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Abstract

Bechhofer. and Kulkarni (1982a) proposed a sequential procedure for
selecting the best of k > 2 Bernoulli populations, and in a subsequent
paper (1982b) gave an upper bound for the expected number of observations
taken from each population by this procedure. In this note we present
an asymptotically correct approximation to the expected sample size taken
from each population and a slightly improved upper bound on these expected

sample sizes.
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1. Introduction

Let I, (1 < i < k) denote k > 2 Bernoulli populations with correspond-
ing single-trial "success" probabilities P Denote the ordered values
of the P; by p[1] < ... < p[k]; the values of the p[j] are assumed to
be unknown and the pairing of the I with the Prs7 (1 <i,j <k)is
assumed to be completely unknown. Let H(i) denote the population associated
with Pri] (1 <1< k). The goal of the experimenter is to select as
"best" H(k)’ the population associated with p[k].

Bechhofer and Kulkarni (1982a) proposed a procedure P* for this goal,
consisting of a sequential sampling rule R* which takes no more than a
prespecified number n > 1 of observations from any one of the k popula-
tions, a stopping rule S*, and a terminal decision rule T*. When a total
of m observations have been taken from all populations, let N m denote

2

the number of observations taken from Hi and Zo o the number of successes

yielded by I, (1< i<k, 1<mc<kn-1). The sampling rule R* takes the
next observations from the popu1ation with the smallest number of failures,
breaking ties according to the largest number of successes, and randomiz-

ing if there is a further tie. The stopping rule S$* stops sampling at the

first stage m at which there exists at least one population I satisfying

Zim 2 %5im +n - njsm for all 3 #1 (1 <3<k (1.7)

The terminal decision rule T* selects the population I satisfying (1.1),
selecting one such population at random if there is more than one. We

note that P* always selects a population that would have had most successes
if exactly n observations had been taken from each of the k populations.

The sampling rule R* can be thought of as operating in cycles; in a



complete cycle each population is sampled until it yields one failure and
within a cycle, populations are sampled in order according to the number
of successes yielded thus far, populations with the most successes being

sampled first.

Let N(i) denote the total number of observations taken from H(i) at
the termination of sampling (1 < i < k). In Section 2 we derive, for

1< i<k, Prk] # 1 and "large" n, the approximation
E{N/.\} = . (1.2)
(i) T-pr.
[i]
Bechhofer and Kulkarni (1982b, Appendix D) obtained, for 1 <1 <Kk and

p[i] # 1, the upper bound

n(ﬁ—?[k]) . 1 . (1.3)

T-priy PRy

E{N(i)} <

in Section 3 we improve this upper bound to

n(1-pr 1)
k] 1
E{N,. [ + . .
t (1}}f 1‘9[11 2(]‘9[1}) (1.4)
In this paper we compare (1.2) with exact values of E{N(i)} calculated
by Bechhofer and Kulkarni (1982b). The approximation (1.2) also yields
results which agree closely with precise Monte Carlo estimates of
E{N(i)}(1 <1< k) for k = 4 and 5, obtained by Bechhofer and Frisardi

(1983).



2.  An approximation for E{N(i)}

We suppose conceptually that a realization of an experiment gives
rise to an infinite sequence of observations from each popu1ation; these
observations are revealed in the order determined by the sampling rule
until the experiment terminates and observations which are not 'seen'
correspond to those which would have been obtained under further sampling.

Let Xi be the number of failures in the first n observations on Hi and let

W. = min (X.).
Py

Let Ai be the set of indices j # i for which Xj = W.. Finally, let Mi be

;
the number of observations on Hi required to obtain Wi failures.
Ni is defined to be the number of observations taken from Hi' It

follows from the definition of R* and S* that Nj = Mﬁ, except in the

following cases:

Al Xi > wi and Hi is sampled in the Tlast cycle before Hj for all

Jj e Ai; in this case Ni = {the number of observations on Hi required

to obtain (wi+1) failures} A n > Mi’ where x A y denotes the minimum
of x and y.

Az X; =W, T is selected as best and the n'th observation on I, is not
a failure; in this case Ni =n > Mi'

B1 Xi = Ni’ Hi is selected as best, Hi is sampled last in the Taét cycle
and the n'th observation on I is a failure; in this case Nﬁ =
n-1 < Mi‘

B2 Xi < wi (and hence Hi is selected); in this case Ni =nor (n-1) < Mi'



If p; < p[k]’ it is seen by considering the tail probabilities of
the binomial distribution that P{Xi < wi} = O(e-an) as n » o, for some
o > 03 hence the probabilities of A2, B1 and B2 are O(e_un). Also if
ps < p[k] < 1, the probability that I is sampled in the last cycle
before Hj for all j ¢ Ai = O(e_Bn) as n - =, for some g > 0 and hence
P{A1} = O(e'Bn), If, however, p[k] = 1, then wi = 0 and there is exactTy
one cycle with probability one; hence P{A1} = 1/(r+1) + O(E'Yn) as n - oo,
where y > 0 and r is the number of populations with success probability
unity. i

Now E{M, | KpsooosXi b <o+ n/(]—pi), and hence E{{Ni'MiI XisonnX

]3' k}
= 0(n). Also, E{Mi} = E{wi}/(1'p[i])’ Combining all of the above results

for the case p; < p[k] < 1, we have

E{W, } .
= 5, + o(n) (2.1)

(where §(+) is the indicator random variable taking the value 1 if the
event occurs and 0 otherwise), and for p; < p[k] = 1, when r popu]ationé

have success probability unity,

E{Ni} = ij(m + g(n) (2.2)

If P # Pri then wi < X(k) and therefore E{wi} < n(]-p[k]). In
fact, if Prk] > PLk-T] we have



E{Wi} = n(1—p[k]) + g(n). (2.3)

Suppose that there are r populations with success probability p[k]; for

simplicity call these Myseeenll . Let Z = min (X.). Then clearly
I<j<r
E{Z} < n(1~p[k]). But also cT

X. - max |X
1Y 1<@,m<r

I~

z_xm}

g |t

J

X, - X

X
1Y T<@,m<r

£ 'm

1V
D~

=g |

J

2)1/2

Since EL[X =X |} < (E(X,-X ) we have E{Z} > n(]—p[k]) + 0(v/n) as

n-+«, It follows that in this case
— A
E{wi} = n(]-p[k]) + 0(/n). (2.4)

Combining (2.1) to (2.4), for Pri] < p[k] we have

1-
(,,L_”E_pi ;]) + o(n) (2.52)
1. 0

if p[k] < 1 1s unique,

‘n(]—P[k])

Es 0(/R) (2.5b)

if p[k] < 1 is not unique,

1
(r+1)(]—p[i]) - g(n) (2.5¢)

if p[k] = 1 and there are r such populations.



The negative sign in (2.5c) indicates that E{N(i)} < i/(r+1)(1—p[1]).

Similar arguments show that for p[i] = P{k]
(- 9(“) (2.6a)
if p[k] < 1 is unique,

n - 0(v/n) (2.6b)
E{N(i)} = <

if p[k] < 1 is not unique,

= - o(n) (2.6c)

\N

if p[k] = 1 and there are r such populations.

We note that for p[k] # 1 the expressions for E{N(i)} are those
obtained by a mean path approximation in which the proportion of successes
from Hi is exactly Py However, for unique p[k], the error term is of a
smaller order than that usually associated with the mean path approxima-
tion.

We thus propose the following approximations:

For IR 1:
ECN(5y} = E?_—;%%]l , for priy < Py (2.7)
E{N(i)} = n, for Pri] = Prk]- (2.8)
For p[k] = 1, and if there are r such populations:
H? = (r+1)(%-p[i]) > NPT ¢ P (2.9)



E{N 5y} = o for p 47 = Py (2.10)
The right-hand sides of (2.8), (2.9) and (2.10) are upper bounds for the
cases considered; the right-hand side of (2.7) may be either too high or too
Tow — events Al and A2 Tead to a lTow approximation, while events Bl and
B2 and the fact that w<i) may be less than X(k) cause the approximation
to be too high.

Tables 2.1 to 2.4 compare these approximations with exact values of
E{N(i)}ca1cu1ated by Bechhofer and Kulkarni (1982b, Tables 4.6 and 4.14).
The results are representative of the comparisons for other values of
(p[]],p[z}) and (p[]],p[z],p[3]) considered by Bechhofer andrKu]karni.

We note that the approximations are quite good, even for values of n as
small as 5 or 10. In general the approximations tend to be higher than
*E{N(i)}; exceptions occur when p[k] is close to 1 and in that case it
appears that the event Al occurs with a high enough probability to cause
the approximation to underestimate E{N(i)}' Bechhofer and Frisardi

(1983) present Monte Carlo estimates of E{N(i)} for k = 3, 4 and 5 and

n =10, 20, 30, 40 and 50; our approximations also perform well for their

vectors of success probabilities.



3. An improved upper bound for E{N(i)}

We now suppose conceptually that a realization of an experiment
gives rise to n observations from every population, observations beirg
revealed in the order determined by the sampling rule until the experi-
ment terminates - thus, not all of the n observations will be ‘seen’
for some populations.

Let Xi denote the number of failures in n observations on I and

let Yi denote the number of failures actually observed on IL; - It follows

from the definition of the sampling rule R* and the stopping rule S* that

Y, < min (x.) + 1. (3.1)
1<j<k

Let Z = min (X.). We now show that
1<j<k

1

5 -

PLY; =2+ 1} < (3.2)

t

We argue conditionally on X (X X ). If Xi = Z, then trivially

1070,

P{Y,=Z+1] X}

I
D

(3.3)

It kz4; Z and in particular Xi < Xj’ then Yi =7 + 1 only if the last
cycte of sampling starts with Z failures on each population and in
this cycle Hi is sampled before Hj' Since Xi < Xj the conditional
probability of Hi being sampled before Hj in this last cycle is at most

1/2 and therefore
_ 1
P{Y€ =7+ 1| 5} <o (3.4)

From (3.3) and (3.4), P{Yi =7+ 1] < %—for all X and (3.2) follows.



From (3.1)

m
Camme
—
S

A

< E{ min (X,) + §(Y
1<j<k

s =2+ 1))

A

E{X(k)} + P{Yi =7 + 1}

A

n(]~p[k]) + %—. (3.5)

Now E{Yi} = (1_pi)E{Ni} and substituting into (3.5) gives, for 1 < i <k
and p[i] 1,
n(]fp[k]) 1

E{N(i)} f ]'P[i] + 2(]_p[1]) .
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Table 2.1. Comparison of E{N(i)}, (i = 1,2) with the approximations

(2.7), (2.8) for p[]] = 0.5, p[z] = 0.7 and n = 5, 10, 20,

50 and 100.
n E{N(])} E;;%€%§JZ~ E{N(Z)} n
5 2.82 3.0 4.15 5.0
10 5.76 6.0 9.26 10.0
20 11.80 12.0 19.52 20.0
50 29.94 30.0 49.88 50.0
100 59.99 60.0 99.99 100.0

Table 2.2. Comparison of E{N(i)}, (i = 1,2) with the approximations
(2.7), (2.8) for p[]] = 0.7, p[Z] = 0.9 and n = 5, 10, 20,

50 and 100.
n E{N(])} Eéléggilz E{N(Z)} n
5 2.17 1.67 3.92 5.0
10 3.88 3.33 : 8.99 10.0
20 7.02 ' 6.67 19.42 20.0
50 16.71 16.67 49.93 50.0

100 33.33 33.33 100.00 100.0
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Table 2.3. Comparison of E{N(i)}, (i = 1,2,3) with the approximations

(2.7), (2.8) for Pr17 = 0.4, p[Z] = 0.6, p[3] = (0.8 and n

4, 6, 10, 20 and 40.

1

n(1- ) n(1- )
n BNy} g_pigj] E(Np)} ]_pigj SUPAY n
4 .46 1.33 .99 2.0 3.05 4.0
6 2.0 2.00 2.99 3.0 5.04 6.0
10 3.26  3.33 4.96 5.0 9.18 10.0
20 6.54  6.67 9.92  10.0 19.53 20.0
40 13.28  13.33 19.95  20.0 39.84 40.0

Table 2.4. Comparison of E{N(i)}, (i=1,2,3) with the approximations

(2.7), (2.8) for p[]] = 0.3, p[2] = 0.6, p[3] = 0.9 and n

4, 6, 10, 20 and 40.

n(1-praq) n(1-praq)
n EMN gy 1o [3] N,y [3]° EN )b
P17 Pr2]

4 0.99  0.57 1.59 1.0 3.28 4.0
6 1.24  0.86 2.14 1.5 5.37 6.0
10 1,70 1.43 3.09 2.5 9.57  10.0
20 2.96  2.86 5.29 5.0 19.87  20.0
40 5.73 5.7 10.04  10.0 39.99  40.0




