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Silicon Photonics is a field of research that has attracted a lot of interest in

the past few decades and has led to the development of compact structures

on chip for the confinement and manipulation of light. The ability to confine

light in a small mode area in waveguides has enabled the exploration of non-

linear optical phenomena on chip including frequency conversion using four

wave mixing. Recently, demonstrations of chip-based optical frequency combs

generated in microresonators fabricated using CMOS compatible materials and

fabrication processes has become a rapidly developing field of research. The

ability to generate a broadband optical spectrum on-chip by injecting a single

frequency continuous wave laser into the microresonator holds promise in en-

abling applications of these combs in spectroscopy, metrology, and optical data

communications. The ability to precisely control the generation of an optical

frequency comb and repeatedly achieve low-noise operation is especially im-

portant to these applications.

In this dissertation we set out to solve the problem of precise control and

repeatable low-noise frequency comb generation in microresonators. In the first

part of the dissertation, we investigate thermally controlled cavity soliton gener-

ation in silicon nitride microresonators by means of current control of integrated

heaters. We report a method to stably and repeatably access cavity soliton states

in a silicon nitride microresonator and control the detuning dependent proper-

ties of the soliton states using the integrated heaters. We characterize the RF



noise characteristics of these soliton modelocked states and study the ability to

generate single and multiple solitons within one cavity round trip.

In the second part of the dissertation we investigate some of the applications

of cavity solitons in silicon nitride microresonators. We study the bidirectionally

pumped regime of operation of silicon nitride microresonators and demonstrate

tunable generation of counter-rotating solitons in a single cavity. We also study

the tunability of the soliton trains in opposite directions as a function of pump

power ratio in the two directions. We also study a dual comb source consisting

of soliton trains generated in two distinct microresonators by maintaining them

at a fixed offset in their repetition rates determined by electircal feedback on one

of the heaters. The tunability of the offset frequency between the two soliton

trains is studied. The tunable dual comb source is applied to a distance ranging

measurement where the ambiguity imposed by the fixed repetition rate of the

signal comb is lifted by tuning it with respect to the other comb that acts as a

local oscillator.

The work presented in this dissertation paves the way for further exploration

of applications of cavity solitons generated in silicon nitride microresonators in

a reliable and precisely controlled manner.
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CHAPTER 1

INTRODUCTION

Light is ever present in nature, from the rays of the sun that shine down upon

us all day to the tiny pinpricks of light from the stars at night. These natural

sources of light have motivated scientific thinkers over the centuries to study

and attempt to manipulate their properties. The study of light, optics and pho-

tonics, has motivated the most renowned of scientists across our collective hu-

man history. From Euclid in ancient Greece who spoke about sight and per-

spective in Optica, to Newton who in his treatise Opticks, described some of

the first recorded experiments of diffraction of light, that introduced the opti-

cal spectrum into scientific discourse. More recent researchers have pushed this

same spirit of inquiry further to build man-made sources of light that give us

unprecedented control over these properties. Many years of innovation led to

the building of a practical incandescent lamp by Thomas Edison just before the

turn of the 20th century, and by the middle of the 20th century, to the proposal

of the first laser by Schawlow and Townes [1] and subsequently the realization

of the first laser by Theodore Maiman [2]. Lasers have advanced the study of

light by leaps and bounds in these last 60 years and have touched every aspect

of our lives, from communication systems based on optical fibers that wrap the

entire globe and let us communicate seamlessly, to their use in chemical and bi-

ological spectroscopy, and most recently, in LIDAR sensors in our cars with the

advent of self-driving technology.

Lasers are ideal sources for studying the interaction of light with matter.

Photonics, or the science of light, is the study of these interactions on a micro-

scopic scale. When light interacts with matter it’s properties such as polariza-
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tion, intensity, and phase, among others are affected by the material it interacts

with. At higher optical powers, we start observing nonlinear effects in these

light-matter interactions that allow exchange of energy between photons at dif-

ferent frequencies. The ability to draw glass into optical fiber with a core that is

tens of microns in diameter and tens or even hundreds of kilometers long with

very low absorption losses has allowed for much longer interaction lengths for

light with matter. Higher power laser sources and increased interaction lengths

of light has made studying these nonlinear effects easier.

Data are the currency of our virtual experience today and with more and

more people joining our connected world everyday, the demand for data only

keeps growing exponentially. The consumption of data increases almost analo-

gously to or even faster than the famous Moore’s law for transistor density [3].

As data transfer speeds keep increasing, fundamental losses in the materials

used to design the transistors that make up logic circuits, and the metal inter-

connects that link these devices become ultimate limitations to how fast a signal

can be modulated and transmitted over an electronic link. Over the last few

decades the increase in data rates has meant that a significant portion of the in-

frastructure for data transmission over longer distances of a few to hundreds

of miles has moved from using electrical cables to fiber optic cables to maintain

the quality of the signal being transmitted. With continuing increase in data

rates, moving to optical components over electronic components at smaller and

smaller length scales becomes necessary to overcome the limitations imposed

by material losses. This has led to significant interest in the development of

chip-scale sources of light that are extremely stable and can be controlled easily.

The upcoming revolution in augmented reality (AR), virtual reality (VR),
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and autonomous vehicle technologies has placed added impetus on the abil-

ity to accurately and rapidly sense our surroundings. This requires sources of

light that can be precisely controlled to measure surface profiles and distance

information for objects that may be in the immediate vicinity of the AR or VR

device or an autonomous vehicle to ensure the quality of the user experience

and the safety of the user. The integration of these sources into a compact, chip-

scale form factor would enable their deployment in portable devices for these

applications.

Spectroscopy is a very powerful tool that allows for the study of material

properties by shining light on them and studying how the light is modified by

the material. This gives us valuable information about the material that can be

used to study the material. Such a study can give valuable information about

the composition of an unknown sample, or about the structure of a material

based on its energy levels. Broadband optical sources are required for spec-

troscopy in order to cover a wide range of energies corresponding to various

interactions of light with the material.

Devices built to confine light on chip scales can be made using materials

that are compatible with methods developed in the semiconductor electronics

industry. The refinement of these methods in the quest to keep up with Moore’s

law allows the design of extremely high quality photonic devices at the chip-

scale. Confining light to these small dimensions results in high intensities at

which nonlinear effects present themselves. The ability to control and study

these nonlinear interactions in on-chip devices offers an avenue to build new

sources of light. As this technology matures, it can find applications in commu-

nications, chemical and biological sensing and beyond as it passes through the
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hands of future innovators.

We tackle some of these challenges in the same spirit of innovation as our

scientific predecessors and try to solve these problems using the work presented

in this dissertation.

1.1 Outline of the dissertation

This dissertation will introduce and attempt to explain some of these novel chip

scale sources of light and mechanisms for their control. We will discuss the

control of resonant structures on Silicon Nitride nanophotonic chips thermally

and the use of thermal control to generate dissipative cavity solitons in these

structures. We will discuss the controlled generation of counter-rotating soli-

tons travelling in opposite directions along the resonator and some of the novel

dynamics that we observe in this system. We will also discuss the operation

of soliton trains with a difference in repetition frequency generated on two mi-

croresonators on a single chip. These offset locked trains of solitons have a dif-

ference in repetition rates that is disciplined to the frequency of an external RF

source.

Chapter 2 introduces nonlinear optical effects that can be observed due to

the interaction of light with materials. We introduce the physics of nonlinear

optical interactions with materials and delve into the details of Four Wave Mix-

ing (FWM) the primary nonlinear optical process that governs optical frequency

comb generation that is discussed in detail in this dissertation. We also discuss

some of the other effects that we observe to affect the dynamics of dissipative

cavity solitons in our silicon nitride microresonators. We also introduce optical

4



frequency combs and how these nonlinear optical effects affect frequency comb

generation.

Chapter 3 gives an overview of integrated photonics and how these on-chip

devices are built. We discuss the confinement of light in waveguide structures

and low-loss resonant structures on-chip. We take a look at the choices of mate-

rial and how this affects the nonlinear optical properties of our devices.

Chapter 4 discusses thermally controlled generation of dissipative cavity

solitons in silicon nitride microresonators. We discuss previous work done on

dissipative cavity solitons in fiber and microresonator cavities that laid the foun-

dation for this work. We introduce our technique for thermal control of these

resonant structures using on-chip integrated heaters. We discuss our results in

devising a method to repeatably generate soliton modelocked frequency combs

in silicon nitride microresonators by precisely controlling the detuning of the

cavity with respect to a fixed pump laser by varying the current applied to on-

chip integrated heaters.

In Chapter 5 we introduce dual-comb sources for spectroscopy and give an

overview of previous approaches to dual comb generation in microresonators

as well as discuss bidirectionally pumped microresonator based systems. We

then discuss the generation of counter-rotating solitons within a single microres-

onator. We study this bidirectionally pumped system and explain the novel dy-

namics that we observe as the control parameter, the ratio in pump power in

both directions, is varied.

In Chapter 6 we operate trains of solitons derived from two distinct mi-

croresonators on a single chip with a difference in their repetition rate. The
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repetition rate of the soliton train from the slave resonator is maintained at a

specified frequency difference with respect to the soliton train from the master

resonator. The frequency difference is derived from a stable RF source and can

be used to generate a tunable dual-comb source disciplined to the RF source

by means of electrical feedback applied on to the integrated heaters. We char-

acterize this dual-comb source and demonstrate applications of such a source

including ambiguity free ranging.

We conclude in Chapter 7 by discussing other related work based on some

of the results presented in this dissertation and potential future applications of

the platform established by the work in this dissertation.
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CHAPTER 2

NONLINEAR OPTICS

The optical properties of materials are a response of the material to incident

light. The response of the material depends on the material structure, symme-

try, and also on the properties of the incident light such as polarization, inten-

sity, and frequency among others. Light is a form of electromagnetic radiation

that covers a broad range of frequencies, typically ranging from a few gigahertz

(GHz) to a few hundreds of terahertz (THz). It is a transverse electromagnetic

wave with the electric and magnetic fields oscillating at the frequency of radi-

ation orthogonal to each other and to the direction of propagation of the light.

When this light interacts with a material or with an interface between two ma-

terials, the properties of the light as well as the materials can be modified. Typ-

ically, in a linear optical case, the response of the material properties depends

linearly on the strength of the incident electrical field of the light. However

given the right conditions, most materials demonstrate a nonlinear response to

the strength of the incident electrical field with contributions from higher or-

ders of the electric field, and the study of these nonlinear behaviors is the study

of nonlinear optics. The field of nonlinear optics can be considered to have

started with the observation of the phenomenon called second harmonic gen-

eration (SHG) where upon incidence of the output of a ruby laser at 694.3 nm

wavelength onto crystalline quartz, light generated at the second harmonic fre-

quency of the incident light, at 347.2 nm was observed to be generated [4, 5].
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2.1 Maxwell’s equations and the wave equation

As with all electromagnetic fields, the behavior of light in any material is gov-

erned by the Maxwell’s equations as described below.

~∇ · ~D = ρf (2.1)

~∇ · ~B = 0 (2.2)

~∇× ~E = −∂ ~B

∂t
(2.3)

~∇× ~H = ~Jf +
∂ ~D

∂t
(2.4)

where the electric field ~E, and magnetic field ~H are related to the electric flux

density ~D, and magnetic flux density ~B respectively by the following relations.

~D = ǫ0 ~E + ~P (2.5)

~B = µ ~H (2.6)

ǫ and µ being the electric permittivity and magnetic permeability respec-

tively of the material in which the light is propagating, determine the induced

polarization and magnetization due to the electric and magnetic fields. The ma-

terials used in this dissertation are non-magnetic and hence the magnetic per-

meability µ is simply equal to the vacuum permeability µ0 = 4π × 10−7 H/m.

The electric permittivity is given by ǫ = ǫ0(1 + χe) where χe is the electrical sus-

ceptibility. Every material has its own electric permittivity that is dependent

on the composition and structure of the material. These differences in material
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properties can be utilized to build structures that modify the properties of light

in a controlled manner to enable specific regimes of operation.

For dielectric materials such as the ones being used in the devices in this

dissertation, the free charges and currents are zero (ρf = 0 and Jf = 0) at the

frequencies used in this work. Here µ0 ǫ0 = 1
c2

. Using vector calculus identities

and combining the equations above we arrive at the wave equation for light in

a dielectric material.

∇2 ~E =
1

c2
∂2 ~E

∂t2
+

1

ǫ0c2
∂2 ~P

∂t2
(2.7)

This wave equation admits plane wave solutions of the form,

~E(~r, t) = E0e
i(~k.~r−ωt) (2.8)

These plane wave solutions indicate a wave propagating with a wave vector

~k in the ~r direction and with a frequency ω.

2.2 Nonlinear polarization

In a dielectric material, due to an incident electromagnetic field, an induced

polarization is observed. This is a result of the bound electrons reacting to the

field strength of the incident field. In the conventional linear optical case, the

induced polarization ~P depends linearly on the applied electric field. and is

given by the equation,

~P = ǫ0χ
(1) ~E (2.9)
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More generally, all materials have a nonlinear response to the applied electric

field and the induced polarization is given by expressing the polarization as a

power series in the electric field strength.

~P = ǫ0[χ
(1) ~E + χ(2) ~E ~E + χ(3) ~E ~E ~E + ...] (2.10)

These higher order terms in the induced polarization introduce a wide va-

riety of nonlinear effects in the material and its interaction with incident light.

These effects can be used, in the right conditions, to manipulate the properties

of the material as well as the light.

The Lorentz model for the atom, where an electron is assumed to be bound

to the nucleus of the atom by a spring-like force allows for a good primary

understanding of linear and nonlinear optical effects. The electrons react to

the incident electromagnetic field by vibrating as a damped harmonic oscillator.

Depending on the oscillator strength and damping both of which can be directly

linked to the material property this would result in the creation of a dipole at

each electron-nucleus pair. The sum off all the induced dipole moments over

the macroscopic volume of the material would result in an effective material

polarization ~P as a response to this incident field ~E.

First, we look at the linear optical behavior of the interaction using the Lorentz

model to understand how it explains the interaction of light with materials. The

motion of the electron in the electron-nucleus system assumes that the nucleus is

stationary due to it being much heavier than the electron. The equation describ-

ing the motion of the electron is modeled as a damped harmonic oscillator [6].
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me
d2x

dt2
+meγ

dx

dt
+meω

2
0x = −eE(t) (2.11)

Here me is the mass of the electron, ω0 is the resonant frequency of the os-

cillator, γ is the damping factor of the oscillator. The resonant frequency and

the damping factor are material properties which affect how the materials in-

teract with the incident light. The incident light, assumed to be monochromatic

will have a field strength E(t) that depends on the frequency of the light, and

will drive a response x(t) that is also at the same frequency as evident from the

equation of motion.

E(t) = E0e
−iωt (2.12)

x(t) = x0e
−iωt (2.13)

By substituting the field Eq. 2.12 and oscillation Eq. 2.13 into the equation of

motion Eq. 2.11 we find the amplitude of these oscillations x0.

−meω
2x0e

−iωt − imeγωx0e
−iωt +meω

2
0x0e

−iωt = −eE0e
−iωt (2.14)

x0 =
−eE0/me

ω2
0 − ω2 − iγω

(2.15)

The induced polarization in the bulk material ~P is a macroscopic average

over all of the induced dipoles with dipole moments given by p = − ex0

induced in the material.

P = −Nex0 =
Ne2E0

me

1

ω2
0 − ω2 − iγω

(2.16)
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From Eq. 2.9 and Eq. 2.16, the first order electric susceptibility χ(1) is given

by,

χ(1) =
Ne2

ǫ0me

1

ω2
0 − ω2 − iγω

(2.17)

Here, the linear susceptibility varies as a function of frequency and depends

on how far the incident light is from the resonant frequency ω0. Typically most

materials have multiple resonant frequencies that affect the induced polariza-

tion and lead to a linear susceptibility that is a sum over the response to all the

oscillators.

χ(1) =
Ne2

ǫ0me

∑

j

1

ω2
j − ω2 − iγjω

(2.18)

The refractive index as a function of frequency can be obtained from the rela-

tion given in Eq. 2.18. This variation of the index with frequency limits the gain

bandwidth of the nonlinear processes that determines the spectral shape of the

frequency combs generated and studied in this dissertation. We will see in Sec-

tion 2.4 how the gain bandwidth of the Four Wave Mixing process is affected by

the dispersion at the pump wavelength, and in Chapter 3 how the variation of

index determines the effective dispersion of the waveguides and dictates design

choices for the devices used in this dissertation.

In this linear case, the restoring force for the spring model is linear and is

of the form F (x) = − meω
2
0x which means the system has a potential en-

ergy of the form U(x) = 1
2
meω

2
0x

2. For a typical material, the restoring force

will have a series of terms that would depend on higher powers of the dis-

placement x and this is what lends the nonlinear response to the incident light
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on the material. As can be seen from Fig. 2.1 in the case of the first nonlinear

term being introduced in the restoring force that takes the form F (x) = −

meω
2
0x − meax

2, the potential becomes asymmetric as a function of x and takes

the form U(x) = 1
2
meω

2
0x

2 + 1
3
meax

3. It is evident from the asymmetry of

the potential about x=0 that for such a potential to exist in a material, it would

require for the material to have an asymmetry about x=0 in terms of crystal

structure. This indicates that a second order nonlinearity can only be observed

in such non centrosymmetric media.

x

U(x)

Figure 2.1: The potential energy U(x) in the case of linear (dashed, blue) and sec-
ond order nonlinear restoring forces(solid,red) as a function of displacement x.
The asymmetric potential gives rise to the second order nonlinear susceptibility
in non-centrosymmetric media

A third order nonlinear term of the form − mebx
3 would lend a symmet-

ric nonlinear term in the potential of the form 1
4
mebx

4 that would not require

for specific symmetry conditions on the material and would be present in a

centrosymmetric medium. Most crystalline materials have this form of inver-

sion symmetry and hence a third order nonlinearity can be observed in these
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materials given the right conditions. The devices used in this dissertation are

fabricated using silicon nitride which shows a third order nonlinearity.

We extend the analysis presented above in the linear case to that of a purely

third order nonlinearity in a centrosymmteric medium using a similar approach

to that taken in [4]. The restoring force is of the form F (x) = −meω
2
0x + mebx

3.

In the case of an isotropic and centrosymmetric material, the force can be ex-

pressed in the vector form as,

~F = −meω
2
0~r +meb(~r · ~r)~r (2.19)

The equation of motion for the electron then becomes,

d2~r

dt2
+ γ

d~r

dt
+ ω2

0~r − b(~r · ~r)~r = −e ~E(t)/me (2.20)

We assume an applied electric field given by three distinct frequency terms.

This field is assumed to be the case to allow for the most general form of a

third order interaction in the analysis. To simplify the expression, the field is

expressed as a summation,

~E(t) = ~E1e
−iω1t + ~E2e

−iω2t + ~E3e
−iω3t + c.c. (2.21)

~E(t) =
∑

n

~E(ωn)e
−iωnt (2.22)

To separate the different orders for the solution to ~r(t) within the equation of

motion, a parameter λ is introduced that can be set to 1 at the end of the analysis.
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~r(t) = λ~r(1)(t) + λ2~r(2)(t) + λ3~r(3)(t) + ... (2.23)

Using the λ parameter to separate the different orders of the solution to ~r(t)

we get,

d2~r(1)

dt2
+ γ

d~r(1)

dt
+ ω2

0~r
(1) = −e ~E(t)/me (2.24)

d2~r(2)

dt2
+ γ

d~r(2)

dt
+ ω2

0~r
(2) = 0 (2.25)

d2~r(3)

dt2
+ γ

d~r(3)

dt
+ ω2

0~r
(3) − b(~r(1) · ~r(1))~r(1) = 0 (2.26)

Solving Eq. 2.24 simply yields the linear case as we solved before giving us

the linear displacement,

~r(1)(t) =
∑

n

~r(1)(ωn)e
−iωnt (2.27)

where,

~r(1)(ωn) =
−e ~E(ωn)/me

ω2
0 − ω2

n − iγωn
(2.28)

The second order term in the displacement ~r(2)(t) is determined by Eq. 2.25

and can be seen to be exactly equal to zero because the equation is not driven

by any time varying term. Hence, ~r(2)(t) = 0. This is a direct consequence of

the centro-symmetry of the material.

Plugging in the solution for the first order displacement Eq. 2.28 into the

differential equation for the third order displacement Eq. 2.26, we get,
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d2~r(3)

dt2
+ γ

d~r(3)

dt
+ ω2

0~r
(3) = −be3

m3
e

∑

mnp

[ ~E(ωm) · ~E(ωn)] ~E(ωp)

D(ωm)D(ωn)D(ωp)
(2.29)

Here D(ωj) = ω2
0−ω2

j − iγωj corresponds to the denominators from the linear

term.

We can see that the third order response depends on a sum over multiple

combinations of frequencies ωm, ωn, and ωp, which means that the frequency

dependence of the induced third order displacement ~r(ωq) and consequently

the third order susceptibility χ(3)(ωq) would depend on different combinations

of those frequencies ωm, ωn, and ωp.

Here ωq = ωm + ωn + ωp and the frequencies ωm, ωn, and ωp can take positive as

well as negative values from the complex conjugate. The presence of a negative

frequency can be understood in as an interaction mediated by the annihilation

of a photon at that frequency. There are 22 different frequency terms that can

be present in the third order nonlinear susceptibility. Some of the nonlinear

processes that can take place due to this third order nonlinearity are outlined

below,

− Third Harmonic Generation: ωq = 3ωm(ωm = ωn = ωp),

− Intensity Dependent Refractive Index: ωq = ωm = ωn = −ωp,

− Self Phase Modulation (SPM): ωq = ωm = ωn = −ωp,

− Cross Phase Modulation (XPM): ωq = ωm 6= ωn = −ωp,

− Four Wave Mixing (FWM): ωq 6= ωm, ωn, ωp.

In this thesis we study various effects that are caused by this third order
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nonlinearity, specifically FWM, SPM, and XPM. We discuss these effects below

in greater detail.

2.3 Self and cross phase modulation

The self and cross phase modulation is an effect that can be linked to the inten-

sity dependent refractive index of a material [7]. When an intense electric field

at a frequency ω propagates through a material, due to the third order non-

linearity, a term at the frequency ω is observed. If we look at the third order

polarization term at this frequency it is given by,

P (3)(ω) = 3ǫ0χ
(3)(ω = ω + ω − ω)[E(ω) · E∗(ω)]E(ω) (2.30)

The induced polarization due to the incident wave at a frequency ω includes

the linear and nonlinear polarization from Eq. 2.30 and is given by,

P (ω) = ǫ0χ
(1)E(ω) + 3ǫ0χ

(3) |E(ω)|2E(ω) (2.31)

The refractive index can be related to the susceptibility in this case as below

[4],

n2 = 1 + χ = 1 + χ(1) + 3χ(3) |E(ω)|2 (2.32)

Through this relation, the refractive index can be related to the intensity of

the light as,
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n = n0 + n2I (2.33)

With I , the intensity of the light given by,

I = 2n0ǫ0c |E(ω)|2 (2.34)

Since the nonlinear susceptibility is much smaller than the linear part, we

can use the approximation n = (1+χ)
1

2 = (1+χ+χNL)
1

2 = n0(1+
1

2n2

0

χNL), that

gives us the nonlinear index of refraction as,

n2 =
3

4n2
0ǫ0c

χ(3) (2.35)

The above analysis reflects the modification of the refractive index at the

frequency of a wave due to itself. It is therefore termed as self phase modulation

where we observe a change in the refractive index and hence, the phase as the

wave propagates through the medium.

If we now look at the case of two waves, one intense and its effects on the

refractive index at another frequency carried by a second wave which may or

may not be intense, we can observe the cross phase modulation effect where

an intense wave affects the index and therefore the phase of another wave at

a different frequency. Here we assume the intense wave to be at a frequency

ω and the second wave to be at a frequency ω′. If we combine all the terms of

the form ω′ = ω′ + ω − ω we get the third order nonlinear susceptibility of this

interaction to be,
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P (3)(ω′) = 6ǫ0χ
(3)(ω′ = ω′ + ω − ω)[E(ω) · E∗(ω)]E(ω′) (2.36)

Following the same analysis as before and using the value of n2 obtained pre-

viously from Eq. 2.35 and following the same analysis, we get n2,XPM = 2 n2.

This implies that the refractive index change induced on a second wave in the

case of XPM is twice as strong as that induced in the case of SPM.

The change in refractive index locally due to the intensity results in a change

in the phase of a wave as it propagates through the medium. So in addition to

the phase due to the linear term in the refractive index, the wave picks up an

additional nonlinear phase as it propagates over a distance L.

n(ω, I) = n0(ω) + n2I (2.37)

φSPM =
2π

λ
n2 I L (2.38)

φXPM = 2
2π

λ
n2 I L (2.39)

We introduce a nonlinear parameter γ following the treatment in [4, 7] that

we will use throughout this dissertation which includes the nonlinear index as

well as the effective area of the waveguide (or fiber / beam more generally).

γ =
2πn2

λAeff

=
ωn2

cAeff

(2.40)

This also allows the nonlinear phase due to the self- and cross-phase modu-

lation to be expressed in terms of the power P as,
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φSPM = γPL (2.41)

φXPM = 2γPL (2.42)

As we can see from Eq. 2.35, the value of n2 is very small as compared to the

linear refractive index of a material, however in the presence of an intense field,

the product n2 I will be non-negligible and will affect the refractive index of the

material locally. We will see how this affects the dynamics of counter-rotating

solitons in a cavity in Chapter 5.

2.4 Four wave mixing

Four Wave mixing is another process that is allowed due to the presence of a

third order nonlinearity in a material. As mentioned above in Section 2.2 the

four wave mixing process, as the name states, involves four frequency compo-

nents, ωp1 and ωp2 are the two pump frequencies and ωs is the signal frequency.

In the FWM process, two photons at ωp1 and ωp2 are annihilated to create pho-

tons at ωs and a new frequency ωi. As we can see from the energy level dia-

gram in Fig. 2.2, energy conservation dictates that the idler frequency is given

by ωi = ωp1 + ωp2 − ωs.

When we have a single pump wave (ωp1 = ωp2 = ωp) we have a de-

generate FWM process where the signal and idler frequencies are offset by δω

on either side of the pump wave to preserve the energy conservation relation

(ωs = ωp + δω and ωi = ωp − δω). From the wave equation (Eq. 2.7) and

considering the nonlinear effects on the polarization as shown in Section 2.2, we
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Figure 2.2: FWM energy level diagram with the two pump fields ωp1 and ωp2 and
the signal and idler fields ωs and ωi. The two pump photons are annihilated to
create signal and idler photons. Under the right phase matching conditions, the
signal and idler waves see parametric amplification.

can look at the effects of the nonlinear interaction between the pump, signal and

idler waves as they propagate in a direction z along a material using coupled

amplitude equations that look at the evolution of the amplitudes (Ap, As, Ai) of

the plane wave solutions to the wave equation. Here, the amplitudes are as-

sumed to be slowly varying with time and this assumption allows for them to

have a purely A(z) dependence in these equations. The pump power is assumed

to be undepleted and the signal and idler powers are assumed to be lower than

the pump. This allows us to consider only the SPM and XPM terms due to the

pump on the pump, signal, and idler waves. Additionally, the FWM interaction

term only includes the power transfer from the pump photons to the signal or

idler photon.

dAp

dz
= −αp

2
Ap + iγ |Ap|2Ap (2.43)

dAs

dz
= −αs

2
As + i2γ |Ap|2As + iγA2

pA
∗
i e

−i∆βz (2.44)

dAi

dz
= −αi

2
Ai + i2γ |Ap|2Ai + iγA2

pA
∗
se

−i∆βz (2.45)
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The pump evolution, Eq. 2.43 contains a linear loss term and a SPM term.

The pump is assumed to be undepleted in the FWM process and hence there

is no energy transfer term. The signal evolution, Eq. 2.44, and idler evolution,

Eq. 2.45, on the other hand have a linear loss term, a term for the XPM from

the pump, as well as a FWM energy transfer term. The FWM term has a phase

difference ∆β that arises from the fact that the pump, signal and idler photons in

the FWM process travel at different speeds due to differences in the refractive

index of the material as we have discussed before. The propagation constant

is defined based on the effective index of the waveguide as β = ωneff(ω)
c

. We

will discuss the propagation constant and other properties of the waveguides in

greater detail in Chapter 3.

∆β = 2βp − βs − βi (2.46)

We perform a Taylor expansion of the propagation constant about the pump

frequency, with β1 and β2 being the first and second derivatives of the propaga-

tion constant with respect to the frequency.

βp =
ωpne(ωp)

c
(2.47)

βs =
ωpne(ωp)

c
+ β1(ωs − ωp) +

1

2
β2(ωs − ωp)

2 (2.48)

βi =
ωpne(ωp)

c
+ β1(ωi − ωp) +

1

2
β2(ωi − ωp)

2 (2.49)

Putting these together, the phase mismatch due to dispersion comes out to

be ∆β ≈ β2δω
2. The total phase mismatch is given by this phase mismatch due

to dispersion and the phase accrued by the pump wave due to the nonlinear

22



phase shift.

κ = 2γP +∆β (2.50)

Since the nonlinear phase is always positive, the ∆β term has to be negative

which means that the β2 has to have a negative value. This implies that the

waveguide needs to have an anomalous group velocity dispersion (GVD) at the

pump frequency. We will see in Chapter 3 how such an anomalous GVD is

achieved.

Modulation Instability is a process by which a small perturbation to a in-

tense continuous wave (CW) field results in amplification of sidebands on ei-

ther side of the intense pump field. This results in the break up of the CW field

into a series of pulses modulated at the frequency separation to the generated

sidebands. Power is transferred from the pump to the sidebands through FWM

and by solving the nonlinear Schrödinger equation including the dispersion and

Kerr nonlinearity terms, the gain for this process is expressed as [7],

g =
√

(γP )2 − κ2/4 (2.51)

=
√

γP∆β −∆β2/4 (2.52)

For silicon nitride, which is the nonlinear material used in this dissertation,

we use n2 = 2.5 × 10−19 m2

W
based on prior literature [8–10], we use an effective

area of Aeff = 1 × 10−12 m2 (which would imply a waveguide cross section on

the order of 1 µm × 1 µm), and a pump wavelength of 1560 nm. These numbers

result in a value of γ ≈ 1 W−1m−1 based on Eq. 2.40. A typical value for β2
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for the waveguides used in this dissertation at this pump wavelength is around

β2 = − 100 ps2/ km. We plot the gain per meter of propagation for these cases

over a wavelength range spanning 100 nm around the pump wavelength. To

show the variation of the gain profile as the dispersion is varied we pick two

values of β2 = − 100 ps2/km and β2 = − 50 ps2/km and two pump power

values P = 10 W and P = 20 W. This provides some intuition as to how

the gain changes as a result of the variation of these parameters as can be seen

in Fig. 2.3. A smaller anomalous GVD at the same power results in pushing

the gain peaks further out from the pump in frequency while maintaining the

same peak gain value. On the other hand, as we would expect from a nonlinear

process that clearly scales with pump power, increasing the pump power results

in a higher gain.
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Figure 2.3: FWM Gain variation with wavelength around the pump wavelength
for various pump power and dispersion values. The selected pump power val-
ues of P = 10,20 W and group velocity dispersion β2 = -50,-100 ps2/km are typi-
cal for the waveguides used in this dissertation.

These trends in gain for the modulation instability process will dictate some

of the choices of waveguide cross section made for devices in this dissertation.

When the parametric gain for the modulation instability exceeds the waveguide
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loss, we will see parametric amplification of the signal and idler as the waves

propagate through the waveguide resulting in the formation of primary side-

bands around the pump frequency. Building resonant structures around the

gain medium recirculates the waves and allows for enhancement of the powers

within the resonant structure. By building resonant structures, we ensure that

the input pump power to the resonant structure doesn’t need to be as high as the

10 or 20 W that we show in Fig. 2.3. The resonant enhancement of the intracavity

power will allow for a much lower input power to be enhanced to these levels

and we will be able to see gain within the cavity for the FWM process. The cav-

ity imposes an additional constraint on the frequencies of the pump, signal and

idler waves in that they all have to be on resonance with one of the longitudinal

modes of the cavity in order for the FWM process to occur efficiently. As we will

see in Chapter 3, silicon nitride microresonators are an ideal cavity to resonantly

enhance the FWM gain. Such a resonantly enhanced system is called an Optical

Parametric Oscillator (OPO) and the first demonstration of such an OPO was

in Lithium Niobate (LiNbO3) [11]. When the gain per cavity round trip exceeds

the round trip losses, the OPO operates above threshold and we can observe the

gain at the signal and idler frequencies corresponding to the peak of the modu-

lation instability gain. We will see in Chapter 4 how as the pump is tuned into

resonance with the microresonator cavity, signal and idler waves are generated

seeded by vacuum fluctuations and rise in power at the peak of the FWM gain

determined by the waveguide dispersion and initiate the frequency comb and

cavity soliton generation process through modulation instability.
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2.5 Optical frequency combs

Optical frequency combs (OFC) represent a significant technological advance in

the last two decades. The development of OFC technology has led to the appli-

cation of these frequency combs to a multitude of fields of study. As the name

implies, an optical frequency comb consists of discrete frequency components

that are equally spaced in frequency akin to a comb. The spacing between the

comb lines is ∆f . If we look at the time domain picture, the frequency comb

resembles a series of pulses separated from each other by 1
∆f

. This becomes

fairly obvious if we look at the Fourier transform of a series of equally spaced

components. The phase slippage between the carrier wave and the envelope of

the pulses or the carrier-envelope-phase (CEP), φcep, results in an instantaneous

frequency called the carrier envelope offset frequency, fceo =
dφcep

dt
. The comb

spectrum with the comb spacing ∆f and this offset frequency fceo is shown in

Fig. 2.4. The offset frequency shifts the entire comb spectrum and consequently

the frequency fm of the mth comb line is given by,

fm = fceo +m×∆f (2.53)

fceo

Δf

fm = fceo + m Δf 

Frequency

P
o

w
e

r

Figure 2.4: A representative comb spectrum with the comb spacing ∆f and
offset frequency fCEO. The comb lines are in the optical frequency domain.

26



The start of optical frequency comb technology can be considered to be the

first modelocked laser [12] where a He-Ne laser was modelocked by using a syn-

chronous intracavity modulation. In this case the spectrum of the laser already

looks like a comb. Indeed, for modelocked lasers, the spectral components fol-

low the fm = fceo + m × frep relation where frep is the repetition frequency of

the pulses from the laser. Extending these lasers to be called frequency combs

can be said to require having precise control over the frep and fceo that allows

for a significant increase in the precision to which the frequencies of the comb

are known through Eq. 2.53 [13]. Having this higher level of precision in the

frequencies of the comb enables applications such as precise frequency metrol-

ogy that is of use to making optical clocks. This level of precision has allowed

spectroscopy of a Cesium transition [14] and enabled measurements of large

frequency differences undetectable well beyond the bandwidth of photodetec-

tors using different modes of a comb [15]. This led to the development of a

frequency comb based optical clock by referencing a frequency comb to a sin-

gle 199Hg+ ion [16]. Precision spectroscopic measurements aided by frequency

combs of several other important atomic and molecular transitions including

Rb [17], I2 [18, 19], Ca [20] among other have been subsequently performed.

These frequency combs probe well characterized atomic and molecular tran-

sitions and transfer the precision to which the transitions are known onto the

modes of the comb that can then be used for frequency metrology at other fre-

quencies distant from the transition [21].

These comb sources rely upon precise control of the frep and fceo. This is

achieved by a technique known as self-referencing of the combs using f − 2f

interferometry [22] that allows for detection and stabilization of the CEO fre-

quency fceo. Here the 2mth mode, f2m, of a comb is mixed with a frequency
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doubled mth mode, 2fm. The difference between these two frequencies results

in a beat note at fbeat,

fbeat = 2(fceo +m× frep)− (fceo + 2m× frep) = fceo (2.54)

Additionally based on the broad spectral coverage, precision in frequencies

and spacing between the frequency comb lines that typically lies in the mi-

crowave frequency range, several other applications have been explored such as

frequency comb spectroscopy of various atomic and molecular species [23–27],

astronomical spectrograph calibration using the lines of the comb to act as a fre-

quency ruler for star light from a telescope [28–30], low phase noise microwave

frequency generation [31, 32], optical arbitrary waveform generation [33, 34]

among many others.

The frep can be measured directly or indirectly and in this way each of the

comb modes are known to the precision that the fceo and frep are known. Typ-

ically the femtosecond modelocked lasers that are used in the results above do

not span a octave in frequency that is be required for the f − 2f interferometry.

The spectrum of the mode locked lasers is broadened into a supercontinuum

through nonlinear effects in microstructured fiber [17] or other nonlinear fibers

/ materials as can be see in Fig. 2.5 to get the spectral coverage that includes the

fm and f2m modes for some m. We include a typical schematic for the spectral

broadening approach used in these initial frequency comb experiments along

with an outline of the f − 2f interferometry scheme to detect fceo in Fig. 2.5.

Over the last decade another approach to frequency comb generation has

seen a significant amount of research. This is frequency comb generation using
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Figure 2.5: (a) A schematic for the f − 2f interferometry to detect the fceo. The
2mth mode, f2m, of a comb is mixed with a frequency doubled mth mode, 2fm
to detect the fceo (b) A schematic of a setup typically used for spectral broad-
ening of modelocked lasers to a supercontinuum spanning an octave covering
the fm and f2m modes. (c) Spectrum of the mode locked lasers after broadening
through nonlinear effects in microstructured fiber (Adapted from [17])

the Kerr nonlinearity in waveguides. These photonic chip based combs rely on

some of the nonlinear processes that we have discussed in this dissertation pre-

viously and enable the generation of compact frequency comb sources that can

be used in similar applications as the solid state laser based comb sources de-

scribed above [35]. Photonic Chip based combs use two approaches to generat-

ing broadband frequency comb spectra, supercontinuum generation in waveg-

uides pumped by short pulses, or comb generation through Kerr nonlinearity

in microresonators. The supercontinuum generation approach is similar to the
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approached used by solid state laser based frequency combs we have discussed

previously as shown in Fig. 2.5(b) where the nonlinear material is the waveg-

uide in this case.

Photonic chip based combs based on microresonators rely on the process of

four wave mixing to achieve frequency conversion between the various comb

lines. The one distict difference in this approach and the supercontinuum based

approach is that these frequency combs are pumped by a CW pump laser in-

stead of a modelocked femtosecond laser. When the pump is close to resonance

with the modes of the ring resonator some of the pump power couples into the

microresonator. This causes initial sidebands to be generated at the peaks of

the modulation instability gain depending on the dispersion and power of the

pump laser coupled into the microresonator as seen in Fig. 2.3. Subsequently as

the pump is moved closer to being on resonance even more pump power cou-

ples into the microresonator, these sidebands grow in strength as more power

is transferred from the pump to the sidebands. The sidebands then act as sec-

ondary pumps and allow for frequency conversion to other modes of the res-

onator. The comb generation process follows non-trivial nonlinear dynamic

evolution through degenerate and non-degenerate four wave mixing to even-

tually generate a frequency comb covering a wide optical bandwidth [36] as

outlined in Fig. 2.6. A more complete description of the resonance conditions

are given in Chapter 3 and a discussion on the dependence of the frequency

comb generation dynamics with respect to the frequency offset of the pump

from the resonance frequency of the cavity, the pump-cavity detuning, is dis-

cussed in Chapter 4 and 5.

Supercontinuum generation in waveguides has been demonstrated in vari-
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Figure 2.6: The nonlinear dynamical evolution of the frequency comb genera-
tion process sees contributions from degenerate and non-degenerate four wave
mixing to reach a state with a filled in frequency comb spectrum over a broad
bandwidth.

ous material platforms including Silicon [37–39], Silicon Nitride [40–44], Germa-

nium [45], Lithium Niobate [46, 47], Aluminum Nitride [48]. These results have

been able to generate coherent octave spanning, self-referenced spectra similar

the case of fiber as a nonlinear medium and have demonstrated comparable fre-

quency precision to those schemes in a more compact footprint with integrated

waveguides.

The first demonstration of frequency comb generation in a microresonator

was shown in silica microtoroids [49]. With a microtoroidal cavity of radius

75 µm, a frequency comb spanning nearly 300 nm in optical bandwidth was

generated using a CW pump at 1550 nm. The spacing between the comb lines

corresponded to the longitudinal modes of the microtoroidal cavity and is ap-

proximately 7 nm. We will look at the mode spacing of these microresonators in

detail in Chapter 3. After this first demonstration in silica microtoroids, the field

of microresonator based frequency combs has grown rapidly. Frequency combs

have been demonstrated in various material platforms including Silica [49], Sil-
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icon [50], Diamond [51], Lithium Niobate [52], Aluminum Nitride [53], Hy-

dex [54], Aluminum Gallium Arsenide [55], Calcium Fluoride [56, 57], Magne-

sium Fluoride [58], Gallium Phosphide [59] and Silicon Nitride [60–64].

These early demonstrations of frequency combs in various materials estab-

lished the understanding of comb generation in microresonators through non-

linear processes. However in most of these cases, since the complex nonlinear

dynamic evolution of the frequency combs with detuning was not well under-

stood, the generated spectra were incoherent which limited the frequency preci-

sion of the comb lines. In addition, the phase relationship between the different

frequency components remained inconsistent and did not allow for modelock-

ing of the combs and the formation of short pulses. In Chapter 4 we will delve

deeper into work done to gain more insight into the detuning dependent evolu-

tion of frequency combs to soliton modelocked states and how the work in this

dissertation advances thermal control of microresonator chip based frequency

combs.
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CHAPTER 3

INTEGRATED PHOTONICS

Historically, the invention of optical fibers can be pointed to as the singular

event that led to the revolution in optical communications. The invention of

the optical fiber gave the ability to beat the effects of diffraction and be able

to carry light and over very long distances [65] with extremely low losses [66].

As optical data communication speeds have increased to keep up with ever in-

creasing needs for data, the length scales over which electric interconnects see

high enough loss to make them non viable has dropped from the kilometer scale

to the centimeter scale and beyond. The losses in the metal interconnects arise

due to skin effect losses that limit the flow of electrons close to the surface of

the interconnect within the skin depth as the frequency is increased. This re-

duces the effective cross section of the interconnect and increases the losses due

to Joule heating [67]. At the centimeter and sub centimeter length scale, on chip

optical interconnects will be required as data rates continue to grow. Silicon

Photonics is an enabling technology for these optical interconnects [68–70]. Sil-

icon and other materials like silicon nitride, silicon dioxide have already found

use in standard Complimentary Metal-Oxide-Semiconductor (CMOS) foundry

processes for chip based electronics. Fiber based technologies that have been

used for optical communications have meant a maturation in the affiliated tech-

nologies such as lasers, modulators and high bandwidth photodetectors in the

telecommunications wavelength bands from 1260-1360 nm (Original,O-band),

1530-1565 nm (Conventional,C-band), 1565-1625 nm (Long Wavelength,L-band)

and other less common ones outside these wavelength windows. Silicon, silicon

nitride and silicon dioxide are all transparent to light in these telecommunica-

tions bands which makes them suitable for the fabrication of chip based optical
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devices such as those used in this dissertation. As we saw in Chapter 2, most

materials exhibit nonlinear behavior. However, they do so in the very specific

conditions of high intensity incident fields and only when the material disper-

sion allows for the phase matching of the nonlinear optical processes to observe

parametric gain. We also noted that enhancement in a resonant structure would

allow us to observe optical parametric oscillation at lower pump powers. Sil-

icon photonics is uniquely positioned to solve all of these challenges that are

imposed by the theoretical considerations of nonlinear optics. This makes sil-

icon photonic devices an ideal platform to control and manipulate light and

observe nonlinear effects at telecommunication wavelength bands.

In this chapter we will look at some of the tools that are crucial to the de-

sign of devices that can then be fabricated using well established processes for

nanophotonic devices developed by the Lipson Nanophotonic Group at Cornell

and Columbia University [71, 72].

3.1 Optical waveguides

If we look at the guiding of light using the ray picture of wave propagation, both

optical fibers and silicon photonic waveguides confine light within the ’core’ or

the guiding material, using the property of light known as total internal reflec-

tion. This behavior of light occurs at an interface between two materials where

light is incident upon the interface from the material with a higher refractive in-

dex (n1 > n2). It was first observed in streams of water and the first demonstra-

tion of light guided within a water stream using TIR was shown by John Tyndall

with water serving as the ’core’ and the surrounding air as the ’cladding’ mate-
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rial [73]. The law of reflection, Eq. 3.1, and the Snell’s law of refraction, Eq. 3.2,

govern the propagation of light in the ray picture.

θi = θr (3.1)

n1sin(θ1) = n2sin(θ2) (3.2)

In the case where n1 > n2, above a critical angle θc none of the light will be

refracted into the outer material and all of the light will be reflected back. This

angle can be calculated from Snell’s law by setting the angle of refraction to π/2

indicating that the light doesn’t propagate into the cladding medium. From this

we can get θc as,

θc = sin−1(
n2

n1

) (3.3)

As we can see in Fig. 3.1(b), light at an angle θ1 < θc is not guided in the

waveguide and leaks into the cladding when it reflects off the interface between

the core and cladding. With each successive reflection some of the light in the

unguided wave loses its power to the cladding. On the other hand, light at the

critical angle θc is guided within the waveguide and can propagate through the

waveguide with lower losses.

Studying the guiding of light using a mode picture gives us deeper under-

standing of the propagation of light in a waveguide and how this varies with

frequency. As shown in Fig. 3.1(a), for a given cross section h×w of the waveg-

uide we can solve for the eigenmodes of the waveguide using the Maxwell’s

equations, Eqs. 2.1-2.4, and boundary conditions at the interface between the
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Figure 3.1: (a) A cross sectional view of a waveguide with core index n1 and
cladding index n2. (b) Side view of the waveguide showing guided light (solid,
red) traveling in the waveguide at an angle of incidence θc that allows TIR, and
unguided light (dashed, red) at a smaller angle of incidence θ1 that leaks into
the cladding.

core and cladding with refractive indices n1 and n2. The eigenmodes give us the

propagation constant for a given mode as a function of frequency. This gives us

the effective index of the waveguide neff that lies in between n1 and n2. If the neff

is closer to n1 it implies that the mode is more confined within the core, whereas

if it is closer to n2 it implies that the mode is less confined within the core and

leaks into the cladding. neff also gives us the group velocity dispersion of the

waveguide that can be used to determine the gain that results in modulation in-

stability that initiates the frequency comb generation process as was discussed

previously in Section 2.4.

The transverse electric (TE) modes have their electric field ~E oriented along

the x axis. The magnetic field ~H and the wave vector ~k, are orthogonal to each

other and to the electric field and are oriented in the plane of Fig. 3.1(b), the y-z
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plane. The transverse magnetic (TM) modes have their magnetic field oriented

along the x axis and the electric field and wave vector lie in the y-z plane. The

conditions on the fields that are required to solve for the TE and TM modes are

as follows,

− Tangential component of E and H has to be continuous across the interface

between two materials,

− For the TE modes, Ey = 0 and Ez = 0, as the electric field is oriented in the

x direction.

− For the TM modes, Hy = 0 and Hz = 0, as the magnetic field is oriented in

the x direction.

While anayltical solutions for the modes can be found using these boundary

conditions, practically using Finite Element Method (FEM) based mode solvers

becomes a computationally less intensive task. Mode solvers such as the one

provided by COMSOL Multiphysics R© [74] can be used to solve for the eigen-

modes of the waveguide. Using the COMSOL mode solver which incorporates

these conditions along with the wave equation derived from Maxwell’s equa-

tions previously, we get field distribution eigenmodes and the effective waveg-

uide index neff as eigenvalues for a waveguide with a given cross section. The

distribution of the field for the fundamental TE mode (TE0) of a waveguide

with a cross section 950 × 1500 nm with the core as Si3N4 and cladding as SiO2

is shown in Fig. 3.2.

For every eigenmode of the waveguide, we have a corresponding eigensolu-

tion for the effective waveguide index neff that leads to a propagation constant

β,
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Figure 3.2: The electric field distribution for the TE0 mode at a wavelength of
1560 nm for a Si3N4 waveguide with a SiO2 cladding and a cross section of
950 × 1500 nm. Most of the mode remains confined within the Si3N4 but there
is some leakage of the mode to the cladding SiO2. neff = 1.8524 for this cross
section.

β =
ωneff

c
(3.4)

The dispersion of the refractive indices of the core and cladding are incorpo-

rated into these calculations through their respective Sellmeier equations, that

gives us the dispersion of the effective waveguide index neff(ω). The phase ve-

locity and group velocity are given by the relations,

vp =
ω

β
(3.5)

vg =
∂ω

∂β
(3.6)

For a given wavepacket, the phase velocity, vp, is the velocity at which the
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phase of a particular frequency component of the wavepacket propagates whereas

the group velocity, vg, is the velocity at which the envelope of the wavepacket

propagates. The group velocity dispersion is the derivative of the inverse of the

group velocity and is given by,

GVD(ω0) =
∂

∂ω

( 1

vg

)

ω=ω0

(3.7)

=
∂

∂ω

(∂β

∂ω

)

ω=ω0

=
(∂2β

∂ω2

)

ω=ω0

= β2 (3.8)

We have already discussed in some detail previously how the GVD factors

into the parametric gain for the FWM process in Section 2.4. Bulk silicon nitride

has a GVD that is normal (i.e. positive β2) at typical pump wavelengths used

in this dissertation of around 1560 nm. Modal dispersion due to the waveguide

cross section allows us to compensate for this and achieve a negative value of β2

at the pump wavelength λp = 1560 nm. In Fig. 3.3 β2 for waveguides with cross

sections 950 × 1500 nm and 730 × 1500 nm is shown which has a negative value

at 1560 nm, a typical pump wavelength used in this dissertation. Throughout

this dissertation, we use waveguides with a cross section of 950 × 1500 nm or

730 × 1500 nm.

3.2 Ring resonators

In Chapter 2 we looked at how nonlinear effects in materials benefit from high

intensities. In the previous section we looked at how high confinement waveg-

uides enhance the intensity of light. This happens when the power carried by

the incident light in the form of electromagnetic fields is confined to an ex-
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Figure 3.3: Group Velocity Dispersion for waveguides with cross sections
950 × 1500 nm and 730 × 1500 nm. These cross sections both allow for anoma-
lous GVD at our typical pump wavelength λp = 1560 nm.

tremely small modal area on the order of 1 µm2. The intensities achieved within

these high confinement waveguides still require a significant amount of power

to be carried in the light in order to observe nonlinear frequency conversion.

One approach to boosting these powers is by packing a significant portion of

the power in a short burst such as an optical pulse. Typically nonlinear interac-

tions in straight waveguides or optical fibers are observed in this manner. The

fiber or waveguide with the right dispersion for phase matching of the nonlin-

ear process being studied is pumped with a extremely short optical pulse typi-

cally on the femtosecond scale. The high power at the peak of the pulse results

in a non-negligible nonlinear response which leads to nonlinear frequency con-

version and leads to spectral broadening. The field of optical frequency combs

has particularly benefited from the nonlinear spectral broadening in dispersion

engineered optical fibers and optical waveguides in several material platforms.

Another way of enhancing the power is by using a cavity to recirculate the

power. A cavity results when an optical wave goes over the same path repeat-
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edly. In the right conditions, the wave will overlap with itself and add up con-

structively over successive round trips around the cavity which leads to an en-

hancement in the field strength and the power within the cavity. Such a condi-

tion is called as being on ’resonance’ with the cavity. The resonance condition

occurs when an integer number of cycles of light at a given frequency exactly fit

into one round trip around the cavity which allows for the field to constructively

interfere with the input field entering the cavity and add up. Mathematically,

this can be described as, the phase accumulated by the light over one round trip

should be an integer multiple of 2π,

φ(ω) = β(ω)× L = 2πm (3.9)

Equivalently since β = ωneff/c = 2πneff/λ we get the relation,

Lneff = mλ (3.10)

The evanescent tails of the eigenmodes shown in Fig. 3.2, overlap which

leads to coupling of light between the waveguides that depends on the gap be-

tween the waveguides g. The coupling constant based on the gap is κ. As we can

see in Fig. 3.4, at the coupling region the coupling is κ and the transmission is t.

Assuming lossless coupling, t2+κ2 = 1. The round trip loss is a = e−αL where α

is the conventionally used parameter for waveguides, loss per unit length. The

transmitted power through the ring, Ptr, and the power circulating in the ring,

Pcirc normalized to the input power, are given by the following equations [75],
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From these equations it is clear to see that the circulating power will be max-

imum, when the cos(βL) is maximum and this directly leads us to the resonance

condition we discussed earlier in Eq. 3.9. The circulating power and transmitted

power are normalized to the input power |A0|.

We use the propagation constant, β that we obtained from COMSOL FEM

simulations for the 730 × 1500 nm waveguide and assume a ring with a radius

of 100 µm to look at the transmission of the ring resonator built using such a

geometry. Critical coupling is achieved when the round trip loss a equals the

transmission at the coupling region t that results in the transmission on reso-
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nance dropping exactly to 0. We assume exaggerated linear losses of 20 dB/m

and a corresponding κ = 0.34 that leads to near critical coupling for a resonator

with a radius of 100 µm to better illustrate the resonance feature. For this case,

as we see in Fig. 3.5, we see a resonance condition at 1559.14 nm and 1561.00 nm.

Typical losses for silicon nitride waveguides fabricated using the processes used

for devices in this dissertation are 4.2 dB/m [71], or 0.8 dB/m [72] for an opti-

mized process to reduce sidewall roughness of the waveguides and limit scat-

tering losses.
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Figure 3.5: Resonances for a ring resonator with radius 100 µm for a waveguide
with a cross section of 730 × 1500 nm. We observe resonances at 1559.14 nm and
1561.00 nm.

The spacing between the resonances is the free spectral range (FSR) of the

resonator. In this dissertation we use a typical FSR of 200 GHz.

3.3 Silicon nitride as a nonlinear optical material

Nonlinear interactions can be observed in a variety of materials with varying

nonlinearities. Materials with higher nonlinearity show nonlinear effects at very

43



low light intensities and conversely materials with lower nonlinearities at ex-

tremely high intensities. Some of the strongest nonlinearities can be observed

in alkali vapors such as Rubidium with extremely low intensities as low as a

few photons [76]. Noble gases on the other hand show extremely low nonlin-

earities, yet high harmonic generation can be demonstrated in these gases with

extremely high power lasers as in weakly ionised Argon gas [77]. Both these

extremes require highly controlled systems with precise control of pressures or

operation in the presence of a vacuum.

To observe nonlinearities at moderate powers in compact form factors with

relatively less complex systems a significant amount of work has been done

in silica glass and fiber [4, 7]. Waveguides made using various materials rep-

resent a similar platform for observing nonlinear effects at moderate intensi-

ties. Complementary metal-oxide-semiconductor (CMOS) technologies have

matured significantly due to their use in the large scale electronic chip fabri-

cation process [10]. The primary material used in these processes is Silicon

(c-Si) that has a typical refractive index of 3.48 at 1550 nm in the telecommu-

nications C-band. Silica (SiO2) has a refractive index of 1.45 at 1550 nm. The

high index contrast allows for very tight confinement in waveguide geome-

tries [78]. The nonlinear refractive index of silicon at telecom wavelengths is

4 × 10−18m2/W [79]. This is significantly higher than the nonlinear refractive

index of silica that is 2.6 × 10−20m2/W that leads to much higher nonlinearity

(γ = 300m−1W−1) [10]. However one significant drawback of silicon based in-

tegrated photonic devices arises from the two photon absorption process. The

bandgap of silicon is 1.17 eV that corresponds to a wavelength of 1060 nm [80].

This means that at 1550 nm two photon absorption (TPA) is observed. TPA lim-

its the nonlinear effects and is detrimental to FWM process that leads to broad-
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band frequency comb generation [81]. Thus, pumping a silicon ring resonator

in the telecommunications wavelength range makes it difficult to generate a fre-

quency comb. Indeed, by pumping beyond the two photon absorption wave-

length, in the mid infrared, frequency combs have been generated in silicon

microresonators [50, 82]. Silicon resonators are an ideal material platform for

frequency comb generation in the mid infrared.

Silica can also be formed into resonant structures on a micron scale to gener-

ate frequency combs due to its nonlinearity. One significant advantage of using

silica microresonators is the ability to get extremely pure crystalline silica res-

onators with low losses. This compensates for the lower nonlinearity as com-

pared to silicon by having integrated microresonators with quality factors over

100 × 106, due to the lower loss [83]. Frequency combs can be generated in these

silica microtoroids, and indeed the first demonstration of a continuous wave

pumped Kerr nonlinearity based frequency comb was in these resonators [49].

Silica waveguides and resonators exhibit strong Raman gain arising from the vi-

brational levels of the crystal structure [84]. Raman gain allows for observation

of such phenomena as stokes soliton generation [85], and Raman lasing [86] in

silica microresonators, but it also has detrimental effects that can limit the band-

width of cavity solitons generated in such a device [87]. The bandgap of silica

is 9 eV that corresponds to 138 nm and means that TPA is negligible at telecom

wavelengths [88].

Silicon nitride is a material also used extensively in the microelectronics fab-

rication process as a passivation layer acting as a diffusion barrier preventing

water molecules form interacting with the circuits to avoid corrosion [89] or

as an etch mask [75]. This has meant that significant knowledge of silicon ni-
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tride film deposition can be derived from the microelectronics technology and

applied to building waveguide and resonator structures. The refractive index

of the low pressure chemical vapor deposition (LPCVD) based silicon nitride

films used in this dissertation is 1.99 at 1550 nm. This is lower than the refrac-

tive index of silicon which leads to lesser confinement of the light when silica

is used as a cladding material, but the index contrast is still high enough to al-

low for significant enhancement of the intensity due to the confinement. The

nonlinear index of silicon nitride is 2.5 × 10−19 m2

W
[8, 9] that is about 10 times

higher than that of silica but less than that of silicon. The material shows neg-

ligible TPA at telecom wavelengths as the bandgap is 5 eV or 248 nm in wave-

length. Low waveguide losses as low as 0.8 dB/m [72], quality factors higher

than 10×106, high confinement, negligible TPA, high FWM gain and the abil-

ity to engineer the dispersion based on the cross section make silicon nitride an

ideal material for the generation of optical frequency combs in microresonator

devices pumped at telecom wavelengths.
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CHAPTER 4

THERMALLY CONTROLLED SOLITON MODELOCKING IN

MICRORESONATORS

Frequency combs rely upon the broadband coherence across the generated

optical spectrum to enable applications such as frequeny metrology [90], direct

frequency comb spectroscopy [91], Dual comb spectroscopy [27, 91–94], rang-

ing [95,96], low phase noise RF signal generation [31,32] and other applications.

In order to achieve broadband coherence, in the case of supercontinuum gener-

ation based frequency combs, the coherence of the modelocked pump laser is

transferred to the broadened spectrum through the nonlinear broadening pro-

cess utilizing self-phase modulation to compress the pulse in time and broaden

the spectrum while minimizing nonlinear processes that degrade the coherence

such as modulation instability that is seeded from noise [35, 97].

Microresonator based frequency combs as we saw earlier in Section 2.5, when

pumped in the anomalous group velocity dispersion region, rely upon the mod-

ulation instability to generate sidebands that initiate the comb generation pro-

cess. This led to most of the preliminary results in microresonator based fre-

quency combs being high noise and incoherent, but having broadband spectra.

It was unclear if such a process seeded from noise through MI would result in

the generation of coherent optical spectra. A clearer understanding of the non-

linear dynamical evolution of the frequency comb generation process and how

it depends on the dispersion, pump power as well as detuning of the pump

laser frequency from the resonance frequency of the microresonator was re-

quired to allow microresonator based combs to be used for most applications

that required coherence over the optical bandwidth spanned by the comb.
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4.1 Modeling of frequency comb evolution

Work done by Lugiato and Lefever in resonant cavities that included a nonlin-

ear material provided the primary basis for understanding of these systems [98].

The evolution of the light as it propagated around the cavity is predicted by a

differential equation including the effects of diffraction and self focusing of light

due to a third order nonlinearity. In the case where this system is pumped with

a plane wave, they predict that the plane wave will spontaneously be converted

into a stationary beam with a transverse stripe structure within the cavity under

the right conditions of diffraction and self focusing. This system is analogous to

microresonators or fiber cavities pumped by a CW pump laser. The CW pump

laser is analogous to the plane wave input field, the diffraction is analogous

to the dispersion of the waveguide or fiber cavity and the Kerr nonlinearity is

analogous to the self focusing nonlinearity. Other terms for linear losses within

the cavity, detuning with respect to the cavity mode, and terms for other nonlin-

ear effects that may affect the evolution of the field can be incorporated into the

differential equation to predict the evolution of the frequency comb as various

parameters are modified. The study of modulation instability in synchronously

pumped dispersive and nonlinear cavity predicted the existense of stable tem-

poral dissipative structures in these cavities [99]. A modified Lugiato Lefever

equation (LLE) formalism for microresonator and fiber cavities was developed

after the preliminary experimental results were demonstrated to better under-

stand these results as well as identify other regimes of operation. The modified

Lugiato Lefever equation can include additional terms for effects that can af-

fect the evolution of the comb generation process such as multiphoton absorp-

tion [81], Raman gain [100]. The modified LLE takes the form,
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(4.1)

where E(t, τ) is the intracavity field, Ein is the input pump field with a fre-

quency ω0, t and τ are slow and fast time axes respectively, with τ referring to

the temporal distribution of the field within the cavity at a time t, βn is the n-

th order dispersion term, κ is the transmission at the coupling region, γ is the

nonlinear parameter, L is the cavity length, Tr is the round trip time. The LLE

predicts a solution that takes the form of hyperbolic secant squared pulses on a

CW background. The pulse power is given by the equation,

P (t) = P0 sech2(
t

τ0
) (4.2)

where τ0 is the pulse width of the soliton that is determined by the dispersion

and detuning.

The evolution of the intracavity field as the input field and detuning are

varied can be studied using the modified LLE and predicts several regimes of

operation for microresonator frequency combs. Here, the detuning is defined as

the difference between the frequency of the pump and the resonance frequency

of the cavity. Blue detuned implies that the pump frequency is higher than the

cavity resonance frequency. As the pump is tuned onto resonance from the blue

detuned side, first the continuous wave pump field breaks into several pulses

through modulation instability due to the generation of sidebands at the MI

gain peak. As it is tuned in further, closer to the zero effective detuning these
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pulses transition to a chaotic state with the pulses interacting with each other.

When the pump crosses the zero detuning point and crosses to the red detuned

side the pulses transition to a stable multi-soliton state. Tuning further into the

red detuned side the number of solitons in the cavity over one round trip drops

till a single soliton survives.
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Figure 4.1: Evolution of the comb as the detuning with respect to the resonance
frequency is tuned. (I) Modulation instability leads to the CW pump breaking
into a series of pulses, in the frequency domain this manifests as sidebands at
the peak of the MI gain. (II) The pulses interact in a chaotic state. (III) As the
detuning crosses the zero detuning point over to the red detuned side, we see
the emergence of multiple stable solitons in the cavity. (IV) Tuning further into
the red detuned, a single soliton survives, characterized by a smooth hyperbolic
secant spectrum with a CW background. The image is adapted from [101] which
uses a 226 GHz ring with a cross section of 725 × 1650 nm.

As we can see from Fig. 4.1, fine control of the detuning results in the ability

to reach a cavity soliton state. In this modelocked state, the phase relationship

between the different frequency components of the frequency comb remains

constant leading to the formation of pulses. Additionally, it also leads to perfect

equidistance of the frequency comb lines with the separation between adjacent

comb lines being frep that corresponds to the repetition rate of the pulses. As we

discussed earlier in Section 2.5, the ability to generate coherent broadband spec-
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tra enables applications in spectroscopy, low-noise RF generation and ranging.
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Figure 4.2: A stable three soliton state for a microresonator with radius 120 µm
and waveguide cross section 950 × 1500 nm.
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Figure 4.3: A stable two soliton state for a microresonator with radius 120 µm
and waveguide cross section 950 × 1500 nm.

We use the dispersion calculated using the COMSOL FEM solver for the

950 × 1500 nm cross section and assume a ring with a radius of 120 µm to sim-
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Figure 4.4: A stable single soliton state for a microresonator with radius 120 µm
and waveguide cross section 950 × 1500 nm.

ulate the solution to the intracavity field using an adaptive split step fourier

method [101]. By adjusting the detuning and adjusting the point at which we

stop on the red detuned side, the LLE predicts different modelocked solutions

with three, two and one soliton circulating in the microresonator cavity as can

be seen in Fig. 4.2 - 4.4.

The modified LLE indicates that there exists a route to deterministically

achieve soliton modelocked states in microresonators by adjusting the effec-

tive detuning from the blue detuned side and terminating the sweep on the

red detuned side. However practically there are limitations to how this can be

achieved precisely. One of the limitations arises from the fact that the effective

detuning with respect to the resonance has a bistability. This bistability is intro-

duced by the SPM that we studied in Chapter 2. In Section 3.2, we looked at the

case of resonances for a ring with radius 100 µm in silicon nitride with a cross

section of 730 × 1500 nm to look at the transmitted power through the cavity. In
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this analysis, the effects of the SPM were not considered. The analysis consid-

ered a resonance condition given in terms of the circulating power by Eq. 3.12.

Here the phase term for a given wavelength is φ(λ) = β(λ) ∗ L however when

we include the nonlinear phase introduced by the nonlinearity through SPM,

the phase term becomes φ(λ) = β(λ) ∗ L + φNL(λ). The power in the ring is

given by B0 and the input power is given by A0. The power circulating in the

cavity normalized to the input pump power including the nonlinear phase shift

is given by,

Pcirc(λ) =

∣

∣

∣

∣

B0

A0

∣

∣

∣

∣

2

=
a2 κ2

1 + a2t2 − 2at cos(β L+ γ |B0|2 L)
(4.3)

As we can see in Eq. 4.1, the SPM term means that the power coupled into

the ring acts on itself to shift the resonance wavelength due to the nonlinear

phase. This creates a bistable solution for the power coupled into the cavity. We

look at the resonance close to 1561 nm for the 730 × 1500 nm cross section ring

with a radius of 100 µm that we saw in Fig. 3.5, but consider a lower linear loss

in the waveguide of 4 dB/m [71] that is consistent with the values we expect for

typical waveguides in this dissertation. We look at the unperturbed Lorentzian

resonance shape according to Eq. 3.12 in black, and solve for the power coupled

into the cavity using the Eq. 4.1. This leads to the distortion of the resonance.

We look at two cases of input power in the bus waveguide |A0|2 = 250 mW and

500 mW in red and blue respectively.

As we can see from the red and blue curves in Fig. 4.5, the effective detun-

ing of the pump to the resonance remains on the blue detuned side even if the

pump wavelength lies at a higher wavelength than what is termed as the cold
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Figure 4.5: Shift induced in the resonance due to the SPM at high intracavity
powers. We consider the case of the unperturbed Lorentzian resonance in black,
and input powers of 250 mW and 500 mW in red and blue respectively.

cavity resonance wavelength of 1561 nm. Tuning into resonance from the blue

detuned side, one needs to tune further than this wavelength to be able to ac-

cess the red detuned side where the solution of the LLE predicts the existence

of the soliton states. Additionally, the soliton generation process is initiated by

the modulation instability that occurs on the blue detuned side so the laser fre-

quency has to be tuned in a specific direction from blue to red detuned in order

to access the soliton states.

In addition to the shift in resonance introduced by the Kerr nonlinearity

we also see a shift introduced by the thermal nonlinearity. The coupled pump

power leads to heating of the microresonator. This introduces a thermal shift in

the resonance frequency due to the thermo-optic effect
(

∂n
∂T

)

. In the case of sili-

con nitride, the thermo-optic effect results in an increase in index corresponding

to the temperature
(

∂n
∂T

≥ 0
)

, which means that the thermal shift acts in the same
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direction as the SPM induced shift that tilts the resonance further.

Following this preliminary work on modeling frequency comb generation

and its dependence on pump-cavity detuning using the modified LLE, cavity

solitons have been demonstrated in many of the material platforms on which

frequency combs have previously been demonstrated, including Magnesium

Fluoride [102], Silica [103–108], Silicon [82], Hydex [109], Lithium Niobate [110,

111], Aluminum Nitride [112], and Silicon Nitride [113–119].

The properties of Silicon Nitride that we previously discussed in Section

3.3, make it a suitable material for the demonstration of soliton modelocked

combs using pumps in the near infrared region and more specifically in the

wavelengths that form part of the telecommunications bands. The maturity of

optical telecommunications technology allows us access to good laser sources

with narrow linewidth, high sensitivity and high bandwidth photodetectors as

well as other components such as filters, optical fibers etc.

The ability to generate coherent soliton frequency combs at the chip scale

using microresonators opens up several applications such as dual-comb spec-

troscopy, distance ranging, low phase noise microwave sources, and coherent

communications. It also enables the study of phenomena such as breather soli-

tons [120–122], dispersive wave (Cherenkov radiation) emission [113], stokes

solitons [85], bidirectional solitons in a single microresonator [123–125], and

soliton crystals [126].

Coherent spectra can also be generated in normal GVD microresonators,

where effects such as higher order mode interaction induced avoided cross-

ings [127], or tunable avoided crossings using coupled rings [128], locally distort
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the GVD and allow for phase matching of the modulation instability to initiate

broadband comb generation.

4.2 Pump laser control of soliton modelocking

An obvious approach to controlling the effective detuning between the pump

laser and the microresonator cavity is to tune the pump laser wavelength. Typ-

ically the linewidth of the cavity is O(100 MHz) for nominal quality factors of

the microresonators of 2× 106 [71]. For most tunable lasers there are two tuning

mechanisms, a coarse tuning based on mechanical actuation of the cavity length

that tunes the laser wavelength over a large wavelength span and finer tuning

based on piezoelectric actuation of one of the cavity end mirrors that tunes the

lasing wavelength finely. The piezoelectric wavelength tuning speed is limited

to how fast the piezoelectric material can be electrically modulated. The typical

amplitude of the piezoelectric scan corresponds to 30 GHz at slow modulations

of around 100 Hz that drops to 6 GHz at the maximum modulation speed of

2 kHz [129]. The piezo tuning amplitude is adequate to be able to tune starting

from off resonance on the blue detuned side of the resonance and tuning into

resonance and across the zero effective detuning to the red detuned side and

eventually off resonance. Based on the modified LLE simulations, we expect to

be able to generate a stable single soliton state using a waveguide with a cross

section 950 × 1500 nm as seen in Fig. 4.4. A typical ring resonator used for the

generation of soliton modelocked frequency combs is shown in Fig. 4.8. The

pictured ring has a cross section of 730 × 1500 nm, with a free spectral range of

220 GHz.
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We use a tunable laser at close to 1540 nm and amplify it using an erbium

doped fiber amplifier (EDFA) that acts as the pump laser. The amplified pump

laser is coupled to the bus waveguide by means of a lensed fiber (OZ Optics).

The polarization of the pump laser is controlled by a paddle polarization con-

troller to ensure that the input light is TE polarized to ensure that we operate

in the TE0 mode [Fig. 3.2], that has anomalous GVD at the pump wavelength of

1540 nm [Fig. 3.3]. We use a waveguide with a cross section of 950 × 1500 nm.

The bus waveguide has an inverse taper at the input and output facets that

expands the waveguide mode adiabatically and maximizes the overlap of the

expanded mode with the output of the lensed fiber leading to significantly im-

proved input coupling. We use a microresonator with a free spectral range of

≈ 200 GHz. We couple in 56 mW of pump power into the bus waveguide. At

the output, the generated spectrum is coupled out using an aspheric lens that

has an anti-reflection coating for telecommunication wavelengths. The output

is split into three parts using fiber or free space optics. One part is sent to an

optical spectrum analyzer (OSA) to record the generated frequency comb spec-

trum the other two parts are sent to a fast photodiode to monitor the pump

transmission and also to measure the RF noise using a RF Spectrum Analyzer

as the pump-cavity detuning is varied. The pump laser is swept across the cav-

ity resonance from the blue detuned side to the red detuned side by applying a

slow triangular ramp signal (100 Hz) from a waveform generator to the piezo

tuning input of the laser.

The transmitted pump power normalized to the maximum pump transmis-

sion when the pump is completely off resonance is recored as the laser is swept

across the resonance and is shown in Fig. 4.6. We observe several features in the

normalized pump transmission as this sweep is performed. These features as
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Figure 4.6: The normalized pump power as the pump laser is swept across the
resonance by applying a triangular ramp sweep to the piezo control on the laser.
We see several features (i-v) that are explained in the text. We also see a step-
like feature indicated by the arrow that is characteristic of the transition to a
particular soliton state.

indicated on the plot are as follows,

i. First we see the normalized transmitted pump power begins to dip below

1 as the laser light starts coupling into the ring.

ii. As the effective detuning is reduced further, we see noise appear on the

pump transmission.

iii. Tuning further, the effective detuning reaches the zero detuning point at

which point the intracavity power begins to drop and we see a jump in the

transmitted power.

iv. This is followed by a step like feature in the pump transmission where the

pump is on the effective red detuned side.

v. Finally, the pump transmission returns to 1 when the pump is completely

off resonance on the red detuned side of the cavity.
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As we see here in Fig. 4.6, pump laser tuning allows access to soliton states

[102]. However, the speed of laser tuning limits the repeatable generation of

soliton states in a given microresonator cavity. The frequency sweep of the laser

shown in Fig. 4.6 results in a characteristic step like feature indicating a transi-

tion to soliton states. However the appearance of this step is not repeatable at

the limited tuning speeds of the pump laser. The stochastic nature of the soliton

step appearing as the effective detuning is swept is a result of the thermal and

Kerr nonlinearities that introduce an additional phase shift as the intracavity

pump power changes. The transition from the blue detuned to the red detuned

side of the resonance frequency causes a drop in the intracavity power. This

results in a corresponding recoil of the resonance as the nonlinear phase shift

reduces. While the Kerr nonlinearity is instantaneous, the thermal nonlinearity

has a related time constant due to the dissipative nature of distribution of heat

in the material. This means that the thermal recoil will occur over a certain finite

time. The laser-cavity detuning will have to be adjusted to counter this recoil

in order to stably and repeatably access the soliton states. Typical thermal time

constants for microresonator devices are a lot faster (O(100 ns)) than tunable

lasers can be tuned (O(1 ms)) which limits the use of laser tuning to counter the

thermal recoil. While limited in terms of repeatability, we can tune the laser in

from the blue detuned side and terminate the scan within the step to access the

soliton state with a non-zero probability. One such instance is shown in Fig. 4.7

where the generated single soliton agrees remarkably well with the predicted

hyperbolic spectral pulse shape on top of a CW background from the pump.

The dashed blue curve is a best fit to the hyperbolic secant pulse spectrum with

a spectral 3 dB bandwidth of 24 nm.

Several approaches have been used to counter the effect of thermal recoil
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Figure 4.7: The generated single soliton state by tuning the pump laser from
the blue detuned to the red detuned side and terminating the sweep in the soli-
ton step. The recorded optical spectrum (in red) agrees well with a hyperbolic
secant pulse spectrum (dashed blue) with a 3 dB bandwidth of 24 nm.

on the effective detuning in order to stably access the detuning range required

for the soliton states including an abrupt increase in the pump power using

acousto-optic modulators (AOMs) [105,119], single sideband phase modulators

to create a rapidly tunable pump [106], auxiliary lasers that couple into a differ-

ent longitudinal mode of the microresonator to counter the drop in intracavity

pump power [107, 109], and control of the free carriers in silicon to induce a

change in the refractive index [82]. We use integrated heaters to achieve this

fast control of the effective pump-cavity detuning to stably and repeatably ac-

cess the soliton states.

4.3 Thermally controlled soliton modelocking

Silicon nitride and silicon dioxide, the core and cladding materials of the waveg-

uides used to fabricate the microresonators used to generate frequency combs

have a refractive index that varies with temperature. By adjusting the tempera-

ture of the microresonator the efective index of the waveguide can be tuned. The

slope of the thermo-optic coefficient determines whether the induced phase due
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to a change in temperature is positive or negative. For materials with a positive

thermo-optic coefficient, the phase shift due to this thermal nonlinearity is the

same sign as the nonlinear phase due to the Kerr nonlinearity. At room temper-

ature, the thermo-optic coefficients of the the two materials are as below [130],

∂nSiN

∂T
= 2.45± 0.09× 10−5 RIU/◦K (4.4)

∂nSiO

∂T
= 0.95± 0.1× 10−5 RIU/◦K (4.5)

Silicon nitride and oxide have thermo-optic coefficients with a positive sign

implying that the index increases with increasing temperature. From the res-

onance condition given by Eq. 3.10 and the thermo-optic coefficients of the ni-

tride and oxide Eqs. 4.4 & 4.5, an increase in temperature results in an increase

in the effective index neff which results in an increase in the resonance wave-

length λm and a decrease in the resonance frequency ωm. This means that if

the pump laser ωp starts blue detuned with respect to the resonance frequency

δ = (ωp − ωm) > 0, the resonator needs to be cooled down in order for the pump

to be tuned from the blue detuned side (δ > 0) to the red detuned (δ < 0) side

of the resonances. One potential approach to tuning a microresonator thermally

is to place a thermoelectric cooler (TEC) element under the microresonator chip.

The TEC element relies on the Peltier effect [131] to create a temperature gradi-

ent across a junction between two conductors when a current is passed through

the junction. The chip can be placed at either end of the TEC to raise or lower

the temperature with respect to the ambient temperature. At one end of the

junction, the chip effectively acts as a heat sink and raises its temperature rela-

tive to the ambient temperature, or it can be placed on the opposite end of the

junction where it gets cooled with a heat sink drawing heat away at the other
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end. However the heating or cooling of the chip using this approach relies on a

diffusive heat transfer process and can be very slow. It can potentially be slower

than the laser tuning speeds depending on how thick the oxide and silicon sub-

strate layers are with time constants for the tuning of the order O(1s). This slow

tuning speed at best can allow us to switch between two detuning levels but it

cannot be relied upon to generate a soliton state. As we saw earlier in Section

4.2 apart from the direction of tuning, the speed of tuning also affects the proba-

bility of generating a soliton state, so a detuning control approach that can allow

significantly faster tuning speeds is required.

Figure 4.8: A typical ring resonator with integrated heaters used to generate
soliton modelocked frequency combs. The ring in the picture has a cross section
of 730 × 1500 nm, with a free spectral range of 220 GHz at 1560 nm. The gap
between the bus waveguide and the ring is 450 nm.

The fabrication process for the microresonator devices [71, 72] allows for the

deposition of a metal layer on top of the Oxide cladding layer. The thickness

of the cladding layer is 3 µm including a 500 nm layer of HTO and 2.5 µm of

PECVD oxide. A thin 100 nm layer of platinum is sputtered on top of the oxide

layers and heater patterns are defined using photolithography. The heaters lie

above the ring and form a near complete arc following the ring and are 6 µm

wide as can be seen in Fig. 4.8. The two ends of the heater arc are tapered out
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into contact pads with a rounded rectangular shape 25 µm on each side. The

larger contact pad area allows us to easily land tungsten probe tips and make

contact with the heater layer. The contact pads are spaced at a 100 µm pitch that

matches the pitch of the tungsten probe tips. The process of heating relied upon

is Joule heating where a current passed through the resistive heater generates

heat. This heating of the platinum layer leads to the creation of a temperature

gradient through the oxide and nitride layers resulting in a change in the neff of

the waveguide. This heat transfer process is also diffusive but since the distance

of the heater layer from the waveguide layer is much smaller than in the case of

the TEC the thermal time constant is much smaller.
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Figure 4.9: We modulate the heater voltage with a square wave while on res-
onance (purple curve). The corresponding response in the pump transmission
(red curve) shows an exponential rise and decay which yields the thermal time
constants by fitting to an exponential rise and fall (blue curves).

We test the thermal response times for our integrated heaters by operating

at a low optical power where the thermal and Kerr nonlinearity are low. This
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allows us to measure the thermal constants and rise and fall times without any

distortion due to these non-linearities. We park the heaters at a linear point on

the dip of the resonance and modulate the heater with a square wave. The pump

transmission curve is recorded and normalised to 1. From a fit to exponential

rise and fall functions e−t/τ and 1 − e−t/τ , the time constants for the rise and

fall exponential curves are, trise = 3.82 µs and tfall = 8.60 µs. The 90-10 time

constants are τrise = 8.40 µs and τfall = 18.89 µs. The fall time results in

a bandwidth for the heaters of 18.52 kHz. This is significantly faster than the

bandwidths for the piezo control on the laser, that is at best limited to 2 kHz at

very smaller amplitude and around 300 Hz at larger amplitudes.

Additionally, the ability to tune the resonance frequency by applying a cur-

rent to the heaters allows us to use fixed frequency lasers instead of tunable

lasers as the pump. Tunable lasers derive their tunability from mechanical

movement of the cavity to adjust the cavity length that changes the laser fre-

quency. The mechanical movement of the laser cavity is derived by mechanical

actuators on on one of the end mirrors for coarse tuning over a wide range or

piezoelectric tuning of one of the end mirrors to achieve fine tuning. This adds

phase noise to the laser output and leads to a broadening of the laser linewidth.

Typical linewidths over 5 ms of averaging for tunable lasers are 200 kHz [129].

The frequency comb generation process in microresonators as we have seen is

governed by parametric four-wave mixing (FWM), and this leads to a trans-

fer of phase noise and amplitude noise on the pump to the comb lines which

determines the linewidth of the comb lines [132, 133]. Using a quieter narrow

linewidth pump laser would lead to the generation of narrow linewidth comb

lines. Fixed frequency lasers, by design use a passive cavity, that allows for

much narrower laser linewidths. The laser we use is an external cavity laser
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(Redfern Integrated Optics Orion module) with an architecture consisting of a

Indium Phosphide gain chip with one highly reflective end acting as one cav-

ity mirror. This is butt coupled at the low reflection end to a planar waveg-

uide with a Bragg grating that acts the output mirror. The entire structure is

placed on top of a thermoelectric cooler that provides a small degree of tunabil-

ity (20 pm) around the center wavelength that the laser is designed for. The laser

is designed to align perfectly with one of the channels of the DWDM ITU grid.

The pump laser we use is a Channel 22 laser corresponding to a frequency of

192.2 THz (1559.79 nm). A schematic of the laser architecture and the spectrum

as measured in the laser datasheet [134] are shown in Fig. 4.10.

Gain Chip

Bragg Grating 

TEC

Figure 4.10: Schematic of the RIO laser architecture and measured output spec-
trum at the ITU Channel 22 (192.2 THz). Figure for the laser architecture
adapted from [134]

We amplify the pump laser using an EDFA and couple the light into the

bus waveguide using a lensed fiber. The polarization of the input light is con-

trolled using a 3 paddle polarization controller to ensure that we are coupling

into the TE0 mode. The light at the output is split into two parts to monitor the

optical and RF characteristics of the generated frequency comb. A schematic

of the setup used to generated thermally controlled solitons in silicon nitride

microresonators is shown in Fig. 4.11.

The impedance of the heaters is measured to be ≈ 240 Ω. We use the same
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Figure 4.11: Schematic of the experimental setup used to thermally control the
generation of frequency combs in a silicon nitride microresonator. The pump
laser is amplified using an EDFA. The output is characterized optically and
electrically using an Optical Spectrum Analyzer (OSA), Microwave Spectrum
Analyzer (MSA) to characterize the RF noise, and an Oscilloscope to monitor
the pump transmission. The electrical signals are generated by detecting the
optical output on a fast photodetector with a bandwidth ≥ 12.5 GHz.

microresonator with a free spectral range of 200 GHz. We amplify the pump

laser using an EDFA and couple 71 mW into the bus waveguide. We then apply

a DC offset current of 25 mA to send 150 mW of electrical power to the heaters

through tungsten probe tips from an arbitrary waveform generator. This brings

the resonance frequency of the microresonator close to the laser frequency such

that the laser is blue detuned with respect to the cavity resonance as required

to initiate the comb generation process. We then apply a triangular ramp sig-

nal at a frequency of 10 kHz corresponding to a power modulation amplitude

of 5 mW. As the resonance frequency is swept across the pump laser, we see

the pump transmission go through the same evolution as the pump tuning case

seen earlier in Fig. 4.6 until it reaches the zero detuning point. On the red de-

tuned side, due to the tuning speed being a lot closer to the speed of the thermal
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recoil, we see richer dynamics in the evolution of the soliton states. We see mul-

tiple steps corresponding to different numbers of soliton propagating around

the cavity. By carefully adjusting the termination point of the scan different soli-

ton states can be accessed. These single and multi soliton states are similar to

the ones predicted by the modifed LLE as we saw in Fig. 4.2-4.4. A sweep of the

cavity resonance frequency across the pump frequency using a triangular ramp

at 10 kHz is shown in Fig. 4.12.
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Figure 4.12: The normalized pump power as the microresonator resonance fre-
quency is swept across the pump laser by applying a triangular ramp sweep at
10 kHz with an amplitude of 5 mW in electrical power to the integrated heaters
using a waveform generator. On the red detuned side we observe multiple steps
that correspond to single and multi soliton states.

We record the evolution of the generated comb spectrum and the RF noise

using an OSA and MSA. The comb evolves through various states as the detun-

ing scan is terminated at various points on the blue and red detuned side. This

behavior closely agrees with the predictions from the modified LLE in Fig. 4.1.

The evolution of the optical and RF spectra is as follows

• First we see the generation of primary sidebands at the peak of the MI

gain spectrum [Fig. 4.13 (i)]. Here the optical spectrum has the primary
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sidebands and secondary peaks generated from cascaded FWM. The RF

spectrum is at the noise floor of the detection.

• Tuning further into resonance, we see the sidebands grow in power and

act as secondary pumps for additional FWM frequency conversion. This

leads to interacting mini-combs with the possibility of different comb lines

being generated within a single cavity resonance. This interaction between

families of mini-combs manifests as spikes on the RF spectrum [Fig. 4.13

(ii)].

• As we tune in further close to the zero effective detuning point, the comb

transitions to a high noise chaotic state. With the increase in pump power,

we see chaotic interactions that eventually lead to the broad RF noise that

approximately spans the cavity resonance linewidth. On the optical spec-

trum this appears as a broad spectrum with comb lines generated at each

cavity resonance with a plateau like spectrum [Fig. 4.13 (iii)].

• When the scan is terminated on the red detuned side within the single

soliton step, the RF noise from the high RF noise drops back to the noise

floor. On the optical spectrum we see a transition from the plateau like

comb spectrum to a hyperbolic secant pulse shape [Fig. 4.13 (iv)]. Based

on the hyperbolic secant fit, the 3 dB bandwidth of the soliton is 20 nm

corresponding to 120 fs pulses.

This transition in the RF noise from the high noise state to the noise floor

was first observed in Silicon Nitride microresonators and was confirmed to be

indicative of pulsed operation [60]. This drop in noise results from the organi-

zation of the strongly interacting pulses within the cavity to a series of stable

solitons as predicted by the modified LLE. In the frequency domain this results
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in perfect equidistance of the comb lines in frequency and the multiple comb

lines within a single cavity resonance drop transition to a single comb line. The

spacing between the comb lines is the inverse of the repetition rate frep of the

pulses circulating within the cavity.
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Figure 4.13: The optical and RF spectra as the comb evolves are recorded using
an OSA and MSA. The recorded spectra as the detuning is varied and the scan is
terminated at different detunings correspond to (i) the initial sidebando forma-
tion at the MI gain peak, (ii) the mini-comb formation, (iii) the broadband high-
noise regime, with the plateau-like optical spectrum and broad noise peak and
(iv) the low-noise single-soliton state with a fitted sech2-spectral profile (blue
dashed curve).

The pump laser frequency starts blue detuned with respect to the cavity res-

onance, so the cavity needs to be cooled in order for the effective tuning to go

from the blue to the red. So we first apply a downward ramp on the heater cur-

rent. This downward ramp continues to the point of zero effective detuning. At

this point the power drop in the cavity results in a thermal recoil that causes the

effective detuning to jump abruptly into the red detuned. We introduce a small
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but sharp increase in the heater current at this point. At the end of this sharp

increase, we terminate the scan and stop at a DC level. The amplitude of the

sharp increase partially compensates for the thermal recoil and determines the

effective detuning on the red detuned side at which we settle. Looking at this

in terms of equilibrium temperature, the drop in ring temperature due to the

drop in intracavity power is partially compensated by the rise in temperature

introduced by this sharp increase in heater current. The tuning curve is shown

in Fig. 4.14.

20 40 60 80 100 120 140 160 180

Time ( s)

0

2

4

6

8

10

12

14

16

H
e

a
te

r 
C

u
rr

e
n

t 
(m

A
)

Figure 4.14: The current tuning curve used to reach a soliton modelocked state
in a silicon nitride microresonator. The DC offset lines up the resonance close
to the laser wavelength. The top of the ramp is such that the laser starts blue
detuned with respect to the pump. The amplitude of the sharp increase in cur-
rent prior to termination of the tuning curve back at the DC level determines
the effective red detuning of the laser at the end of the tuning curve.

By adjusting the amplitude of the sharp increase we can precisely terminate

the scan in the single soliton state. The generated single soliton spectrum is

recorded and fit to a hyperbolic secant spectrum. The 3 dB bandwidth of the

generated soliton is 20 nm based on the hyperbolic secant fit. This corresponds
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to pulses with a pulse width of 120 fs. The recorded optical spectrum and fit to

the hyperbolic secant spectral shape can be seen in Fig. 4.15.
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Figure 4.15: A single soliton is generated by choosing the appropriate amplitude
of the sharp increase in the heater current prior to terminating the heater current
scan at a given DC level. The recorded optical spectrum is fit to a hyperbolic
secant spectral shape (dashed blue). The fit to the hyperbolic secant yields a 3
dB bandwidth of 20 nm.

By changing the amplitude of the sharp increase in the heater current, other

states that correspond to the steps with a higher number of solitons seen in

Fig. 4.12 can also be accessed. These states correspond to two or three solitons

circulating within a single round trip of the cavity. The relative phase between

the solitons results in the appearance of modulations on top of the time aver-

aged spectrum recorded by the OSA. The relative phase determines the shape

of the modulations. These spectra are recorded in various multi-soliton states

and are shown in Fig. 4.16. Of special interest is the state in Fig. 4.16 (a) that

depicts a state with every other comb line perfectly extinguished resulting in

a time averaged spectrum that appears to be at twice the expected comb spac-

ing. This corresponds to a series of pulse at twice the repetition rate determined

by one round trip of the cavity. This implies that there are two equally spaced

pulses within each cavity round trip perfectly separated from each other by a π

phase.
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Figure 4.16: Generated multi-soliton states corresponding to different detunings
as the scan is terminated. The spectrum in (a) is of particular interest because
it shows a two soliton state with the pulses exactly π out of phase within the
cavity.

With a slightly lower pump power, the thermal shift due to the drop in intra-

cavity power is lower. We lower the pump power to 28 mW in the bus waveg-

uide and record the transmission as the heater current is scanned. We observe

a low noise, 4 soliton step that is at a similar power to the high noise state as

shown in Fig. 4.17 (a). In this case the intracavity power due to the four solitons

within one round trip is approximately equal to the high noise state and this

state is thermally stable with negligible thermal recoil when the effective detun-

ing crosses the zero detuning point. This allows us to tune into this state slowly

as it is thermally stable with respect to the detuning. We can tune into this state

extremely slow near DC tuning. The resulting multi-soliton state is Fig. 4.17 (b)
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and shows a 4 FSR state. As before this corresponds to a state with 4 solitons

equally spaced within one round trip of the microresonator cavity spaced by a

π/2 phase shift from each other.
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Figure 4.17: (a) Pump transmission for a thermally stable 4 soliton state that we
can tune into at slow speeds. (a) The 4 FSR state shows a spectrum with every
4th line present. This corresponds to a state with four pulses exactly π/2 out of
phase within the cavity.

The same ring resonator in slightly different conditions supports a single

soliton within one cavity round trip, two equally spaced solitons with a π phase

shift, and four equally spaced solitons with a π phase shift. The waveguide

cross section used to generate these spectra is multi mode. These states appear

to be preferentially excited in this particular microresonator and this can be at-

tributed to the presence of mode crossings. The mode crossing results in a local

enhancement of the comb line near the crossing. Mode crossings occur due to

conversion of light from the fundamental mode to a higher order mode.

If we assume a perfectly rectangular waveguide, the modes are orthogonal

to each other. Any perturbation from the perfectly rectangular cross section can

result in coupling of light from the fundamental mode to a higher order mode.

In the ring resonator, side wall and top surface roughness can act as scattering

locations and allow coupling between modes. Additionally, the coupling region
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can act as a local perturbation and cause coupling between the fundamental and

higher order modes. The effective refractive indices for different modes differ.

This leads to different resonance frequencies for the different mode families. If

the resonance frequencies for the fundamental mode and a higher order mode

overlap at a particular frequency, this causes an enhancement in the coupling

between the two modes. Locally, at this frequency it leads to a change in the

dispersion of the fundamental mode. This creates an imbalance in the phase

matching that enhances a particular comb line. This results in the preferential

excitation of the two and four soliton states under the right effective detuning

and pump power conditions as seen in Fig. 4.18. Since the pulses are equally

spaced within the cavity at a harmonic of the native repetition rate, it results

in a harmonically modelocked state [135]. These can also be considered to be

soliton crystals with equidistant solitons [126, 136].

This technique of using integrated heaters to control the soliton generation

allows for repeatable generation of solitons. Once the parameters of the tuning

curve are accurately established, the system is able to consistently reach an iden-

tical soliton state each time the tuning modulation is sent through the heaters.

We record 15 consecutive traces of the initialization of a particular soliton state

over 3 seconds. As we can see from Fig. 4.19 the system reaches the same state

each time.

The ability to repeatably and reliably generate solitons in a silicon nitride

microresonator enables several applications such as dual comb spectroscopy

[137], synchronization of two soliton trains on distinct, nearly identical mi-

croresonators by coupling them in a master-slave relationship [138], harmonic

and subharmonic synchronization between soliton trains at a multiple of each
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Figure 4.18: Generated one, two, and four soliton states corresponding to har-
monically modelocked states. The two and four soliton states correspond to
equally spaced solitons around one round trip and result in time averaged spec-
tra at 2 and 4 FSR spacings.

other [139], a near-visible soliton modelocked frequency comb [140], and a bat-

tery operated integrated comb source that uses a high quality factor resonator

to generate the comb as well as act as an end mirror for the laser cavity [141].
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Repeatable 

Soliton State

Figure 4.19: Repeatable generation of an identical soliton state can be achieved
using the thermal tuning method detailed in this dissertation. Recorded persis-
tence traces of 15 consecutive initializations of the same soliton state over a span
of 3 seconds.
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CHAPTER 5

COUNTER-ROTATING CAVITY SOLITONS

Optical frequency combs find applications in spectroscopy by virtue of their

frequency precision and high coherence over a broad bandwidth. Direct fre-

quency comb spectroscopy can be performed by sending a single frequency

comb through a material sample of interest and observing the absorption fea-

tures imprinted on the optical spectrum. This approach is well suited to studyng

known transitions at a specific frequency such as the spectroscopy of particular

lines of atomic and molecular species [17–20]. However, for broadband spec-

troscopy this approach has limitations. Over a broad bandwidth there might be

multiple absorption features from the same species and resolving them requires

a frequency selective element such as a monochromator or a FTIR spectrome-

ter that scans over the frequency spectrum and detects the absorption features

at their respective frequencies. Alternatively, the spectrum at the output can

be separated in frequency using a grating or a virtually imaged phased array

(VIPA) and detected on a photodetector array to resolve each comb line inde-

pendently [25]. The speed of scanning of the monochromator or the FTIR delay

arm limits the acquisition speed of the spectral measurements to time scales on

the order of tens of milliseconds to a second or more depending on the optical

bandwidth to be covered. On the other hand, in the case of the dispersive ele-

ments such as a VIPA to separate the spectral components, the density of lines

and spatial separation will determine the size, and corresponding cost of the

photodetector array required which limits the resolution of the spectroscopy

measurement. An approach to spectroscopy using frequency combs that at-

tempts to solve these limitations is dual comb spectroscopy (DCS) that uses two

combs at slightly different repetition frequencies f1 & f2 that act as a reference
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and probe combs.

5.1 Dual comb spectroscopy

DCS is a powerful spectroscopic technique that uses two combs with slightly

different repetition frequencies f1 & f2. The f1 comb acts as a reference lo-

cal oscillator comb while the f2 comb probes the species of interest. The two

combs are then recombined and detected on a photodetector. The heterodyne

beat signal between the two combs is recorded using a photodetector of the

appropriate bandwidth and appears at the difference in frequencies between

each pair of comb lines from the reference and probe combs. The difference in

repetition rates ∆f = f1 − f2 means that the heterodyne beating of each pair

of comb lines will result in a RF tone at a multiple of ∆f . The recorded het-

erodyne beat signal will have a sequence of beat notes separated by ∆f in the

frequency domain. In the time domain this results in a interferogram [92]. The

technique was first proposed in 2002 by Schiller [142] who set up the mathemat-

ical framework and proposed a basic setup to perform these spectroscopic mea-

surements. Subsequently demonstrations of dual comb sources were shown

using a pair of Ti-Sapphire lasers [94], stabilised fiber modelocked lasers [27],

free running fiber modelocked lasers [143], Cr2+:ZnSe femtosecond oscillators

in the mid infrared [144], tunable electro-optic combs [145], modelocked inte-

grated external-cavity surface emitting lasers (MIXSEL) [146], quantum cascade

lasers (QCL) [147].

The ability to generate soliton modelocked frequency combs on microres-

onator devices led to the development of integrated dual-comb sources on vari-

ous material platforms such as silicon nitride [137], silicon [148], silica [149] and
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magnesium fluoride [150]. We use two silicon nitride microresonators in se-

ries on a single bus waveguide to generate a pair of single soliton modelocked

combs with slight different repetition rates with a difference in frequency of

∆f = 1.12 GHz. The combined output of the two soliton trains is sent through a

liquid sample of dichloromethane to record the spectrum. With 20 µs of acquisi-

tion of the time interferogram on a fast photodiode (BW ≥ 45 GHz), a spectrum

spanning 170 nm can be recorded [137]. A schematic diagram that explains dual

comb spectroscopy, and the measured spectrum of dichloromethane is shown

in Fig. 5.1.

f
1

f
2

Reference Comb

Signal Comb

Optical Frequency

Optical Frequency

Optical Frequency
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Δf

(a)
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Figure 5.1: (a) A schematic of dual comb spectroscopy. Two combs with slightly
different repetition frequencies act as the reference and signal combs. The ab-
sorption spectrum of the species of interest is imprinted on the signal comb and
can be measured through heterodyne detection on a fast photodetector. (b) A
spectrum of dichloromethane recorded using two soliton modelocked silicon
nitride microresonators with a frequency difference of∆f = 1.12 GHz adapted
from [137].
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5.2 Bidirectionally pumped microresonators

An interesting regime of operation for microresonators is bidirectional pump-

ing. Bidirectional pumping results in richer nonlinear dynamic interactions be-

tween the two pump fields that lead to novel dynamics when the detuning of

the laser are is swept with respect to the resonator frequency. Operating in this

pumping regime would enable the study of novel frequency comb generation

dynamics that include soliton interactions within the cavity as well as XPM

between the pump fields that introduces coupling between the modes propa-

gating in opposite directions. Dual combs generated on two distinct microres-

onators are limited in mutual coherence by the uncorrelated noise between the

two lasers [149], or uncorrelated heater current noise [137], or uncorrelated cur-

rent noise on the p-i-n junction [148]. The ability to generate soliton modelocked

combs in both directions in a single microresonator would eliminate sources of

common mode noise due to relative fluctuations between the pump lasers or

the electrical source of uncorrelated noise. Recently, there have been demon-

strations of bidirectional mode-locked solid state [151] and fiber [152, 153] laser

cavities, and has been used to demonstrate dual comb spectroscopy [154], a

bidirectionally pumped microresonator-based system could be highly compact

and fully integrated onto a chip.

As we saw earlier in Eq. 3.12, the pump power circulating in the cavity acts

on itself through SPM and causes a bistability in the resonance. In the case

of a bidirectionally pumped microresonator, the two directions are coupled to

each other because in addition to the SPM we also have an interaction between

the two pump field in opposite directions through XPM. Recent studies have

looked at the effects of such an interaction mediated by the SPM and XPM in a
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bidirectionally pumped system [155]. The symmetry breaking in such a system

can be exploited to create a gyroscope with enhanced sensitivity to rotation [156,

157].

Pcirc,CW(λ) =
Pin,CW a2 κ2

1 + a2t2 − 2at cos(β L+ γ (Pcirc,CW + 2Pcirc,CCW) L)
(5.1)

Pcirc,CCW(λ) =
rPin,CW a2 κ2

1 + a2t2 − 2at cos(β L+ γ (Pcirc,CCW + 2Pcirc,CW) L)
(5.2)

Apart from the bistability due to the SPM, the bidirectional pumping leads

to an additional phase shift that is introduced on the fields in both direction

by the XPM. This leads to an additional shift on the effective detuning as the

laser-cavity detuning is tuned. As before we look at the power coupled into

the clockwise and counterclockwise directions assuming a degenerate pump in

both directions. We assume a input pump power, Pin,CW = 60, 70, 80 mW in

the clockwise direction and a ratio r = Pin,CCW/Pin,CW = 0.9. The power cir-

culating in the cavity in the clockwise and counterclockwise direction for these

cases is solved for using Eq. 5.1 and Eq. 5.2 for these values and can be seen in

Fig. 5.2. We observe the increasing region of bistability due to the higher SPM

similar to Fig. 4.5. However with increasing power we also see the formation of

a ’bubble’-like feature on the resonance shape on the blue detuned side of the

resonances. This arises due to the leading factor of 2 on the XPM term caus-

ing a larger nonlinear shift on the opposite direction. The power imbalance in

the pump in the two directions leads to a bubble that pushes the direction with

the higher pump power closer to zero detuning faster the the direction with the

lower pump power. We will see in Section 5.3 how the power imbalance creates

a corresponding imbalance in the effective detuning that allows for independent

control of the generated frequency combs in the two directions.
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Figure 5.2: The power coupled into the clockwise (blue) and counterclockwise
(red) modes for Pin,CW = 60, 70, 80 mW and a ratio r = Pin,CCW/Pin,CW = 0.9.

5.3 Counter-rotating solitons in a microresonator

In our experiment to generate counter-rotating solitons in such a bidirectionally

pumped system Fig. 5.3(a), we pump a single microresonator with a degener-

ate pump at 1559.79 nm. We amplify this laser with a polarization maintaining

(PM) EDFA and split the amplified pump into two parts using a PM 50:50 fiber

splitter. The PM components ensure that we maintain the polarization through-

out the experimental setup in the TE polarization. The two outputs of the 50:50

splitter are sent to two variable optical attenuators (VOAs). This allows us to

independently control the pump power in the CW and CCW directions that lets

us control the ratio r as a control knob for the tunability of the generated dual

comb source. Another similar experiment performed in silica microresonators
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to generate counter-rotating solitons uses a pair of acousto optical modulators

to frequency shift a single pump by different frequency shifts to act as a control

knob on the tunability of the generated dual comb [124]. The pumps in the CW

and CCW directions is connected to port 1 of two circulators. Port 2 of both cir-

culators is connected to a pair of PM-lensed fibers to couple light in and out of

the chip. We use the same silicon nitride rings we used previously with a 200-

GHz free spectral range (FSR) and a cross section of 950 x 1500 nm that yields

anomalous group-velocity dispersion at the pump wavelength that allows ther-

mally controlled soliton generation by controlling the current passed through

integrated platinum heaters [115]. We pump an undercoupled resonator with a

coupling gap of 500 nm to the bus waveguide. We characterize the generated

frequency combs independently of each other Fig. 5.3(b) as well as the gener-

ated dual comb after combining the two combs Fig. 5.3(c) [123].

First, we characterize the two combs independently of each other. The combs

in the opposite direction are picked off at port 3 of the circulators and split into

two parts using a pair of 50:50 splitters. The split outputs are sent to a pair of

OSAs and photodetectors to record the pump transmission and optical spectra

for the clockwise and counterclockwise combs as seen in Fig. 5.3(b). Using an

arbitrary waveform generator, we apply a triangular current ramp on the inte-

grated platinum heaters. We monitor the pump transmission as the resonance

frequency is swept across the laser frequency starting with the pump blue de-

tuned with respect to the resonance frequency. We observe the familiar dip in

the pump transmission as the pump is close to resonance on the blue detuned

side. Tuning further into resonance we observe a high noise state. Beyond this

once we cross to the red detuned side of the resonance, we observe the transition

to a low noise state on both the clockwise and counterclockwise pump transmis-
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Figure 5.3: (a) Experimental setup to generate counter-rotating solitons in a sin-
gle microresonator using a single pump laser at 1559.79 nm. The generated
counter-rotating solitons are characterized (b) individually, measuring the opti-
cal spectra and transmitted optical powers in CW and CCW directions and (c)
after combining the dual comb output in both directions to measure the mixed
optical and heterodyned RF signal.

sion curves. In Fig. 5.4 we also see signatures of the ’bubble’-like feature on the

blue detuned side that appears due to the XPM term in addition to the soliton

step before the pump drops out of resonance on the red detuned side.

The soliton step consistently appears at lower pump powers in both direc-

tions, and we can tune into this state by terminating the heater scan as soon as

the effective detuning in both directions crosses the zero detuning point as seen

in Fig. 5.5. We apply a downward ramp on the current starting from a DC level

with the pump blue detuned with respect to the resonance frequency. At the

end of the downward ramp we apply a flat DC level. The power in the high

noise state is close to that in the soliton state and hence we can tune into this

state reliably at a reliably slow speed of 200 Hz and don’t need to apply a rapid
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Figure 5.4: Clockwise (blue) and counterclockwise (red) pump transmissions
as the resonance frequency is swept across the pump laser starting on the blue
detuned side of the resonance frequency and ending on the red detuned side off
resonance. We see a characteristic step like feature on the red detuned side past
the high noise state.

upward rise at the end of the tuning curve.
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Figure 5.5: Transmitted pump power as detected on the photodetector when a
3 soliton state is generated in both the clockwise (blue) and counterclockwise
(red) directions by applying a single downward ramp at a speed of 200Hz on
the heater current before terminating the burst at a DC level on the effectively
red detuned side for both directions.

The independent optical spectra are also recorded in both directions and are

observed to be a 3 FSR state in both directions corresponding to three equally
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spaced solitons in the cavity over one round trip as seen in Fig. 5.6. This is

characteristic of a harmonically modelocked state as was observed previously

in the unidirectionally pumped case.
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Figure 5.6: Optical spectra recorded on two OSAs as a 3 soliton state is generated
in both the clockwise (blue) and counterclockwise (red) directions by applying
a single downward ramp at a speed of 200Hz on the heater current before ter-
minating the burst at a DC level on the effectively red detuned side for both
directions. The spectra agree well with the hyperbolic secant fit (dashed black).

The setup is then modified to characterize the generated dual comb source.

We keep the pump transmission detection independent on two photodiodes.

The other half of the split output spectra is send onto a third 50:50 mixer where

the two combs are combined. One half of the combined output is sent to an

OSA to record the combined optical spectrum. The other half is sent to another

photodiode and then onto a MSA that records the heterodyned RF beat notes

between the two combs. The counterclockwise to clockwise pump power ratio

is set to 0.67. We first record the combined optical spectrum as seen in Fig. 5.7.

The spectrum follows the expected 3 FSR spacing and agrees well with the hy-

perbolic secant fit. The resolution limit of the OSA is 1.25 GHz and we don’t see

pairs of lines from the combs in the two directions at this minimum setting. This

implies that if there is a difference in repetition frequencies between the combs

in the two directions, it is less than 1.25 GHz.
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Figure 5.7: Combined optical spectra recorded on an OSA as a 3 soliton state is
generated in both directions with a pump power ratio of r = 0.67. The resolution
limit of the OSA of 1.25 GHz prevents us from seeing the pair of lines from
the combs in the two directions. The combined spectrum agrees well with the
hyperbolic secant fit (dashed black).

We then look at the heterodyne RF spectrum between the two combs by

detecting the combined combs on a high bandwidth photodetector (≥ 250 MHz)

and recording the RF spectrum on a MSA. The recorded RF spectrum shows a

series of equally spaced peaks at 19 MHz as seen in Fig. 5.8. Since the first beat

note appears as a result of the third pair of lines, the actual repetition frequency

difference ∆fr between the two soliton trains is 6.3 MHz (or 1/3 the frequency

of the first beat note).

As the pump power ratio is adjusted and the counter-rotating 3 soliton state

is reinitialized, we observe the tunability of the recorded beat notes. The multi-

plicative factor of 2 on the nonlinear phase introduced by the XPM as compared

to the SPM introduces an asymmetry in the effective detuning for the CW and

CCW modes. So, even if the pump laser is degenerate at a fixed wavelength

and the current applied to the integrated heaters shifts the resonance for both

directions equally that makes the detuning introduced by the heater common

to both modes, the additional SPM and XPM terms cause an inequality in the
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Figure 5.8: Combined RF spectra recorded on a MSA by detecting the mixed
comb on a high bandwidth photodetector as a 3 soliton state is generated in
both the clockwise (blue) and counterclockwise (red) directions with a pump
power ratio of r = 0.67. The spectrum is recorded with a 100 kHz resolution
bandwidth implying a minimum coherence time of 10 µs for the generated dual
comb.

pump-cavity detuning. The effective detuning for the clockwise and counter-

clockwise modes can be defined in terms of the detuning of the laser δp with re-

spect to the thermally shifted cavity resonance frequency after applying a heater

current ω0 as determined by the resonance condition Eq. 3.9 and the nonlinear

shift introduced by the SPM and XPM terms for the corresponding powers in

the clockwise and counterclockwise directions [155]. The effective detuning in

both directions is given by,

δωCW = δp +
ω0n2

neffAeff

(Pcirc,CW + 2Pcirc,CCW) (5.3)

δωCCW = δp +
ω0n2

neffAeff
(Pcirc,CCW + 2Pcirc,CW) (5.4)

As previous studies have established [103,158], the intracavity soliton power

for solitons generated in a microresonator depends on the effective detuning of

the pump and has a square root relationship to the detuning and other waveg-
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uide parameters given by,

Psol =
2 Aeff

ω0 n2

√

−2 c β2 neff δω (5.5)

The soliton pulse width also depends on the detuning and has a inverse square

root relationship that is given by,

τsol =

√

−c β2

2 neff δω
(5.6)

The is the average power of the soliton over a round trip (τr) which im-

plies the peak power of the soliton, based on the hyperbolic secant function

P0sech2(t/τsol) integrated over a round trip from −τr/2 to τr/2 is given byP0 = Psolτr
2τsol

.

Combining the above equations, we get the intracavity soliton peak power that

has a near linear relationship with the detuning to be,

P0 =
2 c Aeff τr

ω0 n2 L
δω (5.7)

The intracavity fields consist of two components in both direction, the soli-

tons and the continuous wave pump fields. This means that for each of the four

components there are four possible interactions, SPM due to itself, and XPM

due to the other three components. At the detuning where we expect the soli-

tons to be generated, the CW background field is a lot weaker than the peak

soliton power, so we neglect the XPM effect of the CW pumps on the soliton

peak. So the only effect that we consider is the SPM due to the soliton acting on

itself as it propagates around the cavity. The accumulated phase shift over one

round trip results in a change in the effective index that the soliton experiences
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over one round trip. This results in a change in the repetition rate for the soliton

due to this phase accrued. The induced change in the repetition frequency ∂fr

is given by,

fr =
c

neff L
(5.8)

∂fr =
c

L

(

∆neff

n2
eff

)

(5.9)

∂fr = fr

(

∆neff

neff

)

(5.10)

The ∆neff due to the SPM by the soliton on itself is g n2P0/Aeff, where g is the

factor for the nonlinear phase shift induced by the dissipative soliton on itself.

That leads to a difference of repetition rates between the solitons in the CW and

CCW directions given by,

∆fr = |fCW − fCCW| = g
n2 fr

Aeff neff
|Psol,CW − Psol,CCW| (5.11)

∆fr = g
2 fr

ω0
|δωCW − δωCCW| (5.12)

The ∆fr can thus be related to the pump cavity detuning and pump powers

by Eq.5.3,Eq.5.4, and Eq.5.12. The enhancement due to the resonator, coupling

losses at the output facet, and insertion losses for the fiber components before

the light circulating in the CW direction reached the photodetector is combined

into the term η. This gives us the relationship between the intracavity pump

power and transmitted pump power as Pcirc,CW = ηPout. A reasonable assump-

tion to make at the detuning at which we operate, is that the factor η is the same

for both directions to first order which means the intracavity ratio of powers r
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can be assumed to be the same as that as measured on the photodetectors based

on the transmitted power.

Combining the above analysis, we get a normalized measure for the differ-

ence in repetition rates ∆fr/Pout that can be expressed in material parameters,

Pout, and the ratio r between the powers in both directions that is given by,

∆fr

Pout
= g

2 n2 fr

neff Aeff
η |1− r|. (5.13)

We then sweep the pump power in the bus waveguide in both directions

over a range of 1.35 to 6.1 mW and measure the corresponding ∆fr

Pout
at various

values of the ratio r. The recorded values are binned based on the ratio r into

bins that are 0.02 wide and all the points within that bin are averaged into a

single ∆fr

Pout
value. The fluctuations in the transmitted power as a result of the

interference between the strong pump in the two directions makes this binning

necessary. The tuning curve for ∆fr

Pout
is shown in Fig. 5.9

The tuning curve shows two interesting regimes of operation as the ratio r

between the pump powers is varied. At ratios far from 1, we observe that the

value of ∆fr

Pout
is in reasonable agreement with our simple model for the tunability

given by Eq. 5.13. The large error bars on some of the points and some devia-

tions from the expected behavior occur due to the aforementioned fluctuations

that limit the accuracy of the measurements.

At ratios close to 1, within a region from 0.9 to 1.1, we do not observe a beat

note. The recorded optical spectra also show signs of interference on each line

that would imply that each pair of lines is identical in frequency. This behavior

seems to indicate that the soliton trains in both directions are synchronized to
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Figure 5.9: The difference in repetition rate normalized to the power in the clock-
wise mode (∆fr/Pout) as a function of the power ratio r. Each of the measured
points from the experiment is binned over a 0.02 window in r and plotted as a
black dot. The red curve represents the theoretical curve from Eq. 5.13.

each other. A more detailed study on synchronization was performed in silicon

nitride microresonators [138] that goes into great detail about synchronization

behaviour. The behavior observed here in Fig. 5.9 is similar to the behavior

observed in that experiment.

In conclusion, we observe counter-rotating cavity solitons in a single silicon

nitride microresonator using a single fixed frequency pump laser. We demon-

strate the ability to tune the difference in the repetition frequency of the two

soliton trains by varying pump power for the modes in the clockwise and coun-

terclockwise directions. Using a single-frequency laser and a single microres-

onator eliminates common mode noise in the dual-comb source.
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The interferometric fluctuations that are created by the degenerate pump

that we use in our case strongly affect the ability to stabilize the dual comb

source. Future designs could incorporate splitting of the pump on chip and

using structures such as integrated Mach Zehnder interferometers, potentially

also give us the ability to control the pump power ratios on-chip using phase

shifters. Such an approach would have the potential for an extremely compact

dual-comb source with significantly reduced uncorrelated noise.
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CHAPTER 6

OFFSET LOCKED DUAL-COMB SOURCES FOR RANGING

Microresonator based dual comb sources, as we have seen can be used for

spectroscopy of species of interest in the near infrared [137, 149] and most im-

portantly in the mid infrared within the so called ’molecular fingerprint’ region

where the strongest vibrational absorption features of molecules arise based

on their energies [148]. In these spectroscopy measurements the signal comb

is passed through the sample and combined with the reference comb. The

recorded interferogram is then measured and a Fourier transform yields the

RF spectrum. By doing a measurement without the sample, a baseline reference

measurement of the spectrum can be performed. When the recorded RF spec-

trum including the absorption is normalized to this baseline, the spectrum can

be measured.

Another powerful application of dual combs is ranging [95, 96]. Pulsed

sources have regularly been used to characterize distances using time of flight

measurements. A single pulse sent over a certain delay and detected would

limit the resolution to the pulse width and also the bandwidth of the photode-

tector in being able to resolve the pulse and its delayed copy. A potential ap-

proach to improving the detection is to use the interferograms created by using

two combs with different repetition rates. Similar to spectroscopy using a dual

comb source, in ranging, one comb still acts as a local oscillator and the second

comb acts as a signal comb that probes the target to acquire distance informa-

tion. However, in this case the recorded interferograms are analyzed differently.

We create two copies of the signal soliton, one of which is sent to a reflector at

a known ’zero’ position to create a reference interferogram. A second interfero-
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gram is created from the second copy of the signal soliton that is reflected off the

’target’ position. The distance between the zero position and the target position

Ldelay leads to a time delay in the signal soliton of τdelay = 2 Ldelay / c for prop-

agation through the delay distance in air as it goes to the target and back. After

the delay, the signal soliton and the delayed copy of it are mixed with the LO

comb and this results in two interferograms one from the overlap of the signal

comb reflected at the ’zero’ plane with the LO comb and one from the overlap

of the signal comb reflected from the target plane with the LO comb. Fig. 6.1

gives an outline of this ranging measurement.

‘Zero’ Plane

Target Plane

1/f
sig

1/f
LO

τ
delay

L
d

e
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τ
delay 

x f
sig

/Δf 

1/Δf

Figure 6.1: Schematic of a ranging measurement using a dual comb source. The
signal comb is reflected off a ’zero’ plane and a target plane to create two copies
of the resulting interferogram when it is mixed with the local oscillator comb.
The delay between the two interferograms can be used to measure the distance
between the ’zero’ plane and the target plane.

As we can see here, the interferogram repeats every 1/∆f where ∆f =
∣

∣fLO − fsig

∣

∣. The interferogram created by this effectively magnifies the time
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axis of the signal comb by a factor of fsig/∆f . This allows for detection of the

distance to a greater precision limited only by the detector bandwidth and the

speed at which the detector output voltage can be sampled using a data acqui-

sition tool such as a fast real-time oscilloscope or a digitizer board. If the delay

time is increased by the repetition rate of the signal soliton to τdelay+1/fsig we get

an identical interferogram as the original τdelay. This leads to an ambiguity in the

measured distance corresponding to increases in the delay time by integer mul-

tiples of 1/fsig. The ambiguity distance therefore corresponds to Lamb = c
2 fsig

.

For a 200 GHz soliton train the ambiguity distance will be 0.7494 mm.

‘Zero’ Plane

Target Plane

1/f
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e
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Target Plane

Figure 6.2: The amibiguity in the ranging measurement results from identical
interferograms created when the delay time increases by integer multiples of
1/fsig that limits the ranging measurement. The ambiguity distance therefore
corresponds to Lamb = c

2 fsig
. This ambiguity needs to be lifted in order to per-

form a precise ranging measurement over long distances.

Lifting the ambiguity on ranging measurements can be achieved by chang-

ing fsig. At a different value of fsig the corresponding ambiguity distance Lamb
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will be different resulting in a shift in the measured interferogram. This shift

will allow us to lift the ambiguity in the distance to be measured. Heaters allow

for independent control of two ring resonators that can generate soliton mode-

locked combs with slightly different repetition rates. These can then act as the

LO and signal combs that can be used as a source for an integrated solid state

ranging scheme.

Independent heater controls on two ring resonators allow us to force the rep-

etition frequency of the signal comb soliton train to be locked at a frequency off-

set to the repetition frequency of the LO comb soliton train. The offset frequency

is derived from a tunable reference RF source. Tuning of the RF frequency of the

reference allows for tuning of the ∆f by acting on the heater to control fsig.

6.1 Phase detection and frequency locking

When two frequencies are driven to be identical to each other using a phase

locked loop, the difference in phase is driven to zero by a feedback mecha-

nism. Signals at two frequencies ω1 and ω2 have phase terms that are given

by φ1 = ω1 t + α and φ2 = ω2 t + β. In order to drive the the phase difference

between the two to zero, the phase has to be detected and can serve as an error

signal in a feedback loop where it can be locked to zero (or a fixed DC level

given by (α− β).

An electrical mixer can be used as a phase detector [159]. The mixer mul-

tiplies the two inputs that are sent to it. The two inputs can be assumed to be

cos(ω1t + α) and cos(ω2t + β). The output of the mixer can be broken into the

sum of two terms using the trigonometric identity for the product of cosines as
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follows,

cos(ω1t+α)×cos(ω2t+β) =
1

2

[

cos((ω1+ω2)t+(α+β))+cos((ω1−ω2)t+(α−β))
]

(6.1)

The output of the mixer has components at the sum and difference frequen-

cies. Typically when a mixer is used as a phase detector, a π/2 phase shift is

applied on one of the inputs converting that into a sine wave. It operates as a

phase detector in a regime where the input frequencies ω1 ≈ ω2 = ω that results

in a vanishing ω1 − ω2. This results in an output that is the sum of two sine

waves given by,

cos(ωt+ α)× sin(ωt+ β) =
1

2

[

sin(2ωt+ (α+ β)) + sin(α− β)
]

(6.2)

The output has a component that purely depends on the phase of the two

waves, (α − β) and a sum frequency component at double the frequency 2ω.

The high frequency component is filtered and the remaining output is the low

frequency component dependent on the phase difference. In the low phase dif-

ference limit, the small angle approximation can be used and yields the phase

difference as the output, sin(α− β) ≈ (α− β) = ∆φ.

In the case of optical frequency locking. The difference between two optical

signals f1 & f2 is detected as a RF beat note at ∆frep = f1 − f2. If this frequency

difference is to be driven to a specific value, a RF reference frequency corre-

sponding to this value (fRF) is sent to one of the inputs of a phase detector, the

beat note ∆frep is sent to the other input. The phase detector detects the differ-
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Figure 6.3: A schematic of an electrical mixer as a phase detector. The output of
the phase detector filters out the sum frequency component and the remaining
low frequency component is proportional to the phase difference between the
two waves (α− β) when ω1 ≈ ω2 = ω.

ence between the phase of the two inputs and leads to a phase term given by

η×sin(∆frep−fRF)t. The output of the phase detector acts as an error signal and

is then sent through feedback electronics that act on the frequency difference be-

tween the two optical frequencies. This might be in a master slave configuration

where f1 remains free running and the feedback acts on f2. Or it might drive

any other optical interaction that modifies ∆frep. In our case the difference be-

tween the two soliton repetition rates appears as the first beat note between the

two combs at ∆frep. This can then be compared to a frequency reference derived

from a RF source. The phase locked loop, as seen in Fig. 6.4 acts on the effective

detuning of one of the soliton trains by modifying the current on its heater and

disciplines it to be at a fixed offset frequency from the other by driving f1 − f2

to fRF. In this case, the PID controller and actuator determine the bandwidth

of the feedback loop. As we saw earlier in Section 4.3, the bandwidth of the

heaters rolls off beyond ≈20 kHz which becomes the limiting bandwidth of the

feedback loop.

The limitation on bandwidth of the feedback means that the feedback mech-

anism will only be able to respond to a frequency difference of upto 20 kHz
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Figure 6.4: A schematic of the locking loop used to lock the difference in fre-
quency of the two soliton trains ∆frep to a RF reference frequency fRF.

between ∆frep and fRF. This allows for a frequency excursion of only 40 kHz

for ∆frep around fRF before the lock is broken as a result of it being beyond the

feedback bandwidth. Typically, the frequency excursion of ∆frep is a lot larger

than 40 kHz. This means that a different approach to generating an error signal

is required. The phase detector can only track a phase difference from −π to

π which limits the frequency excursion within which the feedback loop can ac-

count for the phase difference to the bandwidth of the heaters. If we can unwrap

the phase, this would allow for a greater frequency excursion within which the

frequency lock can be engaged.

The approach we use for phase unwrapping is to use a digital phase detector

that can extend the range beyond −π to π. We use a digital phase detector,

(Menlo Systems DXD 200) to detect the phase difference between ∆frep and fRF.

The DXD 200 operates using a counter that counts up or down depending on

which input leads or lags the other. The maximum count on the counter allows

us to unwrap the phase as the two frequencies vary. The DXD 200 allows for

phase unwrapping up to ±32π of phase. This results in a 32 fold extension
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of the frequency excursion over which the lock can be engaged to ≥1.3 MHz.

An adapted schematic of the phase detection using the digital phase detector is

shown in Fig. 6.5

RF

LO

N - 1

N + 1

N
Out

RF

LO

DAC Counter

Figure 6.5: A schematic of the phase detection using the digital phase detector
adapted from [160]. The DXD 200 uses a counter to unwrap the phase over
±32π. This extends the frequency excursion over which the lock can be engaged.

6.2 Dual comb generation and tunable offset locking

We use a scheme in which soliton modelocked combs are generated on two

nearly identical ring resonators. The pump laser is shared by the two resonators.

As seen in the schematic of the chip in Fig. 6.6, the pump is split on chip using a

multimode interference power splitter [161,162]. The soliton generation in both

ring resonators is independently controlled using a pair of platinum heaters.

The two output waveguides are placed at a separation of 200 µm on the output

facet that allows for them to be simultaneously collected using a single aspheric

lens without significant distortion that would reduce the output coupling effi-

ciency. The outputs are spatially separated allowing for each of the combs to be

collected independently in fiber using a pair of fiber collimation packages to act

as the signal and LO comb.
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Figure 6.6: A schematic of the chip used to generate the dual comb source for
ranging on an integrated device. The two ring resonators are independently
controlled using a pair of integrated heaters to generate soliton trains with
slightly different repetition rates. The two outputs are spatially separated that
allows for them to be collected using a single aspheric lens and sent to two fiber
collimation packages to act as the signal and LO comb.

We generate solitons in the two rings using a two-channel arbitrary wave-

form generator to control the heaters on both ring resonators independently. We

tap 1% of each of the two comb outputs using a pair of 99:1 fiber splitters and

combine the two using a 50:50 fiber mixer. One of the outputs of the 50:50 mixer

is sent to an amplified photodetector (Thorlabs PDA10-CS) where the ∆frep is

detected. We use this detected beat note to lock the offset frequency ∆frep to a RF

reference fRF. The detected ∆frep electrical signal is sent to one input of a digital

phase detector (Menlo Systems DXD 200) and the RF reference frequency fRF is
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sent to the other input. The slope of the measured phase determines whether

∆frep leads or lags fRF. The detected phase acts as the error signal that is passed

through the PID Servo Loop (Vescent Photonics D2-125) and combined with

one of the output of the arbitrary waveform generator using an OpAmp adder

circuit with unity gain. The ring with the feedback acts as the slave resonator

and when the lock is engaged the slave soliton train maintains a difference in

repetition frequency of fRF from the repetition rate of the master soliton train.

A schematic of the setup used to generate an offset locked dual comb source is

shown in Fig. 6.7.
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Figure 6.7: A schematic of the setup used to generate an offset locked dual comb
source. The comb outputs are collected using Fiber collimators and analyzed
using in the optical domain using an OSA, in the RF domain using a fast pho-
todiode and an MSA. 1% of the outputs are tapped, mixed and detected on a
amplified photodiode to determine the ∆frep which is then compared to fRF us-
ing a digital phase detector. The error signal thus generated is sent to a PI2D
servo controller and the servo output is combined with the signal from the ar-
bitrary waveform generator (AWG) that controls soliton generation in the slave
resonator using a summing amplifier with unity gain and fed back to the heaters
for the slave resonator to establish a lock at ∆frep = fRF .

We set fRF to 15 MHz and detect the phase difference between this and ∆frep
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detected on the amplified photodetector. The output of the phase detector does

an excursion over ±2 V that corresponds to ±32π. The frequency of this phase

excursion is 32 times slower than ∆frep − fRF and the slope of the phase curve

indicates whether ∆frep is higher than fRF or lower. The detected phase is shown

in Fig. 6.8.
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Figure 6.8: The output of the phase detector when a free running beat note ∆frep

is compared to a fixed fRF = 15 MHz. The frequency of the phase curve indicates
∆frep − fRF and slope indicates the direction of ∆frep with respect to fRF

The detected phase is then attenuated and acts as the error signal input e(t)

of a PID Servo controller (Vescent Photonics D2-125) that enables a PI2D feed-

back loop. The first integrator can eliminate slow drift at low frequencies while

the second integrator acts on higher frequencies to enable the lock. The correc-

tion signal can be expressed as r(t),

r(t) = Kp e(t) +

∫ t1

0

Ki1 e(t)dt +

∫ t2

0

Ki2 e(t)dt+Kd
d e(t)

dt
(6.3)

The servo output is then connected to an adder circuit to combine it with the

output of the arbitrary waveform generator that is used to generate the slave

soliton. The adder circuit is designed to have unity gain and have an output

current that is high enough to be able to drive the heaters to the desired current
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levels to generate a soliton. The correction signal r(t) has a small amplitude

close to zero. Initially it is set to zero and adds to the DC voltage level estab-

lished by the generation of the soliton state. As we saw earlier in Chapter 5,

the soliton repetition rate depends on the effective detuning and by sending

the small correction signal r(t) to the heaters the detuning can be controlled to

maintain the fsig at a fixed frequency offset of fRF from the free running fLO.

To determine the approximate amplitude of the required correction signal, we

switch the servo controller to ramp mode and look for turning points in the error

signal that will establish a lock point. The lock point corresponds to the ampli-

tude of the ramp signal at the locations of the turning points and in this case

is ≈6 mV. This correction signal corresponds to a current correction of 25 µA

applied to the heater of the signal comb.

Once the lock points have been established we engage the lock. If there is any

drift in the ∆frep arising from environmental fluctuations or power fluctuations

in the pump or other effects, the correction signal accounts for that to drive it

back to fRF. By locking the difference in frequency to fRF, we ensure that the

interferogram detected will repeat every 1/fRF. We look at the RF spectrum

of the recorded interferogram and observe a series of RF tones at multiples of

∆frep.

We also look at the relative drift of the free running dual comb and compare

it to the stable locked dual comb in Fig. 6.10. Both spectra are recorded over

5 ms with a resolution bandwidth of 100 Hz and a frequency span of 1 MHz

from 14.5 to 15.5 MHz on a RF spectrum analyzer (Rohde & Schwarz FSWP50).

In the free running case, we observe a drift of ≈200 kHz over the 5 ms sweep

time. In the locked case the drift is significantly reduced as can be seen from the
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Figure 6.9: When the servo output is switched to a ramp mode, turning points
can be identified (black circles) in the error signal that can be used to identify
the lock point on the ramp (dashed red line). In this case the lock point appears
at an amplitude of ≈6 mV.

inset of the figure.

We also study the tunability of the dual comb source as the reference RF

freuqency fRF is tuned with the lock engaged. As we discussed previously,

acting on fsig can be used to lift the ambiguity in a ranging measurement. In

our case, to tune ∆frep we act on the signal comb so tunability of the dual

comb source will allow for ambiguity free ranging over larger distances. We

engage the lock with fRF = 12 MHz. We then tune the fRF in steps of 100 kHz to

14.5 MHz. We record the first 5 RF tones of the dual comb as this is done. The RF

beat notes follow the fRF without the lock being disengaged. The RF beatnotes

were recorded with a higher resolution bandwidth in this case (200 kHz) over a
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Figure 6.10: Comparison of the locked (violet) and unlocked (green) RF spec-
trum of the first beat note between the signal and LO combs. We see a signifi-
cant narrowing of the RF beat note when the lock is engaged. Both spectra are
recorded over 5 ms with a resolution bandwidth of 100 Hz and a frequency span
of 1 MHz from 14.5 to 15.5 MHz on a RF spectrum analyzer (Rohde & Schwarz
FSWP50).

wider span from DC to 70 MHz to include the first 5 RF beatnotes. The tunable

dual comb is shown in Fig. 6.11.

This tunable dual comb source can be used to perform distance ranging and

lift the ambiguity on the measured distance.
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Figure 6.11: Tuning of the dual comb source generated with the offset frequency
∆frep between the two combs locked to fRF as it is varied in steps of 100 kHz
from 12 MHz to 14.5 MHz. The first 5 RF tones are recorded over a span from
DC to 70 MHz with a resolution bandwidth of 200 kHz.

6.3 Ambiguity free ranging using a tunable dual comb source

Ranging using dual combs has a limitation that we discussed previously. This

limitation is introduced in the measurement due to the ambiguity in the recorded

interferogram. If the signal comb is delayed by exactly the repetition rate of its

pulses, the interferogram will be identical. So any distance that corresponds to

a delay in integer increments of the signal pulse repetition rate 1/fsig as we saw

in Fig. 6.2, cannot be distinguished. This ambiguity can be lifted by tuning fsig.

For a ranging measurement, the distance between a reference and target is to

be characterized. The time of flight light between the reference and target planes

leads to a delay. For a distance that is beyond the ambiguity range determined

by the signal comb, the delay time is τdel and is given by,

τdel =
N

fsig
+ τ (6.4)
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where N is an integer and τ lies between 0 and 1/fsig.

The delayed copy of the target interferogram is effectively magnified by a

factor of fsig/∆f where ∆f is the offset frequency between the LO comb and

signal comb established by the offset lock. The observed delay between the

reference interferogram and target interferogram arises from τ and is given by,

t = τ × fsig

∆f
(6.5)

If we operate the offset locked dual comb at two offset frequencies by tuning

the reference RF frequency fRF = ∆f1 & ∆f2 resulting in the repetition rate of

the signal comb being set to fsig,1 & fsig,2. The time delay can be expressed in

terms of the two signal comb repetition rates as,

τdel =
N

fsig,1

+ τ1 (6.6)

τdel =
N

fsig,2
+ τ2 (6.7)

In this case fsig,1 and fsig,2 are on the order of 200 GHz while the heater in-

duced tuning is on the order of 1 MHz. This lifts the ambiguity on the mea-

sured distance upto a point where the two delays do not share the same integer

number of periods of the signal comb. This imposes a secondary ambiguity

when the corresponding integer numbers differ by 1. In order for this to be the

case, we would require fsig,1/fsig,2 = (N + 1)/N = 1 + 1/N . In the case of a

1 MHz change to a 200 GHz signal comb repetition rate, this implies a value

of N = 200000. The new limit for ambiguity free ranging is thus raised from

0.75 mm, for a 200 GHz repetition frequency comb to 150 m. For smaller differ-

ences between fsig,1 and fsig,2, the fsig,1/fsig,2 = 1 + 1/N relation would imply an
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even higher range. However this would come at the cost of a higher difficulty

in distinguishing differences between the interferograms that is limited by the

photodetector and data acquisition bandwidths.

The delay on the two recorded interferograms t1 and t2 that can be measured

from the measurements, according to Eq. 6.5, are given by,

t1 = τ1
fsig,1

∆f1
(6.8)

t2 = τ2
fsig,2

∆f2
(6.9)

We plug the values t1 and t2 from Eq. 6.8 and 6.9 back into the original equa-

tions for the delay time, Eq.6.6 and 6.7 and eliminate N from these two equa-

tions to arrive at an expression for τdel completely in terms of measurable or

known quantities,

τdelfsig,1 − t1∆f1 = τdelfsig,2 − t2∆f2 (6.10)

τdel(fsig,1 − fsig,2) = t1∆f1 − t2∆f2 (6.11)

Since the combs operate in a master slave configuration, assuming negligible

drift in the LO comb, fsig,1 = fLO +∆f1 and fsig,2 = fLO +∆f2 giving us,

τdel =
t1∆f1 − t2∆f2
∆f1 −∆f2

(6.12)

and the delay distance to be,

Ldel =
t1∆f1 − t2∆f2
∆f1 −∆f2

c

2
(6.13)
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The setup for the ranging is as shown in Fig. 6.12. The two combs are col-

lected from the spatially separated output on the chip using a single aspheric

lens. A portion of the collimated output beams is collected on a pair of pho-

todetectors using the Fresnel reflection from a glass slide to monitor the pump

transmission. The pump transmission is used to ensure the generation of a sin-

gle soliton modelocked state on both the LO and signal combs using the proce-

dure explained in Chapter 4. We use a pair of silicon nitride ring resonators with

a FSR of 200 GHz with the pump split on chip using a MMI splitter as shown in

Fig. 6.6.
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Figure 6.12: A schematic of the setup used for ambiguity free ranging using a
offset locked dual comb source. The signal comb is sent to a free space circulator
consisting of a PBS and a QWP. It is reflected off a reference plane and a target
plane separated by the distance to be detected (Ldel) to create two copies of the
signal comb and collected in fiber using a collimator. The polarization of the LO
comb is rotated by π/2 using a HWP and coupled into fiber. The signal and LO
combs are mixed using a fiber 50:50 splitter and one half of the output is sent to
a real time oscilloscope the record the interferograms. The other half is split fur-
ther using a 99:1 splitter where the weaker portion is sent to an OSA to monitor
the spectrum and the stronger portion is sent to an amplifier photodetector to
determine the offset frequency of the two combs ∆frep that is then locked to fRF.

The signal comb is then sent through a polarizing beam splitter (PBS) and a
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quarter wave plate (QWP). This configuration acts as a circulator. The incoming

linearly polarized (TE) light passes through the PBS unperturbed at which point

the QWP makes it circularly polarized. The reflections from the reference and

target planes flip the handedness of the circularly polarized light. As the light

passes through the QWP a second time the polarization goes back to linearly

polarized, but rotated at an angle of π/2 with respect to the incoming light. This

then which then reflects off the PBS instead of going back towards the chip. The

two copies of the signal comb thus generated are coupled into a fiber using a

fiber collimator. The polarization of the LO comb is rotated by π/2 using a half

wave plate (HWP) and is then coupled into fiber using a fiber collimator. The

two combs are then combined using a 50:50 fiber splitter. One half of the com-

bined output is sent to a to a fast photodiode with a bandwidth of ≥12.5 GHz

(EO Tech 3500-F) and the interferograms are recorded using a real time oscil-

loscope (Keysight DSOZ634A). The other half of the combined combs is split

further using a 99:1 fiber splitter. The stronger portion of this is filtered using a

WDM filter to get rid of the strong pump laser and sent to an amplified photo-

diode (Thorlabs PDA-10CS) to detect the difference in repetition rates. This is

then used to derive the error signal and lock the difference in repetition rate ∆f

to a external RF source at a frequency of fRF as discussed in Section 6.2.

We use two value of fRF, 12 MHz and 13 MHz to perform an ambiguity

free distance measurement. We first record the interferogram by setting the

value of fRF to be 12 MHz. The recorded trace has a repetition period of 83.3 ns

( 1
12 MHz

) and has two peaks corresponding to the interferograms generated from

reflections off the reference and target planes. The higher peak (negative am-

plitude) corresponds to the stronger reference reflection and the weaker peak

corresponds to the target reflection. The interferogram is recorded over 838 µs
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Figure 6.13: The raw interferogram when the difference between the LO and
signal comb is locked to 12 MHz. The trace corresponds to 10 periods of the
interferogram and clearly shows the two distinct interferograms from the refer-
ence plane as well as weaker interferograms corresponding to a weaker reflec-
tion from the target plane.

corresponding to 10066 periods of the interferogram. The raw interferogram

over 10 periods (830 ns) is shown in Fig 6.13

We then repeat this measurement with the fRF set to 13 MHz and record

10895 periods of the interferogram over 838 µs. As expected, again we observe

the two interferograms from the reference plane and the target plane as expected

with a period of 76.9 ns (or 1
13 MHz

). The raw interferogram over 10 periods for

this 13 MHz offset locked dual comb is shown in Fig. 6.14.

The raw interferograms are then processed to reduce the noise and extract

the amplitudes of the signals over each period. In some cases the period of the

interferograms is observed to drift away from the lock point and those time pe-
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Figure 6.14: The raw interferogram when the difference between the LO and
signal comb is locked to 13 MHz. The trace corresponds to 10 periods of the
interferogram and clearly shows the two distinct interferograms from the refer-
ence plane as well as weaker interferograms corresponding to a weaker reflec-
tion from the target plane.

riods where the period of the interferogram is off by more than 2.5 kHz in either

direction from the lockpoints of 12 and 13 MHz are eliminated. This results in

processed interferograms examples of which are seen in Fig. 6.15 and Fig. 6.16

from which the delays t1 and t2 can be extracted that will be used to infer τdel

using Eq. 6.12.

From the recorded interferograms, we estimate t1 = 29.88±0.17 ns for the

12MHz lockpoint. From the 13 MHz lockpoint interferogram we infer t2 to be

29.76±0.19 ns. These delays are recorded in the slow time axis of the inter-

ferograms and are converted to the fast axis of the signal comb using Eq. 6.8

and Eq. 6.9. Using Eq. 6.12, to determine the ambiguity free delay time these
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Figure 6.15: A processed interferogram for the 12 MHz lockpoint that yields t1
that can be used to infer the value of the delay in conjunction with t2 from the
interferogram recorded at the lockpoint of 13 MHz.

measurements yield a delay time τdel of 28.38 ns. This implies a ambiguity free

distance Ldel of 4.25 m. However, the errors on the delay measurements t1 and

t2 impose limits on the ambiguity free range measurement that limit the accu-

racy to Ldel = 4.25 ± 0.35 m. The distance between the reference plane and tar-

get plane is characterized using conventional measurement tools and is given

by L = 4.03 ± 0.002 m that falls within the error of the detected distance. A

more precise measurement of the delay times t1 and t2 will be required to drive

down the errors in the ambiguity free measurement. This can be achieved with

a tighter lock on the offset frequency between the signal and LO combs as well

as minimizing drift of the LO comb. The LO comb is free-running in this config-

uration which means that the signal comb repetition rate might be drifting even

if the offset is locked.
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Figure 6.16: A processed interferogram for the 13 MHz lockpoint that yields t2
that can be used to infer the value of the delay in conjunction with t1 from the
interferogram recorded at the lockpoint of 12 MHz.
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CHAPTER 7

RELATED WORK AND FUTURE WORK

The ability to readily generate soliton modelocked combs on a silicon nitride

microresonator platform using thermal control has enabled several applications

that have already been demonstrated. Silicon Nitride dual combs have been

used to perform spectroscopy of liquid phase dichloromethane [137]. A pair

of nearly identical silicon nitride microresonators on separate chips have been

synchronized to each other using a fiber link [138]. Such a system could act as

clocks that are synchronized to each other through an optical link. Synchroniza-

tion has also been shown in subharmonic and harmonic regimes where solitons

with repetition rates that are multiples of each other are synchronized [139]. An

integrated comb source using an indium phosphide gain chip and a high quality

silicon nitride ring as a end mirror has been shown to lase with a very narrow

linewidth [163] as well as generate soliton modelocked combs [141]. Solitons

have also been generated in the visible frequency range using thermal control

of higher order modes in silicon nitride [140]. Work has also been done to sta-

bilize the solitons over long periods of time using feedback on the heaters [164]

and tune the pump laser and have the soliton follow [165].

Thermal control of resonances has also been applied to other regimes of op-

eration such as using a dual cavity configuration, where the output of the ring

resonator is fed back to an EDFA that causes the system to lase at a particu-

lar mode of the ring resonator, a thermally tunable comb source was used to

measure gas phase spectra of acetylene [166]. In the normal group velocity dis-

persion regime, thermal tuning has been used to build a turnkey high efficiency

comb source in silicon nitride microresonators by using heaters to control the
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strength of mode interactions between coupled rings [128].

A potentially more stable and integrated source for tunable counter-rotating

solitons using a single microresonator could be designed with an on chip split-

ter and Mach-Zehnder interferometer to control the relative pump powers. This

would help alleviate some of the limitations of the counter-rotating solitons

as seen in the work presented in this dissertation and potentially generate ex-

tremely low noise RF tones by eliminating common mode noise between the

two soliton trains.

Future work on offset locked sources includes the possibility of expanding

upon the ideas of synchronization [138,139] to utilize on chip coupling between

two resonators with repetition rates separated from each other. This would

present the most extreme case of synchronization since the coupling between

the two combs will occur at a single line far from the pump line. A tighter lock

on the ∆f in such an offset locked dual comb source would allow significantly

improved precision in the range measurements without requiring a feedback

servo or being limited by the bandwidth of the heaters. This will allow for the

heaters to be a tuning mechanism independent of the locking scheme to lift the

ambiguity on the ranging measurement.

Another potential configuration for optical feedback to establish a offset lock

would pick off a single line (nth line) from the master comb, apply a phase mod-

ulation with a large enough voltage on this comb line to drive its entire power

into sidebands at ±fRF. These sidebands are then fed into the slave resonator

to establish injection locking. If the coupling is strong enough to establish the

injection lock this would result in an offset locked dual comb at fRF/n.
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A fully integrated comb source with laser, detector and control electronics all

on a single chip would be the holy grail of on-chip frequency comb technology

[Fig. 7.1. Several pieces of this puzzle have been solved by previous research

on integrated frequency combs. The work presented in this dissertation adds

to this body of work that could eventually lead to a realization of this vision of

a fully integrated frequency comb source for spectroscopy, ranging and many

more applications. If such a vision can be realized these sources could see mass

adoption at scale.

L 
del

LO Sig

LO Sig

Integrated Electrical Control

Integrated Electrical Control

Figure 7.1: A vision for a fully integrated comb source with laser, detector and
control electronics all on a single chip for applications in ranging and spec-
troscopy.
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“Adaptive real-time dual-comb spectroscopy,” Nature Communications
5, 3375 (2014).

[144] B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina,
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