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Abstract

We define several Kripke models sound for inhabited formulas of the ground-level
intensional and extensional Martin-L5f Type theories with one universe. They are
Kripke model versions of the realizability style semantics developed by various authors,
amongst them Allen, Beeson and Aczel.

1 Introduction

There is a striking similarity between the syntax of Martin-Lof Type theory and certain
Realizability interpretations for intuitionistic logic, which has been exploited by Aczel,
Allen, Beeson and others to develop a type-free semantics for the Nuprl and Martin-Lof
theories. Using recent work on capturing realizability semantics in Kripke models we are
able to give several Kripke models for these theories, formalized in HA and in other abstract
applicative systems. Before proceeding to these results, let us briefly discuss the role and
utility of Kripke Models.

Kripke models were developed in 1963 by Saul Kripke, although similar interpretations
were at least implicit in earlier, topological models of Tarski from the 1940’s and in Beth’s
work in the 1950’s. They were subsequently generalized by a number of researchers who
strengthened some of the algebraic and topological features of the semantics. These models
have proven to be a powerful tool for studying the metamathematics of intuitionistic formal
systems. Much of this power lies precisely in the fact that they bring to bear on the study
of formal systems an exceptionally powerful and versatile arsenal of algebraic, topological
and categorical tools, yielding new consistency, conservativity and independence results.
Perhaps the greatest strength of the semantics as developed in Saul Kripke’s original pa-
per, is that it supplies the means for effective systematic construction of counterexamples
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forced by specific requirements, in the spirit of Cohen’s independence results for set the-
ory. Our effort here is to develop this kind of tool for type-theory, along the lines already
begun by Mitchell and Moggi for simply typed lambda Calculus in [20], and by the author
for realizability-style interpretations [17]. The models developed in this paper present a
number of characteristics of interest: they require the use of covers, or delayed satisfaction
of disjunctive and ezistential formulas, as well as the inhabitation of void in the semantics:
we allow inconsistent, or “fallible” nodes. This has proven to be a critical component in all
known intuitionistically valid completeness theorems (see [16,17]). As with the realizability-
Kripke models in the reference just cited and in the Effective Topos (see Hyland’s [13]), the
truth-value structure imposed by type theory is that of the degrees of inhabitation of defin-
able sets (or just the almost-negative ones!). That is to say, the Heyting Algebra formed
by taking equivalence classes for all definable almost-negative sets (in HA or some applica-
tive theory like APP) of their existential closures under provable equivalence, constitutes a
natural domain of truth values of type theory.

2 An APP-definable model for MLf,

For our purposes it will be convenient to adopt the notation and syntax for “intensional,
ground-level Martin-Lof Type Theory” as presented in Troelstra and van Dalen’s recent
[21], as well as their formulation of the Realizability semantics for this theory. 2 We start
with a brief recapitulation of the syntax and realizability semantics of ML}.

2.1 The Syntax of ML}

Language: The terms are built up from variables z,,zs,...;41,¥2,...; and constants
(e.g. the integer 0) using lambda-abstraction, a recursor R, 4(n,t0,t1), application of terms
Ap(t1,t2) or simply (t1t2), case-analysis Dy (t, to, t1), pairing p(z,y) (also written (z,y)),
unpairing po, p1, and left and right inclusions (into a sum) k; (:=0,1).

Terms satisfy the following reduction rules:

R;4(0,t0,t1) ~ to (1)
Ry (St to,t1) ~  tifz,u/t, Try(t, to, 1)) (2)
Ap(Az -t,t") ~  t[z/t] (3)
pi(to,t1) ~ t; (¢t=0,1) (4)
(Pot,p1t) ~ t (5)

'Realizability formulas are almost negative, as is shown in [21]. Therefore it suffices to consider just
these sets in the model defined in the next section.

2A much stronger version of these semantics, taking computation rules into account, and extending to
the whole type hierarchy and to higher-level universes was first developed by Stuart Allen [2]. This is beyond
the scope of this report, and will be taken up in a sequel.



Dx,y(k,'t,to,tl) ~ t,'[.z‘,‘/t] (i: {0, 1}) (6)

Types are built up from the natural number type nat, and possibly other atomic, so-
called “small” types, via the join A + B, dependent sum Yz : A - B(z), dependent product
[Iz:A-B(z) and, if A is a type and s and ¢ are terms, identity formation I(A4, s, ).

The intended meaning of these notions is captured in the (copious) rules of inference,
type formation, equality and computation, which are included in the appendix.

On Semantics for Intuitionistic Type Theory We assume the reader is familiar
with the motivation and ideas behind the Martin-Lof style formulation of intuitionistic
type theory, as found in e.g. Martin Lof’s 1984 notes [19], Beeson’s [4], Troesltra and
van Dalen’s [21] (upon which our formulation is based), or as fleshed out and extended
in the Nuprl proof development system [6]. We cannot undertake a discussion of the
subject here. Suffice it to say that such theories are based in a very strong way on the so-
called Curry-Howard isomorphism (see e.g., [9,12]). Propositions are treated as types, and
are inseparable from their proofs, which appear in the syntax as inhabiting or witnessing
terms. Even syntactic well-formedness of formulas (types) is built into the rules of inference.
This makes such theories difficult to model using “conventional” type-free semantics. In
addition to the challenge of providing a sufficiently computational interpretation, one must
find a way of accounting for proofs, formulas and syntactic well-formedness, all at once.
For all of these reasons, interpretations in the spirit of Kleene’s Realizability ([14,21,4])
are good candidates. Realizability effectively maps propositions to sets of witnesses or
inhabiting terms in a way that mirrors the type-theoretic interpretation of implication and
quantification. It provides a way of talking about evidence for propositions in arithmetic
or abstract applicative theories without requiring us to formalize a provability predicate.
It is not surprising, then, that the Kripke semantics developed here is a “forcing analogue
of realizability.” Both propositions (the nodes of our interpretation) and terms play a vital
role in the construction of the model.

Since the notions used here are somewhat non-standard, before proceeding to the con-
struction of the model, we give the briefest of summaries of Realizability and Kripke seman-
tics, and of the APP-realizability interpretation of ML}. We assume the reader is familiar
with some type-free formulation of partial applicative structure, such as Fefferman’s or
Troelstra and van Dalen’s APP, or Beeson’s EON. (see [21] or [4] or [16,17] for different
developments). For the most part it will be sufficient to think of APP as a theory of partial
application, with a formalized convergence predicate |, Kleene-style conditional equivalence
of terms ¢ ~ s, and partial s and k combinators, pairing and unpairing operators p, po, p1,
an if__then_else operator, and a recursor r(z,y, z). We require a natural number predicate
(i.e. a sort) N which is true of the natural numbers. See the abovementioned references for
details. The only novel feature here is the addition of a “dummy” proposition nat whose



use will be explained below 3.

2.2 A Thumbnail Sketch of Kripke and Realizability semantics

The kind of Kripke model K we will be concerned with here is, in fact, a variant of the
standard one in the literature. Strictly speaking, it is a fallible Beth model, because

e nodes are allowed to be inconsistent, i.e. some p may force every ¢, provided not
every node does so.

o We relax the definition of forcing of disjunction and existential quantification. Our
variant, an instance of forcing with covers over a site (see Troelstra and van Dalen’s
[21], or Grayson’s [11]), can be thought of as an analogue of Beth’s forcing with bars.
4

Therefore, we define a Kripke/Beth structure B = (B, <p,D, |- g, Cov) over a language
L (containing e.g., relation symbols, R;, and constant symbols ¢; ® ) as follows:

1. (B,<p) is a pre-order. Members of B are called nodes.

2. D assigns a domain of individuals to nodes in a monotone way:
p<¢— D(p) C D(g).

3. |I- is a monotone binary relation between nodes and atomic sentences over L:

p<qg & pl-R(a) = q|-R(a)

satisfying the covering property (if every member of a cover of p forces a sentence,
then so does p):

Cov(p,S) & (Vg € S)(q|l~¢) = pll-¢

where:

At several points in our argument, when defining an enrichment by constants APPC , and in the proof
of theorem (2.8), we will need to think of an explicit set of axioms. To this end we have spelled out in some
detail the necessary arguments, using Beeson’s axioms, in the appendix.

*As a first approximation, we can think of forcing with covers as relaxing the condition that a node p
of a Kripke model force a series of formulas by allowing instead that some set of nodes associated with p
do the forcing. Such an associated set could be interpreted as a set of future states after state p: in which
case we are tolerating some delay in the confirmation that p really does force something. See the references
cited for other, more topological insights into this idea.

®since APP can be formulated relationally by taking App as a ternary predicate, this is all we need.
Adding function symbols to the formalism is easy: the n-ary function symbol f is interpreted by the function
f at node p if for every ¢ above p f: D(g) — D(q)" and the graph of f restricted to D(p) is contained in
the graph of f at all higher nodes.



4. Cov is a binary relation between nodes p and sets of nodes S C B, satisfying a series
of cover azioms. Rather than give a general formulation of cover axioms here, we will
limit ourselves to giving the one required for our argument, in definition 2.7 below.
(See Grayson’s [11] for a quite general formulation, or Troelstra and van Dalen, op.cit.
for the original definition of forcing over a site, due to Joyal, and based on earlier ideas
of Grothendieck.)

The forcing relation is extended to all sentences ¢ over the language £ as follows:
L. pl-p& ¢ iff pll-p and p -9
2. pll-¢ Vv ¢ iff (38)Cov(p,S) and (Vg € S)g |- or g|-v
3. P o= o iff (V2 p)gll~¢ = q|-9
4. p |-3z¢(2) iff (3S)Couv(p,S) and (Vg € S)(3a € D(g))q|l~¢(a)
5. p |FYep(z) iff (Vg 2 p)(Ya € D(q))g|l-¢(a).

A more complete discussion of this and related realizability Kripke models and categories
can be found in [16,15].

Interpreting Dependent Types We need to add one twist to the definitions just given.
Using a syntax close to that of conventional first-order logic, we will be interpreting depen-
dent type ezpressions of the form, e.g., [[z : D - A(z). At first sight, this might seem like a
natural “correlate” to the first-order predicate (Vz € D)(A(z)). However, in the type-free
first-order language of arithmetic (or of APP) the latter formula is usually understood to
be an abbreviation for (Vz)(D(z) — A(z)). This clearly violates the spirit of the Martin-L&f
theory, in identifying type membership z : D, with what —for want of a better word — we call
parametricity, D(z). In our type free semantics we will remedy this by using realizability
to distinguish between the two notions: z : D will become |(D)"|(z) where the bars denote
realizability, and the 7- superscript denotes a translation to be defined below. However, in
the syntaz we will require an extension of the definition of well-formed formula to include
formalized bounded quantification and some additional formulas as well:

Definition 2.1 If D is a formula and 6(z) is a formula with = free, then (Voep)f(z) and
(3zeD)8(z) are formulas, with free variables FV(8)U FV(D)\ {z} . If D is a formula then
Tp s an atomic formula with one more variable free than D. Tp(a) is simply a formalization
of a: D into our “estended first-order syntaz.”™ We will often write a : D for Tp(a).”

®The reader may wonder why we don’t write rp(a) as | D|(a), in keeping with the ideas expressed above.
This is really what we are doing, only we are able to simplify the presentation somewhat with this device,
by tacitly applying the idempotence of realizability (see [21]) and avoiding such nasty looking expressions
as || D|(a)|(}), i.e. b realizes that a realizes ...
the context will make it clear whether we are referring to the syntax of the type theory or the extended
first-order formulae.



All schemas of first-order logic and the axioms of APP are to be extended to the new
formulae. Their meaning and role in our work should be made clear by the way they are

treated in the semantics. We must now add to the definitions of Kripke forcing given above
to include these new sentences.

[«9)
-

Pl~(3zep)b(z) = (3S)(Cov(p,S))(Vq € S)(3a € D(q))p|l~a : D & b(a)
PI-(Vaep)8(x) £ (Yg>p)(¥Ya € D(g))gll-a: D — b(a)
For a a constant in D(p),
pla:D  (orp|~7p(a))
is defined as follows:

[=9

pla:CVD = (38)(Cov(p,S))(Yg € S)

(¢ll-poa =0 and g||-p1a:C)V (q|-poa# 0 and g|~pia: D)

def
pla:(3ep)i(z) = pl-poa: D and p|-pia: é(poa)
d

plra: (Vee)d(z) ¥ (Vg > p)(Va € D(@))(gl-u: D = qll-au: 6(u))
For atomic D, the p|l-a : D must also be specified by the atomic forcing assignment for the
model in question. Every occurrence of an application au above is strict: it is understood
that au |. Also, every ocurrence of the disjunctive flag condition poa = 0 or poa # 0 is
preceded by a tacit N(poa): the condition is decidable for natural numbers. For clarity, it
is made explicit in definition (2.2) below.

-

We briefly recall the definition of APP realizability. The strong similarity to the defi-
nitions of the corresponding types in ML} is what makes this semantics so natural.

The following definitions hold for APP as well as the enrichment by new constants
APP C we will be considering below.

Definition 2.2 Let A, B be formulas in one free variable over the language of APP (with
possibly a denumerable set of new constants added). Then

(Ax B)(z) ¥ A(por)s B(pi2)
(4+B)z) ¥ N(poz)e (pox = 0 — |4](p12)) & (poz # 0 — |B|(p12))
(A= B)z) = (Yy)(A(y) — 2yl & B(zy))

Let A(z,y) be a formula in two free variables, and D a formula. Then (3, 4aep(z,y)) and
(I1zep A(z,y)) are formulas in one free variable given by

<9
@
-

(CeenA(@9))(2) E  D(poz) & Alpoz, p12)

(MeepAle,9))(2) € Vy[D(y) — (2v) | & Ay, 29)]



Definition 2.3 Let A, B be sentences over the language of APP. Then we define induc-
twely the realizability formulas |A| in one free variable as follows®:

=¥

ef

If A isprime |A|(z) = A&z

|nat|(e) dzsf N(e)

A« B ¥ |4/ x|B|

lAvBl ¥ |4+|B|

|A-B| ¥ |4]= (B
3uepAW) ¥ (T, AW)I(2)), ie. {z : [D|(poz) & | A(po2)|(p12)}
VAW E (MyeplAW(2)), ice. {z: forallyl|D|(y) — =y | & |A(y)|(zy)]}-

-4l ¥ jAsL| = vy-la|y)

Realizability of unbounded universal and existential quantification is just the special case
of the corresponding bounded ones with D taken to be some tautological atomic sentence,
such as 0 = 0. We will also insist that nothing realize L.

In order to state and prove our main theorem below, we will need to define the realiz-
ability of the special formulas a : D, (that is to say, |7p(a)]).

def
la : D|(z) = |D|(a).
In the literature the statement |A|(z), i.e. = realizes A, is usually written zr A. Note

that if A is a formula in n variables over APP (or APPC ) then the above clauses define
an associated realizability formula |A|(z) in n + 1 variables.

2.3 The Interpretation of ML into APP

We now give a whirlwind sketch of the realizability interpretation of the intensional ML}
theory, similar in spirit to that developed by Allen [2], Beeson [4], Troelstra and van Dalen
[21], based on earlier work of Aczel[1] and on Martin-Léf’s own informal semantics. Our
definitions are very similar to those in Troelstra and van Dalen’s textbook [21].

We first describe a translation of ML{ types A into predicates [A] in the language
L(APP) (or, with slight variations, the language of Beeson’s EON [4]), and of ML}, terms

8We explicitly created the proposition nat occurring below, so as to have a sentence which is realized
precisely by the set of natural numbers. It is our way of dealing with the “coincidence of type and data”
inherent in a : nat having the same meaning as N(a). This is not indispensible in type theory: in Curry’s

type theory, or the polymorphic lambda calculus, nat is inhabited by proofs of the induction schema and
not by “atomic data”.



tinto APP- or EON- terms t*. We then define an induced translation of ML Jjudgements
© or contexts, into APP predicates [0 ].

The translation of terms is given by: To each variable z we assign a variable z* of APP,
such that z # y = 2* # y*.

0+ o, (51)* € 5(¢%);
wxdef * ok k[, ok k] gk
Ry y(t,to, t1[z,y])* = rig(Ay*z™ - 12", y*])t*;

f d
Az - 1) L g g, (tot1)* & a5z

def * def *
(to,t1)* E pt3t, (pit)* € pit

(k,'t)* d_=if p:t* (Z €0, 1);
Day(t, tolz], t[y])" & d(to[z”/p1t*])(ti[y"/P1t*])0(pot™)

(the A on the right-hand side is defined in APP);
For types, define:

(t€0,1)

[nat] &f {z : N(z)}
def

[[Mz:4-BI1E ] [B()]={y:Va([4](z) = [B(z)](¥)},
z€[A]

[Cz:4-B]E Y [B(2)]= {pay: [Al(z) A [B(z)](¥)},
ze[A]

[4+ B]E {2 : N(poz) A [(poz = 0 A [A](p12)) V (poz # 0 A [B](p12))]}

and if s* and ¢t* have been defined,

[I(4,s,)] ¥ {0: s* = '}

Judgements are translated as follows. A context (z1 1 A1,...,2n ¢ Ap) is translated as

[A1 D= A - A [4a (7).
[t: A]E [A](t);
[4=B]E [4](z) o [B](z);

[t=s: ATE ¢ = s A [A](") A [A](s);

Q.

[Atype] oo (i.e., true?).

Troelstra and van Dalen obtain the following soundness result for their translation. A
similar result is to be found in Beeson, op.cit.



Theorem 2.4 IfML{ +T > 6, then APP F [I']— [6].
An immediate corollary:

Corollary 2.5 Suppose the type A is provably inhabited in ML, that is to say, there is a
proof in ML}, ending with the sequent

>t:A
for some term t. Then APPF [A](t*)

In order to mediate between type theory and the first-order language of partial appli-
cation, we will need to make the following “reverse translation” conventions:

(nat) ¥ na (7)
(4+By = (ayv(By (8)
(Mz: 4 B(z)) £ (Yaeuy)(B(@))] (9)
(Te:A-B@) E (reay)(B(2))] (10)

Lemma 2.6 (Reverse-Translation lemma) Let A be a type in MLY . Then the follow-
ing equivalence is provable in APP :

[41(e) = 1(4)"I(e)

proof: A straightforward induction argument. [nat ](e)is defined to be N(e), whereas
(nat)" is nat, and |nat|(e) = N(e). Proceeding inductively, we have:

[A+ B](e) = (poe = 0& [A](p1€e)) V (Poe = 1 & [B](pie))

which, by the inductive hypothesis, gives:

[A+ B](e) = (poe = 0% |(A)|(p1€)) V (Poe = L& |(B)"|(p1e))
the right-hand side of which is |(4 + B)"|.
The existential case:
[Xz:A4-B](e) = [Al(poe) & [B(poe)](pie)
I(4)"|(poe) & [(B)" (Poe)l(p1e)
|(3ze4)(B(2))"|(e)
oA Bl(e)

We leave the proof of the [] - case to the reader.
Now we are in a position to define a Kripke model, K, sound for ML} in the sense that

A is provably inhabited in ML} = K |= (4)"



The Model K

Let APPC stand for the theory APP enriched with a denumerable set C of fresh constants
{ci 1 i € w} together with the extension of all relevant axiom schemas to include these
constants (e.g. ¢ | for every such ¢, and the equality schemas, such as (A1)-(A8) in the
appendix). C will play a role similar to the set of witnesses from Henkin’s famous proof
of the completeness theorem (see Chang-Keisler’s treatment in [5]). Let A be the set of all
closed (variable free) terms of APPC .

Definition 2.7 The nodes of K are formulas A(z) of APPC in one free variable. The
order relation < is given by

A>B <= (3t€ A) APPC FVz[A(z) > te | & B(tz)). (11)

When (11) obtains we may write A é B ort: A — B if we want to make reference to
the witnessing term t.
The domain function D is constant and always equal to A. The atomic forcing
relations are given by
AlFe =  A>|y (12)

and, in particular,
AlFa:D <= A>|a:D| (13)

where ¢ and D are atomic in (12). K is equipped with the following notion of cover:
For A€ |K| and S a set of nodes of K we have Cov(A,S) whenever

1. (YBeS)(3te A)B > 4)

2. whenever for some D € K we have (VB € S)(3tg € A)B é D) then there is an
f
f € A such that A> D

i.e.,, Cov(A,S) <= A is the greatest lower bound of S.
Note that for atomic ¢, |¢|(z) def ®, so (12) reduces to
Al-¢ <= APPC FVz(A(z)— ¢).

Theorem 2.8 Equivalence (12) obtains for all sentences ¢ That is to say, let ¢ be any
(possibly nonatomic) sentence over the language of APPC . Then

Al-e = A2 gl

10



proof: The atomic case follows from the specification of our Kripke model. For any
formulas free of special subformulas a : D, (3;¢p)8(z), or (Vzep)(z) this is the same
result as in [16]. So we will consider only the disjunctive and special formulas (which
are the only ones required to interpret MLS ). First, however, we will need the following
lemma, which essentially asserts that for the trivial special case of a formula which already
supplies the inhabiting witness our Kripke model K satisfies the conclusion of the preceding
theorem in the obvious required way: it respects the choice of witness. The lemma is an
immediate consequence of the definition of forcing of special formulas a : D.

Lemma 2.9 For any node A, any term a € A and any formula D, we have:

Az
A|lFa:D < A Za|a:D|,

that is to say:
APPC +Vz(A(z)— |D|(a)).

proof: The atomic case follows by definition.

Disjunction: suppose A|~a: C Vv D. Then
All-poa =0&pia:C or A|-poa# 0&pya: D.
Recall that by definition of forcing of ground atomic formulae,
Al-poa =0 = APPC F Vz(A(z) — poa = 0).
Therefore, by inductive hypothesis,
Vz(A(z) — poa = 0& |C|(p1a)) or Vz(A(z) — poa # 0 & | D|(p1a)),
provably in APPC . But in either case, we have Yz(A(z) — |C V D|(a)
Suppose A||-a : (3¢p)f(z). Then
A|l-poa: D and A||-p1a: 6(poa).
By inductive hypothesis, we have:
APPC FVa(A() - | D(poo)

and
APPC F Va(A(z) — [8(poa)|(p1a))

from which
APPC FVz(A(z) — |D(poa)l & |8(poa)|(p1a))

11



Az-
which is the conclusion A 2“ la : (3zep)b(z)|. The converse is straightforward and left to
the reader.

Now, suppose A ||-a : (Yz¢p)b(z), i.e. for every term u in A and every B > A.
B|-u:D = B ||~au : 6(u). (14)

Then we have: A X |u:D| > A and A X |u: D| > |u: D| by the canonical projections, so,
by the inductive hypothesis A X |u : D| ||-u : D hence, by (14) and the inductive hypothesis
again,

APPC FVaVy(A(z) & |u: D|(y) — |0(u)|(an)), (15)

where |u : D|(y) means |D|(u). Now, since u may be taken to be any term in A, we pick a
constant ¢ in C not present elsewhere in (15). We would now like to argue that, since ¢ is
a “fresh” constant, we can quantify over it in (20). This is the whole point of adding the
fresh constants C. But we cannot quite yet do so: ¢ may occur in the premisses APPC .
Nonetheless, the occurrence is only in finitely many axioms To(z) from the the logical part
of APPC , in the axiom schemas for equality, t substitutivity, etc. Picking a specific
formulation of APP, we easily show, (see appendix IT) that we can effectively quantify
over ¢ obtaining:

APPC FVo(A(z) - V=(|D|(2) > [6(2)|(a2))). (16)
which is the conclusion of the lemma.

Conversely, suppose
APPC F Va(A(z) - Vu(|D|(u) — 8(u)|(an))). (17)

Pick u in A and assume that some function f witnesses B > A, and that B |%: D. Then,
by inductive hypothesis,
APPC FVz(B(z)— |D|(u))

and
APPC +Vz(B(z)— fz | & A(fz))

so by (17) we must have
APPC +Vz(B(z)— |0(u)|(au))
50, by, inductive hypothesis again, B |~au : §(u) so A |~(Y,ep)8(z).

The remaining cases for the lemma are straightforward.

12



proof of theorem 2.8: We begin with disjunction. Suppose A |¥ V 6. Then, for some
cover S of 4 we have
(VB € S)B||-¢ or B|-9.

By the induction hypothesis, for each B € S there is a term tg in A such that
APPC +FVz(B(z) - tgz | & ¢(tgz)) (18)

or
APPC FVe(B(z) — tgz | &60(tg)). (19)

Suppose (18) holds. Then Az -(0,tpz) : B — |¢ V 6|. If (19) holds, then Az - (1,tgz): B —
leV 8|. So, in all cases, B > |pV 8]. Now, by definition of cover in this model, we have
A > |pV 0|, as we wanted to show.

Conversely, if for some term f in A we have, provably in APPC |, f:A—>|eVvi,
then, letting

Ao(z) = A(z)efr=0
Ai(z) = Al@)efr=1

We have f witnessing both 4y > || and 4; > ||. Now all that remains to be shown is
that the pair of formulas {Ao, 4,} is a cover for A. This means showing that, for some A

s t
- terms s and ¢, and some node D, if A9 > D and A; > D then there is an h in A with

h
A > D. Clearly we need only set

e e -if fz = 0then sz else tz.

existential case: Suppose A II-(3zep)8(2), i.e., for some cover S of A, and every member
B of S, there is a term a in A with

Bll-a:D & B]|-6(a).
By the preceding lemma, we know that
APPC FVz(B(z) — |D|(a))
and by the inductive hypothesis, for some term ¢

APPC FVz(B(z) -tz | &|0(a)|(t2)).

h
Letting h be defined by Az - (a,tz), we have B > |(3,¢p)f(z)|. By the assumption that
S covers A, we must have 4 > |(3,¢p)8(z)|.
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Conversely, suppose f € A and

APPC FVz(A(z) - fz | «|D|(po(f2)) & |8(pPo(f2))I(p1(f2))).

Proceeding somewhat like the disjunctive case, we split 4 into a cover by pulling back along
f. Let S be the formula in two free variables given by

S(z,z) f A(z) & po(fz) = 2.10
Then, for each a in A we have, trivially,
APPC FVz(S(e,z) — |Dl(a) & |6(a)|(p1(f2))).
Thus, by the inductive hypothesis, we have, for each a in A,

S(a,z)|Fa:D & S(a,z)|-8(a).

All that’s left to show is that the family of nodes S o {S(a,z) : a € A} is a cover of A.
But suppose, for some node R and each a in A, there is some term te with

APPC FVz(S(a,z) - tez | & R(t,2)).

Then pick a ¢ L(APP U {R(z), A(z)}). By combinatory completeness, there is a term
h in A in which a does not occur, such that

APPC Fh )] &ha~t,.

Thus
APPC +Vz(S(a,z) - (ha)z | & R((ha)z)). (20)

By the same argument given to justify (16) we quantify over the “fresh” constant a, ob-
taining;:
APP FVaVz(S(z,2) - (hz)z | & R((h2)z))
and hence, by the definition of S,
APPC FVz[A(z) & (hpo(fz))a | & R((hpo(fz)))],
so A > R. This establishes Cov(A,S). Therefore
All-(3zep)b(z).

equality between terms is always strict: fz | is built-in to this formula.
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universal case: Suppose A ||~(V;¢p)8(z). Then for every B > 4 and a € A,
B|-a:D = B|-6(a).

As in the proof of the preceding lemma, we argue that A x |a : D| > A4, and A X la: D| >
la : D| via the canonical projections, hence, applying the inductive hypothesis, we have
A X la:D|>|6(a)l,i.e. ,for some f

APPC FVazVy[A(z) & a: D|(y) = f(z,y) | «|8(a)|(f(z,9))].
But |a : D|(y) means |D|(a), so, substituting a for y and putting r Y AzAy- f(z,y) we have,
with a little currying:
APPC +Va[A(x) - (ID|(a) > (hz)a | & |8(a)[((hz)a))].
Now, choose a to be a fresh constant in C, and universally quantify, obtaining

APPC FVz[A(z) = Vz(|D|(z) — (hz)z | &|0(2)|((hz)2))),
in other words, 4 § |(VzeD)b(2)).

Conversely, suppose for some A-term h,
APPC FVz[A(z) - hz | &Vu(|D|(u) - (hz)u | &|8(w)|((hz)u))]. (21)
f
Pick a in A, and suppose B > A and B||~ a : D. By the lemma B > |a : D|, so we have,
using (21),
APPC FVz[B(z) - h(fz) | & (h(fz))a | |6(a)|(h(fz))a].

So, for w = Az - (h(fz))a, A § |6(a)|, whence, by the induction hypothesis, 4 |-8(a). But
then, we have shown A ||-(V,¢p)f(z), which proves the theorem.

From this we can immediately conclude:

Corollary 2.10 ¢ is true in the Kripke/Beth model K <= it is provably realizable in
APP.

proof: If ¢ is forced by every A then {0} |-, where {0}, the root node of K, is the
predicate z = 0. But

{0} > ||
< (3f € A)APP I (Vz)(z = 0 — |¢|(fz))
< (3 € A)APP + |¢|(£(0))
<= (Jee A)APP I |p|(e)

15



so being forced by every node is equivalent to being APP-realizable.!!

Corollary 2.11 (Soundness of the interpretation) Let A be a type in ML}, provably
inhabited in thqt theory. In other words, for some term u, the sequent > u: A s
provable in MLy. Then K |= (A)"

proof: By the corollary (2.5) to Troelstra and van Dalen’s translation theorem we
have APPF [A](u*), from which, by the “reverse translation” lemma (2.6) we obtain
APPL |(A)"|(u*). By corollary (2.10), we have K |= (4)" i

Variants of the model

Our construction provides a countable collection of non-equivalent models for MLf) since
the model K 4 taken by restricting attention to all nodes above a given node A is itself
a Kripke model. It is not hard to see that K has countably many nonequivalent nodes.
Pick any node A, and let B be a sentence over the language of APPC independent of
APPC U {3zA(z)} We cannot have 4 > B, since this means that for some term f

APP FVz(A(z) > fz | &« B).
But then, by existential elimination and arrow introduction, we have
APP | (3zA(z)) — B,

contradicting independence. (Similarly we cannot have A > —~B). We can, of course iterate
this (tacitly using Godel’s incompleteness theorem to supply new sentences), obtaining a
B; not below A or B, and then a By, etc. In effect our Kripke model lifts independence
results in APP to independence results in ML} . If the realizability of ()" is independent
of APP then 6 cannot be forced by the root node of K, nor can its negation, hence neither
is provably inhabited in ML .

Conclusion, further directions

The preceding results are a first step in defining a model theory for dependent types.
The models described herein are, in many respects, similar to those induced by realizability
interpretations: their truth-value structure is that of the degrees of inhabitation of definable
sets. It is perhaps not entirely surprising that models of type theory depend on how we
model inhabitation itself. It would be interesting to see if that is the whole story. No

1This is true because we can insist on e being a closed term in the pure language of APP, and add
APP F 3z|p|(z) to the list of equivalences. Just abstract any “fresh” constants from e (by the a-lemma in
the appendix) to get e ~ €'a; - - - an where the a; are in A and ¢’ is in L(APP). Then generalize on the a;
and instantiate them to your favorite constant in the language, say 0.
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complete semantics has been found as yet. This would provide an algebraic characterization
of validity in the Martin-L&f type theory and is clearly the next topic to investigate. Also
unexplored are ways to extend the semantics described here to higher universes, as well
as how to incorporate computation rules in an explicit way, as in Nuprl [6] and in Allen’s
type-free model in [2].

Our model is reasonably constructive: validity in Kis r.e. by corollary (2.10). Perhaps
an even more constructive semantics would be achieved by harnessing the proof of the
constructive completeness theorem for Beth models due to Friedman, Veldman, de Swart,
Lopez-Escobar, Troelstra and van Dalen (see [21]), along the lines of the realizability model
in [17]. This is tantamount to generating models by a tableau procedure, which is of obvious
interest for automating deduction and the search for countermodels in such systems.

What can we hope to learn from developing this model theory? One of the main features
of systems like that of Martin Lof is the incorporation of term-extraction into the theory
itself at all levels of the hierarchy. The challenge of providing a complete semantics here is
really to characterize the process of term extraction itself, which is of central importance
to computer science.
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Appendix

A The Syntax and Rules of ML}

Structural Rules

I' > A type
|4
Tz:A>z: 4 @ ¢ FV(4)
T > Atype r, '
V(TuTl
Tz:A, T > 6 T g FV( )
General Equality Rules
t:A t=1t:4 A type
t=t: A t: A A=A
t=t':A4 A=B
t’:tIA B:A
t=t:4 t=t":4A A=1B B=C
t=1t": A A=C
I'z:4, T/ >0 ' >t:4
L, T'[z/t] > O[z/t]
I, z:4, T/ > Btype I'>t=¢t:4
T, Mz/t] > Blz/t] = Bx/t']
I'Nz:4, "> s: B I'>t=¢t:4

L, T'[z/t] > s[z/t] = s[z/t']: B[z/t]

t

A

B

A=
t:B
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(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)



Type-induction rules of ML},

z:A > Btype

nat type

z:A > Btype
S z:A-Btype

Atype B type
A + Btype

t: A st A Atype
I(A,t,s,) type

Introduction and elimination rules of ML.

1 : nat

0: t —_—
na St : nat

t: nat to : Az /0] z:nat, y: 4 > t, : Alz/Sz]

[Iz:A-Btype

z :nat > Atype

Rey(t,t0,11) : Alz /1]

R, , binds 2 and y in #;),
Y

z:4A>1t:B z:A > Btype

Az-t:(J[]z:A-B)

t:([]Jz:A4-B) t:A z:A > Btype

tt' : Blz/t']

t:A t' : Blz/t] z:4 > Btype

p(t,t): (3 z:A-B)
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(31)

(32)

(33)

(34)

(35)

(36)

(37)



t:(Xz:4A-B) Atype t:(Xz:4-B) z: A > Btype

40

pot: A it : Blz/pot] (40)

t:A Atype B type t:B Atype B type (41)
kot: A+ B kit:A+ B

t:A+ B z:A > to:Clz/koz] y:B > t;:Clz/kyy] z:A+ B > Ctype
Dqy(t,to,t1) : Clz/1]

(42)
(Dz,y binds z in tg and y in t1, o € FV(t;), y € FV(to)).
t=t:4 Atype
43
e:I(A,t,t) (43)
t": I(A,t,1) Atype
44
t=t:A (44)
Reduction rules (CONV-rules)
R;y(0,t0,t1) ~ 1o (45)
nyy(st,to,tl) (a4 tl [ZIJ, u/t,Tz,y(t,to,tl)] (46)
Ap(Az -t, 1) ~  t[z/t] (47)
pi(to,t1) ~ t; (i=0,1) (48)
(Pot, p1t) ~ 't (49)
Dz,y(kit,to,tl) > t,‘[.’E,‘/t] (l : {0, 1}) (50)
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Computation Rules

to : A[O] z:N-y:A> t;: Alz/Sz]

51
R,,y(O, t(), tl) = to : A[O] ( )
t:N to : A[0] T:N,y: A > t;: Alz/Sz] z:N > Atype (52)
Rr,y(St,toJl) = tl[z’ y/t, Rz,y(t,t07tl)] : A[St]
Az -t:([Jz:A-B) t:A z:A > Btype (53)
(Az - t)(t") = t[z/t] : B[z /t']
(to,t1): (X z:A-B) Atype (to,t1): (X z:A4-B) z:A > Btype
po(to,tl) =1p: A pl(thtl) =1 : B[Il?/to]
(54)
t:(>Xz:4-B) (55)
(pot,p1t)=t: (X z: A-B)
Zo Ao > to: C[Z/ko.l‘o]
t: A Ty A > t:Clz/kyazy] z:Ap+ A1 > Ctype (56)
Dzy 2, (kit, to,t1) = ti[zi/t] : Clz/z;t]
For I-types:
. !
t:1(A,s,s) (57)

t=e:I(A,s,s)

We may also extend our theory to include new “small types” A;, A,,..., provided

we introduce axioms A; type ,A; type , etc. Also, we may extend ML by definitions to

introduce primitive recursive function symbols, e.g., + and x with reduction rules given by
the standard interpretation of these operations.

B Some useful facts about applicative theories

We spell out a particular axiomatization of the theory of partial application, using Beeson’s
EON because of its somewhat compact presentation. Our aim is to state those properties
that were used in the proofs above, and establish a few technical lemmas.
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The logic of partial terms (LPT): This logic includes the usual rules for propositional
logic plus the following rules of inference:

B—- A A—> B .
RV m REI m ((l? not free in B)

and the following axioms (note that Al, A2, A4, A5, A6 are axiom schemas using metavari-
ables ¢, s, t; for arbitrary terms and A7, A8 schemas for special terms.)

(Al)VzA et |— Aft/2]

(A2) At/z] &t |— 3zA

| is a unary (post-fix) relation symbol in the language

~ is a defined binary relation symbol

t~s=t|Vs]—> t=s.
We have the following axioms governing |, ~ and =

(A3)z=z&(z=y—y=12)

(Ad) t ~ s & p(t) — ¢(s)

(AS)t=s—>t] &s|

(A6) R(ty,...,tp) = t; | &...&tn | for any atomic formula R(ty,...,t,) and any terms
t1y oo tn.

(A7) (i) For each constant symbol ¢ : ¢ |

(A8) (ii) For each variable z : z |

We note that (A5) is a special case of (A6). Another important special case of (A6) is
(A6’) f(tl,tg, ...,tn) =t l &g l &... &1, l

N.B. (A6) does NOT imply that for any formula ¢, p(t1,....,t,) — t; | &...&t, | .
Consider,e.g. -t |-t | .

PCA : We now introduce the theory PCA over the logic of partial terms.
Language: Two constants, k and s.
A binary function symbol Ap
We will never explicitly write Ap. We use juxtaposition, (st) , or just st , to denote Ap(s, t).
Axioms of PCA:
Those of LPT together with
(PCAl) kzy ==z
(PCA2) sayz ~ z2(yz) & szy |
(PCA3) k#s
We now define EON, Beeson’s Elementary Theory of Operations and Numbers ([4]). It is
PCA together with
constants mo, 71, p,d, Sy, Py, 0,and a predicate letter N, with axioms

EON1 pxy | &mo(pzy) = z & mi(p2y) =y
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EON2 N(0)&Vz(N(z) — [N(Sn(z)) & Pn(Snz) = z & Syz # 0])
EONS3 Vz(N(z)&z # 0 — N(Pyz) & Sn(Pnz) = )
EON4 Definition by integer cases
N(a)e N(b)sa=b— d(a,b,z,y)=1z
N(a)e« N(b)ga#b— d(a,b,z,y)=y
EONS5 Induction schema: for each formula ¢
¢(0) & Vz[N(z) & p(z) = @(Snz)] = Va(N(z) - ¢(z)).

We will often write
if a = b then z else y for d(a,b,z,y)

(z,y)  for pxy.
Proofs of the following results about EON (and related systems) can be found in Bee-
son’s book [4] or [21].

Theorem B.1 (The Recursion Theorem) There is a term R such that PCA proves
Rfl &[g=Rf - Va(gz ~ fgz)]

Theorem B.2 Let M be a model of EON. Then every partial recursive function is numer-
ically representable in M.

Theorem B.3 (Numerical and Term Existence properties) If
EON | 3zA4
then there is a term t such that
EON Ft ]| & A(¢).

IfEON F 3n(N(n) & A(n)) there is a numeral m = s(s...s(0)...) such that EON F A(m).
N——

m

Let C = {c;|i € w} be a denumerable set of fresh constants. EONC is the theory EON,
together with the constants in C, the axioms ¢ | for each ¢ € C and all schemas extended
to the new language. This means, e.g. we have the following new instances of the axioms:

VeA&gc|l— Alc/z]
tcep(t) > ¢(c)

etc. However, no ¢ € C occurs in a non-logical axion of EONC .

The following lemma is essentially a restatement of the so-called combinatory complete-
ness property of the lambda calculus:
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Lemma B.4 (The a-lemma) Let a be a constant in C and define A/a to be the set of
all terms of A in which a does not occur.
Then e € A = 3h € A/a such that

EONC F ha ~e.

Proof: By induction on the structure of terms in A. First we distinguish a special case:
if a does not occur in e, let h = ke
if @ does occur in e :
case 1: e is a. Then h is Az -z = skk.
case 2: e is (tu) and by the induction hypothesis, there are terms t/,u’ € A/a such that
t ~ t'a and u ~ u'a are provable in EONC . Hence (tu) ~ (t'a)(u'a) so h ~ (st'u’) 1
Note: The notation A/{¢y,...,c,} will mean all terms ¢ € A in which none of ¢y, ..., c,,
occur.

Lemma B.5 (Generalization on Constants) Suppose T is any theory extending LPT,
the Logic of Partial Terms, and a is a constant only occurring in the logical part of T. Then
if

Tt p(a) (58)

we can conclude
T F Vzp(z).

This is an elementary result in standard logic texts, and is included here only because of
the slight technical distinction that a necessarily occurs in some of the premisses of T as
part of the requirement for extending LPT. All we have to show is that the presence of
extra logical axioms does not interfere.

Let Tp be the finitely many axioms of T occurring in the proof of (58) in which the
constant a does not occur, and I'g(a) the finite conjunction of axioms involving a. By
definition of extensions of LPT, the conjuncts v(a) of I'(¢) must be of the form (A1) - (A7),
eg. a~z — (6(a) - 6(z)). It suffices to observe that each one of these conjuncts, v(a)
remains a theorem of EONC when a variable is substituted for the constant a. Therefore,
we can write (58) as

To & To(a) - ¢(a)

which implies that
ToF To(a) — ¢(a)

with a no longer present to the left of the turmstile, hence:
To F Vz[To(z) — ¢(2)].
But since Ty - Vz(Tg(z)) by the observation just made, above, we have

T FVzp(z).
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