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Abstract- Attempts to measure male reproductive success in natural populations 

have been hindered by the fact that paternity often cannot be deduced from 

behavioral data alone. Recently, there has been increasing reliance on the use of 

molecular polymorphism to infer genealogical relationships. Such inference usually 

requires the use of statistical procedures to resolve ambiguities. We advocate the use 

of the EM algorithm (Dempster et al. 1977) to calculate maximum likelihood 

estimators of probabilities of parentage for each of a set of suspected sires. This 

method permits the researcher to apponion a multiply sired brood among a female's 

different mates. For this purpose, the maximum likelihood method is better than the 

LOD ratio method proposed by Meagher (1986). Simulations showed that the 

estimators are usually quite accurate with brood sizes of 25 or greater and that the 

probability that the male with the highest paternity will be ranked first is high with 

brood sizes as low as 10. 

,. 
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In recent years, there has been increasing use of electrophoretic 

(Meagher 1986) and other codominant variants (Jeffreys et al., 1985a; 1985b) to 

infer genealogical relationships in populations of animals and plants. Multiple 

parentage within broods has been found to be relatively widespread (Hanken and 

Sherman, 1981; McCauley and O'Donnell, 1984; Ellstrand and Marshall, 1986). 

As maternal parents are more easily identified than are male parents, it is usually 

the paternity of offspring that is in question. When a brood may be sired by more 

than one male, paternity can be inferred using data on genetic markers in 

conjunction ·with statistical estimation procedures based upon Mendelian 

transmission probabilities. Because, in most cases, offspring possess putative 

genotypes that could have been derived from more than one of a set of males, it is 

rare that paternity can be unambiguously determined, even in laboratory studies 

(Dickinson 1986, Foltz and Pashley 1986). Ambiguity comes about in three 

ways: (1) Males may be identical at each polymorphic locus examined; if this is 

the case, the genetic markers used are not informative. (2) Males may be identical 

for at least one of two putative alleles at each locus. (3) Even if all of the males 

are different at a locus, paternity may still be ambiguous if the female is 

heterozygous and shares an allele in common with each of two suspects. Because 

ambiguities are common, accurate quantitative estimates of parentage are needed. 

Statistical likelihood has been employed to assign paternity in studies 

involving humans (Walker, 1983; Thompson, 1986), other animals (Foltz and 

Hoogland, 1981; Dickinson, 1986; Foltz and Pashley, 1986), and plants 

(Meagher, 1986; Schoen and Stewart, 1986). In cases in which a brood may be 

sired by more than one male, there have been two basic approaches. The first and 
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most widely utilized approach involves use of log-likelihood (LOD) ratios 

(Meagher 1986; Meagher and Thompson, 1986). Use ofLOD ratios takes into 

consideration the likelihood that male "a" fathered a particular offspring with a 

particular female in relation to the likelihood that he is a randomly sampled 

member of the parental generation (Meagher, 1986). LOD ratios are compared 

among potential male parents and the male with the highest ratio is assigned 

paternity for the offspring in question. Each offspring is considered 

independently, such that the number of offspring used to acquire each estimate is 

one. The second method is maximum likelihood (ML) estimation based upon the 

Mendelian transmission probabilities of all potential sires (suspects) i:ill.d the 

relative proportions of different offspring genotypes in the brood (Dickinson, 

1986; Foltz and Pashley, 1986). The clutch or brood is then assigned to males in 

proportions corresponding to the males' probabilities of paternity, and the number 

of offspring used to calculate each estimate is equal to the total number of 

offspring in the brood. 

In this paper we demonstrate how the ML estimation procedure 

described in Dickinson (1986) and Foltz and Pashley (1986) can be extended to 

include cases in which there are more than two potential sires, and demonstrate 

how the EM-algorithm can be used to find ML estimators. We also evaluate the 

effects of sample size on accuracy and bias of the ML estimators and compare ML 

estimation with least squares estimation procedures. 
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MULTIPLE PATERNITY WHEN MATERNITY IS KNOWN 

We will examine the case in which there is a single mother and the 

genotypes of the mother, offspring, and male suspects are known. Maternity is 

usually certain in laboratory studies of sperm utilization patterns in insects 

(McCauley and Reilly, 1984; Dickinson, 1986; Foltz and Pashley, 1986), as well 

as in field studies of plants (Meagher, 1986; Schoen and Stewart, 1986), most 

species of animals that bear live young (Hanken and Sherman, 1981), and species 

that nest or exhibit maternal care of eggs (but see Yom-Tov et al., 197 4; Gowaty 

and Karlin, 1986; Tallamy, 1986). The probabilities that we will examine are the 

probabilities of paternity for each male suspected of having mated with a given 

female. Although the analysis is dependent on the female's genotype, the fact that 

she remains constant throughout allows us to use simplified notation that does not 

outwardly reflect this dependence. 

Our objective is to come up with an estimate of the proportion of 

offspring sired by each of a set of male suspects. In the case of laboratory 

studies, these suspects include all of a female's sequential mates. When animals 

are observed in the field, it may be rare that copulations are actually witnessed 

(Gavin and Bollinger, 1985; Mumme et al., 1985). In such cases, suspects may 

include the males whose territories overlap that of the female in addition to other 

males she has associated with during the study. 
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Let us first establish some notation: 

S =number of "suspects" 

G = number of distinct genotypes among the offspring 

P* (jli) =probability of an offspring having the jth genotype, assuming the ith 

male was the sire 

P* (j) =probability of an offspring being the jth genotype 

P (i) = probability that the ith male will sire an offspring 

P (ilj) =probability of the ith male being the sire of an offspring of genotype j 

f (j) = number of offspring of the jth genotype in the sample 

As shown by Schoen and Stewart (1986) and, for two males, by Foltz 

and Pashley (1986), P (j) is a linear function of the P(i)'s: 

P*(j) = P* (ill) P(1) + P*(jl2) P(2) + ... + P*(jiS) P(S). (1) 

In equation (1), P*(j) can be calculated and the statistical problems center on 

estimating the P(i)'s from the data. 

THE USE OF MAXIMUM LIKELlliOOD ESTIMATION 

Thompson (1986, Appendix 3) provides a general description of 

maximum likelihood equations and details their use in genealogy reconstruction. 

Description of a maximum likelihood estimation procedure that is most similar to 

ours can be found in Foltz and Pashley (1986) for the case in which there are two 
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potential sires. For the problem we consider, the likelihood is given by 

L(P(l), ... ,P(S)) = P*(l/Cl) P*(2)f(2) ... P*(G)f(G) (2) , 

and the objective for any given set of data is to find the values for the P(i)'s that 

maximize it. 

Tiris can be easily accomplished for two males since the probability of 

the first male siring offspring is just one minus the probability of the second. The 

likelihood can be calculated for a grid of fmely spaced values (say, every .001) for 

the probability of the first male using a simple program, a spreadsheet package, or 

a statistics package like MINITAB. Tiris can also be plotted to view the entire 

likelihood. The value that gives the largest value for the likelihood is the 

maximum likelihood estimator. 

If there are more than two males, the problem is more complicated. The 

likelihood can still be evaluated for a grid of fmely spaced values, but this quickly 

becomes time-consuming. There are many numerical algorithms available to 

maximize nonlinear functions such as (2), for example, the Newton-Raphson 

technique (Kennedy and Gentle, 1980, p. 442). However, a simpler method that 

works very reliably for this problem is the EM algorithm (Dempster et al., 1977). 

The EM algorithm starts with a guess as to the values of the P(i) and iteratively 

calculates new values that increase the value of the likelihood. Iterations continue 

until the estimates fail to change and the likelihood is no longer increased. It 

works as follows: 
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0. Obtain initial estimates of P(l), P(2), ... , P(S). 

1. Using the current estimates of P(1), )P(2), ... ,P(S), calculate the 

P(ilj) using Bayes' formula (see step 1 below). 

2. Use the P(ilj) to apportion fG) into estimated frequencies attributable 

to each "suspect". 

3. Sum the frequencies for the ith male over all of the genotypes and 

use the sum to get a new estimate of P(i). 

4. Continue to iterate steps 1 through 3 until successive estimates of 

P(l),P(2), ... , P(S) change very little. 

More specifically, if we denote the portion of the fG) apportioned to the ith male as 

f(i,j) and if estimates at the kth iteration are denoted by a superscript k, in 

brackets, the algorithm is: 

0. k=O, p(k)(i) = 1/S. 

(k) P*(jl1")p(k-1)(1") 1. k=k+ 1, p (ilj) = 

2. f(i,j)(k) = f(j)P(k)(ilj) 

I, P*(jlr)P(k-1)(r) 
r 

3. p(k)(i) = l: f(k)(jli)/r fG) 
J J 

4. If m;pc { IP(k)(i)-P(k-l)(i)l} > tolerance value, return to step 1, 
1 

otherwise stop. 

~s algorithm is easily programmed and a BASIC program to do the computations 
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that runs on an IDM PC is available from the authors. Table 1 illustrates how the 

algorithm is implemented. 

Several comments are in order to describe the performance of this algorithm 

in more detail: 

1. Estimates of the P(i) and the P*(j) will always be between zero and one (as they 

should be). This is not true of other estimation techniques, such as least squares. 

2. If the algorithm is used for data which unambiguously indicate that all of the 

offspring come from one male, then the probability of that male siring offspring is 

estimated to be one and the rest are estimated to be zero. 

3. As an extension of the case in 1, if all of the data are unambiguous and more 

than one male sires offspring within the brood, the probabilities [P(i)] for each male 

are estimated to be the sample relative frequencies that may be unambiguously 

attributed to each male. 

4. In cases in which genetic patterns for two or more males are identical, the data 

give no information for distinguishing among them. The way the algorithm is 

implemented (starting with equal probabilities for each male), the probabilities [P(i)] 

estimated for those males will be identical. 

ASSUMPTIONS 

There are a number of assumptions, both genetic and statistical, inherent in 

the proper use and interpretation of this model. As written, the model assumes that 

multiple maternity will not occur. The model can be easily adapted to handle the 

case of multiple maternity with single paternity by interchanging the roles of males 
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and females. It can also be adapted to handle the case of multiple maternity and 

paternity by considering every male-female pair, but P*(jli), P(i), P*G), and P(iti) 

would have to be redefined as follows: 

P*(jli) =probability of an offspring having the jth genotype assuming it is 

an offspring of the ith male-female pair. 

P*G) = probability of an offspring being the jth genotype. 

P(i) =probability that the ith male-female pair will produce an offspring. 

P(ilj) =probability of the ith male-female pair producing an offspring of 

genotypej. 

Simultaneous analysis of multiple maternity and paternity would require a large 

amount of data since each pairing of a male and female would introduce a parameter 

[P(i)] to be estimated. 

In order to calculate the probabilities of genotypes [P*G!i)], we will need to 

make the following assumptions: 

i. Mendelian inheritance 

ii. No correlations among loci. 

However, if loci are linked and the joint multilocus probabilities can be calculated, 

then this method can still be used. If population frequencies are used for P*(jli) 

rather than the true value for individuals, then random mating must be assumed. 

Offspring are treated as statistically independent in the formation of the 

likelihood equation (2). This is likely to be a good assumption under conditions in 
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which multiple mating is known to have occurred. It may be a poorer assumption 

when mating is rarely observed and one male is likely to sire the entire litter. If 

litters are rarely multiply sired, but the identity of the sire changes from one litter to 

the next, then the assumption of independence will not be valid. The model would 

need to be rewritten with litter, rather than single offspring, as the unit of 

observation. The same general approach could then be used providing that data on a 

sufficient number of litters are available. 

The model assumes that all potential sires can be identified and that their 

genetic patterns are known. This might be a problem with field data. In cases in 

which copulations are difficult to observe, the risk of leaving a critical male out of 

the analysis is relatively high. The problem of which males to include in the analysis 

is one that plagues all field studies of multiple mating and paternity. 

PERFORMANCE OF 1HE MAXIMUM LIKELIHOOD ESTIMATORS 

We first compare the ML method with the LOD method of Meagher (1986). 

Meagher's method is an example of a "classification" technique, in which each 

offspring is assigned unambiguously to a sire. In the case of a single mother, this 

method corresponds to assigning each offspring to the sire with the largest 

probability of siring an offspring of that genotype. Classification techniques have 

been found to perform very poorly (Bryant and Williamson, 1978). A simple 

example serves to illustrate the problem. Suppose we have a situation with two 

males and two genotypes with the P*(j/i) given in Table 2. Using the LOD ratio 

method, all offspring of genotype 1 will be assigned to male 1 and all offspring of 
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genotype 2 will be assigned to male 2. Thus the estimated proportion of offspring 

attributable to male 1 will be the proportion of offspring of genotype 1. This is not 

estimating the true proportion of offspring attributable to male 1 [P(l)], but instead 

is estimating the probability of genotype 1, which is equal to (0.75) P(l) + (0.5) 

P(2) = 0.5 + (0.25) P(l), since P (2) = 1 - P(1). Even with arbitrarily large 

numbers of offspring per female, use of the LOD ratio will give unreliable estimates. 

The :ML method, on the other hand, converges to the true value as the sample size 

increases. Hence, Meagher's method cannot be recommended when the goal is to 

use all of the information in the sample. In essence, Meagher's method uses 

samples of size 1 (each offspring is considered separately) and any inaccuracies in 

the likelihood method due to small sample sizes are perpetuated as the number of 

offspring per female increases. 

We next investigate the accuracy of the ML estimators and compare them 

with the more easily obtained least squares estimators. Least squares estimators 

have the advantage of being unbiased (their average value in replicated experiments 

is the true value) while maximum likelihood estimators are not To compare them, 

we must therefore consider both bias and variance. A common measure of 

closeness of the estimators to the true value is the mean square error (average 

squared difference between estimates and true value). We have used this measure to 

evaluate ·the :ML estimators and to compare them to the least squares estimators. 

Twelve separate sets of simulations were performed to evaluate the estimators 

(APPENDIX 1). One set of simulations was chosen to reflect the range of gene 

patterns found in Dickinson (1986). 
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Figures 1 through 3 display the performance of the ML estimators for 

parameter configuration D (APPENDIX 1). This configuration was neither the best 

nor the worst case for performance of the ML estimators. Figure 1 shows the bias, 

which is very small in estimating any of the parameters, even for small sample sizes. 

The worst case is estimating P(l) with samples of size 4. In this case the ML 

estimator yields a P(l) that is too low by 0.036 on average (the true value is 0.5, 

while the average of the estimator is 0.474). Cases where the bias was not small 

were typically cases where the true probability was close to zero or one. To 

understand this, consider the case in which the true probability is close to one. 

Often, the ML estimator will be equal to or close to one. However, whenever it is 

not, it will be less than one and hence the mean of the estimator will also be less than 

one. The least squares estimator balances those values less than one with some 

values greater than one, so that they average out to one. In this case, unbiasedness 

requires zero variance or values out of the range of zero to one. Hence, 

unbiasedness is probably not a good property to require. These considerations are 

demonstrated in Table 3. 

The estimates of mean square error from the simulations showed that with 

small sample sizes the ML estimators are not terribly accurate. Mean square error is 

equal to the sum of the square of the bias and the variance. The largest portion of 

this was usually the variance. Figure 2 shows the relationship between the standard 

deviation and the sample size. It was not until sample sizes of 25 or so were reached 

that the variances came down to acceptable levels. This suggests that either large 

litter sizes or a large number of litters would be necessary to accurately obtain 

paternity estimates. 
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We also investigated the probability that the male with a higher probability 

of paternity would be estimated to have a higher paternity value. Fig. 3 shows that a 

reasonably high probability of correct ranking (Pr{ CR}) can be achieved, even with 

fairly small sample sizes. 

Unfortunately, the "usual" approximate tests and confidence intervals for 

maximum likelihood estimators are not valid for this model because of the frequency 

of maximum likelihood estimates that are exactly zero or one. This means, for 

example, that the chi-square tests of the hypothesis that P(1) equals zero or one 

recommended in Foltz and Pashley (1986) are invalid It also means that the "usual" 

methods of calculating standard errors for maximum likelihood estimators may give 

misleading results. 

Because researchers usually do not know in advance whether multiple 

paternity occurs, it was important to investigate the performance of the estimator 

when one male sired all of of a litter (i.e. the data were not independent), but 

different litters could be sired by different males. In doing so, we found that the true 

male had the highest estimated P(i), in almost all cases, and that the P(i) was 

frequently estimated to be unity. For example, in configuration D (APPENDIX 1) 

with only 4 offspring, the correct male had the highest P(i) in about 70% of the 

cases; with 50 offspring the percentage increased to 90%. This suggests that the 

estimators can be fairly reliable for giving rank order information when there is a 

lack of independence, even for small sample sizes. 
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CONCLUSIONS 

Assigning paternity on the basis of isozyme variants and other molecular 

polymorphisms is problematic, even in cases in which behavioral data on suspects 

are good (McCracken and Wilkinson, in press). The ML estimation procedure we 

have described is best applied to organisms with large clutch or litter sizes, such as 

certain fish (Darling et al., 1980), reptiles (Gibson and Falls, 197 5), amphibians 

(Tilley and Hausman, 1976), mollusks (Murray, 1964), and arthropods (Sassaman, 

1978; McCauley and Reilly, 1984). Its usefulness in assigning parentage for many 

species of mammals (Hanken and Sherman, 1981) and birds (Gowaty and Karlin, 

1984; Mumme et al., 1985) will be limited; we don't recommend its use for species 

with small numbers of offspring (fewer than 10) unless data are available for a large 

number of families. 

In cases in which the numbers of offspring are sufficient to justify use of 

this method, researchers will be able to answer questions about parentage with fewer 

families than were previously needed. For example, Dickinson (1986, in press) 

used ML estimation in conjunction with izozyme data to quantify the proportion of 

offspring fathered by each of a female's two consecutive mates in laboratory studies 

of determininants of paternity in the milkweed leaf beetle. The resulting ML 

estimators for second males were compared among treatments in which mating 

duration varied using a Mann-Whitney U -test In situations like this, ML can be 

employed to ask questions about the behavioral and morphological determininants of 

male reproductive success. We propose use of ML estimation as an alternative to the 

LOD ratio method (Meagher and Thompson 1986) in situations in which it is likely 
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that there is multiple paternity within clutches. Unlike the LOD ratio, the ML 

estimator we describe does not usually permit the researcher to infer that a particular 

father sired a particular offspring. However, the fact that it is based upon the 

relative numbers of offspring of different genotypes in the sample makes it a more 

desireable method for dividing a multiply sired brood among a female's different 

mates. 
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APPENDIX 1 

All simulations were run on an IBM PC-AT. The simulation programs were written in the matrix language GAUSS. Random 

number generation was performed using built-in GAUSS functions, which use a multiplicative congruential generator. 

Computation of the maximum likelihood estimators is described in the text. The least squares estimators are the usual least 

squares estimates found by regressing the observed genotype frequencies on their means [a linear function of the sire 

probabilities, p(i)]. The sire probability estimates were restricted to sum to one. The parameter configurations are given in the 

table below. 

Simulation set s G # Replications P*(j/i) # Offspring (NOBS) and P(i) 

A 3 3 1000* 0.5 0.25 0.25 P(i) = (0.6, 0.35, 0.05) 
0 0.75 0.25 NOBS = 4, 10, 25, 50, 100 
0.875 0.125 0 

B 2 3 1000 0.5 0.25 0.25 P(i) = (0.75, 0.25) 
0.875 0.125 0 NOBS = 4, 10, 25, 50, 100 

c 3 4 1000 0.5 0.25 0.25 0 P(i) = (0.5, 0.3, 0.2) 
0 0.75 0.25 0 NOBS = 4, 10, 25, 50, 100 
0 0.25 0.5 0.25 

D 3 3 1000 Same as A SameasC 

--...... ,> 



(Appenix 1, continued) 

s 2 2 1000 0.5 0.5 p (i) = (1,0), (.95, .05), (.9, .1 ), (.8, .2), 
1.0 0 (.7, .3), (.6, .4), (.5, .5), (.4, .6), (.3, .7), 

(.2, .8), (.1, .9), (.05, .95), (0, 1); NOBS = 10 

T 2 3 1000 0.5 0.5 0 P(i) = same as S; NOBS = 10 
0.25 0.5 0.25 

u 2 3 1000 0.25 0.25 0.25 0.25 0 P(i) = (1, 0, 0), (.8, .2, 0), (.8, 0, .2), (.6,.4,0), 
0.5 0.5 0 0 0 (.6, .2, .2), (.6, 0, .4), (.4, .6, 0), (.4, .4, .2), 
0 0 0 0.5 0.5 (.4, .2, .4), (.4, 0, .6), (.2, .8, 0), (.2, .6, .2), 

(.2, .4, .4), (.2, .2, .6), (.2, 0, .8), (0, 1' 0), 
(0, .8, .2), (0, .6, .4) (0, .4, .6), (0, .2, .8), 
(0,0,1), (.333, .333, .333) NOBS = 10 

v 3 5 1000 0.25 0.25 0.25 0.25 0 P(i) = same as U; NODS = 25 
0.5 0.5 0 0 0 
0 0 0 0.5 0.5 

w 2 4 1000 0.25 0.25 0.25 0.25 P(i) =same asS; NODS= 25 
0.5 0.5 0 0 

X 2 5 1000 0.25 0.25 0.25 0.25 0 P(i) = same as S; NODS = 25 
0 0 0 0.5 0.5 

y 2 3 1000 0.5 0.5 0 P(i) = same as S; NODS = 25 
0.25 0.5 0.25 

_o;:, 



(Appendix 1, continued) 

z 2 2 1000 0.5 0.5 P(i) = same as S; NOBS = 25 
1 0 

* 250 replications when NOBS = 4. 

t: 
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TABLE 1. Example of use of the EM algorithm to calculate P(i) for two loci. 

Alleles are "F" (fast), "M" (medium), and "S" (slow). 

a. Putative Genotypes of Parents 

Hypothetical Loci 

1 

Genotypes of Males Genotype of Female 

:MF FF SM SF 
2 MM SM SS SM 

b. P*(jji) and Observed frequencies of Offspring Genotypes 

Offspring Genotypes (Locus 1/ Locus 2) 

Male FF/MS FF!MM :MF/SM :MF/MM FF/SS MF/SS SF/MM 

P*(jl1) 0.25 0.25 0.25 0.25 0 0 0 
P*(jl2) 0.5 0.25 0 0 0.25 0 0 
P*(jl3) 0 0 0.25 0 0 0.25 0 
P*(jl4) 0.25 0.125 0 0 0.125 0 0.125 

#of 
Observations 3 7 2 9 1 5 6 

c. EM Algorithm 

Estimate of PCi) 

Iteration P(l) P(2) P(3) 

0 0.250 0.250 0.250 
1 0.399 0.146 0.259 
2 0.462 0.087 0.266 
3 0.506 0.036 0.279 

28 0.526 0.000 0.296 
29 0.526 0.000 0.296 

Convergence Reached 

FF 
SM 

SF/SM 

0 
0 
0.25 
0.25 

0 

P(4) 

0.250 
0.196 
0.184 
0.184 

0.178 
0.178 

SF/SS 

0 
0 
0.25 
0.125 

1 
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TABLE 2. Probabilities of genotypes for two males [P*U/i)]. 

Male Genotype 
1 2 

1 0.75 0.25 

2 0.5 0.5 
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TABLE 3. Example of comparison of the maximum likelihood and least squares 

estimators (S = 2, G = 2, P(l) = 1, P(2) = 0, P*(111) = 0.5, P*(211) = 0.5, P*(ll2) = 

0.75, P* (212) = 0.25. For the case in which male 1 sired all ten offspring within the 

brood, we calculated the probability of drawing each of ten different offspring 

genotype combinations [Pr{f(1) and f(2)} when f(l) = 0,1,2, ... ,10 and f(2) 

= 10,9,8, ... 0)]. We then compared the resulting estimates ofP(l) obtained by ML 

estimation with those obtained using least squares estimation procedures. 

a. Example 

Oserved 
Combinations 
in the Sample 
f(l) f(2) 

10 0 
9 1 
8 2 
7 3 
6 4 
5 5 
4 6 
3 7 
2 8 
1 9 
0 10 

b. Summary: 

MLE: 
Least Squares: 

Probability of 
Occurrence 

0.00098 
0.00977 
0.04395 
0.11719 
0.20508 
0.24609 
0.20508 
0.11719 
0.04395 
0.00977 
0.00098 

Bias= -0.23 
Bias= 0 

Value of 
ML Estimator 
forP(l) 

0 
0 
0 
0.2 
0.6 
1 
1 
1 
1 . 
1 
1 

Value of Least 
Squares Estimator 
for P(l) 

-1.0 
-0.6 
-0.2 
0.2 
0.6 
1 
1.4 
1.8 
2.2 
2.6 
3.0 

Variance= 0.11 Mean Sq. Error= 0.16 
Variance= 0.40 Mean Sq. Error= 0.40 
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FIGURE LEGENDS 

FIG. 1. The relationship between bias and sample size for simulation D (described in APPENDIX 

1). 

FIG. 2. The relationship between standard deviation of the ML estimates and sample size for 

simulation D (described in APPENDIX 1). 

FIG. 3. The relationship between probability of correct ranking [Pr(CR)] and sample size for 

simulation D (described in APPENDIX 1). Pr{ 1>3} is the probability that the male with the 

highest probability of paternity is assigned a higher paternity value than the male with the lowest 

probability of paternity. Pr{ 1>2} is the probability that the ML estimator for the male with the 

highest probability of paternity is greater than the ML estimator for the male with the second highest 

probability of paternity. Pr {2>3} is the probability that the ML estimator for the male with the 

second highest probability of paternity is greater than the ML estimator for the male with lowest 

probability of paternity. 
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