingly little is known about this process.   

The intestinal epithelial barrier is maintained by tight junctions (TJs) that are 

composed of the transmembrane proteins occludin, claudin, and junctional adhesion 

molecules (8). Zona Occludens-1 (ZO-1), ZO-2, and ZO-3 consist of membrane 

associated guanylate kinase homolog proteins that are associated with the carboxyl 

termini of occludin and caludin, and link these transmembrane proteins to the actin 

cytoskeleton to serve as platforms for various signaling molecules (9). In recent years, it 

has been shown that the transwell epithelial culture system is useful for dissecting the 

molecular events in leukocyte transepithelial migration (10). Furthermore, dynamic 

imaging of intestinal tissue preparations and intravital imaging using two-photon 

microscopy have revealed a novel role for dendritic cell extensions in the gut (11).  

Previous experimental data indicated that RBL-2H3 mast cells represent an 

immortalized, differentiated mucosal mast cell line (12). Similarly, rat bone marrow-

derived mast cells (BMMCs) have biochemical and functional characteristics of their in 

vivo mucosal counterparts, even though their maturation state is uncertain (13). Here we 
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show that RBL-2H3 mast cells undergo adhesion and motility on cultured monolayers 

of rat intestinal epithelial cells and exhibit transepithelial migration under these 

conditions. Furthermore, rat BMMCs show transepithelial extensions when they are 

introduced from the basolateral side of polarized epithelial monolayers, further 

suggesting dynamic interactions between mucosal mast cells and epithelial cells. In 

addition, using multiphoton confocal microscopy of ex vivo intestinal tissue from 

infected rats, we visualized fluorescently labeled endogenous and adoptively 

transferred mast cells in the epithelial layer of jejunal villi, demonstrating intimate 

associatation between the mucoasl mast cells and the epithelial layer that lines the 

intestinal microvilli. 

 

 

Materials and Methods 

 

Reagents 

Mouse monoclonal IgE specific for 2,4-dinitrophenyl (DNP) was purified as described 

previously (14) and was fluorescently modified with Alexa488 as previously described 

(15). The fluorescently modified IgE had ~7-10 dye molecules per protein. Monoclonal 

anti-!-glactosyl GD1b ganglioside, AA4 (16) was provided by Dr. R. Siraganian (NIH). 

Monoclonal anti-IgE B5 antibody was described previously (17). Anti-ZO-1 rabbit 

polyclonal antibody, Alexa555-CTxB, Alexa568 goat anti-rabbit antibody, and Cell 

TraceTM far red DDAO-SE were from Invitrogen (Carlsbad, CA).  
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Cell culture 

SLC-44 rat intestinal epithelial cells (18) were maintained as monolayers in minimal 

essential medium supplemented with 10 µg/ml gentamicin and 10% (vol/vol) fetal 

bovine serum. In preparation for confocal microscopy, cells were harvested with EDTA 

for 5 min at room temperature, then plated at 50% confluence on 35 mm MatTek dishes. 

Next day, cells were fixed in 4% paraformaldehyde with 0.1% glutaldehyde for 15 min 

at room temperature, then permeabilized with 0.01% saponin, and labeled for 1 hour 

with rabbit anti-ZO-1 antibody (1:50; Invitrogen, Carlesbad, CA) as the primary 

antibody, followed by secondary antibody labeling with Alexa568 goat anti-rabbit 

antibody (1:200; Invitrogen) for 1 hour. Confocal images were obtained using a Leica 

TCS SP2 laser scanning confocal system (Leica Microsystems, Exton, PA) with a 

63x/0.9NA water-immersion objective. 

 

Real-time imaging  

To monitor interactions between mast cells and epithelial cell monolayer in real time, 

SLC-44 cells were plated overnight on 35-mm MatTek dishes. Next day, RBL-2H3 cells 

were labeled with Alexa488-IgE for at least an hour at 37°C, then added to the apical 

side of the polarized SLC-44 cell monolayer. After 2 hours of incubation at 37°C to allow 

cells to adhere and start migrate, RBL mast cell migration was monitored by acquiring 

time-lapse images every 2 minutes for 3 hours at 37°C using a 40x/0.65NA dry objective 

with a Leica microscope described in Chapter 2. 
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Transwell transepithelial migration assay 

SLC-44 cells were plated at a low density on upside down transwell inserts with a 

porous membrane (pore size = 5 µm, Millipore, Billerica, MA). After overnight 

incubation to allow cells to firmly attach to the porous membrane filter, upside down 

transwell inserts were oriented correctly and hung onto appropriate-sized cell culture 

plates. SLC-44 cells were then cultured for 14 days while changing media (minimal 

essential medium supplemented with 10 µg/ml gentamicin and 5% (vol/vol) fetal 

bovine serum) every day to allow cells to form tight junctions. After 14 days, Alexa488-

IgE labeled RBL-2H3 cells or Alexa488-anti-AA4 labeled 14-28 days cultured rat 

BMMCs were added to the upper chamber of the transwell inserts to introduce mast 

cells from the basolateral side of the polarized epithelial monolayers, and cultured for 

overnight. Cells were then fixed in 4% paraformaldehyde with 0.1% glutaldehyde for 15 

min at room temperature. Fixed cells were permeabilized with 0.01% saponin, and 

labeled for 1 hour with rabbit anti-ZO-1 antibody (1:50; Invitrogen, Carlebad, CA) as the 

primary antibody, followed by Alexa568 goat anti-rabbit antibody (1:200; Invitrogen). 

Z-series images were collected using a Leica TCS SP2 laser scanning confocal system 

(Leica Microsystems, Exton, PA) with a 63x/0.9NA water-immersion objective. 

 

Multiphoton microscopy 

Albino Oxford (AO) or Lewis strain rats were infected with T. spiralis as previously 

described (19). Briefly, adult rats were infected by 250-400 first stage larvae (L1), then 
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rats were euthanized 14-18 days post-infection and small intestines were collected1. 

Small intestine segments (~ 1 cm) were bathed in Alexa488-AA4 mAb or Alexa488-B5 

anti-IgE mAb solution for at least an hour at 4°C before imaging. For mast cell adoptive 

transfer experiments, RBL-2H3 cells were resuspended in BSS at ~5x107 cells/ml and 

pre-warmed to 37°C. 50 µg Cell TraceTM far-red DDAO-SE (Invitrogen) was dissolved in 

DMSO to a final concentration of 10 mM, then added to the pre-warmed cells at 1:500, 

and incubated for 10 min at 37°C. Cells were then washed and injected in lateral tail 

vein of the rat post 13-17 days of infection. Next day, rats were euthanized and small 

intestines were collected. Small intestines were kept at 4°C in PBS, then segmented just 

before imaging. Small intestine segments were laid on an imaging apparatus covered 

with PBS. Z-series images were collected using custom built multiphoton confocal 

microscope (20) with a 780 nm illumination and 20x/0.95NA objective2. 

 

 

Results 

 

RBL-2H3 mast cells cross the intestinal epithelial cell monolayer. 

 

As a starting point to characterize the dynamics of mucosal mast cells and their 

intestinal mucosal tissue interactions, we explored interactions between RBL-2H3 mast 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
" Lisa Blum infected the rats and collected the small intestines in Dr. Judy Appleton’s 
lab at Cornell University#!
2 Dr. Rebecca Williams collected the Z-series images using multiphoton microscopy. 
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cells and a rat intestinal epithelial cell line, SLC-44 (18). These epithelial cells polarize 

and form tight junctions when cultured on glass surfaces, orienting with the basolateral 

side attached to the glass surface and the apical surface facing media. We confirmed this 

by staining SLC-44 cells with antibody against tight junction specific protein Zona 

Occludens-1 (ZO-1) (Fig. 3.1), where ZO-1 clearly localized in between cell to cell 

junctions.  

As shown in Figure 3.2, RBL mast cells were added from the top onto the apical 

side of polarized epithelial monolayers, and RBL-2H3 cells were distinguished from the 

SLC-44 cells by labeling Fc"RI with Alexa488-IgE (Fig. 3.2A; Figure 3.2C shows a 

corresponding bright-field image of Figure 3.2A). Figure 3.2A and 3.2C show the first 

images of the time-lapse series (see Movie 3.1) with nine distinguishable fluorescently 

labeled RBL mast cells adhere on epithelial cell monolayer. Some of these cells show 

smaller cell bodies and large lamellopodia-like morphologies, suggesting cells in the!

process of transmigration. Figure 3.2B and 3.2D show the last images of the time-lapse 

series after 3 hours, and Alexa488-IgE labeled mast cells were still distinctly visible by 

fluorescence with more flattened morphology (Fig. 3.2B, arrows), but could not be 

observed in a corresponding bright-field image of the apical plane (Fig. 3.2D), 

suggesting that RBL mast cells migrated from the apical side to the basolateral side of 

the polarized epithelial monolayer (Fig. 3.2, arrows and Supplementary Movie 3.1). 

Movie 3.1 depicts transmigration of RBL-2H3 mast cells, where some of the cell bodies 

of mast cells get smaller as time proceeds and eventually “vanish” from the apical plane 

of the epithelial monolayers at the end of the movie. We observed average of 44.7 % 
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fluorescence with more flattened morphology (Fig. 3.2B, arrows), but could not be 

observed in  

 

!

Figure 3.1. SLC-44 rat intestinal epithelial cell line makes tight junctions on a glass 
surface. Representative confocal image of SLC-44 cells. Cells were plated overnight, 
until they form monolayers, then fixed, permeablized, and labeled with anti-ZO1 and 
Alexa555-secondary antibody (red).  

!

!

!
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RBL mast cells out of total fluorescently labeled cells in the field undergoing 

transepitheilal migration in 2 separate experiments (n = 29). In contrast, when 

fluorescently labeled RBL cells were introduced onto the top of the CHO cell 

monolayers, we did not observe this type of migration (data not shown), suggesting 

that this migratory behavior is a result of particular interactions between the RBL mast 

cells and SLC-44 intestinal epithelial monolayers.  Although mast cells normally 

encounter epithelial cells from the basolateral side from the lamina propria of intestinal 

tissue, theses results demonstrate that RBL cells have the capability to actively interact 

with intestinal epithelial cells. 

 

Mast cells show transepithelial protrusions.  
 

 

To assess whether mast cells can interact with polarized epithelial monolayer 

when they are introduced from the basolateral side of the SLC-44 cell monolayers, we 

utilized a transwell co-culture system (21). As shown in the schematic diagram in 

Figure 3.3, SLC-44 cells were first plated on top of inverted transwell insert at low 

density, then cultured for overnight to allow the cells to adhere firmly. This transwell 

insert was then inserted into a culture well in conventional orientation, such that the 

epithelial cells were attached to the bottom surface of the porous membrane. These cells 

were grown for 2 weeks in media with reduced FBS (5%) to form a monolayer with 

tight junctions. During this time, transepithelial electrical resistance (TER) was 



! 94!

!

!

!

Figure 3.2. RBL-2H3 cells interacting with SLC-44 cell monolayers. Representative 
images of the RBL mast cells labeled with Alexa488-IgE (A, B) on SLC-44 cell 
monolayers (C, D), before (A, C) and after 3h at 37°C (B, D). Images correspond to the 
very first and the last images of Supplementary Movie 3.1. Arrows point to two RBL 
cells in (A) and (C) that clearly migrate to the basolateral side in (B) and (D).  

!

!
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measured to check the integrity of the epithelial monolayer (data not shown). After 2 

weeks, fluorescently labeled mast cells were added to the upper chamber of the 

transwell insert at the upper surface of the porous membrane to introduce mast cells 

from the basolateral side of the polarized epithelial cell monolayer. The cells are then 

cultured for varying times, permitting mast cell migration through the porous 

membrane and interaction with the epithelial cell monolayer.  

Figure 3.4 shows reconstructed Z-series images taken as optical cross-sections 

across the mast cells, transwell insert, and epithelial cells. A rat BMMC (yellow) found 

among the epithelial cells (red) with protrusions extending toward the porous 

membrane (Fig. 3.4, arrows) after ~20 hours of initial addition of labeled rat BMMCs. 

The porous membrane has autofluorescence that is seen as an orange/brown color with 

black pores in Figure 3.4. This data suggest that rat BMMC can cross the porous 

membrane towards the epithelial cells and interact with the epithelial cells. RBL-2H3 

mast cells also interacted with SLC-44 cells in a similar way when they were added 

from the basolateral side and allowed to migrate (data now shown). Collectively, these 

data illustrate the occurrence of mast cell transepithelial migration with protrusions, 

further supporting the idea of dynamic interactions between mucosal mast cells and 

intestinal epithelial monolayers. 
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Figure 3.3. Schematic diagram of transwell transepithelial migration assay. SLC-44 
cells were plated onto upside down transwell inserts with a porous membrane (5 µm 
pores). Next day, transwell inserts were hung in the normal orientation in 6 well culture 
plate with the basolateral side of the epithelial cells attached to the porous membrane, 
then the cells were cultured for additional 13 days. Fluorescently labeled mast cells 
were then introduced from the basolateral side and allowed to migrate overnight, fixed 
and labeled with anti-ZO-1, then Z-series images were collected with a confocal 
microscope.   
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Figure 3.4. BMMCs interacting with SLC-44 cell monolayers. (A) A representative 3D 
projection image showing a rat BMMC with protrusions (arrows) that was labeled with 
Alexa488-anti-mast cell ganglioside mAb (yellow). This cell migrated across the porous 
membrane (orange), then from the basolateral to the apical side of an SLC-44 cell 
monolayer. (A) View from the tilted lower surface (apical side). (B) View from the side. 
Both images show the same field. Epithelial cells were labeled with anti-ZO-1 (red). 
Pore size = 5 µm. 
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In situ imaging of rat small intestine after T. spiralis infection.  

 

As shown above, we could detect transepithelial migration of mast cells in vitro, 

and we next determined whether we could observe mast cell interacting with epithelial 

cells in live tissue. Thus, we investigated mucosal mast cell migration in situ by carrying 

out multiphoton imaging of labeled mast cells in intestinal segments. For robust 

imaging, we took advantage of the Trichinella spiralis infection model of the rat, in which 

this infection causes intestinal mucosal mastosytosis, a local abnormal expansion of 

mucosal mast cells in the gut (6). Figure 3.5A shows a small intestine section pinned on 

a microscope stage and ready to be imaged. In initial experiments, we labeled intestinal 

segments separately with Alexa488-conjugated AA4 monoclonal antibody (mAb) and 

Alexa488-conjugated B5 anti-IgE mAb by incubating each tissue sections with antibody 

solution for at least 1 hour at 4°C. AA4 mAb binds specifically to a ganglioside only 

found on the surface of rat mast cells (16, 22), and B5 mAb is specific for rat IgE (17). 

AA4 mAb is exclusive for mast cells, whereas anti-IgE B5 mAb could label other IgE- 

bound cells in the gut, such as basophils. As shown in Figure 3.5B, a single cell is clearly 

surface-labeled by A488-AA4 (Fig. 3.5B, middle panel, arrow), and several cells appear 

to exhibit some green labeling after incubation with A488-B5 (Fig. 3.5B, right panel). 

Although we did observe occasional labeled cells consistent with endogenous mucosal 

mast cells in the epithelial villi, the labeling method employed was technically limiting 

in sufficient penetration of the antibody solution to label all the endogenous mast cells.  
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Figure 3.5. In situ multiphoton imaging of endogenous mast cells in Trichinella-
infected rat small intestine. (A) Intact small intestine segment of a rat infected with 
Trichinella spiralis on a microscope stage. (B) Rats were infected with T. spiralis for 14 
days, then small intestine sections were labeled with either Alexa488-AA4 monoclonal 
antibody, Alexa488-B5 anti-IgE monoclonal antibody, or incubated in PBS (Control) at 
4°C for more than 1 hour. Images were taken using multiphoton confocal microscopy 
from the luminal side, and purple autofluorescent epithelial cells are seen in villi cross 
sections. 20x magnification.    
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To optimize visualizing conditions, we transferred previously labeled RBL-2H3 

mast cells by tail vein injection, eliminating the issue of insufficient labeling of 

endogenous mast cells, and asked if we can see proper redistribution of RBL-2H3 mast 

cells to the mucosal tissue.  As shown in Figure 3.6, we found labeled RBL mast cells 

that migrated to the intraepithelial region of duodenal segments (Fig. 3.5B, C, arrows), 

whereas we found only autofluorescent cells in sham-injected tissue segments (Fig. 

3.6A). Figure 3.6C shows a blown-up image of the boxed region in Figure 3.6B. Taken 

together, these data provide evidence that RBL-2H3 mucosal mast cells can migrate into 

appropriate tissue sites where endogenous mucosal mast cells can also be found, and 

they appear to interact with mucosal intestinal tissue in the intraepithelial region in 

response to T. spiralis infection. 

 

Discussion 

 

A single layer of epithelial cells maintained by tight junctions (TJs) between cell 

covers the intestinal mucosa. Pathogenic viruses, bacteria, and parasites all take 

advantage of the chances for breaching the epithelial barrier by entering though 

junctions (23, 24). Intestinal infection by certain parasites, including Trichinella 

spiralis,induces mastocytosis throughout the effector phase of the inflammatory 

response. Friend et al., provided evidence that differentiated, tissue-residing mucosal 

mast cells that are found in submucosa or lamina propria of the intestine redistribute to 

the intraepithelial regions of the villi by examining histologic sections of jejunal tissue of  
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Figure 3.6. In situ multiphoton imaging of adoptively transferred RBL-2H3 mast cells 
in Trichinella-infected rat small intestine. Rats were infected with T. spiralis 14 days 
prior to i.v. tail vein injection of far-red DDAO-SE-labeled RBL cells (B), or media (A). 1 
day after the injection, small intestine sections of live tissue were imaged. Pink 
autofluorescent cells in central lamina propria are seen in both samples, but pink 
DDAO-SE-labeled RBL cells between purple autofluorescent epithelial cells (C, arrows, 
zoomed-in section of boxed region in B) are seen only in (B) and (C). Images were taken 
using multiphoton confocal microscopy from the luminal side, and purple 
autofluorescent epithelial cells are seen in villi cross sections. 20x magnification.    

 

 



! 102!

T. spiralis infected mice (6), but very little is known about this process. In the current 

study, we demonstrated dynamic interactions between intestinal epithelia and mast 

cells in vitro and in situ by utilizing real-time imaging, a transwell co-culture system, 

and multiphoton microscopy.  

 We observed distinctive interactions between RBL-2H3 mast cells and polarized 

monolayers of the rat intestinal epithelial cell line SLC-44 (Fig. 3.2 and Supplementary 

Movie 3.1), in which the RBL mast cells displayed apical to basolateral transepithelial 

migration. It is known that MDCK epithelial cells grown on glass surfaces are polarized 

(25). Our data indicates that SLC-44 cells are polarized on glass surfaces as shown by 

their expression of the tight junction specific protein ZO-1 at cell-cell contacts (Fig. 3.1). 

Mucosal mast cells are preferentially located in the basolateral side of the intestinal 

epithelia in vivo (2). The Apical to basolateral crossing of mast cells that we observe (Fig. 

3.2) could be a response to a homing signal from epithelial cells, or it could suggest the 

capability of mast cells to transmigrate in the direction of the lumenal side of the 

intestine, then cross back to the lamina propria.  

Transepithelial migration of other leukocytes has been observed previously (26-

28). To assess whether mast cells can interact and undergo transepithelial migration 

when they are introduced from the basolateral side to mimic their in vivo niche, we 

utilized a transwell co-culture system (Fig. 3.3). When fluorescently labeled mast cells 

were added on the basolateral side of the polarized epithelial monolayers, we were able 

to visualize mast cells among the epithelial cells, suggesting transepithelial migration of 

mast cells (Fig. 3.4). Recently, a novel role for dendritic cells (DCs) in taking up bacteria 
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across the intestinal barrier was proposed (11, 29, 30).  Specialized, myeloid-derived 

mucosal DCs were identified in the lamina propria of the intestine, with CX3CR1 

(fractalkine receptor)-dependent transepithelial dendrites poking through the intestinal 

lumen (30). These extensions have an unusual globular (30), or balloon (11) shape, and 

have been dynamically imaged in vivo (11). CX3CR1 is a receptor for CX3CL1 

(fractalkine) that is expressed on the surfaces of intestinal epithelial cells and 

endothelial cells in the intestine (31, 32). It will be interesting to investigate whether the 

dynamic interactions we have observed between mast cells and intestinal epithelial 

monolayers are mediated by CX3CR1 – CX3CL1 interactions, and to characterize the 

surface components of the transepithelial protrusions of mast cells to gain more insights 

into their roles. 

To further investigate the interactions between mucosal mast cells and intestinal 

epithelial cells, we imaged endogenous (Fig. 3.5) and adoptively transferred (Fig. 3.6) 

mast cells in the rat small intestine after T. spiralis infection ex vivo, using in situ 

multiphoton confocal microscopy. Even though we observed endogenous mast cells 

clearly surface-labeled with a fluorescently tagged antibody that binds to rat mast cell 

specific ganglioside, or cells labeled with Alexa488-rat anti-IgE antibody (Fig. 3.5), 

visualizing endogenous mast cells proved to be technically challenging. We did not see 

robust populations of fluorescently labeled mast cells by incubating the small intestine 

tissue sections with either fluorescently tagged anti-AA4 or anti-B5 monoclonal 

antibody. We suspected insufficient penetration of the antibody solution to the tissue, 

and subsequently decided to attempt injecting pre-labeled mast cells intravenously. As 
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shown in Figure 6, we observed transferred DDAO-SE labeled RBL-2H3 mast cells in 

the intraepithelial region of the intestinal villi. DDAO-SE labeled rat BMMCs were also 

injected to the rat in a parallel experiment (data not shown), but we observed more 

robust recruitment of RBL mast cells to the small intestine after T. spiralis infection. 

Dissimilar to RBL-2H3 cells, rat BMMCs do not express !E"7 integrin subunit (D. 

Holowka, unpublished results), which is an integrin selectively expressed on mature 

intestinal mast cells that is likely to mediate their attachment to E-cadherin on epithelial 

cells of the gut (5).  This could, at least in part, explain why we see less BMMCs 

recruited to the small intestine in response to T. spiralis infection when compared to 

RBL-2H3 recruitment. Together, these data suggest that mucosal mast cells actively 

interact with intestinal epithelial cells, possibly via the !E"7 integrin that is present on 

these mast cells. 

In summary, we provide evidence for RBL-2H3 mast cells and rat BMMCs 

interacting with SLC-44 rat intestinal epithelial monolayers when the mast cells are 

introduced from either the apical or basolateral side of the polarized epithelial 

monolayers using either real-time imaging or a transwell co-culture system. In these 

experiments, we observed dynamic crossing of mast cells from the apical to the 

basolateral side of the polarized epithelial monolayers. In addition, when mast cells are 

introduced from the basolateral side of the epithelial monolayers grown on a supported 

porous membrane filter, we found mast cells among the epithelial cells with 

transepithelial extensions, suggesting these mast cells have crossed the porous 

membrane and are interacting with the epithelial cells. We further investigated this 
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interaction in situ, and found endogenous mast cells as well as transferred mast cells 

redistributed to the intraepithelial regions of the intestinal villi in response to T. spiralis 

infection. Collectively, these data supports a dynamic, intimate interaction between 

mucosal mast cells and the epithelial layer that lines the intestinal interface.   
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CHAPTER 4 

SUMMARY AND FUTURE DIRECTIONS 

 

Cell migration is a foundational function in biology, and has been of avid interest 

of the scientific field for many years. For immune cells, motility is one of the key 

mechanisms to efficiently mount immune responses, including infiltration to 

inflammatory sites and relaying immunological information. Although homing of mast 

cell progenitors is relatively well characterized (1), many questions still remain 

unanswered in regard to migration of differentiated mast cells. This dissertation 

describes molecular mechanisms of basal and directed migration of mast cells. Below 

are summarized major findings and proposed future directions.  

 

RBL-2H3 mast cells and rat bone marrow-derived mast cells (BMMCs) show 

spontaneous migration on glass surfaces, including often when the cell bodies move 

back and forth between the tracks defined by their protrusions. These two kinds of mast 

cells show similar motility characteristics: they adhere to glass surfaces, have extended 

protrusions on glass surfaces when plated at a low density, have roughly similar 

motility coefficients under the same condition, and their motility depends on actin 

polymerization. Similar to other leukocytes, the motility of RBL mast cells depends on 

Rho family GTPases and PI3K, which are both considered to be central regulators of cell 

motility in various cells types (2, 3). However, RBL cell motility was unaffected by PKC 



 111 

inhibition, suggesting selectivity in the intracellular signaling pathways regulating mast 

cell motility.  

 

During the course of this thesis work, we developed an imaging method to 

visualize mast cell chemotaxis in real-time video microscopy. Although mast cell 

chemotaxis toward antigen has been previously shown using a more traditional 

modified Boyden chamber assay, molecular mechanisms underlying this process are 

not yet well understood, and this method commonly suffers from the limitation that 

only a low percentage of cells actually migrate across the permeable membrane. We 

demonstrate that RBL mast cells and rat BMMCs show directed migration toward 

antigen in a dose dependent manner, with RBL mast cells showing a maximal response 

to 10 ng/ml antigen using real-time imaging. We provide evidence that Syk tyrosine 

kinase and Ca2+ mobilization are involved in regulating both spontaneous migration 

and chemotaxis of mast cells toward antigen.  

 

Syk- mutant RBL cells exhibit impaired basal motility and chemotaxis toward 

antigen. Syk- cells show a modest reduction of about 30% in basal motility when 

compared to normal RBL cells, and they show a more severe reduction in chemotaxis 

toward antigen. To further gain insights to the role of Syk kinase in mast cell motility, 

chemotaxis of Syk- cells toward another chemoattractant besides antigen should be 

investigated to assess whether Syk requirement is specific to chemotaxis toward antigen 

or is more universal.  
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Inhibiting Ca2+ mobilization by either withdrawing extracellular Ca2+ from the 

environment or inhibiting Ca2+ influx reduces both basal motility and chemotaxis of 

mast cells toward antigen. Furthermore, knocking down Ca2+ entry channel protein 

Orai1 using shRNA inhibits both of these processes, further providing evidence that 

Ca2+ influx via Orai1 is important in regulating mast cell migration. Similarly to Syk- 

cells, Orai1 knock down in RBL mast cells causes a modest reduction in their motility 

coefficient but results in rather severely impaired chemotaxis toward antigen. We 

observed that chemotaxis of RBL mast cells toward S1P is independent of extracellular 

Ca2+, suggesting that Ca2+ influx through Orai1 seems to play a more selective role in 

chemotaxis toward antigen. One approach to dissect the involvement of Ca2+ 

mobilization in mast cell chemotaxis is to investigate chemotaxis of either STIM1 or 

TRPC1 knocked down mast cells. Even though we did not observe severe inhibition in 

basal motility of either STIM1 or TRPC1 knocked down RBL mast cells, we cannot rule 

out the possibility of STIM1 or TRPC1 involvement in cell motility due to the limitations 

of knock down in our cells. Another approach is to investigate chemokinesis of either 

Syk- cells or RBL mast cells under Ca2+ mobilization inhibitory conditions, when they 

have chemoattractant in both directions, so the chemoattractant is present but gradient 

is absent. These approaches will help to further dissect the roles for Syk kinase and Ca2+ 

mobilization in regulating different steps of chemotaxis, including cell motility such as 

velocity, and sensing and turning of cells towards a chemotactic gradient.  
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We previously described the participation of TRPC channels in specifying 

initiation site of Ca2+ response (4). In particular, knockdown of TRPC1 and TRPC3 in 

this study shifted the site of Ca2+ wave initiation in response to antigen stimulation from 

cell protrusions to the cell body. This thesis work provides evidence for previously 

uncharacterized, spontaneous Ca2+ transients using genetically encoded Ca2+ sensor 

GCaMP3 and fast confocal imaging. We demonstrate that these Ca2+ transients are often 

found in cell protrusions, and are dependent on Ca2+ influx. In addition, when the same 

inhibitors of Ca2+ influx are used, Ca2+ transients have a similar pattern of inhibition as 

basal motility of mast cells, suggesting a potential correlation between cell motility and 

Ca2+ transients. It will be interesting to investigate the effects of Orai1, TRPC1, and 

STIM1 knockdown on these Ca2+ transients. Wei et al. reported that Ca2+ flickers 

promote turning of migrating fibroblasts, and that asymmetric Ca2+ flickers develop 

when migrating fibroblasts were exposed to a chemoattractant gradient (5). We made 

some attempts to correlate Ca2+ transients and cell motility by observing the movements 

of cell bodies while imaging Ca2+ transients, and noticed some tendency of cell bodies 

trying to move toward the direction of Ca2+ transients localized in cell protrusions. 

However, it was hard to observe prominent movements of cell bodies in a relatively 

shorter amount of observation time for Ca2+ transients (20 min). One solution might be 

to employ asymmetry-triggering signals such as a chemoattractant gradient to spatially 

coordinate the Ca2+ transients by observing Ca2+ transients of chemotaxing cells. 
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Redistribution of differentiated, tissue-residing mucosal mast cells in response to 

T. spiralis infection has been described several decades ago, yet this area of mast cell 

biology is understudied. In this dissertation, we further investigate mast cell migration 

in relation to their potential functions in vivo. We observe transepithelial migration of 

mast cells through polarized intestinal epithelial monolayers using real-time imaging 

and transwell co-culture system. Furthermore, we observe endogenous and adoptively 

transferred mast cells in the intraepithelial region of intestinal villi in response to T. 

spiralis infection in situ using multiphoton microscopy. One approach to further 

characterize this process in vitro is to investigate the chemotaxis of mast cells toward 

Trichinella antigen when cells are sensitized with anti-Trichinella IgE. In addition, given 

that we observed chemotaxis of mast cells toward DNP-BSA when cells are sensitized 

to anti-DNP IgE, monitoring transepithelial migration of mast cells when either DNP-

BSA or Trichinella antigen is present in the lower part of the transwell transmigration 

assay system to generate a gradient of DNP-BSA or Trichinella antigen would permit us 

to test whether these mast cells can respond to an antigen gradient in this more 

physiologically relevant situation. 

 

Single cell migration can be categorized into two types: amoeboid and 

mesenchymal. Amoeboid migration mimics features of the single cell behavior of the 

amoeba Dictyostelium discodium. In higher eukaryotes, hematopoietic stem cells, 

leukocytes, and certain tumor cells are known to use amoeboid migration, which is a 

fast ‘crawling’ type of movement that is driven by short-lived and relatively weak 
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interactions with the substrate (6, 7). In 3D environment, mesenchymal cells such as 

fibroblasts, myoblasts, single endothelial cells or sarcoma cells have a spindle-shaped, 

fibroblast-like morphology (8, 9). The elongated morphology is dependent on integrin-

mediated adhesion dynamics and the presence of high traction forces (9, 10). In this 

dissertation, we observed mast cell morphology that is reminiscent of cell types with 

mesenchymal migration but with some heterogeneity, in which a subpopulation of cells 

show more amoeboid-like, faster migration. Literature suggests plasticity in the 

transition between amoeboid and mesenchymal migration, especially with changes in 

cell state and environmental conditions (11, 12).  

In recent years, differences and similarities between cell migration in two-

dimensional (2D) and three-dimensional (3D) environments have received growing 

interest. It was reported that cells have 3D interactions in vivo that are absent in 2D cell 

culture, which can affect cell migration (13). Using micropatterning technique to 

generate 1D fibrillar patterns to mimic 3D environment, Doyle et al. demonstrated that, 

in contrast to 2D, fibroblast migration is more rapid, dependent on myosin II 

contractility and microtubules, but independent of extracellular matrix (ECM) ligand 

density in 1D fibrillar patterns and in 3D (14). In 3D, dendritic cells migrate using 

myosin II dependent contraction when passing though narrow gaps, where a squeezing 

contraction of the trailing edge propels the rigid nucleus in an integrin independent 

manner (15). With respect to plasticity in mesenchymal and amoeboid migration, and 

differences in 2D versus 3D cell migration, further insight regarding mast cell migration 

might come from characterizing molecular mechanisms of mast cell basal motility and 
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chemotaxis in 3D. Modifying the real-time imaging methods described in this 

dissertation to accommodate 3D migration may help elucidate mechanisms and 

physiological functions of mast cell migration.   
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APPENDIX A 

CHARACTERIZING MOTILITY OF RBL MAST CELLS ON DIFFERENT 

SUBSTRATES 

 

Cell adhesion to the extracellular matrix (ECM) is essential for fundamental 

cellular processes such as survival, migration, and differentiation. Cell migration is 

regulated, in part, by the mechanical environment surrounding the cells. Cells in tissues 

are connected to their surrounding ECM by transmembrane integrin adhesion proteins. 

ECM ligand binds to the extracellular domain of integrins (1, 2), while the intracellular 

domain connects the plasma membrane to the actin cytoskeleton through various 

signaling complexes (3, 4). Changes in substrate stiffness are critical mechanical 

regulators of cell behavior for many cell types. Matrix stiffness can promote smooth 

muscle cell migration (5), stem cell differentiation (6), neuronal growth (7). Endothelial 

cells use traction forces to mechanically communicate through their substrate, and cells 

migrate towards each other to form cell-cell connections on sufficiently compliant 

substrates (8, 9). To understand the role of the mechanical properties and ligand density 

of matrix in regulating mast cell motility, we characterized mast cell spontaneous 

migration on different substrates using matrices of tailored stiffness and matrix 

presentation1. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
" These substrates were prepared in Dr. Cynthia Reinhart-King’s lab at Cornell 
University.  
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Materials and Methods 

Polyacrylamide gel fabrication 

Polyacrylaminde substrates were fabricated as previously described (10). Briefly, 

substrate stiffness was adjusted between 1 kPa and 10 kPa by changing the ratio of 

acrylamide to bis-acrylamide, then polyacrylamide gels were covalently bound to 

glutaraldehyde-activated glass coverslips. RGD peptide or Type I collagen (BD 

Biosciences) was covalently bound to the polyacrylamide gel using a bi-functional 

linker (10).  

Motility assay 

The polyacrylamide gel substrates bound to glass coverslips were put inside 35 mm 

culture dish, and RBL mast cells were plated at a low density onto the polyacrylamide 

gels. Next day, coverslips were imaged for 1.5 h in media while collecting images every 

2 min. Cell motility was analyzed as described in Chapter 2. 

 

Results and Discussion 

 As shown in Figure A.1, RBL mast cells plated on 1 kPa substrate without 

covalently linked ligand exhibit similar morphology to the cells plated on glass surfaces 

as shown in Chapter 2, often with the extended protrusions. However, cells plated on  

stiffer substrates of 2.5 kPa and 5 kPa without ligand rarely exhibit extended 

protrusions  
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Figure A.1. Morphology of RBL mast cells on different substrates. Representative 
images showing morphology of RBL-2H3 mast cells on different substrates. Cells were 
plated on polyacrylamide gel substrate without any covalently linked ligand in 
different stiffness indicated by kPa on left. +RGD: polyacrylamide gel substrates 
covalently bound to RGD peptide. +Collagen: polyacrylamide gel substrates covalently 
bound to type I collagen.  
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protrusions and are generally rounded in their shape. In a stark contrast to this 

morphology, cells plated on substrates stiffer than 2.5 kPa that have been covalently 

linked with RGD peptide, which is a binding recognition sequence for integrins, exhibit 

longer and more prominent protrusions. RBL mast cells show more flattened and 

spread-out morphologies on compliant 1 kPa substrate that has been covalently linked 

with either RGD peptide or type I collagen (Fig. A.1), and these cells moved as if they 

were partly sinking to the gel substrates (data not shown). These data suggest that 

substrate stiffness and ligand composition affects mast cell morphology. 

We also monitored spontaneous migration of RBL-2H3 mast cells on different 

substrates. Compared to the cells on substrates without ligand, cells show enhanced 

motility when they were on substrates with covalently linked ligand, as well as when 

they were on stiffer substrates (Fig. A.2). With substrate stiffness of 1 kPa and 10 kPa, 

cells on type I collagen linked substrates show about 4-fold higher average motility 

coefficients when compared to the cells on RGD peptide linked substrates, suggesting 

that under these conditions, collagen promotes spontaneous migration of mast cells 

more substantially. Taking into consideration that fibronectin-RGD motif has been 

previously shown to preferentially bind !5"1 and !V"3 integrins (8, 9), and collagen to 

!2"1 integrin (10), these results suggest a possibility of !2"1 integrin involvement in 

regulating RBL mast cell migration.  
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Figure A.2. Motility of RBL mast cells on different substrates. Spontaneous migration 
of RBL-2H3 cells plated on various polyacrylamide substrates was monitored for 1.5 h 
in media. Average motility coefficients are shown ± SEM (n = 8 - 35 cells per each 
condition). Glass (striped bar): glass surface without polyacrylamide gel substrates. 
Substrate (white bars): polyacrylamide gel substrates without any covalently linked 
ligand. +RGD (black bars): polyacrylamide gel substrates covalently bound to RGD 
peptide. +Collagen (grey bars): polyacrylamide gel substrates covalently bound to type 
I collagen. Stiffness of the substrates is indicated below by kPa. * P < 0.05, ** P < 0.01 
between indicated conditions. 

 



! 124!

In summary, these data suggest that mast cell morphology and motility are 

influenced by the mechanical characteristics such as stiffness of the substrates they are 

on, as well as by ECM composition.!
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APPENDIX B 

CHARACTERIZING ROLES FOR FYN, SPHINGOSINE KINASES 1 AND 2, AND 

TEC FAMILY KINASES IN MOTILITY OF MOUSE BONE MARROW-DERIVED 

MAST CELLS 

 

In mast cells, cross-linking of the high affinity receptor for IgE, Fc!RI, activates 

sphingosine kinases (SphKs) leading to the production and secretion of lipid mediator 

sphingosine-1phosphate (S1P) (1). It has been reported that Fyn kinase is required for 

the coupling of Fc!RI to sphingosine kinase 1 (ShpK1) and sphingosine kinase 2 

(SphK2) and the ensuing S1P production (2), and both Fyn kinase defective and SphK 

inhibited mast cells are defective in chemotaxis (1, 2). To investigate the role of Fyn 

kinase and SphK1 and SphK2 in mast cell spontaneous migration, we took advantage of 

genetic manipulation strategies that are well developed for mice. We characterized the 

motility of mouse bone marrow-derived mast cells (BMMCs) from Fyn, SphK1, and 

SphK2 knockout mice1. 

Tec tyrosine kinases are non-receptor tyrosine kinases which comprise five 

family members: Bruton's tyrosine kinase (Btk), IL-2-inducible T-cell kinase (Itk), 

endothelial tyrosine kinase (Etk), resting lymphocyte kinase (Rlk), and Tec (3). Tec 

kinases act downstream of various receptors including Fc!RI, and mast cells express 

four of these members except Etk (3). Btk has been documented to play a crucial role in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
" These BMMCs were derived and differentiated in Dr. Juan Rivera’s lab at NIH. 
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mast cell activation (4) and chemotaxis through activation of small Rho GTPase Rac and 

actin rearrangement after Fc!RI aggregation (5). More recently, BMMCs from Btk and 

Itk double knockout mice were reported to have impaired Ca2+ responses and 

degranulation in response to Fc!RI cross-linking (6). To characterize the role of Btk and 

Itk in mast cell basal motility, we investigated the motility properties of BMMCs 

derived from Itk and Btk knockout mice, and from Itk/Btk double knockout (DKO) 

mice2. 

 

 

Materials and Methods 

 

BMMCs were maintained in RPMI containing 25 mM HEPES supplemented with 

MEM non-essential amino acid solution, penicillin-streptomycin, glutamine, sodium 

pyruvate solution, 2-mercaptoethanol, and 10% FBS. Cells were plated at a low density 

overnight on a fibronectin coated MatTek dishes, then time-lapse images were collected 

for 1-3 hours in every 2 min. To coat the MatTek dishes, bovine fibronectin solution 

(Sigma-Aldrich, St. Louis, MO) was added onto the glass part of MatTek dishes, 

incubated for at least 2 hours at room temperature, then washed with PBS. Cell motility 

was assessed by manually tracking cell movements using Manual Track Plugin for 

ImageJ, which then calculates velocity of a given cell based on its migration track.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# These BMMCs were derived and differentiated in Dr. Avery August’s lab at Cornell 
University. 
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Results and Discussion 

 

As shown in Figure B.1, Fyn null BMMCs show significantly decreased average 

velocity when compared to its wild type control BMMCs. Furthermore, BMMCs from 

SphK1 and SphK2 knockout mice show substantially decreased velocity as well, 

suggesting that Fyn kinase and SphKs contribute to spontaneous migration of mast 

cells. As introduced earlier, the Fyn kinase-SphKs signaling axis has been shown to 

regulate mast celll chemotaxis, and S1P is a known chemotactic ligand for mast cells. 

Together, these data implicate the Fyn kinase-SphKs axis in regulating mast cell motility 

even without chemotactic signals.   

 As shown in Figure B.2, Itk null and Btk null BMMCs did not show significant 

differences in their average velocity when compared to the average velocity of BMMCs 

from wild type control mice, demonstrating that either Itk or Btk alone is dispensable 

for mast cell spontaneous migration. In contrast, BMMCs from Itk/Btk DKO mice show 

a substantially increased average velocity in comparison with BMMCs from wild type 

control mice, suggesting redundant and/or exchangeable role for Itk and Btk in 

negatively regulating mast cell spontaneous migration.  

 

 

!
!
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Figure B.1. Characterizing the role of Fyn and sphingosine kinases 1 and 2 in mouse 
BMMC motility. Motility of mouse BMMCs from Fyn knockout, SphK1 knockout, and 
SphK2 knockout mice were monitored for 1.5 h in media, and the average velocities are 
shown ± SEM (n = 27 - 68 per each condition). WT, BMMCs from wild type control. * P 
< 0.05, ** P < 0.01, *** P < 0.001 compared to WT. 

 

!
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Figure B.2. Characterizing the role of Tec family kinases Itk and Btk in mouse 
BMMC motility. Motility of mouse BMMCs from Btk knockout, Itk knockout, and 
Itk/Btk double knockout mice were monitored for 1 h in media, and the average 
velocities are shown ± SEM (n = 52 - 73 per each condition). WT, BMMCs from wild 
type control. ** P < 0.01 compared to WT. 
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APPENDIX C 

SUMMARY OF CALCIUM MEASUREMENTS OF RAT BONE MARROW-

DERIVED MAST CELLS 

 

Ca2+ mobilization responses of rat bone marrow derived mast cells (BMMCs) 

have not been previously characterized. To assess Ca2+ responses after stimulation, 

including contributions of store operated Ca2+ entry (SOCE) and IP3R to Ca2+ influx in 

rat BMMCs, we examined the effects of antigen and thapsigargin stimulation, and Ca2+ 

release-activated Ca2+ (CRAC) channel inhibitor GdCl3, Ca2+ influx inhibitor 2-APB, and 

PLC! inhibitor U-73122 on this process (1).  

 

 

Materials and Methods 

 

Intracellular Ca2+ levels were measured using an SLM 8100C steady state 

fluorimeter (SLM instruments, Urbana, IL). Rat bone marrow-derived mast cells 

(BMMCs) in suspension were loaded with the Ca2+ indicator, indo-1 (Invitrogen), and 

sensitized with anti-DNP IgE in BSS containing 0.5 mM sulfinpyrazone (Sigma). Cells 

were stimulated with 0.4 µg/ml DNP-BSA, or 0.25 µM thapsigargin (Sigma), and their 

Ca2+ response was monitored for about 600 sec. The cells were then treated with 1 µM 

GdCl3 and monitored for additional 150 sec, followed by an addition of either 10 µM 2-

APB, or 1 µM U-73122 and monitored for additional 200 sec. Subsequently, cells were 
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lysed by the addition of 0.1% TritonX-100 to obtain the maximal value of indo-1 

fluorescence for each sample. The fluorescence was quenched by the addition of EDTA 

or EGTA to obtain the background indo-1 fluorescence levels. Representative Ca2+ 

responses were plotted as the change in fluorescence intensity of indo-1 versus time.  

 

 

Results and Discussion 

 

As shown in Figure C.1, representative plots demonstrate robust Ca2+ response to 

stimulation by 0.4 µg/ml antigen (DNP-BSA). The influx phase represented by the 

plateau of the trace response is effectively inhibited by addition of 1 µM GdCl3, and a 

second addition of 1 µM GdCl3 caused only a small additional increment of inhibition 

(Fig. C.1A, B). Subsequent addition of 1 µM U-73122 completely inhibited antigen 

stimulated Ca2+ influx (Fig. C.1A). In contrast, addition of 10 µM 2-APB aliquots caused 

incremental increases in indo-1 fluorescence following antigen and GdCl3, suggesting 

some non-specific effects (Fig. C.1B). When 10 µM 2-APB was added before antigen 

stimulation, similar fluorescence increases were noted, but the subsequent response to 

antigen was almost completely inhibited.  

As shown in Figure C.2, thapsigargin mediated Ca2+ response was almost 

completely sensitive to addition of 1 µM GdCl3, suggesting that majority of the SOCE is 

caused by Orai1-dependent CRAC channels in rat BMMCs, similar to results with RBL-

2H3 cells (2). Subsequent addition of 1 µM U-73122 without additional inhibition  
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Figure C.1. Antigen-stimulated Ca2+ response of rat BMMCs. Representative plots 
show Ca2+ responses to antigen stimulation (0.4 µg/ml DNP-BSA), and effects of 
subsequent additions of 1 μM GdCl3, followed by either (A) U-73122 addition, or (B) 
two additions of 2-APB. (C) Two additions of 2-APB were added previous to antigen 
stimulation. All plots are representative of two independent experiments.  
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Figure C.2. Thapsigargin-stimulated Ca2+ response of rat BMMCs. Representative 
plots show Ca2+ responses to thapsigargin stimulation (0.25 µM), and effect of 
subsequent addition of GdCl3, followed by either (A) U-73122 addition, or (B) two 
additions of 2-APB. All plots are representative of two independent experiments.  
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further confirmed this conclusion (Fig. C.2A). Similarly to antigen-stimulated Ca2+ 

response (Fig. C.1B), two subsequent additions of 10 µM 2-APB after thapsigargin 

stimulation caused increase in indo-1 fluorescence (Fig. C.2B).  

We also monitored Ca2+ response of rat BMMCs to antigen and thapsigargin 

stimulation in the absence of extracellular Ca2+ (Fig. C.3). In both cases, stimulation 

caused relatively small Ca2+ responses without sustained plateau phases as expected, 

and subsequent additions of 1 µM GdCl3 and 1 µM U-73122 did not result in further 

inhibition of this Ca2+ response.  

Collectively, these data demonstrate that the majority of Ca2+ influx in rat 

BMMCs is mediated by CRAC channels, and Ca2+ mobilization of these cells are 

sensitive to the known inhibitors of Ca2+ influx in RBL-2H3 cells such as GdCl3, 2-APB, 

and U-73122 that are also shown to inhibit the motility of both RBL mast cells and rat 

BMMCs in Chapter 2.  
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Figure C.3. Stimulated Ca2+ response of rat BMMCs in the absence of extracellular 
Ca2+. Representative plots show Ca2+ responses to (A) antigen (0.4 µg/ml DNP-BSA) or 
(B) thapsigargin (0.25 µM), and effect of subsequent addition of GdCl3, followed by two 
additions of U-73122. All plots are representative of two independent experiments.  
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APPENDIX D 

ADDITIONAL RESULTS FROM MAST CELL MOTILITY AND CHEMOTAXIS 

STUDY 

 One of the important aspects of cell motility is the capacity of cells to respond to 

chemotactic cues with directionally oriented movement. The basal motility of cells, as 

well as the capacity of cells to sense and direct themselves in response to a chemical 

gradient can both affect cell chemotaxis behavior. We have shown in Chapter 2 that 

both Syk protein tyrosine kinase and Ca2+ influx via Orai1 contribute to mast cell basal 

motility as well as to chemotaxis toward antigen. To better understand the relationship 

between basal motility and directed motion of cells under these conditions, we 

compared motility coefficient of spontaneously migrating RBL-2H3 cells and the 

chemotactic index of directionally migrating RBL-2H3 cells toward antigen. As shown 

in Figure D.1, Syk- cells show substantially decreased chemotaxis that cannot be fully 

accounted for by their decreased basal motility, suggesting that Syk also modulates 

directed motion of mast cells up a gradient of antigen. In contrast, the level of decrease 

in basal motility of cells in the absence of extracellular Ca2+ is comparable to that of 

chemotaxis of cells in excess EGTA (Fig. D.1). For cells with Orai1 knocked-down, the 

decrease in chemotaxis toward antigen is greater than that in basal motility, but only 

moderately so. Taken together, these data imply that Ca2+ influx via Orai1 regulates 

chemotaxis of mast cells toward higher concentrations of antigen primarily by affecting 

their basal motility. 
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Figure D.1. Comparison of the motility coefficient and the chemotactic index of RBL-
2H3 cells under various conditions. Motility coefficients of mast cells under 
spontaneous migration conditions (blue open rectangle) and chemotactic indices (yFMI) 
of mast cells in Ibidi chemotaxis µ-slide chambers with 10 ng/ml DNP-BSA as a 
chemoattractant (red open circle) are shown ± SEM (n= 11 – 137). (A) Motility 
coefficients are represented on the left y axis, and chemotactic indices are represented 
on the right y axis. Control: RBL mast cells in complete medium. (B) Motility 
coefficients and chemotactic indices of RBL-2H3 cells shown in (A) are represented as 
percentages of controls, where respective controls for each condition are normalized to 
100%.  
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APPENDIX E 

MATLAB CODE FOR AUTOMATED TRACKING AND ANALYSIS1 

 
 
track_cells.m 
 
function [AllxData AllyData] = track_cells(INFILE, OUTFILE, scale, fsize, rmax, 
threshval) 
 
close all 
 
 
if nargin<5, rmax = 15; end 
 
if nargin<4, fsize = 40; end 
 
if nargin<3, scale = .5; end 
 
if nargin==1, 
 
    endind = strfind(INFILE, '.avi'); 
 
    OUTFILE = [INFILE(1:endind-1) '.m']; 
 
end 
 
if nargin == 0, 
 
    [INFILE INFILEPATH] = uigetfile('*.avi', 'Select Movie File to Track'); 
 
    endind = strfind(INFILE, '.avi'); 
 
    defaultOUTFILE = [INFILE(1:endind-1) '.mat']; 
 
    INFILE = [INFILEPATH INFILE]; 
 
 
    [OUTFILE OUTFILEPATH] = uiputfile('*.mat', 'Select Output File', defaultOUTFILE); 
 
    OUTFILE = [OUTFILEPATH OUTFILE]; 

                     
1 Developed  by Dr. Sarah Veatch. 
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    [scale fsize rmax threshval] = tracking_parameters_dialog; 
 
end 
 
 
 
I = double(imresize(frame2im(aviread(INFILE, 1)), scale)); 
 
I = I/mean(mean(I))-1; 
 
 
imagesc(I); 
 
colormap gray 
 
axis equal tight off 
 
 
counter = 1; 
 
[x y] = ginput(1); 
 
while ~isempty(x) 
 
    text(x, y, num2str(counter), 'horizontalalignment', 'center', 'color', 'r', 'fontsize', 14) 
 
    xold(counter) = round(x); 
 
    yold(counter) = round(y); 
 
    counter = counter+1; 
 
    [x y] = ginput(1); 
 
end 
 
screenshot_OUTFILE = [OUTFILE(1:length(OUTFILE)-4) '_firstframe.tif']; 
 
M = getframe; 
 
I2 = frame2im(M); 
 
imwrite(I2, screenshot_OUTFILE, 'tif'); 
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xstart = xold; 
 
ystart = yold; 
yold = ystart; 
 
xold = xstart; 
 
 
filt = zeros(fsize+1); 
 
for i=1:length(xold) 
 
 
    centerx = xold(i); 
 
    centery = yold(i); 
 
 
    rect = [round(centerx-fsize/2) round(centery-fsize/2) fsize fsize]; 
 
 
    if rect(1) <=0, 
 
    elseif rect(2) <= 0, 
 
    elseif rect(1)+rect(3)>size(I, 2), 
 
    elseif rect(2)+rect(4)>size(I, 1), 
 
    else 
 
        filt = filt + double(imcrop(I, rect)); 
 
    end 
 
    %imagesc(filt); 
 
    %axis equal tight off 
 
    %pause 
 
end 
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Finfo = aviinfo(INFILE); 
 
Nframes = Finfo.NumFrames; 
 
 
AllxData = zeros(Nframes, length(xold)); 
 
AllyData = zeros(Nframes, length(yold)); 
for framenumber = 1:Nframes, 
 
 
    % read in image, filter, and find cell bodies 
 
 
    I = double(imresize(frame2im(aviread(INFILE, framenumber)), scale)); 
 
 
    I = I/mean(mean(I))-1; 
 
    J = imfilter(double(I), filt); 
 
    J = (J-min(min(J)))/(max(max(J))-min(min(J))); 
 
    J = imhmin(J, threshval*graythresh(J)); 
 
    BW = imregionalmax(J, 8); 
 
    [y2 x2] = find(BW); 
 
 
    %imagesc(J); 
 
    %axis equal tight off 
 
    %hold on 
 
    %plot(x2, y2, 'ro') 
 
    %hold off 
 
    %pause(1) 
 
 
    % match up new cells with cells from last frame 
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    xnew = zeros(size(xold)); 
 
    ynew = zeros(size(yold)); 
 
    for i=1:length(xold), 
 
        %xold = x(i); 
 
        %yold = y1(i); 
 
        if xold(i)~=0, 
            rsquaredvals =(x2-xold(i)).^2 + (y2-yold(i)).^2; 
 
            if sum(rsquaredvals<=rmax^2)==1, 
 
                %keepinds(i) = find(rvals<=rmax^2); 
 
                xnew(i) = (x2(find(rsquaredvals<=rmax^2))); 
 
                ynew(i) = (y2(find(rsquaredvals<=rmax^2))); 
 
            elseif sum(rsquaredvals<=rmax^2)>1, 
 
                ind = find(rsquaredvals==min(rsquaredvals)); 
 
                xnew(i) = x2(ind(1)); 
 
                ynew(i) = y2(ind(1)); 
 
            end 
 
        end 
 
    end 
 
 
    % update filter; 
 
 
    filt = zeros(fsize+1); 
 
    for i=1:length(xnew) 
 
        if xnew(i)~=0, 
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            centerx = xnew(i); 
 
            centery = ynew(i); 
 
            rect = [round(centerx-fsize/2) round(centery-fsize/2) fsize fsize]; 
 
            if rect(1) <=0, 
 
            elseif rect(2) <= 0, 
 
            elseif rect(1)+rect(3)>size(I, 2), 
 
            elseif rect(2)+rect(4)>size(I, 1), 
 
            else 
                filt = filt + double(imcrop(I, rect)); 
 
            end 
 
        end 
 
    end 
 
 
    AllxData(framenumber, :) = xnew; 
 
    AllyData(framenumber, :) = ynew; 
 
 
    xold = xnew; 
 
    yold = ynew; 
 
 
    % plot tracks 
 
 
    imagesc(I); 
 
    hold on 
 
    plot(AllxData(1:framenumber, :), AllyData(1:framenumber, :), '-') 
 
    plot(AllxData([1 framenumber], :), AllyData([1 framenumber], :), 'x') 
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    hold off 
 
    axis equal tight off 
 
    title(['frame nmber ' num2str(framenumber)]); 
 
    pause(.01) 
 
 
end 
 
 
for i=1:length(xnew), 
 
    text(xnew(i),ynew(i), num2str(i), 'horizontalalignment', 'center', 'color', 'k', 'fontsize', 
14) 
 
end 
 
    screenshot_OUTFILE = [OUTFILE(1:length(OUTFILE)-4) '_lastframe.tif']; 
 
    M = getframe; 
 
    I2 = frame2im(M); 
 
    imwrite(I2, screenshot_OUTFILE, 'tif'); 
 
 
    AllxData = AllxData/scale^2; 
 
    AllyData = AllyData/scale^2; 
 
 
    save(OUTFILE, 'AllxData', 'AllyData', 'scale', 'fsize', 'rmax', 'xstart', 'ystart') 
 
 
    i = 1; 
 
    newcellxdata = [{['x cell ' num2str(i)]}; num2cell(AllxData(:, i))]; 
 
    newcellydata = [{['y cell ' num2str(i)]}; num2cell(AllyData(:, i))]; 
 
 
    XLS_tracking_data = [newcellxdata, newcellydata]; 
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    for i = 2:size(AllxData, 2); 
 
        newcellxdata = [{['x cell ' num2str(i)]}; num2cell(AllxData(:, i))]; 
 
        newcellydata = [{['y cell ' num2str(i)]}; num2cell(AllyData(:, i))]; 
 
 
        XLS_tracking_data = [XLS_tracking_data,  newcellxdata, newcellydata]; 
 
    end 
 
 
    XLS_OUTFILE = [OUTFILE(1:length(OUTFILE)-4) '.xls']; 
 
    xlswrite(XLS_OUTFILE, XLS_tracking_data, 'Tracking data', 'A1') 
 
 
    %MSDdata = process_tracked_data(OUTFILE); 
 
 
 
tracking_parameters_dialog.m 
 
function varargout = tracking_parameters_dialog(varargin) 
% TRACKING_PARAMETERS_DIALOG M-file for tracking_parameters_dialog.fig 
%      TRACKING_PARAMETERS_DIALOG, by itself, creates a new 
TRACKING_PARAMETERS_DIALOG or raises the existing 
%      singleton*. 
% 
%      H = TRACKING_PARAMETERS_DIALOG returns the handle to a new 
TRACKING_PARAMETERS_DIALOG or the handle to 
%      the existing singleton*. 
% 
%      
TRACKING_PARAMETERS_DIALOG('CALLBACK',hObject,eventData,handles,...) 
calls the local 
%      function named CALLBACK in TRACKING_PARAMETERS_DIALOG.M with the 
given input arguments. 
% 
%      TRACKING_PARAMETERS_DIALOG('Property','Value',...) creates a new 
TRACKING_PARAMETERS_DIALOG or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before tracking_parameters_dialog_OpeningFcn gets called.  
An 
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%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to tracking_parameters_dialog_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help tracking_parameters_dialog 
 
% Last Modified by GUIDE v2.5 01-Jun-2009 11:54:22 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @tracking_parameters_dialog_OpeningFcn, ... 
                   'gui_OutputFcn',  @tracking_parameters_dialog_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before tracking_parameters_dialog is made visible. 
function tracking_parameters_dialog_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to tracking_parameters_dialog (see VARARGIN) 
 
% Choose default command line output for tracking_parameters_dialog 
handles.output1 = []; 
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handles.output2 = []; 
handles.output3 = []; 
handles.output4 = []; 
%hObject; 
 
 
% Update handles structure 
guidata(hObject, handles); 
 
% Make the GUI modal 
set(handles.figure1,'WindowStyle','modal') 
 
%UIWAIT makes tracking_parameters_dialog wait for user response (see UIRESUME) 
uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = tracking_parameters_dialog_OutputFcn(hObject, eventdata, 
handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
 
varargout{4} = handles.output4; 
varargout{3} = handles.output3; 
varargout{2} = handles.output2; 
varargout{1} = handles.output1; 
 
% The figure can be deleted now 
delete(handles.figure1); 
 
%close(handles.figure1); 
%varargout{1} = handles.output; 
 
 
% --- Executes on button press in close_window_pushbutton. 
function close_window_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to close_window_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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%tracking_parameters_dialog_OutputFcn(hObject, eventdata, handles); 
 
handles.output4 = str2double(get(handles.threshval_edit, 'String')); 
handles.output3 = str2double(get(handles.step_size_edit, 'String')); 
disp(get(handles.step_size_edit, 'String')); 
handles.output2 = str2double(get(handles.filter_size_edit, 'String')); 
handles.output1 = str2double(get(handles.scale_edit, 'String')); 
guidata(hObject, handles); 
uiresume(handles.figure1); 
 
 
function scale_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to scale_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of scale_edit as text 
%        str2double(get(hObject,'String')) returns contents of scale_edit as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function scale_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to scale_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
function filter_size_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to filter_size_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of filter_size_edit as text 
%        str2double(get(hObject,'String')) returns contents of filter_size_edit as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function filter_size_edit_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to filter_size_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
function step_size_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to step_size_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of step_size_edit as text 
%        str2double(get(hObject,'String')) returns contents of step_size_edit as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function step_size_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to step_size_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function threshval_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to threshval_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of threshval_edit as text 
%        str2double(get(hObject,'String')) returns contents of threshval_edit as a double 
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% --- Executes during object creation, after setting all properties. 
function threshval_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to threshval_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
process_tracked_data.m 
 
function MSDdata = process_tracked_data(INFILE, OUTFILE, frames, FINFOSTR) 
 
 
if nargin ==0, 
 
    [INFILE INFILEPATH] = uigetfile('*.mat', 'Select Data File to Process'); 
 
 
    [frames, fitinds, FINFOSTR] = process_parameters_dialog; 
 
    endind = strfind(INFILE, '.mat'); 
 
    defaultOUTFILE = [INFILE(1:endind-1) '_' FINFOSTR '_processed.mat']; 
 
    INFILE = [INFILEPATH INFILE]; 
 
     
    [OUTFILE OUTFILEPATH] = uiputfile('*.mat', 'Select Output File', defaultOUTFILE); 
 
    OUTFILE = [OUTFILEPATH OUTFILE]; 
 
     
end 
 
 
load(INFILE) 
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MSDdata = calculate_MSD(AllxData, AllyData, frames, fitinds, 1); 
 
 
MSDdata.info = FINFOSTR; 
 
MSDdata.frames = frames; 
 
MSDdata.fitinds = fitinds; 
 
 
save(OUTFILE, 'MSDdata'); 
 
 
MSD = MSDdata.MSD; 
 
shortD = MSDdata.shortD; 
 
confinedD = MSDdata.confinedD; 
 
confinedAlpha = MSDdata.confinedAlpha; 
 
 
MSD_XLS_data = {}; 
 
FIT_XLS_data = {'fit parameters'; 'short time D'; 'confined D'; 'alpha'}; 
 
for i=1:size(MSD, 1), 
 
    MSD_XLS_data = [MSD_XLS_data [{['MSD cell ' num2str(i)]}; num2cell(MSD(i, :)')]]; 
 
    FIT_XLS_data = [FIT_XLS_data [{['cell ' num2str(i)]}; num2cell([shortD(i); 
confinedD(i); confinedAlpha(i)])]]; 
 
end 
 
 
AVG_FIT_data = {'Average fit parameters'; 'short time D'; 'confined D'; 'alpha'}; 
 
AVG_FIT_data = [AVG_FIT_data [{''}; num2cell([MSDdata.shortAvgD; 
MSDdata.confinedAvgD;MSDdata.confinedAvgAlpha])]]; 
 
 
XLS_OUTFILE = [INFILE(1:length(INFILE)-4) '.xls']; 
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xlswrite(XLS_OUTFILE, MSD_XLS_data, ['MSD data ' FINFOSTR], 'A1') 
 
xlswrite(XLS_OUTFILE, FIT_XLS_data, ['Fit data ' FINFOSTR], 'A1') 
 
xlswrite(XLS_OUTFILE, AVG_FIT_data, ['Fit data ' FINFOSTR], 'A7') 
 
 
 
process_parameters_dialog.m 
 
function varargout = process_parameters_dialog(varargin) 
%PROCESS_PARAMETERS_DIALOG M-file for process_parameters_dialog.fig 
%      PROCESS_PARAMETERS_DIALOG, by itself, creates a new 
PROCESS_PARAMETERS_DIALOG or raises the existing 
%      singleton*. 
% 
%      H = PROCESS_PARAMETERS_DIALOG returns the handle to a new 
PROCESS_PARAMETERS_DIALOG or the handle to 
%      the existing singleton*. 
% 
%      PROCESS_PARAMETERS_DIALOG('Property','Value',...) creates a new 
PROCESS_PARAMETERS_DIALOG using the 
%      given property value pairs. Unrecognized properties are passed via 
%      varargin to process_parameters_dialog_OpeningFcn.  This calling syntax produces 
a 
%      warning when there is an existing singleton*. 
% 
%      PROCESS_PARAMETERS_DIALOG('CALLBACK') and 
PROCESS_PARAMETERS_DIALOG('CALLBACK',hObject,...) call the 
%      local function named CALLBACK in PROCESS_PARAMETERS_DIALOG.M with 
the given input 
%      arguments. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help process_parameters_dialog 
 
% Last Modified by GUIDE v2.5 29-May-2009 12:09:14 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
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gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @process_parameters_dialog_OpeningFcn, ... 
                   'gui_OutputFcn',  @process_parameters_dialog_OutputFcn, ... 
                   'gui_LayoutFcn',  [], ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
   gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before process_parameters_dialog is made visible. 
function process_parameters_dialog_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   unrecognized PropertyName/PropertyValue pairs from the 
%            command line (see VARARGIN) 
 
% Choose default command line output for process_parameters_dialog 
%handles.output = hObject; 
handles.output1 = []; 
handles.output2 = []; 
handles.output3 = []; 
 
 
% Update handles structure 
guidata(hObject, handles); 
 
% Make the GUI modal 
set(handles.figure1,'WindowStyle','modal') 
 
% UIWAIT makes process_parameters_dialog wait for user response (see UIRESUME) 
uiwait(handles.figure1); 
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% --- Outputs from this function are returned to the command line. 
function varargout = process_parameters_dialog_OutputFcn(hObject, eventdata, 
handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{3} = handles.output3; 
varargout{2} = handles.output2; 
varargout{1} = handles.output1; 
% The figure can be deleted now 
delete(handles.figure1); 
 
 
% --- Executes on button press in close_window_pushbutton. 
function close_window_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to close_window_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
frames = str2double(get(handles.minframenum_edit, 'String')): 
str2double(get(handles.maxframenum_edit, 'String')); 
fitpts = str2double(get(handles.fitptsmin_edit, 'String')): 
str2double(get(handles.fitptsmax_edit, 'String')); 
FILEINFOSTR = get(handles.discription_edit, 'String'); 
 
 
handles.output1 = frames; 
handles.output2 =fitpts; 
handles.output3 = FILEINFOSTR; 
guidata(hObject, handles); 
uiresume(handles.figure1); 
 
 
function minframenum_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to minframenum_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of minframenum_edit as text 
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%        str2double(get(hObject,'String')) returns contents of minframenum_edit as a 
double 
 
 
% --- Executes during object creation, after setting all properties. 
function minframenum_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to minframenum_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
function filter_size_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to filter_size_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of filter_size_edit as text 
%        str2double(get(hObject,'String')) returns contents of filter_size_edit as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function filter_size_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to filter_size_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
function discription_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to discription_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of discription_edit as text 
%        str2double(get(hObject,'String')) returns contents of discription_edit as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function discription_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to discription_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
function maxframenum_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to maxframenum_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of maxframenum_edit as text 
%        str2double(get(hObject,'String')) returns contents of maxframenum_edit as a 
double 
 
 
% --- Executes during object creation, after setting all properties. 
function maxframenum_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to maxframenum_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function fitptsmin_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to fitptsmin_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of fitptsmin_edit as text 
%        str2double(get(hObject,'String')) returns contents of fitptsmin_edit as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function fitptsmin_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to fitptsmin_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
function fitptsmax_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to fitptsmax_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of fitptsmax_edit as text 
%        str2double(get(hObject,'String')) returns contents of fitptsmax_edit as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function fitptsmax_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to fitptsmax_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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confined_diffusion_func.m 
 
function y = confined_diffusion_func(P, x) 
 
 
A = P(1); 
 
B = P(2); 
 
if length(P)<3, 
 
    C = 0; 
 
else 
 
    C = P(3); 
 
end 
 
     
y = A*x.^B+C; 
 
 
 
calculate_MSD.m 
 
function MSDdata = calculate_MSD(AllxData, AllyData, frames, fitinds, flag) 
 
 
% if nargin == 0, 
 
%    [FILE FILEPATH] = uigetfile('*.m', 'Select data file to process'); 
 
%    FILE = [FILEPATH FILE]; 
 
% end 
 
% 
 
% load(FILE); 
 
 
%frames = frames1; 
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%fitinds = 5:10; 
 
xData = AllxData(frames, :); 
 
yData = AllyData(frames, :); 
 
cellnumbers = 1:size(AllxData, 2); 
 
 
totpoints = zeros(size(xData, 1), 1); 
 
sumMSD = zeros(size(xData, 1), 1); 
 
totdMSD= zeros(size(xData, 1), 1); 
 
MSD = zeros(length(cellnumbers), size(xData, 1)); 
 
dMSD = zeros(length(cellnumbers), size(xData, 1)); 
 
 
for cellnumber = cellnumbers , 
 
 
    x = xData(:, cellnumber)'; 
 
    y = yData(:, cellnumber)'; 
 
    r = [x; y]; 
 
    if sum(x==0), 
 
        inds = find(y==0); 
 
        max_framenum = inds(1)-1; 
 
    else 
 
        max_framenum = length(x); 
 
    end 
 
    clear rdiffsquared 
 
    if max_framenum>1, 
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        for i=1:max_framenum; 
 
            for j=1:max_framenum-i, 
 
                rdiffsquared(j) =sum((r(:, j+i)-r(:, j)).^2); 
 
            end 
 
            MSD(cellnumber, i) = mean(rdiffsquared); 
 
            dMSD(cellnumber, i) = std(rdiffsquared)./sqrt(length(rdiffsquared)); 
 
            totpoints(i) = totpoints(i)+1; 
 
            sumMSD(i) = sumMSD(i)+MSD(cellnumber, i); 
 
            totdMSD(i) = sqrt(sum(totdMSD(i)^2 +  dMSD(cellnumber, i)^2)); 
 
        end 
 
 
        %totpoints = totpoints + ones(1, max_framenum); 
 
        %sumMSD = sumMSD + MSD(cellnumber, :); 
 
 
        P1 = polyfit(fitinds, MSD(cellnumber, fitinds), 1); 
 
        shortD(cellnumber) = P1(1); 
 
 
 
 
 
        t = 0:min(50, max_framenum)-1; 
 
        fitinds2 = 1:min(max_framenum, 50); 
 
        P2 = lsqcurvefit('confined_diffusion_func', [10 1], t(fitinds2), MSD(cellnumber, 
fitinds2)); 
 
        confinedD(cellnumber) = P2(1); 
 
        confinedAlpha(cellnumber) = P2(2); 
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        if flag, 
 
            plot(t, MSD(cellnumber, fitinds2), '.') 
 
            hold on 
 
            plot(t, confined_diffusion_func(P2, t)) 
 
            hold off 
 
            xlabel('time (frames)') 
 
            ylabel('mean squared displacement') 
 
            title(['cell number ' num2str(cellnumber)]) 
 
            pause(.01) 
 
        end 
 
    end 
 
    %plot(1:i, MSD(cellnumber, 1:i), '*', inds, polyval(P, inds)) 
 
    %pause 
 
 
end 
 
 
avgMSD = sumMSD./totpoints; 
 
totdMSD = totdMSD./totpoints; 
 
 
 
P = polyfit(fitinds', avgMSD(fitinds), 1); 
 
shortAvgD = P(1); 
 
[n xout] = hist(shortD, 25); 
 
 
[nDc xDc] = hist(confinedD, 25); 
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[nAc xAc] = hist(confinedAlpha, 25); 
 
 
t = 0:length(x)-1; 
 
fitinds2 = 1:length(x); 
 
P2 = lsqcurvefit('confined_diffusion_func', [10 1], t(fitinds2), avgMSD(fitinds2)'); 
 
confinedAvgD = P2(1); 
 
confinedAvgAlpha = P2(2); 
 
 
if flag 
 
    figure(1) 
 
    errorbar(1:length(x), avgMSD, totdMSD, '.-') 
 
    hold on 
 
    plot(fitinds, polyval(P, fitinds), 'g-') 
 
    plot(t(fitinds2), confined_diffusion_func(P2, t(fitinds2)), 'r-') 
 
    hold off 
 
    xlabel('time (frames)') 
 
    ylabel('mean squared displacement') 
 
    title('Average mean squared displacement curve') 
 
     
    figure(2) 
 
    bar(xout, n) 
 
    hold on 
 
    plot(shortAvgD*[1 1],[0 max(n)], 'r-') 
 
    hold off 
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    ylabel('number of cells') 
 
    xlabel('average short time diffusion constant') 
 
 
    figure(3) 
 
    subplot(1, 2, 1) 
 
    bar(xDc,nDc) 
 
    hold on 
 
    plot(confinedAvgD*[1 1],[0 max(nDc)], 'r-') 
 
    hold off 
 
    ylabel('number of cells') 
 
    xlabel('average confined diffusion constant') 
 
    subplot(1, 2, 2) 
 
    bar(xAc,nAc) 
 
    hold on 
 
    plot(confinedAvgAlpha*[1 1],[0 max(nAc)], 'r-') 
 
    hold off 
 
    ylabel('number of cells') 
 
    xlabel('average confinement exponent') 
 
 
end 
 
 
MSDdata.MSD = MSD; 
 
MSDdata.dMSD = dMSD; 
 
MSDdata.avgMSD = avgMSD; 
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MSDdata.totdMSD = totdMSD; 
 
MSDdata.shortD = shortD; 
 
MSDdata.shortAvgD = shortAvgD; 
 
MSDdata.confinedD = confinedD; 
 
MSDdata.confinedAlpha = confinedAlpha; 
 
MSDdata.confinedAvgD = confinedAvgD; 
 
MSDdata.confinedAvgAlpha = confinedAvgAlpha; 
 
 
 
 
 


