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I. INTRODUCTION

The standard approach for making inference in binary response
regression is based on likelihood methods. For example,
regression parameters are estimated by maximum likelihood and
hypotheses are tested by likelihood ratio tests. This paper
describes alternatives to likelihood based methods. Attention is
restricted to estimation although analogous procedures can be
developed for other statistical problems.

The observed data are (Yi,xi), i = 1(1)n where Yi are
independent Bernoulli (response) random variables and

14

X5 = (Xil""’xip) is a vector of p nonstochastic explanatory
variables. All vectors in this paper are column vectors and prime
denotes transpose. It will be assumed that the n x p matrix X
whose ith row is x; has full column rank p and p £ n. The
outcome [Yi = 1] ([Yi = 0]) 1is referred to as a ''success''
('"failure'') throughout.

We assume the logistic regression model

exp3x B3
PLY, = 1] = — = n,;(B) (1.1
1+ expﬁxiﬁé
where B E RP is an unknown vector of regression coefficients.

This is the most widely applied model for binary regression data.
Some of the subject areas where it has been used are epidemiology
(Breslow and Day [4]), bioassay (Finney [9]), medicine (Brown
[6]), market research (McFadden [16]), and criminology (Larntz

[14]). The model's importance is confirmed by the numerous
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analogues of linear model extensions that have been developed for
it including (i) regression diagnostics (Pregibon [18]), (ii)
errors—in-variables (Stefanski and Carroll [21]) and (iii) random
effects versions (Pierce and Sands [17]).

This paper considers the problem of estimating the vector of
success probabilities =n(Bg) = (nl(B),...,nn(ﬁ)). In many
biomedical applications [Yi = 1] corresponds to the presence of
some condition or the success of a treatment. When it is
important to discriminate subjects based on the probability of
this event, the accurate estimation of n 1is paramount.

In other applications it may be more appropriate to focus
attention on the estimation of B. The logistic regression
coefficient Bj has a well-known interpretation as the difference
between the log odds ratios of success for two subjects with
identical covariate vectors except for their Xj values which
differ by one unit. While the problems of estimating n(8) and
B are related, the focus here is on the former. We use the

v v
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X seeesl + e )

notation Y = (Y Yn)' and 1 + e z (1 +e

1’000’
throughout.

The parameter space for the problem is taken to be
@ = $n(B8) : B E RPE. The action space is A = ® the closure of
® under the topology of pointwise convergence of sequences.
Thus A is compact which guarantees that certain estimators
discussed later exist.

We restrict attention to nonrandomized estimators. However,

the usual decision theoretic complete class justification for this

restriction does not apply because A is not convex in our
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formulation. Changing A to be [0,1]% would alleviate this
problem but would permit estimates outside the model (1.1) which
we choose not to allow. Lastly, we take the loss corresponding to

action a €E A and state of nature n € ® to be squared error loss

= =2
L(n,a) = || — a||” = GOy - a; )" -

e M

There are other appealing losses for this problem and some
comments will be made in Section 5 about the performance of the
maximum likelihood (mle) and other estimators under weighted

squared error loss

2
n (ni—ai)

Lw(n,a) = i W. (1.2

An important extension of model (1.1) which will not be
carried out here for ease of exposition is to allow polychotomous
responses. References will be cited where appropriate which
consider this more general case; Duffy [8] contains the details
of such a formulation.

The remainder of the paper is organized as follows. Section
2 reviews the mle of n and its properties. Section 3
introduces Bayes and related estimators and Section 4 considers an
empirical ridge-type estimator. The paper concludes with results
from a simulation study of the small sample properties of the

different estimators.
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II. MAXIMUM LIKELIHOOD ESTIMATION

The likelihood function corresponding to y € ¥ = EO,lEn is

noy,; 1-y4
t(rzy) = Wt (1 - wg) ;

i=1

Z 1is continuous in n E [O,l]n for all y € ¥. Thus for each
y € ¥ there exists EM=EM(y) E A=0 satisfying

-~

I(nM;y) = sup 2(n3y). (R.1)
)

Further, EM(y) is unique for all y € Y. There are two cases to
analyze: y for which the right hand sup in (2.1) is attained in
(i) ® or (ii) ®\®. One convenient way to differentiate these

cases is to first define for y € ¥, C(y) = 3B € RP:

(8y; - Dx;p >0, 1< i <ni and Q) = §5 € R :

(Zyi - 1)xiB >0, 1 <i< ng. In words, C(y) are those B8
completely separating y in the sense that x;8 > () 0 for

Yi = 1 (0) or equivalently ni(B) > () 1/2 for Yi =1 (0). A
similar interpretation holds for Q(y). For any y E ¥,

0 €E Q(y) and O € C(y) C Q(y) by definition. Following Albert
and Anderson [1], we define a partition of ¥ = yc U yQ U yo by
Yo =3y EY 2 Cy) %03, Yy =3y €Y : P =0C0G). Ay # 3085,

and Y, = Sy € ¥ : Q(y) = 308%. The sets Yoo¥qr and Y,
contain completely separable, guasiseparable and overlapped

outcomes, respectively.
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The second ingredient required to deduce the uniqueness of
EM(y) is the observation that 6 is homeomorphic to RP via

n(8) and thus the log likelihood can be written as

. Eyix;ﬁ - en(1 + explx;81)%

2(B3y) =

!
hMpB

i

= YVXB - 1;2n(1 + exp[Xg])-

where 1n is a vector of 1's of length n and functions of
vector quantities denote componentwise operations. It follows
from the strict concavity of 2(8;y) that there exists at most
one B8 E RP maximizing 2(B8:y)-

It is well known (Haberman [11]; Silvapulle [20]; Albert and
Anderson [1]; Santner and Duffy, [19]) that 2(B;y) = —-o as
[B] » « <=>y E Yo (and thus there exists a unique EM(y) E ® in
this case).

When y E Yo U yQ, 2(n:;y) < sup$z(n;y) : n € 82 for every
n € ®. The continuity of 2(x;y) in n and the strict concavity
of 2(B3;y) 1imply that there is a unique EM E 8\8. A bit more
can be stated about the character of EM(y). If y € Yo then
EM(y) =y and sup$i(n;y) : n € 82 = 1. To see this choose
B E C(y), then kB E C(y) for k > O, ni(kﬁ) - 1 (0) for
y; = 1 (00 and z((kg);y) » 1 as k + o. When y E yQ then
f?(y) =¥, for some components, 0 < Eg(y) < 1 for other
components, and O < sup$z(n;y) : n € 62 < 1. The proof of this
is more complicated and only those elements required for later

work will be introduced (see Santner and Duffy [19] for full
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details). It is possible to choose (i) 31 e RF  which yields a

maximal set M of indices i, 1 < i ¢ n for which XiB > (<) 0

as y; =1 (0); and (ii) 8% € RF which satisfies

2(5%5y) = supsa (83y) : B € R'Z where

2p(85y) = iéM {yixiﬁ - en(1 + exp[xiﬁ])}

is a logistic log likelihood for observations EYi : i & M2. For

i E M, ni(kﬁl + ﬁz) + 1 (0) as v = 1 (0) and k + o while

sup 2(B3y) 2 lim 2(k81 + ﬁz;y)
IRP ka®

=

Lp (873D
= sup 2,(B3y) 2 sup 2(B3¥)-
RP RP
~M . ~M _ 2 .

Thus x (y) = Y3 for i EM, 0K ni(y) = ni(B ) <1 for i & M,
and O < sup$z(Wszy) : n € 82 < 1.

An immediate by-product of the concavity of 2(B;y) over

P ;{M

B ER is that for y € Yo Ve have = E(ﬁM) where ﬁM is

the (unique) solution of

ve(ssy) = x' (v - TGM) = o. (2.2)

Equation (2.2) is the analogue of the normal equations; y - HM

is orthogonal to the column space of X. Furthermore the mle EM

solves (2.2) in general.
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Theorem 2.1. For any y € ¥ the mle EM(y) satisfies

X (v - 2y = o. (2.3)

Proof. The previous paragraph shows for y E yo EM is in ® and
satisfies (2.3). When Yy E Yoo EM(y) =y trivially satisfies

(.3). Lastly if y € yQ then

4

Xy = E XYy + ¥ x.¥y
i€M igM

= I X nM + I X ¥V
ieM 'Y igm 1

v

= I X.K
ieM *!

+ X xin.
iEM

=

M
i

where the last equality holds since VQR(ﬁz;y) = 0.1
In addition to its normal equation interpretation, EM(y)

satisfies the invariance property

M) =1 -Ma-», yey. (2.4

To prove (2.4) it suffices to show that 1 - EM(y) € ® for all

vy €E ¥ since the uniqueness of EM(y) implies

X'(v - Mo =0
<=>X (-3 -1+ME)) =0

~M ~M
=1l -y)=1-n(y).

For v € Yo, 0@ = 7™ = 1 - M) = 1 - 76" = 78" € .

Else, y E Yo U yQ, EM(y) € ®\@ and there exists a sequence



—8—

sg¥2 ¢ R with M) = lim x(8¥). Then 1 - 7M(y) =
k=

lim (1 - R(Bk)) = lim n(—ﬁk) € ® where the convergence of
kb k»o

n(-Bk) is an easy consequence of the convergence of n(ﬁk).

Remark 2.1. The mle EM in the multinomial response case

satisfies a similar gradient interpretation and invariance

property.R

We next study the risk of EM, beginning with a simple
example that illustrates some features of the risk curve. Some
comments are made about the behavior of the risk in the general
case and we conclude with a summary of its admissibility

properties.

Example 2.1. Suppose Yl""’Yn are iid Bernoulli observations
and, in an abuse of notation, let n = P[Yi = 1] be the success
probability for each Yi' Assuming n € (0,1), define
B = logit(n) € R1. The mle is EM(y) =y and its risk is
R(x,Y) = (1 - n). Thus M has minimal risk at the extreme
points n = 0 and 1 and maximum risk at n = 1/2.1K

In the general case it is convenient to regard the risk as a

function of 8 € RP and write

i=1

n v |
R(B, D) = : {un(m - M) |? exp [ = yixisJ/D@)} (2.5)

where D(B8) = ﬂ?=1§1 + exp[xiﬁ]i.
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Note that R(E:;x™ = R(=8,7™ v s € R® by the invariance

(2.4) and the invariance of the underlying distribution when
y+ 1 -y and B -+ —B.

The value B = 0 corresponds to Ei(ﬁ) = 1/2 with risk
RC0,7Y) =

z “1n(1/2) - EM(y)ﬂz/zn. Here 1 is a vector of 1's
Y
of length n. We show that the risk always has a stationary point
at B = 0 as in Example 2.1. Calculation gives
~M n
IR(B,: 1 ' ~M '
B.x) - rexp| 2 yyxis| {[eGe - P ne ]
Bj DCB) 4 j=g 171 J

r I - MO RLG - n(ﬁ))'aj]}, 1<j<op

where A is an n x n diagonal matrix with ith diagonal element
ni(ﬁ)[l - ni(ﬁ)] and al,...,ap are the columns of X.
Substituting ajy = EJEM(y) from Theorem 2.1, g = 0 and

rearranging terms shows

aRC0, 7 _ 1 jtn Y 5y 1., =M,y 2p. _ oA '
CEp - ; { 7 s + [P, - DTG - P aj}
g1
_ 1 1 ~M 2. ' i’ n 1 ~M 2
= n ; 11, -7y &5 - [ 5 } z 11, - =W (.6

Decomposing Y = 31 U 30 where gi =3y E Y = Yy = iZ and using
the equalities 30 = 31 -y =y € 31§ and Hln(l/Z) - EM(y)H2 =

I1,(1/2) - (1 - (1 - y))|° shows that the right hand side of

(R.6) is



AR

{[ajln -t51 12

11.C1/2) - M) “2} - 0.
%1

2

It is an open question as to whether the stationary point is a
(local) maximum for all X.

We next consider the behavior of R(ﬁ,EM) for "'extreme'’’
n(g) or more precisely as |[B]] » ®. 1In brief, the risk R(S,RM)
converges to zero in those B directions for which all
components of n(g) converge to O or 1 as in Example 2.1, and the
risk converges to a positive value in B directions where
ni(B) =1/2 (i.e. xiﬁ = 0) for one or more indices.

To make this precise, decompose the unit sphere

B =3B E RE : |8 = 18 into By = $SB EB : B8 EC(y) for some
y € Y2 and Bg = $p EB : & C(y) for any y € ¥&; then
B = B, U BQ with B, N BQ = . The latter is obvious, while the

former follows because X8 # 0 for any B8 E B, hence 8 E BC
if x,8# 0 for all i, 1<i<n (take y; =1 (0) as

x;§ > (<) 0) and B E BQ otherwise (take y; = 1 or O or
arbitrary as xiﬁ > or < or = 0). Geometrically BC is the

intersection of the unit sphere with a union of cones and BQ is

the intersection of the unit sphere with a union of subspaces.

Theorem 2.2.

lim R(kg, 7 =0
k- o

0 < lim R(kg,7M) < Z/4 where Z is the
koo

(i) For any B8 € B

(ii) For any 8 € BQ,

number of indices i, 1 < i € n, for which xiﬁ = 0.



Proof. The same argument works for both §g € BC and B E BQ
although the final details differ. Fix § € B and let

4
S = 31 : X8 # 02 be the components of X8 (n(B)) separated by
0 (1/2), Z = n — |S] is the number of components of X8 (n(8))
which are zero (1/2), and ¥, = 3y E ¥ = (Zyi - 1)xiB > 0,
1 < i <« nZ are those y such that the corresponding n(g)

correctly separates all components according to the criteria

I

n;(8) 2 () 1/R for vy,

1 (0). Here |A| denotes the
cardinality of the set A. Then Z = (<) n according as

Z
B E B, (BQ) and {y¢| =27, As k 9 o,

Y3 1-y;
SRR RO TR ROE

B

e
i

7 (-7
1/2% , y € Y,

0 > Y E Y, -

Furthermore for y € ¥, and i€ s(8), ni(kﬁ) >y, = Eg(y). Hence

RkB,TD » = — = (G- TP
y, R igs(p) *

When B € B the right hand side is zero as S(8) = $1,...,n%.

C

When B8 € B the right hand side is bounded above by

Q

: Lo
y, 2% igS(p)

=N

1
i <

-

That the right hand side is positive can be argued by

contradiction.®



Example 2.2. Suppose n =5, p =2 and

PR
1 0
x=|o0 =2f.
-2 1
l-l 14

Figure 2.1 is a 3-dimensional plot of (ﬁl,ﬁz,R(ﬁ,EM)) for 81,52
each satisfying -4(1/3)4. Observe that R(O,EM) is the (global)
maximum and that the risk decreases as ||| increases. In this
example BQ = $(0,t1), (21,0), (#Z2/2,HZ/2), (#1/15,:2/i5),
(#d2/2,#12/2)2. The right hand side of Figure 2.1 clearly shows 3
ridges in R(ﬁ,iM) corresponding to the ((2/2,12/2), (1,0) and
(12/2,-12/2) directions, and the front view shows 4 ridges
corresponding to (2/2,-12/2), (0,1), (-1/i5,-2/15),
(-42/2,-12/2). In all other directions 8 g By R(kB,EM) + 0
as k » o.l

We conclude our discussion of the small sample risk
properties of the mle by considering its admissibility. It is a
textbook exercise (Berger [R2] p. 165) to show M is admissible
in the simple case of Example 2.1. Johnson [12] or Gutmann [10]
can be used to establish the admissibility when the Yi are from
p independent Bernoulli populations. For general (Y,X) Duffy
[8] establishes admissibility of ™ in specific problems by
showing that it is unique totally Bayes (Brown [5]). However
regardless of the admissibility of EM, the preceeding discussion

shows that its risk is only small for g large in norm. Thus in

the spirit of the work of Bishop et al. [3] on the estimation of



multinomial probabilities, the remainder of this paper develops
alternative estimators which perform better than EM over the

central portion of the parameter space.



III. BAYES AND RELATED ESTIMATORS

The natural starting point to develop estimators with lower
risk over the central portion of B—space is to consider Bayes
estimators with respect to priors putting mass near the origin.
Suppose ﬁl,...,ﬁp have iid N(O,GB) priors and denote the
corresponding Bayes estimator EB = EB(y). The prior mean and
variance of O and 02 imply that RB will have lower risk
than EM in a region near the origin and that 02 will control
the amount of improvement at (near) B = O and the size of the

R ~B ~M
region where x beats n .

Let H(-‘cz) denote the corresponding prior measure on RE .

Then EB(y) minimizes

[ x> = xIPPLY = yixCe)Iucap| o
R

over n € A. Unfortunately EB is computationally impractical as
it requires a minimization over RP of an objective function

which is itself an integral over RP. We turn instead to the
related Bayesian maximum likelihood estimator ER = ER(y) which
is the mode of the posterior distribution.

Formally ER(y) is defined by ER(y) = E(BR) for any

s® € RP  satisfying

o (gR

p 3y) = sup Qp(ﬁ;y) (3.1)

RrP

where



2 (Bsy) = y'Xe - 1 en(i + exp[XsD) ~ [8]%/20%

The function Qp(ﬁ;y) is proportional to the posterior density
of B8 given Y = y. The estimator RR(y) exists and is unique
for all y € ¥ since Qp(ﬁ;y) is strictly concave in B and
Ep(B;y) + —o as |B] + o.

In the special case when QP(B;y) is symmetric about the
origin then ﬁR = 0 since Qp(O;y) > (QP(B;y) + Qp(—ﬁ;y))/z =
Qp(ﬁ;y) vV B E RP. In this case BR = 0 is also the mean of the
posterior distribution. In general the strict concavity of
Qp(ﬁ;y) means that ER(y) can be calculated by any

straightforward iterative procedure, Newton Raphson for example,

which solves
ve (83y) = X (v = R(B)) - B/a" = 0 (3.2)

for B = 3R. Computationally ER(y) requires the same amount of
work as fM(y). In addition, the symmetry

Qp(ﬁ;y) = Qp(-ﬁ;l — y) implies that xR satisfies the invariance
~R, \ _ ~R
i (y) =1-1m( -y, yE¥Y. (3.3

Hence the risk of ER is symmetric about the origin; i.e.
R(B.Z®) = R(-5.7%) v p € R".

The posterior mode can be viewed as a ridge—type estimator in
that it is a restricted mle which prevents the selection of 8

'"too large'' in norm. To formally state this characterization, we

explicitly indicate the dependence of BR on ©¢ as ﬁR(c).



Theorem 3.1. The estimate BR(G) is the solution of problem %,

maximize 2(B:y)
R subject to

2 - R 2
817 < K = [[B7C -
Proof. Denote the La Grangian of R by

T(ysB) = 2(B:y) + u(® — |-

P+1

Then (B,u) € R maximizes T(y,B) if

aT

S =XG-n() - 26 =0
WK - 51> = o

ux>o0 G-
I51° < -

The point (u,B) = (1/202,5R(o)) satisfies (3.4), thus BR(G)

solves RZ.1

We consider the behavior of the risk function of R (y).
First, like EM, R(ﬁ,RR) has a stationary point at B = O. This
can be seen by performing analogous computations to those in
Section 2 to show that

~R
AR(0, T _ 1 [1 _ 4R '
__gfg__z - {5 (0 - *1's,

+ (0 - R IRy - n(O)]'aj} - o,
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where Ej is defined in Section 2. The required substitution in
J
We conjecture that the nature of this stationary point (local

this case is &,y = ajER(y) + B?/cz.

minimum, local maximum) depends on 02- Qualitatively we expect
ER(y) to be strongly pulled toward 1/2 as the prior precision
increases (02 + 0) and to behave like the mle as the prior

becomes more diffuse (02 + ©). This intuitive argument suggests

that g = 0 is a local minimum for small 02 and a local maximum
for large 02. We now analyze the effect of 02 in ER in a

rigorous manner.

The Implicit Function Theorem guarantees the map
BR(c) : (0,0) = RP is a continuous function of o. Thus
BR(o) + 0 as o =+ 0 since Qp(B;y) + - as o+ 0 for B # 0
and hence ER(y) + 1/2 as o 2 0 for all y. Similarly
Qp(ﬁ;y) 4+ 2(B;y) as o 4 © hence, for y E yo, BR(G) -+ ﬁM, and
for all y E y, ER(y) -+ EM(y). The above arguments show that the

P

path traced in R by §ﬁR(o) : 0 < 0o < o emanates from the

origin. One more aspect of this path is described below.

Theorem 3.2. The norm HSR(G)”z is nondecreasing in o.

Proof. Let Qp(ﬁ;y,o) explicitly denote the dependence of
2 P

Qp(-) on ¢ . Then for all 8 E R and O < 0, <0, < o,
2 (Bivao) = o (sivaoy + LBLE [ 2 1) <o (hiyao)
p ’y’l p ’y,z 2 0-2 Gz_p ’y’z

2 1

=> sup 2, (B5y,9.) < sup &,(B;y.05);
rRP RP



equivalently

sup 2(Bsy) < sug 2(Bsy)
2
B:|8[7<K, B:|8]7<K,

where K. HﬁR(ci)uz. This implies

1
6 : |B]° < K;2C 58 : |B]° < K3 which implies

EXCHY

R 2
K1 < K2 = |8 (02)" and completes the proof.H

Example 2.2. (continued) Figure 3.1 plots the risk of fR for

o = 1 over the same (51,52) region as in Figure 2.1. Figure
3.2 is a plot of the indicator function of B for which
R(E.7Y) < R(B,7AM) which facilitates comparisons of the two risk
surfaces. The mode estimator ER has lower risk than EM over a
large central portion of the g—space. Comparisons (not shown)
with the risk of EB shows two features. First, EB has lower
risk than RR over a small central region about the origin. This
indicates that EB pulls the estimate of T more strongly to
1n(1/2) than does xR Second, 7R beats the mle M over a
region roughly twice as large as the region over which RB beats
the mle.N

As for normal theory ridge estimators there is no universally
agreed upon method of choosing the unspecified shrinkage
parameter. The next section proposes an estimator based on a data

dependent choice of 02.



IV. EMPIRICAL MODE ESTIMATOR

Section III showed that ER acts like EM for large 02
and hence has small risk for |g]| large and ''extreme' n(g); for
small 02, <R pulls toward 1n(1/2) and hence has small risk
for ||8|| small and ''central’” n(8). This section proposes an
empirical mode estimator EE based on data—dependent choice of
o®. The goal is to estimate o to be large when n(8) is
extreme and to be small when xn(8) is central.

The standard empirical Bayes approach to this problem is to
choose 02 to maximize the marginal distribution of Y given

62 which is given by

n(y|a®) = j £(y| BYH(dB| o) -

lRP

There do not exist closed form expressions for the resulting
estimator of 02. An attractive iterative scheme for maximizing
m(y]cz) over 02 € (0,») is the EM algorithm (Dempster, Laird,
and Rubin [7]). Ve consider (Y,B) as the ''complete data'' and
Y as the "incomplete data.’' The joint density of (Y,8) is an
exponential family with sufficient statistic t(y,8) = "B“Z.

R

Hence, given a current guess oy of 02, the next cycle of the EM

algorithm is



E-step: Estimate t = “5"2 by

2 2
t, = EL[817]y.05]

18 1P£ (v | BYHCAB| 0> /m(y | o) .
k k

RP
M—-step: Set 02 = t. /m
* k+1 kKT

The EM algorithm as above is not computationally practical
because of the severe demands of the E-step. Following Leonard
[15] and Laird [13], we propose an alternative algorithm obtained
by approximating the conditional distribution of 8 given ¥y
and 02 with a p—variate normal distribution having mean
ﬁR = ﬁR(cz) and covariance matrix =R ER(BR,cz). We take 5R
to be the mode of the true conditional distribution of g given
y and 0 3 equivalently ﬁR maximizes Qp(ﬁ;y) or solves

(3.2). Ve choose

R = x'a x + GBHED /0t (4.1)

where A is n x n diagonal with ith diagonal element
Ei(ﬁR)[l - ii(BR)]. Under mild regularity conditions =° is the
asymptotic covariance matrix of ﬁR (Duffy [8]1)-

With this approximation the EM algorithm becomes:

E-step: Estimate t = [g]|° by
2, 2
6 = ELI81217,02]

= R BR) + RGN D 0D 17 (42

. 2 _
M-step: Set Opiq = tk/M.



Here Tr(A) denotes the trace of A. If the algorithm given in

(4.2) converges to an estimate 32 of 02, then the empirical

mode estimator is defined as EE(y) = E(BR(EZ)).

Remark 4.1. An alternative choice of ER considered by Laird
[13] is R - [—VZQR(ﬁR;y)]_l. With this choice the approximating
normal distribution and the true conditional distribution of §8
have the same curvature at BR.I

The example below indicates that EE achieves its goal of

mimicking the risk behavior of EM or ER for central and

extreme B, respectively.

Example 2.2. (continued) For each y E ¥, EE(y) was computed by

(4.2). The estimates &~(y) lie in [.79,1.51] with o~ > 1 if

and only if y E yc. Note that in this example |yC| = 10,
|¥gl = 82 and Y, = @. Figure 4.1 is an indicator plot of 5

with R(ﬁ,EE) < R(ﬁ,EM) which shows that EE has lower risk than

-

the mle EM over a larger portion of the Bg—space than does nR-

The improvement occurs at the extreme portions of B—space where

EE is better able to protect against extreme probabilities.

Figure 4.2 is an indicator comparing the risk of EE and ER. it

confirms that EE is precisely doing better than the mode

estimator ER for the extreme points in p—space.ll

Several comments should be made about our experience with the
approximate EM algorithm. It was implemented with starting value
2 _ . . 2 _ R
99 = 1 and terminated when either |ok 0k+1l £ & oOr an upper

bound B on the number of cycles was achieved. The E-step



maximization was always performed iteratively with initial value

BO

0. Empirical evidence suggests both that the algorithm is
well-behaved in that small to moderate changes in the starting
values do not alter its convergence, and that BR(GZ) and 2B

are insensitive to small changes in 02. Thus in the simulation
study reported in Section 5, the values & = .01 and B = 25 were

selected. The algorithm converged in over 997% of the problems and

generally in far fewer than 25 cycles.



V. EMPIRICAL SMALL SAMPLE STUDY

This section reports results of a pilot simulation study
analyzing the small sample risk properties of the estimators
described in Sections II-IV. In an effort to assess the
sensitivity of the results with respect to square error loss and
the parameter estimated, we also estimated the risk with respect
to the weighted squared error loss on n given in (1.2) and the

squared error loss on 8,
L (8B = |8 - BI5

The risk was estimated for 8 random problems corresponding to
the combinations of (n,m) = (sample size, dimension of g):
(10,2), (30,2), (30,4), (30,6), (50,2), (50,4), (50,6), and
(50,8). For each (n,m) a random matrix X with entries
independently and identically distributed according to the uniform

distribution over [-1,+1] was generated, and two values

o
were selected. This yielded 16 test problems. The value of

ﬂﬁoﬂ is of particular importance as it determined the degree of
centrality of the components of the associated n(BO).

Specifically, the two chosen values gave (i) all

o
ni(Bo) € [1/4,3/4], 1 < i < n, 1i.e., a central case, and (ii)

ni(ﬁo) € [1/4,3/4] for 50% of the indices i, 1 < i £ n, i.e., a

more extreme case. The former n(ﬁo) is more favorable to

estimators which pull toward 1/2 such as EB and ER while the

latter is more favorable to EM.



One hundred and fifty data sets were generated from the model
(1.1) for each test problem. For each data set the estimators
EM, EB, ER, and EE were computed and their average loss
calculated. Pilot runs with 300 replications showed the average
loss values to be quite stable after 150 data sets.

Summaries of typical results for 4 of the 16 problems are
presented in Table 4.1. The problems presented are for the two
choices of Bo for each of (n,m) = (10,2) and (50,6). Table
4.1 gives the estimated risk values R, Rw and R for L, Lw

B

and L respectively. The corresponding estimators are given in

ﬁ’
increasing order with respect to R and denoted by M,B,R or E
for EM, EB, ER or EE, respectively. Whenever EM did not

exist, LB was not computed. We also give the observed mean and
standard deviation of the estimate 32 computed by (4.2).

Note first that EM has the highest risk in 10 out of the 12
combinations of problem size by choice of BO by loss clearly
indicating that many settings are better served by an alternate

technique. In the problems shown both ER and EE perform well

but in more extreme situations studied, EE has markedly lower
risk. The 3 different risk functions are, with one exception,
identical in their ranking of the estimators, hence improvements
over maximum likelihood are not restricted to loss L. Finally. we
observe that the mean of 32 increases with the degree of
extremeness of n(g) as desired. This phenomenon held throughout
the entire simulation study and is the reason why RE has

competitive risk properties across all sizes and states of nature

considered.



Table 4.1

Simulated Risk Values

(n,m) = (10,2)

Every ni(ﬁo) € [1/4,3/4]. 50% of ni(BO) € [1/4,3/4].-
Estimator R R R Estimator R R R
w B w B
B .132 .63 .85 M .R76 1.97 13.25*
R .134 -64 .67 E .281 2.74 4.97
E .210 .97 1.96 R .325 4.14 6.35
M .348 1.58 5.30* B .346 4.54 6.87
* based on 140 reps * based on 98 reps
6. 1.53 (.655) 6. 1.99 (.710)

(n,m) = (50,6)

Every ni(ﬁo) € [1/4,3/4]. 50% of ni(BO) € [1/4,3/4].
Estimator R R R Estimator R R R
w 8 w B
E .68 3.13 77 R .75 4.45 1.24
R .83 3.73 1.04 E .79 4.79 1.33

M 1.33 5.90 2.36 M 1.24 B6.76 3.65 *
* based on 149 reps
. 674 (.113) G%:  .o21 (.194)




In conclusion, the mode and empiric mode estimators have
reasonable small sample risk properties and are computationally
competitive with the maximum likelihood estimator. Duffy [8]
establishes some asymptotic properties ER and EE. Further study

of the properties of these estimators is currently in progress.
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