Computing the CS and the
Gemeralized Singular Value
’ Decompositions

Charles Van Loan

TR 84-614
June 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

The research associated with this paper was partially supported by the
Office of Naval Research contract N00014-83-K-0640.

COMPUTING THE CS AND THE GENERALIZED
" SINGULAR VALUE DECOMPOSITIONS

Charles Van Loan
Department of Computer Science
Cornell University
Ithaca, New York 14853

ABSTRACT

If the columns of a matrix are orthonormal and it is partitioned into a 2-by-1
block matrix, then the singular value decompositions of the blocks are related.
This is the essence of the ‘‘CS decomposition’’. The computation of these related
SVD’s requires some care. Stewart has given an algorithm that uses the LIN-
PACK SVD algorithm together with a Jacobi-type ‘‘clean-up’ operation on a
cross-product matrix. Our technique is equally stable and fast but avoids the
cross product matrix. The simplicity of our technique makes it more amenable to
parallel computation on systolic-type computer architectures. These develop-
ments are of interest because the best way to compute the generalized singular
value decomposition of a matrix pair (4,B) is to compute the CS decompositiion
of a certain orthogonal column matrix related to A and B.

The research associated with this paper was partially supported by the Office of Naval Research
contract N00014-83-K-0640.

1. The C-8 Decomposition

Suppose the columns of the real matrix

1] ™1
Q@ = 2| ng n2p

are orthonormal, ie., Q7Q, + @JQ, = I,. The gist of the CS decomposition (CSD) is that
the singular value decomposition (SVD) of @, is related to the singular value decomposition of
Q.. In particular, there exist orthogonal matrices U, (n; Xn;), Uz (nz X ng) ,and V (»Xp)
such that
UIQ,v = C = diag(cy, ..., ¢)

and

UIQ,Vv = S = diag(sy,...,8) ¢ = min{p,ny}.
Since CTC + STS =1, , it follows that

2+ 82 =1 i=1,.,

le,] =1 i=gq+1,..p
Thus, the singular values of @, and @, are cosines and sines accounting for the name of the

decomposition. Without loss of generality, we may assume that the ¢, and s, are ordered as fol-

lows:

(1.1)

This paper is about a new way to compute the CSD.

The CSD and its role in the analysis of various invariant subspace perturbation problems is
discussed in Davis and Kahan [1], Stewart [10], and Van Loan [13]. For a proof of the CSD, see
Stewart’s paper.

Paige and Saunders [8] have shown that computing the CSD is crucial to the stable compu-

tation of the generalized singular value decomposition (GSVD). In the GSVD, we are given two

-2-

matrices A (ny Xt ,n; > t) and B (np Xt) and find orthogonal U, (n, Xn;) , orthogonal
Ug (nz Xn2), and a nonsingular X (¢ X ¢) such that
A =UsDsXT |, Dy

= diag(a,, ..., as)
and

B = UgDgXT , Dg = diag(B,, .. .,5H,)

where r = min{¢,n,} . To compute this decomposition we first compute the SVD

M= f;] = QrzT . (1.2)

Assume that rank(M)=p ,set m = n; + n,- p , and conformably partition @, £, and Z as
follows:

Qu Q| »p [2,0]p
Q=Q21Q22 m E=1lo o

P m

Z = [21,22] .

p t-p

Note that Q1Q,, + QFQ, = I, . Let @, = U,CVT and @ = U,SVT be the CSD of
@, and @4. Since

Z, 0 QuL, O Uu,cvT'e, o
Bl? = |Bz, o] = |ous, o] =

U,svTe, o

A

where W is an arbitrary (t-p)X(t-p) matrix. If W is nonsingular then the GSVD follows by

we have

setting Uy = U, ,Ug =U,, Dy =|[C 0],Dpg =[S 0], and

Vi, 0

Note that if £, = diag(oy,...,0,) and 0y 2 =+ > 0, > 0, then the 2-norm condition of X

satisfies k{X) > 0,/0,. The lower bound can be achieved by setting W = al;_, for any o that

satisfies 0, < 0 < 0).

The GSVD and , hence, the CSD, are useful for solving various constrained and generalized
least squares problems. However, the CSD is also useful in its own right. See Van Loan [12,13].
Stewart [11] devised the first stable CSD algorithm and the current paper arose by our desire to
develop an implementation of his method suitable for systolic type architectures. These architec-

tures are of interest in certain real time signal processing applications [3,4,9).

As we have shown, the problem of computing the GSVD boils down to the problem of com-
puting the CSD. In §2 we describe several CSD algorithms each of wh'ich is flawed because of
numerical problems that are associated with the orthonormalization of nearly orthogonal bases.
Il.l §3 two results are established that indicate when these probleras can be circumvented. Our

main algorithm is then presented in §4 while some aspects associated with its implementation are

discussed in §5.

2. Some Obvious CSD Algorithms and Their Shortcomings

At first glance it appears that the CSD should be a rather easy decomposition to compute.
After all, it just involves a pair of SVD’s for which there are several eflicient, stable methods. See
[2,5]. In this section we show by example why the stable computation of the CSD is not straight-

forward.

Before we proceed, however, it is appropriate to state what we mean by a ‘“‘stable’”” CSD
algorithm. Let ¢ denote the machine precision and suppose an algorithm for computing the CSD
generates f!,, 02, V,C,and S, computed versions of U,, U,, V, C, and S respectively. Assume

that

l@f@: + @7Q, - Ll = ¢, (2.1)

¢ - [

are orthonormal to within roundoff error. We say that a CSD algorithm is stable if the following

i.e., assume that the columns of

conditions hold:

||011.01-1n1||2 ~ e (2-2)
NAZE RIS (2.3)
WV -1l =~ ¢ ' (2.4)
C = diag(éy,...,8) = Ul(Q+ E)V , [|E1]]: = €||@i]l; (2.5)
S = diag(éy,...,8) = UJ(Q:+ E)V , ||Ez]): = €]||Qz]]2 - (2.6)

These assertions say that to within roundoff error, U v Uz, and V are orthogonal and U QIV
and UJQ,V are diagonal. Using standard SVD perturbation theory [6,p285f] one can also con-
clude from (2.2)-(2.6) that the & and 4, are the exact singular values of matrices that are rela-
tively close to @, and @, respectively.

Having in mind the goal of a stable CSD algorithm, let us examine the numerical properties

of two obvious CSD algorithms. For the sake of clarity we assume in our examples that both @,

and @, are square and that @, is nonsingular.

Algorithm 2.1 (p = n, = n,)

1. Use the LINPACK SVD algorithm [2] to compute UfQ,V = § = diag(s,, . . ., 8,).
Note: the s, are ordered from large to small.

2. SetX =¢,V.
3. Set C = diag(c,, ..., c,) where c; is the 2-norm of X's k-th column.

4. Set Ul = XC—l

The rationale behind this algorithm is as follows. Since XTX = diag(1 - 8,°), the columns of X
are mutually orthogonal and the 2-norm of the i-th column equals /1 - s,z . By assumption,

X = @,V is nonsingular. Thus, the matrix C = diag(\/1-sf,..., V/1- 8.) is nonsingu-

lar, U; = XC!is orthogonal, and UJQ,V = C .

The dangers of Algorithm 2.1 are highlighted in Stewart [11]. To see what they are, consider

the example

Ql =
346099513974 - 465523358004
200314808251 015869922033
[-.149903307775 456869095895
-.132503956233 403919514293

Q2 =

=

.220508860423 -.114095899416

.075149984350 .552192330457

.631588073183 .226164206817

-.588949720476 -.205112923304

.001410518052 .3091318880871
.309420137864 .519525649668

147474170901 284504924779

.063768831702 .364621650530

(2.7)

-.814555019070 .205461483909
374067025998 -.294979263882
132173742848 .047014825861

.239887841318 .537774110108

-

@, and Q, satisfy (2.1) with ¢ = 1072, Moreover,

C1
C2
Cs

Cq

I

.899999999985
.799999999989
.000020000000
.000009999999

Using MATLAB [7] with an effective machine precision ¢ = 107'? we found that criteria (2.3)-(2.6)

were each satisfied. Unfortunately (2.2) fails to hold because

The trouble stems from t

— -
0.99999999999 0.00671196274 -0.00000000083 -0.00000006623
0.00671196274 1.00000000000 -0.00000019837 0.00000004765
-0.00000000083 -0.00000019837 1.00000000000 -0.00000000000

-0.00000006623 0.00000004765 -0.00000000000 0.9999999999%

he fact that the first two columns in the computed X have norm

0(10‘8). Consequently, errors of order 10% are introduced when the columns of X are normal-

ized to produce 01.

A way to avoid this loss of orthogonality is to orthonormalize X by stably computing its
QR factorization, say by using Householder matrices. This is the approach taken in our next

algorithm.

Algorithm 2.2 (p = n, = n,)

1. Use the LINPACK SVD algorithm to compute UJQ,V = § = diag(s,, . . ., 8,).
2. Set X = @Q,V.

3. Use the LINPACK QR factorization algorithm to compute X = U,R where U, is
orthogonal and R is upper triangular with positive diagonal entries.

4. Set C = diag(ryy, ..., rp).
In exact arithmetic we should have R = diag(r,,, . . ., r,,) because a nonsingular upper triangu-
lar matrix whose columns are mutually orthogonal must be diagonal. It follows that
¢ =UIX=UlQ,Vv.

Let us apply Algorithm 2.2 to the example (2.7) above. Again using MATLAB with an
effective machine precision of ¢ = 107'? we find that the quantities produced by Algorithm 2.2

satisfy (2.2)-(2.6) with the exception of (2.5):

HOCVT - @ull. =~ 107 ~ Ve

This is because the computed version of the matrix R is not diagonal as the theory predicts:

000010000300 000000134238 -.000000000665 -.000000059614 |

.000000000000 .000019999399 -.000000158697 .000000043290

x>
|

.000000000000 .000000000000 .799999999991 -.000000000006

.000000000000 .000000000000 .000000000000 .899999999989

-

Thus, it appears that Algorithm 2.2 is an improvement over Algorithm 2.1 in that it renders a
suitably orthogonal 0, . Unfortunately, the price paid for this orthogonality is the violation of
(2.5).

In Stewart’s CSD algorithm a Jacobi-like “clean-up” operation that rectifies these problems.
It entails working with the matrix XTX . Our procedure is similar but it circumvents the cross-

product matrix by exploiting some rather simple theorems that we present in the next section.

3. Safe Diagonalization

Suppose X (m X k) has rank k£ and let

X = [31, . .. ,I‘-] (31)
be a column partitioning. Assume that
XTX = D*+ E (3-2)
where
D = diag(|lz\]lz - -, |2 l]2) - (3.3)

Let ¢ be the machine precision. The flawed algorithms of the previous section prompt us to ask

the following two questions:

When does X = (XD!)D represent a stable QR factorization? That is, what conditions
on D and E ensure that U = XD satisfies ||[UTU - I, ||, = €?

It X = UR is the QR factorization of X, then what conditions ensure that R is safely
diagonal? By ‘“safely diagonal” we mean that for all i3 j we have
Iry | = e |IR]2

The following theorem answers the first of these two questions.

Theorem 3.1

If X (m Xk) satisfies (3.1)}-(3.3) and if U = XD then

HEIl: . lIE]L

vTu -1 <
I ke < TUETE S o)

where op(*) denotes the minimum singular value.

Proof.

. UTU = DNXTX)D?! = DYD?+ E)D?!
and so
HUTU - I |l; = ||D7ED||; < |IDIFIIE|l: < [|E|l, /min ||z,]]F .

The proof is completed with the observation that ||z, |]; > opu(X) foralli. O

This result essentially shows that QR via column normalization, i.e., Algorithm 2.1, is stable so

-8-

long as (a) the matrix X has no small columns and (b) the ofi-diagonal elements of X7X are

small compared to the machine precision. Let us relate these comments to AlgorithmZ.1. Since

XX =1, - $+ E [E |l < ¢
where the “hats” designate computed quantities, we see that U/; will be orthogonal to within
roundofl error provided none of the @, singular values are near 1. (The roundoff error analysis

details associated with the computation of U , have been supressed as they are straightforward.)

We now focus on the second question posed above.

Theorem 3.2

Assume that (3.1)-(3.3) hold and that X = QR where Q (m X m) is orthogonal and

R (m X k) is upper triangular. If

X, =z, ...,2] i=1,.k

then for all i and j satisfying j > 3 we have

Iriy; | < min {[|z, ||z, [IE]]l2/ oa(Xi) } -
Proof.

Let G = XTX andlet R, be the leading ¢ X i principal submatrix of R. From the equa-

tion RTR = G it follows that

RT| | = XTz;, , j=i+1..k

Thus,
Irgl < (f +ot t)V2 < IR IX 2, (12
Since Ouuu(R.) = 0uun(X,) and | X2, ||z < ||E ||z we have

Iry | < HE]2/ omnn(X)) -

The theorem follows since

IS B+ o+ 22 = Iz |l g.

The theorem helps to explain why the matrices produced by Algorithm 2.2 may fail to
satisfy (2.5). Let X = [,,...,%,] be the computed version of the matrix X = [z,, ..., z,] .

A straightforward error analysis shows that

XTX = disg(1-35%,...,1-37) + E
where ||E ||z = ¢ and the & are the computed singular values of @, . Moreover, the computed
upper triangular matrix R turns out to satisfy
UF(X+ F) = R
where U, is exactly orthogonal and ||F ||, = €||X ||, By invoking the theorem and ignoring

second order terms in ¢ we find for ¢ = 1,...,p

N . € N . € a . .
'rvlzmln{’——_,c] ~ min —_ & , J=1++1,...,p.
1-34 &

..8’

Thus if we have ¢, = ¢, = Ve for some j > i , then we can expect troﬁble when trying to diag-

onalize @, .

On the positive side, the theorem does indicate that if a well-conditioned matrix has nearly
orthogonal columns, then it can be safely diagonalized by @R . Our algorithm for computing the

CSD exploits this property.

4. A Stable Algorithm for the CSD

The new method for computing the CSD that we are about to describe requires a criteria for
distinguishing between large and small singular values. This is because we will be invoking Algo-
rithms 2.1 and 2.2 on certain well-conditioned subproblems. To this end we define a number o to
be large if ¢ > 1/VZ and to be tiny if ¢ < 1/V2. The rationale for choosing 1/V2 as the divid-

ing line between large and small numbers will be given later.

It is helpful to illustrate our method on a small example. Suppose @, and @, are each 4X4

and that Q, has two large and two tiny singular values.

-10-

Step 1. Compute the SVD of @, ordering the singular values from small to large . Apply the
right transformation to @, . This gives

T € € €

r € T € ¢

Q= U;Q,V = € e L €
€ € e L

X X X X

X X X X

Q1= @V = X X X X
X X X X

Our notation is as follows. We use ¢ to indicate which matrix entries are of order
machine precision. ‘T’ stands for a tiny singular value, “L” stands for a large singular
value, and ‘‘ X" denotes an arbitrary non-negligible entry. The reason for the ‘‘reverse’’
ordering of the singular values is that we want the resulting column norms in the
updated @, to range from large to small. This has the eflect of introducing more negligi-
ble matrix entries in @, in the next step.

Step 2 . Compute the QR factorization of @, :

@, := UITQI = €

Bear in mind that we always have Q7Q, + @@, = I, after every update of @, and
Q.. Thus, the (1,1) and (2,2) entries of @, are large since the norms of the first two
columns of @, are tiny. In view of Theorem 3.2, the superdiagonal entries in rows 1 and
2 are negligible. However, we cannot assert this for |rg,| since |ryy| and |r,| are each
tiny.

Step 3. Compute the SVD of the lower 2X 2 principal submatrix in @, and apply the right
transformation to @, :

L € € ¢
201' 2 0 e L € ¢
Q15=[:)[]l Q10‘7= e ¢ T ¢
e € € T
T € € ¢
, 0 e T € ¢
Q2:=Q20€7=€6XX
e € X X

Note that the trailing 2X 2 submatrix of @, has lost its diagonal form.

-11-

Step 4. The trailing 2X2 principal submatrix of @, is well-conditioned since its smallest
singular value is greater than 1/v?2. In view of Theorem 3.1 it can therefore be safely
diagonalized by column normalization:

T € € ¢

7, 01" e T € ¢
Q= 0 02 Q. = e ¢ L €
e € € L

At this stage, both @, and @, are diagonal.

Step 5. The orthogonal matrices generated in the above computations could, of course, be
accumulated. If the ordering (1.1) is desired then it would be necessary to reverse the
order of the columns in the accumulated U,, U, and V as well as the order of the ¢,
and s,.

It is clear from the above that this method of computing the CSD satisfies (2.2)-(2.6). This is

because we only invoke Algorithms 2.1 and 2.2 on well-conditioned submatrices thereby avoiding
the pitfalls of §2.

We're now set to specify our method in detail. The notation gets a little cumbersome

because we are allowing for rectangular @, and Q.

Algorithm 3.1

Given Q, (n,Xp , n; > p) and @, (nyXp) satisfying Q7Q, + QIQ,= I, , this algo-
rithm overwrites Q, and Q, with diagonal matrices C = UJQ,V and § = UJQ,V respectively
where U,, U, and V are each orthogonal. The diagonal entries of C' and S are ordered according

to (1.1).

Step 1. Compute orthogonal Uy (nzXng) and V (p Xp) such that
vl @, v = | 0 4] ¢ = min{nyp} .
P-9 q
where
A = disg(by .. .,5,)-

Assume that the &, are in ascending order and that the index k is defined by
0<6< <86 <9 <hn <S4

Update:
Qs = U{sz
Q, = @V

-12-

Step 2. Compute an orthogonal U, (n,Xn,) such that

R
UlrQl = [0]

where R (p Xp) is upper triangular with positive diagonal entries. Since

RTR = disg(1,.,1,1-6%,...,1-63)
L—V/
p-q

it follows from Theorem 3.2 and the remarks thereafter that

IrUI ~ ¢ IIR |l2 i= 1,-.-,P—q+k ’ j= i+1,--~:P

Thus, after we perform the update

@ = UITQI
we find that @, has the form
0 diag(m,...,7:) O k
= 1o 0 R| q-k
0 0 0| ma—-p
p—¢ k q-k

where 7, = /1 - 5,5 fori = 1,...,k.

Step 3. Compute orthogonal U , and V such that
UITR,V = disg(Vegr, - - -+)

and update:
Uy = U, disg(ly_qps , Uy, I, _,)
Vo=V disg(l,_pps , V)
Q: = diag(lygyr , UT , I ,) Qi disg(L,_pys , V)
Q: = Qi diag(l,_y4s , V)

Note that at this stage,

0 diag(6,...,6) O k
Q:= |0 0 w q-k
0 0 0] ny-g
P9 k q-k

where W = diag(8;44,-.,6,) V.

-13-

Step 4. Since
wTw = Iq-t - diag(”;.:l—l: se :73)

and
omin(W) = 641 > 1/V2
it follows that W can be safely diagonalized via column normalization. Thus, we com-

pute an orthogonal U, such that UJW is upper triangular and update:

Qe := disg(l, , U7 , I, _,) Q;
Uy := Updiag(ly , Uz, I)

Step 5. At this stage @, and Q, have been overwritten by U7Q,V and UFQ,V . Using the
conventions in (1.1), these matrices have the form

¢ 0]

0= | I

O I O ng—-4¢

Thus, if the ordering (1.1) is desired, then it is necessary to reverse the order of the
columns in U,, U,, and V. The ¢, and s, are then the diagonal elements of the suit-
ably permuted @, and @, .

Our choice of 1/\/5 as the dividing line between large and tiny singular values has the effect
of minimizing the error bounds in (2.2)-(2.6). One may wish to play with this constant under cer-
tain circumstances since the overall amount of work depends on the size of the index k in the first
step. For example, if o > .01 is the definition of a large singular value, then smaller subproblems
will result in Steps 2,3, and 4 of the algorithm. This reduces the amount of work, but increases

the errors by a factor of about a hundred.

-14 -

If we apply Algorithm 4.1 to the matrices in (2.7) we find

<
I

U7Q.V

Since U,, U,, and V are orthogonal to working precision, we see that (2.2)-(2.6) are satisfied.

335002082175

.554780323465

-.327146113464

e

937875930622
274903644962
207841469770

-.040232426925

[259105212443
-.262189089896

884603850438
-.285652582355
.000010000000
.000000000000
.000000000000

-.000000000000

r‘.999999999937

.000000000003

-.000000000000

L:.000000000001

201264772176

.077373737916

-.809787314577

.180798315164

.091872622366

.5635652344879

-.819724317017

.781804019979

.408991746550

-.238746378084

-.405596341874

.000000000000

.000020000000

-.000000000004

.000000000000

-.000000000002

999999999788

.000000000001

-.000000000000

- 687726557625 545665008317 -.409531855282 .248124041805

.243430456100
-.828391230010

-.294606928957

.216282039353
938148480642
-.269374120814

-.023175218383

-.522164425396
.702633018050
.222655254207

-.429040548850

-.000000000001
.000000000001
.799999999990

-.000000000005

.000000000001
.000000000000
599999999991

-.000000000000

.887697983245

000259642028

.387848788835
-

.202293814616
189380134924
772862259327

.570873282926J

.221339729993
519893714448
333017766051

754863177726

.000000000003 |
- 000000000003

.000000000001

.89999999999{J

.000000000000 |
000000000003

.000000000001

.43588989434§J

-15-

5. Implementation Detalls and Discussion.

A Fortran subroutine

CS(Q,gdim,n1,n2,p, Ul uldim,U2,u2dim,V, vdim,c,s ,work)

has been written that implements Algorithm 4.1. It relies heavily on LINPACK subroutines
DQRDC (Housholder QR) and DSVDC (Golub-Reinsch SVD) as well as the BLAS (basic linear

algebra subprograms). A few details follow.

The matrices @, and @, are passed to CS via the single array Q. (This is particularly
handy in GSVD problems where @ is set up by applying DSVDC to the matrix M in (1.2).)
DSVDC is used to compute the SVD required in Step 1 of the algorithm. Since this subroutine

orders the singular values from large to small, a re-ordering must be performed.

Next, DQRDC is used to compute the QR factorization in Step 2. The Householder

transformations are multiplied together and stored in U1.

The main computation in Step 3 is the diagonalization of matrix R, via SVD. This could be
done via DSVDC. However, the matrix is already close to diagonal form making the 2-sided

Jacobi SVD approach more efficient. Jacobi SVD methods are discussed in [3].

The central calculation in Step 4 is the diagonalization of the matrix W via QR. This could
be done via DQRDC. However, it is cheaper to generate the orthogonal matrix by merely normal-
izing the columns of W. Since the smallest singular value of this matrix is bigger than 1/\/5, the

resulting triangular form is safely diagonal in view of Theorem 3.1 .

Quantifying the overall amount of work is difficult as it depends upon the dimensions n,,
n, and p and the value of the problem dependent index k. Roughly speaking, however, the
volume of computation required by Algorithm 4.1 is comparable to a DSVDC call with a matrix
of size (n, + ny)Xp .

Finally, we mention that we are developing an implementation of Algorithm 4.1 that can be
mapped onto a systolic array. Our procedure relies solely upon Jacobi-type transformations and

can be implemented on a slight modification of the SVD array proposed in [3]. This important

-16-

convenience would not be possible if one had to form the cross-product matrix that is required by

Stewart’s CSD algorithm. Details will be reported elsewhere.

Acknowledgements

The author appreciates the many stimulating conversations that he had with Ira Kaplan

and Frank Luk during the preparation of this paper.

-17 -

References

[1] C.Davis and W.M. Kahan (1970), The rotation of eigenvectors by a perturbation III, SIAM J.
Numer. Anal. 7, 1-46.

[2] J. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart (1979), LINPACK User’s Guide,
Society for Industrial and Applied Mathematics, Philadelphia,

[3] R. Brent, F. Luk , and C. Van Loan (1982), Computation of the singular value decomposition
using mesh-connected processors , Cornell Computer Science Technical Report TR
82-528 , Ithaca, New York 14853.

[4] R. Brent, F. Luk, and C. Van Loan (1983), Computation of the generalized singular value
decomposition using mesh-connected processors , Cornell Computer Science Technical
Report TR 83-563, Ithaca, New York 14853.

[5] GH. Golub and C. Reinsch (1970), Singular value decomposition and least squares,
Numer.Math., 14, 403-420.

[6] GH. Golub and C. Van Loan (1983), Matriz Computations , Johns Hopkins University Press,
Baltimore, Md.

[7] ‘C.B. Moler (1980), MATLAB User’s Guide, Technical Report CS81-1, Department of Com-
puter Science, University of New Mexico, Albuquerque, New Mexico, 87131.

[8] C.C.Paige and M.A. Saunders (1981), Toward a generalized singular value decomposition,
SIAM J. Numer. Anal., 18, 398-405.

[9] J. Speiser and H.J. Whitehouse (1983), Techniques for spatial signal processing with systolic
arrays, Proceedings of the Workshop on the Applications of High Resolution Spatial
Processing”, Gulfport, MI.

[10] G.W. Stewart (1977), On perturbation of pseudo-inverses, projections, and linear least squares
problems, SIAM Review, 19, 634-662.

[11] G.W. Stewart (1983), An algorithm for computing the CS decomposition of a partitioned
orthonormal matriz , Numer. Math., 40, 297-306.

[12] C. Van Loan (1976) Generalizing the singular value decomposition , SIAM J. Numer. Anal.,
13, 76-83.

[13] C. Van Loan (1984), Analysis of some matriz problems using the CS decomposition, Cornell
Computer Science Technical Report TR84-603, Ithaca, New York 14853.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif

