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Abstract

Traditional performance evaluation measures do not account for tail events and rare
disasters. To address this issue, we reinterpret the riskiness measures of Aumann
and Serrano (Journal of Political Economy, 2008) and Foster and Hart (Journal of
Political Economy, 2009) as performance indices. We derive the moment properties
of these indices and their sensitivity to rare disasters and show that they are con-
sistent with the asset pricing literature. As applications, we show that “anomalous”
investment strategies such as “momentum”or investment in private equity lose much
of their glamour when accounting for high moments and rare events. Furthermore,
using the indices to select mutual funds results in desirable high-moment properties
out of sample.



1. Introduction

Tail risk and rare disasters have been central to the recent meltdown in financial

markets. Indeed, markets were hit by catastrophic events whose exante probabilities

were considered negligible. Traditional performance evaluation measures (such as the

Sharpe ratio) typically rely on the first two distribution moments, thereby underesti-

mating the effects of rare disasters. Indeed, low distribution moments hardly account

for rare and catastrophic events, since their large negative effect is multiplied by a

very small probability. By contrast, when one considers high distribution moments,

an extremely negative but rare outcome is raised to a high power, making its effect

on the moment substantial regardless of the small probability associated with it.

High distribution moments have received notable attention in the asset pricing

literature. In particular, a large body of work in asset pricing suggests that investors

favor right skewness (e.g., Rubinstein, 1973; Kraus and Litzenberger, 1976; Jean,

1971; Kane, 1982; Harvey and Siddique, 2000), but are averse to tail-risk and rare

disasters (e.g., Barro, 2006, 2009; Gabaix, 2008, 2012; Gourio, 2012; Chen, Joslin,

and Tran, 2012; Wachter, 2013). It is thus desirable that normative performance

evaluation measures reflect these preferences.

In this paper we study two such performance indices relying on a simple reinter-

pretation of the novel riskiness measures proposed by Aumann and Serrano (2008)

and Foster and Hart (2009) (hereafter AS and FH, respectively).1 We investigate

the moment properties of these indices and establish that they reflect all distribution

moments in a manner consistent with economic intuition and with the asset pricing

literature. We also discuss the way these two indices reflect disaster risk. We then ap-

ply these indices to popular investment strategies and to well-known anomalies, show

their practical usefulness in selecting mutual funds, and demonstrate the pitfalls as-

sociated with ignoring high moments and rare disasters in performance evaluation.

Our starting point is that investors are risk-averse and choose their investments

1Aumann and Serrano (2008) offer a set of axioms characterizing the AS riskiness measure. An
axiomatization of the FH measure is offered separately in Foster and Hart (2013).
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by maximizing expected utility. The best possible way to rank investments in this

setup is known to be Second Order Stochastic Dominance (SOSD) (see Hadar and

Russell, 1969; Hanoch and Levy, 1969; Rothschild and Stiglitz, 1970), according to

which one investment dominates another if all risk-averse investors prefer the former

to the latter. The problem with SOSD is that it only imposes a partial order on

investments. Namely, some pairs of investments cannot be ranked using SOSD.

Based on our discussion thus far, a desirable performance evaluation index should

satisfy the following four requirements: (i) Impose a complete order on investments,

namely, any two investments can be compared; (ii) Depend on the distribution of

outcomes only. That is, the form of the utility function is not needed to calculate

the performance index; (iii) Coincide with SOSD, whenever SOSD can be applied.

Namely, if all risk-averse investors prefer one investment to the other, then the perfor-

mance index ranks the investments accordingly; and (iv) Account for high distribution

moments in a manner consistent with the asset pricing literature. That is, the index

is increasing in mean and skewness and decreasing in variance and tail-risk of the

investment.

The Sharpe ratio, which is probably the most popular performance evaluation

measure, satisfies (i) and (ii), but clearly fails (iv). Interestingly, it also fails (iii).

Indeed, it is fairly easy to find examples in which all risk-averse investors prefer one

investment to the other and yet the Sharpe ratio ranks the investments in the wrong

order (see Section 2 for examples). In Appendix B we review several other popular

performance evaluation measures and discuss the extent to which they satisfy these

four requirements.

To understand the fundamental insights in AS and FH it is useful to follow the

approach presented in Hart (2011), who offers a unified framework for the two. The

key for the new indices is to use the investor’s initial wealth as a benchmark for

her investment decisions. That is, instead of comparing the expected utility of two

investments, we compare the expected utility of each investment separately to the

status quo, and ask which one of the two investments is uniformly rejected more
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often. If each time that investment g is uniformly rejected we have that investment

g′ is also uniformly rejected, then g is deemed more attractive than g′ (i.e., g has

better performance than g′).2 That is, g is more attractive than g′ if g is rejected

“less often”than g′ in some uniform manner when compared to the status quo.

The term “uniform rejection”can take two different meanings. First is “wealth-

uniform rejection” in which for a given utility function, an investor rejects the in-

vestment relative to the status quo for all wealth levels. Second is “utility-uniform

rejection”in which for a given wealth level, all utility functions reject the investment

relative to the status quo. The former approach to uniform rejection leads to the AS

performance index, while the latter leads to the FH performance index.

As shown in AS, FH, and Hart (2011), the two approaches yield two rankings of

investments, each of which can be represented by a positive performance index that

possesses an intuitive economic interpretation. Both indices satisfy requirements (i)—

(iii) above. Moreover, they can be easily calculated from the distribution of the

investment by solving an intuitive implicit equation. The only difference between our

interpretation and the interpretations in AS and FH is that they choose to consider

the riskiness of the investment, deeming one investment “more risky” than another

if it is uniformly rejected more often relative to the status quo. We choose to focus

on the flip side of the argument, viewing one investment as “more attractive” than

another if it is uniformly rejected less often relative to the status quo. Roughly

speaking, we view an investment as “attractive” if risk-averse investors show little

aversion to this investment when compared to the status quo, in a uniform manner.

The first thing we do in this paper is to extend the AS and FH indices to a multi-

period setting. We show that the AS and FH results can readily be considered in

such a setting, and that if gambles are identically distributed in each period, then

the multi-period performance indices coincide with the single-period indices.

We then turn to studying how the AS and FH performance indices are affected

2The term “investment”here simply refers to a random variable which can be described by the
probability distribution over outcomes. We often use the term “gamble,”which is the one used in
AS and FH, instead. We use the letter g as a generic notation for such investments (or gambles).
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by the moments of the investments being evaluated. We establish that both the AS

and FH indices reflect all the distribution moments (raw and central). Moreover,

these performance indices are increasing in all odd moments and decreasing in all

even moments. Consequently, the two indices satisfy requirement (iv) above.

Next, we ask whether the sensitivity of the performance indices to the moments

is monotonically decreasing in the order of the moment. Namely, do high distribu-

tion moments necessarily have a smaller effect on performance than low distribution

moments? We establish that there is no such monotone relation. In particular, the

performance indices can be either more or less sensitive to higher moments. Thus,

high moments can have a material effect on performance, and should not be neglected.

We then turn to exploring how the performance indices are affected by rare disas-

ters, modeled as extremely negative outcomes associated with vanishing probabilities.

First, note that such outcomes tend to make the distribution left skewed (more nega-

tive third moment) and fat-tailed (higher fourth moment). Thus, given requirement

(iv), both performance indices are adversely affected by rare disasters. However, we

show that the FH index is much more sensitive to rare disasters than the AS index.

When making decisions, investors often face exogenous and unavoidable risks

such as macroeconomic shocks and shocks to labor income. This kind of uncertainty

is often termed “background risk.” In our final theoretical analysis we study how

such background risk affects the AS and FH indices. We consider two approaches to

modeling background risk. The first is additive, where exposure to background risk

is modeled by adding a random shock to the investor’s initial wealth. The second

approach is multiplicative, where the final wealth of the investor is multiplied by

a random shock. We show that the AS index lends itself naturally to the additive

approach, while the FH index fits well into the multiplicative approach. Furthermore,

we find that if modeled this way, background risk does not affect the AS and FH

performance indices, and so essentially it could be ignored.

We next turn to exploring the practical implications of the two performance in-

dices. To this end, we show that the two indices lend themselves naturally to es-
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timation using the Generalized Method of Moments (GMM) (see Hansen, 1982).

This approach allows us to test hypotheses regarding the attractiveness of different

investment strategies in the underlying population of returns.

We first use the performance indices to evaluate the most prominent and widely

studied investment anomalies: the size anomaly, the value anomaly, and the mo-

mentum anomaly. We compare these investment strategies to each other and to a

naive “buy and hold”strategy of investing in the market. We do this by examining

the performance of the four Fama-French factors (Fama and French, 1993; Carhart,

1997). Our most interesting finding here is that the momentum strategy, often con-

sidered the most serious deviation from market effi ciency (Fama and French, 1996),

is no longer attractive when accounting for high moments. Momentum returns are

extremely left skewed [as originally pointed out by Harvey and Siddique (2000)] and

fat-tailed, and they exhibit extreme negative events, which fall under our definition of

“rare disasters.”These high-moment properties outweigh the higher average return

obtained from following momentum. In particular, our estimates of the AS and FH

performance measures show that momentum does not have better performance than

a “buy and hold” investment in the market. Moreover, we find that momentum is

dominated by the value anomaly, and it remains dominated even when combined

with other anomalies.

In our next application we compare the performance of private investments to

public equity. Moskowitz and Vissing-Jorgensen (2002) find that the returns to pri-

vate equity are not higher than those of public equity. They view this result as

puzzling since private equity investments expose investors to a high level of idiosyn-

cratic risk. Moskowitz and Vissing-Jorgensen note that private equity returns are

right skewed and conjecture that preference for skewness may be one reason for the

tendency of individuals to invest in private equity. The indices studied in this paper

are useful for evaluating this statement since they take into account all distribution

moments (skewness among them). Thus, we follow Moskowitz and Vissing-Jorgensen

(2002) and compare the returns of public investments to those of private investments
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obtained from the 2004 Survey of Consumer Finance (SCF). We find that the average

return on private equity conditional on survival is about 35 times larger than that of

public equity. Moreover, private equity returns are indeed very right skewed. How-

ever, private equity returns are also extremely more volatile and fat-tailed than the

returns on public equity. The question is then whether the superior first and third

moments of private equity outweigh its inferior second and fourth moments. Our

estimates of the two indices suggest that this is not the case. Both the AS and FH

indices are significantly higher for public investments. Thus, based on our estimates,

the “private equity premium puzzle”suggested by Moskowitz and Vissing-Jorgensen

(2002) still stands, and is not resolved by high-moment properties.

In the next application we compare the performance of actively managed equity

funds to that of index funds. The question is whether the returns for actively managed

funds exceed those of passive funds controlling for risk. Given that investors care

about all moments of the return distribution, we extend standard analyses to account

for those moments using the new performance measures. We find that the moments of

the two management strategies are not materially different. Moreover, our estimates

show that the performance indices of active vs. passive mutual funds (after accounting

for fees) are not significantly different. Thus, the new performance indices reinforce

the view that active management does not improve investment performance (even

when considering high distribution moments).

In our final analysis we take the two performance indices one step farther. Rather

than just examining the performance of investment strategies, we use the indices to

select among actively managed mutual funds, and examine the performance resulting

from such an investment strategy. If the high-moment properties of investment port-

folios are persistent, then we expect portfolios sorted on the AS and FH measures to

exhibit superior performance out of sample.

To test this, in each month during our sample period of 1967—2009, we rank all

actively managed equity mutual funds based on their historical AS and FH indices.

We then obtain two portfolios of “selected” mutual funds by equal-weighting the
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funds in the top decile for each index. We compare these two portfolios to the

market portfolio and to a portfolio selected based on the Sharpe ratio. We find that

moments generated by the AS and FH indices are significantly more appealing than

those generated by the Sharpe ratio and are also often more attractive than those of

the market portfolio. In particular, portfolios of mutual funds based on the AS and

FH indices have lower variance, less negative skewness, and lower tail-risk than the

market or the Sharpe ratio-based portfolios. Reflecting these observations, both the

AS and FH indices are higher for portfolios which select mutual funds based on these

two indices. This suggests that the two indices may be useful not only for evaluating

investments but also for selecting investments that have desirable moment properties.

Overall, our empirical results demonstrate the importance of high moments in

performance evaluation. What looks like an attractive investment strategy when

focusing on the first two moments, can easily become less appealing when considering

higher moments and disaster risk. The paper thus contributes to the performance

evaluation literature and to our understanding of the abnormal returns associated

with different trading strategies. It also contributes to the growing literature which

applies the AS and FH measures. For example, Bakshi, Chabi-Yo, and Gao (2011) use

the Aumann and Serrano (2008) riskiness measure to study how changes in riskiness

over time affect the equity, value, size, and momentum premiums.

We proceed as follows. Section 2 presents motivating examples. Section 3 in-

troduces the two performance indices. In Section 4 we derive properties of the two

indices. Section 5 discusses practical applications of the indices to different invest-

ment strategies. Section 6 studies the behavior of mutual fund portfolios selected

using the two indices. We conclude in Section 7. All proofs are in Appendix A.

2. Motivating examples

Before discussing the new performance indices, we consider two examples high-

lighting distributional features that fail to be captured by the Sharpe ratio. We will

show later that the new performance indices successfully incorporate these features.
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The first example, as shown in Table 1, involves the comparison of two gambles.

Gamble g1 looks like a relatively safe bet. However, it assigns a very small probability

to a rare but disastrous event of losing 10. By contrast, g2 is more volatile than g1.

Yet, the distribution of g2 lies (weakly) to the right of that of g1. Hence, g2 first-order

stochastically dominates g1. That is, all investors with increasing utility prefer g2 to

g1 (regardless of risk attitude). But, the Sharpe ratio of g1 is higher than that of

g2. This reflects the fact that the variance of g1 is very low. In this case, the Sharpe

ratio fails to capture the preference of any reasonable investor.

The problem with the Sharpe ratio is tied closely to the high moments of the

gambles. Notice that both the mean and the variance of g1 are only mildly affected

by the rare disaster. However, higher moments would be more strongly affected by

this event. Indeed, by the way that higher moments are calculated, a disastrous

outcome is raised to a higher and higher power, while the probability associated with

it does not change. As a result, for suffi ciently high moments, disastrous outcomes

dominate the low probability assigned to them, and hence have a material effect on

the moment itself. Investors maximizing expected utility care about all moments of

the distribution. Hence, disastrous but rare events such as in g1 may have a material

effect on their preferences. In the example above we have calculated the third and

fourth central moments of g1 and g2 for illustration (denoted by m3 and m4). It

can be seen that the third moment of g1 is negative while the third moment of g2 is

positive, reflecting the left skewness of g1 compared to g2. And, the fourth moment

of g1 is larger than that of g2, reflecting the tail-risk associated with g1. These high

moments are incorporated into the decisions of expected utility maximizers. Our

view is that they should also be incorporated into performance evaluation indices.

One would wonder whether the failure of the Sharpe ratio in the previous example

is driven by the existence of the rare disaster. The second example (presented in Table

2) suggests that it is not the case. In this example, we replace the disastrous event

of g1 by a mild loss of -1. This does not change the fact that gamble g2 first-order

stochastically dominates g1. Once again, the Sharpe ratio dramatically favors the

8



wrong gamble as it is almost 11 times higher for g1 than for g2.We conclude that the

Sharpe ratio may fail to capture the preferences of any reasonable investor even in the

absence of a rare disaster. The calculation of higher moments suggests that despite

the fact that g2 has a higher fourth central moment (m4), it is also right skewed

(reflected by a positive m3) as opposed to the left skewness of g1. Thus, the high

fourth moment of g2 is attributed to the right tail. It seems reasonable that these

high-moment properties should also be accounted for in performance evaluation.

3. The performance indices

In this section we first review and reinterpret relevant results in Aumann and

Serrano (2008) and Foster and Hart (2009). To do so, we follow the unified approach

presented in Hart (2011). Then, we extend these results to a multi-period setting.

3.1. One-period gambles

An investment can be modeled as a random variable, which we generically denote

by g. We assume that all moments of g are well defined. Furthermore, we assume

that g has positive expectation and that it admits some negative values with positive

probability. We often refer to g as a “gamble”and denote the set of all such gambles

by G. For the FH measure only, we also require that g be bounded from below.

We assume that investors have von Neumann-Morgenstern utility functions over

wealth denoted by u (·) , which are differentiable as many times as needed. We assume

further that u′ > 0 and u′′ < 0, reflecting that investors like more wealth over less, and

are strictly risk-averse. Furthermore, we restrict attention to utility functions u sat-

isfying the following three conditions: (i) Decreasing absolute risk aversion (DARA),

i.e., −u′′(w)
u′(w) is weakly decreasing; (ii) Increasing relative risk aversion (IRRA), i.e.,

−w u′′(w)
u′(w) is weakly increasing; and (iii) limw↓0 u (w) = −∞.We denote the class of all

such utility functions by U∗, and note that this class includes, for example, all con-

stant relative risk aversion (CRRA) utility functions of the form u (w) = w1−γ

1−γ with

γ ≥ 1, as well as utility functions that are constant absolute risk aversion (CARA)
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from a suffi ciently high wealth level on.

Let w0 denote the initial wealth of an investor, to which we refer as her “status

quo.”

Definition 1. Say that an investor with utility u and initial wealth w0 rejects a gamble

g if E [u (w0 + g)] ≤ u (w0) , and accepts a gamble g if E [u (w0 + g)] > u (w0) .

That is, an investor rejects a gamble whenever her status quo yields her a weakly

higher expected utility. The following two definitions are needed to describe the

Aumann-Serrano performance index.

Definition 2. Say that a gamble g is wealth-uniformly rejected by an investor with

utility function u, if u rejects g at all initial wealth levels w0.

Intuitively, an investor wealth-uniformly rejects a gamble g, if she prefers the

status quo to g, regardless of her wealth level.

Definition 3. Say that a gamble g wealth-uniformly dominates gamble g′ if when-

ever g is wealth-uniformly rejected by a utility function u, g′ is also wealth-uniformly

rejected by u.

Namely, g wealth-uniformly dominates g′ if whenever an investor with utility

function u prefers the status quo to g for all wealth levels, she also prefers the status

quo to g′ for all wealth levels. In other words, g is preferred to g′, if g′ is “more often”

wealth-uniformly rejected than g is.

Proposition 1. (Aumann and Serrano, 2008; Hart, 2011). Wealth-uniform domi-

nance induces a complete order on G that extends SOSD. This order can be represented

by a performance index PAS (g) assigned to any gamble g ∈ G, which is given by the

unique positive solution to the implicit equation

E
[
exp

(
−PAS(g)g

)]
= 1. (1)

That is, for any two gambles g and g′, g wealth-uniformly dominates g′ if and only if

PAS (g) ≥ PAS (g′) .
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To gain intuition for the performance index PAS , it is useful to rewrite (1) as

E
[
− exp

(
−PAS (g) (w0 + g)

)]
= − exp

(
−PAS (g)w0

)
, (2)

for some initial wealth w0. Note that (1) and (2) are equivalent regardless of w0.

Thus, a useful interpretation is that PAS (g) is the level of absolute risk aversion that

makes an investor with CARA utility indifferent between taking g and the status

quo, regardless of the initial wealth w0. Put differently, an investor with CARA

utility u (w) = − exp (−λw), would accept g when λ < PAS (g) and would reject g

when λ ≥ PAS (g) . Thus, a higher level of PAS (g) means that investors are “less

averse”to g, in the sense that a higher level of risk aversion is needed to reject g. The

key insight in Proposition 1 is that checking (1) is both necessary and suffi cient for

wealth-uniform dominance for all utilities in U∗. As such, a higher level of PAS (g)

reflects better performance for all utility functions in U∗ in the sense that the gamble

is wealth-uniformly rejected by a smaller set of utility functions.

To understand the source of this insight it is useful to consider a situation in

which there is an upper bound on initial wealth levels denoted by w̄. Then, since U∗

only includes DARA utility functions, a gamble g is wealth-uniformly rejected by u

if and only if it is rejected by u at w̄. Let Au (w̄) denote the absolute risk aversion

of u at initial wealth w̄. Now, PAS (g) is defined as the level of absolute risk aversion

that renders a CARA utility investor indifferent between w0 + g and w0 for any w0,

in particular, for w0 = w̄. Thus, g is wealth-uniformly rejected by u if and only if

Au (w̄) ≥ PAS (g) . Consequently, PAS (g1) ≥ PAS (g2) if and only if any time that

g1 is wealth-uniformly rejected, also g2 is wealth-uniformly rejected.

The next definitions are needed to describe the Foster-Hart performance index.

Definition 4. Say that a gamble g is utility-uniformly rejected at an initial wealth

level w0 if all utility functions u ∈ U∗ reject g at w0.

That is, a gamble g is utility-uniformly rejected at wealth level w0, if any investor,

regardless of her utility function, prefers the status quo to g at w0.
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Definition 5. Say that a gamble g utility-uniformly dominates gamble g′ if whenever

g is utility-uniformly rejected at an initial wealth level w0 , g′ is also utility-uniformly

rejected at w0.

Namely, g utility-uniformly dominates g′ if whenever all investors with initial

wealth level w0 prefer the status quo to g, they also prefer the status quo to g′.

Roughly, g is preferred to g′, if g′ is “more often”utility-uniformly rejected than g is.

Proposition 2. (Foster and Hart, 2009; Hart, 2011). Utility-uniform dominance

induces a complete order on G that extends SOSD. This order can be represented by

a performance index PFH (g) assigned to any gamble g ∈ G, which is given by the

unique positive solution to the implicit equation

E
[
log
(
1 + PFH(g)g

)]
= 0. (3)

That is, for any two gambles g and g′, g utility-uniformly dominates g′ if and only if

PFH (g) ≥ PFH (g′) .

To gain intuition for the performance index PFH , it is useful to rewrite (3) as

E

[
log

(
1

PFH (g)
+ g

)]
= log

(
1

PFH (g)

)
. (4)

That is, 1
PFH(g)

can be interpreted as the level of wealth that would render an investor

with log utility indifferent between taking g or staying with the status quo. A log

investor with higher initial wealth than 1
PFH(g)

would accept g, whereas a log investor

with lower initial wealth than 1
PFH(g)

would reject g. Thus, higher PFH corresponds

to better performance in the sense that g is accepted even by individuals with lower

initial wealth. The key insight in Proposition 2 is that checking (3) is both necessary

and suffi cient for utility-uniform dominance for all initial wealth levels.

To understand this insight recall that U∗ only includes utility functions that

demonstrate IRRA and limw↓0 u (w) = −∞. These properties imply that the co-

effi cient of relative risk aversion of any utility in U∗ must be at least 1. Thus, the

utility with the lowest coeffi cient of relative risk aversion in U∗ is the log utility, which
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for a fixed wealth level also minimizes the coeffi cient of absolute risk aversion. Thus,

a gamble g is utility-uniformly rejected at wealth w0 if and only if it is rejected at

w0 by a log investor. Since PFH (g) is the reciprocal of the wealth level that renders

a log investor indifferent between w0 + g and w0, we have that g is utility-uniformly

rejected at w0 if and only if w0 ≤ 1
PFH(g)

. Consequently, PFH (g) ≥ PFH (g′) if and

only if whenever g is utility-uniformly rejected, also g′ is utility-uniformly rejected.

It is worth noting that both AS and FH present their measures as “riskiness

indices” rather than “performance indices.” However, this is just a matter of in-

terpretation. Their focus is on whether investors are more reluctant to accept one

gamble over another, whereas we adopt the traditional performance measurement

approach in which gambles that investors are more willing to accept receive a higher

score. Given this, the mapping to the original papers (Aumann and Serrano, 2008;

Foster and Hart, 2009; Hart, 2011) is PAS = 1/RAS and PFH = 1/RFH , where RAS

and RFH are the relevant riskiness measures.

Based on the discussion thus far we conclude that the two performance indices

PAS and PFH satisfy requirements (i)—(iii) in the Introduction. In Section 4 we

study the moment properties of the indices and the way they reflect disaster risk. In

particular, we establish that they also satisfy requirement (iv).

3.2. Multi-period gambles

In the context of financial investments it is natural to consider uncertain invest-

ments over time. In this section we extend the measures to a simple multi-period

setting. Let T denote a finite number of periods, and consider a T -period gamble

g =
(
g1, g2, ...gT

)
∈ GT , where gt ∈ G for all t = 1, 2, ..., T. Consider an investor with

a time separable utility function U : RT+ 7−→ R that takes the form

U
(
w1, w2, ..., wT

)
=

T∑
t=1

ρt−1u
(
wt
)
, (5)

where u ∈ U∗, ρ ∈ (0, 1) is a discount factor, and
(
w1, w2, ..., wT

)
denote the wealth

levels consumed by the investor in each of the T periods. The investor is endowed
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with a fixed amount w0 at the beginning of each period. To facilitate the analysis,

we assume that the investor consumes her entire wealth at each period. Hence, the

utility of staying with the status quo is equal to

U (w0, w0, ..., w0) = u (w0)

T∑
t=1

ρt−1, (6)

and the expected utility obtained from accepting gamble g is

E
[
U
(
w0 + g1, w0 + g2, ..., w0 + gT

)]
=

T∑
t=1

ρt−1E
[
u
(
w0 + gt

)]
. (7)

The following proposition extends the PAS measure to the multi-period setting.

Proposition 3. Wealth-uniform dominance induces a complete order on GT . This

order can be represented by a performance index PAS (g) assigned to any T -period

gamble g =
(
g1, g2, ...gT

)
∈ GT , which is given by the unique positive solution to the

implicit equation

T∑
t=1

ρt−1E
[
exp

(
−PAS (g) · gt

)]
=

T∑
t=1

ρt−1. (8)

That is, for any two gambles g and g′, g wealth-uniformly dominates g′ if and only if

PAS (g) ≥ PAS (g′) .

As in the one-period case, PAS can be viewed as the risk aversion level that renders

a CARA investor indifferent between taking and rejecting the T -period gamble g.

Unlike in the one-period setting, here PAS depends on the subjective discount factor

ρ. Yet, if all gt’s are identically distributed, (8) reduces to

E
[
exp

(
−PAS(g)gt

)]
= 1, (9)

which coincides with the one-period case, and the dependence on ρ vanishes.

Similarly, for the PFH measure we have

Proposition 4. Utility-uniform dominance induces a complete order on GT . This

order can be represented by a performance index PFH (g) assigned to any T -period
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gamble g =
(
g1, g2, ...gT

)
∈ GT , which is given by the unique positive solution to the

implicit equation
T∑
t=1

ρt−1E
[
log
(
1 + PFH(g)gt

)]
= 0. (10)

That is, for any two gambles g and g′, g utility-uniformly dominates g′ if and only if

PFH (g) ≥ PFH (g′) .

As in the one-period case, the PFH (g) measure can be viewed as the reciprocal of

the critical wealth level at which a log investor would be indifferent between taking

and not taking gamble g. In particular, if all gt’s are identically distributed, (10)

reduces to the one-period version, i.e.,

E
[
log
(
1 + PFH(g)gt

)]
= 0. (11)

The next proposition studies the dependence of the performance measures on the

subjective discount factor ρ. For convenience, we assume T = 2.

Proposition 5. For any g =
(
g1, g2

)
∈ G2 and P = PAS or P = PFH , ∂P (g)

∂ρ has

the same sign as P
(
g2
)
− P

(
g1
)
.

The intuition is clear. When g2 is a better gamble than g1 in the sense that

P
(
g2
)
> P

(
g1
)
, the two-period gamble

(
g1, g2

)
becomes more favorable when ρ is

higher, i.e., when more weight is assigned to g2.

4. Properties of the performance indices

In this section we study the moment properties of the performance indices, their

sensitivity to rare disasters, the effect of scale, leverage, and diversification on perfor-

mance, and the effect of background risk. For brevity we only consider the one-period

setting in this section. All of the results apply also to the multi-period setting.

4.1. Basic moment properties of the performance indices

For any gamble g ∈ G, let µn (g) = E [gn] be the nth raw moment of g (n ≥ 1

an integer) and let mn (g) = E [(g − µ1 (g))n] be the nth central moment of g (n ≥

2 an integer). Since g ∈ G, all these moments exist.
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Any two gambles may differ in several of their moments. To get a basic under-

standing of how different moments are related to the performance indices, it is useful

to consider the hypothetical exercise of changing one moment at a time while keeping

all other moments fixed. For example, one can think of two investment opportunities

that have identical moments except that the returns of one are more skewed than the

returns of the other (higher third moment). How does this affect the performance

indices of the two investments?

To see how the moments of a gamble affect its performance indices we consider

first the PAS index. Start by rewriting Eq. (1) as a Taylor expansion around zero:

∞∑
n=1

(−1)n

n!

(
PAS (g)

)n
µn (g) = 0. (12)

Thus, PAS (g) is given implicitly by the sum of a power series with coeffi cients pro-

portional to the raw moments of the distribution of g. Odd moments are assigned

negative weights, while even moments are assigned positive weights. A similar rela-

tion can be written with the central moments using a Taylor series around µ1 (g):

1 +

∞∑
n=2

(−1)n

n!

(
PAS (g)

)n
mn (g) = exp

(
PAS (g)µ1 (g)

)
. (13)

In the next proposition we use these representations to show that the PAS measure

is increasing in all odd moments (both raw and central) and decreasing in all even

moments (both raw and central).

Proposition 6. Consider two gambles g, g′ ∈ G and let k be a positive integer.

1. Assume that for all n 6= k, µn (g) = µn (g′) but µk (g) > µk (g′) . Then,

PAS (g) > PAS (g′) if k is odd, while PAS (g) < PAS (g′) if k is even.

2. Assume that µ1 (g) = µ1 (g′) and that for all n 6= k, mn (g) = mn (g′) but

mk (g) > mk (g′) . Then, PAS (g) > PAS (g′) if k is odd, while PAS (g) <

PAS (g′) if k is even.
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Next we consider the PFH measure following the same approach as above. Start

by rewriting Eq. (3) as a Taylor expansion around zero:
∞∑
n=1

(−1)n−1

n

(
PFH (g)

)n
µn (g) = 0. (14)

Notice that this Taylor expansion converges only when −1 < PFH (g) g ≤ 1 for all

realizations of g. As before, the PFH index is also given implicitly by the sum of a

power series with coeffi cients proportional to the raw moments of the distribution of

g. However, odd moments are now assigned positive weights, whereas even moments

are assigned negative weights. A similar relation can be written with the central

moments using a Taylor series around µ1 (g):

log
(
1 + PFH(g)µ1(g)

)
=
∞∑
n=2

(−1)n

n

(
PFH(g)

1 + PFH(g)µ1(g)

)n
mn(g). (15)

This expansion converges for all g ∈ G such that−1 < PFH (g) g ≤ 1+2PFH (g)µ1(g).

The next proposition shows that the PFH measure is also increasing (decreasing)

in all odd (even) raw and central moments.

Proposition 7. Consider two gambles g, g′ ∈ G and let k be some positive integer.

1. Assume that for all n 6= k, µn (g) = µn (g′) but µk (g) > µk (g′) . Suppose that

−1 < PFH (g) g ≤ 1. Then, PFH (g) > PFH (g′) if k is odd, while PFH (g) <

PFH (g′) if k is even.

2. Assume that µ1 (g) = µ1 (g′) and that for all n 6= k, mn (g) = mn (g′) but

mk (g) > mk (g′) . Suppose that −1 < PFH (g) g ≤ 1 + 2PFH (g)µ1 (g) . Then,

PFH (g) > PFH (g′) if k is odd, while PFH (g) < PFH (g′) if k is even.

A caveat is that unlike the PAS measure, the moment properties for the PFH

measure only apply when the gamble is bounded from both below and above. When

these conditions are not satisfied, the moment properties for the PFH measure dis-

cussed in this section may not apply.

Propositions 6 and 7 tell us among other things that PAS and PFH are increasing

in the mean and decreasing in the variance of a gamble, which is consistent with
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traditional performance measures, in particular, the Sharpe ratio. In fact, it is shown

in Aumann and Serrano (2008) that when a gamble g has a normal distribution,

PAS(g) = 2µ1 (g) /m2 (g) . That is, in the normal case the PAS index is proportional

to a mean-to-variance ratio. For general distributions, both indices admit larger

values when the third moment is large and when the fourth moment is small. Thus,

requirement (iv) is satisfied by both indices.

4.2. Magnitude of the moment effects

Having established the basic moment properties, we now turn to studying the

magnitude of their effects. While it has been increasingly acknowledged that higher

moments play an important role in performance evaluation, standard performance

indices often do not account for these aspects. For example, the widely used Sharpe

ratio does not account for moments above the second, implicitly assuming that they

should be assigned a negligible weight in the performance measure. It is interesting to

examine whether the weight assigned to the different moments in the new performance

indices is monotonically decreasing in the order of the moment.

A diffi culty in examining the relative importance of the moments is that each

moment is stated in a different unit of measurement. For example, suppose that the

first moment (the mean) is measured in percentage points, then the second moment

is measured in percentage points squared, etc. To account for this fact and allow for

a “fair”comparison, we examine the magnitude effects of the “normalized moments”

µ̂k ≡ k
√
µk for k = 1, 2, ... and m̂k ≡ k

√
mk for k = 2, 3, ..., since all of these have

the same units of measurement as the gamble itself. For example, while m2 is the

variance of the gamble, m̂2 is the standard deviation. Note that moments of degree

k are homogeneous of degree k, while all normalized moments are homogeneous of

degree 1. Additionally, both PAS and PFH are homogeneous of degree -1.3

To gauge the influence of a moment on the performance index, we calculate the

elasticity of the index with respect to normalized moments. This gives us a “unit

3A real function h (·) is homogeneous of degree k if h (tx) = tkh (x) for all x and t > 0.
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free”estimate of the sensitivity. Since we are focusing on the magnitude of the effects

rather than their directions (which we have established already), we only consider the

absolute values of these elasticities (which we term “absolute elasticities”). We begin

with studying the absolute elasticity of PAS and PFH with respect to µ̂k, which we

denote by ηASk and ηFHk , respectively.

Consider the PAS measure first. For all g ∈ G, implicitly differentiating (12)

yields

ηASk (g) ≡
∣∣∣∣∂PAS∂µ̂k

· µ̂k
PAS (g)

∣∣∣∣ =

1
(k−1)!(P

AS(g))k |µk (g)|∑∞
n=1

(−1)n

(n−1)! (PAS(g))n µn (g)
. (16)

Note that ηASk is homogeneous of degree 0. This follows because µk is homogeneous

of degree k and PAS is homogeneous of degree -1. Hence,

ηASk (g) = ηASk
(
PASg

)
=

1
(k−1)!

∣∣µk (PASg)∣∣∑∞
n=1

(−1)n

(n−1)!µn (PASg)
. (17)

This normalization allows us to compare the effect of different moments on the per-

formance measure by taking the ratios of the absolute elasticities for different levels

of k. Specifically,

ηASk+1 (g)

ηASk (g)
=

1
k!

∣∣µk+1

(
PASg

)∣∣
1

(k−1)! |µk (PASg)|
(18)

=
1

k

∣∣µ̂k+1

(
PASg

)∣∣(∣∣µ̂k+1

(
PASg

)∣∣
|µ̂k (PASg)|

)k
.

If this elasticity ratio takes a value greater than 1, then the (k + 1)th moment has a

greater effect on the performance measure than the kth moment. On the other hand,

a ratio less than 1 implies that the PAS measure is less sensitive to the (k + 1)th

moment as compared to the kth moment.

To understand the forces that drive this elasticity ratio to be higher or lower than

1, note first that it consists of three components: the factor 1
k , µ̂k+1

(
PASg

)
, and the

ratio of µ̂k+1

(
PASg

)
to µ̂k

(
PASg

)
raised to the kth power. First, for all k ≥ 1, we

have that 1
k ≤ 1, which drives down the elasticity ratio, and thus the importance of

higher moments.
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The second component,
∣∣µ̂k+1

(
PASg

)∣∣ can be higher or lower than 1 and so can
either strengthen or weaken the importance of higher moments. Third and perhaps

most interesting is that the third factor introduces a force always making higher

moments more important. To see this, note that by Hölder’s inequality,

µ̂k+1

(
PAS |g|

)
≥ µ̂k

(
PAS |g|

)
. (19)

This implies that when k is an odd number,∣∣∣∣∣ µ̂k+1

(
PASg

)
µ̂k (PASg)

∣∣∣∣∣
k

≥ 1. (20)

And, when k is even, (
µ̂k+2

(
PASg

)
µ̂k (PASg)

)k
≥ 1. (21)

Thus, the third factor is necessarily greater than 1 for odd values of k. And, for even

values of k, we still have a trend up when comparing the (k+2)th to the kth moment.

To summarize, somewhat surprisingly, we do not find that higher moments neces-

sarily have a weaker effect on performance evaluation. Rather, we see forces in either

direction. In Section 5 we illustrate this point, showing that higher moments often

have a significant effect.

Similarly, for any gamble g ∈ G such that −1 < PFH (g) g ≤ 1, we can calculate

the absolute elasticity of PFH with respect to µ̂k. The resulting elasticity ratio is

given by

ηFHk+1 (g)

ηFHk (g)
=
∣∣µ̂k+1

(
PFHg

)∣∣(∣∣µ̂k+1

(
PFHg

)∣∣
|µ̂k (PFHg)|

)k
. (22)

Note that compared to the case with the PAS measure, the elasticity ratio for the

PFH measure only has two components, which correspond to the second and third

factors in the PAS case. In particular, now we lose the first factor 1
k , which serves

as a depreciating component in the PAS case. Therefore, the force driving up the

importance of higher moments is even stronger with the PFH index.

The discussion above considers the magnitude of the moment effects with respect

to raw moments. Similar results are obtained with respect to central moments. We

denote such elasticities by ζASk (g) and ζFHk (g) . For brevity we omit this analysis.
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4.2.1. Example: a shifted lognormal distribution

To illustrate the magnitudes of the moment properties and how they affect per-

formance evaluation, consider the following example related to the PFH measure.

Let x ∼ N
(
x0, σ

2
)
be a normal variable and consider the shifted lognormal gamble

g = exp (x)−exp (x0) . It is easily verified that PFH (g) = exp (−x0) . Hence, PFH (g)

depends only on x0 but not on σ2. Intuitively, σ2 affects all distribution moments

but does not affect PFH since the effects on the different moments offset each other.

Moreover, calculation shows that ηFH1 (g) = 1 and ζFH2 (g) > 1. Thus, if we would

increase only the first moment by 1%, performance would improve by 1%. And, if

we would increase only the second moment by 1%, then performance would decline

by more than 1%. Also, calculation shows that if σ2 is suffi ciently high, then both

ζFH3 (g) and ζFH4 (g) become larger than 1, and in fact diverge to infinity as σ2 di-

verges. Thus, higher distribution moments in this example can have a strong effect

on performance.

4.3. Rare disasters

4.3.1. Effect of rare disasters on performance

In some cases gambles feature very bad events that occur with a very small prob-

ability. As discussed in Section 2, small probability events are not likely to affect low

moments, but may become dominant when high moments are taken into account.

Thus, the measures discussed here are well suited to reflect such events. In fact, the

two measures differ in the way they account for rare disasters.

An important property of the PFH measure is that it is extremely sensitive to rare

disasters [see the discussion in Section V.B in Foster and Hart (2009)]. To formalize

this property in our context, let g0 ∈ G be a gamble and choose L > 0 very large. One

can think of g0 as a “business as usual”gamble that involves some gains and losses

but no disastrous events, whereas −L is a very big and unusual loss. Then, consider

the composite gamble gα that assigns probability 1−α to g0 and α to −L, where α is

some small probability. The gamble gα reflects both “business-as-usual”realizations
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and the rare disaster. As α becomes very small, the PFH index becomes completely

dominated by the disastrous loss L. Namely, limα→0 P
FH (gα) = 1/L. Formally,

Proposition 8. Let g0 ∈ G be a gamble and L > 0 such that PFH (g0) > 1/L. Let

α ∈ (0, 1) and let gα denote a composite gamble that assigns probability 1 − α to g0

and α to −L. Then, limα→0 P
FH (gα) = 1/L.4

This follows intuitively from (4). Indeed, the argument of the log function can-

not be negative, and thus regardless of the probability assigned to the disaster −L,

we have PFH < 1
L . When the probability of the rare disaster becomes small, this

inequality becomes more and more binding, as the effect of the “business as usual”

gamble g0 becomes prominent. Thus, with rare disasters the wealth level of a log

investor needed to accept the gamble is roughly equal to the worst-case loss, and the

PFH measure is roughly equal to 1
L .

It is important to note that a corresponding result does not hold for the PAS index.

In fact, the continuity property in Aumann and Serrano (2008, p. 819) implies that

limα→0 P
AS (gα) = PAS (g0) whenever {gα} are uniformly bounded. In Section 5 we

illustrate that indeed, the PFH index is much more sensitive to isolated bad events

than the PAS index.

4.3.2. Modeling rare disasters

Measuring, modeling, and estimating rare disasters in practice is a challenge since,

by definition, data on such events are scarce. One approach is to consider a single

low and rare outcome as a rare disaster. For example, Chen, Joslin, and Tran (2012)

model a rare disaster in consumption by taking a single value that matches the

calibration of Barro (2006). An alternative approach is to use a distribution of disaster

sizes. For example, Barro and Jin (2011) use a power law distribution to model the

left tail of both consumption and gross domestic product (GDP).

4 It is implicit in the statement of the theorem that the sequence {gα} is convergent. Note also
that since g0 ∈ G, we have that E (g0) > 0. It follows that for all α in a right neighborhood of 0,
E (gα) > 0 and thereby, gα ∈ G and PFH (gα) is well defined.
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These two approaches have implications for performance evaluation using PAS

and PFH . On one hand consider a single disaster −L, and on the other hand replace

−L with a distribution that has mean −L. Then, conditional on being in the left tail,

the latter case imposes a mean-preserving spread relative to the former. By Roth-

schild and Stiglitz (1970), a mean-preserving spread implies second-order stochastic

dominance. Thereby, we have the following corollary of Propositions 1 and 2.

Corollary 1. Both PAS and PFH favor a gamble with a single disaster −L over a

gamble with a distribution of disasters with mean −L.

Thus, using a single disaster size set at the mean of the disaster distribution

results in improved performance. But, if the single disaster size is set to be lower

than the mean of the disaster distribution, then the performance ranking between

the two cases is no longer clear, and it depends on the choice of parameter values.

We provide an example in Section 5.3.

4.4. Scale, leverage, and diversification

In applying the two indices one should use caution when dealing with the scale of

the gamble and with leverage. To see this point consider a gamble g, and scale it up

to αg with α > 1. The homogeneity of the indices implies that P (αg) = 1
αP (g) <

P (g) .5 This is a simple reflection of the fact that if g is rejected by a risk-averse

individual compared to the status quo, then αg must also be rejected. Indeed, fix

any increasing and concave utility u. Then, by Jensen’s inequality for every α > 1,

E [u (w0 + g)]− u (w0) ≥ 1

α− 1
(E [u (w0 + αg)]−E [u (w0 + g)]) . (23)

Hence, if g is rejected (i.e., E [u (w0 + g)] ≤ u (w0)), then also αg is rejected (since

E [u (w0 + αg)] ≤ E [u (w0 + g)] ≤ u (w0)). In words, a scaled up version of a rejected

gamble cannot be accepted by a risk-averse investor.

Similarly, if there exists a risk-free asset with return rf > 0, we can consider the

5Any time we use P it means that the statement applies to both PAS and PFH .
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gamble αg + (1− α) rf , assuming it is in G. Then for α > 1,

P (αg + (1− α) rf ) ≤ P (g) . (24)

This again reflects that any time a risk-averse individual rejects a gamble g (compared

to the status quo), she also rejects a levered version of that gamble. Indeed, we

already know that P (αg) < P (g) . Then, (24) follows immediately from the fact that

αg+(1− α) rf is first-order stochastically dominated by αg. Given this, for practical

applications of the indices it may make sense to compare gambles that have the same

scale and leverage. We follow this approach in Section 5.

Finally, we have so far restricted attention to choosing one of two gambles. In

practice, there could be multiple gambles available for investment, and an investor

may be allowed to invest in a portfolio of gambles. The following proposition estab-

lishes that according to the PAS and PFH measures, diversification always (weakly)

improves value and that a unique optimal portfolio of any two gambles exists. This

follows from convexity properties of the original AS and FH risk measures.

Proposition 9. Let g1, g2 ∈ G be two different bounded gambles such that αg1 +

(1− α) g2 ∈ G for all α ∈ [0, 1] . Then, there exists a unique α̂AS (α̂FH) ∈ [0, 1] that

maximizes PAS (PFH) over all convex combinations of g1 and g2.

4.5. Background risk

When investors make decisions, they often face exogenous and unavoidable risks.

For example, an investor choosing among different mutual funds may face uncertainty

regarding inflation or her labor income. This kind of uncertainty is typically termed

“background risk.” It is important to know whether our results are sensitive to the

presence of such risks. This section explores this issue.

We consider two approaches to modeling background risk. First is “additive

background risk” following Eeckhoudt, Gollier, and Schlesinger (1996), who note

that exposure to background risk can be modeled as adding a random shock to the

investor’s initial wealth. Another approach consists of “multiplicative background
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risk,”where the final wealth of the investor is multiplied by a random shock. The

additive approach may fit a shock to the investor’s endowment such as due to labor

income, whereas the multiplicative approach may fit a random shock to the entire

macroeconomic environment, e.g., due to inflation. The PAS measure lends itself

naturally to the additive framework, while the PFH measure fits naturally into the

multiplicative approach.6 We discuss each of them separately.

4.5.1. Background risk and the AS measure

Assume that the investor has utility function u (·) and initial wealth w0. In addi-

tion, assume that the investor faces background risk captured by a random variable

y, which is independent from any gamble to be considered. The investor needs to

determine whether to accept gamble g or not. If she chooses not to take the gamble,

then her expected utility is E [u (w0 + y)] . Alternatively, if she accepts the gamble,

her expected utility becomes E [u (w0 + y + g)] .

For any given utility u and background risk y, we define a new utility function v

by v (w;u, y) = E [u (w + y)] . Note that if u (·) is increasing and concave then so is

v (·;u, y) . Thus, for a given background risk y we can consider the notion of wealth-

uniform rejection with respect to utilities of the form v (·;u, y) . A diffi culty is that in

general, u ∈ U∗ does not imply v ∈ U∗.7 Nevertheless, the results related to the PAS

measure only require weak DARA, with CARA being a special case [see the proof of

Theorem 1 in Hart (2011)]. Let UD denote the set of all utility functions satisfying

weak DARA. We can show that if u ∈ UD, then also v (·;u, y) ∈ UD. This enables us

to establish the following result.

6The reason for this distinction is related to the properties of the exponential and log utility
functions. An additive shock can be separated from the wealth of an investor with CARA utility,
which serves as a tool for the PAS measure calculation. Similarly, a multiplicative shock can be
separated from the wealth of an investor with log utility, which serves as a tool for the PFH measure
calculation. These separation properties facilitate the generalization of the measures to allow for
background risk.

7For example, note that log (w + k) does not satisfy IRRA for k negative. Thus, if we set u (w) =
log (w) and consider a sequence of background noises {yn} that converges in distribution to the
constant k < 0, then vn (w) = E [u (w + yn)] fails IRRA for n large enough.
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Proposition 10. Consider an additive background risk y. Gamble g wealth-uniformly

dominates gamble g′ if and only if PAS (g) ≥ PAS (g′) , where the wealth-uniform

dominance order is defined over utility functions of the form v (·;u, y) where u ∈ UD.

This proposition tells us that if investors have weak DARA utility, then additive

background risk does not affect their investment rankings when it comes to the PAS

measure. Thus, additive background risk can be ignored when using the PAS measure.

4.5.2. Background risk and the FH measure

A multiplicative model of background risk can be obtained by multiplying the

final wealth of the investor with a random shock 1 + z ≥ 0. Thus, for any given

utility u and background risk 1+z, we define a new utility function v by v (w;u, z) =

E [u (w (1 + z))] . Note that if u (·) is increasing and concave, then so is v (·;u, z) .We

can then consider the notion of utility-uniform rejection applied to utility functions

of the form v (·;u, z) . As before, u ∈ U∗ does not necessarily imply v ∈ U∗. However,

to establish our results related to the PFH measure, it is suffi cient to consider utility

functions with relative risk aversion weakly larger than 1, which naturally includes

log utility [see the proof of Theorem 1 in Hart (2011), and in particular, Remark (1)

on p. 637]. Let UI denote the set of all utility functions with relative risk aversion

being at least 1. We can show that if u ∈ UI , then also v (·;u, z) ∈ UI . This facilitates

the following result.

Proposition 11. Consider a multiplicative background risk 1 + z. Gamble g utility-

uniformly dominates gamble g′ if and only if PFH (g) ≥ PFH (g′) , where the utility-

uniform dominance order is defined over utility functions of the form v (·;u, z) where

u ∈ UI .

Thus, if investors have relative risk aversion weakly larger than 1, multiplicative

background risk does not affect their investment rankings using the PFH measure,

and hence could be ignored.
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5. Applications

Having established the properties of the indices, we now study several applica-

tions. We first discuss how the indices can be estimated empirically, and then provide

several settings in which the indices are used to draw conclusions about the attractive-

ness of different investment strategies. The high-moment and rare disaster properties

play an important role in these analyses.

5.1. Estimation method

5.1.1. Using return data

In most applications the theoretical notion of a “gamble” will be represented

by a finite sample of T return observations, reflecting the percentage change in the

investment of the agent. To be consistent we assume that all investments are of $100,

which allows us to treat the percentage rates of return as the actual wealth changes.

Additionally, note that the performance measures do not explicitly account for

the opportunity cost of investing in a particular gamble. Thus, in each case we need

to specify what we view is the right opportunity cost. For example, in the case of

investing in the security market one can view the opportunity cost as investing in a

risk-free asset. In that case, the gamble that should be evaluated is that of borrowing

$100 at the risk-free rate and investing this amount in the market. Thus, the returns

to be evaluated are, in fact, the excess returns (returns less risk-free rate). Different

cases we analyze below will be associated with different natural opportunity costs.

5.1.2. Statistical estimation of the measures

Consider a finite sample of T return observations. As usual in the performance

evaluation literature, we assign each observation a probability of 1
T . Then, we estimate

PAS and PFH by solving the implicit equations (1) and (3). Typically, we view the

finite sample as a random sample from a population of returns. Then, PAS and PFH

which we calculate are just the sample estimates of the “true”performance indices.
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To answer questions regarding the underlying population, we apply the Generalized

Method of Moments (GMM) (see Hansen, 1982). GMM works out a distribution for

the parameter estimates, and, in particular, generates standard errors that we can use

to test hypotheses. This approach is natural since (1) and (3) can directly be viewed

as moment conditions, and thus lend themselves easily to GMM estimation.8 Notice

that in either case, we have exactly one parameter to be estimated and one moment

condition, implying that our problem is “just identified,”and the GMM estimate is

determined such that the sample average of the moment condition equals zero. Thus,

the GMM estimates equal the solutions to the implicit equations (1) and (3). These

estimates are consistent and asymptotically normal. Moreover, since the model is

just identified, the weighting matrix used for the GMM estimation is irrelevant, and

the estimates are effi cient. We also obtain a covariance matrix, which yields standard

errors that allow us to examine the statistical significance of the measures.

Often we compare the performance indices for multiple gambles to assess which

investment strategy dominates. We then estimate the performance indices jointly.

That is, we estimate the performance indices of n gambles using the n moment

conditions implied by the implicit equations (1) (or (3)). The resulting covariance

matrix allows us to compute a standard error for the difference in the measures of

any two gambles, which can then be used to determine whether the gambles generate

significantly different performance indices in the population.

To be consistent with the estimation of the performance indices, we also use the

GMM approach to estimate various moments of gambles. It is worth noting that the

GMM estimates of central moments are biased, but this has a negligible effect on our

results due to the consistency of the estimates.

8Bali, Cakici, and Chabi-Yo (2011) offer an alternative way to estimate the measures using option
prices. Such an approach may be applied for assets with available liquid options. Note also that
their calculations of the risk measures apply risk-neutral probabilities, although the measures are
stated in terms of physical probabilities. Thus, their calculations tend to overweight the probabilities
of bad outcomes, essentially correcting for risk twice. Advantages of the GMM approach proposed
here is its wide applicability, the fact that it allows one to test hypotheses, and its direct reliance on
physical probabilities.
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5.2. Application I: attractiveness of anomalies

As a first application of the indices, we evaluate the attractiveness of popular

investment strategies that rely on well-documented anomalies. It is well established

that small firms (those with low market capitalizations), and value firms (those with

high book-to-market ratios) gain abnormal average returns in US equity markets

(see Banz, 1981; Rosenberg, Reid, and Lanstein, 1985; Fama and French, 1992).

Additionally, it is established that momentum strategies, i.e., holding long positions

in stocks that yielded high returns in the recent past while holding a short position

in stocks that yielded low returns in the recent past, generate abnormal returns

(see Jegadeesh and Titman, 1993). Are these trading strategies still attractive when

accounting for their high-moment properties?

To evaluate this issue we use the Fama and French (1993) and Carhart (1997)

portfolios, which are constructed based on these anomalies. Specifically, Fama and

French (1993) and Carhart (1997) construct four portfolios. The first is denoted

mktrf (for market less the risk-free rate). The returns for this portfolio reflect an

investment in a well-diversified portfolio of US stocks, where the opportunity cost is

assumed to be investment in a risk-free asset. The second portfolio is smb (for small

minus big). This portfolio is long in low market-capitalization stocks and short in high

market-capitalization stocks. Historically, this portfolio yielded abnormal returns

reflecting what is known as the “small firm anomaly.” Note that the underlying

assumption here is that the opportunity cost of investing in small stocks is the return

of investing in large stocks. The third portfolio is hml (for high minus low). This

portfolio is long in high book-to-market stocks (value stocks) and short in low book-

to-market stocks (growth stocks). This portfolio builds on the “value anomaly.”The

fourth portfolio is umd (for up minus down). This portfolio is long in stocks that had

high returns in the recent past (winners) and short in stocks that had low returns in

the recent past (losers), building on the “momentum anomaly.”

We obtain monthly data for the four portfolios for the period January 1962 to

December 2009 from Kenneth French’s data library. Panel A of Table 3 reports
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summary statistics for the first moment (µ1) and the three higher central moments

(m2, m3, and m4) for the four portfolios. The table also compares the moments for

the different portfolios using GMM standard errors.

The average monthly market excess return (mktrf) during our sample period is

0.41%, the average monthly return on the smb portfolio is 0.23%, and the average

monthly returns on the hml and umd portfolios are 0.44% and 0.73%, respectively.

These averages are consistent with prior studies, and reflect the popular attractiveness

of the value (hml) and momentum (umd) anomalies. In terms of higher moments

we see that mktrf has the highest variance (m2), while umd is the most negatively

skewed and exhibits the largest tail-risk (m4) out of the four portfolios. Fig. 1

presents histograms of the returns of the four portfolios. One interesting feature that

can be learned from this figure is that the umd portfolio has some extreme and rare

bad events. These “rare disasters” contribute to the high tail-risk associated with

this strategy and perhaps also to the left skewness.

Panel B of Table 3 reports the Sharpe ratios and the PAS and PFH performance

indices.9 The Sharpe ratio of the umd portfolio appears to be the highest among

the four, with the Sharpe ratio of the smb the lowest, although the differences are

not statistically significant. Both the PAS and PFH measures, however, suggest that

hml is the superior portfolio. Apparently, the high negative skewness and tail-risk of

umd lower its attractiveness. Indeed, comparing the umd and hml portfolios, we see

that the former has more negative skewness (−116.1 vs. −0.67) and higher tail-risk

(4,862.9 vs. 390.8). Thus, despite the fact that the Sharpe ratio of umd is slightly

higher than that of hml, the PAS and PFH measures favor hml.

It is interesting to note that the negative rare events showing in the distribution

of umd play an important role in the determination of PFH . Recall from Proposition

8 that in the presence of a rare disaster, we have PFH ≈ 1
L , where L is the loss

in the case of the disaster. In the case of umd, Fig. 1 shows a “disaster return”of

9We estimate Sharpe ratios and their associated standard errors following Lo (2002). This is
achieved by applying the delta method based on the GMM estimates of the mean and the variance
of the portfolio returns.
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-34.7%. This reflects the return on momentum investing in April 2009, during which

the market experienced a sharp reversal. Accordingly, we have that PFH for the umd

portfolio is 1
34.7 ≈ 0.029. Thus, in the case of umd, the rare disaster dominates the

performance measurement of the portfolio, when using PFH .

Panel B of Table 3 also reports the elasticities, which reflect the importance of the

different moments in the determination of the performance measures (as discussed

in Section 4.2). Recall, in particular, that the importance of the moments may or

may not be monotone. Thus, higher moments can potentially be very influential

in determining performance. The elasticities reported in the table suggest that the

first two moments have a strong effect on performance of the four portfolios. The

elasticities of the third and fourth moments are lower but still meaningful. And, as

suggested in Section 4.2, the elasticities are often non-monotone. For example, for

the PAS measure of the hml portfolio, the fourth moment has a roughly 20 times

larger elasticity compared to the third moment, due to the very small skewness of

this portfolio. Note that in the case of the PFH measure of the umd portfolio, all

reported elasticities are very small. This is a reflection of the fact that in this case

the PFH measure is dominantly determined by the rare disaster.

Panel B also reports the certainty equivalent of a risk-averse investor with CRRA

utility given by u (w) = w1−γ

1−γ . For illustration we use γ = 3, 5, 10, which are levels

of risk aversion commonly used in asset pricing calibrations. In addition, we set

the initial wealth and the scale of investment to be equal. For example, the results

suggest that when γ = 5, investments in the mktrf and smb portfolios are equivalent

to certain -0.14% and −0.02% monthly losses, while investments in the hml and umd

portfolios are equivalent to certain 0.23% and 0.14% monthly gains, respectively.

However, the differences in the certainty equivalent for the four portfolios are not

statistically significant in most cases. Also notice that the hml portfolio becomes

more attractive relative to the umd portfolio as the level of risk aversion increases.

In Section 4.4 we have established that diversification improves performance ac-

cording to both PAS and PFH , and that for any two gambles there exists a unique
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convex combination that maximizes each of the performance measures (Proposition

9). To illustrate this result we now study how combinations of the four Fama-French

and Carhart portfolios affect their attractiveness. Specifically, for each pair of the

four portfolios, we numerically find the optimal weight maximizing PAS and PFH .

The results are reported in Table 4, in which for each pair of portfolios we report the

maximal performance and the associated optimal weights (in parentheses).

As expected, the performance measures for the optimal convex combinations are

always higher than those for the associated “stand alone”portfolios. For example,

Panel B of Table 3 shows that the PAS measures for the mktrf and smb portfolios

are 0.0382 and 0.0468, respectively. In comparison, the optimal convex combination

consisting of 35% invested in mktrf and 65% invested in smb has a PAS value of

0.0659, which is more than 40% higher than the individual performances. The best

pairwise performance according to both measures is achieved by mixing between smb

and hml. Specifically, the optimal combination for the PAS measure is obtained by

investing 43% in smb and 57% in hml, which delivers a PAS value of 0.2006. In

comparison, if one mixes between hml and umd, then the maximal PAS value is

0.1933. Similarly, the optimal combination for the PFH measure consists of 54% and

46% invested in smb and hml, respectively. The associated maximal PFH value is

equal to 0.1540, which is higher than 0.1143, the maximal PFH value achieved by

mixing between hml and umd.

In summary, the discussion in this section illustrates that high moments and rare

disasters may have a meaningful effect on the performance evaluation of popular

trading strategies. In particular, the popular momentum strategy appears much less

attractive using the new performance indices. Indeed, this strategy has high negative

skewness, high tail-risk, and it exhibits rare disasters, all of which tend to lower its

PAS and PFH performance indices. In addition, the momentum strategy remains

dominated even after allowing for diversification between different anomalies.
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5.3. Application II: more on the importance of high moments and rare disas-
ters

In this section we demonstrate further the importance of high moments in evalu-

ating the performance of investment portfolios. To illustrate this point we first use

the momentum (umd) portfolio presented above. We ask the following question: To

what extent would performance evaluation be biased if we accounted for the first two

moments only, essentially ignoring the effects of higher moments? To answer this

question we draw one million samples of 576 realizations (same size as the umd sam-

ple) from a simulated normal distribution with mean and variance equal to those of

the sample momentum returns. We also draw one million samples with replacement

from the original umd portfolio return distribution. Fig. 2 shows the distributions

of the umd portfolio and one arbitrary sample simulated using the normal distribu-

tion. It appears that the simulated version of umd is less left skewed and does not

suffer from rare disasters. To formally compare the two distributions, we calculate

bootstrapped standard errors for the two sets of samples.10

Panel A of Table 5 reports the moments of the true and simulated umd distribu-

tions. Observe that the first two moments are very close (as expected). The higher

moments look quite different. For example, the fourth moment of umd is 4,863 com-

pared to 1,055 for the simulated distribution. However, the bootstrapped standard

errors are quite large, and we cannot reject the null that the two are statistically

equal. Panel B of Table 5 reports the Sharpe ratio and the PAS and PFH perfor-

mance indices. The Sharpe ratio is close for the true and simulated portfolios, which

is expected as both portfolios have similar mean and variance. The PAS index is

lower for the umd portfolio as compared to the simulated one (0.063 vs. 0.078),

although the difference is not statistically significant. The PFH index significantly

favors the simulated normal distribution, as it is about 2.3 times higher than that

for the umd portfolio (significant at the 1% level). The difference in the PFH indices

10One could alternatively use our GMM standard errors in this case. None of the conclusions
below depends on this choice.
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comes largely from the existence of a “rare disaster”for the umd portfolio. In sum,

this example shows that relying on the first two moments only may lead one astray.

We next illustrate how different approaches to modeling rare disasters can affect

performance evaluation. Section 4.3.2 discussed two such modeling approaches: (i)

using a single disaster size; or (ii) applying a distribution of rare disasters. To con-

struct a parametric example, we apply these two approaches to the Fama-French and

Carhart factor portfolios.

For each portfolio we define monthly return realizations falling below the 1%

quantile as rare disasters. In other words, these “disastrous”events occur about once

every 8.3 years. The values of these disaster thresholds in our sample are -11.8%,

-6.8%, -8.5%, and -11.6% for mktrf, smb, hml, and umd, respectively. We then

calculate for each portfolio the average disaster size conditional on the occurrence

of a disastrous event. These averages in our sample are -15.9%, -9.5%, -9.9%, and

-19.0% for mktrf, smb, hml, and umd, respectively. Next, we compare the PAS and

PFH measures for the following two scenarios. In one scenario, the measures are

computed using the original sample returns, which is exactly what we did before. In

another, we replace all disastrous realizations by the single average disaster size. As

expected from Corollary 1, both measures are higher in the case of single disaster size.

The difference is statistically insignificant in most cases, but it is both economically

and statistically significant at the 1% level for the PFH measure of the umd portfolio.

This reflects the sensitivity of PFH to rare disasters and the existence of a large loss

for the umd portfolio.

5.4. Application III: private vs. public equity

In our next illustration of the performance indices, we compare the performance

of private and public equity. Moskowitz and Vissing-Jorgensen (2002) provide a

thorough comparison of the performance of public vs. private equity investment

from the point of view of individual investors. They find that the returns to private

equity are not higher than those of public equity, when accounting for survival. This
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result is puzzling since private equity investments expose investors to a high level

of idiosyncratic risk. They observe that private equity investment is right skewed

and conjecture that preference for skewness may be one reason for the tendency of

individuals to invest in private equity.

The performance indices used in this paper account for all moments of the dis-

tribution (skewness in particular). We thus use the indices to explore whether the

right skewness of private equity indeed compensates for its otherwise unattractive

performance. Our method follows Moskowitz and Vissing-Jorgensen (2002). Using

data on individual household investment in private equity from the 2004 Survey of

Consumer Finance (SCF), we estimate excess returns obtained by households since

the founding or the acquisition of a private firm. These are the returns they would

achieve by borrowing at the risk-free rate and investing in the private firm. We con-

sider only private firms in which a household has its largest actively managed equity

position. We treat each household as an observation and estimate the average annual

holding period return. We disregard observations with a holding period of less than

one year. The average annual holding return is calculated as the sum of the geometric

average annual capital gain and the current dividend return, which is assumed to be

representative of those in previous years. While the former can be estimated from the

initial and current market value of the ownership share, the latter is computed from

the earnings in the year prior to the survey and the current market value of equity

assuming that 30% of earnings are retained in the firm. Finally, we subtract the

risk-free rate from the estimated holding period return to obtain the average annual

excess return. Notice that similar to Moskowitz and Vissing-Jorgensen (2002), our

sample is conditional on survival of the private firms, yielding an upward bias in the

evaluation of private equity performance.

For the purpose of comparison, we compute for each household the geometric

average annual return it would obtain by investing in the Center for Research in

Security Prices (CRSP) value-weighted market index for the same time period as its

private equity holdings. As before, we subtract the risk-free rate to get the excess
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return. Fig. 3 shows the distributions of private and public equity. For the sake

of plotting the private equity histogram, we winsorize the excess returns at 200%.

Importantly, we do not winsorize the data in any of our analyses, since extreme events

are key to our results. In line with the results of Moskowitz and Vissing-Jorgensen

(2002), the figures suggest that private equity returns are much more dispersed and

right skewed compared to public equity.

Panel A of Table 6 reports the moments for the private and public equity returns.

The average return on private equity conditional on survival is about 35 times larger

than that of public equity, and the difference is significant at the 1% level. However,

private equity is also extremely more volatile. In addition, the third moment of

private equity is much larger than that of public equity, but it also exhibits much

heavier tails as reflected in the fourth moment. Overall, based on these four moments,

it is not clear a priori which of the two dominates.

Panel B of Table 6 provides the calculations of the performance indices. The

Sharpe ratio of private equity is significantly lower than that of public equity. That

is, the superior average returns of private equity are outweighed by their high volatil-

ity. The question is whether the high-moment properties of private equity make it

attractive [as conjectured by Moskowitz and Vissing-Jorgensen (2002)]. The answer

provided by PAS and PFH is negative. Both measures are significantly higher for

public equity as opposed to private equity, even when conditioning on survival. The

right skewness of private equity is not suffi cient to compensate for its other moments.

In other words, the “private equity premium puzzle” suggested by Moskowitz and

Vissing-Jorgensen (2002) does not seem to be resolved by high-moment properties.

5.5. Application IV: active vs. passive mutual funds

In the next illustration of the indices we compare the performance of actively

managed equity funds and index equity funds. There is a long-lasting debate on the

value of active as opposed to passive management of mutual funds (e.g., Jensen, 1968;

Henriksson, 1984; Chang and Lewellen, 1984; Ippolito, 1989; Malkiel, 1995; Wermers,
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2000). The focus of this research is on the first and second moments, i.e., on whether

active management beats the average returns of passive management accounting for

risk, as traditionally perceived. Given that investors care about all moments of the

return distribution, we extend the analysis to account for those moments using the

new performance measures.

To examine this issue we obtain mutual fund return data from CRSP. This data

set includes the past records of all open-ended mutual funds in existence, and is thus

free of survivorship bias. The returns we use are net of fees. We also obtain mutual

fund identification data from the Mutual Fund Links (MFLinks) data set maintained

by the Wharton Research Data Services (WRDS). Our sample period for this analysis

is January 1991 to December 2009.11

The MFLinks data provide a reliable means to join the CRSP Mutual Fund data

to equity holdings information. In practice, an investment company may run different

portfolios that have the same composition but serve different groups of investors. Such

portfolios are treated as separate funds in CRSP as noted in Wermers (2000). The

MFLinks allows us to combine all these portfolios and treat them as one mutual fund.

To evaluate the performance of actively managed funds, we drop all index funds

(including index-based and enhanced index funds), bond funds, and balanced funds

and keep only the actively managed equity funds. Also excluded from our analysis

are funds investing in foreign securities and sector funds that invest in particular

industries, such as utilities and real estate. Similarly, we obtain a sample of index

equity funds by dropping all actively managed funds, bond funds, balanced funds,

foreign funds, and sector funds.12 We then compute for each month during the sample

period the value-weighted average return of all actively managed funds and index

funds, and we subtract the risk-free rate to obtain excess returns (228 observations

overall).

11We begin our sample in 1991 since before that time, we do not have accurate information
distinguishing between index funds and actively managed funds.
12 In our sample of index funds, we do not include index-based and enhanced index funds. Including

those in the analysis does not change the results materially and the conclusions are unaffected.
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Panel A of Table 7 reports summary statistics for both groups. It can be seen that

all four moments are very similar for the active and passive funds, and the differences

between them are not statistically significant. Panel B reports the Sharpe ratio and

the PAS and PFH indices. Here again, we do not see significant differences across the

two fund groups, consistent with the similar moments reported in Panel A. Thus, the

PAS and PFH indices lead to the conclusion that after-fee returns of active and index

funds are not distinguishable, even after accounting for high moments. This result

reinforces the view that active management does not improve overall performance of

mutual funds. In fact, we find that not only is overall performance not affected by

active management, but also each of the first four return distribution moments are

not affected by active management.

6. Mutual fund selection based on the performance in-
dices

So far we have illustrated how the new indices can be used to evaluate the per-

formance of investments. In this section we take one step forward and examine the

performance of investments selected based on the new indices out of sample. The

idea is that if the high-moment properties of investment portfolios are persistent,

then portfolios sorted on historical AS and FH measures would exhibit superior per-

formance in the future. To this end, we use the new performance indices to select

mutual funds on a monthly basis, and then examine the outcome of such an invest-

ment strategy.

Our data for this exercise consist of monthly returns of all mutual funds from

CRSP and identification data from MFLinks. We focus on a sample period covering

576 months from January 1962 through December 2009. The original CRSP data

set covers 44,093 funds. We drop all index funds, bond funds, and balanced funds

and keep only the actively managed equity funds. We also exclude foreign funds and

sector funds. This leaves us with 15,580 actively managed mutual funds that invest

in domestic equity securities. After combining duplicate funds using the MFLinks
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data we are left with 3,222 unique funds.

Our aim is to examine the performance of mutual-fund portfolios selected based

on the new indices as compared to those selected based on a traditional measure (the

Sharpe ratio). In each month during our sample period starting from January 1967

and for each mutual fund, we calculate the PAS , PFH indices and the Sharpe ratio

(S) based on the most recent 60 monthly excess returns assigning equal probability

(1/60) to each observation. If a fund does not have complete records for the preceding

60 months, or if the average return is not positive during that period, we disregard

it for that particular month.13 We then rank all mutual funds in each month based

on their indices (separately for PAS , PFH , and S). This yields three portfolios of

“selected”mutual funds consisting of equal-weighted combinations of the top decile

mutual funds. We rebalance these portfolios on a monthly basis.

Panel A of Table 8 compares various moments for the portfolio excess returns

obtained by adopting the three portfolios described above (denoted for brevity by

AS, FH, and S), as well as for the market (denoted by MKT, and represented by the

CRSP value-weighted index). For each of the four portfolios the table reports return

distribution moments estimated using GMM.

The average return (µ1) appears highest for portfolio S (0.54%), which was con-

structed based on Sharpe ratios. Indeed, the average returns on the AS and FH

portfolios are estimated at 0.50% and 0.47%, respectively, and the average return on

the market is estimated at 0.43%. However, the differences are insignificant in most

cases. By contrast, higher moments generated by the AS and FH indices are signif-

icantly more appealing than those generated by the Sharpe ratio and are also often

more appealing than those generated by the market. Consider first the second central

moment (m2). The estimated values for the AS and FH portfolios are 16.2 and 15.7,

respectively. Those are significantly lower than the estimates for the S and MKT

portfolios, which are 21.2 and 21.4, respectively. Now, consider the third central

13Recall that the PAS and PFH measures as well as the Sharpe ratio can be calculated only if the
average return is positive. In some cases following very bad years, this prevents us from calculating
the measures for some funds over a 60-month period.
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moment (m3). Its estimates for the AS and FH portfolios are -37.3 and -37.0, respec-

tively, as opposed to -59.1 and -55.6 for the S and market portfolios, respectively,

with the difference being significant when compared to the S portfolio. Thus, the AS

and FH indices appear to generate less negatively skewed returns compared to the S

portfolio. Finally, both the AS and the FH portfolios generate a significantly lower

fourth central moment (m4) compared to both the S and MKT portfolios. Thus, the

AS and FH portfolios seem to present investors with a lower tail-risk when compared

to the market or the Sharpe ratio-based portfolios.

The two performance indices estimated for the four different portfolios (reported

in Panel B) encapsulate all the information contained in high moments. Indeed, both

PAS and PFH are higher for the AS and FH portfolios compared to S and MKT

portfolios, where the difference is statistically significant in most cases. Interestingly,

portfolio S, which is composed based on the Sharpe ratio, has a lower Sharpe ratio

compared to the AS and FH portfolios, though the differences are not statistically

significant.

As before, we also calculate the certainty equivalent obtained from investing in

each one of these portfolios through the eyes of a CRRA investor with several levels of

risk aversion. Suppose, for instance, that the relative risk aversion coeffi cient is equal

to 5. Then, the results suggest that borrowing at the risk-free rate and investing

in the AS and FH portfolios are equivalent to certain 0.07% and 0.05% monthly

gains, respectively. In comparison, borrowing at the risk-free rate and investing

in the S and MKT portfolios are equivalent to certain -0.03% and -0.15% monthly

losses, respectively. Generally, the certainty equivalent generated by the AS and FH

portfolios is higher than that generated by the S portfolio and the market. The

differences become more significant as the risk aversion coeffi cient becomes larger.

7. Conclusion

In this paper we explore two measures of performance, PAS and PFH , based on a

reinterpretation of two riskiness measures proposed by Aumann and Serrano (2008)
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and Foster and Hart (2009). We extend these indices to multi-period investments and

investigate their moment properties. We establish that they reflect all distribution

moments in a manner consistent with economic intuition and with the asset pricing

literature. Namely, they are increasing in mean and skewness and decreasing in

variance and tail-risk of the investment return. We also discuss the way these two

indices reflect disaster risk.

We then apply these indices to popular investment strategies and to well-known

anomalies. We first find that the momentum strategy, which is often considered the

most serious and hard to explain deviation from market effi ciency, is not an attrac-

tive investment strategy according to our performance measures due to unattractive

higher moments. Then we show that even after accounting for higher moments, pri-

vate equity investments are dominated by public equity. Hence, the “private equity

premium puzzle” suggested by Moskowitz and Vissing-Jorgensen (2002) is not re-

solved by high-moment properties. Furthermore, we apply these measures to the

comparison of actively managed equity funds and index funds and find that the new

performance indices reinforce the view that active management does not improve

investment performance.

Finally, we examine whether the new performance measures are helpful with con-

structing investment strategies. Specifically, we compare the performance of portfo-

lios of mutual funds selected based on the two indices to the market portfolio and

to a portfolio selected based on the Sharpe ratio. We find that the PAS and PFH

indices give rise to portfolios with moments more appealing than the market portfolio

and the portfolio generated by the Sharpe ratio, and that they also produce lower

disaster risk.

The measures introduced by Aumann and Serrano (2008) and Foster and Hart

(2009) appear to be very useful for evaluating both risk and performance. Future

research will likely further explore the implications of these measures for asset pricing,

portfolio selection, and for dynamic decision making under risk. Such an approach is

consistent with the recent trend in asset pricing of departing from traditional utility
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functions, and accounting for higher distribution moments and rare disasters.

Appendix A

Proof of Propositions 3 and 4. We first prove the following lemma, which gener-

alizes Proposition 2 in Hart (2011) to a multi-period setting.

Lemma 1. Let U1 and U2 be two time separable utility functions with u1 (w) and

u2 (w) being the associated utility per period. Let Au1 (w) and Au2 (w) denote the

absolute risk aversion coeffi cients of u1 and u2, respectively, and let I ⊂ (0,∞) be an

interval where Au1 (w) ≥ Au2 (w) for every w ∈ I. Then for every w0 > 0 and g ∈ GT

such that w0 + gt ⊂ I for all t = 1, 2, ..., T, if U2 rejects g at w0, then U1 also rejects

g at w0.

Proof of Lemma 1. We want to prove that if

T∑
t=1

ρt−1E
[
u2

(
w0 + gt

)]
≤ u2 (w0)

T∑
t=1

ρt−1, (25)

then we have
T∑
t=1

ρt−1E
[
u1

(
w0 + gt

)]
≤ u1 (w0)

T∑
t=1

ρt−1.

It is shown in the proof of Proposition 2 in Hart (2011) that Au1 (w) ≥ Au2 (w)

for every w ∈ I if and only if there exists an increasing and concave function ψ such

that

u1 (·) = ψ (u2 (·)) .
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Now suppose (25) is true. Then this implies

T∑
t=1

ρt−1E
[
u1

(
w0 + gt

)]
=

T∑
t=1

ρt−1E
[
ψ
(
u2

(
w0 + gt

))]
≤

T∑
t=1

ρt−1ψ
(
E
[
u2

(
w0 + gt

)])
(by Jensen’s inequality)

=

T∑
q=1

ρq−1

[
T∑
t=1

ρt−1∑T
q=1 ρ

q−1
ψ
(
E
[
u2

(
w0 + gt

)])]

≤
T∑
q=1

ρq−1ψ

(
T∑
t=1

ρt−1∑T
q=1 ρ

q−1
E
[
u2

(
w0 + gt

)])
(by Jensen’s inequality)

≤
T∑
q=1

ρq−1ψ

(
u2 (w0)

∑T
t=1 ρ

t−1∑T
q=1 ρ

q−1

)
(from (25))

=
T∑
t=1

ρt−1ψ (u2 (w0))

= u1 (w0)
T∑
t=1

ρt−1,

as stated.

The existence and uniqueness of the solution follow from the proofs of Theorem

A in Aumann and Serrano (2008) and Theorem 1 in Foster and Hart (2009), respec-

tively. The proofs for the correspondence with wealth-uniform and utility-uniform

dominance are similar to the proof of Theorem 1 in Hart (2011) with the reference

to Proposition 2 in Hart (2011) replaced by Lemma 1 established above. For brevity

we do not repeat the details here.

Proof of Proposition 5. The proofs for the two measures are parallel. Hence, for

brevity we only present the proof for the PAS measure. We begin with the following

lemma.

Lemma 2. For any g =
(
g1, g2

)
∈ G2 and P = PAS or P = PFH , we have

min
{
P
(
g1
)
, P
(
g2
)}
≤ P (g) ≤ max

{
P
(
g1
)
, P
(
g2
)}
with equalities holding if and
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only if P
(
g1
)

= P
(
g2
)
.

Proof of Lemma 2. As mentioned above, we only present the proof for the PAS

measure. For any p > 0 and g ∈ G, let

fAS(p, g) ≡ E[exp(−pg)]− 1. (26)

Then (8) with T = 2 can be rewritten as

FAS
(
PAS (g) , g1, g2

)
≡ fAS(PAS (g) , g1) + ρfAS(PAS (g) , g2) = 0. (27)

If PAS
(
g1
)

= PAS
(
g2
)
, then by choosing PAS (g) = PAS

(
g1
)

= PAS
(
g2
)
one can

easily verify that (27) holds. Thus, by uniqueness we have that PAS (g) = PAS
(
g1
)

=

PAS
(
g2
)
.

Now consider the case in which PAS
(
g1
)
6= PAS

(
g2
)
. By the proof of Theorem

A in Aumann and Serrano (2008), we know that fAS(·, gt) single-crosses zero at

PAS
(
gt
)
from below for t = 1, 2. That is, fAS(p, gt) < 0 for any p < PAS

(
gt
)
, and

fAS(p, gt) > 0 for any p > PAS
(
gt
)
.

If PAS (g) ≤ min
{
PAS

(
g1
)
, PAS

(
g2
)}
, then fAS(PAS (g) , gt) ≤ 0 for both

t = 1, 2 with at least one inequality being strict. This contradicts (27). If PAS (g) ≥

max
{
PAS

(
g1
)
, PAS

(
g2
)}
, then fAS(p, gt) ≥ 0 for both t = 1, 2 with at least one

inequality being strict, which again contradicts (27). Therefore, we must have

min
{
PAS

(
g1
)
, PAS

(
g2
)}

< PAS (g) < max
{
PAS

(
g1
)
, PAS

(
g2
)}
.

Now, implicitly differentiating (27) yields

∂PAS (g)

∂ρ
= − ∂FAS/∂ρ

∂FAS/∂PAS (g)
= −f

AS(PAS (g) , g2)

∂FAS/∂PAS (g)
.

Similar to the one-period case, FAS(·, g1, g2) crosses zero at PAS (g) from below.

Hence, we have
∂FAS

∂PAS (g)
> 0.
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By Lemma 2, the sign of fAS(PAS (g) , g2) is equal to the sign of PAS
(
g1
)
−

PAS
(
g2
)
.14 Hence, the sign of ∂P

AS(g)
∂ρ is equal to the sign of PAS

(
g2
)
− PAS

(
g1
)
.

Proof of Proposition 6. We provide the proof for the first part of the proposition

and for the case that k is an odd number. The proof of all the other cases is similar.

For any p > 0 and g ∈ G, define

fAS(p, g) ≡ E[exp(−pg)]− 1 =

∞∑
n=1

(−1)n

n!
pnµn (g) .

By the proof of Theorem A in Aumann and Serrano (2008), we know that fAS(·, g)

single-crosses zero at p = PAS (g) > 0 from below.

Now, suppose that g, g′ ∈ G such that µk(g) > µk(g
′). Since k is odd, the

coeffi cient of µk (g) in fAS(p, g) is negative. Hence,

fAS(p, g) < fAS(p, g′) (28)

for all p > 0. By Eq. (12) we know that

fAS(PAS(g), g) = 0. (29)

Then, by (28) and (29) we have

0 = fAS(PAS(g), g) < fAS(PAS(g), g′).

Since fAS(·, g′) single-crosses zero at PAS(g′) from below, it must be that PAS (g′) <

PAS (g) .

Proof of Proposition 7. The proof is similar to that of Proposition 6.

Proof of Proposition 8. The composite gamble gα converges in distribution to

g0 as α goes to zero. Hence, by Proposition 10 in Foster and Hart (2009, p. 810),

limα→0 P
FH (gα) = 1/L.

14 If PAS
(
g1
)
< PAS

(
g2
)
, we know from Lemma 2 that PAS (g) < PAS

(
g2
)
. Since fAS(·, g2)

crosses zero at PAS
(
g2
)
from below, we have fAS(PAS (g) , g2) < 0. The other case is parallel.
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Proof of Proposition 9. We first prove the result for the PAS measure. For any

given α ∈ [0, 1] , let

hAS (α) = RAS (αg1 + (1− α) g2) ,

where RAS (·) is the Aumann-Serrano riskiness index. According to Aumann and

Serrano (2008), RAS (·) is subadditive and homogeneous of degree 1, which together

implies that RAS (·) is a convex risk measure. That is, ∀α ∈ [0, 1] we have

RAS (αg1 + (1− α) g2) ≤ αRAS (g1) + (1− α)RAS (g2) .

This in turn implies that hAS (·) is a convex function.

On the other hand, according to the continuity property of RAS [see Section

V.D of Aumann and Serrano (2008)], when αn → α, RAS (αng1 + (1− αn) g2) →

RAS (αg1 + (1− α) g2) . This follows because αng1+(1− αn) g2 is a uniformly bounded

sequence of gambles converging in distribution to αg1 + (1− α) g2. This implies that

hAS (·) is continuous on [0, 1] . Since a continuous convex function on a bounded do-

main must have a unique global minimum, there exists a unique α̂AS ∈ [0, 1] that

minimizes hAS (α) . Since RAS (·) is positive, and

PAS (αg1 + (1− α) g2) =
1

RAS (αg1 + (1− α) g2)
=

1

hAS (α)
,

we have that the same α̂AS maximizes PAS (αg1 + (1− α) g2) .

The proof for the PFH measure is similar with the only difference being in the

continuity property. According to Proposition 3 in Foster and Hart (2009), the con-

tinuity of RFH (·) requires not only convergence in distribution but also convergence

of the maximal loss for uniformly bounded sequences of gambles. It is clear when

αn → α, the maximal loss of αng1 + (1− αn) g2 converges to that of αg1 + (1− α) g2,

which establishes the result.

Proof of Proposition 10. Since y is independent of g, it is immediate that when

u (·) exhibits CARA, v (·;u, y) also exhibits CARA with the same absolute risk aver-

sion. Hence, if we show that DARA is maintained when adding background risk, the
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results of Proposition 1 remain unchanged when applied to the class UD of DARA util-

ity functions allowing for additive background risk. To see this, suppose u (·) ∈ UD.

We will show that v (·;u, y) ∈ UD for any additive background risk y.

Let Au (w) and Av (w) denote the absolute risk aversion coeffi cients of u (·) and

v (·;u, y) , respectively, i.e.,

Au (w) = −u
′′ (w)

u′ (w)
,

and

Av (w) = −v
′′ (w;u, y)

v′ (w;u, y)
= −E [u′′ (w + y)]

E [u′ (w + y)]
.

Since u (·) ∈ UD, we know

A′u (w) =
[u′′ (w)]2 − u′′′ (w)u′ (w)

[u′ (w)]2
≤ 0,

which implies [
u′′ (w)

]2 ≤ u′′′ (w)u′ (w) . (30)

Now,

A′v (w) =
(E [u′′ (w + y)])2 −E [u′′′ (w + y)]E [u′ (w + y)]

(E [u′ (w + y)])2 (31)

≤
(E [u′′ (w + y)])2 −

(
E
[√

u′′′ (w + y)u′ (w + y)
])2

(E [u′ (w + y)])2 ,

where the inequality follows from the Cauchy-Schwarz inequality.15 By (30), we have

that for all realizations of y,

−u′′ (w + y) ≤
√
u′′′ (w + y)u′ (w + y),

where the negative sign on the left-hand side results from the concavity of u (·) .

Taking expectation on both sides yields

−E
[
u′′ (w + y)

]
≤ E

[√
u′′′ (w + y)u′ (w + y)

]
,

which in turn implies(
E
[
u′′ (w + y)

])2 ≤ (E [√u′′′ (w + y)u′ (w + y)
])2

. (32)

15Note that by DARA, u′′′ ≥ 0, implying that the term under the radical is non-negative.
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Hence, from (31) and (32) we obtain A′v (w) ≤ 0. This completes the proof of the

proposition.

Proof of Proposition 11. It is immediate that when u (w) = logw, then a mul-

tiplicative background risk results in adding a constant to utility, and thus does not

change the form of the utility function. Namely, log utility can be written in the form

v (·;u, z) = E [u (w (1 + z))] for some u ∈ UI . By Remark (1) in Hart (2011, p. 637),

if we can show that for any u ∈ UI we have v (·;u, z) ∈ UI , then the results of Propo-

sition 2 remain unchanged when applied to the class UI , allowing for multiplicative

background risk. To see this, let u (·) ∈ UI , and consider a multiplicative background

risk 1 + z.

Let Ru (w) and Rv (w) denote the relative risk aversion coeffi cients of u (·) and

v (·;u, z) , respectively, i.e.,

Ru (w) = −wu
′′ (w)

u′ (w)
,

and

Rv (w) = −wv
′′ (w;u, z)

v′ (w;u, z)
= −w

E
[
(1 + z)2 u′′ (w (1 + z))

]
E [(1 + z)u′ (w (1 + z))]

.

Since u (·) ∈ UI , we know that

− (w (1 + z))
u′′ (w (1 + z))

u′ (w (1 + z))
≥ 1

for any z. Equivalently, after multiplying by 1 + z ≥ 0,

−
(
w (1 + z)2

)
u′′ (w (1 + z)) ≥ (1 + z)u′ (w (1 + z)) .

Taking expectations on both sides with respect to z gives

−w
E
[
(1 + z)2 u′′ (w (1 + z))

]
E [(1 + z)u′ (w (1 + z))]

≥ 1.

That is, Rv (w) ≥ 1 as needed.
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Table 1 Motivating example I

This table provides an example in which the Sharpe ratio fails to capture the high-moment and rare

disaster properties of the distribution of gambles, leading to an inconsistency with SOSD. Two gambles

g1 and g2 are being compared, with the gamble value and the corresponding probability and cumulative

distribution function (CDF ) reported. The table also reports the various moments of the two gambles, where

µ1 denotes the first moment, and m2, m3, and m4 stand for the second, third, and fourth central moments,

respectively. The table also reports the Sharpe ratios of the gambles, denoted by S.

g1 g2

Value Probability CDF Value Probability CDF
-10 0.001 0.001 -1 0.001 0.001
1 0.999 1 1 0.9 0.901

4 0.099 1
µ1 0.989 1.295
m2 0.121 0.808
m3 -1.327 1.924
m4 14.583 5.335
S 2.845 1.441
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Table 2 Motivating example II

This table provides an example in which the Sharpe ratio fails to capture the high-moment properties

of the distribution of gambles, leading to an inconsistency with SOSD. Two gambles g1 and g2 are being

compared, with the gamble value and the corresponding probability and CDF reported. The table also

reports the various moments of the two gambles, where µ1 denotes the first moment, and m2, m3, and m4

stand for the second, third, and fourth central moments, respectively. The table also reports the Sharpe ratios

of the gambles, denoted by S.

g1 g2

Value Probability CDF Value Probability CDF
-1 0.001 0.001 -1 0.001 0.001
1 0.999 1 1 0.9 0.901

4 0.099 1
µ1 0.998 1.295
m2 0.004 0.808
m3 -0.008 1.924
m4 0.016 5.335
S 15.788 1.441
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Table 4 Optimal combinations of anomalies

This table illustrates the pairwise optimal convex combinations of the market excess return (mktrf),

and the small-minus-big (smb), high-minus-low (hml), and up-minus-down (umd) portfolios using monthly

returns in percentage points for the period January 1962 to December 2009. Panels A and B report the results

for the PAS and PFH measures, respectively. For each pair of portfolios, the table shows the maximal PAS

and PFH values delivered by the optimal convex combination, with the associated weights assigned to the

two portfolios reported below in parentheses.

Panel A: PAS measure
mktrf smb hml umd

mktrf 0.0659 0.1941 0.1232
(0.35,0.65) (0.33,0.67) (0.46,0.54)

smb 0.2006 0.1304
(0.43,0.57) (0.57,0.43)

hml 0.1933
(0.68,0.32)

umd

Panel B: PFH measure
mktrf smb hml umd

mktrf 0.0606 0.1103 0.0685
(0.31,0.69) (0.38,0.62) (0.44,0.56)

smb 0.1540 0.0802
(0.54,0.46) (0.56,0.44)

hml 0.1143
(0.84,0.16)

umd
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Table 5 High-moment and rare disaster properties of momentum portfolio

This table illustrates the high-moment and rare disaster properties of the momentum (umd) portfolio,

based on the monthly umd returns in percentage points for the period January 1962 to December 2009. The

results for the umd portfolio are reported in column 1. In comparison, we draw one million samples of the same

size from a simulated normal distribution with mean and variance equal to those of the sample momentum

returns. The results for the simulated distribution are reported in column 2. In addition, difference test

results are reported in column 3. Panel A shows estimates of various moments of the portfolio returns, where

µ1 denotes the first moment, and m2, m3, and m4 stand for the second, third, and fourth central moments,

respectively. Panel B reports the Sharpe ratio (S) and the Aumann-Serrano and Foster-Hart performance

indices (PAS and PFH). Further, Panel B also reports the certainty equivalent (CE) of a risk-averse investor

with CRRA utility and a risk aversion coeffi cient of 3, 5, or 10, assuming that the initial wealth and the

investment scale are equal. Bootstrapped t -statistics are reported in the parentheses below the corresponding

estimates. Asterisks denote statistical significance at the 1% (***), 5% (**), and 10% (*) levels.

Panel A: Various moments
(1) (2) (3)
umd Simulated umd-Simulated

µ1 0.7257 0.7257 0.0001
(4.02)*** (96.32)*** (0.00)

m2 18.7827 18.7504 0.0323
(6.73)*** (407.23)*** (0.01)

m3 -116.1113 -0.0026 -116.1086
(-1.47) (-0.01) (-1.47)

m4 4,862.86 1,054.80 3,808.06
(1.74)* (176.42)*** (1.36)

Panel B: Performance comparison
(1) (2) (3)
umd Simulated umd-Simulated

S 0.1675 0.1678 -0.0003
(-0.01)

PAS 0.0630 0.0777 -0.0147
(-0.63)

PFH 0.0288 0.0674 -0.0386
(-2.94)***

CE (γ = 3) 0.4071 0.4450 -0.0379
(-0.17)

CE (γ = 5) 0.1379 0.2566 -0.1186
(-0.43)

CE (γ = 10) -1.0615 -0.2192 -0.8424
(-1.04)
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Table 6 Private vs. public equity

This table compares the performance of private (column 1) and public (column 2) equity. The private

equity performance is evaluated based on entrepreneur-level returns constructed from the 2004 Survey of

Consumer Finance (SCF). This sample is conditional on survival, yielding an upward bias in the evaluation

of private equity performance. The public equity returns are proxied by returns to the CRSP value-weighted

market index. The difference test results are reported in column 3. Panel A shows GMM estimates of

various moments of the equity returns, where µ1 denotes the first moment, and m2, m3, and m4 stand for

the second, third, and fourth central moments, respectively. Panel B reports the Sharpe ratio (S) and the

Aumann-Serrano and Foster-Hart performance indices (PAS and PFH). Further, Panel B also reports the

certainty equivalent (CE) of a risk-averse investor with CRRA utility and a risk aversion coeffi cient of 3 or 5,

assuming that the initial wealth and the investment scale are equal. We are not able to compute the certainty

equivalent for a risk aversion coeffi cient of 10 since then, investing in private equity is almost equivalent to

losing the entire initial wealth for sure, rendering the calculations computationally impossible. The t -statistics

are reported in the parentheses below the corresponding estimates. Asterisks denote statistical significance

at the 1% (***), 5% (**), and 10% (*) levels.

Panel A: Various moments
(1) (2) (3)

Private Public Private-Public
µ1 196.5432 5.5895 190.9537

(5.26)*** (92.12)*** (5.11)***

m2 6.1506× 106 16.2216 6.1505× 106

(1.90)* (23.29)*** (1.90)*

m3 5.1344× 1011 73.0088 5.1344× 1011

(1.75)* (8.58)*** (1.75)*

m4 4.6177× 1016 2,400.33 4.6177× 1016

(1.74)* (15.69)*** (1.74)*

Panel B: Performance comparison
(1) (2) (3)

Private Public Private-Public
S 0.0793 1.3878 -1.3086

(-45.96)***

PAS 0.0549 0.7971 -0.7422
(-38.18)***

PFH 0.0100 0.2583 -0.2483
(-4,293,137)***

CE (γ = 3) -70.3273 5.3536 -75.6808
(-12.04)***

CE (γ = 5) -94.4017 5.2129 -99.6146
(-156.16)***
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Table 7 Active vs. passive funds

This table compares the performance of actively managed (column 1) and index (column 2) funds, based

on the CRSP mutual fund return data for the time period January 1991 to December 2009. The difference

test results are reported in column 3. Panel A shows GMM estimates of various moments of the fund returns,

where µ1 denotes the first moment, and m2, m3, and m4 stand for the second, third, and fourth central

moments, respectively. Panel B reports the Sharpe ratio (S) and the Aumann-Serrano and Foster-Hart

performance indices (PAS and PFH). Further, Panel B also reports the certainty equivalent (CE) of a risk-

averse investor with CRRA utility and a risk aversion coeffi cient of 3, 5, or 10, assuming that the initial wealth

and the investment scale are equal. The t -statistics are reported in the parentheses below the corresponding

estimates. Asterisks denote statistical significance at the 1% (***), 5% (**), and 10% (*) levels.

Panel A: Various moments
(1) (2) (3)

Active Passive Active-Passive
µ1 0.5210 0.5409 -0.0199

(1.79)* (1.88)* (-0.30)

m2 19.2097 18.9356 0.2741
(7.90)*** (8.08)*** (0.44)

m3 -67.3233 -58.9134 -8.4099
(-2.24)** (-2.17)** (-1.38)

m4 1,718.30 1,610.39 107.91
(2.81)*** (2.96)*** (0.97)

Panel B: Performance comparison
(1) (2) (3)

Active Passive Active-Passive
S 0.1189 0.1243 -0.0054

(-0.37)

PAS 0.0508 0.0537 -0.0029
(-0.49)

PFH 0.0441 0.0465 -0.024
(-0.64)

CE (γ = 3) 0.2175 0.2435 -0.0260
(-0.40)

CE (γ = 5) -0.0014 0.0307 -0.0321
(-0.50)

CE (γ = 10) -0.6240 -0.5665 -0.0575
(-0.81)
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Fig. 1. Distributions of anomaly returns.

This figure shows the histograms of the monthly market excess return (mktrf), and the monthly returns

of the small-minus-big (smb), high-minus-low (hml), and up-minus-down (umd) portfolios for the period

January 1962 to December 2009.
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Fig. 2. Distributions of momentum and simulated normal returns.

This figure compares the histogram of the monthly returns of the momentum (umd) portfolio against

the histogram of a simulated normal distribution with the same mean and variance for the period January

1962 to December 2009.
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Fig. 3. Distributions of private and public equity returns.

This figure compares the histograms of the average annual holding period excess returns from private

versus public equity investments. The private equity returns are estimated at the entrepreneur level based

on the 2004 Survey of Consumer Finance (SCF). This sample is conditional on survival, and the returns are

winsorized at 200%. The public equity returns are proxied by returns to the CRSP value-weighted market

index for each household during the same time period as its private equity holdings.
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