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The general framework of sequential decision-making captures various im-

portant real-world applications ranging from pricing, inventory control to

public healthcare and pandemic management. It is central to operations re-

search/operations management, often boiling down to solving stochastic dy-

namic programs (DP). The ongoing big data revolution allows decision mak-

ers to incorporate relevant data in their decision-making processes, which in

many cases leads to significant performance upgrade/revenue increase. How-

ever, such data-driven decision-making also poses fundamental computational

challenges, because they generally demand large-scale, more realistic and flexi-

ble (thus complicated) models. As a result, the associated DPs become compu-

tationally intractable due to curse of dimensionality issues.

We overcome this computational obstacle for three specific sequential

decision-making problems, each subject to a distinct combinatorial constraint

on its decisions: optimal stopping, sequential decision-making with limited

moves and online bipartite max weight independent set. Assuming sample ac-

cess to the underlying model (analogous to a generative model in reinforcement

learning), our algorithm can output ε-optimal solutions (policies/approximate

optimal values) for any fixed error tolerance ε with computational and sam-

ple complexity both scaling polynomially in the time horizon T , and essen-

tially independent of the underlying dimension. Our results prove for the first



time the fundamental tractability of certain sequential decision-making prob-

lems with combinatorial structures (including the notoriously challenging high-

dimensional optimal stopping), and our approach may potentially bring forth

efficient algorithms with provable performance guarantee in more sequential

decision-making settings.
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CHAPTER 1

INTRODUCTION

Many real-world decision-making processes are fundamentally sequential,

where a sequence of decisions must be made in a chronological order, each

based only on currently available information. Typical examples include in-

vestors’ portfolio management, companies’ pricing/inventory control and gov-

ernments’ pandemic management. Such sequential decision-making problems

have long been studied in the operations and the computer science literature,

often boiling down to solving stochastic dynamic programs (DP) or Markovian

decision processes (MDP). Recently, amidst the ongoing data revolution, new,

profound challenges are posed by the increasingly common desires of exploit-

ing relevant data streams (e.g. past sales records, customers’ personal infor-

mation) to make better decisions. Such data-driven decision-making generally

demands large-scale, more realistic and flexible models, which renders the asso-

ciated DPs/MDPs computationally intractable due to curse of dimensionality is-

sues. This raises the natural questions that, for what types of tasks can we hope

of designing computationally tractable algorithm that yields provably near op-

timal decision-making policies? This thesis aims at providing a solution to this

question.

To advance our rigorous study of the “hardness” of a task/the “complexity”

of an algorithm, we first specify a general mathematical framework for sequen-

tial decision-making. We consider a discrete-time problem. Let T be the finite

time horizon. Suppose X = (Xt, t = 1, ...,T ) is a stochastic process that mod-

els the exogenous data streams. Suppose a decision maker (DM) can observe

the evolution of X throughout T. In each time period t ∈ [1,T ], he/she needs

to pick an action at from some action set At(a1, ..., at−1, x1, ..., xt), based only on
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x1, ..., xt, the realized trajectory. A reward/cost rt(a1, ..., at, x1, ..., xt) is generated

following the action choice. A feasible policy π : (π1, ..., πT ) ∈ Π is formally de-

fined as a set of T functions, where πt maps a realized trajectory (x1, ..., xt) to a

probability distribution over the action set At(a1, ..., at−1, x1, ..., xt). The sequential

decision-making problem concerns finding the best policy π, i.e.

OPT
∆
= sup

π∈Π

(
inf
π∈Π

)
E
[ T∑

t=1

rt(a1, ..., at−1, πt(X1, ..., Xt), X1, ..., Xt)
]
, (1.1)

where the expectation is taken over the randomness of X as well as π. This is a

general framework for sequential decision-making: it captures almost all mod-

els studied in the literature, including MDPs in particular.

Within such a mathematical framework for sequential decision-making, an

algorithm A should be thought of as a function that maps an input, i.e. a task

instance, to an output, i.e. some decision-making policy. The complexity of

such an algorithm A, in line with the theory of computational complexity, is

measured by the total computational time relative to the size of the input, sub-

ject to a given precision requirement on the output. Loosely speaking, when the

computational time scales polynomially in the size of the input, the algorithm

is considered efficient, and the task is considered (efficiently) approximable.

The notion of “efficiency” or “approximability” depends crucially on the

means by which algorithm A accesses the task. Which piece of information

does the algorithm takes as input? We need to first specify the answer to this

question before conducting any rigorous analysis. Historically, the study of the

MDPs (in the so called tabular case) assumed the algorithm possesses a com-

plete knowledge of the task. Namely, the state space, the action space, the tran-

sition probabilities, the reward/cost functions and the time horizon/discount

factor of the MDP are all known to the algorithm. However, this assumption is

highly impractical especially in the data-driven setting. Indeed, for many tasks,
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the precise knowledge of the underlying exogenous data such as its joint dis-

tribution is barely available. Even when all information is available, the often

prohibitively large/infinite state space of X renders encoding such information

impossible.

More realistic alternatives were proposed in the reinforcement learning (RL)

literature, where the algorithm is assumed to only have sample access (in various

ways) to the underlying process X. A popular such sampling model is the gen-

erative model, first introduced in [164]:

Generative model: There is a simulator that, for any t ∈ [1,T ] and any re-

alized trajectory x1, ..., xt−1, can draw independent samples of Xt conditional on

Xi = xi, i = 1, ..., t − 1. Additionally, for any action sequence a1, ..., at, it can evalu-

ate reward/cost rt(a1, ..., at, x1, ..., xt).

In this thesis, we assume the generative model, although it’s worth pointing

out that there exists a handful of other sampling models under which various

complexity and hardness guarantees were obtained ([160]). With the generative

model, we can now formally state the central question of concern:

For what types of sequential decision-making tasks does there exist an algorithm

that can find an “ε−optimal” policy with probability at least 1 − δ, with (1) the number

of calls to the generative model and (2) the computational effort required to manipulate

the samples both depend polynomially on T and independent of the size of the state

space of X ?

This question has been studied for over two decades in the theoretical RL lit-

erature ([160]). Perhaps unsurprisingly, an efficient approximation algorithm

that can universally solve all sequential decision-making tasks does not exist.

3



Indeed, we have

Theorem 1.0.1 (Lower bound of [164]). SupposeA is any algorithm for MDP tasks

that is given access to only the generative model, and that takes as input a state s and

ε (hence output ε-approximation of the to-go value at state s). Then there exists an

MDP instance on whichAmust make at least Ω
(
(1
ε
)T ) number of calls to the generative

model.

Due to this negative result, one natural research direction is to study special

structures of sequential decision-making tasks/MDPs that permits the existence

of efficient approximation algorithms. Such a direction remains highly active in

RL research. People have studied problems with linear parametric/low rank

structures (see e.g. [156], [256], [257], [158], [204], [19], [238], [110], [157], [183]

among others), characterizing precise structures under which efficient approxi-

mation algorithms exist. In operations management, researchers also made sig-

nificant contribution in this direction. A number of works investigated prob-

lems restricted to simple (e.g. i.i.d.) underlying dynamics, which in many cases

guarantees the existence of efficient approximation algorithms (e.g. [15, 71, 249],

for a detailed literature review check Chapter 3). There are also a number of

heuristic methods, including the approximate dynamic programming (ADP)

method, first introduced by [243], and information relaxation methods, first in-

troduced by [68], among many others (see later chapters for detailed literature

review). These methods enjoy a great empirical success, but they often do not

come with strong theoretical guarantee.

The approach taken in this thesis deviates significantly from all previously

mentioned works. Indeed, our study focuses on sequential decision-making

tasks where the decisions are subject to certain combinatorial constraints. On

the one hand, various combinatorial structures such as cut, matching, packing
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etc. arise frequently in real world decision-making scenarios across all applica-

tion domains. On the other hand, imposing such combinatorial constraints on

decisions reduces the total number of feasible policies, which may potentially

reduce the computational effort required, leading to efficient algorithms. A typ-

ical example that we study is the optimal stopping problem. In an optimal

stopping problem, the DM irrevocably determines whether to stop/continue in

each time period based on the realized trajectory. Here the implicit combina-

torial constraint is that, given any realized trajectory x1, ...., xT , the number of

total stopping actions chosen throughout T periods equals one. Optimal stop-

ping is a special case of sequential decision-making with important practical

applications, and we are able to show the existence of efficient approximation

algorithms for this problem (see Chapter 2). We want to remind our reader that

the combinatorial (stopping) structure plays a vital role in the problem’s ap-

proximability here. Indeed, consider a famous sequential decision-making task

known as the binary trajectory tree ([164]). This task has a binary action set just

like the optimal stopping problem, but without the stopping constraint, so that

the DM is allowed to choose arbitrarily one of the two actions in each time pe-

riod. It turns out that this seemly simple task is actually the hard instance for

Theorem 1.0.1!

We want to comment that imposing combinatorial constraints generally does

not trivialize the computational problem, especially in the data-driven setting

where the underlying process X can be high-dimensional and with complicated

dynamics. Indeed, the optimal stopping problem with a high-dimensional X

is long believed to be computationally challenging and intractable ([243, 193]).

The theoretical (in)approximability of such a problem, or problems with vari-

ous other combinatorial structures has not been systematically studied in the
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literature. Determining the approximable and coming up with efficient approx-

imation algorithms for such problems are meaningful from both an applied and

a theoretical point of view.

1.1 Overview

This dissertation thesis investigates three specific decision-making tasks, each

subject to a distinct combinatorial constraint on decisions. The existence of

efficient approximation algorithms is guaranteed in all three cases, positively

answering our central research question. In Chapter 2, we study the fundamen-

tal problem of high-dimensional optimal stopping. This problem is with wide

applications across operations management, economics, computer science and

control, and of central importance to the fields of applied probability and math-

ematical finance. we develop a new methodology for efficiently approximately

computing the optimal value/stopping policy, contrasting the popular belief

that such problems are intractable. This surprising result is built on a novel dis-

covery of an equivalent formulation (in the form of an infinite expansion) of the

optimal stopping DP. In Chapter 3, we study a fairly general class of problems

subject to a “limited-move” constraint, effectively generalizing our result for op-

timal stopping. The class of problems we consider captures a large number of

important real-world decision-making examples, including the dynamic pric-

ing of a product under the limited price change business rule, and the evaluation

of high-dimensional financial derivatives(swing options) with a restricted num-

ber of exercising opportunities. Viewing each time point of action change as an

optimal stopping time, we leverage the results of Chapter 2 to build efficient

approximation algorithms with provable performance and computational time
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guarantees. In Chapter 4, we focus on the problem of online maximum weight

independent set in bounded-degree bipartite graphs. This sequential decision-

making problem is subject to a network-type constraint, i.e. the independent

set constraint. Combining several sophisticated techniques, we propose a novel

efficient approximation algorithm whose computationl time scales only linearly

in the time horizon for any fixed error tolerance, and is effectively independent

of the underlying dimension.
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CHAPTER 2

BEATING THE CURSE OF DIMENSIONALITY IN HIGH-DIMENSIONAL

OPTIMAL STOPPING

2.1 Introduction

2.1.1 Overview of problem

Optimal stopping is a fundamental model of sequential decision-making under

uncertainty. It finds wide applications across a variety of areas including op-

erations management, finance, economics, statistics and computer science, and

has been extensively studied for over 70 years. The basic setting of a discrete-

time optimal stopping is as follows: a decision maker (DM) observes a random-

evolving process. At each time period, an irrevocable decision of whether or

not to stop must be made by the DM. A STOP decision results in a reward/cost,

which depends on the underlying stochastic process. The goal is to find the op-

timal policy that maximizes the expected reward/minimizes the expected cost.

The study of high-dimensional optimal stopping was initiated over 30 years

ago in the field of mathematical finance, motivated by the need to price complex,

multivariate financial derivatives (see e.g. [26]). Due to the big-data revolu-

tion and the corresponding, growing demand for data-driven decision-making,

today’s real-world optimal stopping tasks are becoming increasingly compli-

cated. For example, modern epileptic seizure detection is driven by the elec-

troencephalogram(EEG) data stream, which is generated by multiple electrode

“sensors” (in some cases more than 20) and is typically highly non-stationary

([228, 227]). As another important example, the vital pandemic management
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decisions of lockdown/reopen needs to be based on massive amount of infor-

mation such as the dynamics of the daily infected cases. In such optimal stop-

ping tasks, the underlying stochastic processes are often high-dimensional and

with non-i.i.d., discontinuous, and path-dependent dynamics. Such problems

typically have no simple analytical solution, thus substantial attention was di-

verted to numerical/computational methods.

Unfortunately, it is generally understood that such high-dimensional path-

dependent optimal stopping problems are computational intractable, suffering

from the curse of dimensionality. Indeed, such problems can have a massive state

space with exponentially (in the dimension, time horizon, and/or both) large

size and discontinuous dynamics, which is unbearable for vanilla dynamic pro-

gramming (DP) to handle. This is in sharp contrast to the one-dimensional, i.i.d.

“secretary” type of optimal stopping problem that is easy to solve. Coping with

the curse of dimensionality has thus become a central theme in the literature of

optimal stopping in the past two decades.

Considerable effort has been devoted to the design of fast and near-

optimal approximation algorithms for high-dimensional optimal stopping. Pop-

ular approaches include approximate dynamic programming (ADP) methods

([193],[244] etc.), dual-based methods ([225], [142], [13], [79], [108] etc.) and deep

learning methods ([32, 33] etc.). To sidestep the computational challenge, these

existing approaches usually implement certain dimension reduction heuristics

(such as introducing basis functions/basis martingales). Many such heuristic-

based approaches enjoy excellent performance on test examples/ in practical

tasks. However, they typically don’t come with strong approximation guaran-

tees in theory (often with fundamental dependence on e.g. the quality of the

basis functions etc.).
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Motivated by the need to rigorously describe the performance of approx-

imation algorithms, a systematic framework was developed in computer sci-

ence and operations research. In particular, for a general optimization problem,

polynomial-time-approximation-schemes (PTAS) refer to such algorithms that for

any fixed ε, the running time for achieving ε−optimality is polynomial in the

problem size (independent of specific problem instances). Algorithms which

guarantee the above with high probability are called polynomial-time-randomized-

approximation-scheme (PRAS). An optimization problem is considered tractable if

PTAS/PRAS exist. These classical definitions were later extended to sequential

decision-making problems (with optimal stopping a special case) by the rein-

forcement learning (RL) literature (see [160]), to categorize the various exist-

ing Monte Carlo based RL algorithms. Such algorithms assume the generative

model, in which (as we recall from Chapter 1) the access to the problem instance

(i.e. the underlying stochastic process and the reward/cost functions) is only

through a system simulator that can generate independent trajectories/samples.

In such settings, an analogy of PRAS refers particularly to an algorithm such

that (1). taking any fixed ε, δ as input, it can output an ε-approximation with

probability at least 1 − δ, and (2) the computational cost/ sample complexity

(number of independent calls made to the simulator) scales only polynomially

in the horizon and the dimension, independent of the specific underlying dis-

tribution/ dynamics. We shall simply refer to such algorithms as generative-

model PRAS hereinafter, and defer a more detailed discussion to the literature

review in Section 2.2.

The generative-model PRAS and related concepts provide us with a rigor-

ous framework within which Monte Carlo based approximation algorithms for

optimal stopping can be compared and analyzed. As we indicated in the pre-
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vious section, to our best knowledge, there has been no such generative-model

PRAS for optimal stopping appearing in the existing literature, nor is it clear

whether such algorithms even exist. In fact, although various works (particu-

larly those in mathematical finance) have achieved great empirical success, the

general belief prior to this work is that high-dimensional path-dependent op-

timal stopping is theoretically intractable (in the precise sense of polynomial

time inapproximability), at least without positing additional continuity or prior

knowledge of basis functions.

The main contribution of the current work is the (somewhat surprising) dis-

covery of a generative-model PRAS for optimal stopping, proving that high-

dimensional path-dependent optimal stopping problems are fundamentally

tractable (in the aforementioned sense). More precisely, for any fixed error tol-

erance (ε, δ), the algorithm we propose can output ε−optimal solutions (both

stopping policies and approximate optimal values) with high probability (at

least 1−δ) with computational and sample complexity both scaling polynomially

in the time horizon T , and essentially independent of the dimension D (beyond

the cost of generating samples from the simulator). Our algorithm works in to-

tal generality except for a boundedness requirement on the cost/reward, allow-

ing for arbitrary high-dimensional, non-stationary, non-Markovian underlying

processes and time/path-dependent cost/reward functions. In fact, beyond the

ability to draw independent trajectories/samples from the simulator, the algo-

rithm requires no prior knowledge of the probability law/transition probability

that drives the underlying process, a feature which may be desirable in applica-

tions ([63]).

Our algorithm is based on a novel expansion representation of the optimal

value of the stopping problem. This expansion is by nature different from all

11



existing representations, which typically rely on standard backward inductive

logic. In particular, the first term of the expansion coincides with the expected

path-wise minimum/maximum (i.e. the hindsight optimal value). The sub-

sequent terms are derived in a recursive manner, themselves expectations of

certain minima conceptually corresponding to various notions of regret (and re-

gret of regret). Our algorithm is derived from truncating this expansion after a

small number of terms. To yield any theoretical performance guarantees, many

DP based approaches would necessitate the computation of deeply nested con-

ditional expectations, where the depth of nesting scales with the time horizon T.

In contrast, our expansion yields a (normalized) error of 1
k with only k levels of

nesting. This key fact endows our algorithms with a runtime complexity that is

independent of the time horizon T. Furthermore, we believe that this expansion-

based technique is potentially applicable to other more complicated/general se-

quential decision-making and control problems.

2.1.2 Organization

The rest of the chapter is organized as follows. Following a literature review,

in Section 2.3, we define a general optimal stopping problem and describe our

main theoretical and algorithmic results: a novel expansion representation for

the optimal value, the rate of convergence of this expansion, and a (simulation-

based) generative-model PRAS inspired by the expansion (for both the optimal

value and the policy). Specifically, we also extend our algorithmic result to the

more practical maximization setting. In Section 2.4, we prove the validity of the

expansion. In Section 2.5, we prove several results related to the rate of conver-

gence. We provide in Section 2.6 the detailed algorithmic analysis. Numerical

12



examples are presented in Section 2.7. Finally, we conclude the chapter in Sec-

tion 2.8.

2.2 Literature review

As discussed earlier, there is a vast literature on optimal stopping in operations

research, mathematical finance and computer science. Traditionally, one large

stream of works takes a continuous-time perspective and is intimately con-

nected to the theory of partial differential equations (PDE). Related computa-

tional methods include numerical PDE (finite difference, finte element etc.) or

variational approaches. They generally aim at continuous-time problems with

certain model structures (e.g. the underlying process is Markov/evolves ac-

cording to an Ito process), which is not the main focus of the current work. Be-

sides, in the presence of high-dimensionality and path-dependence, these meth-

ods generally suffer from similar complexity related issues and/or require ad-

ditional continuity assumptions to achieve strong theoretical guarantees. We

refer the readers to e.g. [6], [3], [213], [215], [151], [198], [32], [31] for additional

background.

We mainly focus on the discussion of methods based on Monte Carlo sim-

ulation. Monte Carlo methods rose in popularity within the literature on high-

dimensional American option pricing/ optimal stopping in the 1990’s. These

methods use sampling, and certain dimension reduction techniques to approxi-

mate the dynamic programming (DP) equations and yield tractable algorithms.

From the late 1990’s to the mid-2000’s (and continuing today), one of the main

approaches taken was regression/approximate dynamic programming (ADP).

Here one fixes a family of basis functions to approximate the DP value functions.
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Seminal papers in this area include [244], and especially [193]. There was much

subsequent work on e.g. nonparametric regression, smoothing spline regres-

sion, recursive kernel regression, integer programming, reinforcement learning,

(deep) neural network and etc. (see [179], [111], [112], [172], [28], [173], [42],

[92], [29], [240], [56], [81], [133], and [33] etc.). These methods are largely heuris-

tic whose performance typically relies on how well the choice of basis functions

can approximate the true value functions. Most existing theoretical analyses for

these methods focus on their convergence to the best approximation within the

fixed set of basis functions. Such analyses appear in e.g. [93], [131], [60], [55], [36],

[34], [40], [237]. These methods don’t have generative-model PRAS-type the-

oretical performance guarantees, which is the key contribution of the current

work.

Building on the seminal work of [106], significant progress was made simul-

taneously by [142] and [225] in their formulation of a dual methodology for op-

timal stopping. Instead of finding an optimal stopping time, it formulates and

solves a dual optimization problem over the set of adapted martingales. Other

dual representations were subsequently discovered ([153, 159, 186]), and the

methodology was extended to more general control problems ([68, 222, 78, 45]).

Simulation approaches via dual formulation (e.g. methods approximating the

optimal dual martingale by appropriate value function approximations/basis

martingales/convex optimization techniques) have since led to substantial al-

gorithmic progress (see [13, 79, 41, 150, 174, 39, 62, 108, 91, 37, 184, 224] among

many others). Dual simulation approaches can yield upper bounds (in the con-

text of maximization/option pricing) which can be used as benchmarks to mea-

sure stopping policies. However, the quality of these upper bounds typically

depends on the expressiveness of the set of basis functions/martingales, or the
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quality of the initial estimation of the value functions. Consequently, they also

don’t have PRAS-type theoretical performance guarantees.

More relevant to our approach, a handful of iterative Monte Carlo methods

were proposed and analyzed in the literature. Similar to our own, these meth-

ods don’t use basis functions/martingales or a set of initial estimation of value

functions, instead they rely on policy-iteration type of recursive procedures to

gradually improve and approach optimality. [175] proposed a method that re-

cursively improves the set of stopping times, approaching the optimal stop-

ping policy. [39] exploited the dual representation and developed a recursive

primal-dual method that maintains both upper and lower bounds. A similar

idea appears in [79], where the authors defined an iterative procedure based

on so-called supersolutions which leads to an expansion for the optimal dual

martingale. Other relevant works include [54], [230] and [223]. Some of the

algorithms proposed in these papers have impressive performance on numer-

ical experiments, yielding tight bounds after only a few iterations, where one

more iteration often means evaluating one more level of nested conditional ex-

pectation with simulation. However, in theory these algorithms usually don’t

have a performance guarantee until the optimal value is achieved after T itera-

tions, which is the same level of nesting/complexity required by implementing

a naive backward induction (thus in theory impractical in the high-dimensional

and path-dependent settings). As a comparison, the expansion proposed in the

current work can output an approximate solution with explicit theoretical per-

formance bound after any finite number of iterations (independent of both T

and D), which is the key reason why it leads to theoretically efficient and near-

optimal algorithms.

More recently, a line of works utilizes deep neural network techniques to solve
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reinforcement learning (RL) problems, and in particular, high-dimensional

American option pricing/optimal stopping problems (see [173], [234], [32], [33],

[235], [180], [121] etc.). These works exhibit excellent numerical performance

when applied to optimal stopping problems. In fact, we use the extensive nu-

merical experiments of [33] as benchmarks in our own numerical experiments

(as we discuss in Section 2.7). Similar to the methods mentioned previously,

deep learning based techniques generally don’t have strong theoretical perfor-

mance guarantees, especially without additional continuity assumptions.

Our work is also generally related to the theory of approximation algo-

rithms and RL/machine learning. The formal concept of a PTAS/PRAS can

be found in standard textbooks, e.g. [254], while analogous notions of com-

plexity for sample-based algorithms in stochastic control/stochastic optimiza-

tion can be found in e.g. [140], [239], [187] and [100]. Certain work in rein-

forcement learning is of particular relevance. [163] introduced the concept of

a “generative model”, which is a black-box simulator only providing sampling

access to the underlying process/state. A formal description and discussion

of the generative-model PRAS in sequential decision-making/RL can be found

in [160]. Since it’s well known that the optimal stopping problem can be for-

mulated as a Markov decision process (MDP) (even if the underlying process

is non-Markov ), it can thus fit into the RL framework assuming the genera-

tive model. It turns out that for general generative-model RL problems, in a

certain precise sense an algorithm’s complexity needs to either depend on the

number of state-action pairs (typically formalized in models requiring one to

apriori specify an action for every state, see e.g. [20], [233]), or to scale exponen-

tially in the time horizon T (see e.g. [163],[165]), hence suffering from the curse

of dimensionality. Our work, however, shows that generative-model PRAS ex-
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ists for high-dimensional path-dependent optimal stopping. We believe that

there is a deeper connection between the current work and the related works on

generative-model RL problems, and we leave a further investigation as an open

problem for future research.

Finally, although PTAS and PTAS-related concepts build the most popular

framework for assessing approximation algorithms in computer science and op-

erations research, there are also other frameworks proposed in other literatures.

In certain specific scenarios generative-model PRAS may not be the most ap-

propriate algorithmic requirement. As an example, [38] introduced the concept

of semi-tractability, which requires an algorithm to return an ε approximation

with a sample complexity growing slower than ε−D as ε → 0 and D → ∞, and

exhibits stochastic mesh methods with such a property under additional con-

tinuity assumptions. Such alternative notions of tractability may be especially

relevant in settings where the discrete-time problem arises as a discretization

of an underlying continuous problem (as in some financial models for options

pricing).

2.3 Main Results

In this section we rigorously define the general optimal stopping problem of

interest, and state our main results: a novel expansion representation of the

optimal value, the rate of convergence of the expansion, and its algorithmic

implications.
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2.3.1 Formulation of problem and notation

Let X = {Xt, t ∈ [1,T ]} be a general (possibly high-dimensional and non-

Markovian) discrete-time stochastic process. For t ∈ [1,T ], let X[t]
∆
= (X1, . . . , Xt)

be the time t partial trajectory. Let Xt be a D dimensional vector where

D ≥ 1. Let {rt : RD×t → R+, t ∈ [1,T ]} be a sequence of general (possibly

time-dependent) measurable cost functions mapping trajectories X[t] to non-

negative reals. The problem of general optimal stopping is that of computing

OPT
∆
= infτ∈T E[rτ(X[τ])], with T the set of all stopping times adapted to the nat-

ural filtration F = {Ft, t ∈ [1,T ]} generated by the process {Xt, t ∈ [1,T ]}. This

formulation fits into the general framework that we introduced in Chapter 1.

Remark. In the current work we mostly frame our results in terms of the problem

infτ∈T E
[
rτ(X[τ])

]
instead of the maximization counterpart. This is convenient and nat-

ural in light of our approach, which recurses on modified problems with cost functions

which are decreasing in the number of recursions, and for which the optimal stopping

value decreases to zero. For an alternative view we refer the reader to the parallel

work [85] which connects optimal stopping to the minimum cut problem in the the-

ory of network flows. In general our results for the minimization context can be con-

verted to analogous results in the maximization setting through transformations such

as supτ∈T E[Zτ] = E[maxi∈[1,T ] Zi] − infτ∈T E
[
E[maxi∈[1,T ] Zi|Fτ] − Zτ

]
, and we artic-

ulate some explicit guarantees for the maximization setting in both our main results

and numerical experiments. Occasionally it will also be convenient to assume that

{rt, t ∈ [1,T ]} has been normalized, so that rt ∈ [0, 1] for all t ∈ [1,T ], and we clearly

articulate whenever such an assumption is enforced.

Additional notation. For t ∈ [1,T ], let ℵt denote the set of all D by t matrices

(i.e. D rows, t columns) with entries in R, so the time t partial trajectories X[t] ∈
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ℵt. Let Zt
∆
= rt(X[t]), where we write Zt(X[t]) if we wish to make the dependence

explicit, and assume that Zt is integrable for all t. The optimal stopping problem

of interest can thus be stated as OPT = infτ∈T E[Zτ].

2.3.2 Novel expansion representation for OPT

Simple intuition.

We begin by giving the simple intuition behind the expansion. We wish to

compute OPT = infτ∈T E[Zτ]. First, it follows from a sample-path argument that

infτ∈T E[Zτ] ≥ E[mini∈[1,T ] Zi]. We next turn this straightforward bound into an

equality by compensating with a remainder term, which is characterized by a

new optimal stopping problem. To explicitly express this remainder term, we

introduce a specific martingale
{
E
[
mini∈[1,T ] Zi|Ft

]
, t ∈ [1,T ]

}
, i.e. the Doob mar-

tingale of r.v. mini∈[1,T ] Zi, adapted to filtration F . The mean of this martingale is

equal to E[mini∈[1,T ] Zi]. By the optional stopping theorem, E
[
E
[
mini∈[1,T ] Zi|Fτ

]]
=

E[mini∈[1,T ] Zi] for any stopping time τ ∈ T , we thus have that

E[Zτ] = E
[

min
i∈[1,T ]

Zi

]
+ E

[
Zτ − E

[
min

i∈[1,T ]
Zi|Fτ

]]
.

Taking infimum from both sides, we conclude that

OPT = E
[

min
i∈[1,T ]

Zi

]
+ inf

τ∈T
E
[
Zτ − E

[
min

i∈[1,T ]
Zi|Fτ

]]
.

For t ∈ [1,T ], let Z1
t

∆
= Zt and Z2

t = Z1
t − E

[
mini∈[1,T ] Z1

i |Ft
]
. The above equation

becomes

OPT = E
[

min
i∈[1,T ]

Z1
i

]
+ inf

τ∈T
E
[
Z2
τ

]
.

Now, we simply observe that we may recursively repeat this process on the

problem infτ∈T E
[
Z2
τ

]
, and then all subsequent problems. As we will see, this
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yields an explicit and rapidly-converging expansion for the optimal value which

is amenable to simulation.

Expansion for OPT.

We formalize the above intuition and provide our expansion for OPT. For k ≥ 1

and t ∈ [1,T ], let Zk+1
t

∆
= Zk

t −E
[
mini∈[1,T ] Zk

i |Ft
]
. It follows from the basic properties

of conditional expectation and non-negativity of {Z1
t , t ∈ [1,T ]} that Zk

t ≥ 0 for all

t ∈ [1,T ] and k ≥ 1. We let Z and Zk denote the respective stochastic processes.

Then our main result is as follows.

Theorem 2.3.3. OPT =
∑∞

k=1 E[mint∈[1,T ] Zk
t ].

In many ways the statement of Theorem 2.3.3 is quite surprising, as it asserts

that the value of a general path-dependent optimal stopping problem has a

representation which looks very much like a closed-form solution. To make

this point clear, let us more explicitly give the first few terms. For k ≥ 1, let

Lk
∆
= E[mint∈[1,T ] Zk

t ]. Then L1, L2, L3 are as follows.

L1 = E
[

min
t∈[1,T ]

rt(X[t])
]

; L2 = E
[

min
t∈[1,T ]

(
rt(X[t]) − E

[
min

i∈[1,T ]
ri(X[i])|Ft

])]
;

L3 = E
[

min
t∈[1,T ]

(
rt(X[t])−E

[
min

i∈[1,T ]
ri(X[i])|Ft

]
−E

[
min

i∈[1,T ]

(
ri(X[i])−E

[
min
j∈[1,T ]

r j(X[ j])|Fi
])∣∣∣∣∣Ft

])]
.

The first term, L1, corresponds to the obvious lower bound. Later terms are the

expectations of some elegant and explicit infima with interpretations in terms

of certain notions of regret, each of which can be computed by simulation.
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2.3.4 Approximation guarantees when truncating the expan-

sion

The power of Theorem 2.3.3 is that it allows for rigorous approximation guar-

antees when the infinite sum is truncated. Let Ek
∆
=

∑k
i=1 Li.

Theorem 2.3.5. Suppose w.p.1 Zt ∈ [0, 1] for all t ∈ [1,T ]. Then for all k ≥ 1,

0 ≤ OPT − Ek ≤
1

k+1 .

Thus truncating our expansion after k terms yields an absolute error at most

1
k+1 . Theorem 2.3.5 is again quite surprising since this linear rate of convergence

is achieved regardless of the distribution of the underlying stochastic process

X, requiring only that the cost functions are bounded in [0, 1]. Furthermore,

our analysis behind Theorem 2.3.5 yields not only an approximation scheme for

OPT, but also a computationally efficient near-optimal stopping policy (albeit

one that does not take the natural approach of repeatedly computing the to-go

values). We leave a detailed discussion to the proof of Theorem 2.3.5 in section

2.5. The results regarding the corresponding policy will be presented in the next

section.

The boundedness of the cost functions in the statement of Theorem 2.3.5 is

not a critical assumption and can be relaxed in several ways, depending on the

precise notion of approximation desired. For example, if Zt ∈ [0,U] for some

U > 0, an identical analysis yields a normalized error of U
k+1 . Alternatively, if

{Zt, t ∈ [1,T ]} has sufficiently regular moments, then one can derive analogous

results in the unbounded setting, such as the following.

Corollary 1. Under no assumptions on Z beyond non-negativity and square-

integrability, OPT − Ek ≤ 3 ×
(E[(ZT )2]

OPT2

) 1
3 × OPT × k−

1
3 .
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Depending on the particular assumptions and desired notion of approxima-

tion error (e.g. absolute vs. relative), many such variants of our main results are

possible. Furthermore, we suspect the ( 1
k )

1
3 bound derived in Corollary 1 for the

unbounded case is not tight and can be improved, and leave a tighter analysis

of how our results change under different assumptions as an interesting open

question.

That said, for the setting in which w.p.1 Zt ∈ [0, 1] for all t ∈ [1,T ], we now

present a lower bound showing that Theorem 2.3.5 is tight up to an absolute

multiplicative constant factor of 1
4 . In other words, there is a precise sense in

which the rate of convergence of the stated expansion cannot be substantially

improved without making some kind of additional assumptions on the opti-

mal stopping problem. We want to emphasize that this worst-case lower bound

does not rule out the possibilities that the expansion exhibits a faster conver-

gence rate in certain specific cases, as demonstrated in our numerical experi-

ments. Furthermore, it is a fascinating open question whether fundamentally

faster expansions and approaches exist, which we leave for future study.

Lemma 1 (Lower bound). For any given k ≥ 2, there exists a 2-period optimal stop-

ping problem with P(Zt ∈ [0, 1]) = 1 for all t ∈ [1, 2], yet OPT − Ek ≥
1
4k .

2.3.6 Algorithmic results

We now describe our main algorithm, along with its runtime and sample-

complexity analysis. As a natural implication of Theorems 2.3.3 and 2.3.5, the

algorithm computes Li for i = 1, . . . , k by Monte Carlo simulation for some ap-

propriately chosen truncation level k. To formalize and analyze this straightfor-

22



ward intuition, we first establish the computational and sampling model used

in our analysis. Our model is consistent both with many works in optimal stop-

ping (which often assume the ability to generate a trajectory of the underlying

information process conditioned to start from any given state), as well as cer-

tain notions of efficient algorithms in the study of generative models for rein-

forcement learning (in which each of the possibly infinite number of “partial

trajectories” X[t] would correspond to a “state” in the mode).

Formal computational and sampling model for algorithm analysis.

Access to samples and data-driven algorithms : We begin by formally defin-

ing a subroutine (randomized algorithm) B which we will refer to as the “base

simulator”, and which will provide the only means for our algorithms to access

information about X. For t ∈ [1,T ] and γ ∈ ℵt, let X(γ) denote a random matrix

distributed as X, conditioned on the event {X[t] = γ}.

Definition 2.3.1 (Base simulator B). B is a randomized algorithm with the following

properties. It takes as input t ∈ [1,T ] and γ ∈ ℵt, and outputs an independent sample

of X(γ). B(0, ∅) returns an independent unconditioned sample of X.

In some cases, generating simulated sample paths can be quite chal-

lenging (either computationally or due to lack of data), and there are many in-

teresting questions surrounding how to combine our framework with settings

in which generating individual sample paths/evaluating cost functions is very

costly. Such questions are generally beyond the scope of this work, and an in-

teresting direction for future work.
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Computational model and runtime analysis : Next, we formalize a computa-

tional model for how to analyze the run-time of algorithms that use B. Suppose

that B takes at most C units of computational time to terminate and generate

one sample. We also suppose that for any t ∈ [1,T ] and γ ∈ ℵt, rt(γ) can be

computed in G units of computational time. Here C and G does not depend

on the particular inputs t, γ to B, although they are allowed to depend on T,D,

and possibly other parameters. In addition, we suppose that addition, subtrac-

tion, multiplication, division, maximum, and minimum of any two numbers

can be done in one unit of time, regardless of the values of those numbers. We

will ignore all computational costs associated with reading, writing, and stor-

ing numbers in memory, as well as inputting numbers to functions. In general

our model allows for computation over real numbers, and leave a more refined

understanding of bit complexity and related matters for future work.

Main algorithmic results.

We now state the main algorithmic results of the current work. Our results

are twofold: 1. computing an ε-approximation for the optimal value OPT, and

further, 2. providing an ε−approximate optimal stopping strategy. We prove

that for any given error parameter ε, our algorithms can achieve these two goals

with high probability in a runtime only polynomial in T , and depending on the

dimension (and state-space more generally) only through the cost of simulating

individual sample paths, where only polynomial number of such simulations

are needed.

Theorem 2.3.7 (Optimal value approximation). Suppose w.p.1 Zt ∈ [0, 1] for all

t ∈ [1,T ]. Then there exists a randomized algorithm A which takes as input any ε, δ ∈
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(0, 1), and achieves the following. In total computational time at most (C + G + 1) ×

log(δ−1) × exp(100ε−2) × T 6ε−1 , and with only access to randomness at most log(δ−1) ×

exp(100ε−2)×T 6ε−1 calls to the base simulator B, returns a random number Y satisfying

P
(
|Y − OPT| ≤ ε

)
≥ 1 − δ.

Theorem 2.3.8 (Good policy). Suppose w.p.1 Zt ∈ [0, 1] for all t ∈ [1,T ]. Then for

all ε ∈ (0, 1), there exists a randomized stopping time τε s.t. E[Zτε ] − OPT ≤ ε, and

with the following properties. At each time step, the decision of whether to stop (if one

has not yet stopped) can be implemented in total computational time at most (C + G +

1) exp(100ε−2)×T 10ε−1 , and with only access to randomness at most exp(100ε−2)×T 10ε−1

calls to the base simulator B.

Remark. The above theorems aim at demonstrating the existence of a poly time (in T

and d) approximation algorithm for high-dimensional optimal stopping problems. The

constant terms are derived under extremely conservative assumptions (following mul-

tiple union bounds) to cover the most pathological cases (with arbitrarily discontinuous

distributions/cost functions). In almost all practical cases, the running time of our al-

gorithm is expected to be way better than suggested by the above bounds.

The rigorous statement of the algorithm A itself will be given in later sec-

tions when we prove the correctness of our algorithmic results. The algorithm

is based on using an appropriate truncation of our expansion, with all terms

computed by simulation. Interestingly, our policy does not proceed by recom-

puting approximate cost-to-go functions (which could accumulate an amount

of error scaling with the time horizon if applied naively), and instead rely on

certain stronger path-wise properties (see the proof of Theorem 2.3.5 in Section

2.5).
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Algorithmic results in the unbounded maximization setting

Real world optimal stopping tasks are often maximization problems with possi-

bly unbounded payoffs. Here we state a variant of our main result which holds

in such unbounded maximization settings. Out of space considerations we only

state the analogue of Theorem 2.3.7 for approximating the optimal value, but

a very similar analysis yields a corresponding efficient policy (in analogy with

Theorem 2.3.8). Formally, let’s consider the optimal stopping problem: ÔPT
∆
=

supτ∈T E[Zτ]. Instead of requiring the payoff process Z to be uniformly bounded,

we here only assume that the path-wise maximum of Z has finite first and sec-

ond moment, i.e. M1
∆
= E[maxt∈[1,T ] Zt] < ∞ and M2

∆
= E

[(
maxt∈[1,T ] Zt

)2]
< ∞.

What we impose is a significantly weaker condition. Let γ0
∆
= M2

(M1)2 (where we

also assume M1 > 0 to exclude uninteresting/pathological cases),

Theorem 2.3.9 (Algorithms for unbounded maximization). For any arbitrary non

negative payoff Z with finite M1,M2, the following is true. There exists a randomized

algorithm Â which takes as input M1,M2 and any ε, δ ∈ (0, 1), and achieves the follow-

ing. In total computational time at most (C+G+1)×log
(1
δ

)
×exp

(
1020γ9

0ε
−6)×T 108γ

9
2
0 ε
−3

and with only access to randomness at most log
(1
δ

)
× exp

(
1020γ9

0ε
−6)×T 108γ

9
2
0 ε
−3 calls to

the base simulator B, returns a random number Y satisfying P
( ∣∣∣Y−ÔPT

∣∣∣
ôpt

≤ ε
)
≥ 1 − δ.

All bounds presented in this section are worst-case/conservative bounds,

and we have tended to choose simplicity of analysis over optimizing of con-

stants for clarity of exposition. The performance on real data should be much

better than suggested by these bounds, as we observe in our numerical experi-

ments (see section 2.7). However, as we emphasized earlier, the significance of

these results lies not in their direct practical implication, but rather the sur-
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prising existence of such efficient algorithms for general high-dimensional

optimal stopping in the first place. Indeed, Theorems 2.3.3 and 2.3.5 open

up the possibility of the design of truly practically competitive algorithms that

simultaneously come with strong theoretical performance guarantees, and we

view the bounds and algorithms presented here as a first step towards that goal.

2.4 Expansion and Proof of Theorem 2.3.3

Recall that for k ≥ 1 and t ∈ [1,T ], Zk+1
t

∆
= Zk

t − E
[
mini∈[1,T ] Zk

i |Ft
]
. We begin by

observing that our earlier simple intuition from Section 2.3.2, i.e. recursively ap-

plying the optional stopping theorem to the appropriate remainder term, com-

bined with definitions, immediately yields the following.

Lemma 2. For all k ≥ 1, OPT =
∑k

i=1 E[mint∈[1,T ] Zi
t]+infτ∈T E[Zk+1

τ ]. In addition, w.p.1

Zk
t is non-negative and integrable for all k ≥ 1 and t ∈ [1,T ]; and for each t ∈ [1,T ],

{Zk
t , k ≥ 1} is a monotone decreasing sequence of random variables.

Proof. Proof of Lemma 2 The fact that OPT =
∑k

i=1 E[mint∈[1,T ] Zi
t] + infτ∈T E[Zk+1

τ ]

for all k ≥ 1 follows directly from the optional stopping theorem, as showed

explicitly in Section 2.3.2. The fact that Zk
t is non-negative and integrable for all

k ≥ 1 and t ∈ [1,T ] follows from Z1
t = Zt ≥ 0 and the fact that the martingale{

E
[
mini∈[1,T ] Zk

i |Ft
]}

t∈[1,T ] is a lower bound on the process Zk, and is itself non-

negative. �

We would be done (at least with the proof of Theorem 2.3.3) if

limk→∞ infτ∈T E[Zk+1
τ ] = 0. We now prove that this is indeed the case.
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Proof of Theorem 2.3.3: It follows from monotone convergence that {Zk, k ≥ 1}

converges a.s., and thus {Zk+1
T − Zk

T , k ≥ 1} converges a.s. to 0. By definition,

Zk+1
T = Zk

T − mini∈T Zk
i , we thus conclude that {mini∈[1,T ] Zk

i , k ≥ 1} converges a.s.

to 0. We introduce a stopping time τ∞
∆
= inf{t ∈ [1,T ] : limk→∞ Zk

t = 0}.1 This is

a feasible stopping time, adapted to F . By definition, the random variable Zk
τ∞

converges a.s. to 0. The fact that (Z1
t )t∈[1,T ] are non-negative and integrable im-

plies that Z1
τ∞

is non-negative and integrable. Furthermore 0 ≤ Zk+1
τ∞
≤ Zk

τ∞
≤ Z1

τ∞

for all k ≥ 1. Combining the above, by Lebesgue’s monotone convergence the-

orem, we conclude that limk→∞ E[Zk
τ∞

] = 0. Since τ∞ is a specific stopping time,

hence for all k ≥ 1 we have E[Zk
τ∞

] ≥ infτ∈T E[Zk
τ]. Combining all above complete

the proof. �

Remark. Theorem 2.3.3 confirms the generality of our expansion. It is valid for all

optimal stopping problems as long as the underlying stochastic process Z is integrable,

without imposing any additional assumptions. We suspect that in the infinite horizon

or the continuous setting, the expansion is still valid under mild conditions. This is

generally beyond the scope of the current work and we skip any further discussion.

We believe that the expansion provides a fundamentally new perspective on the basic

structure of optimal stopping (alternative to dynamic programming), which may be of

independent interest to researchers in related fields. In the next section, our proof of

Theorem 2.3.5 essentially yields an alternative proof of Theorem 2.3.3 under the more

restrictive assumptions that Z is bounded.
1If the set is empty, we by convention let τ∞ = T.
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2.5 Rate of convergence and Proof of Theorem 2.3.5

In this section we prove Theorem 2.3.5, Lemma 1 and Corollary 1, our main re-

sults regarding rate of convergence. Along the way, we prove a much stronger

result, which will later enable us to construct provably good approximation

policies.

2.5.1 Proof of Theorem 2.3.5

We first state and prove a path-wise rate of convergence guarantee, essentially

that after k iterations of our expansion, the minimum of every sample path is at

most 1
k . This is a much stronger result than that stated in Theorem 2.3.5, which

only regards expectations. We will be able to use this pathwise convergence to

construct provably accurate and efficient policies.

Lemma 3. Suppose w.p.1 Zt ∈ [0, 1] for all t ∈ [1,T ]. Then for all k ≥ 1, w.p.1

mint∈[1,T ] Zk
t ≤

1
k .

Proof : By definitions, measurability, and Lemma 2, for all k ≥ 1, Zk+1
T = ZT −∑k

i=1 mint∈[1,T ] Zi
T ≥ 0 w.p.1. By the monotonicity ensured by Lemma 2, it follows

that w.p.1, k ×mint∈[1,T ] Zk
T ≤ ZT ≤ 1, and the desired result follows. �

Proof of Theorem 2.3.5 : By Lemma 2, OPT =
∑k

i=1 E[mint∈[1,T ] Zi
t] + infτ∈T E[Zk+1

τ ].

By considering the policy τ which stops the first time Zk+1
t ≤ 1

k+1 and combining

with Lemma 3 completes the proof. �

Remark. Lemma 3 immediately yields a stopping policy: τk
∆
= inf{t ∈ [1,T ] : Zk

t ≤
1
k }.

It is not difficult to verify that this policy is 1
k -optimal. We will rigorously prove this
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observation and use it to design efficient good policies in Section 2.6.3.

2.5.2 Lower bound and proof of Lemma 1

This section contains a bad instance on which the expansion attains the worst-

case convergence rate.

Proof of Lemma 1 : Consider the stopping problem such that T = 2, D = 1, Zt = Xt

for t ∈ [1, 2], and P(Z1 = 1
n ) = 1, P(Z2 = 1) = 1

n , P(Z2 = 0) = 1 − 1
n . As Z is

a martingale, it follows from optional stopping that OPT = 1
n . It then follows

from definitions and the basic preservation properties of martingales that Zk is

a martingale for all k ≥ 1, and thus infτ∈T E
[
Zk
τ

]
= E

[
Zk

1
]

for all k ≥ 1. A similar

argument yields that Var[Zk
1] = 0 for all k ≥ 1, and thus Zk

1 = E
[
Zk

1
]

for all k ≥ 1.

We now prove by induction that Zk
1 = 1

n (1 − 1
n )k for all k ≥ 1, from which the

desired result immediately follows. The base case is trivial. Now, suppose the

induction holds for all j ≤ k − 1 for some k ≥ 2. Using the martingale property

and the inductive hypothesis, it follows that Zk−1
1 = 1

n (1 − 1
n )k−1, and Zk−1

2 equals

(1 − 1
n )k−1 w.p. 1

n , and 0 w.p. 1 − 1
n . It follows that Zk

1 equals

Zk−1
1 − E

[
min
t=1,2

Zk−1
t

]
=

1
n

(1 −
1
n

)k−1 − (
1
n

)2(1 −
1
n

)k−1 =
1
n

(1 −
1
n

)k,

completing the proof. �

2.5.3 Bounds for unbounded Z and proof of Corollary 1

Proof of Corollary 1: First, we claim that E[mint∈[1,T ] Zk
t ] ≤ 1

k OPT. Indeed, this fol-

lows directly from monotonicity and Lemma 2, which also implies that it suf-
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fices to prove that

inf
τ∈T

E[Zk+1
τ ] ≤ 3 ×

(
OPT × E[Z2

T ]
) 1

3 ×
1

k
1
3

.

To proceed, let us consider the performance of the following threshold policy.

Let xk
∆
=

(
E[X2

T ]OPT(4k)−1) 1
3 . Consider the policy which stops at the first time that

Zk+1
t ≤ xk, and simply stops at Zk+1

T if no such t exists in [1,T ]. Denoting this

stopping time by τk, then w.p.1 Zk+1
τk
≤ xk + I

(
mint∈[1,T ] Zk+1

t > xk
)
Zk+1

T , which by

monotonicity (implying Zk+1
T ≤ ZT w.p.1) is at most xk + I

(
mint∈[1,T ] Zk+1

t > xk
)
ZT .

Taking expectations and applying Cauchy-Schwartz and Markov’s inequality,

we find that E[Zk+1
τk

] is at most xk +
(
E[(ZT )2]

) 1
2 ×

(
P
(

mint∈[1,T ] Zk+1
t > xk

)) 1
2

, itself at

most

xk +
(OPTk−1E[(ZT )2]

xk

) 1
2 =

(
OPTk−1E[(ZT )2]

) 1
3 ×

(
4

1
6 + 4−

1
3
)
.

Noting that
(
2 + 4−

1
3
)
≤ 3 completes the proof. �

2.6 Simulation analysis, proof of Theorem 2.3.7, 2.3.8

In this section, we complete our algorithmic analysis and prove Theorem 2.3.7,

2.3.8. The algorithms are built on our novel expansion results Theorem 2.3.3,

2.3.5 and Corollary 1, along with an extensive use of Monte Carlo simulation via

base simulator B. We start by formalizing and analyzing important subroutines

for computing Zk
t and Lk.
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2.6.1 Efficient randomized algorithm for computing Zk
t

Formal definition of algorithms.

We recursively define a relevant sequence of algorithms {Bk}k≥1, which takes in-

puts (t, γ, ε, δ) and returns an (additive) ε-approximation to Zk
t (γ) w.p. at least

1− δ. For a D by T matrix M, and t ∈ [1,T ], let M[t] denote the submatrix consist-

ing of the first t columns of M. For ε, η ∈ (0, 1), let N(ε, η) ∆
= d 1

2ε2 log(2
η
)e.Algorithm

B1(t, γ, ε, δ):

Return rt(γ)

Algorithm Bk+1(t, γ, ε, δ):

Create a length-d8 log(2δ−1)e vector Am

For s = 1 to d8 log(2δ−1)e

Create a length-N( ε4 ,
1
16 ) vector A0

For i = 1 to N( ε4 ,
1

16 )

Generate an ind. call to B(t, γ) and store in D by T matrix A1

Create a length-T vector A2

For j = 1 to T

Generate an ind. call to Bk( j,A1
[ j],

ε
4 ,

1
16N( ε4 ,

1
16 )T

)
and store in A2

j

Compute the minimum value of A2 and store in A0
i

Generate an ind. call to Bk(t, γ, ε2 ,
1
8 ) and store as variable A3

Compute A3 −
(
N( ε4 ,

1
16 )

)−1 ∑N( ε4 ,
1
16 )

i=1 A0
i and store in Am

s

Return the median2 of Am

2Here we apply a popular technique known as the median trick. More detailed discussion,
including the rigorous definition of the median and the analysis of this trick was provided in
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Formal analysis of Bk.

We now formally analyze Bk, proving in an appropriate sense that it is indeed a

“good” algorithm for approximating Zk+1
t (γ). We introduce the following addi-

tional notation.

fk(ε, δ)
∆
= log(2δ−1) × 102(k−1)2

× ε−2(k−1) × (T + 2)k−1 ×
(
1 + log(

1
ε

) + log(T )
)k−1

.

Then we have

Lemma 4. For all k ≥ 1, t ∈ [1,T ], γ ∈ ℵt, ε, δ ∈ (0, 1), algorithm Bk achieves

the following when evaluated on t, γ, ε, δ: In total computational time at most (C + G +

1) fk(ε, δ), and with only access to randomness at most fk(ε, δ) calls to the base simulator

B, Bk returns a random number Y satisfying P
(
|Y − Zk

t (γ)| > ε
)
≤ δ.

We leave the proof of Lemma 4 to Technical appendix A.1.

2.6.2 Proof of Theorem 2.3.7

With Lemma 4 in hand, we now complete the proof of our main algorithmic

result Theorem 2.3.7. First, let us formally define algorithm A, which uses Bk

and simulation to approximate OPT.

AlgorithmA(ε, δ):

Technical appendix A.1.
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Set k = d 2
ε
e, α = ε

2

(
d 2
ε
e
)−1
, β = δ

(
d 2
ε
e
)−1, create a length-k vector L

For l = 1: k

Create a length-N(α2 ,
β

2 ) vector A0

For i = 1 to N(α2 ,
β

2 )

Generate an ind. call to B(0, ∅) and store in D by T matrix A1

Create a length-T array A2

For j = 1 to T

Generate an ind. call to Bl( j,A1
[ j],

α
2 ,

β

2N( α2 ,
β
2 )T

)
and store in A2

j

Compute the minimum value of A2 and store in A0
i

Compute
(
N(α2 ,

β

2 )
)−1 ∑N( α2 ,

β
2 )

i=1 A0
i and store in Ll

Return
∑k

l=1 Ll

Proof of Theorem 2.3.7 : In light of Lemma 4 and Theorem 2.3.5, by a union

bound and triangle inequality, it suffices to individually approximate the first

d 2
ε
e of the Li, each to within additive error α with probability 1 − β. The compu-
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tational cost, divided by (C + G + 1) is at most

d 2
ε e∑

i=1

fi+1(α, β) + d
2
ε
e + 1

≤ d
2
ε
e fd 2

ε e+1(
ε

2
(d

2
ε
e)−1, δ(d

2
ε
e)−1) + d

2
ε
e + 1

≤ 6ε−1 fd 2
ε e+1

(ε2

6
,
δε

3
)

≤ 6ε−1 log
(
6δ−1ε−1)102(3ε−1)2

(6ε−2)2(3ε−1)(T + 2)3ε−1(
1 + log(6ε−2) + log(T )

)3ε−1

≤ (log(6) + log(ε−1) + log(δ−1))1018ε−2
66ε−1+1ε−12ε−1−1(T + 2)3ε−1

×
(
1 + log(6) + 2 log(ε−1) + log(T )

)3ε−1

≤ log(δ−1) log(6) log(ε−1)1018ε−2
66ε−1+1ε−12ε−1−1(T + 2)3ε−1

× (log(6))3ε−1
(1 + log(T ))3ε−1

(2 log(ε−1))3ε−1

≤ log(δ−1)1018ε−2
69ε−1+2ε−15ε−1−226ε−1

T 6ε−1

≤ log(δ−1) × exp(100ε−2) × T 6ε−1
.

The analysis for the number of calls to the number of calls to the base simula-

tor follows nearly identically, and we omit the details. Combining the above

completes the proof. �

2.6.3 Good policies and proof of Theorem 2.3.8

In this section, we discuss how to use our simulation-based approach to imple-

ment good approximate stopping strategies, proving Theorem 2.3.8. We begin

with the following lemma, relating the value achieved by a single stopping pol-

icy across different stopping problems (defined by Zk).

Lemma 5. For all (possibly randomized) integer-valued stopping times τ adapted to F

which w.p.1 belonging to [1,T ], and all k ≥ 1, E[Zτ] = E[Zk
τ] +

∑k−1
i=1 E[mint∈[1,T ] Zi

t].
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Proof : We prove only in the case of non-randomized stopping times, as the

general setting then follows from a straightforward conditioning argument. We

proceed by induction. The base case k = 1 follows from definitions. Now, sup-

pose the induction is true for some k ≥ 1. Then again from definitions and

optional stopping,

E[Zk+1
τ ] = E

[
Zk
τ − E[ min

t∈[1,T ]
Zk

t |Fτ]
]

= E[Zk
τ] − E[ min

t∈[1,T ]
Zk

t ],

itself (by induction) equal to E[Zτ] −
∑k

i=1 E[mint∈[1,T ] Zi
t], which after rearranging

completes the proof. �

Combining Lemma 5 with Lemma 3 and Theorem 2.3.3, we are led to the

following corollary.

Corollary 2. For k ≥ 1, let τk denote the stopping time that stops the first time that

Zk
t ≤

1
k , where by Lemma 3 such a time exists w.p.1. Then E[Zτk] − OPT ≤ 1

k .

Now, we would be done, if not for the fact that we cannot compute Zk
t ex-

actly in an efficient manner. However, in light of Lemma 4, it is clear how to

proceed. In every time period t, we will use simulation to estimate Zk
t (X[t]) (for

appropriate k) for the given history X[t] observed so far, and do so with sufficient

accuracy and high enough probability to make sure all bounds go through. Let

us now make this precise. For any given ε > 0, we begin by defining an ap-

propriate (randomized) stopping time τε . Namely, τε is defined as follows. At

time 1, after seeing X[1], make an independent call to Bd4ε−1e

(
1, X[1],

ε
4 ,

ε
4T

)
. If the

value returned is at most 1
2ε, stop. If not, continue. We define the future behav-

ior inductively as follows. Suppose that for some t ∈ [1,T − 2], we have not yet

stopped by the end of period t. At time t + 1, after observing Xt+1, make an inde-

pendent call to Bd4ε−1e

(
t + 1, X[t+1],

ε
4 ,

ε
4T

)
. If the value returned is at most 1

2ε, stop.
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If not, continue. Finally, if we have not yet stopped by period T , stop in period

T . It is easily verified that for any ε ∈ (0, 1), τε is a well-defined, appropriately

adapted, randomized stopping time. We now use τε to complete the proof of

Theorem 2.3.8.

Proof of Theorem 2.3.8 : Let kε
∆
= d 4

ε
e. Let G1,ε denote the event{∣∣∣∣∣Bd4ε−1e

(
t, X[t],

ε

4
,
ε

4T

)
− Zkε

t (X[t])
∣∣∣∣∣ ≤ ε

4
∀ t ∈ [1,T ]

}
,

and G2,ε denote the event{
∃t ∈ [1,T ] such that Bd4ε

−1e

(
t, X[t],

ε

4
,
ε

4T

)
≤

1
2
ε

}
,

andG3,ε denote the event
{
Zkε
τε ≤

3
4ε

}
. Observe that Lemma 3, definitions, and sev-

eral straightforward union bounds and applications of the triangle inequality

ensure that : 1. P(G1,ε) ≥ 1− ε
4 ; 2.P(G2,ε |G1,ε) = 1; 3.P(G3,ε |G1,ε

⋂
G2,ε) = 1. It follows

that
(
Gc

3,ε
)
≤ ε

4 , and thus since by assumption and monotonicity P(Zkε
t ≤ 1) = 1

for all t ∈ [1,T ],

E
[
Zkε
τε

]
= E

[
Zkε
τε

I(G3,ε)
]
+ E

[
Zkε
τε

I(Gc
3,ε)

]
≤

3
4
ε + E

[
I(Gc

3,ε)
]
≤ ε.

Combining with Lemma 5, Lemma 3, and Theorem 2.3.3, we complete the proof

of the first part of the lemma. As for the computational and sampling cost, the

algorithm in each time step makes one call to Bd4ε−1e with parameters 4ε−1 and

4T ε−1, and the results follow directly from Lemma 4 along with some straight-

forward algebra. We omit the details. �

37



2.7 Numerical examples

We justify our theoretical findings by implementing our algorithms on two

classical examples in high-dimensional American option pricing. These exam-

ples are considered benchmark and appear in multiple previous works. We

report optimal value approximations derived from truncating the expansion at

different levels, as well as the performance of an heuristic policy inspired by

the expansion. We start this section with a general description of what we do,

after which we introduce with details the two concrete examples, and plot all

numerical results, respectively.

In both examples, the essential underlying problems are in the maximiza-

tion setting. We implement the maximization variant of our algorithm as stated

in Technical appendix A.2, whose performance is theoretically guaranteed by

Theorem 2.3.9. The algorithm as stated requires as input a truncation thresh-

old U0, which is an enormous number assumed for the purpose of algorithmic

analysis, and is treated as infinity in our numerical implementation. As a result,

our implementation can be simply described as follows. For a maximization

problem ÔPT = supτ∈T E[Zτ], we consider Z1
t

∆
= E[max1≤s≤T Zs|Ft] − Zt, t ∈ [1,T ].

We have ÔPT = supτ∈T E[Zτ] = E[max1≤t≤T Zt] − infτ∈T E[Z1
τ ]. Theorem 2.3.3

then promises that an expansion exists for the resulting minimization problem:

infτ∈T E[Z1
τ ] =

∑∞
k=2 E[min1≤t≤T Zk

t ] ∆
=

∑∞
k=2 Lk, where Zk

t = Zk−1
t − E[min1≤s≤T Zk−1

s |Ft]

for all k, t. Let L1
∆
= E[max1≤t≤T Zt]. We thus have ÔPT = L1 −

∑∞
k=2 Lk, a “maxi-

mization” expansion. Now we can approximate ÔPT by truncating this expan-

sion and calculating the first several terms of Lk via Monte Carlo simulation.

This algorithm is identical to Â, with U0 set to ∞. Truncating the expansion

ÔPT = L1 −
∑∞

k=2 Lk yields biased-high approximations. Therefore, the outputs of
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the algorithm are (with high probability) greater than ÔPT.

The algorithm is tested on multiple problem instances in both examples. For

each different problem instance, we demonstrate the optimal value approxi-

mations derived from truncating the expansion after one, two and three terms

respectively. We observe in both examples that our approximations converge

to the true optimal value at a rate faster than the worst-case rate (i.e. O(1
k )) of

Theorem 2.3.5. The exact choice of number of sample paths used when approxi-

mating L1, L2 and L3 will be specified later in the detailed description of the two

examples. We haven’t put specific effort into optimizing our use of the sampling

resources. Certain adjustment of the allocation of the computational/sampling

resources may lead to results with similar accuracy but in shorter run time.

Bermudan max calls with D assets

This is a standard benchmark example of high-dimensional American option

pricing, appearing in many previous works including [13], [130], [142], [225]

and [35]. We first recall the setup: a model with D identically distributed assets

is considered where each asset yields dividends with rate δ. All assets are as-

sumed to have the same initial value, i.e. Xd
0 = x0, d = 1, ...,D. The risk-neutral

dynamic of this asset system is given by

dXd
t = (r − δ)Xd

t dt + σXd
t dWd

t , d = 1, ...,D,

where Wd
t , d = 1, ...,D are independent one-dimensional Brownian motions and

r, δ, σ are constants. At one exercising date t ∈ {T0, ...,TJ }, the holder of the

option may exercise to receive the payoff

h(Xt) =

(
max(X1

t , ..., X
D
t ) − κ

)+

.

We consider in this example T j = jT/J , j = 0, ...,J , with T = 3 and J = 9. The

corresponding price P of the Bermudan max call is the solution to the following
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optimal stopping problem

P
∆
= sup

τ∈{T0,...,T9}

E[e−rτh(Xτ)].

Our algorithm uses Monte Carlo simulation. We approximate the first three

terms of our “maximization” expansion

L1 = E
[

max
i∈[0,9]

Z1
Ti

]
; L2 = E

[
min
i∈[0,9]

Z2
Ti

]
; L3 = E

[
min
i∈[0,9]

Z3
Ti

]
,

where

Z1
Ti

= e−rTih(XTi) ; Z2
Ti

= E
[

max
j∈[0,9]

e−rT jh(XT j)|FTi

]
− e−rTih(XTi).

Z3
Ti

= E
[

max
j∈[0,9]

e−rT jh(XT j)|FTi

]
−e−rTih(XTi)−E

[
min

k∈[0,9]

(
E
[
e−rT j max

j∈[0,9]
h(XT j)|FTk

]
−e−rTkh(XTk)

)∣∣∣∣∣FTi

]
.

Denote byZk
Ti

and L j the approximations of Zk
Ti

and L j that we obtain for all

k, i, j, respectively. 100, 000 sample paths are used for computingL1; 10000/1000

sample paths are used in the outer/ inner level simulation for computing L2.

For computing L3, 1000 sample paths are used in the first(outer) level of simu-

lation, 100 sample paths are used in each of the second level of simulation, and

1000 sample paths are used in each of the third (inner) level of simulation. Our

algorithm then outputs L1,L1 − L2 and L1 − L2 − L3, which will be denoted by

E1,E2 and E3 respectively.

We follow the classical choice of model parameters: κ = 100, r = 0.05, σ =

0.2, δ = 0.1. We test our algorithm with the dimension D taking value in {2, 3, 5}

and the initial asset price x0 taking value in {90, 100, 110}. Table 2.7 below sum-

marizes our results. The standard deviation of the results are derived from inde-

pendently running the algorithm multiple times. The 95% confidence interval

of P quoted from [13] are included as benchmarks. The relative errors of E1,E2
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Figure 2.1: Relative errors of E1,E2,E3 for Bermudan max call with differ-
ent D and x0

and E2 in different settings (i.e. choices of D and x0) are plotted in Figure 2.1.

Here we take the middle point of the 95% A & B interval as our benchmark

value for P. We find that the truncated expansion Ei converges faster than the

guarantee provided by our theoretical results.

D x0 E1 (SD) E2 (SD) E3 (SD)
A&B

Price Interval
90 13.38(0.02) 9.70(0.04) 8.71 (0.05) [8.053, 8.082]

2 100 23.02(0.02) 16.51(0.05) 14.95 (0.06) [13.892, 13.934]
110 34.61(0.02) 25.10(0.05) 22.80(0.06) [21.316, 21.359]
90 18.04(0.02) 13.24(0.05) 12.04 (0.06) [11.265, 11.308]

3 100 29.28(0.02) 21.97(0.05) 20.09 (0.06) [18.661, 18.728]
110 41.43(0.02) 32.16(0.05) 29.66(0.07) [27.512, 27.663]
90 25.17(0.02) 19.37 (0.05) 17.96 (0.06) [16.602, 16.655]

5 100 37.87(0.02) 30.20(0.05) 27.98 (0.06) [26.109, 26.292]
110 50.76(0.02) 41.82(0.06) 39.10(0.08) [36.704, 36.832]

Table 2.7: Numerical simulations for pricing Bermudan max calls with parameters
κ = 100, r = 0.05, σ = 0.2, δ = 0.1 and different D and x0

A path-dependent financial derivative

This example appeared first in [243] and later in [33]. The basic setup is as
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follows: a single asset evolves according to the dynamic

dXt = rXtdt + σXtdWt, t ≥ −100

where Wt is a standard Brownian motion and r, δ are constants. Let X[t]
∆
=

(X1, ..., Xt) denote the entire trajectory up to time t. The financial derivative we

consider here allows the holder, on one exercising date t ∈ {0, 1, 2, ...}, to exercise

and receive the payoff ht(X[t]) = Xt/Xt−100. The price of this financial derivative is

then determined by the following infinite horizon optimal stopping problem:

P
∆
= sup

τ≥0
E[e−rτhτ(X[τ])] = sup

τ≥0
E
[
e−rτ Xτ

Xτ−100

]
.

The fact that the payoff at any time depends on the asset value 100 days ago

makes this pricing problem path-dependent, and according to [243], essentially

high-dimensional (with 100 dim.).

For the sake of numerical implementation, we follow [33] and consider the

following finite horizon approximation:

PT
∆
= sup

τ∈{0,1,...,T }
E[e−rτhτ(X[τ])] = sup

τ∈{0,1,...,T }
E
[
e−rτ Xτ

Xτ−100

]
.

We have PT < P and limT→∞PT = P.

Our algorithm uses Monte Carlo simulation. We approximate the first two

terms of our “maximization” expansion

L1 = E
[

max
t∈[0,T ]

Z1
t
]

; L2 = E
[

min
t∈[0,T ]

Z2
t
]

where

Z1
t = e−rth(X[t]) ; Z2

t = E
[

max
s∈[0,T ]

e−rsh(X[s])|Ft
]
− e−rth(X[t]).

Denote by Zk
t and L j the approximations of Zk

t and L j that we obtain for all

k, i, j, respectively. 100000 sample paths are used for computing L1; 1000/1000
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sample paths are used in the outer/ inner level simulation for computing L2.

Our algorithm then outputs L1 and L1−L2, which will be denoted by E1 and E2

respectively.

As in [243], we assume r = 0.0004, σ = 0.02. We test our algorithm with

different choice of truncation level T as did in [33]. The results are presented

in Table 2, along with the numerical reports taken from [33] for comparison.

According to [243], 1.282 is a lower bound for P. Recall that in our numerical

test, the output values E1 and E2 are both upper bounds. We found that, con-

trary to what [33] stated, PT is significantly smaller than 1.282 for T < 500, and

converges after T ∼ 750.

T E1 (SD) E2 (SD)
Results in

Becker et al.
(2019)

100 1.2525(0.001) 1.2028(0.001) 1.2721
150 1.2961(0.001) 1.2402(0.001) 1.2821
200 1.3250(0.001) 1.2626(0.001) 1.2894
250 1.3450(0.001) 1.2806(0.001) 1.2959
500 1.3909(0.001) 1.3221(0.001) N/A
750 1.4070(0.001) 1.3412(0.001) N/A

1000 1.4074(0.001) 1.3432(0.001) 1.3002

Table 2.1: Numerical simulations of our algorithm for pricing the path-
dependent derivative of [243] with r = 0.0004, σ = 0.02 and dif-
ferent T .

2.8 Conclusion

In this work we developed polynomial-time approximation algorithms for the

fundamental problem of optimal stopping with high-dimensionality and full
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path-dependence. Our simulation-based algorithms come with provable per-

formance guarantees under mild assumptions, with the run time/sample com-

plexity scaling only polynomially in the time horizon T and effectively inde-

pendent of the dimension D. Our algorithms give the first PRAS analogy (under

generative model) in the context of optimal stopping, proving the approximabil-

ity of this fundamental model. We believe our algorithm sheds light on a class of

new algorithms for optimal stopping, and more generally, sequential decision-

making/optimal control/RL problems in the high-dimensional regime, that

have the potential to efficiently find provably near-optimal policies both the-

oretically and practically.

Our work leaves many interesting directions for future research.

The design of practically competitive algorithms. In this work, our results and

analysis are a proof-of-concept that such a trade-off between accuracy and com-

putational / sample complexity is theoretically possible. Combining our ap-

proach with other heuristics (e.g. from ADP and simulation) to improve speed

and accuracy, and rigorously comparing to past approaches, will of course be

crucial for moving from the proof-of-concept stage to a useful tool for real appli-

cations in finance, healthcare and engineering. As an example, we have made

no effort to optimize our use of samples, and better-understanding how to allo-

cate samples between the different “levels” of our nested simulations, and/or

how to reuse and recombine samples more intelligently, could lead to significant

speedups. The same goes for applying e.g. multi-level Monte Carlo, importance

sampling and change-of-measure techniques and various “warm-start”, prepro-

cessing tricks.
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Better theoretical understanding of convergence. We provided several bounds

on the rate of convergence of our approach, in various settings. We suspect that

in many cases our analysis will be loose, and one may get quite accurate results

using only a few terms of the relevant series. It is interesting to understand this

phenomena both in the general setting of optimal stopping, as well as for more

structured problems such as Robbins’ problem ([69]). If one suspected that for

any particular instance the expansion was converging more rapidly than sug-

gested by our theoretical results, one could derive tighter upper bounds by sim-

ply exhibiting a stopping time τ for which E[Zk+1
τ ] was small, and formalizing

such a procedure may also be interesting to consider.

Generalization to stochastic control broadly. We believe that our methodol-

ogy can be extended to a broad family of stochastic control problems. The first

step here would be the extension to multiple stopping, which follows almost

directly from our current analysis in light of the well-known (recursive) relation

between multiple stopping and optimal stopping ([46]). Indeed, there has been

much recent progress on understanding the Bayesian regret for such multiple

stopping problems ([15, 71, 249]), and drawing connections to our own work

remains an interesting direction for future research. Of course, there is also

the broader question of how far our methodology can be extended to general

stochastic control problems, while maintaining the relevant notions of tractabil-

ity. Using reductions similar to those of [47], it seems likely that control prob-

lems with few actions, in which one cannot change action too many times (in an

appropriate sense), may be a good starting point here.

Lower bounds, randomization, and computational complexity. An interesting
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set of questions revolve around proving lower bounds on the computational

and sample complexity for the problems studied, e.g. path-dependent optimal

stopping. There has been much interesting recent work laying out a theory of

computational complexity (with positive and negative results) in the settings

of stochastic control and reinforcement learning ([139, 140, 84, 233]), and the

pricing of complex financial products ([51, 246, 17, 61]). Better understanding

the connection between our approach and those works remains an interesting

direction for future research. A key question here centers around the use of ran-

domization and different notions of approximation, as well as questions such as

the interaction between computational complexity and sample complexity.

Implications for robust optimal stopping. Our approach may also be help-

ful in shedding new insight into problems in so-called robust optimal stopping

([30, 209, 135] ), as our expansions are general and do not depend (structurally)

on the particular distribution under consideration.

Application to problems in operations management, pricing, and mechanism

design. Another area where optimal stopping and other such tools have proven

useful is in the domain of operations management, mechanism design, and

pricing problems ([58, 210, 1, 102, 195]). Extending our results to this setting,

remains an interesting direction for future research.
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CHAPTER 3

EFFICIENT ALGORITHMS FOR DATA-DRIVEN SEQUENTIAL

DECISION-MAKING UNDER THE LIMITED-MOVE CONSTRAINT

3.1 Introduction

Consider a decision-maker (DM) in a system with a randomly evolving state.

Throughout the decision-making process, the DM can observe the system’s state

evolution and decide to take certain actions (e.g. price adjustments, inventory

ordering) at a limited number of times, yielding a reward that depends on both

the actions taken and the trajectory of the state. The DM seeks a dynamic policy

that determines, in a real-time fashion, whether to take action and which action

to take, so as to maximize the reward.

The sequential decision-making paradigm of this kind is becoming increas-

ingly popular across a variety of industries, because it captures the critical de-

pendence of companies’ major operational decisions on certain exogenous factors

(represented by the system’s state), in particular, commodity prices. Indeed,

driven by uncontrollable global demand and supply, commodity prices are no-

toriously unpredictable and volatile (see e.g. [217, 207], or a vivid real-world

case: WTI Crude Oil prices). Meanwhile, they can significantly impact com-

panies’ profits in many industries, especially those in resource-intensive man-

ufacturing industries such as chemicals, food, automotive, etc. Coping with

fluctuating commodity prices to achieve profitability is a crucial task, and the

sequential decision-making paradigm is tailor-made for this task, as we illus-

trate through concrete examples.

Example (Dynamic pricing). Consider a paint manufacturer who needs to set prices
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for its end products over a fixed period of time, say a year. The paint industry typically

suffers from uncertain raw material costs. Indeed, raw materials account for 60% to

70% of the net sales of paints. Moreover, many of these raw materials are petroleum-

based, thus the prices are correlated with oil prices which are highly volatile. Cost-plus

pricing is a natural strategy to counter such raw material price fluctuation, but the

resulting frequent price adjustment is particularly unwelcome, as is generally the case

in chemicals markets. Alternatively, manufacturers often “schedule a cadence of price

changes once or twice a year in ways that the value chain can absorb” (Bain & Com-

pany 2018), which, when executed optimally, can already bring huge profit improve-

ment. When and how should the paint manufacturer make these price changes facing

the fluctuating raw material prices? This question fits perfectly into the sequential

decision-making paradigm.

Example (Swing option pricing). Swing options are widely used as hedging instru-

ments in natural gas, electricity, and other highly volatile commodity markets. Often

bundled with base-load forward contracts which specify the purchase of the underlying

commodities at a prescribed (i.e. base-load) delivery rate and at a predetermined price,

swing options offer certain extra “flexibility-of-delivery”: the option holder is endowed

with a limited number of opportunities/rights to vary the amount of one-time delivery

(see [152], [75] or [247] for further details). The market value of a swing option is equal

to the maximum profit the holder can achieve by optimally exercising the rights. Specif-

ically, the option holder needs to determine the best timings, i.e. when to exercise and

the corresponding, best amounts of delivery, i.e. how to exercise, in a real-time fashion

facing the price uncertainty of the underlying commodity. This problem again fits into

the sequential decision-making paradigm.

Unfortunately, baking commodity prices and/or other relevant exogenous

factors into sequential decision-making poses severe computational challenges,
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because they are often high-dimensional and path-dependent. Indeed, it’s common

in chemicals and food industries that end products require multiple raw ma-

terials as input, thus manufacturers need to track the dynamics of all the raw

material prices. As a concrete example, 15 to 20 different commodities and pur-

chased intermediates, served as pigments, solvents, resins and various other

additives, are used in the manufacturing of one single can of paint. Further-

more, the prices of commodities and commodity-based futures generally exhibit

long memory (see [144, 216]), meaning that their future movements are based

on their historical trajectories (hence path-dependent) rather than simply their

current positions. Sequential decision-making problems associated with such

high-dimensional and path-dependent underlying state are well known to suf-

fer from the “curse of dimensionality”: any straightforward attempt at dynamic

programming (DP) will require a computational time scaling exponentially in

the dimension, the time horizon, and/or both. There generally lacks a method

to efficiently solve for, or even just approximate (within certain provable preci-

sion) the optimal solution as the dimension/the time horizon scale up. Even the

simplest “one-move” case (with only one chance to take action, e.g. high-low

promotion, exercising American options) is highly nontrivial, which essentially

boils down to the celebrated, computationally intractable high-dimensional op-

timal stopping problem as discussed in a great depth in Chapter 2.

Such fundamental challenge has attracted a considerable attention across

different literatures, varying from dynamic pricing and revenue management

to stochastic control and computational finance. The majority of the works

sidestep the computational difficulty either by imposing strong structural as-

sumptions on the system state and/or the reward functions, such as inde-

pendent and identically distributed state evolution and linear (in the under-
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lying state) reward structures, or through efficient heuristic algorithms such

as approximate dynamic programming (ADP) methods that generally lack

strong performance guarantee (see literature review for details). While many

of these works/methods indeed achieve great empirical successes for prob-

lems under certain specific assumptions, the fundamental question still remains

unanswered: for sequential decision-making problems associated with general high-

dimensional and path-dependent state and reward structures, does there exist an ap-

proach that both (1) enjoys a strong performance guarantee, i.e. can make provably

near-optimal decisions and (2) is in theory efficient, i.e. takes polynomial runtime(in

dimension and time horizon)?

In this work, we propose a new randomized algorithm that addresses the

above question. Our algorithm has the following novel features:

• The algorithm admits an elegant trade-off between performance and effi-

ciency through a control variable ε. More specifically, for any fixed ε > 0,

the algorithm can output an ε-optimal policy and a (1−ε) approximation of

the optimal total reward in a runtime scaling only polynomially in the time

horizon, and effectively independent of the dimension (implicitly depend-

ing on the dimension only through certain simulation costs, which will be

specified later). The guarantee holds for problems with arbitrary state evo-

lution and reward structure, subject only to the limited-move constraint

(limited number of chances to take action), partly providing an affirma-

tive answer to the above question.

• The algorithm is data-driven and model-free. Indeed, it only requires a

generative model, i.e. the sample access to the system, rather than any

knowledge of the system’s actual underlying probability distribution/

state evolution formula or reward functions. Formally, such a generative
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model is able to generate independent copies of state trajectories and the

corresponding rewards.

• The key building block of the algorithm is the main result of Chapter 2,

i.e. Theorem 2.3.3 and Theorem 2.3.7, that for the first time addresses the

curse of dimensionality for optimal stopping in a general sense. With the

observation that any sequential decision-making problem can be framed

as recursively solving the so called “one-move” problems (i.e. DM has

only one chance to take action, see Proposition 1), we are able to leverage

[134] to devise our efficient approximation algorithm.

3.1.1 Main contributions

We make the following contribution.

• Approximability results and PTAS.

We prove that a large class of sequential decision-making problems, in par-

ticular those subject to the limited-move constraint, are in theory efficiently

approximable. For computationally challenging optimization problems, ap-

proximability represents an important threshold that distinguishes their

hardness, and is central to the study of operations research and theoret-

ical computer science. Recall that the term polynomial-time-approximation-

schemes (PTAS) refers to such algorithms that for any fixed ε, the runtime

for achieving (1− ε)−approximation is polynomial in the problem size (in-

dependent of specific problem instances). Our algorithm is essentially

a (randomized) PTAS-analogy, and hence a proof-of-concept of approx-

imability of the unified sequential decision-making problem subject to the
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limited-move constraint, which includes dynamic pricing, option pricing

and various other real world cases as specific instances, and which allows

for arbitrary underlying state evolution and reward structures.

3.1.2 Organization

The rest of this chapter is organized as follows. Following a literature review, in

section 3.3, we introduce the model and assumptions. In section 3.4, we build

the theoretical foundation of our algorithm. The main algorithms and the main

results, i.e. the algorithms’ performance and complexity will be presented in

section 3.5. Finally, we sketch the key steps of the analysis in section 3.6.

3.2 Literature review

There are a large amount of papers addressing sequential decision-making

problems. They come from diverse practical fields, and we have no inten-

tion to survey the entire literature. Our focus here will be on the presence

of high-dimensional and path-dependent exogenous factors and the computa-

tional challenge they impose on solving the associated decision-making prob-

lems.

The main application of finding pricing strategy to manage fluctuating

prices of multiple raw materials relates our work to the dynamic pricing lit-

erature. Recently, there are a stream of works considering dynamic pricing with

high-dimensional underlying features (see [12, 155, 220, 96, 166, 154, 24, 191]).

Their high-dimensional feature vectors are often used to describe different cus-
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tomers/products, and are often assumed to be i.i.d. over time. These works

also often assume the demand/willingness-to-pay has some special structures

(e.g. linear in the underlying features). The majority of these works are in the

setting where certain parameters of the demand model are unknown a priori

but can be “learned” over time. Dynamic pricing thus aims at earning (the rev-

enue/profit) while learning (the unknown demand model parameters), i.e. with

a contextual-bandit-type structure. Such dynamic pricing and learning prob-

lems have received considerable academic attentions in the past decade, see e.g.

[53, 141, 88, 115, 14, 65, 166, 107, 192, 214, 118, 50]. Our work differs from the

above line of research in the following ways: 1. we do not aim at learning the

demand model or the evolution of the underlying state, rather we assume ac-

cess to the underlying model via a black-box simulator, and solve the decision-

making problem directly. 2. Apart from calling the simulator, our algorithm is

completely model-free. Namely, it does not rely on any special model structure,

allowing for arbitrarily complex demand and non i.i.d. non stationary customer

features. The main challenge in our setting is thus the computational issue aris-

ing from solving such general high-dimensional stochastic DP, rather than the

“learning vs earning” trade-off.

Another related line of research in the dynamic pricing literature inves-

tigates the case where demands can depend on past information, such as

past price sequences, past sales data etc. i.e. path-dependent. For exam-

ple, [136, 176, 218, 205, 137, 148, 83, 82, 95, 97, 147, 250, 98, 99] consider the

presence of the reference effect, taking into account the impact of customer’s

memory of past prices on their current willingness-to-pay. Other examples in-

clude the network effect (demand depending positively on the past sales, see

[48, 7, 231, 74, 73, 221, 232]), the scarcity effect ( demands depending negatively
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on remaining inventory availability; see [245, 22, 103, 189]), and the billboard

effect(demands depending positively on remaining inventory availability, see

e.g. [255, 2, 182, 76]). Most of the aforementioned works focus on qualita-

tively/empirically demonstrating how the presence of such path-dependent ef-

fects affects the optimal pricing strategy/optimal revenue, providing interesting

economic insights. There models are often restrictive/for illustrative purposes,

assuming e.g. linear demand structure, simple,independently random social

networks etc. Here the most relevant work to ours are [5, 95, 98]. [5] builds

and analyzes a model with state-dependent demand. They combine a fluid LP

approximation with re-solving technique to come up with a heuristic, periodic

pricing algorithm (i.e. satisfying our limited-move constraint of Assumption 1)

that is asymptotically optimal. Comparing to their work, our algorithm applies

to an even more general setting, enjoying a provable, non asymptotic perfor-

mance guarantee for essentially all DP, regardless of the specific form of path

dependence/demand structure. [95] considers and formulates a promotion op-

timization problem with reference price effect as a maximum weighted path

problem, and shows that the problem is NP-hard when the memory is long.

They propose an algorithm whose complexity scales linearly in the time hori-

zon T and the size of the price ladder, but exponential in the memory of the

model. They also present an efficient method when the reference effect follows

a specific model. Their methods and ours share the similarity that no assump-

tions are imposed on the structure of the demand functions. The difference is

that the complexity of our algorithm depends only polynomially on the time

horizon T and the size of the action set even if the memory is Ω(T ). In [98], the

authors proposes an algorithm that output a performance-guaranteed high-low

type pricing strategy in polynomial time, when the demand follows a special
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model, the bounded peak-end model. Comparing to their work, our model-free

algorithm applies to problems with more general demand structures. Besides,

we essentially have a PTAS in the settings of multiple changes of price, whereas

in [98] high-low pricing marks price down only once.

The works studying dynamic pricing with limited price changes are also

relevant to this work. In many different settings, even one-price policies (

those picking an initial price and sticking to it throughout the selling sea-

son) are reported to have provably good performance guarantee (see eg.

[123, 122, 87, 196, 52]). [57, 77, 206] study pricing contexts where frequent

changes of price is either costly or inapplicable. [80] propose a heuristic al-

gorithm with performance guarantee that adjusts the prices infrequently. [88]

proves a bound that concisely links the performance guarantee with the number

of price changes. [5, 95, 97], as we discussed above, also assume limited price

changes.

Our other application of pricing swing options in commodity markets draws

a connection between this work and the literature of option pricing, which is one

of the central topics in mathematical finance. Here we mainly focus on com-

putational aspects of the evaluation of swing options and the related optimal

multiple stopping problems. Earlier works on swing option pricing often re-

strict to low-dimensional settings and assume special underlying distributions.

([242, 181, 152] etc.) These approaches, which relies on discretizing the under-

lying state (i.e. the “tree” model), become computationally intractable in high-

dimensional setting (with d,T large). Therefore, many later works have been

attempting to develop dimension-reduction techniques to efficiently approxi-

mate the corresponding dynamic program. For example, [27, 109, 120, 149] ex-

tend the least square Monte Carlo approach of [193]; [138] proposes a method
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that reduce the dimension of both the state space and the action space; [46] ex-

tends the policy iteration type of method of [175]. [185] uses piecewise linear

functions as value function approximations; [199] extends the stochastic mesh

methods proposed in [64]; [25] extends the optimal quantization methods that

reduce the state space. These approximate dynamic programming (ADP) meth-

ods, often derived from existing approaches for approximating optimal (single)

stopping problem, are mostly heuristics that lack theoretical performance guar-

antee. Another main stream of research, including [49, 104, 252, 105, 113, 170],

looks at the continuous problem and borrows techniques from PDE. The dis-

cussion of these approaches is beyond the scope of this work. In general, they

also can’t escape the curse of dimensionality while enjoying strong performance

guarantee.

Since the seminal work [106] and the follow-up works [225, 142], duality

approach, as a fundamentally new recipe for solving complex optimal stop-

ping/ option pricing problems, has become more and more popular in the lit-

erature. Such duality approaches seek a “dual representation” of the problem,

no longer requiring solving a DP, but boiling down to the search of an optimal

martingale. In the specific setting of swing option pricing and optimal mul-

tiple stopping, [201] and [229] provide two different dual representations and

propose the corresponding simulation algorithms. Based on these dual repre-

sentations, [78, 47, 43, 44, 11, 23] either extend the idea to more general settings

(continuous time/with additional constraints) or develop more efficient sim-

ulation algorithms. In fact, the duality approach extends well beyond option

pricing/optimal stopping. Examples include the information relaxation tech-

niques (see [68, 66] among others) that generalize the duality-based ideas to

deal with general sequential decision-making problems. However, almost all of
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these methods still rely on a good approximation of the value function (or its

dual counterpart, the optimal martingale), which is usually derived from either

the aforementioned ADP methods or pure guess, lacking strong performance

guarantee.

Besides, we are aware of other works taking different approaches, such

as ideas from robust optimization to sidestep the challenging DP (see e.g.

[190, 4, 86]). These approaches achieve various levels of tractability via fun-

damentally different modelling paradigms, and are generally incomparable to

the results presented in this work.

3.3 Model

We consider a decision maker (DM) in a discrete-time system driven by some

exogenous stochastic processes. The DM faces an sequential decision-making

task over a fixed time horizon. In particular, at each time period, the DM ob-

serves the system evolution, either stays passive: doing nothing, or stays active:

choosing an action from a certain set, and receives a reward which may depend

on both her actions and the underlying stochastic process. The number of ac-

tive periods can not exceed certain limits. The DM needs to find a policy that

dynamically yet optimally allocates the action-taking opportunities and selects

the best actions, so as to maximize the expected total reward.

Next we introduce notation and mathematically describe our model.
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3.3.1 Formal model description

Let the discrete time, d-dimensional stochastic process X ∆
= (Xt)t≥0 be the sys-

tem’s underlying state. To ease notation, we assume in this Chapter that Xt

starts in a fixed initial state x0 ∈ R
d at time 0 (which is slightly different from

the general model introduced in Chapter 1). Process X evolves according to

some probability law in a fixed time span [1,T ]. Let Ft
∆
= σ(X1, ..., Xt), t ∈ [0,T ]

denote the associated σ-algebra. We do not impose any structural assumption

on how Xt evolves, incorporating e.g. correlations (among the d elements) or

non-Markovian dynamics.

At each time period t ∈ [0,T ], based on the available information, i.e. the

state trajectory (X0, ...., Xt), the DM needs to decide between (1) staying passive,

and (2) choosing an action from a set. We unify notation by letting the DM pick

an action at ∈ {p∗} ∪ At, where p∗ is the “passive action” and At is the (active)

action set. Once the action is chosen, a per-period reward will be generated.

We allow the reward to depend on both the sequence of the actions taken and

the trajectory of the state, i.e. rt(a0, a1, ..., at, X0, ..., Xt) 1 where rt is a deterministic

function2. To ease notation, we always (when causing no ambiguity) suppress

the dependence on Xt and write rt(a0, a1, ..., at) instead. The reader should be

aware that rt(a0, a1, ..., at) is a Ft−measurable random variable.

Denote by π = {π0, ..., πT } a (possibly randomized) dynamic policy, where

each πt is a mapping from the set of all possible trajectories of (X0, ..., Xt) to the

set of all possible probability distributions over extended action set {p∗} ∪ At.

The DM’s task is to find a policy to maximize the expected total reward (with

the expectation taken implicitly over (Xt)1≤t≤T and the possible randomness of

1For notational convenience, we restrict a0 ∈ A0 and assume r0(a0, x0) = 0 for all a0.
2This is without loss of generality since any extra randomness can be taken care of by replac-

ing the original reward by its (conditional) expectation.
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the policy π):

OPT
∆
= sup

π

E
[ T∑

t=1

rt(π0, ..., πt)
]
.

We omit the discussion on the existence of the optimal (or ε-optimal) policy. Our

model can be reformulated as an Markov Decision Process (MDP) by consider-

ing an enlarged state space, and the results regarding the existence of optimal

policies for MDPs can be found in classical textbooks, e.g. [219].

3.3.2 Examples

Our model incorporates various real-world sequential decision-making applica-

tions as specific instances. We discuss two concrete examples, dynamic pricing

and swing option pricing.

• Dynamic pricing. Consider a paint manufacturer who sets prices for a

single product, one type of paint, over a fixed period of time to maximize

the profit. Paints typically require multiple raw materials as input, whose

prices are highly volatile and path-dependent. In this case, the high-

dimensional state Xt captures the prices of all raw materials, and other

demand-relevant economic indicators. The active action setAt consists of

prices the manufacturer may set for the product. The passive action p∗

translates to no price change. At each time t, the manufacturer either picks

a new price from At, or chooses p∗ and sticks with the time−(t − 1)−price.

Orders are taken when the business is profitable, i.e. when her price choice

pt is greater than the unit cost ct. The one-period demand Dt is then gen-

erated and fulfilled, and the manufacturer collects the one-period profit

(pt − ct)+Dt. In paint manufacturing, due to the existing complex inven-
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tory management strategies and possibly long lead times on the supply

side, current unit costs often rely on past prices of raw materials, i.e.

ct
∆
= ct(X0, ...Xt). Meanwhile, paints’ one-period demands can depend on,

in addition to current prices, certain indicators in multiple past periods,

such as the number/sizes/duration of construction projects in the area

launched/announced in the past few months, i.e. Dt
∆
= Dt(pt, X0, ...Xt).

Therefore, the paint manufacturer’s one-period profit is actually a func-

tion of the trajectory of the commodity prices and the economic indicators,

thus is incorporated within the general reward form rt(a0, ..., at, X0, ..., Xt) in

our model.

• Swing option pricing. Consider the evaluation of an electricity swing op-

tion. The swing option consists of an underlying forward contract and a

limited number of swing rights. The forward contract specifies an obliga-

tion to purchase electricity at a “baseload” daily rate of m MWh, and at a

predetermined price p over a fixed time horizon. A swing right, whenever

exercised, relaxes the restriction on the purchasing amount to an interval

[m−,m+]. The price of the swing option is determined by ruling out arbi-

trage opportunities, which consists of buying the option and then exercis-

ing the swing rights at the best times with the best purchasing amount. To

compute the option price, one needs to find the optimal option-exercising

strategy. In this case, the state Xt characterizes the market price of elec-

tricity. Xt needs not be the price itself, rather it can represent the high-

dimensional underlying process that drives a multi-factor electricity price

model, pt(Xt). The active action set At consists of all possible purchasing

amount allowed by the swing right, i.e. [m−,m+]. The passive action p∗

simply refers to not exercising at the current time. The reward rt(at) cap-
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tures the extra payoff relative to the forward contract: if at = p∗, rt(at) = 0,

otherwise rt(at) = (p − pt(Xt))(at − m).

3.3.3 Assumptions

Motivated by the above real-world examples and also in consideration of algo-

rithmic analysis, we impose several assumptions on our model.

Assumption 1 (Limited moves). The number of the (active) action-taking periods

cannot exceed a constant K > 0. Equivalently,
∑T

t=1 1{πt,p∗} ≤ K.

The limited-move constraint holds in a number of applications. In dynamic

pricing, it translates to a common business rule, namely limited price change. His-

torically, avoiding menu cost was the main consideration behind limited price

change. Nowadays, as more and more businesses move towards digitization,

the major reason for imposing limited price change becomes to protect com-

panies’ brands and market share, and to prevent customers from turning too

strategic. Indeed, in such industries as chemicals manufacturing, companies

typically fear volumes loss from frequent price increases. Also, supermarket re-

tailers limit the number of price changes in hope of “preserve the image of their

store and not to train customers to be deal seekers”([95]). Besides, dynamic pric-

ing with limited price changes are also common in some specific scenarios,

such as end-of-season clearance selling. In option pricing, the limited-move

constraint restricts the number of option rights. Indeed, the valuation of the

most widely used American and Bermudan options can be cast as sequential

decision-making subject to a one-move constraint.
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Assumption 2 (The generative model: system simulator). We assume the access

to a system simulator, denoted by S, which takes as input any t ∈ [0,T ], any action

sequence a0, ...., at and any trajectory (x0, .., xt), and outputs in C units of computational

time:

1. (when t < T ) an independent sample of Xt+1, conditional on Xi = xi, i ∈ [0, t]

2. the reward rt(a0, ..., at, x0, ..., xt)

Our second assumption specifies how we access the underlying model,

namely, through simulation. In typical real-world applications, the ability to

simulate the system’s state and reward translates to the ability to predict future

commodity prices, to predict demand level, and/or to simulate costs, which is

exactly what various commercial software can provide. Indeed, the growing

availability of all kinds of data and the companies’ increasing eager to digitize

their businesses largely boost the use of such commercial software in various

decision-making scenarios.

One key advantage of using such simulator is that it frees us from imposing

any restrictive modelling assumptions. For example, our simulation-based al-

gorithm allows the existence of and can successfully deal with certain “shocks”

e.g. jumps in commodity prices and sudden surges in demand, which are re-

alistic yet often imposing severe challenges on model-based approaches to se-

quential decision-making.

From the perspective of algorithm design, encapsulating the underlying

model and allowing access only via such a system simulator makes our algo-

rithm essentially a meta-algorithm which is easily customized for a variety of

sequential decision-making tasks (simply by plugging in the corresponding sys-

tem simulators).
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We assume that calling the simulator once, either for sampling the underly-

ing state or for evaluating the reward requires C units of computational time.

Here we (implicitly) require that C depends on dimension d and time horizon

T only polynomially (if not linearly). The assumption captures the majority

of the practical scenarios where sampling and reward evaluation are not too

costly. However there do exist applications with difficult-to-simulate distribu-

tions and/or reward functions. To combine our framework with such settings

is a potentially interesting direction for future research and is beyond the scope

of the current work.

Finally we present some technical conditions. These conditions are not criti-

cal for our algorithm to work, rather they serve for the purpose of more clearly

illustrating the main algorithmic analysis results.

We force the action set to be finite. In dynamic pricing, this assumption

translates to price being chosen from a discrete set, which is very common. For

example, many retailers prefer having price ending in 99 cents. Also, discrete

price ladder is one of the well-established business rules in the context of pro-

motion planning. In general, by discretizing any continuous action set, we can

always achieve a discrete action set. Similar performance and computational

efficiency results as presented in this work will hold under minimal extra conti-

nuity constraints.

In most real-world applications, rewards are naturally non-negative. For

example, manufacturers only take orders when profitable (the current price ex-

ceeds the unit cost). Even in cases where negative reward is in theory possi-

ble, non-negativity can sometimes be assumed without changing the problem’s

structure/the optimal policy. For example, in swing option pricing, a profit-

maximizing agent will never exercise a right to achieve negative payoff. Hence
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it is without loss of generality to remove all “bad” actions from the action set,

ensuring non-negative rewards.

We impose mild regularity constraints on the variability of the total reward.

More specifically, we require the total reward (under an arbitrary policy and on

an arbitrary state trajectory) to (i) be bounded away from infinity, and (ii) de-

viate not too far from the optimal value, controlled by a constant multiplier α.

In the concrete context of dynamic pricing over a selling season, this constraint

asks the maximum expected profit to be proportional to the largest possible

profit. Intuitively, the constraint holds if (1) the profit does not exceed certain

limit even in the best times (i.e. on the best state trajectories with booming de-

mands and low raw material prices) and (2) the profit under the optimal pricing

policy behaves reasonably (e.g. at least 10% of the profit in the best times) in nor-

mal times (i.e. on most of the state trajectories). While (2) is often satisfied in

reality, (1) also makes sense, largely because practical limits such as manufac-

turers’ limited workforce productivity sets a natural limit on the total profit. In

theory, to ensure the constraint holds, one can impose a maximum cap on the to-

tal reward and sets the constant α accordingly. Such operation will barely affect

the problem’s structure provided that the cap is large enough, thus is tolerable

since we are ultimately interested in approximations rather than exact optimal

solutions. These intuitive arguments can be made rigorous with minimal addi-

tional assumptions on the probability distribution of the reward, and we omit

the discussion here.

Formally, the technical conditions required in our algorithmic analysis are

summarized as follows:

Assumption 3. 1. (Finite action set). At is a static, discrete set, with size |At| =

M.
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2. (Non-negativity). rt(a0, ..., at) ≥ 0 a.s. for any t ∈ [1,T ] and any (as)0≤s≤t.

3. (Boundedness). supa0,...,aT ,x0,...,xT

∑T
t=1 rt(a0, ..., at, x0, ..., xt) < ∞. Furthermore,

there exists a constant α ∈ (0, 1) such that for any actions (at)0≤t≤T , OPT ≥

α
∑T

t=1 rt(a0, ..., at) a.s.

3.3.4 Additional notation

Let [t] denote the sequence (0, 1, ..., t). Accordingly, z[t]
∆
= (z0, ..., zt). Similarly we

let [s, t] and z[s,t] denote (s, s + 1, ..., t) and (zs, ..., zt), respectively. By convention,

[−1] denotes the empty set ∅. Let N(ε, δ) ∆
= d 1

2ε
−2 log(2

δ
)e be a constant that is

frequently used in our analysis. Also define recursively kU(y, z) ∆
= y

k−1U(y,z) for

k ≥ 1, with 0U(y, z) ∆
= z for any y, z > 0. These constants will appear in our main

algorithmic analysis results.

3.4 Theory

We first formulate the sequential decision-making problem as a set of recursive

equations.

3.4.1 Optimality equations

Let Jk
t (a[t−1], x[t]) denote the value-to-go function at time t, conditional on the state

trajectory x0, ..., xt and the action sequence a0, ..., at−1, and with a remaining k

opportunities to take active actions. To ease notation, we suppress the depen-
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dence on the underlying state Xt, writing Jk
t (a[t−1]) instead. We now establish a

set of associated recursive equations that connect the functions (Jk
t )t≥0,k≥1. For

all3 0 ≤ t ≤ T and any action sequence a0, ...., at−1,

Jk
t (a[t−1]) = max

a∈At
sup

t+1≤τ≤T
E
[ τ−1∑

s=t

rs(a[s]) +Jk−1
τ (a[τ−1])

∣∣∣∣∣Ft

]
k ≥ 2, (3.1)

s.t. at = a and as = p∗ for s ∈ [t + 1, τ − 1].

J1
t (a[t−1]) = max

a∈At
E
[ T∑

s=t

rs(a[s])
∣∣∣∣∣Ft

]
, (3.2)

s.t. at = a and as = p∗ for s ∈ [t + 1,T ].

Here in equation (3.1), τ is a stopping time adapted to the filtration (Ft)1≤t≤T .

In words, the value-to-go at time t with k active-action-taking opportunities is

achieved by taking the best possible active action at time t, staying passive af-

terwards until the best stopping time τ, and making the best decisions subject to

k − 1 active-action-taking opportunities starting from time τ. Formally we have

Proposition 1. The class of functions (Jk
t )t≥0,k≥1 statisfying the equations (3.1) and

(3.2) are the value-to-go functions of the sequential decision-making problem. Specifi-

cally, JK+1
0 = OPT.

A rigorous proof of Proposition 1 is given in technical appendix B.1. We

briefly discuss its implications. The set of equations (3.1) are similar to the

standard dynamic programming(DP) Bellman equations in their recursive na-

tures. However, as a key distinction, the Bellman recursion is with respect to

time, while the set of equations (3.1) are recursive in the remaining number of

active action-taking opportunities. On the one hand, such formulation can dras-

tically reduce the recursion depth required for achieving optimality, especially

in the limited-move setting with K � T (a depth-K recursion effectively suf-

3For notational convenience, we assume Jk
t = 0 for t ≥ T + 1
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fices whereas DP requires depth-T ). On the other hand, each recursion of equa-

tion (3.1) contains an optimal stopping problem, which is itself computation-

ally challenging in high dimension. Efficiently solving the sequential decision-

making problem via equations (3.1) and (3.2) would be in theory possible if

there exists a computationally efficient approach to each corresponding optimal

stopping problem.

Earlier in Chapter 2 we propose such an efficient approach to general op-

timal stopping problems that enjoys provably near-optimal performance guar-

antee with runtime scaling only polynomially in time horizon T , effectively in-

dependent of dimension d. The approach is a key building block in the main

algorithms of this work. We next briefly review the main theoretical results of

Chapter 2, and state a slightly more general algorithmic result required by the

current setting.

3.4.2 A new approach to optimal stopping

Notation and model setup.

In view of equation (3.1), we recall Chapter 2 to set up a general formulation of

optimal stopping with respect to the underlying state Xt. Let Zt
∆
= gt(X[t]) be our

target stochastic process, where gt : Rd → R+ is an arbitrary deterministic and

non-negative cost function. Let T be the set of stopping times with respect to

(Ft)1≤t≤T . An optimal stopping problem is formally defined as Z∗ ∆
= infτ∈T E[Zτ].

Then the main results of Chapter 2, are given by the following.

For t ∈ [1,T ], let Z1
t

∆
= Zt. For k ≥ 1 and t ∈ [1,T ], recursively define Zk+1

t
∆
=

Zk
t − E

[
mini∈[1,T ] Zk

i |Ft
]
. Let Lk

∆
= E[mint∈[1,T ] Zk

t ].
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Lemma 6 (Theorem 2.3.3 of Chapter 2). Z∗ =
∑∞

k=1 Lk.

Suppose further that w.p.1. Zt ∈ [0,U] for some constant U ≥ 0 and t ∈ [1,T ].

Then

Lemma 7 (Theorem 2.3.5 of Chapter 2). 0 ≤ Z∗ −
∑n

k=1 Ls ≤
U

n+1 , for all n ≥ 1.

In light of Lemma 6 and Lemma 7, in Chapter 2 we develop algorithms for

approximating the optimal value Z∗ and finding the (near-)optimal stopping

policy. The approach utilizes Monte-Carlo methods to compute L1, L2, ..., Lk for

some k large enough, each with high precision. To account for the runtime

and sample complexity of the algorithms, we first establish a formal sampling

and computational model, analogous to the generative model of Chapter 2, but

slightly weaker.

Assumption 4. There exists a simulator that takes as input ε, δ ∈ (0, 1), t ∈ [T ] and

any trajectory (x1, ...xt), and achieves the follows.

• (Sampling). It can (when t < T ) output i.i.d. samples of Xt+1 conditional on

X[t] = x[t] each taking at most C units of time.

• (Cost evaluation). It can output a random number Y satisfying P(|Y − gt(X[t])| >

εU) < δ in a runtime at most h1(ε, δ), and requiring the number of independent

samples at most h2(ε, δ), where h1 and h2 are some deterministic non-negative

functions decreasing in both ε and δ.

The simulator model allows for inexact evaluation of the costs, effectively ex-

tending the setting of Theorem 2.3.7 in Chapter 2 to incorporate a broader class

of scenarios including that of equation (3.1).
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We next present the analysis of two algorithms Wa and Wb, as variants of

the algorithms of Theorem 2.3.7 under Assumption 4, that can (with high prob-

ability) 1. compute an ε-approximation for the optimal value Z∗, and 2. provide

an ε−optimal stopping policy. The runtime and sampling complexity of the two

algorithms both scale polynomially in the time horizon T , and depending on

the dimension d only implicitly through C, h1 and h2. More concretely,

Lemma 8 (Wa : value approximation). There exists an algorithm, denoted byWa,

that takes as input ε, δ ∈ (0, 1), and achieves the following. It returns a random number

Y satisfying P(|Y − Z∗| > εU) < δ in total computational time at most(
C × H2(ε, δ,T ) + H1(ε, δ,T )

)
× exp(200ε−2)T 6ε−1

(1 + log(
1
δ

))6ε−1

and requiring the number of independent samples from the simulator at most

H2(ε, δ,T ) × exp(200ε−2)T 6ε−1
(1 + log(

1
δ

))6ε−1

with the constants Hi(ε, δ,T ) ∆
= hi

(
4−6ε−1

, δ exp(−200ε−2)T−6ε−1
(1 + log(1

δ
))−3ε−1)

i ∈

{1, 2}.

Lemma 9 (Wb : good policy). There exists an algorithm, denoted byWb, that for all

ε ∈ (0, 1), outputs a randomized stopping time τε s.t. E[Zτε ] − Z∗ ≤ εU, and with the

following properties. At each time step, the decision of whether to stop (if one has not

yet stopped) can be implemented in total computational time at most

exp(200ε−2)T 6ε−1
×

(
C×h2

(
4−6ε−1

, exp(−200ε−2)T−6ε−1)
+h1

(
4−6ε−1

, exp(−200ε−2)T−6ε−1))
and with the number of samples required from the simulator at most

exp(200ε−2)T 6ε−1
× h2

(
4−6ε−1

, exp(−200ε−2)T−6ε−1)
.

The pseudo-code of algorithms Wa and Wb will be given in the technical

appendix B.1.1. Here we sketch the main steps:Wa truncates the expansion Z∗ =
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∑∞
i=1 Li at k and approximates L1, ..., Lk separately with Monte-Carlo simulation

via the simulator. Wb repeatedly callsWa, compares the obtained value-to-go

approximation with the cost-at-stop, and determines whether to stop. The proof

of Lemma 8 and 9 combines the result of Lemma 7 with some classical tools in

probability theory(e.g. concentration inequalities such as Azuma-Hoeffding).

We also leave them to the technical appendix B.1.1.

3.5 Algorithm

We now present our main sequential decision-making algorithms. Following

the ideas proposed in section 3.4, our algorithms use the optimal stopping

solvers Wa and Wb to recursively solve equations (3.1) and (3.2). We begin

by describing a set of subroutines for approximating value-to-go functions Jk
t .

3.5.1 Subroutines for computing Jk
t

The subroutines, denoted by (Qk)k≥1, take as input two control parameters ε, δ ∈

(0, 1), historical action sequence a0, a1, ..., at−1 and state trajectory x0, x1, ..., xt, and

output high probability (w.p. 1 − δ) near optimal (ε−optimal) approximations

of the value-to-go Jk
t (a[t−1], x[t]). For the ease of analysis, we assume that these

subroutines know parameters α and M (defined in Assumption 3), which is not

required when used in practice.

Subroutine Q1 (for computing J1
t )
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Inputs: control parameters ε, δ, history a[t−1], x[t]

for a ∈ At do

fix a policy πa ∆
= (a[t−1], a, p∗, ..., p∗),

sample and compute N(αε, δ
M ) i.i.d. copies of

∑T
s=t rs(πa

[s], X[s]) using S

and store their average as Ya

end for

a∗ ← arg maxa∈At Ya

Outputs: a∗ and Ya∗

Subroutine Qk (for computing Jk
t )

Inputs: control parameters ε, δ, history a[t−1], x[t]

for a ∈ At do

fix a policy πa ∆
= (a[t−1], a, p∗, ..., p∗),

CallWa with parameters αε and δ/M to solve

supτ∈[t,T ] E
[∑τ−1

s=t rs(πa
[s], X[s]) +Jk−1

τ (πa
[τ−1], X[τ])

∣∣∣∣∣X[t] = x[t]

]
with (Jk−1

j ) j≥1 approximated by Qk−1

store the output as Ya

end for

a∗ ← arg maxa∈At Ya

Outputs: a∗ and Ya∗

Remark. Qk makes calls toWa to solve the optimal stopping problem in equation (3.1).

Wa’s access to the underlying model is through simulation. More specifically, Wa

needs a simulator that can sample from the underlying state and evaluate the “reward-

at-stop”, as specified in Assumption 4. The sampling of the underlying state Xt can

be done by calling simulator S by Assumption 2. Evaluating the “reward-at-stop”,
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however, requires the knowledge of (r j) j≥1 andJk−1
j . The former can again be obtained by

calling simulator S (see Assumption 2). The latter is only accessible through running

Qk−1. In that way, subroutines (Qk)k≥1 are linked up in a recursive manner. We will

provide a formal performance and runtime analysis of subroutines Qk in later sections.

3.5.2 Main algorithms

Our first main algorithm, denoted by Qa, computes an approximation of OPT

with desired performance guarantee. It is achieved by calling QK+1 with appro-

priate inputs.

Sketch of Algorithm Qa (for computing OPT)

Call QK+1 with control parameters (ε, δ)

Output: The value-to-go approximation returned by QK+1

Our second algorithm, denoted by Qb, can compute a good decision-making

policy subject to at most K active action-taking opportunities. The horizon T is

divided into K + 1 epochs. The algorithm computes and takes an active action

at the starting point of an epoch, and remains passive while solving an optimal

stopping problem to determine when to end the current epoch and start a new

one.

Sketch of Algorithm Qb (for computing a decision-making policy)
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for k = 0 : K do

at the beginning of the k-th epoch, tk ← the current time, x[tk−1] ←

the state trajectory, a[tk−1] ← the historical action sequence

call QK+1−k with control parameters ( ε
8(K+1) ,

Mαε
8(K+1) ∧1) to get an action ak

fix a policy πk ∆
= (a[tk−1], ak, p∗, ..., p∗)

callWb with control parameter αε
2(K+1) to solve

supτ∈[tk+1,T ] E[
∑τ−1

s=tk rs(πk
[s], X[s]) +JK+1−k

τ (πk
[τ−1], X[τ])|X[tk] = x[tk]]

with (JK+1−k
j ) j≥0 approximated by QK+1−k

end the epoch whenWb outputs STOP

if the current period == T OR k == K

Output πk break

end if

end for

3.5.3 Main results: performance and complexity

We present our main results: the performance and complexity of the algorithms

Qa and Qb. Our first theorem establishes that algorithm Qa efficiently computes

a provably near-optimal approximation of the optimal value.

Theorem 3.5.4. Under Assumptions 1, 2 and 3, and for any ε, δ ∈ (0, 1), algorithm Qa

can output a random number Y satisfying P(|Y − OPT| > ε × OPT) ≤ δ. Furthermore,

the above can be achieved in total computational time at most

C × (10T M2)
KU(106, 1

αε )
(
1 + log

(1
δ

))KU(106, 1
αε )

and with number of samples required from the simulator S at most

(10T M2)
kU(106, 1

αε )
(
1 + log

(1
δ

))kU(106, 1
αε )
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Our second theorem establishes that the algorithm efficiently computes a

decision-making policy subject to the limited-move constraint (Assumption 1),

with strong theoretical performance guarantee.

Theorem 3.5.5. Under Assumptions 1, 2 and 3, and for any ε ∈ (0, 1), algorithm Qb

can compute a randomized decision-making policy π subject to at most K active action-

taking opportunities, such that |E[
∑T

t=1 rt(π[t])] − OPT| ≤ ε × OPT. Furthermore, at each

time, π outputs its decision in total computational time at most 2C(100T M)
k+1U

(
106, 2(K+1)

αε

)
and with number of samples required from simulator S at most 2(100T M)

k+1U
(

106, 2(K+1)
αε

)
Remark. At this point, our algorithmic analyses serve more as a proof-of-concept that

there does exist a PTAS (analogy) for such general sequential decision-making prob-

lems. The bounds we present here are no way near being tight. We leave improving

these bounds to future works. Different from DP-based approaches, the runtime of our

algorithm scales polynomially in the time horizon T , the size of the action set M, and

depends on the dimension d only implicitly through simulation costs. However, the de-

pendence on K, the number of active action-taking periods can be worse than being expo-

nentially. These observations suggest that our algorithm is most effective for problems

with (1) relatively long time horizon, (2) high-dimensional and complex underlying

state, and (3) costly active actions limited to a small number of action-taking opportu-

nities. Decision-making problems with these features arise from many real-world tasks

other than dynamic pricing and option pricing, ranging from personal/public healthcare

settings (e.g. when to perform organ transplantation; when to shut down/reopen during

a pandemic etc.) to public policy making (when/how to change interest rates etc.), where

algorithms like ours are of great potential.
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3.6 Analysis

In this section we outline the proof of Theorem 3.5.4 and Theorem 3.5.5. In

subsection 3.6.1, we present the analysis of the subroutines (Qk)k≥1, from which

Theorem 3.5.4 follows directly. We then apply the results to the analysis of Qb,

proving the performance guarantee of its output policy in subsection 3.6.2 and

the computational/sampling complexity bounds in subsection 3.6.3. We com-

plete the proof of our main results in subsection 3.6.4.

3.6.1 Analysis of subroutines (Qk)k≥1

Algorithm Qk approximates the value functions (Jk
t )t∈[0,T ] of a given online

decision-making problem via Monte Carlo simulation. We now provide the for-

mal analysis, accounting for the computational/sampling cost that Qk takes to

achieve a desired approximation precision.

Lemma 10. For any ε, δ ∈ (0, 1), action sequence a[t−1] and state trajectory x[t], algo-

rithm Qk+1 achieves the following. In total computational time at most

C × (10T M2)
kU(106, 1

αε )
(
1 + log

(1
δ

))kU(106, 1
αε )

and number of samples required from simulator S at most

(10T M2)
kU(106, 1

αε )
(
1 + log

(1
δ

))kU(106, 1
αε )

,

return a random number Y satisfying P(|Y − Jk+1
t (a[t−1], x[t])| > ε × OPT) < δ.

Qk+1 is recursively defined, calling Qk multiple times, with the optimal stop-

ping subroutine Wa being the key building block. In order to certify that the
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output of Qk+1 does achieve the desired approximation precision and to account

for the computational and sampling costs, we shall use induction, certain con-

centration bounds and Lemma 8, the algorithm analysis ofWa. The full proof

of Lemma 10 is given in Appendix B.2.

3.6.2 Performance guarantee of Qb

We show in this subsection that the policy returned by Qb does have a good

performance.

Lemma 11. For any given time period t, state trajectory x[t], action sequence a[t−1]

and the number of remaining active action-taking opportunities k, algorithm Qb can

compute a randomized decision-making policy π with π[t−1] = a[t−1], and taking at most

k active actions in [t + 1,T ], such that∣∣∣∣∣E[ T∑
s=t

rs(π[s])
∣∣∣∣∣Ft

]
− Jk+1

t (a[t−1], x[t])
∣∣∣∣∣ ≤ k + 1

K + 1
ε × OPT.

We use induction, combined with the analysis ofWb and Qk ( Lemma 9 and

10) to prove the above result. The proof is via fairly standard analytical tech-

nique, with the use of several union bounds and concentration bounds. We

again leave it to the appendix B.2.

3.6.3 Computational and sampling complexity analysis of Qb

We establish the computational and sampling analysis of Qb in this subsection.

We show that, at each time, Qb takes a runtime scaling polynomially in both the

time horizon T and the size of the action set M to compute an output action.
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Lemma 12. For any given time period t, state trajectory x[t], action sequence a[t−1] and

the number of remaining active action-taking opportunities K, algorithm Qb outputs

an action in computational time at most 2C(100T M)
K+1U

(
106, 2(K+1)

αε

)
, and with number of

independent samples required from simulator S at most 2(100T M)
K+1U

(
106, 2(K+1)

αε

)
.

Recall that at each time, Qb makes one call to Wb to determine whether to

take active action, and (possibly) one call to QK to pick a new action. There-

fore the computational and sampling costs of Qb can be bounded by that ofWb

and QK , which are the contents of Lemma 9 and 10. We leave the full proof to

appendix B.2.

3.6.4 Proof of the main results

With Lemma 10,11 and 12, we complete the proof of our main results, Theorem

3.5.4 and 3.5.5.

Proof of Theorem 3.5.4. Recall that Qa simply makes one call to QK+1 with control

parameters (ε, δ). Therefore, the result follows immediately from Lemma 10. �

Proof of Theorem 3.5.5. The fact that the output policy is a good policy, i.e.∣∣∣∣∣E[ T∑
t=1

rt(π[t])
]
− OPT

∣∣∣∣∣ ≤ ε × OPT

is an immediate corollary of Lemma 11. The computational and sampling costs

of algorithm Qb follow directly from Lemma 12. Combining the above then

completes our proof. �
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3.7 Conclusion

In this work, we present a new methodology for high-dimensional online

decision-making problems subject to the limited-move constraint. In contrast to

most past approaches in the literature, our algorithms can trade-off between the

desired approximation precision and the runtime/sample complexity. Indeed,

for any given control parameter ε, our algorithm can obtain an ε-approximation

of the optimal value, as well as an ε-optimal decision-making policy, taking a

runtime scaling polynomially in the time horizon T , the size of the action set M,

and depending on the dimension (and state space more generally) only through

the cost of simulating underlying state/reward. The “data-driven” simulation

nature of the algorithms also free us from imposing restrictive assumptions on

the underlying model. Indeed, the algorithms work in total generality, allow-

ing for arbitrary high-dimensional and full path-dependent underlying state

dynamics and reward structures.
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CHAPTER 4

ONLINE MAX WEIGHT BIPARTITE INDEPENDENT SET WITH

HIGH-DIMENSIONAL UNSTRUCTURED FEATURES: EFFICIENT

SIMULATION IMPLIES EFFICIENT ALGORITHMS

4.1 Introduction

The growing availability of data and the ever-improving machine learning ca-

pabilities offer the unique opportunity to incorporate “data-driven” insights

into online decision-making. Indeed, powerful models capture relevant fea-

tures from the (often) highly complicated underlying environment, cast them

as data streams, track their history and predict their future movements. Such

models facilitate more realistic and more accurate decision-making.

On the other hand, many important decision-making problems possess nat-

ural and fundamental combinatorial optimization formulations. Typically, com-

binatorial constraints such as packing, matching etc. characterize various de-

pendence structures between decisions that are common in reality. Indeed, the

connection between (offline) decision-making and combinatorial optimization

has long been established and well studied in the academic literature.

It is thus well-motivated to formulate and study sequential decision-making

problems within a framework where (1) there exists auxiliary, decision-relevant

information (often in the form of randomly evolving feature vectors/data

streams) and an associated predictive model; and (2) the decisions are subject

to certain combinatorial constraints. Such problems are not classical combi-

natorial optimization problems due to its sequential nature and the existence

of the predictive models. Yet they also can not be categorized as typical re-
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inforcement learning problems, because the decisions are themselves “path-

dependent,” subject to certain combinatorial constraints.

Recently, a line of relevant works emerged in the literature (e.g. [248, 258]).

These works aim generally at designing efficient algorithms to incorporate the

predictive power of machine learning into online decision-making, and derive

interesting results in many different settings. However, the existing works typ-

ically either adopt the classical competitive ratio analysis (i.e. taking a funda-

mentally non-probabilistic/non-Bayesian perspective), or rely crucially on cer-

tain independence assumptions of the underlying features/data streams that

reduce the problem complexity (see literature review). In the regime where

the underlying features/data streams are high-dimensional and non i.i.d./path-

dependent and where the dependence structure between decisions are non-

trivial, the problem is typically intractable due to curse of dimensionality issues.

In such general settings, the following questions remain open.

Question 1. Does there exist efficient algorithms that can accurately approximate the

performance of the optimal decision-making policies (as a benchmark against which

other policies/algorithms will be measured) ?

Question 2. Does there exist efficient algorithms that can find provably near-optimal

decision-making policies?

In this work, we make an attempt to address the above questions. Our focus

is on the classic maximum weight independent set problem in combinatorial opti-

mization. In its online version, a fixed graph is given and known a priori. Each

node of the graph is associated with some randomly evolving features (possibly

high-dimensional and with path-dependent dynamics), revealed sequentially.

One has to decide immediately whether to pick a node upon the revelation of
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its features, and the PICK decision will incur a feature-dependent reward. One

has to ensure the picked nodes form an independent set, while aiming at maxi-

mizing the expected cumulative rewards.

As our main contribution, we prove that this problem is efficiently com-

putable in the bipartite and bounded-degree setting. More precisely, we devise an

algorithm for approximating the performance of the optimal decision-making

policy (i.e. the optimal value) that is essentially analogous to a polynomial time

approximation scheme (PTAS). Namely, for any fixed error tolerance ε, δ, our ap-

proach guarantees to find an ε-approximation of the optimal value with prob-

ability at least 1 − δ in a runtime linear in the time horizon (equivalently, the

number of nodes of the graph), and effectively independent of the underlying

dimension (implicitly depending on the dimension only through certain sim-

ulation costs, which will be specified later). The guarantee holds for arbitrary

dynamics of the underlying features and reward structure, providing an affir-

mative answer to QUESTION 1 in the setting of biparitite bounded-degree online

maximum weight independent set.

Our algorithm is (Monte-Carlo) simulation-based. Indeed, it harnesses the

full potential of the predictive model, treating it as a “black-box” simulator that

repeatedly generate independent trajectories (predictions) of the features, with-

out requiring explicit knowledge of e.g. the dynamic equation or the proba-

bility distribution. Technically, our algorithm is intimately related to certain

parallel/distributed algorithms (see literature review). However, the existing

distributed algorithms generally come from a more combinatorial setting, and

are not applicable to our problem which possess a probabilistic structure (see

literature review). The key theoretical novelty of this work resides in the com-

bined use of the simulator and a greedy-type technique first introduced in [134]
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for tackling high-dimensional optimal stopping, which clears the computational

obstacle of approximating a maximal objective in a large graph with probabilistic

structure. We suspect this general simulation-based technique can be extended

beyond the specific setting of online maximum weight independent set/optimal

stopping, to the online versions of more combinatorial optimization problems.

Besides, our algorithm exhibits an interesting correlation decay property.

More precisely, to achieve a fixed approximation precision, the computation at

each node in the graph only ever uses the information of its neighbouring nodes

within a constant distance. We precisely characterize this constant, which is de-

termined completely by the max degree of the graph and the fixed error toler-

ance, and is independent of the total number of nodes in the graph. Therefore,

our approach is able to find near-optimal solutions with high probability in a

decentralized way. This aligns with many existing works, e.g. [125], which report

the correlation decay property of the (offline) maximum weight independent set

problem with random weights.

4.1.1 Organization

The rest of this chapter is organized as follows. Following a literature review,

in Section 4.3, we define our problem, briefly introduce the required prelimi-

naries (on network flow theory) and (informally) summarize the main result.

We sketch our algorithmic idea in Section 4.4. The main algorithms and their

analysis is presented in Section 4.5.
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4.2 Related literature

Our work is related to several areas of research.

Online algorithms and competitive analysis: The majority of the work on on-

line algorithms is within the competitive ratio analysis framework. Competitive

analysis takes a pessimistic perspective on the underlying uncertainty, prepar-

ing for the worst to happen, and rewarding algorithms with minimal loss in

such circumstances. This framework is successfully applied in the analysis of

various problems/algorithms, such as online paging/caching ([236, 119]); on-

line bipartite matching (e.g. [162, 200, 161, 117, 168], only to name a few); the

secretary problem/prophet inequality (e.g. [128, 145, 1, 102, 101, 21, 171] only to

name a few) and many others. We refer the interested readers to the book [59]

for more details. A paper of relevance to our own is [132], which studies online

maximum weight independent set in various stochastic models and analyzes

the algorithms within the competitive analysis framework. Certain new com-

petitive models are proposed and analyzed in various concrete settings, with an

effort to incorporate stochastic information into the design of online algorithms

(see, e.g. [127, 202, 203, 167]). We want to stress that, in our work, instead

of introducing the optimal offline solutions as benchmarks, we measure all al-

gorithms against the optimal online algorithm. Here optimal is in the sense of

maximizing the expected performance under the predictive model. Therefore,

our results are not directly comparable to results derived within the competitive

analysis framework.

Online algorithms and regret analysis: For many concrete problems, the anal-

ysis of online algorithms takes a regret-based approach. Examples include on-

line learning (see e.g. the book [143]), bandit problems (see e.g. the book [70])
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etc. Traditionally, the regret analysis framework is only applied to online prob-

lems with a learning/repeated-game structure, often without any combinato-

rial constraint on decisions.1 There does exist works on certain online decision-

making problems subject to some specific combinatorial constraints on the deci-

sions, that adopt the regret analysis framework (such as [15, 248, 16, 72]). How-

ever, these results (regret bounds) rely vitally on the independence assumption

of the underlying stochastic process. As a comparison, we allow the underlying

stochastic process to have arbitrary, path-dependent dynamics. Indeed, to the

best of our knowledge, it seems that the existing literature contains very few if

any small-regret or no-regret results in such a framework.

Combinatorial optimization and local/parallel computing: There is an inti-

mate connection between our simulation approximation technique and the al-

gorithmic ideas developed by many works in the local/parallel computing lit-

erature. We apply a reduction of an online bipartite maximum weight indepen-

dent set to a massive offline bipartite maximum weight independent set (and

further to a massive max flow problem), and follow the algorithmic idea in [94]

of “eliminating length l augmenting paths” to solve the resulting max flow prob-

lem. A similar idea in the unweighted case first appeared in the celebrated 1973

paper by Hopcroft and Karp [146] on bipartite min vertex cover/ max match-

ing. There is since a line of work that builds on the Hopcroft-Karp framework

for locally approximately computing (unweighted) max matching/ min vertex

cover (see [208, 194, 197, 114]). There is a major distinction between our set-

ting and theirs. Indeed, although the original graph has bounded degree, in

our offline max-flow reduction, the (expanded, as we call it) graph may contain

nodes with arbitrarily large degree. Furthermore, this graph assigns probabili-

ties and weights (both can be arbitrarily unbalanced) to its massive number of

1The combinatorial bandit problem actually don’t impose combinatorial structure on decisions.
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edges. Our simulation model access such a graph naturally. The algorithms

in the previously mentioned papers, on the other hand, typically rely on com-

binatorial methods to “eliminate the augmenting paths”. Such techniques are

fundamentally inapplicable/inefficient in our setting. [116] talks briefly about

possible extensions of these techniques to the weighted case, but no rigorous

algorithm and complexity analysis is provided. We believe that our model and

techniques are by nature different from this line of works. It’s indeed an inter-

esting question to explore further the connection between our algorithm and the

local computing algorithms within multiple local computational models, which

we leave as an open problem. We refer the readers to the survey [188] or [226]

for more details if interested.

Besides the literature on local computing algorithms, our core technique, the

greedy iterative flow pushing procedure (Algorithm 2) as a direct extension of

[134], is also generally related to certain parallel/distributed ideas in different

settings (e.g. constant approximations for non-bipartite min vertex cover) such

as [169, 177, 178], and may find its origin in [212]. In general, we are aware

of the existence of various relevant but distinct results on related problems of

(weighted) maximum matching/ min vertex cover in multiple different compu-

tational models (e.g. MPC, PRAM, distriubted LOCAL). These results are not

directly comparable to ours.

Correlation decay: For certain combinatorial optimization problems (e.g. max-

imum (weighted) matching, maximum (weighted) independent set etc.), corre-

lation decay was established and used in the design of efficient approximation

algorithms in trees and sparse, locally tree-like graphs (see [8, 10, 9, 126, 251,

124]). Specifically, [125] provides an efficient approximation algorithm for max-

imum (weighted) independent set with random weights in a graph of small
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degree. Our results indicate the existence of correlation decay, and hence effi-

cient local algorithms when the problem is online (in the bipartite and bounded-

degree graph).

Optimal stopping and control: The idea of using a simulator to conduct an

iterative greedy flow-pushing procedure was first used in [134] on the problem

of optimal stopping (see Chapter 2). Indeed, from a combinatorial optimiza-

tion perspective, the problem of optimal stopping can be viewed as a max-flow

min-cut instance in a massive tree network. Unlike in a tree network where

the greedy algorithm directly outputs a max flow, we need to add an extra

layer (Dinitz algorithm) in the computation of max flow in the current paper

since a blocking flow is not necessarily maximum in general. Nontheless, the

technique of [134] leads to an efficient procedure for approximately computing

blocking flows, which is the core building block of the main algorithm of this

work. The method introduced in [134] is in spirit related to many other tech-

niques in stochastic control such as information relaxation (e.g. [68, 67] etc.).

The connection between our algorithm and these other relevant works is also

an interesting question to explore further, which we leave as an open problem.

Quantum-inspired algorithms and the simulator: In our framework, the con-

cept of a simulator of the underlying data streams naturally comes from the

machine-learning predictive tools widely used in reality. In quantum comput-

ing, there is a recently emerging line of work on quantum-inspired classical algo-

rithms (e.g. [241, 89, 18, 129] among many others) that uses a “simulator” in a

similar way as we do in our setting to derive efficient algorithms. More specifi-

cally, such quantum-inspired algorithms assume access to the problem instance

(often in a matrix form) through certain ability to draw samples from the matrix-

specified distribution, resembling the simulator in our setting. They typically
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enjoy a significant speedup against previous classical algorithms. These results

(and ours) suggest that simulation-based algorithms can be a promising new

direction for efficiently solving hard problems in many different settings.

4.3 Model, preliminaries and main result

4.3.1 Problem setup

Suppose there is an undirected, bounded-degree bipartite graph G = (V, E). We

assume V = {1, 2, ...,T } for notational simplicity. Consider a decision maker

(DM) and a stochastic process x ∆
= (xi)i≥1 with xi ∈ R

d for some d ≥ 1. The online

maximum weight independent set problem (ONLINE MWIS) is defined as follows.

Suppose the DM maintains a vertex set I that is initially empty. At each time

i ∈ [1,T ], the DM observes the stochastic process’s current value xi = xi, and

then decides whether to include vertex i in set I. A decision of including i re-

sults in a reward of ci(x1, ..., xi), where (x j)i∈[1,i] is the historical trajectory of the

process, and (ci)i≥1 are arbitrary real-valued functions that take value in [0, 1].

As the sole constraint imposed on this vertex-taking process, set I is required to

be an independent set of graph G throughout time [1,T ]. Namely, for any pair of

nodes (i, j) with i < j and (i, j) ∈ E, if i was included in set I, then j becomes

unavailable. The DM’s goal is to find the optimal policy under which the ex-

pected total reward is maximized. We denote by OPT the maximum expected

total reward.
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4.3.2 Max-flow formulation

It turns out that there exists a reduction of ONLINE MWIS to MAX FLOW, which

we present in this section. To begin with, let’s introduce some notation.

Notation. Let L ⊂ V and R ∆
= V/L denote the two parts of graph G, respec-

tively. Let ∆ denote the maximum degree in G. We assume that the stochastic

process only takes value in a finite set.2 More precisely, for i ∈ [1,T ], let Hi

denote the finite set of all possible trajectories of (x j) j∈[1,i]. Hi consists of d × i

matrices. Let Fi denote the generated σ-field. For each ω ∈ Hi, we denote by

p(ω) ∆
= P

(
x[1,i] = ω

)
its probability. By basic probability laws, we must have

p(ω) =
∑
γ∈HT :ω⊂γ p(γ), where we slightly abuse the notation ω ⊂ γ to mean that ω

is consistent with the first i columns of γ, or equivalently, ω is part of the history

of γ. We shall omit the subscript in the reward functions, writing c(ω) instead of

ci(ω) for all ω ∈ Hi and i ∈ [1,T ], assuming causing no confusion.

We now state the MAX FLOW reduction of ONLINE MWIS.

Expanded graph. Let’s define a directed graph Gx as follows. There exits

a source node s and a sink node t. For each ω ∈ Hi, i ∈ [1,T ], there exists an

associated node, denoted slightly abusively by ω. For each ω1 ∈ Hi with i ∈ L

and ω2 ∈ H j with j ∈ R, there exists an arc in Gx pointing from source node s

to ω1 and an arc pointing from ω2 to sink node t. There exists an arc between

the two nodes ω1 and ω2, pointing from ω1, if and only if (1). (i, j) ∈ E; and (2).

ω1 ⊂ ω2 (when i < j) or vice versa (when i > j). We denote by Vx the set of

nodes, i.e. Vx = ∪i∈[1,T ]Hi
⋃
{s, t}, and Ex the set of arcs. We call Gx the expanded

graph associated with graph G and stochastic process x.

Proposition 2. The longest s-t path in Gx is with length 3.
2We impose this assumption so that we can utilize certain combinatorial tools without run-

ning into problems. We suspect the removal of this assumption won’t affect our final results,
and we leave the discussion of the infinite case as a future direction.

88



Figure 4.1: An example of the expanded graph: original graph is bipartite
G({1, 2, 3}, {(1, 3), (2, 3)}) with underlying uncertainty given by a
binary tree.

Expanded flow network. We introduce a set of capacities on Gx. Arc e of the

form (s, ω) or (ω, t) have capacity cx(e) ∆
= c(ω)× p(ω). All other arcs have capacity

∞. We call the resulting flow network the expanded flow network associated with

graph G and stochastic process x, denoted by {Gx, cx, s, t}, by convention. We

denote by OPT′ the max flow value in network {Gx, cx, s, t}.

Lemma 13 (MAX FLOW reduction). MAX FLOW instance {Gx, cx, s, t} is a valid re-

duction of the ONLINE MWIS associated with G, x and c. We have

OPT + OPT′ = E
[ T∑

i=1

c(x[1,i])
]
.

We leave the proof of Proposition 2 and Lemma 13 to Technical appendix
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C.1. Here any direct attempt at utilizing textbook max-flow algorithms to solve

{Gx, cx, s, t} will lead to complete computational failure, since the problem size

is by definition dependent on the state space of the stochastic process x, which

can be uncontrollably large. Instead, we combine the classical results in network

flow theory with novel techniques developed in the context of optimal stopping

and control (see Chapter 2) to come up with implementable algorithms with

desirable performance and complexity guarantee.

4.3.3 Network flow preliminaries

In this section, we review some classical network flow results. Before delving

into a formal discussion of existing results, let’s first introduce several necessary

terminologies – both standard ones commonly used in the literature/textbooks

and unconventional ones tailored to suit our needs in this work.

Terminologies. For any flow network with noncyclic arc set A and capac-

ities u, we shall add reverse arcs and form an arc set Ar: if (i, j) ∈ A then both

(i, j), ( j, i) ∈ Ar, with additional capacities u( j, i) = 0. We call the new graph with

arc set Ar residual graph (unconventional definition, independent of any specific

flow). The residual network associated with a flow f is defined on the resid-

ual graph with the set of capacities u f : u f (i, j) = u(i, j) − f (i, j), u f ( j, i) = f (i, j)

for any arc (i, j) ∈ A (and thus ( j, i) ∈ Ar). An arc is called saturated by f if

u(i, j) − f (i, j) = 0. By our definition, all 0 capacity, or saturated arcs are kept

in the residual network. Flows in residual networks can use a pair of mutually

reverse arcs simultaneously. For any such flow f , its net flow is defined to only

push flow f (i, j) − f ( j, i) on arc (i, j) (when f (i, j) > f ( j, i)). A flow f is regular

if its net flow is itself. We call a flow blocking in some network if every s-t path
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contains a saturated arc. We call a path disconnected if one of the arcs on the path

has 0 capacity. The level of a node i, denoted by d(i), is the length of the shortest

connected s-i path. An arc (i, j) is admissible if it’s connected and d( j) = d(i) + 1.

The level subnetwork is defined on the residual graph, characterized by the fol-

lowing set of capacities: for all (i, j) ∈ A such that (i, j) is admissible, the capacity

is u(i, j); for all other arcs the capacity is 0. The level residual subnetwork associ-

ated with a flow f is the level subnetwork of the residual network of f . We call

a flow l-disconnecting if d(t) > l in the residual network of f .

We start by introducing the celebrated Dinitz’s algorithm. This algorithm iter-

atively computes blocking flows in the level subnetwork of residual networks,

keeps increasing the distance between the source and the sink, and terminates

at optimality when the sink becomes unreachable from the source.

Dinitz’s algorithm. The algorithm maintains a feasible flow f in network N ,

initialized as a zero flow, and repeats the following until d(t) = ∞ in the residual net-

work.

1. Find a blocking flow f ′ in the level residual subnetwork of f .

2. Update f ← f + f ′.

In a Lemma, we state the fact that Dinitz’s algorithm strictly increases d(t) be-

tween iterations.

Lemma 14. Suppose a flow f ′ is blocking in the level residual subnetwork of some flow

f . Then the level of sink d(t) is increased by at least one in the residual network N f + f0

associated with flow NET ( f + f0).

Corollary 3. Dinitz algorithm terminates at optimality in at most n iterations, where

n is the number of nodes in the network.
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Next we introduce a result of [94], that provides an optimality guarantee for

l−disconnecting flows in a shallow network.

Lemma 15. Consider a network of depth r and with a maximum s-t flow value M∗.

Suppose a flow f is l−disconnecting for some l ≥ r, then it holds that

M∗ ≤

( l + 1 + r
l + 1 − r

)
M.

We refer the reader to a proof of Lemma 14 and Corollary 3 in textbooks such

as [253]. We point the reader to the paper [94] for a proof of Lemma 15.

4.3.4 Main results

We informally state the main result of this work. We present an efficient algo-

rithm for computing the value of MAX FLOW instance {Gx, cx, s, t}, which then

gives an approximation of OPT, the optimal value of ONLINE MWIS instance

{G, x, c}. To achieve a high-probability (1 − δ) high-accuracy (1 − ε) solution, the

algorithm only runs in a time linear in the number of nodes T , and effectively

independent of the dimension d of the underlying process x. We have

Theorem 4.3.5 (Informal). Suppose OPT = O(T ). Then there exists a randomized

algorithm that can output a number y satisfying |y − OPT| < εOPT with probability at

least 1 − δ, in a running time T M with M a constant depending only on ε, δ,∆.

Remark (Simulation-based). The algorithm in Theorem 4.3.5 takes as a build-in sub-

routine a simulator of the underlying stochastic process x, and relies on repeated calls

to the simulator for independent (conditional) trajectories as the means of accessing x.

The sampling cost is implicitly included in constant M. The rigorous definition of such

a simulator will be given in Section 4.5.
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Remark (Locality). The algorithm exhibits an interesting correlation decay property,

and is intimately related to the local computation model. At a high level, the algo-

rithm conducts computation at each node in the expanded graph Gx. To achieve an

(ε, δ)−approximation of OPT, the algorithm only ever uses the information from the

neighbourhood of each node within a given constant distance. Our analysis reveals that

this constant depends only on ε, δ and ∆, independent of the size of the graph T . There-

fore, the algorithm possesses an interesting property that its computation at each node

is fundamentally local.

4.4 Algorithms: the ideal version

On a very high level, the approach we take to solving our specific MAX FLOW in-

stance {Gx, cx, s, t} is to follow Dinitz’s algorithm. Namely we compute blocking

flows for a finite number of iterations, and terminate with provable optimality

guarantee promised by Lemma 15. A key challenge here is that the blocking

flows are intractable via any existing, standard network flow algorithm, which

typically sequentially searches for and then augments the shortest s-t paths. We

take an alternative approach that, roughly speaking, works on all shortest paths

simultaneously. In this section, we sketch the main steps of our approach. Our

demonstration of the algorithm here will be “ideal”, that ignores any physical

limit, allowing the “computer” to take an infinite amount of steps and store an

infinite amount of information. Such “ideal algorithms” will be converted into

implementable algorithms with rigorous performance and runtime analysis in

later sections.

As discussed in the previous section, we slightly modify the network

{Gx, cx, s, t} by adding reverse arcs to Ex, and assigning capacities 0 to these addi-
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tional arcs. We still denote the resulting network by {Gx, cx, s, t}. We also slightly

modify the underlying graph G, by adding two vertices, respectively −1 and −2.

Vertex −1 is adjacent to, and only to all vertices in L, and vertex −2 is adjacent

to, and only to all vertices in R. They correspond to source s and sink t in Gx.

We still denote the resulting graph by G. A (directed) path in Gx is called regular

if source s only appears as the starting node of the path (if it appears) and sink

t only appears as the ending node of the path (if it appears). Similarly, a path

in G is called regular if vertex −1 only appears as the starting vertex of the path

(if it appears) and vertex −2 only appears as the ending vertex of the path (if it

appears). To simplify our notation, we letH−1
∆
= {s} andH−2

∆
= {t}.

4.4.1 Max flow in path subnetwork and Algorithm 1′

In this section, we define a specific subgraph of Gx, the path subgraph, and intro-

duce an algorithm which solves for the maximum flow in networks with this

specific underlying graph structure. The algorithm will serve as a key subrou-

tine for our main blocking flow computation. Let’s begin with a quick observa-

tion which connects the (regular) paths in graph Gx with the (regular) paths in

the original graph G.

Lemma 16. There is a natural surjective function φmapping from the regular (directed)

paths in graph Gx to the regular paths in graph G (with directions).

Proof. Consider an arbitrary regular directed path P = (ω1, ..., ωk) in Gx. By def-

inition of Gx, there exists i1, ..., ik ∈ [1,T ] ∪ {−1,−2} such that ω j ∈ Hi j for all

j ∈ [1, k]. The fact that there exists arcs between consecutive nodes in the path,

along with the definition of Gx, imply that (i j, i j+1) ∈ E for all j ∈ [1, k− 1]. There-
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fore (i1, ..., ik) forms a (undirected) path in G. We assume a direction that points

from i1 to ik, and denote the directed path by P. The fact that P is regular implies

that P is regular. Then the function φ(P) = P proves what we need. �

Now suppose P = (i1, ..., ik)(k ≥ 2) is an arbitrary regular path in graph G,

with an assigned direction pointing from vertex i1 towards vertex ik.

Definition 4.4.1 (Path sample). A P-sample is a directed path P in graph Gx that

belongs to the preimage of P under function φ, i.e. φ(P) = P.

Definition 4.4.2 (Path subgraph). Given two nodes ω1 ∈ Hi1 , ωk ∈ Hik , the

(P, ω1, ωk)-subgraph is a subgraph of Gx that consists of all P-samples starting at node

ω1 and ending at node ωk.

Definition 4.4.3 (Path subnetwork). Given a set of arbitrary capacities u on graph

Gx and the (P, ω1, ωk)-subgraph W, we call {W, u, ω1, ωk} a (P, ω1, ωk, u)-subnetwork.

To unify notation, all flows in (P, ω1, ωk, u)-subnetwork are defined on the

entire graph Gx, more formally, f : Ex → R, assuming 0 wherever unspecified.3

We now present our ideal algorithm that solves for maximum flows in path

subnetworks.

Algorithm 1′ (max flow in path subnetworks)

Input: (P, ω1, ωk)-subgraph with P = (i1, ..., ik), capacities u

initialize scalar M = 0, flow vector f = 0

if (k == 2)

return M = u(ω1, ωk); f (ω1, ωk) = u(ω1, ωk), f = 0 elsewhere
3A flow in some path subnetworks may not be a flow in the entire network as the conserva-

tion rule is violated at the sub-source and sub-sink.
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else compute j := arg min{i2, ..., ik−1} and store subpaths

P1 ← (i1, ..., i j), P2 ← (i j, ..., ik)

for all ω ∈ H j : ω1, ωk ⊂ ω do

call Algorithm 1′ with inputs (P1, ω1, ω, u) and (P2, ω, ωk, u)

store outputs as (M1,ω, f1,ω) and (M2,ω, f2,ω) respectively

compute Mω ← min(M1,ω,M2,ω) and fω ← f1,ω
Mω

M1,ω
+ f2,ω

Mω

M2,ω

update M ← M + Mω; f ← f + fω

end for

end if

Output: M and f

Proposition 3 (Optimality of Algorithm 1′). Algorithm 1′ with input (P, s, t, u) re-

turns the maximum flow value and the (regular) maximum flow, thereby solving the

MAX FLOW problem in the (P, s, t, u)-subnetwork.

The performance guarantee of Algorithm 1′ depends on a specific decom-

posability property of path subnetworks, which enables us to break them into

smaller path subnetworks and solve for optimality with recursion. A detailed

proof of Proposition 3 will be left to Technical appendix C.2.

4.4.2 Blocking flow and Algorithm 2′

In this section, we present a procedure that leverages Algorithm 1′ to accom-

plish Dinic’s blocking flow computation. More precisely, the procedure main-

tains a regular, feasible flow throughout. In each iteration, it calls Algorithm 1′

on all shortest s-t path subnetworks, pushes a weighted sum of the outputting

96



max flows, and updates the capacities accordingly. After infinite iterations it

returns a flow that saturates all shortest s-t paths, hence blocking in the level

subnetwork.

We now state this procedure as Algorithm 2′. Recall that ∆ is the max degree

of vertices [1,T ] in graph G.

Algorithm 2′ (blocking flow in level residual subnetwork)

Input: l-disconnecting flow f0 for l odd

initialize flow f ′ = 0 in residual networkN f0 = {Gx, cx
f0
, s, t}, value M′ = 0

store inMl+2 all regular paths: −1→ −2 in G, with length (l + 2);

for iteration i = 1 : ∞

for P ∈ Ml+2

call Algorithm 1′ with input (P, s, t, u) and store outputs as MP, fP

update f ′ ← f ′ + 1
∆l fP

end for

update u← cx
f0
− f ′

end for

Output: f ′

Recall that we say a flow l-disconnecting, if the length of the shortest con-

nected s-t path in its residual network is greater than l. Algorithm 2′ can aug-

ment any l-disconnecting flow such that it becomes (l+2)-disconnecting, thereby

increasing d(t) by 2. We state this property as Proposition 4 and defer its proof

to Technical appendix C.3.

Proposition 4 (Guarantee for Algorithm 2′). Suppose Algorithm 2′ takes as input
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an l-disconnecting flow f0 and outputs a flow f ′. Then f0 + f ′ is (l + 2)-disconnecting.

4.4.3 Max flow and Algorithm 3′

With Algorithm 1′ and Algorithm 2′ in hand, we now provide Algorithm 3′

that solves the MAX FLOW instance {Gx, cx, s, t}. It’s validity follows directly from

Dinic’s algorithm, Proposition 4 and Corollary 3. We omit the proof.

Algorithm 3′ (main algorithm)

Input: flow network {Gx, cx, s, t}

initialize flow vector f = 0

for odd l = 1, 3, ...

call Algorithm 2′ with input f and store the output as f ′

update f ← NET( f + f ′)

end for

Output: f

4.5 Algorithms: the implementable version, and their analysis

Algorithm 1′, Algorithm 2′ and the main Algorithm 3′ are all unrealistic in terms

of runtime. More specifically, in Algorithm 1′, the size of the for loop is on the

order of the size of the state space of the stochastic process x, which can be

tremendously large. In algorithm 2′, the iteration repeats for an infinite amount

of times. In algorithm 3′, although the iteration count is finite before it termi-
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nates (by Corollary 3), it is on the order of O(T ), which will lead to an undesir-

able runtime complexity (exponential in T ). To remedy these shortcomings, we

propose modified versions of the three algorithms, so that they become realistic

and implementable. We also present rigorous runtime and performance analy-

sis for these modified algorithms.

To deal with the possibly tremendous state space of the underlying stochas-

tic process x, we introduce a natural simulation model, which has the power to

generate independent (conditional) trajectories of xt. Such a model is the gener-

ative model as introduced in Chapter 1.

simulation model. Assume access to a simulator S of the underlying stochastic

process x. More precisely, S can take as input any i ∈ [0,T ] and any historical se-

quence x[1,i], and output (1) independent copies of the trajectory x[1,T ], conditional on

x j = x j, j ∈ [1, i]; (output unconditional trajectories when i = 0) and (2) reward

ci(x1, ..., xi). Either task can be done at a computational cost of at most C.

To link network flow problems with the simulation model, we introduce a

probabilistic representation for flows and capacities on graph Gx, which sim-

ply rescales the original flows and capacities with a certain set of probabilities

defined for each arc of the graph. The resulting “flows” and “capacities” will

have a random-variable-type interpretation.

Probabilistic representation for flows and capacities on Gx. Taking an ar-

bitrary arc (ωi, ω j) ∈ Gx with ωi ∈ Hi and ω j ∈ H j, we assign probability

p(ωi, ω j)
∆
= min(p(ωi), p(ω j)) = p(ωi∨ j) to the arc, where we recall that for any

ω ∈ Hk, p(ω) = P(x[1,k] = ω), and p(s) = p(t) = 1 by convention. We call each

(ωi, ω j) an arc sample of edge (i, j) if ωi∧ j ⊂ ωi∨ j. Notice that here we essentially
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build a probability space for each (i, j) ∈ E, with state space Hi∨ j, σ-fields Fi∨ j

and probability assignment p(ωi, ω j) for each arc sample (ωi, ω j). As a result,

any real-valued function defined on the vector space of all arc samples of (i, j)

can thus be viewed as a random variable on the associated probability space.

Now with the observation that flows and capacities on expanded graph Gx can

be thought of as functions on all arc samples of all edges, we can essentially

view each of them as a collection of random variables defined on the edges in

graph G. More precisely, for any flow f in the network and any (i, j) ∈ E, the

induced random variable is given by zi, j(ωi, ω j)
∆
= f (ωi, ω j)/p(ωi, ω j), for any arc

sample (ωi, ω j). By such definition, zi, j is an Fi∨ j-measurable random variable.

Similarly, for any set of capacities u, the induced random variable is given by

wi, j(ωi, ω j)
∆
= u(ωi, ω j)/p(ωi, ω j).

Certain network flow concepts have probabilistic interpretations under this

new representation.

Lemma 17. Suppose z ∆
= {zi, j, (i, j) ∈ E} represents a feasible flow associated to capaci-

ties w ∆
= {wi, j, (i, j) ∈ E}, then zi, j ≤ wi, j, w.p.1.

Lemma 18. Suppose z represents a feasible flow with respect to capacities w, then the

residual capacities are given, for any (i, j) ∈ E, by wi, j
z = wi, j − zi, j w.p.1 if either

i ∈ L, j ∈ R, or i = −1, or j = −2; wi, j
z = z j,i w.p.1 for all other cases.

We next state an important property of the above probabilistic representa-

tion, that in {Gx, cx, s, t}, all feasible flows and their associated (finite) residual

capacities become bounded random variables taking value in [0, 1] under the

probabilistic representation. We leave the proof to Techinical appendix C.4.

Lemma 19 (boundedness of flow and residual capacity). Suppose f is a feasi-

ble flow in {Gx, cx, s, t}. Let z be the induced collection of random variables. Then
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w.p.1, zi, j ∈ [0, 1]. Furthermore, if we denote by w the collection of random variable

representing the f -residual capacities. Then for any (i, j) ∈ E, wi, j = ∞ if i ∈ L and

j ∈ R, and wi, j ∈ [0, 1] w.p.1 otherwise.

Remark. Since arc samples are really determined by only one of their end nodes (the one

appearing later in time/bearing more information), rigorously speaking any associated

random variable should be a function only of that node. For example, zi, j(ωi, ω j) should

be zi, j(ωi) if ω j ⊂ ωi, and zi, j(ω j) if the other way round. We introduce the notion arc

sample and writing random variable realizations as zi, j(ωi, ω j) to avoid confusion. We

will use the two notations interchangeably in later sections. Whenever zi, j(ωi, ω j) is

used, we usually omit the superscript and write z(ωi, ω j) instead, which simplifies the

notation.

From now on, we will by default use this random variable representation

whenever mentioning flows, capacities and residual networks (unless otherwise

specified).

4.5.1 Simulation, ε−optimal max flow in path subnetworks and

Algorithm 1

In this section, we present a modified, more realistic version of Algorithm 1′. In

particular, we observe that with the probabilistic representation, the max flow

value in path subnetworks is simply a nested expectation. We then make use of

simulator S and classical Monte Carlo approaches to come up with an approxi-

mation algorithm.

We first introduce random variables that represent max flows and their val-

ues in path subnetworks. Formally, for a given regular path P = (i1, ..., ik) ∈ G,
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we define random variable yP as follows. For each (P, ω1, ωk, u)-subnetwork with

maximum flow value M∗, yP(ω1 ∨ ωk)4 ∆
= M∗/p(ω1, ωk). By such definition, yP is

Fi1∨ik-measurable. Particularly, yP is deterministic when P is an −1→ −2 path in

G (associated with s-t paths in Gx). In fact, in such cases yP = M∗.

We now restate the key ideas of Algorithm 1′ using the probabilistic

flow/capacity representation.

Lemma 20. Consider a path of a single edge (i, j) ∈ G. It holds true that y(i, j) =

wi, j, w.p.1. with w the capacities.

Lemma 21. Consider an arbitrary path subnetwork with underlying path P =

(i1, ..., ik), k ≥ 3. Suppose i1, ik < min(i2, ..., ik−1), and j is such that i j = min(i2, ..., ik−1).

Suppose P1 = (i1, ..., i j) and P2 = (i j, ..., ik). Then

yP = E
[
min

(
yP1 , yP2

)
|Fi1∨ik

]
w.p.1.

We defer the proof of Lemma 20 and Lemma 21 to Technical appendix

C.2. By recursively applying the two lemmas, we derive a nested conditional

expectation representation for the value of the maximum flow in any path net-

work. Our main approach in Algorithm 1, the implementable version of Al-

gorithm 1′, is to approximate this nested expectation representation by Monte

Carlo methods with independent samples drawn from simulator S.

Algorithm 1 has two parts. Part a takes as input an arbitrary regular path

P = (i1, ..., ik) ∈ G with i1, ik < min(i2, ..., ik−1), and a node ω ∈ Hi1∨ik , and outputs

an approximation of the random variable realization yP(ω). Part b takes as input

the same P, along with an arc sample (ωq, ωq+1) of some edge (iq, iq+1) ∈ P, and

returns the value on that edge in the max flow. We let zP denote the max flow.

4we slightly abuse the notation ∨ to mean the following here: ω1 ∨ ωk = ω1 if ωk ⊂ ω1,
otherwise ω1 ∨ ωk = ωk
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Then the output is an approximation of zP(ωq, ωq+1).

Algorithm 1 accesses the expanded network through a capacity evaluation

subroutineW that outputs the capacity of any input arc sample. Later when in-

troducing other algorithms, Algorithm 1 will be treated as a subroutine to solve

max flow problems on path subnetworks with different capacities, hence asso-

ciated, differentWs are required. We here don’t explicitly spell out subroutine

W (it naturally builds on our simulator S and will be specified in different con-

texts). Instead, we only want the reader to bear in mind that W can take as

input any arc sample, and output the associated capacities on the arc.

Algorithm 1a (approximate max flow value in path subnetworks)

Input: regular path P = (i1, ..., ik); node ω ∈ Hi1∨ik ; subroutineW

initialize scalar y = 0

if (k == 2)

callW on arc sample (ω[1, i1], ω) (if i1 < i2) or (ω,ω[1, i2]) (if i2 < i1)

return the output

else compute j : i j = min{i2, ..., ik−1} and store

P1 ← (i1, ..., i j), P2 ← (i j, ..., ik)

for i = 1 : N do

call simulator S for an independent ωi
j ∈ H j conditional on ω

call Algorithm 1a with inputs (P1, ω
i
j) and (P2, ω

i
j)

store outputs as (yi
P1

) and (yi
P2

) respectively

store yi ← min(yi
P1
, yi

P2
)

end for

do y = AVERAGE(y1, ...., yN)

end if
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Output: y

Algorithm 1b (approximate max flow in path subnetworks)

Input: regular path P = (i1, ..., ik), arc sample e = (ωq, ωq+1) of (iq, iq+1);

subroutineW

initialize scalar z = 0

if (k == 2) callW on e with output w and store z← w

else compute j : i j = min{i2, ..., ik−1} and store

P1 ← (i1, ..., i j), P2 ← (i j, ..., ik) , ω j ←
(
ωq ∨ ωq+1

)
[1, i j]

call Algorithm 1a with inputs (P1, ω j) and (P2, ω j)

store outputs as yP1 and yP2 respectively

call Algorithm 1b with inputs (Pi, e), i ∈ {1, 2} (whichever i : e ∈ Pi)

store outputs as z′

do z← z′min(yP1 , yP2)/yPi

end if

Output: z

Proposition 5 (Guarantee of Algorithm 1). Assume capacity evaluation subroutine

W satisfies the following: for any edge (i, j) ∈ E, at a computational cost ν1(ε, δ) and

with number of calls to simulator S at most ν2(ε, δ),W can output a random variable

w such that |w −wi, j| < ε with probability at least 1 − δ, where w is the random variable

of the true capacity. For any regular path P = (i1, ..., ik) ∈ G with length k − 1, and any

(iq, iq+1) ∈ P

• Algorithm 1a can achieve the following. With a runtime at most

(
1 + log(

1
δ

)
)
×

(1
ε

)3(k−2)
× 100(k−2)2

×
(
C + ν1

(
ε16−(k−2), δ ∧ ε16−(k−2))),
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and number of calls to simulator S at most(
1 + log(

1
δ

)
)
×

(1
ε

)3(k−2)
× 100(k−2)2

× ν2
(
ε16−(k−2), δ ∧ ε16−(k−2)),

it outputs a number y, such that |y − yP| < ε with probability at least 1 − δ.

• Algorithm 1b can achieve the following. With a runtime at most(
1 + log

(1
δ

))
×

( 1
εδ

)3(k−1)
× 100(k−1)2

×

(
C + ν1

( εδ

42(k−2) ,
εδ

42(k−2)

))
and number of calls to simulator S at most(

1 + log
(1
δ

))
×

( 1
εδ

)3(k−1)
× 100(k−1)2

× ν2
( εδ

42(k−2) ,
εδ

42(k−2)

)
,

it outputs a random variable z, such that |z − ziq,iq+1

P | < ε with probability at least

1 − δ.

Remark. The reason we allow capacity evaluation to be inexact is that in later applica-

tions, Algorithm 1 will be taken as a subroutine and called repeatedly. In particular, ca-

pacities on arcs are typically computed using the outputs from the algorithm in previous

iterations, which introduces inexactness and randomness. The probability statement of

Algorithm 1b is with respect to (1) the intrinsic randomness introduced by the use of

simulator S and (2) the probability space (Hiq∨iq+1 ,Fiq∨iq+1 ,P).

The proof of this proposition involves the use of several concentration in-

equalities and union bounds, along with careful counting of the runtime and

the number of samples required. We leave it to Technical appendix C.4.

4.5.2 Truncation, approximate blocking flows and Algorithm 2

In this section, we present a modified, realistic version of Algorithm 2′. The new

Algorithm 2 only repeats the iterations for a finite number of times before ter-

minating. We show that this truncated version of Algorithm 2′ already achieves
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desired approximation guarantee, provided that the number of iterations is suf-

ficiently large.

Algorithm 2 works in the residual network of some given flow z0.We assume

that we have access to its residual networkNz0 through the following black-box

scheme: given any edge e ∈ E, we can call a capacity evaluation subroutine

W to output a random variable that is a high probability approximation of the

residual capacity random variable wz0 . Later we will see that in all applications

of Algorithm 2, subroutineW can be built from repeatedly calling simulator S

and Algorithm 2 itself, and hence we are not requiring any additional sampling

power other than simulator S. Now we formally present Algorithm 2.

Algorithm 2 (approximate blocking flow)

Input: arc sample e = (ωi, ω j) of edge (i, j);

parameters: iteration count k, depth l

initialize z← 0

if (k > 0)

call Algorithm 2 with inputs
(
e, k − 1, l

)
and store outputs as z

for P : −1→ −2 regular path; with length (l + 2); (i, j) ∈ P

call Algorithm 1b on (P, e) and SubroutineWk−1

store outputs as zP

end for

do z← z + ∆−l SUM
(
zP

)
(recall ∆ is the max degree)

end if

Output: z
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SubroutineWk (capacity evaluation)

Input: arc sample e;

parameters: error tolerance parameter η; subroutineW

initialize scalar ze = 0

callW on e and store the output as w0
e

do w0
e ← w0

e 1{w0
e>η}

if k > 0

call Algorithm 2 with inputs (e, k, l) and store outputs as ze

end if

Output: w0
e − ze

Before stating the performance guarantee of Algorithm 2, we first generalize

the concept of l-disconnecting. We call a flow z (η, l)-disconnecting, if for any reg-

ular −1 → −2 path P ∈ G with length ≤ l, it holds that min(i, j)∈P wi, j
z ≤ η, w.p.1,

where wz is the z-residual capacity. Stated in the common network flow lan-

guage, every s-t path Q in Gx with length ≤ l contains an arc e of capacity less

than ε × p(e) in the associated residual network of flow z,

Proposition 6 (Performance guarantee of Algorithm 2). Suppose for any given

edge (i, j) ∈ E, at a computational cost at most µ1(ε, δ) and with number of calls to

simulator S at most µ2(ε, δ), subroutineW can return a random variable w, such that

|w−wi, j
z0 | ≤ ε with probability at least 1−δ, where wz0 is the residual capacity of an (η, l)-

disconnecting flow z0. Then Algorithm 2 can achieve the follows for any edge (i, j) ∈ G.

At a computational cost at most

( (100∆)l

εδ

)4η
−1∆l

×

(
C + µ1

((
εδ(100∆)−l)4η

−1∆l

,
(
εδ(100∆)−l)4η

−1∆l ))

107



and with number of calls to simulator S at most( (100∆)l

εδ

)4η
−1∆l

× µ2

((
εδ(100∆)−l)4η

−1∆l

,
(
εδ(100∆)−l)4η

−1∆l )
,

it can output a random variable z such that |z − zi, j| < ε with probability at least 1 − δ,

where z is a flow satisfying that NET (z0 + z) is (η, l + 2)-disconnecting.

We leave the proof of this proposition to the Technical Appendix C.4.

4.5.3 L-disconnecting flows and Algorithm 3

The main idea of Algorithm 3 is to repeatedly call Algorithm 2 to find new

flows that increase the (η)-level of sink, just as in Dinic’s Algorithm. However,

different from Dinic’s Algorithm which iterates for O(T ) phases until s and t

are disconnected in the current residual network, Algorithm 3 terminates after

L phases for some large, predetermined constant L independent of T. For any

given arc, it then outputs an (η, L)-disconnecting flow with high precision and

in high probability. We now present Algorithm 3.

Algorithm 3 (approximate L-disconnecting flow)

Input: arc e = (ω1, ω2);

parameters: truncation level L (odd); error tolerance η

initialize scalar z = 0

if (L > 1)

call Algorithm 3 on (e, L − 2, η) and store output as z0

call Algorithm 2 with (η−1∆L−2, L − 2) and SubroutineWL−2

on arcs e and e′ ∆
= (ω2, ω1) and store outputs as z1 and z2
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do z← z0 + z1 − z2

end if

Output: z

SubroutineWl (capacity evaluation)

Input: arc sample e = (ω1, ω2)

initialize: scalar z← 0

if (e is a non reverse arc)

call Algorithm 3 on (e, l, η) and store output as ze

call simulator S for cx(e) and store output as we

do z← we − ze

else if (e is a reverse arc)

call Algorithm 3 on (e′ ∆
= (ω2, ω1), l, η) and store output in z

end if

Output: z

Proposition 7 (Guarantee of Algorithm 3). For any edge (i, j) ∈ E, at a computa-

tional cost at most

C

( (100∆)L

εδ

)4η
−1L∆L

and number of calls to simulator S at most( (100∆)L

εδ

)4η
−1L∆L

,

Algorithm 3 can output a random variable z on (i, j) satisfying |z − zi, j
L (e)| < ε with

probability at least 1 − δ, where zL is an (η, L)-disconnecting flow in {Gx, cx, s, t}.

We leave the proof to Technical appendix C.4.4.
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4.5.4 Approximate max flow value and Algorithm 4

Building on Algorithm 3 and Monte Carlo simulation, Algorithm 4 returns

a high probability optimal value approximation of the MAX FLOW instance

{Gx, cx, s, t}, thereby approximately solving ONLINE MWIS.

Algorithm 4 (main approximation algorithm)

Input:

initialize scalar y = 0

for i ∈ L

for j = 1 : N

call simulator S for an arc (s, ω j
i ) with ω j

i ∈ Hi and reward c(ω j
i )

call Algorithm 3 on (s, ω j
i ) with L and store output as zi, j

end for

do yi ← AVERAGE j(zi, j)

end for

do y← SUMi(yi)

Output: y

Proposition 8 (Guarantee of Algorithm 4). At a computational cost at most

CT
( (100∆)30ε−1

εδ

)4300ε−2∆30ε−1

and with number of calls to simulator S at most

T
( (100∆)30ε−1

εδ

)4300ε−2∆30ε−1

,

Algorithm 4 can output a number y satisfying |y − OPT′| < T ε with probability at least

1 − δ.
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We defer the proof of Proposition 8 to Technical appendix C.5.

4.5.5 Main results

With all algorithm defined in the previous sections, we now present our main

results.

Theorem 4.5.6 (Formal version of Theorem 4.3.5). Suppose OPT > αT for some α ∈

(0, 1), then there exists an algorithm that can achieve the following. At a computational

cost at most

CT
( (100∆)30(αε)−1

αεδ

)4300(αε)−2∆30(αε)−1

and with number of calls made to the simulator S at most

T
( (100∆)30(αε)−1

αεδ

)4300(αε)−2∆30(αε)−1

The algorithm outputs a random number y such that with probability at least 1 − δ,∣∣∣∣∣y − OPT

OPT

∣∣∣∣∣ < ε
The proof of Theorem 4.3.5 and the statement of the algorithms will be de-

ferred to Technical appendix C.6.

Observation. We observe that, our algorithmic analysis exhibits certain corre-

lation decay property of the online stochastic maximum weight independent set

problem for bipartite and bounded degree graphs. More precisely, Algorithm 4

finds an ε-optimal flow of the MAX FLOW instance {Gx, cx, s, t} associated to the

ONLINE MWIS instance {G, c, x}. Consider a node ω ∈ Lx such that ω ∈ Hi. The

computation of the flow on arc (s, ω) consists of calling Algorithm 3 for O( 1
ε
)

rounds. Each round of Algorithm 3 directly uses the information of nodes as far
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as O( 1
ε
) away from ω. Each round of Algorithm 3 calls Algorithm 2 for O( 1

ε
)∆O( 1

ε )

iterations. Each iteration of Algorithm 2 increase the distance of correlation by

at most O( 1
ε
). Combining all above, by the end Algorithm 4, the computation

at node ω only ever uses the weights of nodes at most a distance of O( 1
ε3 )∆O( 1

ε )

away. Now suppose additionally that the underlying model is i.i.d. with some

arbitrary distribution. Then we immediately conclude that the (multiplicative)

ε−optimal flow on arc (s, ω), as a realization of the associated random variable

on the edge (−1, i), is independent of the majority of the underlying graph, i.e.

those parts out of the O( 1
ε3 )∆O( 1

ε )− neighbourhood of vertex i. In other words,

the MAX FLOW reduction of ONLINE MWIS on bipartite bounded degree graph

exhibits correlation decay when the underlying stochastic process is some i.i.d.

sequence.

Remark. Theorem 4.3.5 guarantees an efficient algorithm for approximating the op-

timal value of ONLINE MWIS, one may wonder whether the results directly imply an

efficient algorithm for the approximate optimal policy. The problem is technically equiv-

alent to converting a near-optimal max flow to a min cut. Due to the specific structure

of our flow network, such a conversion is not directly applicable. We leave the efficient

or even local computation of near-optimal decision-making policies as an interesting

open problem.

4.6 Conclusion

In this work, we study the online stochastic maximum weight independent

set problem in bipartite and bounded-degree graphs. Our model is the first

of its kind that both allows for high-dimensional and path-dependent under-

lying driving process and possesses a nontrivial combinatorial structure. We
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propose a randomized algorithm for approximating the expected total weights

under the optimal policy. For any given control parameter ε, our algorithm

can obtain an ε-approximation of the optimal value, as well as an ε-optimal

decision-making policy, taking a runtime scaling linearly in the time horizon/

the number of nodes T , and depending on the dimension (and the underlying

process more generally) only through the access to the Monte-Carlo simulator.

Furthermore, our algorithm exhibits certain correlation decay/locality property,

that the computation at each node in the graph only ever uses the information

in a neighbouring area whose size is a constant, independent of the rest of the

graph.
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APPENDIX A

CHAPTER 2 OF APPENDIX

This appendix contains proofs of some theoretical Lemmas, a detailed algorith-

mic analysis for the unbounded maximization setting, and the proof of Theorem

2.3.9 as presented in Chapter 2.

A.1 Proof of Lemma 4

A.1.1 Auxiliary Lemmas and proofs

Before proceeding, let’s state several facts that will be used here and also repeat-

edly in later proofs. First, we recall a standard result from probability theory

used often to prove concentration for estimators.

Lemma 22 (Hoeffding’s inequality). Suppose that for some n ≥ 1 and U > 0, {Xi, i ∈

[1, n]} are i.i.d., and P(X1 ∈ [0,U]) = 1. Then P
(∣∣∣∣∣n−1 ∑n

i=1 Xi − E[X1]
∣∣∣∣∣ ≥ η) ≤ 2 exp

(
−

2η2n
U2

)
.

We omit the proof.

We next recall a “smart trick” — a direct corollary of the Hoeffding’s inequal-

ity, that is commonly used in speeding up algorithms for estimating a number.

Lemma 23 (Median Trick). Suppose we have an algorithm A that can estimate a tar-

get number in correct range of ε with probability 3/4. Consider a new algorithm A′

constructed as follows: Repeat the algorithm A for m = d8 log(2δ−1)e times and take the
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median of the m answers 1. Then A′ is able to estimate the target number in correct

range of ε with probability 1 − δ.

Proof of Lemma 23 : Suppose the m outputs are q1, ..., qm, and the target number is

x. Let’s define Zi
∆
= 1(|qi − x| < ε) for all i ∈ [1,m]. Let’s without loss of generality

assume q1 ≤ q2 ≤ ... ≤ qm. Notice that for any j ∈ [1, bm+1
2 c], the interval [q j, q j+bm

2 c
]

must contain the median of the sequence. Also, the event
∑m

i=1 Zi >
m
2 implies

that there exists at least dm+1
2 e numbers in {q1, .., qm} that satisfy |qi − x| < ε. Let

the smallest among these number be qu and the largest be qv. Then v − u ≥ bm
2 c.

Using the previous observation, we have median(q1, ..., qm) ∈ [qu, qv], and there-

fore |median(q1, ..., qm)− x| < ε. Taking the contraposition of the above reasoning,

we conclude that |median(q1, ..., qm) − x| ≥ ε implies
∑m

i=1 Zi ≤
m
2 . Combining the

above with an application of the Hoeffding’s Lemma 22, we have

P
(∣∣∣median(q1, ..., qm) − x

∣∣∣ ≥ ε) ≤ P
( 1
m

m∑
i=1

Zi ≤
1
2

)
≤ 2 exp

(
−

m
8

)
≤ δ,

thus completing the proof. �

Finally, recall that fk is defined by

fk(ε, δ) = log(2δ−1) × 102(k−1)2
× ε−2(k−1) × (T + 2)k−1 ×

(
1 + log(

1
ε

) + log(T )
)k−1

.

We need the following auxiliary lemma, which demonstrates that fk satisfies

certain recursions corresponding to our algorithm’s performance.

Lemma 24. For all ε, δ ∈ (0, 1) and k ≥ 1.

fk+1(ε, δ) ≥ 8dlog(2δ−1)e ×
(
N(
ε

4
,

1
16

) + 1
)
× (T + 2) × fk

( ε
4
,

1
16N( ε4 ,

1
16 )T

)
1Here by default we define the median of an ordered sequence x1 ≤ ... ≤ xn as 1

2 (x bn+1c
2

+ x bnc
2 +1)

to incorporate the case with even n
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Proof of Lemma 24: We have that

8dlog(2δ−1)e ×
(
N(
ε

4
,

1
16

) + 1
)
× (T + 2) × fk

( ε
4
,

1
16N( ε4 ,

1
16 )T

)
≤ 8dlog(2δ−1)e ×

(
32 log(32)ε−2 + 1

)
× (T + 2) × fk

( ε
4
,

ε2

512 log(32)T
)

≤ 8dlog(2δ−1)e ×
(
32 log(32)ε−2 + 1

)
× (T + 2) × log(1024 log(32)T ε−2)

×102(k−1)2
× 42(k−1) × ε−2(k−1) × (T + 2)k−1 ×

(
1 + log

(4
ε

)
+ log(T )

)k−1

≤ log(2δ−1) × (T + 2)k × ε−2k ×

(
1 + log

(1
ε

)
+ log(T )

)k

× 102(k−1)2
× 42(k−1) × 104 × 4k−1

≤ log(2δ−1) × 102k2
× (T + 2)k × ε−2k ×

(
1 + log

(1
ε

)
+ log(T )

)k

,

completing the proof. �

A.1.2 Proof of Lemma 4

With Lemmas 22, 23 and 24 in hand, we now prove Lemma 4.

Proof of Lemma 4: We proceed by induction. The base case k = 1 is trivial. Now

suppose the induction is true for some k ≥ 1. We first show that Bk+1 satisfies

the desired high probability error bounds. By Lemma 23, it suffices that in each

of the d8 log(2δ−1)e outer loops, the algorithm Bk+1 compute and store a num-

ber within the desired range of error with probability at least 3/4. Let {Xi, i ∈

[1,N( ε4 ,
1
16 )]} be an i.i.d. sequence of r.v.s, each distributed as mini∈[1,T ] Zk

i (X(γ)[i]),

where the same realization of X(γ) is used for all i ∈ [1,T ]. Then it follows from

our inductive hypothesis, the Lipschitz property of the min function, a union

bound over all i ∈ [1,N( ε4 ,
1
16 )] and j ∈ [1,T ], and some straightforward algebra,

that we may construct {Xi, i ∈ [1,N( ε4 ,
1
16 )]} and {A0

i , i ∈ [1,N( ε4 ,
1
16 )]} on a com-

mon probability space s.t. with probability at least 1 − 1
16 , |Xi − A0

i | <
1

16 for all
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i ∈ [1,N( ε4 ,
1

16 )]. Applying Lemma 22 to {Xi, i ∈ [1,N( ε4 ,
1

16 )]}, with parameters

η = ε
4 ,U = 1, n = N( ε4 ,

1
16 ), we conclude (after some straightforward algebra) that

on the same probability space,

P
(∣∣∣(N(

ε

4
,

1
16

)
)−1

N( ε4 ,
1

16 )∑
i=1

Xi − E[X1]
∣∣∣ < ε

4

)
≥ 1 −

1
16
.

Here we apply Lemma 22 with U = 1, since Xi ∈ [0, 1] for all i ≥ 1. Noting that

the event
{
|Xi − A0

i | <
ε
4 for all i

}
implies the event

{∣∣∣∣∣(N(
ε

4
,

1
16

)
)−1

N( ε4 ,
1

16 )∑
i=1

A0
i −

(
N(
ε

4
,

1
16

)
)−1

N( ε4 ,
1

16 )∑
i=1

Xi

∣∣∣∣∣ < ε

4

}
,

we may combine the above with a union bound and the triangle inequality to

conclude that on the same probability space (and hence in general),

P
(∣∣∣∣∣(N(

ε

4
,

1
16

)
)−1

N( ε4 ,
1

16 )∑
i=1

A0
i − E[X1]

∣∣∣∣∣ < ε

2

)
≥ 1 −

1
8
.

As the inductive hypothesis ensures that P
(∣∣∣A3 − Zk

t (γ)
∣∣∣ > ε

2

)
≤ 1

8 , we may again

apply a union bound and the triangle inequality, along with the definition of

Zk
t (γ) and X1, to conclude that

P
(∣∣∣∣∣A3 −

(
N(
ε

4
,

1
16

)
)−1

N( ε4 ,
1
16 )∑

i=1

A0
i − Zk+1

t (γ)
∣∣∣∣∣ > ε) ≤ 3

4
as desired. (A.1)

We next prove that Bk+1 satisfies the desired computational and sample com-

plexity bounds. In each of the d8 log(2δ−1)e outer loop, the only access to random-

ness for Bk+1 is through its N( ε4 ,
1

16 ) direct calls to B(t, γ) (whose output is each

time stored in A1), its N( ε4 ,
1
16 )T calls to Bk( j, A1

[ j],
ε
4 ,

1
16N( ε4 ,

1
16 )T

)
, and its one final call

to Bk(t, γ, ε2 ,
1
8 ) (whose output is stored in A3). It thus follows from the induc-

tive hypothesis, and several easily verified monotonicities of N and fk, that the
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number of calls to the base simulator made by Bk+1(t, γ, ε, δ) is at most

8 × dlog(2δ−1)e ×
(
N(
ε

4
,

1
16

) + N(
ε

4
,

1
16

) × T × fk
( ε
4
,

1
16N( ε4 ,

1
16 )T

)
+ fk(

ε

2
,

1
8

)
)

≤ 8 × dlog(2δ−1)e ×
(
N(
ε

4
,

1
16

) + 1
)
× (T + 2) × fk

( ε
4
,

1
16N( ε4 ,

1
16 )T

)
.

We next focus on computational costs. For each s ∈ [1, d8 log(2δ−1)e] In each of

the N( ε4 ,
1
16 ) iterations (indexed by i), first one direct call is made to B(t, γ) (at

computational cost C); then T calls are made to Bk( j, A1
[ j],

ε
4 ,

1
16N( ε4 ,

1
16 )T

)
(for differ-

ent values of j), each at computational cost at most (C + G + 1) × fk
( ε

4 ,
1

16N( ε4 ,
1
16 )T

)
;

then the minimum of a length-T array is computed (at computational cost T).

One additional call is then made to Bk(t, γ, ε2 ,
1
8 ), at computational cost at most

(C+G+1)× fk( ε2 ,
1
8 ); and finally the average of N( ε4 ,

1
16 ) is computed and subtracted

from A3, at computational cost N( ε4 ,
1
16 ) + 1. It thus follows from the inductive

hypothesis, and several easily verified monotonicities of N and fk, that the com-

putational cost of Bk+1(t, γ, ε, δ) is at most

8 × dlog(2δ−1)e ×
(
N(
ε

4
,

1
16

)C + N(
ε

4
,

1
16

)T (C + G + 1) fk
( ε
4
,

1
16N( ε4 ,

1
16 )T

)
+ T + (C + G + 1) fk(

ε

2
,

1
8

) + N(
ε

4
,

1
16

) + 1
)

≤ 8 × dlog(2δ−1)e × (C + G + 1) ×
(
N(
ε

4
,

1
16

) + 1
)
× (T + 2) × fk

( ε
4
,

1
16N( ε4 ,

1
16 )T

)
.

By Lemma 24 and some straightforward algebra, we get the desired computa-

tional complexity bound for Bk+1. Combining all above, by induction we com-

plete the proof. �

A.2 Unbounded maximization and proof of Theorem 2.3.9

In this section we show how to combine our previous algorithms with an appro-

priate transformation and careful truncation argument to prove Theorem 2.3.9.
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At a high level, we proceed as follows: 1. truncating the payoff Z at an appro-

priate large number, 2. normalizing and converting to a minimization problem,

and 3. computing an appropriate number of terms in our expansion. It turns

out that, as long as the squared coefficient of variation of maxt∈[1,T ] Zt is of a rea-

sonable size, all errors can be appropriately controlled if the truncation and the

number of terms are carefully chosen as functions of the error tolerance ε and

this squared coefficient of variation.

A.2.1 Auxiliary truncation lemma and proof

Before formally describing the relevant algorithm, we prove several results lay-

ing the groundwork for our truncation-based approach. For any U > 0, de-

fine Z1
U,t

∆
= U−1 × min

(
U,Z1

t
)
; Z1,−

U,t
∆
= 1 − Z1

U,t; and for k ≥ 1,Zk+1,−
U,t

∆
= Zk,−

U,t −

E
[
mini∈[1,T ] Zk,−

U,i |Ft
]
; let L−U,k

∆
= E

[
mini∈[1,T ] Zk,−

U,i
]

and E−U,k
∆
=

∑k
i=1 L−U,i. Recall that

M1 = E
[
maxt∈[1,T ] Z1

t
]
, M2 = E

[
(maxt∈[1,T ] Z1

t )2] and γ0 = M2
(M1)2 . Then we have

Proposition 9. For all U > 0, k ≥ 1 and z ∈ R∣∣∣∣∣ÔPT − U ×
(
1 − E−U,k + z

)∣∣∣∣∣ ≤ 7 × γ
3
2
0 ×

( U
M1
×

(
(k + 1)−1 + |z|

)
+ (

U
M1

)−
1
2

)
× ÔPT.

The proof of Proposition 9 requires some auxiliary lemmas. First, we bound

the error introduced by our truncation.

Lemma 25. For all U > 0,

0 ≤ ÔPT − U × sup
τ∈T

E[Z1
U,τ] ≤ (M2)

1
2 ×

(M1

U
) 1

2 .

Proof : Non-negativity follows from the fact that w.p.1 Z1
t ≥ U × Z1

U,t for all

t ∈ [1,T ]. To prove the other direction, let τ∗ denote an optimal stopping time for
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the problem supτ∈T E[Z1
τ ], where existence follows from [90]. Then by a straight-

forward coupling and rescaling,

E[Z1
τ∗

] − U × E[Z1
U,τ∗] ≤ E

[
Z1
τ∗

I
(
Z1
τ∗
> U

)]
≤ E

[
Z1
τ∗

I
(

max
t∈[1,T ]

Z1
t > U

)]
≤ E

[(
max
t∈[1,T ]

Z1
t
)
× I

(
max
t∈[1,T ]

Z1
t > U

)]
≤ (M2)

1
2 ×

(
P
(

max
t∈[1,T ]

Z1
t > U

)) 1
2

by Cauchy-Schwarz

≤ (M2)
1
2 ×

(M1

U
) 1

2 by Markov’s inequality,

completing the proof. �

Next, we prove that if γ0 is not too large, then ÔPT
M1

cannot be too small.

Lemma 26. ÔPT ≥ 4
27 × γ

−1
0 × M1.

Proof : Recall the celebrated Paley-Zygmund inequality, i.e. the fact that for any

δ ∈ (0, 1) and non-negative r.v. X,

P
(
X > δE[X]

)
≥ (1 − δ)2 ×

(E[X])2

E[X2]
. (A.2)

Now, for δ ∈ (0, 1), consider the stopping time τδ which stops the first time that

that Z1
t ≥ δ × M1, and stops at time T if no such time exists in [1,T ]. Then by

non-negativity and (A.2),

E[Z1
τδ

] ≥ δ × (1 − δ)2 ×
(M1)3

M2
.

Optimizing over δ (a straightforward exercise in calculus) then completes the

proof. �

By combining Lemmas 25 - 26, we are led to the following corollary.
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Corollary 4. For all U > 0,

0 ≤ ÔPT − U × sup
τ∈T

E[Z1
U,τ] ≤

27
4
× (γ0)

3
2 ×

(M1

U
) 1

2 × ÔPT.

Proof : It follows from Lemma 26 that

(M2)
1
2

ÔPT
≤

27
4
×

(M2)
3
2

(M1)3

=
27
4
× (γ0)

3
2 .

Combining with Lemma 25 completes the proof. �

We now complete the proof of Proposition 9.

Proof of Proposition 9 : For all U > 0,

sup
τ∈T

E[Z1
U,τ] = 1 − inf

τ∈T
E[Z1,−

U,τ]; (A.3)

and Theorem 2.3.5 implies that for all U > 0 and k ≥ 1,

1 − E−U,k −
1

k + 1
≤ sup

τ∈T

E[Z1
U,τ] ≤ 1 − E−U,k. (A.4)

It then follows from Corollary 4 and the triangle inequality that∣∣∣∣∣ÔPT − U ×
(
1 − E−U,k + z

)∣∣∣∣∣ ≤ 27
4
× (γ0)

3
2 ×

(M1

U
) 1

2 × ÔPT + U ×
(
|z| + (k + 1)−1).

Furthermore,

U

ÔPT
=

U
M1
×

M1

ÔPT

≤
U
M1
×

M1

4
27 ×

(M1)3

M2

=
27
4
× γ0 ×

U
M1

.

Combining the above with the triangle inequality, the fact that γ0 ≥ 1 by Jensen’s

inequality, and some straightforward algebra completes the proof. �
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A.2.2 Description of algorithms

We now describe several relevant algorithms. In all cases, these will be (very)

slight variations of the previously defined algorithms Bk(t, γ, ε, δ) and B̂k(ε, δ),

essentially identical except there is now an extra parameter U input to the al-

gorithm, which causes the algorithms to perform all calculations as if rt were

instead equal to r′t = 1 − U−1 × min(U, rt). First, we define the appropriate “base

case” algorithm.

Algorithm B1,−(t, γ, ε, δ,U):

Return 1 − U−1 ×min
(
U, rt(γ)

)

For k ≥ 1, the definition of Bk+1,−(t, γ, ε, δ,U) is nearly identical to that

of Bk+1(t, γ, ε, δ), the only difference being that in each inner loop, the call to

Bk( j,A1
[ j],

ε
4 ,

1
16N( ε4 ,

1
16 )T

)
is replaced by a call to Bk,−( j,A1

[ j],
ε
4 ,

1
16N( ε4 ,

1
16 )T

,U
)
; and the

call to Bk(t, γ, ε2 ,
1
8 ) is replaced by a call to Bk,−(t, γ, ε2 ,

1
8 ,U).

Then we have the following auxiliary algorithmic result, completely anal-

ogous to Lemma 4.

Lemma 27. Under only the assumption that Zt ≥ 0 for all t ∈ [1,T ] w.p.1, the following

is true. For all k ≥ 1, t ∈ [1,T ], γ ∈ ℵt, ε, δ ∈ (0, 1),U > 0, the randomized algorithm

Bk,− achieves the following when evaluated on t, γ, ε, δ,U. In total computational time

at most 4(C +G + 1) fk(ε, δ), and with only access to randomness at most fk(ε, δ) calls to

the base simulator B, returns a random number X satisfying P
(
|X − Zk,−

U,t | ≤ ε
)
≥ 1 − δ.
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The proof is essentially identically to the proof of Lemma 4, and we omit

the details. In fact, Lemma 27 follows from Lemma 4 applied to the alter-

native minimization problem in which one uses the alternate cost functions

r′t = 1 − U−1 × min(U, rt). Next, we formally state the algorithm Â, which will

implement the appropriate truncation and calls to Bk,− (with appropriate pa-

rameters) to yield the approximation guaranteed in Theorem 2.3.9.

Algorithm Â(ε, δ,M1,M2):

Compute M2
(M1)2 and store in γ0, compute 104 × γ3

0 × ε
−2 × M1 and store in U0

Set k = d( U0
M1

)
3
2 e, α =

(
( U0

M1
)

3
2 + 1

)−2
, β = δ ×

(
( U0

M1
)

3
2 + 1

)−1

Generate a length-k vector L

For l = 1 to k

Create a length-N(α2 ,
β

2 ) vector A0

For i = 1 to N(α2 ,
β

2 )

Generate an ind. call to B(0, ∅) and store in D by T matrix A1

Create a length-T array A2

For j = 1 to T

Generate an ind. call to Bl,−( j,A1
[ j],

α
2 ,

β

2N( α2 ,
β
2 )T
,U0

)
Store in A2

j

Compute the minimum value of A2 and store in A0
i

Compute
(
N(α2 ,

β

2 )
)−1 ∑N( α2 ,

β
2 )

i=1 A0
i and store in Ll

Store
∑k

l=1 Ll as Y

Return U0 × (1 − Y)

With Algorithm Â defined and Theorem 9 in hand, the proof of Theorem
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2.3.9 follows similarly to the proof of Theorem 2.3.5, albeit with the additional

complication of needing to verify the appropriateness of the truncation etc.

A.2.3 Proof of Theorem 2.3.9

Proof of Theorem 2.3.9 : Recall that U0 = 104 × γ3
0 × ε

−2 × M1 and k = d( U0
M1

)
3
2 e. It

then follows from the definition of Â, and Theorem 2.3.7 that with probability

at least 1 − δ, the sum Y =
∑k

l=1 Ll that Â computes must satisfies |Y − E−U0,k
| ≤

( U0
M1

)−
3
2 . Thus by Proposition 9, to prove the first part of the theorem (i.e. that the

algorithm returns a value with the stated guarantees) it suffices to prove that

7 × γ
3
2
0 ×

(
U0
M1
×

(
2 × ( U0

M1
)−

3
2
)

+ ( U0
M1

)−
1
2

)
≤ ε, equivalently that 21γ

3
2
0 ( U0

M1
)−

1
2 ≤ ε. Since

21γ
3
2
0 (

U0

M1
)−

1
2 = 21 × γ

3
2
0 ×

(
104 × γ3

0 × ε
−2

)− 1
2

< ε,

combining the above completes the proof.

Next, let us prove the second part of the theorem regarding the runtime anal-

ysis. Recall that

fk(ε, δ) = log(
2
δ

) × 102(k−1)2
× ε−2(k−1) × (T + 2)k−1 ×

(
1 + log(

1
ε

) + log(T )
)k−1

.

Carefully accounting for all operations performed by Â, and applying Lemma

27 and the monotonicities of various functions, we find that the computational

124



cost divided by C + G + 1 is at most

16 + d(
U0

M1
)

3
2 e × 4 × f

d( U0
M1

)
3
2 e+1

((
(

U0

M1
)

3
2 + 1

)−2
, δ ×

(
(

U0

M1
)

3
2 + 1

)−1
)

+ d(
U0

M1
)

3
2 e

≤ 102(
U0

M1
)

3
2 f
d( U0

M1
)

3
2 e+1

(1
4

(
U0

M1
)−3,

1
4
δ(

U0

M1
)−

3
2
)

≤ 102 × (
U0

M1
)

3
2 ×

(
log(8) + log(

1
δ

) +
3
2

log(
U0

M1
)
)
× 108( U0

M1
)3
×

(
4(

U0

M1
)3)4( U0

M1
)

3
2

× (T + 2)2( U0
M1

)
3
2
×

(
1 + log(4) + 3 log(

U0

M1
) + log(T )

)2( U0
M1

)
3
2

≤ log
(1
δ

)
× 1025( U0

M1
)3
× T 2( U0

M1
)

3
2
×

(
3 + 3 log(

U0

M1
) + log(T )

)2( U0
M1

)
3
2

≤ log
(1
δ

)
× 1026( U0

M1
)3
× T 2( U0

M1
)

3
2
×

(
1 + log(

U0

M1
) + log(T )

)2( U0
M1

)
3
2

≤ log
(1
δ

)
× 10

(
1014γ9

0ε
−6
)
× T

(
107γ

9
2
0 ε
−3
)

×

(
1 + 4 log(10) + 3 log(γ0) + 2 log(

1
ε

) + log(T )
)(107γ

9
2
0 ε
−3
)

≤ log
(1
δ

)
× 10

(
1015γ9

0ε
−6
)
× T

(
107γ

9
2
0 ε
−3
)
×

(
1 + log(γ0) + log(

1
ε

) + log(T )
)(107γ

9
2
0 ε
−3
)

≤ log
(1
δ

)
× exp

(
1016γ9

0ε
−6) × T

(
107γ

9
2
0 ε
−3
)
×

(
1 + log(γ0) + log(

1
ε

) + log(T )
)(107γ

9
2
0 ε
−3
)

≤ log
(1
δ

)
× exp

(
1017γ9

0ε
−6) × T 108γ

9
2
0 ε
−3
×

(
1 + log(γ0) + log(

1
ε

)
)107γ

9
2
0 ε
−3

≤ log
(1
δ

)
× exp

(
1018γ9

0ε
−6) × T 108γ

9
2
0 ε
−3
×

(
1 + log(γ0)

)107γ
9
2
0 ε
−3

≤ log
(1
δ

)
× exp

(
1019γ9

0ε
−6) × T 108γ

9
2
0 ε
−3
× (2γ0)107γ

9
2
0 ε
−3

≤ log
(1
δ

)
× exp

(
1020γ9

0ε
−6) × T 108γ

9
2
0 ε
−3
.

The analysis for the number of calls to the base simulator follows nearly identi-

cally, and we omit the details. Combining the above completes the proof. �
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APPENDIX B

CHAPTER 3 OF APPENDIX

We provide here technical details of the proofs and analysis of Chapter 3. Recall

Hoeffding’s inequality.

Theorem (Hoeffding’s inequality). Suppose that for some n ≥ 1 and N > 0, {Xi, i ∈

[1, n]} are i.i.d., and P(X1 ∈ [0,N]) = 1. Then

P
(∣∣∣∣∣n−1

n∑
i=1

Xi − E[X1]
∣∣∣∣∣ ≥ η) ≤ 2 exp

(
−

2η2n
N2

)
.

B.1 The optimality equations and Proposition 1

This section is devoted to proving Proposition 1.

Proof of Proposition 1. We prove the proposition by induction. The case k = 1

trivially holds true. Suppose for some k ≥ 1 the statement is true. Namely, the

value functions (J j
t )1≤ j≤k,t≥0 solve the equations (3.1). Let’s introduce a policy

πa ∆
= (a[t−1], a, p∗, ..., p∗) and denote by πa,s,k the policy with the following prop-

erty: πa,s,k
[s−1] = πa

[s−1], and πa,s,k only take k active actions in [s,T ]. Applying the

inductive hypothesis, we may rewrite equation (3.1) associated withJk+1
t as fol-

lows

Jk+1
t (a[t−1]) = max

a∈At
sup

t+1≤τ≤T
E
[ τ−1∑

s=t

rs(πa
[s]) + sup

πa,τ,k
E
[ T∑

s=τ

rs(πa,τ,k
[s] )

∣∣∣∣∣Fτ]∣∣∣∣∣Ft

]
= max

a∈At
sup

t+1≤τ≤T
sup
πa,τ,k−1

E
[ τ−1∑

s=t

rs(πa
[s]) +

T∑
s=τ

rs(πa,τ,k
[s] )

∣∣∣∣∣Ft

]
= sup

π

E
[ T∑

s=t

rs(π[s])
∣∣∣∣∣Ft

]
s.t. π[t−1] = a[t−1],

T∑
j=t+1

1{π j,p∗} ≤ k a.s.
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where the second equality follows from the tower rule. Notice that the last

equality indicates that Jk+1
t , as the solution to equation (3.1) is the (k + 1)-st

value function. Combining with the induction hypothesis then completes the

proof. �

B.1.1 Optimal stopping and proof of Lemma 8 and 9

This subsection is devoted to the proof of Lemma 8 and Lemma 9 in section

3.4. Exploiting Lemma 6 and 7, algorithmWa approximates OPT by recursively

computing (Zk
t )t∈[T ]. Occasionally we shall make the dependence of (Zk

t )t∈[T ] on

the underlying state (Xt)t∈[T ] explicit by spelling out Zk
t (x[t]), where X[t] = x[t] is

the trajectory.

Now we define a sequence of auxiliary algorithms (Bk)k≥1, that outputs

“good” approximation of Zk
t (x[t]). We start with the case k = 1, which simply

calls the simulator of Assumption 4 with appropriate input parameters:

Algorithm B1 (for computing Z1
t (x[t]))

Input: t, x[t], ε, δ

Output: cost evaluation with parameters ε, δ, t, x[t]

For k ≥ 1, we define Bk+1 inductively as follows:

Algorithm Bk+1 (for computing Zk+1
t (x[t]))

Input: t, x[t], ε, δ
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for i = 1 : N( ε4 ,
δ
4 ) do

generate an ind. sample of X[t+1,T ] conditional on X[t] = x[t]

store in A1 ← X[T ]

for j = 1 : T do

generate an ind. call to Bk( j,A1
[ j],

ε
4 ,

δ
4N( ε4 ,

δ
4 )T

)
and store in A2[ j]

end for

A3[i]← min j∈[T ] A2[ j]

end for

generate an ind. call to Bk(t, x[t],
ε
2 ,

δ
2 ) and store in A4

Output: A4 −
(
N( ε4 ,

δ
4 )

)−1 ∑N( ε4 ,
δ
4 )

i=1 A3[i]

We now formally analyze Bk. Let’s first introduce the following additional

notation. For any k ≥ 1, let the auxiliary functions fk and qk be defined as

fk(ε, δ,T ) ∆
= 102(k−1)2

× ε−2(k−1) × (T + 2)k−1 ×
(
1 + log(

1
δ

) + log(
1
ε

) + log(T )
)k−1

qk(ε, δ,T ) ∆
= δ × ( fk(ε, δ,T ))−1.

We will need the following auxiliary lemma, which demonstrates that functions

fk and qk satisfies certain recursive bounds. The proof is almost identical to that

of Lemma 24 in Appendix A, and we omit here.

Lemma 28. For all ε, δ ∈ (0, 1) and k ≥ 1,

fk+1(ε, δ,T ) ≥
(
N(
ε

4
,
δ

4
) + 1

)
× (T + 2) × fk

( ε
4
,

δ

4N( ε4 ,
δ
4 )T

,T
)
,

qk+1(ε, δ,T ) ≤ qk
( ε
4
,

δ

4N( ε4 ,
δ
4 )T

,T
)
.

With Lemma 28 in hand, we now prove the following lemma, which certifies

that (Bk)k≥1 is indeed a set of “good” approximation algorithms.
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Lemma 29. For all k ≥ 1, t ∈ [1,T ], x[t] ∈ R
d×t, ε, δ ∈ (0, 1), algorithm Bk achieves the

following. In total computational time at most

fk(ε, δ,T ) ×
(
C × h2(

ε

4k , qk(ε, δ,T )) + h1(
ε

4k , qk(ε, δ,T )) + 1
)

and with number of samples required from the simulator at most

fk(ε, δ,T ) × h2(
ε

4k , qk(ε, δ,T )),

returns a (possibly random) number X satisfying P
(
|X − Zk

t (x[t])| > εU
)
≤ δ.

Proof of Lemma 29. We first show that Bk has the desired output. We proceed

by induction. The base case is immediate by the definition of the simulator in

Assumption 4. Now suppose for some k ≥ 1, the statement is true. We prove it

also holds in case k + 1. Indeed, for each i ∈ [N(ε/4, δ/4)], T calls are made to Bk

and the outputs are stored as A2. By induction hypothesis, we have

P
(∣∣∣∣∣A2[ j] − Zk

j
(
x[t], X[t+1, j]

)∣∣∣∣∣ > ε

4
U

)
<

δ

4N( ε4 ,
δ
4 )T

.

Applying a union bound and we have

P
(∣∣∣∣∣A3[i] −min

j∈[T ]
Zk

j

∣∣∣∣∣ > ε

4
U

)
<

δ

4N( ε4 ,
δ
4 )
.

With two more union bounds the desired result follows directly.

Next we prove the runtime and sample complexity bounds. The base case

k = 1 is trivial. Suppose the induction is true for some k ≥ 1. We set to prove case

k + 1. The only access to randomness for Bk+1 is through its N( ε4 ,
δ
4 ) direct calls

to the simulator (whose output is each time stored in A1), its N( ε4 ,
δ
4 )T calls to

Bk( j,A1
[ j],

ε
4 ,

δ
4N( ε4 ,

δ
4 )T

)
, and its one final call toBk(t, x[t],

ε
2 ,

δ
2 ) (whose output is stored

in A3). It thus follows from the induction hypothesis and the monotonicity of

several functions N, fk, qk, h1 and h2, that the number of calls to the simulator
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made by Bk+1(t, x[t], ε, δ) is at most

N(
ε

4
,
δ

4
) + N(

ε

4
,
δ

4
) × T × fk

( ε
4
,

δ

4N( ε4 ,
δ
4 )T

,T
)
× h2

( ε

4 × 4k , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)

+ fk(
ε

2
,
δ

2
,T ) × h2

( ε

2 × 4k , qk(
ε

2
,
δ

2
),T

)
≤ N(

ε

4
,
δ

4
) × (T + 2) × fk

( ε
4
,

δ

4N( ε4 ,
δ
4 )T

,T
)
× h2

( ε

4 × 4k , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)

≤ fk+1
(
ε, δ,T

)
× h2

( ε

4k+1 , qk+1(ε, δ,T )
)
. (B.1)

We next focus on computational costs. In each of the N( ε4 ,
δ
4 ) iterations of the

outer for loop (indexed by i), first one direct call is made to the simulator at

computational cost C; then T calls are made to Bk( j,A1
[ j],

ε
4 ,

δ
4N( ε4 ,

δ
4 )T

)
(for different

values of j), each at computational cost at most(
C×h2

( ε

4k+1 , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)
+h1

( ε

4k+1 , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)
+1

)
× fk

( ε
4
,

δ

4N( ε4 ,
δ
4 )T

,T
)
;

then the minimum of a length-T array is computed (at computational cost T ).

One additional call is then made to Bk(t, x[t],
ε
2 ,

δ
2 ), at computational cost at most(

C × h2
( ε

2 × 4k , qk(
ε

2
,
δ

2
,T )

)
+ h1

( ε

2 × 4k , qk(
ε

2
,
δ

2
,T )

)
+ 1

)
× fk(

ε

2
,
δ

2
);

and finally the average of N( ε4 ,
δ
4 ) is computed and subtracted from A3, at com-

putational cost N( ε4 ,
δ
4 ) + 1. It thus follows from the inductive hypothesis, and

several easily verified monotonicities of N, fk, qk and h1, h2, that the computa-

130



tional cost of Bk+1(t, x[t], ε, δ) is at most

T × N(
ε

4
,
δ

4
) × fk

( ε
4
,

δ

4N( ε4 ,
δ
4 )T

,T
)

×

(
C × h2

( ε

4k+1 , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)

+ h1
( ε

4k+1 , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)

+ 1
)

+ N(
ε

4
,
δ

4
)C + T + N(

ε

4
,
δ

4
) + 1

+

(
C × h2

( ε

2 × 4k , qk(
ε

2
,
δ

2
,T )

)
+ h1

( ε

2 × 4k , qk(
ε

2
,
δ

2
,T )

)
+ 1

)
× fk(

ε

2
,
δ

2
,T )

≤

(
C × h2

( ε

4k+1 , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)

+ h1
( ε

4k+1 , qk(
ε

4
,

δ

4N( ε4 ,
δ
4 )T

,T )
)

+ 1
)

×
(
N(
ε

4
,
δ

4
) + 1

)
× (T + 2) × fk

( ε
4
,

δ

4N( ε4 ,
δ
4 )T

,T
)
. (B.2)

Combining the above calculation with Lemma 24, we prove that the induction

is true in case k + 1, thus completing the proof. �

With Lemma 29 in hand, we now complete the proof of Lemma 8. We first

formally define algorithm Wa, which combines Bk and Lemma 6 and 7 that

gives a good approximation of OPT:

Algorithm Wa

Input: ε, δ

set G ∆
= d2

ε
e

for i = 1 : G do

generate a call to B̂i( ε
2G ,

δ
G ) and store in A0[i]

end for

Output:
∑G

i=1 A0[i]

with B̂k a modified version of Bk that approximates E[mint∈[T ] Zk
t ] :
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Algorithm B̂k (for computing E[mint∈[T ] Zk
t ])

Input: ε, δ:

for i = 1 : N( ε2 ,
δ
2 ) do

call the simulator to generate (x1, ..., xT ) and store in A1

for j = 1 : T do

generate an ind. call to Bk( j,A1
[ j],

ε
2 ,

δ
2N( ε2 ,

δ
2 )T

)
and store in A2[ j]

end for

compute the minimum value of A2 and store in A0[i]

end for

Output:
(
N( ε2 ,

δ
2 )

)−1 ∑N( ε2 ,
δ
2 )

i=1 A0[i]

Proof of Lemma 8. By arguments almost identical to the proof of Lemma 29,

we conclude that B̂k(ε, δ) in runtime at most (C × h2( ε
4k+1 , qk+1(ε, δ,T )) +

h1( ε
4k+1 , qk+1(ε, δ,T )) + 1) × fk+1(ε, δ,T ) and calls to the simulator at most 2 ×

h2( ε
4k+1 , qk+1(ε, δ,T ))× fk+1(ε, δ,T ), output a number X satisfies P(|X−E[mint∈[T ] Zk

t ]| >

εU) < δ. We omit the details. Now let’s analyze algorithm Wa. We first prove

algorithmWa, as defined, can output a number satisfying the desired probabil-

ity bounds. Indeed, this follows directly from Lemma 7, the above analysis of

B̂k and a union bound. It remains to bound the computational and sample com-

plexity. Wa(ε, δ) makes G calls to B̂i( ε
2G ,

δ
G ), i ∈ [G]. Therefore, the algorithm’s

132



runtime is bounded by

G∑
i=1

(
C × h2

( ε

4i+1 , qi+1(ε, δ,T )
)

+ h1
( ε

4i+1 , qi+1(ε, δ,T )
)

+ 1
)

fi+1(ε, δ,T ) + G + 1

≤

(
C × h2

( ε

4G+1 , qG+1(ε, δ,T )
)

+ h1
( ε

4G+1 , qG+1(ε, δ,T )
)

+ 1
)
×G × fG+1(

ε2

6
,
δε

3
,T ) + G + 1

≤ 6
(
C × h2

( ε

4G+1 , qG+1(ε, δ,T )
)

+ h1
( ε

4G+1 , qG+1(ε, δ,T )
)

+ 1
)
× ε−1 × fG+1(

ε2

6
,
δε

3
,T )

≤

(
C × H2(ε, δ,T ) + H1(ε, δ,T )

)
× ε−1 × fG+1(

ε2

6
,
δε

3
,T )

≤

(
C × H2(ε, δ,T ) + H1(ε, δ,T )

)
× exp(200ε−2)T 6ε−1

(1 + log(
1
δ

))6ε−1
,

where the last inequality follows from the definition of function fk and several

straightforward bounds, and we omit the details. The analysis of the sample

complexity is nearly identical and we also omit the details. Combining the

above completes the proof. �

We continue to prove Lemma 9. We state without proof the following results,

which are respectively Lemma 2 and Corollary 3 in [134], and which show how

to find a good stopping policy.

Lemma 30. For all k ≥ 1, mint∈[T ] Zk
t ≤

U
k . a.s.

Lemma 31. For k ≥ 1, let τk be the stopping time that stops the first time that Zk
t ≤

U
k ,

where such a time exists w.p.1 by Lemma 30. Then |E[Zτk] − OPT | ≤ U
k .

Combining Lemma 29 and 31, we complete the proof of Lemma 9. Let’s first

formally define algorithmWb.

Algorithm Wb

Input: ε

for t = 1 : T do
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observe Xt = xt, make one call to Bd4ε−1e(t, x[t],
ε
4 ,

ε
4T ) and save

the output as I

if I < ε
2U

Output: STOP break

end if

end for

Output: STOP

Proof of Lemma 9. The fact thatWb, as defined, outputs stopping strategies with

desired performance guarantee follows from Lemma 7 and 31, and several

straightforward union bounds. The argument is in fact identical to the proof

of Corollary 3 in [134] and we omit the technical details here. Next we show

the runtime and sampling complexity bounds. Notice that at each time t, one

call is made to Bd4ε−1e with parameters ε
4 ,

ε
4T . By directly applying Lemma 29, we

conclude that the computational cost for algorithm Wb to output the decision

in each time period is at most

fd4ε−1e(
ε

4
,
ε

4T
,T ) ×

(
C × h2(

ε

41+d4ε−1e
, qd4ε−1e(

ε

4
,
ε

4T
,T )) + h1(

ε

41+d4ε−1e
, qd4ε−1e(

ε

4
,
ε

4T
,T )) + 1

)
≤ exp(200ε−2) × T 6ε−1

×

(
C × h2

(
4−6ε−1

, exp(−200ε−2)T−6ε−1)
+ h1

(
4−6ε−1

, exp(−200ε−2)T−6ε−1))
The number of samples required from the simulator can be accounted in a sim-

ilar manner. We thus complete the proof. �
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B.2 Main algorithms and proof of Lemma 10, 11 and 12

This section is devoted to the detailed analysis of our main algorithms in section

3.5. Specifically, we analyze algorithms (Qk)k≥1, which is the content of Lemma

10; we prove algorithm Qb’s performance guarantee, which is the content of

Lemma 11; and we provide the computational and sampling complexity analy-

sis, which is the content of Lemma 12.

Additional notation. For notational simplicity, we introduce the following

functions

gk(ε, δ) ∆
= (10T M2)

kU(106, 1
ε )
(
1 + log

(1
δ

))kU(106, 1
ε )

f k(ε, δ) ∆
= C(10T M2)

kU(106, 1
ε )
(
1 + log

(1
δ

))kU(106, 1
ε )

.

Notice that here we omit other arguments of f k and gk, such as T and M, assum-

ing they are fixed. These auxiliary functions satisfy certain properties such as a

specific recursive inequality and monotonicity, which can greatly simplify our

algorithmic analysis. We state them as the following lemma. The proof is quite

tedious and is deferred to the last section.

Lemma 32. Functions gk(ε, δ) and f k(ε, δ) are decreasing in ε and δ. They satisfy

g0(ε, δ) ≥ 2MT ε−2 log(2Mδ−1)

f 0(ε, δ) ≥ 3CMT ε−2 log(2Mδ−1).
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Furthermore, they satisfy the recursion

gk+1(ε, δ) ≥ 2gk
(
ε

2
4−6ε−1

,
1
2
δM−1 exp(−200ε−2)T−6ε−1

(1 + log(
M
δ

))−3ε−1
)

× exp(200ε−2)MT 6ε−1
(1 + log(

M
δ

))6ε−1

f k+1(ε, δ) ≥ 2
(
C × gk( ε

2
4−6ε−1

,
1
2
δM−1 exp(−200ε−2)T−6ε−1

(1 + log(
M
δ

))−3ε−1)
+ f k( ε

2
4−6ε−1

,
1
2
δM−1 exp(−200ε−2)T−6ε−1

(1 + log(
M
δ

))−3ε−1))
× exp(200ε−2)MT 6ε−1

(1 + log(
M
δ

))6ε−1

In view of the boundedness Assumption 3, we also introduce the maximum

cap on total rewards: L ∆
= supa[T ],x[T ]

∑T
t=1 rt(a[t], x[t]). Combining with Assumption

3, we then have OPT ≥ αL. The cap L does not appear in the final complexity

bound, rather it serves as an “intermediate” in the derivation of our results. It

can be arbitrarily large.

With Lemma 32 and the maximum cap L, we now complete the proof of

Lemma 10.

Proof. Proof of Lemma 10 Let us first show that the output of algorithm Qk does

satisfy the probability error bounds. We proceed by induction. In the base case

k = 1 with the past action sequence a0, ..., at−1 and the state trajectory x0, ..., xt,

for each a ∈ At, fix a policy πa ∆
= (a[t−1], a, p∗, ..., p∗). Let Wa be a r.v. that is dis-

tributed as
∑T

s=t rs(πa
[s]), conditional on X[t] = x[t].Q

1 calls the simulatorS to gener-

ate N(αε, δ
M ) i.i.d. samples of Wa and stores their average as Ya. By the definition

of the maximum cap L, We have 0 ≤ Wa ≤ L for all a ∈ At and αL ≤ OPT ≤ L.

Combining the above with Lemma 22, we get

P
(
|Ya − E[Wa]| ≥ ε × OPT

)
≤

δ

M
for all a ∈ At.
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By definition, J1
t = maxa∈At E[Wa]. Applying a union bound, we get

P
(
|max

a∈At
Ya − J1

t (a[t−1], x[t])| ≥ ε × OPT
)
≤ δ,

which completes the proof for the base case. Now suppose the induction

is true for some k ≥ 1, we prove it’s also true in the case k + 1. For a ∈

At, let Jk+1,a
t (a[t−1], x[t])

∆
= supτ≥t E

[∑τ−1
s=t rs

(
πa

[s]
)

+ Jk
τ (πa

[τ−1])
∣∣∣X[t] = x[t]

]
. Namely,

J
k+1,a
t (a[t−1], x[t]) is the optimal value achieved by choosing action a in the cur-

rent period, subject to k active action-taking opportunities in [t + 1,T ], given

the past state trajectory X[t] = x[t] and action sequence a[t−1]. Specifically,

Jk+1
t (a[t−1], x[t]) = maxa∈At J

k+1,a
t (a[t−1], x[t]). The algorithm calls the optimal stop-

ping subroutine Wa to solve for Jk+1,a
t (a[t−1], x[t]) for each a. By Lemma 8 and

the fact that L is the maximum cap, we conclude thatWa, when evaluated on

(αε, δ/M), returns a random number Ya satisfying P
(∣∣∣Ya − J

k+1,a
t

∣∣∣ > αεL
)
< δ

M .

Combining the above with the assumption that OPT ≥ αL and a union bound

we then have

P(|max
a∈At

Ya − Jk+1
t (a[t−1], x[t])| > εOPT) < δ.

Hence the statement holds true in case k + 1. By induction we complete the

proof.

Next we prove thatQk+1 satisfies the desired computational and sample com-

plexity bounds. By our definition of gk and f k, it suffices to prove that Qk+1

achieves the desired performance at a computational cost f k(αε, δ) and the num-

ber of calls to the simulator gk(αε, δ). Again we proceed by induction. In the

base case k = 1, the samples required by Q1 with input parameters ε, δ (and re-

gardless of the state trajectory and the action sequence) is through its (at most)

4N(αε, δ/M) × T × M direct calls to S. Thus, the number of independent sam-

ples generated is at most 2MT (αε)−2 log(2Mδ−1),which is bounded by g0(αε, δ) by

Lemma 32. The accounting of computational costs are as follows. In each round
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of the for loop,at most T N(αε, δ/M) samples are generated; at most T N(αε, δ/M)

random rewards are generated, both through simulator S. Then the sum of a T -

vector is calculated, the average of N(αε, δ/M) numbers is computed and finally

the maximum of M numbers is computed. Thus the computational cost of Q0

when called on ε, δ, α, M is at most(
2CT N(αε, δ/M) + T + N(αε, δ/M)

)
× M + M

≤ 3CMT (αε)−2 log(2Mδ−1).

By Lemma 32 we have that the above is further bounded by f 0(αε, δ). Combin-

ing the above with the definition of f 0 and g0, we conclude that the base case is

true.

Suppose the induction is true for some k ≥ 1, we prove it in the case k + 1.

Notice that Qk+1 makes repeated calls to Wa. Let’s carefully account for the

computational and sampling costs of callingWa within Qk+1. With state trajec-

tory x0, ..., xt and action sequence a0, ..., at−1, the specific optimal stopping prob-

lem here has the following reward function
∑ j−1

s=t rs(πa
[s]) + Jk

j (π
a
[ j−1]) for each

j ∈ [t,T ] and some a ∈ At, with πa = (a[t−1], a, p∗, ..., p∗) as defined above.

Let Z j
∆
=

∑ j−1
s=t rs(πa

[s]) + Jk
j (π

a
[ j−1]). Recall that Z j is F j-measurable. We specify

the computational and sampling cost to evaluate Z j to a desired precision with high

probability, which is key to the analysis of Wa and will appear in the ultimate

complexity bounds of Qk+1. We show that, one can get a number Z̃ such that

P(|Z̃ − Z j| ≥ η1L) ≤ η2 at computational cost at most 2 f k(αη1, η2) and number

of samples required from simulator S at most gk(αη1, η2). Indeed, Z j consists

of two parts. The first part
∑ j−1

s=t rs(πa
[s]) can be exactly evaluated using simula-

tor S at computational cost at most CT, according to Assumption 2. We deal

with the second part. The induction hypothesis and the fact that OPT ≤ L im-

ply that one can get a number J̃ such that P(|J̃ − Jk
j | ≥ η1L) ≤ η2 at computa-
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tional costs at most f k(αη1, η2) and number of samples required from simulator

S at most gk(αη1, η2). Combining the above two parts, we conclude that one can

get a number Z̃ such that P(|Z̃ − Z j| ≥ η1L) ≤ η2 at computational cost at most

h1(η1, η2) = CT + f k(αη1, η2) ≤ 2 f k(αη1, η2) and number of samples required from

simulator S at most h2(η1, η2) = gk(αη1, η2).

Now let’s study the sampling cost. In each round of the for loop, Qk+1’s only

access to simulator S is through its call toWa, evaluated on αε and δ/M. Com-

bining the previous discussion with Lemma 8, we have that the total number of

samples required by Qk+1 is at most

H2(αε, δ/M,T ) × exp(200α−2ε−2)T 6α−1ε−1
(1 + log(

M
δ

))6α−1ε−1
M

= h2
(
4−6α−1ε−1

, δM−1 exp(−200α−2ε−2)T−6α−1ε−1
(1 + log(

M
δ

))−3α−1ε−1)
× exp(200α−2ε−2)MT 6α−1ε−1

(1 + log(
M
δ

))6α−1ε−1

= gk
(
α4−6α−1ε−1

, δM−1 exp(−200α−2ε−2)T−6α−1ε−1
(1 + log(

M
δ

))−3α−1ε−1
)

× exp(200α−2ε−2)MT 6α−1ε−1
(1 + log(

M
δ

))6α−1ε−1

≤ gk
(
αε4−6α−1ε−1

, δM−1 exp(−200α−2ε−2)T−6α−1ε−1
(1 + log(

M
δ

))−3α−1ε−1
)

× exp(200α−2ε−2)MT 6α−1ε−1
(1 + log(

M
δ

))6α−1ε−1

≤ gk+1(αε, δ) (B.3)

where the last inequality follows from Lemma 32.

We next focus on computational costs. In each iteration of the for loop, one

call is made to Wa evaluated on αε, δ/M. Combining the previous discussion
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with Lemma 8, we have the total computational cost is at most(
C × H2(αε, δ/M,T ) + H1(αε, δ/M,T )

)
× exp(200α−2ε−2)T 6α−1ε−1

(1 + log(
M
δ

))6α−1ε−1
M

=

(
C × h2

(
4−6α−1ε−1

, δM−1 exp(−200α−2ε−2)T−6α−1ε−1
(1 + log(

M
δ

))−3α−1ε−1)
+h1

(
4−6α−1ε−1

, δM−1 exp(−200α−2ε−2)T−6α−1ε−1
(1 + log(

M
δ

))−3α−1ε−1))
× exp(200α−2ε−2)MT 6α−1ε−1

(1 + log(
M
δ

))6α−1ε−1

≤

(
C × gk(αε4−6α−1ε−1

, δM−1 exp(−200α−2ε−2)T−6α−1ε−1
(1 + log(

M
δ

))−3α−1ε−1)
+2 f k(αε4−6α−1ε−1

, δM−1 exp(−200α−2ε−2)T−6α−1ε−1
(1 + log(

M
δ

))−3α−1ε−1))
× exp(200α−2ε−2)MT 6α−1ε−1

(1 + log(
M
δ

))6α−1ε−1

≤ f k+1(αε, δ), (B.4)

where again, the last inequality follows from Lemma 32. Combining bounds

(B.3) and (B.4) with the definition of f k and gk then completes the proof. �

Proof of Lemma 11. We proceed by induction. In the base case k = 1, the algo-

rithm calls Q1 with ( ε
8(K+1) ,

Mαε
8(K+1) ∧ 1), which outputs an action aB ∈ At, where we

spell out B as a random variable defined in [M] (due to the randomized nature of

Q1). The algorithm then fixes aB as its choice for the current period, and takes p∗

for the rest of the periods. (since k = 1 means no more active action is allowed

in later periods.) The expected total reward is E[
∑T

s=t rs(πB
[s]|X[t] = x[t]], which

we denote by J̄1,B
t (a[t−1], x[t]) (here πB = (a[t−1], aB, p∗, ...., p∗), as defined previ-

ously). Notice that the expectation is taken not only over the state evolution but

also over B, so that J̄1,B
t (a[t−1], x[t]) is a constant measuring the expected perfor-

mance of algorithm Qb. We denote by J1,B
t (a[t−1], x[t]) the expected performance

of algorithm Qb conditional on the realization B. We have that J̄1,B
t = EB[J1,B

t ],

where the expectation is taken over random variable B. Suppose the true opti-

mal action at this time point is a∗. And the corresponding policy π∗ is defined as
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(a[t−1], a∗, p∗, ...., p∗). By definition we have

E
[ T∑

s=t

rs(π∗[s])
∣∣∣∣∣X[t] = x[t]

]
= J1

t (a[t−1], x[t]).

We bound the gap between J̄1,B
t and J1

t . For notational simplicity, we hide the

dependence on X[t] = x[t] in the following probability statements. Recall that for

each a ∈ At, algorithm Q1 computes a number Ya that satisfies (with the given

control parameters here)

P
(∣∣∣∣∣Ya − J

1,a
t

∣∣∣∣∣ > αε

8(K + 1)
L

)
≤

αε

8(K + 1)
. (B.5)

For the fixed actions a∗ or aB, we use Y∗ and YB to denote the corresponding

output approximate value from Q1. We thus have

P
(
J1

t − J
1,B
t >

αε

4(K + 1)
L

)
= P

(
J1

t − Y∗ + Y∗ − YB + YB − J
1,B
t >

αε

4(K + 1)
L

)
≤ P

(
J1

t − Y∗ + YB − J
1,B
t >

αε

4(K + 1)
L

)
≤ P

(
|J1

t − Y∗| >
αε

8(K + 1)
L

)
+ P

(
|YB − J

1,B
t | >

αε

8(K + 1)
L

)
≤

αε

8(K + 1)
+

αε

8(K + 1)
=

αε

4(K + 1)
,

where the first inequality follows from the defining property of the algorithm-

selected action aB that YB ≥ Ya, a ∈ At, the second inequality follows from a

union bound and the third inequality follows from (B.5). With the above prob-

ability bound, we may further bound the expected gap E[J1
t − J

1,B
t ] (where the

expectation is taken over random variable B) by

E
[
J1

t − J
1,B
t

]
≤ P

(
J1

t − J
1,B
t >

αε

4(K + 1)
L

)
× L + P

(
J1

t − J
1,B
t ≤

αε

4(K + 1)
L

)
×

αε

4(K + 1)
L

≤
αε

4(K + 1)
L +

αε

4(K + 1)
L

=
ε

2(K + 1)
αL <

ε

(K + 1)
OPT,

where in the first inequality we use the definition of the maximum cap Lwhich

yields w.p.1. 0 < J1,B
t ≤ J1

t < L and in the second inequality we use Assumption
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3 that αL ≤ OPT. Since J̄1,B
t = E[J1,B

t ], we thus conclude that the base case is

true.

Now suppose for some k ≥ 1, the conclusion holds. We prove it also holds

in the case k + 1. Recall the process of algorithm Qb. It first makes a call to

Qk+1 to compute an action to take. While proceeding with the passive action p∗

afterwards, the algorithm makes a call to Wb at every time to decide whether

to start a new epoch. When Wb outputs STOP, the algorithm will call Qk to

compute another action, and the budget of action change decreases by one, be-

coming k. Before formally analyzing the algorithm, let’s first introduce several

notation.

As before, we let aB be the output action from Qk+1. Notice that B is

a random variable due to the randomized nature of algorithm Qk+1. πB =

(a[t−1], aB, p∗, ..., p∗) is the corresponding policy. We let Jk+1,a
t (a[t−1], x[t])

∆
=

supτ E[
∑τ−1

s=t rs(πa
[s]) +Jk

τ (πa
[τ−1])|X[t] = x[t]] denote the largest total expected reward

given that the choice of action in the current period is a. Let J̄k+1,B
t (a[t−1], x[t])

∆
=

E[Jk+1,B
t (a[t−1], x[t])] where the expectation is taken over B. In words, J̄k+1,B

t is

the largest total expected reward given that the current choice of action fol-

lows the output of Qb. We let the output stopping time returned by Wb be

τB. We denote by J̃k+1,B
t (a[t−1], x[t])

∆
= E[

∑τB−1
s=t rs(πB

[s]) + Jk
τB

(πB
[τ−1])|X[t] = x[t]] the

expected total reward following the current choice B from Qk+1 and the stop-

ping time τB computed from Qb, and following the true optimal policy af-

terwards. By the randomized nature of Wb, τB is random even conditional

on B. The expectation in the definition of J̃ is taken over Xt,B and τB. Let

Ĵk+1
t (a[t−1], x[t]) denote the expected total reward following the policy returned by

Qb. By the definition of B and τB, (Ĵk
t )k≥1 satisfy the recursion: Ĵk+1

t (a[t−1], x[t]) =

E[
∑τB−1

s=t rs(πB
[s]) + Ĵk

τB
(πB

[τB−1])|X[t] = x[t]].
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For notational simplicity, in the proof we use Jk+1
t , J̃k+1,B

t , J̄k+1,B
t and Ĵk+1

t

instead of spelling out the dependence on a[t−1] and x[t], assuming causing no

ambiguity. Our intended goal is to show

Jk+1
t − Ĵk+1

t ≤
k + 1
K + 1

ε × OPT. (B.6)

We rewrite the above as

Jk+1
t − J̄

k+1,B
t + J̄k+1,B

t − J̃
k+1,B
t + J̃k+1,B

t − Ĵk+1
t ≤

k1
K + 1

ε × OPT.

To prove inequality (B.6), it suffices to show

Jk+1
t − J̄

k+1,B
t ≤

1
2(K + 1)

ε × OPT (B.7)

|J̄
k+1,B
t − J̃

k+1,B
t | ≤

1
2(K + 1)

ε × OPT (B.8)

|J̃
k+1,B
t − Ĵk+1

t | ≤
k

K + 1
ε × OPT (B.9)

We next prove the above bounds.

• Proof of bound (B.7). Recall that for each a ∈ At, Qk+1 calls Wa with

control parameters ( αε
8(K+1) ,

αε
8(K+1) ), which computes a number Ya satisfying

P
(
|Ya − J

k+1,a
t | >

αε

8(K + 1)
L

)
≤

αε

8(K + 1)
.

Notice that the above inequality is identical to bound (B.5). The rest of the

proof is also exactly identical to that in the base case (right after bound

(B.5)), and we omit here. As a result, we conclude that Jk+1
t − J̄

k+1,B
t ≤

1
2(K+1)ε × α × L ≤

1
2(K+1)ε × OPT, completing the proof of bound (B.7).

• Proof of bound (B.8). Recall that conditional on aB = a, Wb is called to

solve the optimal stopping problem

J
k+1,a
t = sup

τ

E
[ τ−1∑

s=t

rs(πa
[s]) +Jk

τ

∣∣∣∣∣X[t] = x[t]

]
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with control parameter αε
2(K+1) . By Lemma 9, the output stopping time τB

satisfies

J
k+1,a
t −E

[ τB−1∑
s=t

rs(πa
[s])+J

k
τB

(πa
[τB−1])

∣∣∣∣∣X[t] = x[t], aB = a
]
≤

ε

2(K + 1)
αL ≤

ε

2(K + 1)
OPT.

Taking expectation over B, we thus conclude that J̄k+1,B
t − J̃

k+1,B
t ≤

ε
2(K+1) OPT, completing the proof of bound (B.8).

• Proof of bound (B.9). By definition, we have

|J̃
k+1,B
t − Ĵk+1

t |

=

∣∣∣∣∣E[ τB−1∑
s=t

rs(πB
[s]) + Ĵk

τB
(πB

[τB−1])
∣∣∣∣∣X[t] = x[t]

]
− E

[ τB−1∑
s=t

rs(πB
[s]) +Jk

τB
(πB

[τB−1])
∣∣∣∣∣X[t] = x[t]

]∣∣∣∣∣
=

∣∣∣E[
Ĵk
τB
− Jk

τB

∣∣∣X[t] = x[t]
]∣∣∣

≤ E
[ ∣∣∣Ĵk

τB
− Jk

τB

∣∣∣ ∣∣∣X[t] = x[t]
]

≤
k

K + 1
ε × OPT,

completing the proof of bound (B.9). Here the last inequality follows from

our induction hypothesis.

Combining bounds (B.7), (B.8) and (B.9) proves inequality (B.6) for case k + 1,

which then completes our induction and proves the lemma. �

Proof. Proof of Lemma 12 We begin with the sampling cost. At each period

in the (K − k)-th epoch, first one call is made to Wb, with control parameter

144



ζ
∆
= αε

2(K+1) , whose sampling cost is at most

exp(400ζ−2)T 6ζ−1
× h2

(
4−6ζ−1

, e−400ζ−2
T−6ζ−1)

(by Lemma 9)

≤ exp(400ζ−2)T 6ζ−1
× 2gk

(α
2

4−6ζ−1
,

1
2

e−400ζ−2
T−6ζ−1)

(by arguments in the proof of Lemma 10)

= exp(400ζ−2) × T 6ζ−1
× 2(10T M2)

kU
(

106, 2
α46ζ−1)

×

(
1 + log(2) + 400ζ−2 + 6ζ−1 log(T )

)kU
(

106, 2
α46ζ−1)

≤ exp(400ζ−2) × T 6ζ−1
× (10T M2)

kU
(

106, 2
α46ζ−1)

×
(
103ζ−2 × T

)kU
(

106, 2
α46ζ−1)

≤ exp(400ζ−2) × T 6ζ−1
× (10T M2)

kU
(

106,48ζ−1)
×
(
103ζ−2 × T

)kU
(

106,48ζ−1)
≤ 102×k+1U

(
106,ζ−1

)
× T

k+1U
(

106,ζ−1
)
× M

k+1U
(

106,ζ−1
)

(by bounds (B.10) and (B.11) in the proof of Lemma 32)

= (100T M)
k+1U

(
106, 2(K+1)

αε

)
.

If the output fromWb is STOP, Qb then makes a call to Qk−1 with control param-

eters ( ε
8(K+1) ,

Mαε
8(K+1) ∧ 1) (or equivalently ( ζ

4α ,
ζM
4 ∧ 1)), whose sampling cost is at

most

(
10T M2)k−1U

(
106,4ζ−1

)
×

(
1 + log(4) + log(ζ−1))

)k−1U
(

106,4ζ−1
)

(by Lemma 10)

≤
(
10T M2)k−1U

(
106,4ζ−1

)
×

(
2ζ−1)k−1U

(
106,4ζ−1

)
≤ (10T M2)k−1U

(
106,48ζ−1)

×
(
2ζ−1)k−1U

(
106,48ζ−1)

≤ (10T M2)
kU

(
106,ζ−1

)
(by bounds (B.10) and (B.11))

≤ (10T M2)
kU

(
106, 2(K+1)

αε

)
.
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In any case, Qb will take at most 2(100T M)
k+1U

(
106, 2(K+1)

αε

)
number of samples from

simulator ∫ to compute an output.

We can account for the computational cost in an almost identical manner,

and we here omit the technical details. Combining the above then prove the

lemma. �

B.3 Proofs of auxiliary results

This section consists of detailed proofs Lemma 32.

Proof of Lemma 32. Recall that

gk(ε, δ) = (10T M2)
kU(106, 1

ε )
(
1 + log

(1
δ

))kU(106, 1
ε )

f k(ε, δ) = C(10T M2)
kU(106, 1

ε )
(
1 + log

(1
δ

))kU(106, 1
ε )

.

The fact that both gk and f k are monotone in ε and δ is straightforward and we

omit the proof.

Next let’s show the bounds on g0 and f 0. Indeed, g0(ε, δ) = 10ε
−1

(T M2)ε
−1

(1 +

log( 1
δ
))ε

−1
≥ 10ε

−1
T M2 log( e

δ
) ≥ 10ε

−1
T M log( eM

δ
) ≥ 2ε−2T M log(2M

δ
). Similarly,

f 0(ε, δ) = C10ε
−1

(T M2)ε
−1

(1 + log(1
δ
))ε

−1
≥ C10ε

−1
T M log( eM

δ
) ≥ 3CMT ε−2 log( 2M

δ
).

Finally, let’s prove that gk and f k satisfy the recursive inequalities. Let’s first

state and prove several properties of kU.

kU(106, 10
6
ε ) ≥ 2 × kU(106, 4

8
ε ) +

6
ε

(B.10)

10
kU(106,10

6
ε ) ≥ 10

kU(106,4
8
ε ) ×

(
400ε−2)kU(106,4

8
ε )
× exp(200ε−2) (B.11)

The above can be shown via induction. Indeed, in the base case k = 0, inequality

(B.10) becomes 106ε−1
≥ 2×48ε−1

+6ε−1 which can be easily verified for all ε ∈ (0, 1).
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Inequality (B.11) becomes

1010
6
ε
≥ 104

8
ε
×

(
400ε−2)4

8
ε
× exp(200ε−2).

Similarly, it can be verified directly that the above holds for all ε ∈ (0, 1). Now

suppose inequalities (B.10) and (B.11) hold true for some k ≥ 0, we prove it also

holds in case k + 1. Indeed,

k+1U(106, 10
6
ε ) = 106×kU(106,10

6
ε )

≥ 1012×kU(106,4
8
ε )+6× 6

ε

=

(
k+1U(106, 4

8
ε )
)2

× 10
36
ε

≥ 2 × k+1U(106, 4
8
ε ) +

6
ε
.

10
k+1U(106,10

6
ε ) = exp(log(10) × 106×kU(106,10

6
ε ))

≥ exp
(

log(10) × 106×kU(106,4
8
ε ) ×

(
400ε−2)6×kU(106,4

8
ε )
× exp(1200ε−2)

)
≥ exp

(
log(10) ×

(
106×kU(106,4

8
ε ) +

(
400ε−2)6×kU(106,4

8
ε )

+ exp(1200ε−2)
))

= 10106×kU(106 ,4
8
ε )
× 10

(
400ε−2

)6×kU(106 ,4
8
ε )

× 10exp(1200ε−2)

≥ 10106×kU(106 ,4
8
ε )
×

(
400ε−2)106×kU(106 ,4

8
ε )
× exp(200ε−2)

= 10
k+1U(106,4

8
ε ) ×

(
400ε−2)k+1U(106,4

8
ε )
× exp(200ε−2).

Inequalities (B.10) and (B.11) thus follow from induction. With these bounds in
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hand, we can now prove the recursive bounds on gk and f k. For gk we have

gk+1(ε, δ) = (10T M2)
k+1U(106, 1

ε )
(
1 + log

(1
δ

))k+1U(106, 1
ε )

= (10T M2)
kU(106,10

6
ε )
(
1 + log

(1
δ

))kU(106,10
6
ε )

≥ 10
kU(106,4

8
ε ) ×

(
400ε−2)kU(106,4

8
ε )
× exp(200ε−2)

×(T M2)2×kU(106,4
8
ε )+ 6

ε ×

(
1 + log

(1
δ

))2×kU(106,4
8
ε )+6ε−1

≥ (10T M2)
kU(106,4

8
ε ) × T

kU(106,4
8
ε ) × M2×kU(106,4

8
ε ) ×

(
400ε−2)kU(106,4

8
ε )

×

(
1 + log

(1
δ

))2×kU(106,4
8
ε )

× exp(200ε−2) × T 6ε−1
× M6ε−1

× (1 + log(
1
δ

))6ε−1

≥ (10T M2)
kU(106,4

8
ε ) × T

kU(106,4
8
ε ) × M1+kU(106,4

8
ε ) ×

(
400ε−2)kU(106,4

8
ε )

×

(
1 + log

(1
δ

))kU(106,4
8
ε )

× exp(200ε−2) × T 6ε−1
× (1 + log(

M
δ

))6ε−1

≥ 2(10T M2)
kU(106,4

8
ε ) ×

((
1 + log(

1
δ

)
)
× T × M × 200ε−2

)kU(106,4
8
ε )

× exp(200ε−2) × M × T 6ε−1
× (1 + log(

M
δ

))6ε−1

≥ 2(10T M2)
kU(106,4

8
ε ) ×

(
6ε−1(1 + log(

1
δ

)
)

+ 6ε−1M + 6ε−1T + 200ε−2
)kU(106,4

8
ε )

× exp(200ε−2) × M × T 6ε−1
× (1 + log(

M
δ

))6ε−1

≥ 2(10T M2)
kU(106,4

8
ε ) ×

(
3ε−1(1 + log(

M
δ

)
)

+ log(2) + 6ε−1 log(T ) + 200ε−2
)kU(106,4

8
ε )

× exp(200ε−2) × M × T 6ε−1
× (1 + log(

M
δ

))6ε−1

= 2(10T M2)
kU(106,4

8
ε )
(
1 + log

(
2

M
δ

T 6ε−1
(1 + log(

M
δ

))3ε−1
exp(200ε−2)

))kU(106,4
8
ε )

× exp(200ε−2) × M × T 6ε−1
× (1 + log(

M
δ

))6ε−1

= 2gk
(
4−8ε−1

,
1
2
δM−1T−6ε−1

(1 + log(
M
δ

))−3ε−1
exp(−200ε−2)

)
× exp(200ε−2) × M × T 6ε−1

× (1 + log(
M
δ

))6ε−1

≥ 2gk
(
ε

2
4−6ε−1

,
1
2
δM−1T−6ε−1

(1 + log(
M
δ

))−3ε−1
exp(−200ε−2)

)
× exp(200ε−2) × M × T 6ε−1

× (1 + log(
M
δ

))6ε−1
.
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For f k, similarly we have

f k+1(ε, δ) = C(10T M2)
k+1U(106, 1

ε )
(
1 + log

(1
δ

))k+1U(106, 1
ε )

≥ C × (10T M2)
kU(106,4

8
ε ) × T

kU(106,4
8
ε ) × M1+kU(106,4

8
ε ) ×

(
400ε−2)kU(106,4

8
ε )

×

(
1 + log

(1
δ

))kU(106,4
8
ε )

× exp(200ε−2) × T 6ε−1
× (1 + log(

M
δ

))6ε−1

≥ 4C × (10T M2)
kU(106,4

8
ε ) × T

kU(106,4
8
ε ) × M1+kU(106,4

8
ε ) ×

(
200ε−2)kU(106,4

8
ε )

×

(
1 + log

(1
δ

))kU(106,4
8
ε )

× exp(200ε−2) × T 6ε−1
× (1 + log(

M
δ

))6ε−1

≥ 4C × gk
(
4−8ε−1

,
1
2
δM−1T−6ε−1

(1 + log(
M
δ

))−3ε−1
exp(−200ε−2)

)
× exp(200ε−2) × M × T 6ε−1

× (1 + log(
M
δ

))6ε−1

= 2
(
C × gk

(
4−8ε−1

,
1
2
δM−1T−6ε−1

(1 + log(
M
δ

))−3ε−1
exp(−200ε−2)

)
+ f k

(
4−8ε−1

,
1
2
δM−1T−6ε−1

(1 + log(
M
δ

))−3ε−1
exp(−200ε−2)

))
× exp(200ε−2) × M × T 6ε−1

× (1 + log(
M
δ

))6ε−1

≥ 2
(
C × gk

(
ε

2
4−6ε−1

,
1
2
δM−1T−6ε−1

(1 + log(
M
δ

))−3ε−1
exp(−200ε−2)

)
+ f k

(
ε

2
4−6ε−1

,
1
2
δM−1T−6ε−1

(1 + log(
M
δ

))−3ε−1
exp(−200ε−2)

))
× exp(200ε−2) × M × T 6ε−1

× (1 + log(
M
δ

))6ε−1
.

Combining the above then completes the proof. �
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APPENDIX C

CHAPTER 4 OF APPENDIX

The chapter contains all technical proofs of Chapter 4.

C.1 Max-flow reduction and proof of Lemma 13

Proof of Proposition 2. We prove by construction. We create a subset Lx ⊂ Vx for

all nodes ωi ∈ Hi with i ∈ L.We also create a subset Rx ⊂ Vx for all nodes ω j ∈ H j

with j ∈ R. By definition, the only existing arcs in Ex either points from s to Lx,

or fromLx toRx, or fromRx to t.Hence any s-t path in Gx is of length 3. Therefore

the graph is of depth 3. �

Proof of Lemma 13. Since our ONLINE MWIS problem is finite-sized with

bounded total reward, its optimal value must exist and the deterministic op-

timal policy is well-defined (possibly non unique). We omit further discussion

here. To prove ONLINE MWIS can be reduced to MAX FLOW, we first show that

the ONLINE MWIS associated with G, x and c can be reduced to (offline) MWIS.

We write down the integer programming (IP) formulation of ONLINE MWIS.

(ONLINE MWIS IP) max
∑
ω∈HT

T∑
i=1

p(ω) × yi(ω[1, i]) × c(ω[1, i])

s.t. yi(ω[1, i]) + y j(ω[1, j]) ≤ 1, ∀(i, j) ∈ E, ∀ ω ∈ HT

yi(ω[1, i]) ∈ {0, 1}. ∀i ∈ V, ∀ ω ∈ HT

Any feasible solution y to the above IP corresponds to an admissible policy πy

for ONLINE MWIS. The mapping is simply: yi(ω) = 1 → πy(ω) = PICK i and

yi(ω) = 0 → πy(ω) = SKIP i. The solution and the policy incur the same objective
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value. Furthermore, the mapping is invertible /one on one, hence solving ON-

LINE MWIS is equivalent to solving ONLINE MWIS IP.

Now consider an offline MWIS instance with graph Gx/{s, t} and rewards

u(ω) ∆
= c(ω) × p(ω) for each ω ∈ Gx/{s, t}. By Proposition 2, Gx/{s, t} is bipar-

tite. We claim that ONLINE MWIS IP as presented above solves this offline MWIS

instance. Indeed, any feasible solution y to ONLINE MWIS IP corresponds to a

feasible solution to the offline MWIS instance. The one-on-one mapping is as fol-

lows: yi(ω) = 1→ PICK ω and yi(ω) = 0→ SKIP ω. Again, the two solutions incur

the same objective values. Hence, solving ONLINE MWIS with G, x, c is equiva-

lent to solving MWIS with Gx/{s, t} and u.

The reduction from (offline bipartite) MWIS with Gx/{s, t} and u to MAX FLOW

{Gx, cx, s, t} is classical. In words, the complement of the min cut in {Gx, cx, s, t}

forms the max weight independent set in Gx/{s, t} with capacity u. We omit a

detailed discussion, instead referring the reader to standard textbooks such as

[211]. Hence we complete the proof. �

C.2 Path subnetwork and proof of Proposition 3

We denote by f ∗P,u,a,b the maximum flow in (P, a, b, u)-subnetwork, and M∗
P,u,a,b its

flow value. We prove a stronger result, which incorporates Proposition 3 as its

direct corollary.

Proposition 10. Suppose P = (i1, ..., ik) with k ≥ 3 and i1, ik < min{i2, ..., ik−1}. Let j :

i j = min{i2, ...., ik−1}. Denote by P1
∆
= (i1, ...., i j) and P2

∆
= (i j, ...., ik) the two segments of

P. Then the maximum flow value in the (P, ω1, ωk, u)-subnetwork satisfies the following.

M∗
P,u,ω1,ωk

=
∑

ω∈Hi j :ω1,ωk⊂ω

min
(
M∗

P1,u,ω1,ω
,M∗

P2,u,ω,ωk

)
.
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The max flow in the (P, ω1, ωk, u)-subnetwork satisfies the following.

f ∗P,u,ω1,ωk
=

∑
ω∈Hi j :ω1,ωk⊂ω

(
f ∗P1,u,ω1,ω

×
M∗

P,u,ω1,ωk

M∗
P1,u,ω1,ω

+ f ∗P2,u,ω,ωk
×

M∗
P,u,ω1,ωk

M∗
P2,u,ω,ωk

)

Proof. We first prove the recursion holds for M∗. Consider any two ω,ω′ ∈ Hi j

such that ω1, ωk ⊂ ω,ω′. For any P-sample Q1 conditional on ω ∈ Q1 and any

P-sample Q2 conditional on ω′ ∈ Q2, we observe that Q1 and Q2 meet only at

source s and sink t. Such structure motivates us to consider partitioning the

original (P, ωi1 , ωik , u)-subnetwork into smaller subnetworks. More precisely, we

take all (P, ωi1 , ωik)-samples that contain ω to form a subgraph Gω. Then the orig-

inal path subgraph equals to ∪ω∈Hi j :ω1,ωk⊂ωGω, and for any ω,ω′,Gω ∩Gω′ = {s, t}.

Therefore, the max flow value in (P, ω1, ωk, u)-subnetwork equals the sum of the

max flow values in these subnetworks Gω with capacity u. Now let’s zoom in on

Gω with a fixed ω. All s-t paths in Gω pass through ω, and that Gω can be further

decomposed into two subnetworks, (P1, ω1, ω, u)-subnetwork and (P2, ω, ωk, u)-

subnetwork. Hence ω is the bottleneck, and the max flow value in {Gω, s, t, u} is

the minimum between the max flow value into and out of ω, which are the

max flow value in (P1, ω1, ω, u)-subnetwork and (P2, ω, ωk, u)-subnetwork, re-

spectively. Combining all the above, we prove the recursion for M∗, the max

flow value, is valid.

We next prove the recursion holds for f ∗. Indeed, by our previous argument,

the flows on different Gω are irrelevant because they share no common nodes

other than s, t. For each ω, suppose we have the max flow f ∗P1,ω1,ω,u and f ∗P2,ω,ωk ,u
in

the two corresponding subnetworks. We keep the flow unchanged in the sub-

network with smaller max flow values. We scale the flow by the ratio between

the two max flow values in the other subnetwork. We then piece the two flows

together to get a flow on Gω. We can see that, the resulting flow in {Gω, u} (1) is
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non negative, because we piece together two non negative flows and scale one

of them by a positive constant; (2) is feasible, because we only ever decreases

the flow on any arc; (3) remains a flow, because the flow is a combination of

two flows, conservation at all nodes except ω still hold. As for ω, our rescaling

makes the flow into and out of ω balanced, so the conservation rule also holds;

and (4) is optimal, because by the previous argument, the max flow value in

{Gω, u} is the smaller of the two max flow values of {P1, ω1, ω, u}-subnetwork and

{P2, ω, ωk, u}-subnetwork, which is achieved by our proposed flow.

Combining all the above, we have proved Proposition 10. �

With Proposition 10, we complete our proof of Proposition 3.

Proof of Proposition 3. We prove a stronger result. For any k ≥ 2 and any P =

(i1, ..., .ik) ∈ G that are regular and satisfying i1, ik < min(i2, ..., ik−1), Algorithm 1′

can output the max flow and its value in any (P, ω1, ωk, u)-subnetwork. We argue

by induction on k. In the base case k = 2, the path subnetwork is simply an arc,

and Algorithm 1′ trivially returns the true max flow and its value (both equal to

the capacity). Now suppose for all path of length ≤ k−1,Algorithm 1′ can output

the correct max flow and value for path networks. Then case k follows directly

from Proposition 10. By induction, we conclude that the statement holds true.

The statement of Proposition 3 is the above statement restricted to (P, s, t, u)-

subnetworks. Therefore we complete the proof. �

C.3 Blocking flow and proof of Proposition 4

We first state and prove two intermediate results, Lemma 33 and Lemma 34.
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Lemma 33. Algorithm 2′ maintains a regular, feasible flow in N f0 .

Proof of Lemma 33. We first prove the flow f ′ remains regular. It suffices to

show that for any arc (ωi, ω j) and its reverse arc (ω j, ωi), either f ′(ωi, ω j) = 0

or f ′(ω j, ωi) = 0. First, if either of the two nodes is s or t, then the statement

holds true because by definition, f ′ adds a linear combination of regular flows

(as output of algorithm 1′) in each iteration, none of which ever uses arcs of the

form (t, ω) or (ω, s). Now suppose both ωi and ω j are not source s and sink t.

We argue by contradiction. If at some point during the iteration, f ′ uses both

arcs, i.e. f ′(ω j, ωi) > 0 and f ′(ωi, ω j) > 0, then by the updating rule of f ′ and

the definition of flow, there must exist two connected s-t paths P1 and P2, both

of length (l + 2), such that (ωi, ω j) ∈ P1 and (ω j, ωi) ∈ P2. Since the update only

increases the flows/decreases the capacities on arcs, we conclude that P1 and P2

must have been connected at the beginning of the algorithm, namely in residual

network N f0 . Since f0 is l-connecting for an odd l, the length of the shortest s-t

path is (l + 2) in N f0 . Hence both P1 and P2 are shortest s-t path, which implies

d(ωi) = d(ω j)+1 and d(ω j) = d(ωi)+1 simultaneously, a contradiction. Therefore,

f ′ is always regular.

Next we prove it’s also feasible. Let’s focus on an arbitrary arc (ωi, ω j),

and show that f ′(ωi, ω j) never exceeds the capacity cx
f0

(ωi, ω j). In a fixed it-

eration round, the amount of flow that is been pushed through (ωi, ω j) is

1
∆l

∑
P∈Ml+2

fP(ωi, ω j). Since fP is the outputting flow of Algorithm 1′ with input

{P, s, t, u}, it must hold that fP(ωi, ω j) < u(ωi, ω j) for all P. Also, the number of

P ∈ Ml+2 such that fP(ωi, ω j) , 0 is at most ∆l (because ∆ is the max degree and

the free vertices on the path is at most l), we conclude that 1
∆l

∑
P∈Ml+2

fP(ωi, ω j) <

u(ωi, ω j), and the flow remains feasible between iterations. Combining the above

completes the proof. �
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Lemma 34. Algorithm 2′ outputs a flow that saturates all s-t paths with length (l + 2)

in N f0 .

Proof of Lemma 34. Since Algorithm 2′ only increases flows on all arcs, and the

flow is always regular and feasible inN f0(by Lemma 33), we conclude by mono-

tone convergence theorem that Algorithm 2′ ultimately returns a flow f ′ that is

regular and feasible in N f0 , and should be invariant under one iteration of Al-

gorithm 2′. Now suppose by contradiction, that there exists an s-t path P ∈ N f0

that are with length (l + 2) and not saturated by flow f ′. Let u = cx
f0
− f ′, then the

capacities u are strictly positive on path P. Consider the corresponding path in

G : P = φ(P). The path subnetwork associated with (P, s, t, u) must have strictly

positive max flow value MP, because a positive amount of flow can be pushed

through path P. Hence after one iteration, the flow value of f ′ is increased by

at least 1
∆l MP, a strictly positive number, which contradicts the fact that f ′ is the

limiting flow. Therefore f ′ must saturate all length (l + 2) s-t paths in residual

graph N f0 . �

Using Lemma 33 and Lemma 34, we prove Proposition 3.

Proof of Proposition 3. If f0 is already (l + 2)-disconnecting, then algorithm 2′ out-

puts a zero flow, and the statement follows. Otherwise, there exists length (l + 2)

s-t paths in N f0 . By Proposition 14, it suffices to prove that f ′ is blocking in the

level subnetwork of N f0 . By definition, all connected s-t paths in the level sub-

network are shortest paths between s and t, which are of length (l+2). By Lemma

34, f ′ saturates all such paths in N f0 , thereby saturating all s-t paths in its level

subnetwork, completing the proof. �
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C.4 Implementable algorithms and analysis

C.4.1 Boundedness of rescaling and proof of Lemma 19

Proof of Lemma 19. We first prove zi, j is bounded in [0, 1]. Indeed, there are four

cases. In case one and case two, either i = −1 or j = −2. The associated arc

samples e are of the form (s, ω) or (ω, t). In such cases, zi, j(e) = f (e)/p(ω). By def-

inition and boundedness constraints on reward c, we have 0 ≤ f (e) ≤ cx(e) =

c(ω)× p(ω) ≤ p(ω). Combining the above, we have zi, j(e) ≤ 1 for all e, completing

the proof. In case three, i ∈ R and j ∈ L, (or equivalently i = −2, j = −1) the

capacities are 0 on these reverse arcs in {Gx, cx, s, t}. Hence for any arc sample e,

0 ≤ zi, j(e) ≤ cx(e) = 0, completing the proof. Finally, we consider case four i ∈ L

and j ∈ R. In such cases, capacities are∞ and we use flow conservation to prove

the desired result. Indeed, without loss of generality we assume i > j. For any

arc sample e = (ωi, ω j), we focus on node ωi. There is one arc carries positive

flow to ωi, that is (s, ωi), and possibly multiple arcs, including (ωi, ω j), transport

flows away from ωi. Therefore, by flow conservation, it must be the case that

f (s, ωi) ≥ f (ωi, ω j). As a result, we conclude that zi, j(ωi, ω j) ≤ z−1,i(s, ωi) ≤ 1,

where the last inequality follows from case one. Combining the above cases, we

conclude that random variables zi, j ∈ [0, 1], w.p.1 for any (i, j) ∈ E.

We proceed to show that the induced residual capacities also satisfy the de-

sired boundedness property. Again we consider four cases. In case one and two,

either i = −1 or j = −2, arc sample e is of the form (s, ω) or (ω, t). In such cases,

by definition, we have wi, j(e) = cx(e)/p(ω) − zi, j(e) = c(ω) − zi, j(e). By the fact that

both c(ω) and zi, j(e) are in [0, 1] and that c(ω) ≥ zi, j(e) (feasibility), we conclude

that wi, j(e) ∈ [0, 1]. In case three, we consider all reverse arcs. For any such arc
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sample e, we denote by e′ its reverse arc sample. Then by definition, we have

wi, j(e) = z j,i(e′). With the previous argument we thus conclude wi, j(e) ∈ [0, 1].

Finally, in case four we have i ∈ L and j ∈ R, any arc sample e in such case

has capacity cx(e) = ∞, therefore subtracting any feasible flow and rescaling by

any finite constant won’t change the capacity, namely wi, j(e) = ∞. Combining all

above, we prove the Lemma. �

C.4.2 Approximate max flow in path networks and proof of

Proposition 5

Proof of Lemma 20. By definition, a path subnetwork defined by a single arc

(ωi, ω j) is itself. Hence the max flow through the network equals the capacity

on the arc. �

Proof of Lemma 21. Since both i1 and ik are smaller than i j, we conclude that

both yP1 and yP2 are Fi j-measurable random variables. Hence by definition,

for any ω1 ∈ Hi1 and ωk ∈ Hik such that ω1 ⊂ ωk or ωk ⊂ ω1, and any

ω ∈ Hi j such that ω1, ωk ⊂ ω, the following holds true: min(yP1(ω), yP2(ω)) =

min
(
M∗

P1,u,ω1,ω
,M∗

P2,u,ω,ωk

)
/p(ω), where we recall that M∗ denotes the max value of

157



flow in the associated path subnetwork. Therefore

E
[

min
(
yP1 , yP2

)∣∣∣Fi1∨ik

]
(ω1 ∨ ωk)

=
∑

ω∈Hi j :ωi1∨ik⊂ω

min
(
yP1(ω), yP2(ω)

)
P
(
xi j = ω

∣∣∣xi1∨ik = ω1 ∨ ωk
)

=
∑

ω∈Hi j :ω1,ωk⊂ω

min
(
yP1(ω), yP2(ω)

) p(ω)
min(p(ω1), p(ωk))

.

=
1

min(p(ω1), p(ωk))

∑
ω∈Hi j :ω1,ωk⊂ω

min
(
M∗

P1,u,ω1,ω
,M∗

P2,u,ω,ωk

)
=

1
min(p(ω1), p(ωk))

M∗
P,u,ω1,ωk

= yP(ω1 ∨ ωk),

where the second to last equality follows from the validity of Algorithm 1′ and

Proposition 3. �

Proof of Proposition 5. We first prove that the desired approximation guarantee

can be achieved by Algorithm 1. For part a, the algorithm calls itself with inputs

(P1, ω
i
j) and (P2, ω

i
j), and outputs yi

P1
and yi

P2
, where (ωi

j)i∈[1,N] are N independent

samples in Hi j drawn from S conditional on xi1∨ik = ω. We pick the appropriate

parameters such that for each i, yi
P1

and yi
P2

are ε
16 -approximations of yP1(ω

i
j) and

yP2(ω
i
j) with probability at least 1 − ε/16, respectively. We pick parameter N =

8ε−2 log(4/δ). Now using Lemma 21, we have that∣∣∣∣∣ 1
N

N∑
i=1

min(yi
P1
, yi

P2
) − yP(ω)

∣∣∣∣∣ =

∣∣∣∣∣ 1
N

N∑
i=1

min(yi
P1
, yi

P2
) − E

[
min(yP1 , yP2)

∣∣∣xi1∨ik = ω
]∣∣∣∣∣

≤
1
N

N∑
i=1

∣∣∣∣∣ min(yi
P1
, yi

P2
) −min(yP1(ω

i
j), yP2(ω

i
j))

∣∣∣∣∣ (C.1)

+

∣∣∣∣∣ 1
N

N∑
i=1

min(yP1(ω
i
j), yP2(ω

i
j)) − E

[
min(yP1 , yP2)

∣∣∣xi1∨ik = ω
]∣∣∣∣∣ (C.2)

Let (Ui)i=1,..,N denote N i.i.d. random variables taking binary values: Ui =

1 w.p. ε/8 ; = ε/8 w.p. (1 − ε/8). For each i, by our guarantee on yi
P1
, yi

P2

and a union bound, we have that
∣∣∣ min(yi

P1
, yi

P2
) − min(yP1(ω

i
j), yP2(ω

i
j))

∣∣∣ is with
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probability 1 − ε
8 bounded by ε/8. Combining with the fact that

∣∣∣ min(yi
P1
, yi

P2
) −

min(yP1(ω
i
j), yP2(ω

i
j))

∣∣∣ never exceeds 1 by Lemma 19, we thus conclude that∣∣∣ min(yi
P1
, yi

P2
) − min(yP1(ω

i
j), yP2)(ω

i
j)
∣∣∣ is stochastically dominated by Ui, For k , i,

yk
P1
, yk

P2
and yP1(ω

k
j), yP2(ω

k
j) are independent of the the corresponding random

variables indexed by i. Hence by the basic property of stochastic ordering, we

can bound (C.1) by

P
( 1
N

N∑
i=1

∣∣∣∣∣ min(yi
P1
, yi

P2
) −min(yP1(ω

i
j), yP2(ω

i
j))

∣∣∣∣∣ > ε

2

)
≤ P

( 1
N

N∑
i=1

Ui >
ε

2

)
≤ P

(∣∣∣∣∣ 1
N

N∑
i=1

Ui − E[U]
∣∣∣∣∣ > ε

2
− E[U]

)
≤ P

(∣∣∣∣∣ 1
N

N∑
i=1

Ui − E[U]
∣∣∣∣∣ > ε

2
−
ε

4

)
≤ 2 exp

(
− 2(

ε

4
)2N

)
≤

δ

2
.

where the second to last inequality follows from Hoeffding’s inequality (Lemma

22).

We proceed to bound (C.2) by Lemma 22 as

P
(∣∣∣∣∣ 1

N

N∑
i=1

min(yP1(ω
i
j), yP2(ω

i
j)) − E

[
min(yP1 , yP2)

∣∣∣xi1∨ik = ω
]∣∣∣∣∣ > ε

2

)
≤ 2 exp

(
− 2(

ε

2
)2N

)
≤
δ

2
.

Combining the two bounds with another union bound, we conclude that P
(∣∣∣y −

yP(ω)
∣∣∣ > ε) ≤ δ, confirming that the high probability approximation guarantee is

achieved by Algorithm 1a.

We proceed to prove the performance guarantee is achieved by part b of

the algorithm. For any given (iq, iq+1) ∈ P, algorithm 1b calls Algorithm 1a with

inputs (P1, ω j) and (P2, ω j) and outputs yP1 and yP2 . Each with probability at least

1 − δ/8, yP1 and yP2 are εδ/16-approximations of yP1 and yP2 . Algorithm 1b then

makes a call to itself with inputs (Pi, e), and outputs a z′ that is with probability
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1 − δ/2, an ε/2-approximation of ziq,iq+1

Pi
. We thus have∣∣∣∣∣z′min(yP1 , yP2)

yPi

− ziq,iq+1

P

∣∣∣∣∣ =

∣∣∣∣∣z′min(yP1 , yP2)
yPi

− ziq,iq+1

Pi
(e)

min(yP1 , yP1)
yPi

∣∣∣∣∣
≤

∣∣∣∣∣z′ − ziq,iq+1

Pi
(e)

∣∣∣∣∣ × min(yP1 , yP2)
yPi

+ ziq,iq+1

Pi
(e) ×

∣∣∣∣∣min(yP1 , yP2)
yPi

−
min(yP1 , yP2)

yPi

∣∣∣∣∣
≤

∣∣∣z′ − ziq,iq+1

Pi
(e)

∣∣∣ + ziq,iq+1

Pi
(e)

∣∣∣∣∣min(yP1 , yP2)
yPi

−
min(yP1 , yP2)

yPi

∣∣∣∣∣
≤

∣∣∣z′ − ziq,iq+1

Pi
(e)

∣∣∣ + ziq,iq+1

Pi
(e)

(∣∣∣∣∣min(yP1 , yP2)
yPi

−
min(yP1 , yP2)

yPi

∣∣∣∣∣ +

∣∣∣∣∣min(yP1 , yP2)
yPi

−
min(yP1 , yP2)

yPi

∣∣∣∣∣)
=

∣∣∣z′ − ziq,iq+1

Pi
(e)

∣∣∣ +
ziq,iq+1

Pi
(e)

yPi

(∣∣∣ min(yP1 , yP2) −min(yP1 , yP2)
∣∣∣ +

min(yP1 , yP2)
yPi

∣∣∣yP2 − yP2

∣∣∣)
≤

∣∣∣z′ − ziq,iq+1

Pi
(e)

∣∣∣ + 2
ziq,iq+1

Pi
(e)

yPi

max
(∣∣∣yP2 − yP2

∣∣∣, ∣∣∣yP1 − yP1

∣∣∣)
We have P

(∣∣∣z′ − ziq,iq+1

Pi
(e)

∣∣∣ ≥ ε/2) ≤ δ/2. By a union bound, P
(

max
(∣∣∣yP2 − yP2

∣∣∣, ∣∣∣yP1 −

yP1

∣∣∣) ≥ δε/16
)
≤ δ/4. We observe that E[ziq,iq+1

Pi
|Fi j] = yPi , because the arc samples

of (iq, iq+1) form a valid cut of the Pi-subnetwork, and the flow value yPi must

equal the total flow value through the cut, which is the conditional expectation.

Now with a Markov inequality, we may conclude that

P
(ziq,iq+1

Pi

yPi

≥
4
δ

∣∣∣∣∣Fi j

)
≤
δ

4

E[ziq,iq+1

Pi
|Fi j]

yPi

=
δ

4
.

Combining the above with a union bound we finally conclude that P
(∣∣∣z−ziq,iq+1

P

∣∣∣ >
ε
)
≤ δ, confirming that the high probability approximation guarantee is achieved

by Algorithm 1b.

Next let’s account for the computational and sampling complexity of Algo-

rithm 1.We analyze part a first. Let’s denote by Ra(k, ε, δ) and S a(k, ε, δ) the upper

bounds on the runtime of and number of simulation calls required by Algorithm

1a with any input path of length (k − 1), and with output precision requirement

(ε, δ). In the base case i.e. k = 2, one call is made toW, with precision require-

ment (ε, δ). By assumption, we need a runtime of ν1(ε, δ) and number of samples

from S ν2(ε, δ). In case k ≥ 3, Algorithm 1a finds the minimum of {i2, ..., ik−1} in a
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runtime k − 2. It then calls simulator S N = 8ε−2 log(4/δ) times for independent

ωi
j, in a runtime CN. Then N calls are made to Algorithm 1a, each with inputs

(P1, ω
i
j), i = 1, ...,N and (P2, ω

i
j), i = 1, ...,N, and each with precision requirement

(ε/16, ε/16), each taking runtime at most Ra(k1, ε/16, ε/16) and Ra(k2, ε/16, ε/16)

where ki is the length of Pi, satisfying k1 + k2 = k + 1. Finally N minimums are

computed and the average of N numbers are computed, at a computational cost

of 2N. Combining the above, the total runtime is at most

k + CN + N
(
Ra

(
k1,

ε

16
,
ε

16
)

+ Ra
(
k2,

ε

16
,
ε

16
))

+ 2N.

We proceed to account for the sampling complexity. Algorithm 1a makes N

direct calls to simulator S. It then makes N calls to itself with inputs P1, ω
i
j and

P2, ω
i
j, each with precision requirement (ε/16, ε/16). Hence each needs number

of samples at most S a(k1, ε/16, ε/16) and S a(k2, ε/16, ε/16). Combining the above,

the total sampling complexity is at most

N + N
(
S a

(
k1,

ε

16
,
ε

16
)

+ S a
(
k2,

ε

16
,
ε

16
))
.

We set functions

Ra(k, ε, δ) ∆
=

(
1 + log(

1
δ

)
)
×

(1
ε

)3(k−2)
× 100(k−2)2

×
(
C + ν1

(
ε16−(k−2), δ ∧ ε16−(k−2))),

and

S a(k, ε, δ) ∆
=

(
1 + log(

1
δ

)
)
×

(1
ε

)3(k−2)
× 100(k−2)2

× ν2
(
ε16−(k−2), δ ∧ ε16−(k−2)).

They satisfies that Ra(2, ε, δ) ≥ ν1(ε, δ) and S a(2, ε, δ) ≥ ν2(ε, δ). By Lemma 37, they

also satisfy the recursive inequalities that

Ra(k, ε, δ) ≥ k + CN + N
(
Ra

(
k1,

ε

16
,
ε

16
)

+ Ra
(
k2,

ε

16
,
ε

16
))

+ 2N

and

S a(k, ε, δ) ≥ N + N
(
S a

(
k1,

ε

16
,
ε

16
)

+ S a
(
k2,

ε

16
,
ε

16
))
.
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Hence Ra and S a are valid upper bounds on the runtime and sample complexity

of Algorithm 1a.

Finally we analyze the runtime and sample complexity of Algorithm 1b.

Let’s denote by Rb(k, ε, δ), S b(k, ε, δ) the upper bound on runtime of and num-

ber of simulation calls required by Algorithm 1b with any input path of length

(k− 1),any edge on the path, and with output precision requirement (ε, δ). In the

base case k = 2, one call is made toW, with precision requirement (ε, δ). By as-

sumption, we need a runtime of ν1(ε, δ) and number of samples from S ν2(ε, δ).

In case k ≥ 3, Algorithm 1b first computes the minimum of a (k − 2)-vector at a

computational cost k − 2. It then makes two calls to Algorithm 1a with input P1

and P2, each with a precision requirement (εδ/16, δ/8), at computational times

at most Ra
(
k1, εδ/16, δ/8

)
and Ra

(
k2, εδ/16, δ/8

)
, respectively. Next, it makes one

call to itself on Pi with a precision requirement (ε/2, δ/2) at a computational cost

Rb
(
ki, ε/2, δ/2

)
. Simple algebraic operations are performed at the end of the algo-

rithm, at a computational cost bounded by 3. To sum up, the total runtime is at

most

k + Ra
(
k1, εδ/16, δ/8

)
+ Ra

(
k2, εδ/16, δ/8

)
+ Rb

(
ki, ε/2, δ/2

)
+ 3.

We proceed to account for the sampling complexity. Algorithm 1b calls simu-

lator S during its two calls to Algorithm 1a, at a sampling complexity at most

S a
(
k1, εδ/16, δ/8

)
and S a

(
k2, εδ/16, δ/8

)
, respectively. It then calls itself, which re-

quires a sampling complexity at most S b
(
ki, ε/2, δ/2

)
. Combining all the above,

the total number of samples required is at most

S a
(
k1, εδ/16, δ/8

)
+ S a

(
k2, εδ/16, δ/8

)
+ S b

(
ki, ε/2, δ/2

)
.

We set functions as

Rb(k, ε, δ) ∆
=

(
1 + log

(1
δ

))
×

( 1
εδ

)3(k−1)
× 100(k−1)2

×

(
C + ν1

( εδ

42(k−2) ,
εδ

42(k−2)

))
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and

S b(k, ε, δ) ∆
=

(
1 + log

(1
δ

))
×

( 1
εδ

)3(k−1)
× 100(k−1)2

× ν2
( εδ

42(k−2) ,
εδ

42(k−2)

)
They satisfies that Rb(2, ε, δ) ≥ ν1(ε, δ) and S b(2, ε, δ) ≥ ν2(ε, δ). By Lemma 38, they

also satisfy the recursive inequalities

Rb
(
k, ε, δ

)
≥ k + Ra

(
k1, εδ/16, δ/8

)
+ Ra

(
k1, εδ/16, δ/8

)
+ Rb

(
ki, ε/2, δ/2

)
+ 3

and

S b
(
k, ε, δ

)
≥ S a

(
k1, εδ/16, δ/8

)
+ S a

(
k2, εδ/16, δ/8

)
+ S b

(
ki, ε/2, δ/2

)
.

Hence Rb and S b are valid upper bounds on the runtime and sample complexity

of Algorithm 1b.

Combining all above, we complete our proof. �

C.4.3 Approximate blocking flow and proof of Proposition 6

We start by providing several results related to Algorithm 2′ before moving on

to deal with Algorithm 2. We first state and prove a corollary of Lemma 19, that

when running Algorithm 2′, all intermediate flows and (finite) capacities are

bounded in [0, 1].

Corollary 5. Suppose Algorithm 2′ starts in the residual network of a feasible flow z0,

then after k rounds of iterations for any k ≥ 1, both the current flow and the current

(finite) capacities on any arc are bounded in [0, 1]

Proof. By Lemma 19, at the beginning of Algorithm 2′, the finite residual capaci-

ties are all bounded in [0, 1]. In later iterations, the finite capacities only decrease
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and remains non-negative, hence in [0, 1]. Therefore, the feasibility constraint re-

quires that all flows found are in [0, 1] on arcs of finite capacities. Now it remains

to show that on arcs with infinite capacities, the flow never exceeds 1 during the

process of Algorithm 2′. We argue by contradiction. Suppose after some itera-

tion l, the current flow on an arc e of infinite capacity is more than 1. By Lemma

33, by time l the algorithm finds a flow z′l that is feasible in residual network

Nz0 . Therefore the net flow of z0 + z′l is a feasible flow in {Gx, cx, s, t}. However,

Lemma 33 also asserts that z′l is regular. The fact that z′l uses the arc e with infi-

nite capacity implies that the reverse arc is never ever used during the process

of Algorithm 2′. Hence the net flow of z0 + z′l on arc e is at least z′l(e), which ex-

ceeds 1 by assumption. But by Lemma 19, a feasible flow in network {Gx, cx, s, t}

never exceeds 1 on any arc. The contradiction thus proves our result. �

We now extend certain concepts in networks introduced earlier to their ε-

approximate versions. To accommodate the probabilistic interpretation of flows

and capacities that we adopt, we only make these extensions in networks de-

fined on residual graph Gx. These concepts can actually be defined for more

general networks. Given a set of capacities w on the residual graph Gx, we say

an arc sample e is ε-saturated by a flow z if w(e) − z(e) ≤ ε. By treating cer-

tain less than ε quantities as 0 in a similar manner, we can effectively extend

all other terminologies introduced before to their ε-approximate versions. We

omit the details. With these concepts, we can generalize Dinic’s algorithm to

its ε-approximate version, which can output an approximation of the max flow.

Now, we state the extension of Lemma 14. It will be of use in the proof of

Prosposition 6.

Corollary 6. Suppose a flow z is ε-blocking in the ε-level subnetwork of the residual

network of flow z0. Then the ε-level of sink dε(t) is increased by at least one in the
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residual network Nz+z0 associated with flow NET (z + z0).

Proof of Corollary 6. The proof is identical to that of Lemma 14. �

We next state and prove a lemma, that the flow found by Algorithm 2′,

when truncated at iteration K with K large enough, can augment any (η, l)-

disconnecting flow to become an (η, l + 2)-disconnecting flow. For any network

N , we introduce its η-thresholded subnetwork, which has capacity 0 on all arcs

with capacity less than η in N .

Lemma 35. Suppose Algorithm 2′ starts in the η-thresholded residual network of an

(η, l)-disconnecting flow z0, performs its iteration for K ∆
= η−1l∆l rounds and outputs a

flow zK . Then NET (z0 + zK) is an (η, l + 2)-disconnecting flow.

Proof of Lemma 35. If all s-t paths with length ≤ (l + 2) are η-disconnected in Nz0 ,

the residual network of z0,Algorithm 2′ will output 0 flow, and flow z0 is already

(η, l + 2)-disconnecting and the statement follows. Otherwise, there exists an s-t

path of length (l + 2) with capacities greater than η on all arcs. In such cases, we

prove that all length (l + 2) s-t paths become η-disconnected after running for

enough iterations. We denote the capacities in the j-th iteration of Algorithm

2′ by w j. For any regular −1 → −2 path P ∈ G, we denote the P-subnetwork

maximum flow that Algorithm 1′ outputs in the j-th iteration of Algorithm 2′

by z j
P. We consider any length (l + 2) s-t path Q = (s, ω1, ..., ωl+1, t) ∈ Nz0 whose

capacities are all greater than η. To simplify notation, suppose φ(Q) = P.

We prove that mine∈QwK(e) ≤ η. By definition of maximum flow, in itera-

tion j ≥ 1, flow z j
P saturates at least one arc on path Q, i.e. there exists an

arc e ∈ Q such that w j(e) = z j
P(e) < ∞. By the updating rule of Algorithm

2′, w j+1(e) ≥ w j(e) − 1
∆l z

j
P(e) = (1 − 1

∆l )w j(e). Therefore, after each iteration of
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Algorithm 2′, there exists an arc whose (finite) capacity is decreased by a fac-

tor of (1 − 1
∆l ). Since there are (l + 1)/2 different arcs with finite capacities on

Q, we conclude by pigeonhole principle that after K iterations, there must ex-

ist one arc whose capacity is decreased by a factor of (1 − 1
∆l )K/l. By Corollary

5, all finite capacities are bounded in [0, 1] during the process of Algorithm 2′.

Therefore, after K iterations, there must exist one arc whose capacity is at most

(1 − 1
∆l )K/l = (1 − 1

∆l )
∆l
η ≤ e−

1
η ≤ η, confirming the assertion.

We next prove the lemma. Since we have shown that flow zK η-saturates all

length (l + 2) s-t path Q in the η-thresholded residual network of z0, it must be

feasible and η-saturates all s-t path of length (l + 2) in the residual network of z0.

By definition, zK is an η-blocking flow in the η-level subnetwork of the residual

network of z0. Combining the above with Corollary 6, we conclude that in the

residual network of z0 + zK , the length of the shortest η-connected s-t path is in-

creased by at least one. Therefore z0 + zK is (η, l + 2)-disconnecting, proving the

lemma. �

With Corollary 5 and Lemma 35, we proceed to give the proof of Proposition

6.

Proof of Proposition 6. We first show that Algorithm 2 can indeed output the high

probability approximation of an (η, l + 2)-disconnecting flow. We set iteration

count k ← η−1∆l. By Lemma 35, were all the outputs from Algorithm 1 andW

accurate, the k-th iteration of Algorithm 2 can return a flow zk such that z0 + zk

is (η, l + 2)-disconnecting. We denote the “ideal” outputs as of Lemma 35 after

the i-th iteration by zi, i = 1, ..., k and the real outputs by zi, i = 1, ..., k. It suffices

to show that for any (i, j) ∈ E, |zi, j
k − zi, j

k | < ε with probability at least 1 − δ. For

given (i, j) ∈ E, letMi, j
l+2 denote the set of length (l+2), regular −1→ −2 path that
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contains edge (i, j). Algorithm 2 first makes one call to itself with input (k−1, e, l),

returning z′, which satisfies |z′−zi, j
k−1| < ε/2 with probability at least 1−δ/2. It then

calls Algorithm 1b with input (P, e) and capacity evaluation subroutine Wk−1,

for all P ∈ Mi, j
l+2, with outputs zP required to satisfy |z(i, j)

P − zi, j
P,k−1| < ε/2, each with

probability at least (1 − δ
2∆l ), where zP,k−1 is the maximum flow in P-subnetwork

with capacities wk−1. Then it outputs zi, j
k = z′ + ∆−l SUM(zP) as the approximation

of zi, j
k = zi, j

k−1 + ∆−l SUM
(
zi, j

P,k−1

)
. We have that∣∣∣zi, j

k − zi, j
k

∣∣∣ =
∣∣∣z′ + ∆−l SUM(zP) − zi, j

k−1 − ∆−l SUM
(
zi, j

P,k−1

)∣∣∣
≤

∣∣∣z′ − zi, j
k−1

∣∣∣ +
1
∆l

∑
P∈Mi, j

l+2

∣∣∣zP − zi, j
P,k−1

∣∣∣
With a union bound on P, we get that with probability at least 1 − δ/2,

|zP − zi, j
P,k−1| ≤ ε/2 for all P ∈ Mi, j

l+2. Since G is bounded with max degree ∆,

we have that |Mi, j
l+2| ≤ ∆l. Hence we have with probability at least 1 − δ/2,

1
∆l

∑
P∈Mi, j

l+2

∣∣∣zP − zi, j
P,k−1

∣∣∣ ≤ ε/2. With another union bound, we get the desired re-

sult.

We next account for the computational and sampling complexity of Algo-

rithm 2. Let’s denote by R2(η, k, l, ε, δ) and S 2(η, k, l, ε, δ) the upper bounds of run-

time and sampling complexity for Algorithm 2, with any input parameter η, k, l

and output precision requirement ε, δ. In the base case k = 0, the algorithm out-

put 0 flow at 0 computational cost and sampling cost. In case k with k > 0, one

call is made to Algorithm 2 with parameters η, k−1, l, and with precision require-

ment (ε/2, δ/2), at a computational cost R2(η, k−1, l, ε/2, δ/2). Then at most ∆l calls

are made to Algorithm 1b on length l + 2 paths with capacity evaluation subrou-

tine Wk−1, each with output precision requirement (ε/2, δ
2∆l ). For any (i, j) ∈ E,

capacity evaluation subroutineWk−1 can output an (ε, δ)-approximation of the

capacities wi, j
k−1 with one call toWwith precision requirement (ε/2, δ/2) at a com-

putational cost µ1(ε/2, δ/2), and one another call to Algorithm 2 with parameters
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(η, k − 1, l) and with precision requirement (ε/2, δ/2), at a computational cost

R2(η, k − 1, l, ε/2, δ/2). The total computational cost for Wk−1 to return an (ε, δ)-

approximation of wi, j
k−1 is thus bounded by µ1(ε/2, δ/2) + R2(η, k− 1, l, ε/2, δ/2). By

Proposition 5, we can bound the runtime required for Algorithm 2’s each call to

Algorithm 1b by

(1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
C + µ1

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ R2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
Finally, average of ∆l numbers is computed at a computational cost of ∆l. Com-

bining the above, we conclude that the total runtime cost is at most

R2(η, k − 1, l, ε/2, δ/2) + ∆l

+ ∆l × (1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
C + µ1

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ R2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
.

We proceed to account for the sampling cost. The one call to Algorithm 2 on

parameters (η, k − 1, l) and precision level (ε/2, δ/2) requires number of samples

from simulator S at most S 2(η, k − 1, l, ε/2, δ/2). Each of the at most ∆l calls to

Algorithm 1b on length l + 2 paths with capacity evaluation subroutine Wk−1,

with precision level (ε/2, δ
2∆l ) require number of samples from simulator S at

most

(1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
µ2

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ S 2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
The total sampling cost is at most

S 2(η, k − 1, l, ε/2, δ/2)

+ ∆l × (1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
µ2

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ S 2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
.
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We set functions R2 and S 2 as

R2(η, k, l, ε, δ) ∆
=

( (100∆)l

εδ

)4k

×

(
C + µ1

((
εδ(100∆)−l)4k

,
(
εδ(100∆)−l)4k

))
and

S 2(η, k, l, ε, δ) ∆
=

( (100∆)l

εδ

)4k

× µ2

((
εδ(100∆)−l)4k

,
(
εδ(100∆)−l)4k

)
By Lemma 39, they satisfy the recursions

R2(η, k, l, ε, δ) ≥ R2(η, k − 1, l, ε/2, δ/2) + ∆l

+ ∆l × (1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
C + µ1

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ R2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
.

and

S 2(η, k, l, ε, δ) ≥ R2(η, k − 1, l, ε/2, δ/2)

+ ∆l × (1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
µ2

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ S 2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
.

Finally we plug in the choice of k as specified by Algorithm 2 : k = η−1∆l and

complete the proof. �

C.4.4 L-disconnecting flows and proof of Proposition 7

Proof of Proposition 7. We first show that Algorithm 3 achieves the desired ap-

proximation guarantee. Let’s argue by induction. In the base case L = 1, both

the true flow and the output of Algorithm 3 are 0 flow, therefore the algorithm

is exact. Now suppose for input L − 2, Algorithm 3 can achieve the desired

approximation guarantee. Suppose with η, L − 2 as input, Algorithm 3 out-

puts a high probability approximation of flow zL−2 on each edge, where zL−2 is
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(η, L − 2)-disconnecting in {Gx, cx, s, t}. We consider case L. We first show that ca-

pacity evaluation subroutineWL−2 can achieve the desired guarantee. Indeed,

the evaluation of cx is exact, and the evaluation of flow zL−2 is guaranteed by in-

ductive hypothesis, hence for both reverse and non-reverse arcs,WL−2 can out-

put high probability approximation of the residual capacities of flow zL−2. Let’s

analyze Algorithm 3. Algorithm 3 first makes one call to itself with parameters

(L−2, η), and outputs a random variable z that satisfies P
(
|z−zi, j

L−2| > ε/3
)
≤ 1−δ/3.

It then makes two calls to Algorithm 2 with parameters (η−1∆L−2, L − 2) and ca-

pacity evaluation subroutineWL−2. By Proposition 6, the outputs z1 and z2 can

be made to satisfy |z1−zi, j| < ε/3 and |z2−z j,i| < ε/3, both with probability at least

1 − δ/3, with flow z in the residual network of zL−2 satisfying that NET (z + zL−2)

is (η, L)-disconnecting. We denote zL
∆
= NET (z + zL−2). Then by a union bound,

we conclude that

P
(∣∣∣z0 + z1 − z2 − zL

∣∣∣ > ε) < δ.
We next account for the runtime and sampling complexity of Algorithm

3. Let’s denote by R3(η, L, ε, δ) and S 3(η, L, ε, δ) the upper bounds on runtime

and number of calls to simulator made by Algorithm 3 to output an (ε, δ)-

approximation of the (η, L)-disconnecting flow zL. We start by analyzing sub-

routine Wl. It makes one call to simulator S and one call to Algorithm 3 with

input parameters (l, η). To output an (ε, δ)-approximation of the residual ca-

pacity of flow zl, it takes a computational cost C + R3(η, l, ε, δ), and with num-

ber of calls to simulator S at most 1 + S 3(η, l, ε, δ). With the analysis of W l, we

now proceed to analyze Algorithm 3. It first makes one call to itself with pa-

rameters (L − 2, η) and precision requirement (ε/3, δ/3), at a computational cost

R3(η, L − 2, ε/3, δ/3). It then makes two calls to Algorithm 2, with input param-

eters (η−1∆L−2, L − 2) and capacity evaluation subroutine WL−2, both with pre-
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cision requirement (ε/3, δ/3). By Proposition 6, each call incur a computational

cost of R2(η, η−1∆L−2, L − 2, ε/3, δ/3). Combining the above, the total runtime can

be bounded by

R3
(
η, L − 2,

ε

3
,
δ

3
)

+ 2 ×
(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
2C + R3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 )
.

Similarly, the total number of calls to simulator can be bounded by

S 3
(
η, L − 2,

ε

3
,
δ

3
)

+ 2 ×
(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
1 + S 3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 )
.

We set R3 and S 3 as follows.

R3
(
η, L, ε, δ

) ∆
= C

( (100∆)L

εδ

)4η
−1L∆L

and

S 3
(
η, L, ε, δ

) ∆
=

( (100∆)L

εδ

)4η
−1L∆L

Then by Lemma 40, we have that

R3
(
η, L, ε, δ

)
≥ R3

(
η, L − 2,

ε

3
,
δ

3
)

+ 2 ×
(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
2C + R3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 ))
and

S 3
(
η, L, ε, δ

)
≥ S 3

(
η, L − 2,

ε

3
,
δ

3
)

+ 2 ×
(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
1 + S 3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 ))
.

Hence R3 and S 3 are valid upper bounds on the computational and sampling

complexity of Algorithm 3.

Combining all the above, we complete our proof. �
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C.5 Approximate max flow and proof of Proposition 8

We first prove that an (η, l)-disconnecting flow in network {Gx, cx, s, t} is suffi-

ciently close to its optimal max flow. We proceed by steps. First, we state a

Lemma showing that we can manipulate an (η, l)-disconnecting flow to get an

l-disconnecting flow in a network sufficiently close to {Gx, cx, s, t}.

Lemma 36. Suppose a flow z of value y is (η, l)-disconnecting in {Gx, cx, s, t}. Then

there exists a feasible flow z′ of value y′ and a set of capacities c′, such that z′ is l-

disconnecting in {Gx, c′, s, t}, and that y′ > y − ∆Tη/2. Furthermore, the max flow in

two networks are different by at most (∆ + 1)Tη.

Proof. By definition, a flow z is (η, l)-disconnecting if for any length ≤ l, −1→ −2

path P ∈ G, min(i, j)∈P wi, j
z ≤ η w.p.1 where wz is the associated residual capacity.

We define a new flow z′ as follows. For any (i, j) such that i ∈ L and j ∈ R, we

have z′i, j ∆
= max(z − η, 0) w.p.1. On other edges, namely those containing −1 or

−2, the flow values are uniquely determined by conservation law. Hence z′ is a

well defined flow. We first show that flows z and z′ are close to each other. More

precisely, their flow values y and y′ satisfy y′ > y − ∆Tη/2.

Indeed, in network {Gx, cx, s, t}, arcs that point from Lx to Rx form a valid

cut that separates s from t. Hence by network flow theory, the flow value in

{Gx, cx, s, t} equals the sum of flows on arcs belonging to the cut. Under our

probabilistic representation, the flow on all arcs that are samples of a fixed edge

(i, j) ∈ E is given by E[zi, j−z′i, j],which is at most η. Therefore, the total difference

between the two flows on all middle arcs that point from Lx to Rx is bounded

by ∑
(i, j)∈E:i∈L, j∈R

E[zi, j − z′i, j] ≤
∑

(i, j)∈E:i∈L, j∈R

η ≤
∆T
2
η
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where the last inequality follows from the fact that one of L and Rmust contain

less than T/2 vertices, each of which is on at most ∆ different edges from L to R.

Now let’s define a new set of capacity c′, so that z′ is l-disconnecting in

{Gx, c′, s, t}. Let w′ be the associated set of random variables under the proba-

bilistic representation, and w be the set of random variables of the original ca-

pacity cx. For all edges (i, j) ∈ G with either i = −1, j ∈ L or j = −2, i ∈ R, we

define w′i, j ∆
= max(wi, j − (∆ + 1)η, z′i, j) w.p.1. and for all other edges (i, j) ∈ E with

i ∈ L and j ∈ R, the capacities remain infinity w′i, j ∆
= ∞. Flow z′ is feasible in the

network with capacities w′, because by definition of w′, z′i, j ≤ w′i, j w.p.1 for all

edges from −1 or to −2.

We prove that flow z′ is l-disconnecting in the network with capacities w′.

Indeed, it suffices to show that on any length ≤ l, −1 → −2 regular path P ∈ G,

min(i, j)∈P w′i, jz′ = 0 w.p.1. By assumption, min(i, j)∈P wi, j
z ≤ η w.p.1. There are two

cases. In case one, the path-wise minimum is achieved on a reverse arc e of

edge (i, j) with i ∈ R and j ∈ L. Suppose e′ is its pairing arc. Then we have

that wi, j
z (e) = z j,i(e′) ≤ η. Combining with the definition of z′, we conclude that

w′i, jz′ (e) = z′ j,i(e′) = 0. In case two, the path-wise minimum is achieved on an arc

e of the form (s, ωi) or (ω j, t). We then have that wi, j(e) − zi, j(e) ≤ η. We prove that

for any such arc e, the difference between z′i, j(e) and zi, j(e) is at most ∆η. Without

loss of generality, let’s consider e = (s, ω) with ω ∈ Hi. By the structure of Gx, the

flow entering node ω can only uses arc samples of (i, j) ∈ E for j ∈ R to leave

ω, with at most ∆ such edges in E. By our previous reasoning, the difference of

flows of z and z′ on arc samples of any one fixed edge (i, j) is at most η. Com-

bining the above observation, we conclude that the difference of flows between

z and z′ on all arcs linking ω to R is at most ∆η. Thus by flow conservation law,

we conclude that the difference of flow of z and z′ on arc (s, ω) is at most ∆η.
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However, w′ is reduced by (∆ + 1)η (if possible). Hence if an arc is ε-saturated

by flow z with capacities w, it must be saturated by flow z′ with capacity w′.

Since z is (η, l)-disconnecting with capacities w, we finally conclude that z′ is l-

disconnecting with capacities w′.

Finally, we prove that max flow in the network with capacities w is suffi-

ciently close to that in the network with capacities w′. Indeed, by max-flow

min-cut theorem, the difference between the max-flow in the two networks

equals the difference between the min-cut in the two networks, which is further

bounded by the total difference of edge capacities in the two networks. We have

argued that, the total difference of the capacities on all arcs that are samples of

some fixed edge (i, j) ( of the form (−1, j) or (i,−2)) is E[wi, j − w′i, j] ≤ (∆ + 1)η.

There are T such edges, and any arc in the network with finite capacity must be

a sample of one of these edges. We then conclude that the difference between

the max flow values in the two networks is at most T (∆ + 1)η. �

Combining Lemma 36 with Proposition 2 and Lemma 15, we directly derive

a bound on the difference between an (η, l)-disconnecting flow and the true max

flow, whose proof we omit.

Corollary 7. Suppose flow z with value M is (η, l)-disconnecting in network

{Gx, cx, s, t}. Then

M ≥
( l − 2
l + 4

)(
OPT′ − (∆ + 1)Tη

)
−

1
2

T∆η.

With Corollary 7, we set to prove Proposition 8.

Proof of Proposition 8. We first show that Algorithm 4 can achieve the promised

guarantee, outputting a T ε-approximation of OPT′ with high probability. We set
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L = 24
ε
. and N = 128ε−2δ−2 log( 8

εδ
). For each i ∈ L, Algorithm 4 makes N indepen-

dent calls to simulator S, followed with N calls to Algorithm 3, outputting N

numbers wi, j. We require that with probability at least 1− εδ
32 , |wi − zL| <

εδ
32 , where

zL is an (ε/12, L)-disconnecting flow. The algorithm then takes average of the N

numbers and derive yi = AVERAGE(wi, j). It outputs y as the sum of yi. The total

value of flow zL on arc samples of (−1, i) is yi = E[z−1,i
L ], and the total value of zL

is y =
∑

i∈L yi. We reason that∣∣∣yi − yi

∣∣∣ =

∣∣∣∣∣ 1
N

N∑
j=1

wi, j − E[z−1,i
L ]

∣∣∣∣∣
≤

1
N

N∑
j=1

∣∣∣wi, j − z−1,i
L (s, ω j

i )
∣∣∣ +

∣∣∣∣∣ 1
N

N∑
j=1

z−1,i
L (s, ω j

i ) − E[z−1,i
L ]

∣∣∣∣∣
Let (U j, j = 1, ...,N) be N i.i.d. random variables with the distribution: U =

εδ
32 w.p 1 − εδ

32 ; and U = 1 w.p. εδ
32 . Then

(∣∣∣wi, j − z−1,i
L (s, ω j

i )
∣∣∣, j = 1, ...,N

)
are N

independent random variables that are stochastically dominated by U. Hence

we have that

P
( 1
N

N∑
j=1

∣∣∣wi, j − z−1,i
L (s, ω j

i )
∣∣∣ > εδ

8

)
≤ P

( 1
N

N∑
j=1

U j >
εδ

8

)
= P

( 1
N

N∑
j=1

U j − E[U] >
εδ

8
− E[U]

)
≤ P

(∣∣∣∣∣ 1
N

N∑
j=1

U j − E[U]
∣∣∣∣∣ > εδ

16

)
≤ 2 exp

(
− 2

( εδ
16

)2N
)
≤
εδ

8
(by Lemma 22 Hoeffding’s inequality)

By Hoeffding’s Lemma, we also have

P
(∣∣∣∣∣ 1

N

N∑
j=1

z−1,i
L (s, ω j

i ) − E[z−1,i
L ]

∣∣∣∣∣ > εδ

8

)
≤ 2 exp

(
− 2

(εδ
8

)2N
)
≤
εδ

8

Combining the above with a union bound, we conclude that P(|yi − yi| >
εδ
4 ) < εδ

4 .

Using the fact that yi and yi ∈ [0, 1] hence |yi − yi| ∈ [0, 1], we conclude that

E[|yi − yi|] ≤ P(|yi − yi| >
εδ

4
) +

(
1 − P(|yi − yi| >

εδ

4
)
)
×
εδ

4
≤
εδ

4
+
εδ

4
=
εδ

2

175



and that

E[|y − y|] = E
[∣∣∣∣∣∑

i∈L

(yi − yi)
∣∣∣∣∣] ≤∑

i∈L

E[|yi − yi|] ≤
T εδ

2
.

We apply a Markov inequality and get

P
(
|y − y| >

1
2

T ε
)
≤

2E[|y − y|]
T ε

≤ δ.

On the other hand, since zL is an (ε/12, L)-disconnecting flow, by Lemma 36, we

have that

y ≥
(L − 2
L + 4

)
(OPT′ − (∆ + 1)T

ε

12∆
) −

1
2

T∆
ε

12∆
≥ OPT′ − T (

6
L

+
ε

4
) = OPT′ −

1
2

T ε.

Combining the above, we conclude that P(|OPT′ − y| > T ε) ≤ δ, hence the output

of Algorithm 4 achieves the approximation guarantee.

We next account for the computational and sampling complexity. For each

i ∈ L, Algorithm 4 makes N calls to simulator S , each at a computational cost

C, followed by N calls to Algorithm 3, with truncation level L = 24
ε

and error

tolerance η = ε
12 , and with precision requirement (εδ/32, εδ/32). By Proposition

7, each of these calls incur computational cost at most

C

(
1024 ×

(100∆)24ε−1

ε2δ2

)4288ε−2∆24ε−1

.

Then the average of N numbers is computed at a computational cost of N. Fi-

nally the sum of at most T numbers is computed, at a computational cost of T.

Combining the above, the total computational cost is at most

CT N + T NC
(
1024 ×

(100∆)24ε−1

ε2δ2

)4288ε−2∆24ε−1

+ NT + T

≤ CT
( (100∆)30ε−1

εδ

)4300ε−2∆30ε−1

Similarly, we can account for the total number of simulator calls made by Algo-

rithm 4 to achieve the required precision, which is at most

T
( (100∆)30ε−1

εδ

)4300ε−2∆30ε−1

.
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Combining the above completes the proof. �

C.6 Main results and proof of Theorem 4.3.5

Proof of Theorem 4.3.5. By Lemma 13, we only need to approximate OPT′ and

E[
∑T

i=1 c(x[1,i])] in order to derive an approximation of OPT. By Proposition 8,

OPT′ can be approximated by Algorithm 4. On the other hand, E[
∑T

i=1 c(x[1,i])]

can be directly estimated by vanilla monte carlo methods via simulator S. The

approximation guarantee and computational complexity follows from Proposi-

tion 8 and Lemma 22, and we omit here. �

C.7 Technical tools and proofs

Theorem (Hoeffding’s inequality). Suppose that for some n ≥ 1, {Xi, i ∈ [1, n]} are

i.i.d., and P(X1 ∈ [0, 1]) = 1. Then P
(∣∣∣∣∣n−1 ∑n

i=1 Xi − E[X1]
∣∣∣∣∣ ≥ η) ≤ 2 exp

(
− 2η2n

)
.

Lemma 37. The recursion holds true for k ≥ 3, ε, δ ∈ (0, 1)

Ra(k, ε, δ) ≥ k + CN + N
(
Ra

(
k1,

ε

16
,
ε

16
)

+ Ra
(
k2,

ε

16
,
ε

16
))

+ 2N

and

S a(k, ε, δ) ≥ N + N
(
S a

(
k1,

ε

16
,
ε

16
)

+ S a
(
k2,

ε

16
,
ε

16
))
.

where N = 8ε−2 log(4/δ) and k1 + k2 = k + 1.

Proof. We recall that functions Ra and S a are given by

Ra(k, ε, δ) =
(
1 + log(

1
δ

)
)
×

(1
ε

)3(k−2)
× 100(k−2)2

×
(
C + ν1

(
ε16−(k−2), δ ∧ ε16−(k−2))),
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and

S a(k, ε, δ) =
(
1 + log(

1
δ

)
)
×

(1
ε

)3(k−2)
× 100(k−2)2

× ν2
(
ε16−(k−2), δ ∧ ε16−(k−2)).

We reason as follows.

k + CN + N
(
Ra

(
k1,

ε

16
,
ε

16
)

+ Ra
(
k2,

ε

16
,
ε

16
))

+ 2N

≤ 2 × N × Ra
(
k − 1,

ε

16
,
ε

16
)

+ k + C × N

= 2 ×
8
ε2 × log(

4
δ

) ×
(
1 + log

(16
ε

))
×

(16
ε

)3k−9
× 100(k−3)2

×

(
C + ν1

(
ε16−(k−2),

ε

16
∧ ε16−(k−2)))

+k + C ×
8
ε2 × log(

4
δ

)

≤
(
1 + log(

1
δ

)
)
×

(1
ε

)3k−7
× log(

1
ε

) × 64 × 163k−9 × 100(k−3)2
×

(
C + ν1

(
ε16−(k−2), ε16−(k−2)))

+k + C ×
8
ε2 ×

(
1 + log(

1
δ

)
)

≤
(
1 + log(

1
δ

)
)
×

(1
ε

)3k−6
×

(
642k−5 + 1

)
× 100(k−3)2

×
(
C + ν1

(
ε16−(k−2), ε16−(k−2)))

≤
(
1 + log(

1
δ

)
)
×

(1
ε

)3(k−2)
× 100(k−2)2

×
(
C + ν1

(
ε16−(k−2), δ ∧ ε16−(k−2)))

= Ra(k, ε, δ)

The proof for S a is nearly identical and we omit here. �

Lemma 38. The recursion holds true for k ≥ 3, ε, δ ∈ (0, 1)

Rb
(
k, ε, δ

)
≥ k + Ra

(
k1, εδ/16, δ/8

)
+ Ra

(
k2, εδ/16, δ/8

)
+ Rb

(
ki, ε/2, δ/2

)
+ 3

and

S b
(
k, ε, δ

)
≥ S a

(
k1, εδ/16, δ/8

)
+ S a

(
k2, εδ/16, δ/8

)
+ S b

(
ki, ε/2, δ/2

)
.

Proof. We recall that functions Ra and S a are given by

Rb(k, ε, δ) =
(
1 + log

(1
δ

))
×

( 1
εδ

)3(k−1)
× 100(k−1)2

×

(
C + ν1

( εδ

42(k−2) ,
εδ

42(k−2)

))
,

and

S b(k, ε, δ) =
(
1 + log

(1
δ

))
×

( 1
εδ

)3(k−1)
× 100(k−1)2

× ν2
( εδ

42(k−2) ,
εδ

42(k−2)

)
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We reason as follows.

k + Ra
(
k1,

εδ

16
,
δ

8
)

+ Ra
(
k2,

εδ

16
,
δ

8
)

+ Rb
(
ki,
ε

2
,
δ

2
)

+ 3

≤ k + 3 + 2Ra
(
k − 1,

εδ

16
,
δ

8
)

+ Rb
(
k − 1,

ε

2
,
δ

2
)

≤ 2(k + 3) + 2Ra
(
k − 1,

εδ

16
,
δ

8
)

+ 2Ra
(
k − 2,

εδ

4 × 16
,

δ

2 × 8
)

+ Rb
(
k − 2,

ε

4
,
δ

4
)

≤ (k − 2)(k + 3) + 2
k−2∑
i=1

Ra
(
k − i,

εδ

16 × 4i−1 ,
δ

8 × 2i−1

)
+ Rb

(
2,

ε

2k−2 ,
δ

2k−2

)
≤ (k − 2)(k + 3) + 2

k−2∑
i=1

Ra
(
k − i,

εδ

16 × 4i−1 ,
δ

8 × 2i−1

)
+ ν1

( ε

2k−2 ,
δ

2k−2

)
= (k − 2)(k + 3) + ν1

( ε

2k−2 ,
δ

2k−2

)
+ 2

k−2∑
i=1

(
1 + log(

2i+2

δ
)
)
×

(4i+1

εδ

)3(k−i−2)
× 100(k−i−2)2

×

(
C + ν1

( εδ

42k−i−3 ,
εδ

42k−i−3

))
≤

(
1 + log

(1
δ

))
×

( 1
εδ

)3(k−1)
× 100(k−1)2

×

(
C + ν1

( εδ

42(k−2) ,
εδ

42(k−2)

))
= Rb(k, ε, δ).

The proof for S b is nearly identical and we omit here. �

Lemma 39. The following recursion holds true for k, l ≥ 1, η, ε, δ ∈ (0, 1).

R2(η, k, l, ε, δ) ≥ R2(η, k − 1, l, ε/2, δ/2) + ∆l

+ ∆l × (1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
C + µ1

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ R2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
.

and

S 2(η, k, l, ε, δ) ≥ S 2(η, k − 1, l, ε/2, δ/2)

+ ∆l × (1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
µ2

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ S 2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
.

Proof. Recall that

R2(η, k, l, ε, δ) =

( (100∆)l

εδ

)4k(
C + µ1

((
εδ(100∆)−l)4k

,
(
εδ(100∆)−l)4k

)
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and

S 2(η, k, l, ε, δ) =

( (100∆)l

εδ

)4k

× µ2

((
εδ(100∆)−l)4k

,
(
εδ(100∆)−l)4k

)
.

We reason as follows.

S 2(η, k − 1, l, ε/2, δ/2)

+ ∆l × (1 + log(
2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)
× 1003(l+2)2

×

(
µ2

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ S 2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
≤ 2(1 + log(

2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)+1
× 1003(l+2)2

×

(
µ2

( εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
+ S 2

(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

))
≤ 4(1 + log(

2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)+1
× 1003(l+2)2

× S 2
(
η, k − 1, l,

εδ

42(l+2)∆l ,
εδ

42(l+2)∆l

)
= 4(1 + log(

2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)+1
× 1003(l+2)2

×

( (100∆)l × 162 ×
(
16∆

)2l

ε2δ2

)4k−1

× µ2

((
ε2δ2

(100∆)l × 162 ×
(
16∆

)2l

)4k−1

,
(

ε2δ2

(100∆)l × 162 ×
(
16∆

)2l

)4k−1)
≤ 4(1 + log(

2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)+1
× 1003(l+2)2

×

( (100∆)l × 162 ×
(
16∆

)2l

ε2δ2

)4k−1

× µ2

((
ε2δ2

(100∆)4l

)4k−1

,
(

ε2δ2

(100∆)4l

)4k−1)
≤ 4(1 + log(

2∆l

δ
)) ×

(4∆l

εδ

)3(l+2)+1
× 1003(l+2)2

×

( (100∆)l × 162 ×
(
16∆

)2l

ε2δ2

)4k−1

× µ2

((
εδ

(100∆)l

)4k

,
(

εδ

(100∆)l

)4k)
≤

( 1
εδ

)6l
× ∆3(l+2)2

× 1004(l+2)2

×

( (100∆)3l

ε2δ2

)4k−1

× µ2

((
εδ

(100∆)l

)4k

,
(

εδ

(100∆)l

)4k)
≤

( (100∆)l

εδ

)6l

×

( (100∆)l

εδ

)3×4k−1

× µ2

((
εδ

(100∆)l

)4k

,
(

εδ

(100∆)l

)4k)
≤

( (100∆)l

εδ

)×4k

× µ2

((
εδ

(100∆)l

)4k

,
(

εδ

(100∆)l

)4k)
(since k � l)

= S 2(η, k, l, ε, δ).
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The proof for R2 is nearly identical and we omit here. �

Lemma 40. The following recursion holds true for L ≥ 3, η, ε, δ ∈ (0, 1).

R3
(
η, L, ε, δ

)
≥ R3

(
η, L − 2,

ε

3
,
δ

3
)

+ 2 ×
(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
2C + R3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 ))
and

S 3
(
η, L, ε, δ

)
≥ S 3

(
η, L − 2,

ε

3
,
δ

3
)

+ 2 ×
(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
1 + S 3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 ))
.

Proof. Recall that

R3
(
η, L, ε, δ

)
= C

( (100∆)L

εδ

)4η
−1L∆L

and

S 3
(
η, L, ε, δ

)
=

( (100∆)L

εδ

)4η
−1L∆L
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We reason as follow.

S 3
(
η, L − 2,

ε

3
,
δ

3
)

+ 2 ×
(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
1 + S 3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 ))
≤ 3 ×

(9(100∆)L−2

εδ

)4η
−1∆L−2

× S 3

(
η, L − 2,

(
9−1εδ(100∆)−(L−2))4η

−1∆L−2

,
(
9−1εδ(100∆)−(L−2))4η

−1∆L−2 )
= 3 ×

(9(100∆)L−2

εδ

)4η
−1∆L−2

×

(
(100∆)L−2(9(100∆)L−2

εδ

)2×4η
−1∆L−2 )4η

−1(L−2)∆L−2

≤ 3 ×
( 1
εδ

)4η
−1∆L−2

+2×4η
−1∆L−2

×4η
−1(L−2)∆L−2

×
(
9(100∆)L−2)4η

−1∆L−2
+4η

−1(L−2)∆L−2
+2×4η

−1∆L−2
×4η

−1(L−2)∆L−2

≤

( 1
εδ

)4η
−1L∆L

×
(
(100∆)L)4η

−1L∆L

= S 3(η, L, ε, δ).

The proof for R3 is nearly identical and we omit here. �
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