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In Chapter 1, we study the trading pattern of rich individual investors. To the contrary 

of the current literature that individual investors trade excessively, and that trading is 

hazardous to their wealth, we find that in the Chinese stock market, individual 

investors with stock holdings over 5 million RMB benefit from trading. Our results 

show that these super rich individual investors trade far more extensively than the 

market average. Yet they manage to beat the performance of the market portfolio in 

China by a large margin. Further investigation attributes their persistent excess returns 

to informational advantages. We find evidence that they trade against behavioral 

investors around good news announcements.  

In Chapter 2, we study a puzzling phenomenon in the Chinese stock market, that is a 

stock’s price and its trading volume rise significantly after public news, unrelated to a 

concrete change in the firm’s value. We propose a model of trade-based manipulation 

to explain this phenomenon. In this model, a large number of speculative manipulators 

coordinate implicitly after public news events to exploit investors with behavioral 

biases. We provide empirical evidence that is consistent with the prediction of the 

model. Stocks that have low institutional investor holdings or that have experienced a 

recent decline in value are more likely to be manipulated. Manipulated stocks 

experience price reversals after the manipulation. We suspect that speculative 

manipulators are investors with more than five million RMB in stocks’ value. These 



 

investors accumulate shares to pump up the stock price initially and then dump them 

after the significant increase in price. Their accounts also realize abnormally high 

returns during the event days.  

In Chapter 3, we study the cross-sectional differences in IPO pricing under sentiment 

and disagreement influences in the Chinese stock market. We find that the first-day 

returns of IPOs are positively related to market sentiment and disagreement over their 

offer prices. Hard-to-value IPO stocks earn higher first-day returns when investor 

sentiment is higher. Issuers in the Chinese stock market are not able to time the market 

for regulatory reasons, making our results less affected by the endogenous issue 

between market sentiment and IPO underpricing observed in the US market. A unique 

data set containing analysts’ forecasts about IPO offer prices allows us to measure the 

disagreement over the IPO valuations directly, which is also not available for the US 

market.  
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CHAPTER 1 

IS TRADING HAZARDOUS TO YOUR WEALTH? 

The literature on behavioral finance finds that individual investors lose from trading. 

Using data from a discount brokerage, Barber and Odean (2000) show that individual 

investors trade excessively (overtrading), and they underperform the index by 3.7% 

annually. Further, Barber et al. (2009) directly measure how much individual investors 

lose from trading by using data from the Taiwan market and find that individual investors 

suffer an annual performance penalty of 3.8%. Similarly, Han and Kumar (2011) find that 

stocks actively traded by individual investors have a negative alpha. 

However, the literature also shows that some individual investors can profit from trading 

because of an information advantage or skill. Ivkovic and Weisbenner (2005) find that 

individual investors who hold local stocks do better. Later on, Ivkovic et al. (2008) find 

that individuals who hold one or two stocks do better than those who hold at least three 

stocks. These authors attribute individual investors’ performance to an informational 

advantage. Coval et al. (2005) find that those investors who hold winning stocks do better. 

They believe these investors have extraordinary stock picking ability, that is, skill.  

Thus, apparently, there is no consensus for trading’s effect on individual investors’ 

wealth, yet all individual investors expect to profit from trading. We use a new data set 

on individual investors’ trading and holding records from a national brokerage firm in 

China to study whether trading is hazardous to individual investors’ wealth. This unique 
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data set contains daily position statements and trading records for 1.8 million individual 

investors from 2007 to 2009.  

Previous studies shed light on which stocks winning individual investors buy (Ivkovic 

and Weisbenner (2005), Ivkovic et al. (2008), and Coval et al. (2005)). Another line of 

papers focuses on the roles of gender, income, age, and education in individual investors’ 

performance.
1
 We are interested in the role of investors’ wealth in their investment 

performance. Specifically, do less wealthy investors become richer through trading? Does 

trading hurt rich investors’ wealth? 

In this paper, we attempt to answer these questions by partitioning individual investors by 

the value of their portfolio, which approximates the level of wealth of the individual 

investors.  When reporting individual investors’ statistics, the Shanghai Stock Exchange 

(SHSE) and the Shenzhen Stock Exchange (SZSE) label accounts with less than 100,000 

RMB in equity at any point in time as small accounts, those with less than 1,000,000 

RMB as middle accounts, those with less than 5,000,000 RMB as big accounts, and those 

with more than 5,000,000 RMB as super accounts. We follow this practice in our paper 

as well. Therefore, we classify individuals as small, middle, big, and super investors 

based on their portfolio size.  

For small, middle, and big investors, we find that trading is hazardous to their wealth, 

confirming Barber and Odean (2000). All of these investors earn significantly negative 

returns after factoring in the trading costs. Also with the increase in trading frequency, as 

                                                           
1

 Barber and Odean (2001) find that women outperform men by 0.93 percentage points a year by comparing the net returns they 

earn. Kumar (2009) considers the characteristics of individual investors, including income, age, and education, to explain individual 
investors’ preference for lottery-like stocks, which earn significantly lower average returns than non-lottery-like stocks. 
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indicated by a portfolio’s turnover, the net returns earned by these three groups of 

investors decrease monotonically.  

But for super investors, we find, in contrast to Barber and Odean (2000), that trading 

increases their wealth. During our sample period, super investors achieve monthly 

average excess gross (net) returns of 10% (8%) at the 5% significance level.  

Barber and Odean (2000) also partition their investors into quintiles on the basis of 

portfolio size.  However, they find that investors holding small portfolios earn higher 

average returns than those who hold large portfolios. They attribute the difference to the 

outperformance of small value stocks during their sample period. We do not find that 

small value stocks or big value stocks do particular well during our sample period. 

Moreover, the mean price difference of stocks traded by small investors and that by super 

investors is merely 4 RMB, which is approximately 57 cents in US dollars. This 

difference is not sufficient to explain why the super investors beat the small investors by 

such a large margin. 

Furthermore, we find that the more super investors trade, the higher the returns (both 

gross and net) that they get (see Figure 1). This empirical evidence is the most surprising 

and contradicts the literature.  



 

14 

 

 

 

 

 

 

FIGURE 1 RELATION BETWEEN TURNOVER AND RETURNS FOR SUPER INVESTORS 

We divide super accounts investors into quintiles by turnover. Turnovers are measured monthly by summing the sale turnover and buy 
turnover. Gross returns are measured monthly and net returns are calculated by subtracting trading costs. It turns out that high turnover 

brings high returns for wealthy investors.

Relation between Turnover and Returns for Super Investors 
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In this paper, we show that an informational advantage is a possible source of super 

investors’ superior performance. We perform an event study and find that the trading of 

local stocks with announcements of high stock dividends is dominant among super 

investors. And they profit from buying these stocks before the announcement and selling 

them afterwards. 

In contrast to Ivkovic and Weisbenner’s (2005) finding that investors who hold local 

stock do better, we find that only super investors that hold local stocks do better. The 

other three groups of investors do not benefit from holding local stocks. These groups 

probably suffer from local biases.  

Moreover, Ivkovic et al. (2008) find that investors who hold local stocks and small 

portfolios have lower turnover. In this sense, they support Barber and Odean (2000) by 

finding that turnover is negatively related to returns. We find that higher turnover brings 

higher returns for super investors.   

Compared to the current research, our contributions are as follows. Firstly, we attempt to 

differentiate investors based on their wealth and find that trading benefits super investors 

but hurts the small, medium, and big investors. In fact, we find that super investors get 

richer through trading, while the other investors lose from trading. The research often 

assumes the homogeneity among investors. In other words, they treat investors as a 

whole without recognizing the difference between each investor.  

Secondly, we complement the literature on information advantage with data at the 

investor account level. On the information leakage side, there are many papers that use 
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stock-level data such as abnormal returns, abnormal volatilities, abnormal turnovers, and 

short sale interests. However, these papers lack a direct measure of how people who have 

an informational advantage trade on that information.  

Thirdly, we extend the understanding of the Chinese stock market, which had 120 million 

investment accounts at year-end 2009 (China Securities Regulatory Commission (2009)). 

The Chinese market also had the second-largest market capitalization among all national 

stock markets at year-end 2010. Chen et al. (2007) and Feng and Seasholes (2008) both 

find that Chinese investors exhibit excessive trading because of the disposition effect, 

local bias, and under-diversification; just as retail investors in the US do. Our paper finds 

that super, high frequency trading, investors in the Chinese stock market profit from 

trading and beat the market, which is not true for US investors.  

The remainder of the paper is organized as follows: Section I provides a description of 

the main data set we use for this research.  Section II analyses the trading performance of 

all groups of investors. Section III presents an event study to explore the source superior 

performance of super investors. Section IV concludes.  

I. Data Description 

Our data on trading and daily portfolio holdings come from a top brokerage firm in China. 

The trading data contains 1.8 million investors’ trading records from January 2007 to 

October 2009.
2
 Our data set contains investors that trade common stocks, funds, treasury 

                                                           
2

 Many papers studying the trading patterns of individual investors in the US market that are based on the data set examined in 

Barber and Odean (2000). Their data set contains information from a large discount brokerage firm on the investments of 78,000 
households from January 1991 through December 1994. Therefore, our data is newer and bigger compared to the data used in Barber 
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notes, and warrants. In this paper, we focus only on their trading of common stocks, 

which is about 80% of all trading records.  

There are two stock exchanges in Mainland China, the Shanghai Stock Exchange (SHSE) 

and the Shenzhen Stock Exchange (SZSE). By the end of 2009, the 2,000 stocks traded 

on the SHSE and the SZSE had a combined total market capitalization of US$ 3.5 trillion, 

making the Chinese stock market one of the largest in the world. To trade on the SHSE 

and the SZSE, investors can open one and only one permanent stock account with each 

exchange. Even if an investor decides to close his or her account with an exchange, the 

stock account’s number is not recycled for future investors. This institutional setup 

allows us to track investors’ performance consistently over our sample period. Therefore, 

our results are free of survivorship bias. Also, as mentioned, we use the same cutoffs as 

the exchanges for the values of portfolios to classify the investors.  

To eliminate the bias caused by inactive investors in our sample, we exclude investors 

who bought or sold shares less than 20 times during our sample period. Panel A in Table 

1 shows the distribution of the number of investors in each category. We find that 

inactive accounts are limited in the small and middle groups of investors.  

Panel A in Table 1 also presents a comparison of the investors’ distribution by their 

holdings between our data set and the entire market. In the overall market, over 80% of 

the investors are small accounts, middle accounts are 15%, and only a tiny fraction of 

investors holds more than 1 million RMB. Our data set has a more balanced distribution 

                                                                                                                                                                             
and Odean (2000). More importantly, the daily position data, instead of the month-end position data, allow us to calculate returns 
more accurately. 
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between small and middle accounts, 52% versus 42%. The fractions of big and super 

accounts are close to the market average.  

Our sample period covers a turn from the bull market (2007) to the bear market (2008). 

The values of the investors’ portfolios also change with this market fluctuation. Panel B 

in Table 1 shows the mean portfolio size for different types of investors at each year-end 

for 2007, 2008, and 2009. The small and middle investors took the biggest hits with an 

average 42% loss in the values of their holdings during 2008. The super investors did a 

better job in managing their portfolios in the bear market with an average loss of 25%.  

TABLE 1  ACCOUNTS DISTRIBUTION 

Active accounts are investors who bought or sold shares at least 20 times during our sample period, January 2007-Octorber 2009. Small 
accounts are investors with portfolio worth less than 100,000 RMB at any point, Middle accounts are investors with portfolio worth less 

than 1,000,000 RMB at any point, Big accounts are investors with portfolio worth less than 5,000,000 RMB at any point, Super 

accounts are investors with portfolio worth more than 5,000,000 RMB at any point. Market statistics are from Shanghai Stock 
Exchange (SHSE) fact book for year 2008 and 2009. 

Panel A: Number of Accounts Distribution 

Accounts Active Active (%) Total Total (%) 2008 SHSE (%) 2009 SHSE (%) 

Small 529970 52.98  1104325 65.96  91.97 82.78 

Middle 419975 41.98  519476 31.03  7.62 15.99 

Big 44353 4.43  44353 2.65  0.36 1.1 

Super 6028 0.60  6028 0.36  0.05 0.12 

       
Panel B: Size of Accounts Distribution 

Account Mean (2007) 
 

Mean (2008) Change (%) Mean (2009) Change (%) 

Small 9,641.92 
 

5,635.51 41.5 10,013.78 77.7 

Middle 45,962.31 
 

25,293.34 44.9 45,038.07 78.1 

Big 297,679.96 
 

154,783.97 48.0 273,367.32 77.1 

Super 4,087,718.26 
 

3,046,965.60 25.4 5,641,246.56 85.1 

Panels A and B in Table 2 report the means and medians of the trade size, average price, 

monthly turnover, and commission costs for buy and sell transactions separately. For 

each group of investors, there are slightly more purchases then sales during the sample 

period, although the average value of the stocks sold is slightly higher than the value of 

the stocks bought. The average purchase costs of small, middle, and big accounts are 
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higher than the average sale prices of the corresponding accounts. However, for super 

accounts, the average sell price is slightly higher than the average purchase cost. 

TABLE 2.A SUMMARY STATISTICS FOR BUY TRANSACTIONS 

The sample is account records for 1.8 million individual investors at a national brokerage firm from January 2007 to October 2009. 

Small accounts are investors with portfolio worth less than 100,000 RMB at any point, Middle accounts are investors with portfolio 
worth less than 1,000,000 RMB at any point, Big accounts are investors with portfolio worth less than 5,000,000 RMB at any point, 

Super accounts are investors with portfolio worth more than 5,000,000 RMB at any point. Monthly turnover is the total trade value 

divided by average portfolio size. Commission is calculated as the commission paid divided by the value of the trade. 

 Small Middle Big Super 

Panel A: Trade Size (RMB) 

Mean 6,158 18,733 67,321 237,815 

25th Percentile 1,995 4,340 11,075 33,550 

Median 3,860 8,950 28,590 92,200 

75th Percentile 7,350 19,560 72,120 234,800 

Std. Dev. 7,427 32,694 126,337 683,328 

# of Obs. 44,930,409 72,432,032 11,700,368 2,644,357 

Panel B:  Price/share 

Mean 12.48 14.45 15.64 16.25 

25th Percentile 6.62 7.24 7.61 7.80 

Median 9.68 10.90 11.64 11.97 

75th Percentile 15 17.16 18.50 19.06 

Std. Dev. 9.77 12.22 13.82 14.62 

# of Obs. 44,930,409 72,432,032 11,700,368 2,644,357 

Panel C: Monthly Turnover(%) 

Mean 5.17 6.46 6.58 7.74 

25th Percentile 2.50 2.45 2.03 1.95 

Median 3.73 3.96 3.76 3.89 

75th Percentile 5.95 6.82 7.10 7.89 

Std. Dev. 6.04 12.17 11.75 18.56 

# of Obs. 529,868 419,679 43,684 5,713 

Panel D: Commission (%) 

Mean 0.45 0.36 0.27 0.22 

25th Percentile 0.28 0.21 0.12 0.08 

Median 0.40 0.32 0.23 0.18 

75th Percentile 0.58 0.49 0.40 0.36 

Std. Dev. 0.33 0.29 0.29 0.23 

# of Obs. 44,930,409 72,432,032 11,700,368 2,644,357 

Moreover, we calculate the monthly portfolio turnover for each investor. The monthly 

purchase turnover is calculated as the total value of shares bought during month t divided 

by the total beginning-of-the-month market value of the portfolio, which is the end-of-

the-month value of month t-1. To calculate the monthly sales turnover, we divide the total 

value of shares sold during month t by the total end-of-the-month market value of the 

portfolio for month t. In Panel C of Table 2.A and Table 2.B, we report that small 
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investors buy 5.17% and sell 5.20% of their stock portfolio each month, although super 

investors purchase 7.74% and sell 11.84% of their stock portfolio each month.  

In sum, the trade size, average trade price, and monthly turnover increase with the 

investors’ wealth level. The investors with higher budgets probably can afford more 

expensive stocks and trade more frequently.  

TABLE 2.B SUMMARY STATISTICS FOR SALE TRANSACTIONS 

The sample is account records for 1.8 million individual investors at a national brokerage firm from January 2007 to October 2009. 

Small accounts are investors with portfolio worth less than 100,000 RMB at any point, Middle accounts are investors with portfolio 
worth less than 1,000,000 RMB at any point, Big accounts are investors with portfolio worth less than 5,000,000 RMB at any point, 

Super accounts are investors with portfolio worth more than 5,000,000 RMB at any point. Monthly turnover is the total trade value 

divided by average portfolio size. Commission is calculated as the commission paid divided by the value of the trade. 

 Small Middle Big Super 

Panel A: Trade Size (RMB) 

Mean 6,919 22,184 80,471 272,136 

25th Percentile 2,915 4,970 12,890 40,122 

Median 4,293 10,365 34,000 109,800 

75th Percentile 8,305 23,560 86,700 278,772 

Std. Dev. 8,267 37,963 146,513 615,292 

# of Obs. 38,797,064 60,222,095 9,723,899 2,395,542 

Panel B: Price/share 

Mean 12.33 14.21 15.47 16.36 

25th Percentile 6.53 7.15 7.57 7.92 

Median 9.53 10.75 11.56 12.17 

75th Percentile 14.80 16.90 18.31 19.34 

Std. Dev. 9.71 12.02 13.54 14.38 

# of Obs. 38,797,064 60,222,095 9,723,899 2,395,542 

Panel C: Monthly Turnover (%) 

Mean 5.20 6.75 8.36 11.84 

25th Percentile 2.49 2.48 2.06 1.88 

Median 3.70 3.96 3.77 3.81 

75th Percentile 5.88 6.82 7.20 7.98 

Std. Dev. 7.54 13.03 12.54 24.03 

# of Obs. 529,913 419,891 44,018 5,963 

Panel D: Commission (%) 

Mean 0.55 0.44 0.36 0.29 

25th Percentile 0.35 0.28 0.20 0.16 

Median 0.42 0.37 0.28 0.21 

75th Percentile 0.57 0.48 0.40 0.36 

Std. Dev. 1.85 1.65 1.63 1.29 

# of Obs. 38,797,064 60,222,095 9,723,899 2,395,542 

 

Following Barber and Odean (2000), we calculate the commission component of the 

transaction costs as the RMB value of the commission paid scaled by the total principal 
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value of the transaction. We observe the decrease in commission costs as a percentage of 

the wealth level, which can be attributed to the lower commission fee charged by the 

broker to the super accounts.
3
  

During the sample period, on average, investors hold no more than five stocks monthly, 

which is the least needed to diversify idiosyncratic risk. The stock holdings of small 

investors are even more concentrated with about three stocks each month (Table 3). 

Under-diversification of individual portfolios is not a new issue in the finance literature. 

The reason for such low diversification could be budget constraints, limited attention, 

local bias, and or skewness preference (Mitton and Vorkink (2007) and Kumar (2009)).  

If we further adjust the average holdings by the values of the investors’ portfolios, then 

we find that small investors hold three times more stocks than super investors (Table 3). 

Investors with over 5 million RMB in equity have enough funds to diversify their 

portfolios. Yet their portfolios are extremely under-diversified when conditioned on their 

portfolio sizes. Considering the high turnover of super accounts, the possibility exists that 

these investors are truly informed about valuable news that is related to the stocks they 

trade in.  

We obtain stock returns, market capitalizations, Fama and French’s three factors, and 

accounting data from the China Stock Market & Accounting Research Database 

(CSMAR). 

                                                           
3

 To keep wealthy investors from moving to other brokerages, it is common to discount the commission for investors who trade 

frequently. For each sell trade, investors pay a handling fee, commission, and a stamp tax. If buying stocks, investors need to pay the 

handling fee and commission only. The handling fee is collected by exchanges, the commission is collected by brokers, and the stamp 
tax is collected by Treasury Department.  
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TABLE 3 AVERAGE MONTHLY HOLDINGS OF INDIVIDUAL INVESTORS 

This table presents number of stocks held by investors on average. Small accounts are investors with portfolio worth less than 100,000 

RMB at any point, Middle accounts are investors with portfolio worth less than 1,000,000 RMB at any point, Big accounts are 
investors with portfolio worth less than 5,000,000 RMB at any point, Super accounts are investors with portfolio worth more than 

5,000,000 RMB at any point. To control for the wealth level of different accounts, number of stocks are divided by average portfolio 

size. 

 Average Number of Stock Holding  
Wealth Adjust number of Stock 

Holding  
Small 2.68  0.00139  

Middle 4.01  0.00093  

Big 5.06  0.00061  

Super 5.00  0.00053  

II. Return Performance 

A. Methods and Variable Definition 

We analyze the return performance of investments in common stocks according to their 

position value. Following Barber and Odean (2000), we calculate both the gross and net 

returns for each group of investors. Leveraging on the daily portfolio data, we are able to 

calculate the daily returns then compound those into monthly returns.
4
 To mitigate the 

impact of the market fluctuation in the sample period, we also calculate the risk-adjusted 

excess returns for comparison.  

To consider the common stock portfolio of a particular investor, we calculate the gross 

daily return on his or her portfolio (   
  

) as 

   
  

 ∑       
     

   , 

where    is the previous day’s market value for the holding of stock   by investor   on 

day    divided by the previous day’s market value of all stocks held by investor  ,    
  

 is 

                                                           
4

 Due to the availability of only monthly portfolio statements, Barber and Odean (2000) calculate the monthly return with two 

assumptions, one is that all transactions occur on the last day of the month.  The other is that there is no intra-month trading. We do 
not have to make these two assumptions, because our data set provides daily portfolio statements for each individual investor.  
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the gross daily return for stock  , and     is the number of stocks held by investor   on 

day  . Then we calculate the gross monthly return (    
  

) by compounding the daily 

return. 

Similar to Barber and Odean (2000), we calculate a daily return net of transaction costs 

(   
   ) as 

(     
   )  (     

  
)

(     
 )

(        
 )

, 

where    
  is the cost of sales divided by the sales price on day   , and       

  is the cost of 

purchases divided by the purchase cost on day    . The costs of purchases and sales are 

calculated for each trade, including the commissions. The net daily portfolio return for 

each  investor is  

   
    ∑       

      
   . 

The net monthly return (    
   ) is calculated by compounding the net daily return. We 

estimate the gross and net monthly returns obtained by individual investors as  

   
  

 
 

   
∑     

     
     and     

    
 

   
∑     

      
   , 

where     is the number of individual investors holding stocks in month  .  

Furthermore, we calculate three measures of risk-adjusted performance: the market-

adjusted abnormal return, the abnormal return estimated from the CAPM, and the 

abnormal return estimated from Fama and French’s (1993) three-factor model.  
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First, the mean monthly market-adjusted abnormal return of the individual investors is 

calculated as the difference between the returns earned by individual investors and the 

returns on a value-weighted index of stocks traded on the SHSE and the SZSE. 

Second, we calculate the intercept using the CAPM model. We perform the regression of 

the monthly excess returns obtained by individual investors on the market excess return 

to approximate the abnormal return. For instance, to evaluate the gross monthly return 

obtained by individual investors on average, we estimate the following monthly time-

series regression: 

(   
  

    )       (       )     , 

where     is the monthly risk-free rate,     is the monthly return on a value-weighted 

market index,    is the CAPM intercept,    is the market beta, and    is the error term. 

We estimate eight regressions: one each for the gross and net performances of the 

average individual investors for four types of accounts. 

Third, we consider two more factors, other than the market one, by following the three-

factor model derived by Fama and French (1993). For example, to evaluate the 

performance of average individuals, we estimate the following monthly time-series 

regression: 

(   
  

    )       (       )                   , 
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where      is the return on a value-weighted portfolio of small stocks minus the return 

on a value-weighted portfolio of large stocks, and      is the return on a value-

weighted portfolio of high book-to-market stocks minus the return on a value-weighted 

portfolio of low book-to-market stocks. Again, we estimate eight regressions based on the 

gross and net performances for four types of accounts.  

B. Results 

The results of the risk-adjusted return analysis are presented in Table 4 Panels A, B, C, 

and D present the results for the gross and net performances for the accounts of the small, 

middle, big, and super investors. Each panel is divided into two sides, the left side is for 

the gross return analysis, and the right side is for the net return analysis.  

For small investors, neither the market-adjusted return, nor the intercept test from the 

CAPM model, nor the intercept test from Fama and French’s (1993) three-factor model is 

reliably different form zero. After considering the transaction costs, the net excess return 

from all three performance measures for the small investors are all significantly below 

zero. The middle investors earn positive gross excess returns, but negative net excess 

returns. The big investors also earn positive gross excess returns, and their net excess 

returns are not reliably different from zero. 

Table 4 shows that the average monthly excess gross (net) return for super investors is 

about 10% (8%) according to both the CAPM model and Fama and French’s (1993) 

three-factor model. Cross-sectionally, the super investors outperform the other three 

groups of investors by more than 5% in both gross and net excess returns.   
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Also noteworthy in these results are the coefficient estimates on the market, size, and the 

book-to-market factors. The market betas for stocks held by all four groups of individual 

investors are greater than one. We don’t find significant loadings on the HML factor for 

most of the accounts. The individual investors in the Chinese stock market might have 

difficulties in telling the differences between value and growth stocks. They naively 

assume that stocks with lower prices are value stocks, without considering the underlying 

book value of the companies.  We also observe that small, middle, and big investors are 

allured by small stocks, which is indicated by the significant loadings on the SMB factor.  

For small, middle, and big investors, both the CAPM and Fama and French’s (1993) 

three-factor model report a high adjusted R-square value around 90%. But these models 

are poor in explaining the returns of super investors, with an adjusted R-square value 

around 40%. This difference might indicate that the super investors select stocks 

distinctly different from the other investors. The wealth level seemingly makes a 

difference in the stock picking abilities because super investors earn much higher excess 

returns.  
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TABLE 4 SUMMARY OF THE PERCENTAGE MONTHLY ABNORMAL RETURN MEASURES  

Notes: Gross returns are based on daily position statements for 1.8 million individual investors at a national brokerage firm from 

January 2007 to October 2009. Net returns are gross returns adjusted by trading costs. Panel A-D presents results for the gross (net) 
return on a portfolio that mimics the average investors of different accounts. Market-adjusted return is the return on the investor 

portfolio less the return on index. CAPM is the results from a time-series regression of the investor excess return on the market excess 

return. Fama-French three-factor is the results from time-series regression of investor excess return on the market excess return, a 
book-to-market portfolio, and a size portfolio. P-values are presented in parentheses. *** Significant at the 1% level. ** Significant at 

the 5% level.* Significant at the 10% level. 

 

 
Gross Percentage Monthly Returns Net Percentage Monthly Returns 

Excess Coefficient Estimate on: Adjusted Excess Coefficient Estimate on: Adjusted 

 Return (Rmt-Rft) HMLt SMBt R2 Return (Rmt-Rft) HMLt SMBt R2 

 Panel A: Small Investors (≤ RMB 100K) 

           

           
Market-adjusted 

return 
0.031*     

-

0.037*** 
   

 

 (0.100)     (0.000)     

CAPM 0.017 1.042***   83.0 
-

0.027*** 0.942*** 
  

83.6 

 (0.129) (0.000)    (0.000) (0.000)    
Fama-French  

three-factor 
0.001 0.999*** 0.240** 0.746*** 95.2 

-

0.034*** 0.883*** 0.350 0.490*** 

85.9 

 (0.781) (0.000) (0.035) (0.000)  (0.000) (0.000) (0.160) (0.000)  

 Panel B: Middle Investors (RMB 100K ~ RMB 1M) 

           
           

Market-adjusted 

return 
0.046**     

-

0.018*** 
   

 

 (0.021)     (0.000)     

CAPM 0.030*** 1.145***   82.4 -0.011** 0.982***   88.3 

 (0.005) (0.000)    (0.039) (0.000)    
Fama-French  

three-factor 
0.018** 1.118*** 0.125 0.569*** 87.3 

-

0.016*** 0.934*** 0.297 0.396*** 

82.5 

 (0.042) (0.000) (0.356) (0.000)  (0.000) (0.000) (0.103) (0.000)  

 Panel C: Big Investors (RMB 1M ~ RMB 5M) 

           
           

Market-adjusted 

return 
0.056***     

0.038*** 
   

 

 (0.005)     (0.013)     

CAPM 0.040*** 1.122***   85.4 0.009* 1.020***   80.8 

 (0.001) (0.000)    (0.076) (0.000)    
Fama-French  

three-factor 
0.028*** 1.095*** 0.117 0.609*** 91.8 

0.005 0.983*** 0.247** 0.260** 

91.0 

 (0.001) (0.000) (0.436) (0.000)  (0.314) (0.000) (0.029) (0.021)  

 Panel D: Super Investors (≥ RMB 5M) 

           

           

Market-adjusted 
return 

0.128***     
0.097*** 

   
 

 (0.002)     (0.006)     

CAPM 0.105*** 1.436***   42.9 0.079*** 1.213***   41.3 
 (0.003) (0.000)    (0.004) (0.000)    

Fama-French  

three-factor 
0.097** 1.430*** -0.048 0.401 39.9 

0.075** 
1.200*** 0.089 0.196 

37.6 

 (0.011) (0.000) (0.919) (0.453)  (0.021) (0.000) (0.823) (0.678)  
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C. Turnover and Return 

Barber and Odean (2000) find a negative relation between the performance and the 

trading frequency of individual investors. We now turn our focus on the trading 

frequency of super investors. To do so, we form quintile portfolios based on the monthly 

turnover for each group of individual investors. We define the monthly turnover as the 

sum of turnovers for buy and sell transactions. We then calculate the average gross and 

net returns for each quintile portfolio.  

Panels A, B, C, and D in Table 5 present the gross and net returns for each quintile for the 

small, middle, big, and super investors respectively. Focusing first on the gross 

performance (topline of each panel), we find that the high turnover portfolios earn higher 

average returns than the low turnover portfolios for all four groups of investors, and the 

difference is significantly different from zero. Moreover, the relation between the 

turnover and the gross returns is positively monotonic: the more individual investors 

trade, the higher the gross returns are.  

After considering transaction costs, we find that the small, middle, and big investors all 

earn negative net returns. The only exception is the super investors. These investors 

manage to earn positive net returns. Moreover, small and middle investors suffer from 

excessive trading. Their net returns decrease with the increase in their trading frequency. 

On the other hand, we find that big and super investors continue to exhibit the positive 

relation between net returns and turnover.  
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In sum, Table 5 shows that more trading increases the gross returns of small, middle, big 

and super investors, but the increases are not sufficient to compensate for the increases in 

the trading costs for small and middle investors. We also present the full sample results in 

Panel E of Table 5. The pattern is very similar to Barber and Odean (2000) in that 

turnover benefits the gross returns but hurts the net returns. In the far left column of 

Table 5, we present the gross and net returns for all four groups of investors without 

partitioning them into turnover quintiles. We find that the gross and net returns increase 

with the value of the individual investors’ portfolios. 

TABLE 5 GROSS/NET RETURNS FOR INVESTOR QUINTILES FORMED ON MONTHLY AVERAGE TURNOVER 

Gross returns are based on daily position statements for 1.8 million individual investors at a national brokerage firm from January 2007 

to October 2009. Net returns are gross returns adjusted by trading costs. For each group of investors, we divide investors into quintiles 

by monthly turnover. Panel A-B shows net return decreases with the increase of turnover for less wealthy investors. Panel C-D shows 
net return increases with the increase of turnover for more wealthy investors. Panel E repeat the exercise pooling all levels of wealth l 

and shows turnover hurts net returns on average. Difference between highest turnover quintile and lowest turnover quintile is included. 

P-values are presented in parentheses.  

 
All  Turnover Quintile   

 1 2 3 4 5 Difference: 
  (Low)    (High) High-Low 

  Panel A: Small Investors (≤ RMB100K)  
Gross Return 0.49 0.25 0.31 0.35 0.46 1.20 0.95*** 

       (0.001) 

Net Return -7.99 -7.61 -7.72 -7.93 -8.11 -8.22 -0.61*** 
       (0.000) 

  Panel B: Middle Investors (RMB100K ~ RMB1M)  
Gross Return 0.67 0.41 0.46 0.49 0.56 1.86 1.45* 

       (0.085) 

Net Return -7.41 -7.16 -7.27 -7.45 -7.63 -7.48 -0.32 
       (0.290) 

  Panel C: Big Investors (RMB1M ~ RMB5M)  
Gross Return 0.79 0.56 0.64 0.73 0.83 1.45 0.886*** 

       (0.000) 
Net Return -0.82 -0.90 -0.88 -0.87 -0.84 -0.45 0.458*** 

       (0.000) 

  Panel D: Super Investors (≥ RMB5M)  
Gross Return 1.65 0.69 0.94 1.12 1.16 6.04 5.355** 

       (0.037) 

Net Return 1.28 0.48 0.70 0.85 0.88 4.99 4.509** 
       (0.049) 

  Panel E: All Investors  
Gross Return  0.35 0.40 0.44 0.54 1.56 1.212** 

       (0.021) 

Net Return  -6.96 -7.21 -7.40 -7.54 -7.31 -0.350* 

       (0.083) 
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We test the robustness of our results across different position sizes and turnovers by 

forming 5 by 5 portfolios based independently on these factors. In the previous test, the 

cutoffs at position size were pre-determined as 100K, 1M, 5M, and above 5M.  We 

present the net returns of double-sorted portfolios in Table 6. The results show that the 

bigger portfolios outperform smaller portfolios across all levels of turnover. Moreover, 

high turnover erodes the net returns of the less rich investors’ portfolio. For more wealthy 

investors, the net returns earned from more trading are not reliably different from the net 

returns earned from less trading. This observation is consistent with our previous findings 

that excessive trading hurts less wealthy individual investors the most. The super 

investors manage to compensate for the increased transaction costs from trading more.  

TABLE 6 NET RETURNS FOR INVESTOR QUINTILES FORMED ON MONTHLY AVERAGE TURNOVER AND PORTFOLIO SIZE 

Investors are independently sorted into turnover quintiles and size quintiles respectively. Portfolio size is a proxy for investors’ wealth 

level. Net returns are gross returns adjusted by trading costs. For all turnover level, net returns increases with wealth increases. For 

lower wealth level, net returns decreases with turnover increase. However such relationship becomes insignificant for higher wealth 
level. 

 
Monthly Turnover Quintile  

 

Portfolio Size 1 2 3 4 5 Difference: 

Quintile (Low) 

   

(High) High-Low 

1 (Small) -7.13 -7.25 -7.62 -7.94 -7.87 -0.735*** 

2 -7.58 -7.63 -7.85 -8.02 -8.07 -0.484*** 

3 -7.65 -7.69 -7.83 -7.92 -7.68 -0.033 

4 -7.44 -7.52 -7.62 -7.73 -7.60 -0.156 

5 (Large) -5.53 -5.83 -5.90 -5.90 -5.51 0.019 

       Difference: 1.601*** 1.416*** 1.720*** 2.042*** 2.355*** 

 
Large-Small (0.000) (0.000) (0.000) (0.000) (0.000) 

 

*** Significant at the 1% level. ** Significant at the 5% level.* Significant at the 10% level. 
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III. Information and Performance 

A. Hypothesis Development 

Barber and Odean (2000) show that overconfidence is the reason why individual 

investors trade excessively. Meanwhile, the increases in transaction costs decrease the net 

returns earned by individual investors. We identify super investors earning a positive 

excess return by trading a lot in section II of our paper. So, what is the source of their 

superior performance? Could it be skill, an informational advantage, or both?  

To answer this question, we perform an event study to capture the trading behaviors and 

returns around certain events in the Chinese stock market.
5
 Because shorting in the 

Chinese stock market is not allowed, we limit our events to good news reaching the 

market: for example, a high stock dividend announcement.  

The listed companies in the Chinese stock market are reluctant to pay cash dividends. 

Instead, they prefer to distribute stock dividends. We define a high stock dividend as 

when a company declares at least a 50% dividend. There are about 59 high stock 

dividend events during our sample period. On average, the stock prices rise about 5.8% 

(t-stat =6.4) in the 15 days after the dividends are paid.  

Paying stock dividends doesn’t change companies’ fundamentals at all. However, stock 

prices always rise after managements make such decisions. So, why does the market react 

positively towards such a policy? Behavioral theory believes that the distribution of stock 

                                                           
5

 Geng and Lu (2012) study stocks selections of super individual investors when they do not have inside information. They find 

super individual investors prefer stocks with low institutional holdings and with recent losses, because these stocks are more 
vulnerable to manipulations.   
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dividends makes stocks appear to be cheaper and creates the illusion of a nominal price. 

A high stock dividend (50% dividend ratio) can reduce the stock price by at least 30%. 

As documented in the case of a stock split by Baker and Wurgler (2004), the nominal-

price illusion could stimulate a positive reaction from investors and cause a price bubble.
6
 

It turns out that stock dividends play the same role as a stock split in fooling naïve 

individual investors.  

As such, we conjecture that the average individual investor is allured by the reduced 

prices and buys stocks after the announcements. Meanwhile, the super investors with 

private information of the forthcoming high dividend announcement can take advantage 

of the less wealthy individual investors’ reaction by purchasing stocks before 

announcements and selling them afterwards. If we use the buy-sell imbalance to indicate 

the trading direction of individual investors, then we can expect that super investors are 

net buyers (sellers) of stocks that pay high dividends before (after) the announcements. 

Meanwhile, less wealthy individual investors are net sellers of stocks that pay high 

dividends before (after) the announcements.   

The assumption that all super investors are informed about all of the high dividend 

announcements ahead of time is unreasonable. A natural guess is that super investors are 

locally informed. In other words, we conjecture that the local super investors buy stocks 

with high dividends before the announcements and sell them afterwards and that non-

local super investors do not react in this way.  

                                                           
6

 A stock dividend and a stock split are different in corporate decision-making, accounting treatment, signal sending to the market 

etc. However, they both could make stocks appear to be cheaper. For instance, both a 1:2 stock split and a 100% stock dividend cut the 
price in half.  
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Based on the above analysis, we make the following hypotheses: 

Hypothesis1: Local super investors are net buyers before high stock dividend 

announcements; they are net sellers after the announcements. 

Hypothesis2: Local super investors gain by trading on the information about forthcoming 

high dividend announcements.  

B. Methods and Variable Definition 

Following Barber and Odean (2008), we use buy-sell imbalances to indicate the trading 

directions of the individual investors. The buy-sell imbalance is calculated as: 
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where n is the number of investors in each group that trades high dividend stock i in day t, 

and the Buy (Sell) is the volume of each transaction. As a robustness check, we also 

repeat the buy-sell imbalance with the value of each transaction in our analysis. To 

capture the impact of the high dividend announcement, we calculate the abnormal buy-

sell imbalance by subtracting the benchmark level of the buy-sell imbalance from the 

actual buy-sell imbalance. The benchmark is estimated as the average buy-sell imbalance 

360 days prior to the dividend-announcement event windows.
7
  

                                                           
7

 We test with a different windows size, i.e. 180 days, the results are similar.  
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To identify the local and non-local individual investors, we obtain the registered cities of 

the listed companies and the branch address of the anonymous broker. If the distance 

between registered city and broker branch is less than 300 kilometers, we label investors 

as local investors. Otherwise, they are non-local investors. For each incidence of events, 

local and non-local investors might vary. 

We also calculate the realized gain/loss and the unrealized gain/loss in the event periods. 

If investors did not sell the stock at the end of event window, we assume they sell it at the 

next day’s closing price and regard this portion of the gain/loss as unrealized.  

C. Empirical Results 

The buy-sell imbalances for each group of individual investors before and after the 

announcements are presented in Table 7. Panels A and B present the buy-sell imbalance 

as the number of shares traded for local and non-local individual investors respectively.  

The results in Table 7 confirm hypothesis 1 on the trading direction of individual 

investors. On average, local super investors buy before the announcements and sell 

afterwards. The buy-sell imbalances of non-local small, middle, and big investors are not 

significantly different from zero. They do not seem to trade much of the high dividend 

stocks or at least they are in disagreement about whether to buy or sell such stocks. The 

difference in trading between small investors and super investors is significantly different 

from zero. We believe this significance is because local super investors are better 

informed than their counterparts about the forthcoming high dividend announcements. 

Super investors take advantage of such information by buying ahead of the news. 
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As for non-local super investors, they are neutral about high dividend stocks. If they are 

not aware of the coming news and do not buy before the announcements, they probably 

are sophisticated enough not to buy after the announcements.   

The non-local small and middle investors are net sellers (buyers) of high dividends stocks 

before (after) the announcements. And it seems they react to such news more strongly 

after it becomes public. For big investors, their trading before the announcements is even, 

but they also buy high dividend stocks after the announcements.  

We repeat the exercise with the value of shares traded for local and non-local individual 

investors and present the results in Panels C and D. The results are similar. 

TABLE 7 BUY/SELL IMBALANCE AROUND THE HIGH STOCK DIVIDEND ANNOUNCEMENT (30 DAYS) 

Local investors are those in the 300 km around cities where listed firms registered. Net Buy is the difference between buy and sell 
divided by the sum of buy and sell. Before and After are periods before and after high stock dividend announcements. Difference 

between small accounts and super accounts are reported as well. P-values are presented in parentheses. 

  
Account Size Difference 

  
Small Middle Big Super Super-Small 

 
Panel A: Local Investors Net Buy Volume 

 

Before 0.016 0.012 0.045 0.357*** -0.341*** 

  
(0.734) (0.804) (0.554) (0.009) (0.005) 

After 0.030 0.091** 0.016 -0.224* 0.254** 

 
 

(0.367) (0.022) (0.826) (0.078) (0.024) 

 
Panel B: Non-local Investors Net Buy Volume 

 

Before -0.044** -0.036** 0.001 -0.003 -0.040 

  
(0.016) (0.035) (0.982) (0.953) (0.501) 

After 0.086*** 0.090*** 0.081*** -0.002 0.087 

  
(0.000) (0.000) (0.006) (0.977) (0.133) 

 
Panel C: Local Investors Net Buy Value 

 

Before 0.011 0.015 0.048 0.359*** -0.348*** 

  
(0.821) (0.752) (0.531) (0.008) (0.004) 

After 0.037 0.090** 0.011 -0.221* 0.257** 

  
(0.287) (0.026) (0.881) (0.084) (0.023) 

 
Panel D: Non-local Investors Net Buy Value 

 

Before -0.045** -0.038** -0.001 -0.013 -0.033 

  
(0.012) (0.032) (0.979) (0.827) (0.584) 

After 0.083*** 0.091*** 0.079*** -0.004 0.087 

  
(0.000) (0.000) (0.008) (0.940) (0.137) 

*** Significant at the 1% level. ** Significant at the 5% level.* Significant at the 10% level. 
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The advantage from trading on inside information is supposed to be profitable. Panels A 

and B in Table 8 present the realized and unrealized returns from the trading of high 

dividend stocks by local individual investors. The realized gains are calculated as the 

difference between selling prices and average costs divided by average costs. The 

unrealized gains are calculated as the difference between closing prices and average costs 

divided by average costs. Our data set provides the average costs of the shares held by 

each investor on a daily basis.  

TABLE 8 REALIZED AND UNREALIZED RETURN AROUND THE HIGH STOCK DIVIDEND ANNOUNCEMENT (30 DAYS) 

Local investors are those in the 300 km around cities where listed firms registered. Realized return is calculated if investors sell their 

holdings. Unrealized return is calculated using the closing price at the end of 30 days if investors still hold their positions. Before and 

After are periods before and after high stock dividend announcements. Difference between small accounts and super accounts are 
reported as well. P-values are presented in parentheses. 

  
Account Size Difference 

  
Small Middle Big Super Super-Small 

 
Panel A: Local Investors Realized Return 

 

Before 0.017*** 0.017*** 0.041*** 0.036** 0.019 

  
(0.000) (0.000) (0.000) (0.033) (0.310) 

After 0.007*** 0.006*** 0.048*** 0.058** 0.030** 

 
 

(0.000) (0.000) (0.000) (0.015) (0.034) 

 
Panel B: Local Investors Unrealized Return 

 

Before -0.015*** -0.021*** -0.002 0.001 0.015 

  
(0.000) (0.000) (0.850) (0.981) (0.411) 

After -0.006** -0.010*** -0.003 0.003 0.008 

  
(0.028) (0.000) (0.748) (0.953) (0.665) 

 
Panel C: Non-local Investors Realized Return 

 

Before 0.014*** 0.006*** 0.007*** 0.004 0.019*** 

  
(0.000) (0.000) (0.000) (0.334) (0.000) 

After 0.003*** 0.011*** 0.018*** 0.013*** 0.010** 

  
(0.004) (0.000) (0.000) (0.005) (0.030) 

 
Panel D: Non-local Investors Unrealized Return 

 

Before -0.023*** -0.018*** -0.004 -0.009 0.014** 

  
(0.000) (0.000) (0.204) (0.335) (0.032) 

After -0.015*** -0.013*** -0.005** -0.011 0.004 

  
(0.000) (0.000) (0.037) (0.232) (0.496) 

*** Significant at the 1% level. ** Significant at the 5% level.* Significant at the 10% level. 

Because of the disposition effect, individual investors tend to sell winning stocks but hold 

on to losing stocks. Not surprisingly, we find that those local individual investors who 

sell high dividend stocks realize positive returns, while super investors earn the highest 

returns of all of the groups of investors. Indeed, their realized returns are 3.6% before the 
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announcements and 5.8% after the announcements. For local small and middle investors, 

the positive realized returns are offset by the negative unrealized returns. Considering 

less wealthy individual investors are net buyers after the announcements, we believe less 

wealthy individual investors buy overpriced stocks and hold them with losses.  

Panels C and D in Table 8 present the realized returns and unrealized returns for the 

trading of high dividend stocks by non-local individual investors. We find that non-local 

super investors do not earn significant returns during the events. It is reasonable that if 

they do not buy high dividend stocks before the announcements, then they were not 

aware of the news. They are also sophisticated enough to avoid overpriced stocks after 

the announcements. This is consistent with our findings from the analysis of the buy-sell 

imbalance that non-local super investors are neither net buyers nor net sellers of high 

dividend stocks. For less wealthy individual investors, their realized and unrealized 

returns offset each other as well. 

D. Robustness Check 

We observe that not all companies that do well in the previous fiscal year distribute stock 

dividends or pay any kind of dividends. Also companies with good operational results do 

not always attract investors’ attention. We assume that super investors trade on their 

private information about forthcoming stock dividends announcements. Thus, we expect 

that they do not prefer companies with good fundamentals but companies that issue stock 

dividends.  
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Under this conjecture, we look for a group of companies that have similar fundamentals, 

compared to those paying high stock dividends, but that do not issue stock dividends at 

all. Following the literature, we consider the Earnings per Share (EPS), total asset (log), 

asset growth, profitability, and the book-to market ratio in selecting the control 

companies. Using the Propensity Score Match (PSM), we are able to find one-to-one 

matches between the high stock dividend companies and control companies. We repeat 

the buy-sell imbalance analysis on the matched companies around the dates of the 

dividend announcements. 

TABLE 9 BUY/SELL IMBALANCE AROUND THE HIGH STOCK DIVIDEND ANNOUNCEMENT (CONTROL FIRM, 30 DAYS) 

Control firms are identified using Propensity Score Match. Local investors are those in the 300 km around cities where listed firms 

registered. Net Buy is the difference between buy and sell divided by the sum of buy and sell. Before and After are periods before and 

after high stock dividend announcements. Difference between small accounts and super accounts are reported as well. P-values are 
presented in parentheses. 

  
Account Size Difference 

  
Small Middle Big Super Super-Small 

 
Panel A: Local Investors Net Buy Volume 

 

Before 0.010 0.045 0.052 0.096 0.086 

  
(0.816) (0.284) (0.485) (0.353) (0.381) 

After 0.072 -0.014 -0.065 -0.067 -0.139 

 
 

(0.115) (0.727) (0.303) (0.464) (0.131) 

 
Panel B: Non-local Investors Net Buy Volume 

 

Before 0.016 -0.007 -0.041 0.025 0.008 

  
(0.349) (0.576) (0.102) (0.718) (0.900) 

After 0.033** 0.016 0.021 -0.044 -0.078 

  
(0.019) (0.261) (0.429) (0.506) (0.235) 

 
Panel C: Local Investors Net Buy Value 

 

Before 0.010 0.042 0.050 0.098 0.087 

  
(0.810) (0.314) (0.504) (0.341) (0.370) 

After 0.069 -0.016 -0.069 -0.064 -0.133 

  
(0.130) (0.693) (0.276) (0.482) (0.148) 

 
Panel D: Non-local Investors Net Buy Value 

 

Before 0.014 -0.008 -0.042* 0.030 0.016 

  
(0.413) (0.553) (0.100) (0.654) (0.814) 

After 0.030** 0.015 0.019 -0.047 -0.077 

  
(0.035) (0.267) (0.488) (0.484) (0.239) 

*** Significant at the 1% level. ** Significant at the 5% level.* Significant at the 10% level. 

Panels A and B in Table 9 present the results of the buy-sell imbalance analysis. In 

general, neither the local nor the non-local individual investors in the medium, big, and 

super groups exhibit significant demands for the stocks of control companies during the 
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event windows. This finding is consistent with our conjecture that local super investors 

trade on their information about forthcoming good news.  

We repeat the exercise with the value of shares traded for local and non-local individual 

investors and present the results in Panels C and D in Table 9. The results are similar. 

 

IV. Conclusion 

We analyze the returns earned on common stock investments by 1.8 million individual 

investors in a leading brokerage firm in the Chinese stock market for three years ending 

in October 2009. We find that overall the individual investors underperform the market 

after considering the trading cost. However, a certain group of super investors earn a 

positive excess return on top of the trading cost. Moreover, the more they trade, the 

higher the net return that they earn. This finding contradicts Barber and Odean’s (2000) 

finding that excessive trading hurts individual investors’ wealth. We confirm their results 

with a subsample of less wealthy individual investors.  

After studying the buy-sell imbalances and the realized/unrealized gains of individual 

investors around dividend announcements, we find that super investors buy high dividend 

stocks before the announcements and sell them when the information becomes public. 

They earn a 10% return from trading these stocks. We believe that an informational 

advantage helps super individual investors to achieve their positive alpha.  
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CHAPTER 2 

IMPLICITLY-COORDINATED MANIPULATION: 

A SCHEME IN THE CHINESE STOCK MARKET
8
 

Listed stocks on the Chinese equity market sometimes experience significant abnormal 

returns and trading volume after publicly announced and remotely related positive news. 

The increase in price is hardly justified by the increase in the fundamental value 

conveyed by the news event. One recent event of this type affected the so-called “Nobel 

Prize Concept” stocks. Nobel Prizes in Physics, Chemistry, and in Physiology or 

Medicine are awarded to prominent scientists for their advanced contributions. 

Technologies recognized by Nobel Prizes are proved valid and useful long before the 

announcements. However, each announcement in the above category leads to sudden and 

extreme increases in the prices and trading volumes of some of the listed companies on 

the Chinese stock market. Table 10 provides an incomplete list of “Nobel Prize Concept” 

stocks that experienced abnormal returns and volumes after the prize announcements of 

2012.
9
  

TABLE 10 AN INCOMPLETE LIST OF NOBEL PRIZE CONCEPT STOCKS IN 2012 

This table provides an incomplete list of “Nobel Prize Concept” stocks that experienced abnormal returns and volumes after the prize 
announcements of 2012. 

Date Prize Contributions in  Affected Stocks 

2012.10.8 Physiology or 

Medicine 

Stem Cell VcanBio (600645)  

16% increase for 2012.10.9-10.10 
2012.10.9 Physics Quantum Systems HansLaser (002008)  

10% increase on 2012.10.10 

2012.10.10 Chemistry G-protein-coupled receptors ChangchunHiTech (000661)  
10% increase on 2012.10.11 

                                                           
8

 This chapter is based on a joint work with Xiaomeng Lu. 
9 The 10% increase is the daily upper price limit for listed stocks on the Shanghai and Shenzhen Stock Exchanges. 
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Each of these firms had business that was remotely related to the contribution of the 

Nobel Prizes. The consensus among professional practitioners is that the announcement 

of Nobel Prizes should have little impact on the valuation of these firms.  

But not all firms related to the Nobel Prize contribution experience a similar increase in 

their price and trading volume. For example, after the announcement of the Nobel Prize 

in Physiology or Medicine, VcanBio that specializes in stem cell research increased 6% 

on the first trading day, followed by a 10% return on the subsequent day. Yet, Shanghai 

Fosun Pharmaceutical, also specializing in stem cell research and also categorized as a 

“Nobel Prize Concept” stock by the financial media, did not experience any abnormal 

return or volume during the same period. Its return was only 1.7% and -0.4% on the two 

days after the announcement respectively, and the trading volume was comparable to the 

volume before the announcement. Therefore, the phenomenon in the case of VcanBio 

differs from the phenomenon that occurs when a stock price reacts to attention-grabbing 

news, as documented in the literature. Another typical case of this phenomenon, the case 

of Zhejiang Dongri, is discussed in the Appendix A. Events of this type occur frequently 

in the Chinese stock market, but are rarely seen in advanced financial markets. One 

potential explanation for this phenomenon is market manipulation. Anecdotal evidence 

suggests that a large number of speculative manipulators exist who are creating the 

events.  

Although the events look like normal pump-and-dump events, evidence suggests that this 

phenomenon differs from manipulations documented in the literature in two ways. First, 

there is no written or oral agreement among the manipulators. After observing a publicly 
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announced news event, some of them express their positive views about certain stocks in 

internet chat rooms or other informal but legal venues. If many of them share the same 

optimistic view and they estimate that sufficient capital exists to pull it off, then they start 

the “attack”. Second, manipulation is not limited to a fixed set of investors. Their 

coordination is random and participation is wide spread. Every incident could have a 

different composition of participants.  

Several key features of the Chinese stock market are essential for such manipulation to be 

profitable. First, individual investors dominate the Chinese stock market, and they tend to 

exhibit behavioral biases in their trading decision. Second, shorting stocks has not been 

allowed until March of 2010 in China. After that, shorting has been limited to certain 

stocks and its cost has become extremely high (close to 10% annually). When overpricing 

occurs in the market, arbitrageurs cannot correct the mispricing by short selling. Another 

force that can correct mispricing is for firms to issue more shares when their shares are 

overvalued. Frazzini and Lamont (2008) provide empirical evidence that firms issue 

shares in response to overpricing because of high investor sentiment in the US stock 

market. However, this mechanism is also impaired in the Chinese equity market. 

Secondary issuance of stock is under strict regulation. Issuance of additional shares 

usually takes months for a listed firm. Therefore, when overpricing occurs for a certain 

firm, the firm cannot take advantage of the mispricing by issuing shares instantly.  

The phenomenon we study is related to several trading patterns of individual investors 

documented in the literature. Odean (1998) finds the disposition effect, that is, investors 

tend to sell winners too soon and hold on to losers for too long. The empirical literature 
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also provides various evidence of individual trading behavior at attention-grabbing events. 

Barber and Odean (2008) conduct a comprehensive study on individual trading behavior 

in the United States.  They find that individual investors purchase a stock when the stock 

experiences an extreme one-day return, abnormal trading volume, or an attention-

grabbing news event. Seasholes and Wu (2007) confirm this trading pattern with Chinese 

market data. They also find that smart traders accumulate shares during upper price-limit 

events by buying from individuals who are willing to sell for a gain. The smart traders 

then sell the following day to another group of individuals who are eager to buy.  

Given these well-documented behavioral biases and limits of arbitrage, the natural 

question to ask is whether smart investors can manipulate the price to benefit themselves. 

Further, what types of stocks are more vulnerable to this type of manipulation? What is 

the implication on the market’s efficiency?  These questions are important both to 

researchers and regulators. While manipulative activities seem to have declined on the 

main exchanges in developed markets, they are still a serious issue in emerging financial 

markets. Regulators are always concerned about “pump-and-dump” schemes, because 

small retail investors are usually the victims of these manipulations.  

Allen and Gale (1992) define trade-based manipulation as the instance that a trader can 

profit from simply buying and selling a stock without taking any action that alters the 

value of a firm. Jiang et al. (2005) finds no abnormal return in the long run after 

manipulation by stock pools. Assuming that all traders are rational, Allen and Gale (1992) 

and Aggarwal and Wu (2006) show that trade-based manipulation can still be profitable 

if the typical traders cannot distinguish manipulators from informed traders. Yet, 
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Aggarwal and Wu (2006) find a negative return after the manipulation cases in SEC 

litigation releases. Our model differs from this strand of literature in that, no one in the 

market needs to have superior information about the firms. If investors are not fully 

rational, the possibility exists for manipulators to take advantage of the other investors’ 

behavioral biases to make money even if no one is expected to have private information 

about the firm. We find a new type of market manipulation that is difficult to eliminate. 

The manipulators we study in this paper do not necessarily release false rumors about the 

firm’s fundamentals, which is potentially illegal and subject to surveillance. Moreover, 

they do not rely on frequent buying and selling between their accounts to drive up the 

price, which is the major type of manipulation under surveillance. Therefore, 

strengthening surveillance on informed trading is also unlikely to eliminate this type of 

manipulation. We find a strong negative price impact on stock returns after this new type 

of manipulation.  In this sense, we provide a case in which smart money creates market 

inefficiencies, instead of eliminating them. Furthermore, we use a unique data set from a 

brokerage firm that provides evidence that is consistent with the trading pattern of the 

manipulator and the profitability of manipulation. Super individual accounts (accounts 

with asset value over five million RMB), which we suspect to be held by the 

manipulators, accumulate stocks to pump up the stock price during on the first day of 

manipulation and dump them on the subsequent trading day. To the contrary, small 

individual investors are the net seller during the pump period and the net buyer during the 

dump period. Moreover, super individual accounts have much higher portfolio turnover 

and returns during the manipulation period. 
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Mei et al. (2004) build an equilibrium model to demonstrate how “smart money” can 

profit from irrational investors who suffer from loss aversion. However, they envision a 

single manipulator behind the manipulation. A crucial difference in our model from theirs 

is that public news events that are remotely related to certain firms serve as a 

coordination device among a large number of manipulators. This unique feature directly 

explains the puzzle of significant increases in a stock price and its trading volume after a 

news event that is not related to any concrete changes in the firm’s fundamentals, which 

is similar in spirit to the currency attack model by Morris and Shin (1998).   

The rest of the paper is organized as follows. In the next section, we present our model of 

implicitly coordinated stock-price manipulation and derive testable hypotheses from the 

model. In section II, we describe the data used in this study. Section III describes the 

empirical methodology and documents the two key predictions of our model: (a) stocks 

with low institutional holdings and previous declines in value are more vulnerable to 

attack from speculative manipulators, and (b) the target stocks of speculative 

manipulators underperform after the event. Section IV focuses on the trading records of 

speculative manipulators and behavioral investors and provides additional evidence of the 

existence of such a strategy. Section V concludes. 

I. The model 

A. Assumptions 

Following the basic setup of DeLong, Shleifer, Summers and Waldmann (DSSW) (1990), 

we consider a model of four periods—0, 1, 2, and 3— and two assets: cash and a single 
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stock. Cash pays no net return. Stock is in   of net supply and pays a certain dividend of 

  at period 3. We assume there is no short sale of the stock, no leverage on the stock, and 

no secondary issuance by the firm.  

The model comprises four types of investors, two of which suffer from different types of 

behavioral biases. Type 1 investors are positive feedback investors that are individual 

investors endowed with cash that suffer from a positive feedback trading bias, present in 

a measure of one. Type 2 investors are loss aversion investors that are individual 

investors who hold the stock initially. They sell the stock if and only if the price is higher 

than its purchase cost. Type 3 investors are fundamental investors whose demand of a 

stock depends only on the price relative to its fundamental value, that is, the expected 

value of the dividend. Type 4 is a large number of speculative manipulators who are each 

endowed with cash in amount   and who maximize their utility as a function of period 3 

consumption. We assume that all investors are risk neutral.  

The structure of the model is described as follows: 

Period 0 

The public expectation of the dividend payoff of the stock is    and the stock price at 

period 0 is  . At period 0, the stock has a total of float shares   of which   fraction is 

held by loss aversion investors, and     fraction is held by fundamental investors. All 

remaining shareholders are loss aversion investors who have suffered losses, and their 

purchase costs have a distribution function  ( ). Loss aversion investors sell the stock if 

and only if the price is higher than its purchase cost. 
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A public news signal is disclosed in period 0. The signal implies that the dividend at 

period 3 is     where   is positive but infinitesimal. The signal generates varying 

degrees of attention:   represents how many speculative manipulators observe the signal, 

and   is common knowledge among the speculators. 

Period 1 

After observing the public signal and  , each manipulator chooses his or her strategy. The 

equilibrium of the model depends on the realization of    

For any     , the fundamental investors’ supply of the stock is  (   ), and the loss 

aversion investors’ supply of the stock is  (  )  . 

If the event does not attract enough attention from the speculative manipulators, that 

is,     (   ) , then the manipulators not moving is an equilibrium. In this case, 

                , and the trading volume for each period is zero.   

If      (   ) , then each speculator spending   to buy the stock is an equilibrium 

for a certain range of parameter values. In this case,    is determined by     

  (   )    (  )    where  (  ) is the fraction of the individually held shares 

whose purchase costs are below   , and the trading volume in terms of the stock value is 

   in period 1. 

Period 2 
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Following DSSW (1990), we assume that the demand of the positive feedback investors 

in period 2 responds to the price change between periods 0 and 1 and is invariant to the 

price at period 2. That is, positive feedback investors place market orders after observing 

prices in previous periods, and before the price realization in the current period. We 

assume the total demand from all of the positive feedback investors in period 2 is  (   

  ) where   is the positive feedback coefficient. The trading volume in terms of the stock 

value at period 2 is  (     )  . 

Period 3 

In period 3, the realization of the dividend is    . There is no trading of stock, and 

investors who hold the stock at period 3 are paid the publicly known dividend    . 

Since the dividend is known for certain in period 3, the price of the stock is pinned to the 

fundamental value of    . 

FIGURE 2.A SUPPLY AND DEMAND OF SHARES FOR EACH INVESTOR TYPE 

This figure shows the supply and demand of shares by each investor type at equilibrium when     (   ) . The upper figure 

represents the supply and demand in period 1, and the lower figure depicts the supply and demand in period 2. 
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FIGURE 2.A (CONTINUED) SUPPLY AND DEMAND OF SHARES FOR EACH INVESTOR TYPE  

This figure shows the supply and demand of shares by each investor type at equilibrium when     (   ) . The upper figure 
represents the supply and demand in period 1, and the lower figure depicts the supply and demand in period 2. 

 

B. Solution of the Model 

We focus on the equilibrium when     (   )  and derive the condition for the 

existence of this equilibrium. As long as the demand for positive feedback trading is 

sufficiently high,    is greater than   , the demand ensures that all of the speculators sell 

out at period 2 with profit. At the same time, loss aversion investors whose purchase 

costs lie between    and    also sell out at time 2.        is determined by the following 

condition:  

  (  )   (  )        (     )   

The manipulators spending   to purchase the stock is an equilibrium in this case if    

  , that is,  (    )   
  

   
. The profit for each manipulator is  (

  

  
  ). Figure 2.A and 

Table 11 summarize the determination of the stock price in each period for this case.  
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TABLE 11 DEMAND FOR STOCK BY EACH GROUP OF INVESTORS AT EACH PERIOD.  

This table summarize the determination of the stock price in each period for the high-attention case, where when    
 (   ) . 

Period Event Price 

Total demand of  

Positive feedback 

investors 
Loss aversion investors 

Fundamental 

investors  

Speculative 

manipulators 

  
Public announcement 

of signal 
  

∗          (   )   

  Manipulators trade   
∗     (   (  

∗))   
  

  

 

  
Positive feedback 

investor trade  
  

∗  (     )   (   (  
∗))     

  Dividend payoff 
   

∗    
  

 (     )    (   (  
∗))        

The period between 0 and 1 is the pumping stage of the manipulation. The period 

between 1 and 2 is the dumping stage of the manipulation. The speculative manipulators 

unload all of their positions between these two dates. Finally, between 2 and 3, the stock 

price gradually reverts to the fundamental value. Figure 2.B shows the price dynamics for 

the two cases. The upper path represents the price dynamics for the high-attention events 

(    (   ) ), and the lower path depicts the price dynamics for the low-attention 

events (    (   ) ). 

 

FIGURE 2.B PRICE DYNAMICS 

This figure shows the price dynamics for the two cases. The upper path represents the price dynamics for the high-attention events 

(    (   ) ), and the lower path depicts the price dynamics for the low-attention events (    (   ) ). 
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Our model generates the following testable predications.  

Prediction #1: Stocks with less mutual fund holdings are more likely to be manipulated.  

Manipulation is an equilibrium outcome only if their total capital exceeds the value of 

shares held by fundamental investors (    (   ) ). Mutual funds are usually 

fundamental investors, and they tend to sell their positions if the price is above the 

fundamental value. In that case, the manipulators have difficulty driving up the price 

significantly enough to attract the positive feedback investors. As a result, the stocks with 

a low mutual-fund holding value are more likely to be manipulated. 
10

 

Prediction #2: Stocks that experienced a recent decline in value are more likely to be 

manipulated.  

Loss aversion investors are reluctant to sell a losing stock. As such, they are less likely to 

sell as long as the speculative manipulators have not bid the price above their average 

purchase cost. If the purchase cost for loss aversion investors is high, the speculative 

manipulators can more easily pump up the price without exploiting their own capital. We 

expect stocks with a recent decline in value to have loss aversion investors with higher 

costs. The proof of prediction #2 is in Appendix B.  

After the initial run-up of the price, we expect to observe the reversal of the stock return 

for the manipulated stock. Meanwhile, the price increase in a stock with a positive 

fundamental surprise is sustainable in the long run. Because we cannot possibly detect the 

                                                           
10 We use institutional holdings and mutual fund holdings interchangeably in this paper. 
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effect of trigger events on a one-by-one basis, we develop two cross-sectional predictions 

for the stock performance after the initial increase in price.  

Prediction #3: After experiencing an extreme increase in price and trading volume, a 

stock with high mutual fund holdings outperforms one with low mutual fund holdings.  

Prediction #4: After experiencing an extreme increase in price and trading volume, a 

stock with a recent increase in value outperforms one with a recent decline in value. 

Predictions #3 and #4 are derived from Predictions #1 and #2. A stock with a low mutual 

fund holding and a recent decline in value is more vulnerable to the manipulation. As 

such, the sudden increase in price and turnover is more likely to be the result of implicitly 

coordinated manipulation, as opposed to a positive fundamental surprise. We expect a 

manipulated stock to underperform after the manipulation phase.  

The demand from each type of investors in our model also generates predictions about 

the speculative manipulators’ trading patterns and returns when they pull off the 

implicitly coordinated manipulation schemes.   

Prediction #5: Speculative manipulators tend to be the net buyers during the pump stage 

of the event and tend to be the net sellers during the dump stage of the event, while 

behavioral investors tend to trade in the reverse direction on an aggregate level. 

Speculative manipulators are net buyers for the first day of manipulation when bidding 

the price up. However, they can be net sellers on the next day if they draw enough 
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attention from the positive feedback investors. As such, they have an extremely short 

holding horizon.  

Prediction #6: Speculative manipulators gain superior returns even though they trade 

excessively.  

The model predicts that implicitly coordinated manipulation is an equilibrium only if the 

manipulation is profitable.  We predict that speculative manipulators gain superior returns 

on their account. 

II. Data Description 

In this paper, we use two different databases in the empirical analysis. Stock-price data 

and mutual-fund holding data are obtained from the China Security Market and 

Accounting Research (CSMAR). Stock-price data include the date, stock ticker, opening 

price, closing price, highest and lowest price, trading volume in shares, trading value in 

RMB, number of tradable shares outstanding (floating shares), and the total number of 

shares outstanding for all of the stocks traded on a daily basis on the Shanghai Stock and 

Shenzhen Stock Exchanges from January 1, 2007, to March 31, 2013. These two 

exchanges in Mainland China both have a ± 10% daily price limit (circuit breaker) for 

most stocks. The base price is the previous day's closing price. If the price limit is 

reached during trading, the trading can continue afterwards but never at a price exceeding 
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the limit.
11

 In this paper, we consider all Chinese A-share stocks traded in the two 

exchanges.  

TABLE 12 SUMMARY STATISTICS ON FUND HOLDING OF A-SHARE STOCKS AND EVENT OCCURRENCE 

Panel A shows the number of stocks for which these data are available at the end of each year from 2007 to 2012. We use the total fund 

holdings for each stock as a measure of the amount held by fundamental investors. Panel B shows the number of stocks hitting circuit 
breaker and experiencing abnormally high levels of trading volume. 

Panel A: Summary on fund holding for each stock at the end of each year
12

 

Year 

Number of A-share 

stocks traded in the two 

exchanges 

Number of stocks with 
positive fund holding  

Average fund holding of 
each stock (%) 

Average number of 

holding funds of each 

stock 

2007 1517 956 8.89 24.43 

2008 1577 940 8.57 23.43 

2009 1680 1278 6.2 22.17 

2010 2020 1662 7.04 26.77 

2011 2301 2060 5.56 27.54 

2012 2456 2124 5.03 35.51 

Panel B: Summary on occurrence of events 

Year 
Number of stocks traded 

in the two exchanges 
Number of stocks with 

events 
Number of trading days 

with events 
Total number of events 

2007 1517 861 194 932 

2008 1577 1159 211 1350 

2009 1680 700 209 758 

2010 2020 888 213 946 

2011 2301 716 214 733 

2012 2456 1151 233 1243 

2007-2012 2491 2033 1274 5962 

The mutual-fund holding (fund holding) data contains the number of shares held by each 

individual mutual fund on a semi-annual basis. Panel A in Table 12 shows the number of 

stocks for which these data are available at the end of each year from 2007 to 2012. We 

use the total fund holdings for each stock as a measure of the amount held by 

fundamental investors. 

                                                           

11 For stocks labeled as “special treatment stocks” or “ST”, the daily price limit is ± 5%. The “ST” stocks are those stocks with 

negative accounting profits for two consecutive years or with the net asset value per share lower than the par value.  

12 The data for 2012 is on June 30th, 2012 
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Our trading data and daily portfolio holding data come from a national brokerage firm in 

China. The trading data contains the trading records of 1.8 million investors from January 

2007 to October 2009. Our data set contains investors who trade common stocks, funds, 

treasury notes, and warrants. We focus on their trading records for common stocks, which 

is about 80% of all trading records. Detail description of this data set is at Section I of 

Chapter I.  

Furthermore, to measure the abnormal returns around the events we identify, we use the 

abnormal return data provided by one of the largest fund management companies in 

China. The abnormal return is the daily return adjusted by a Barra-style risk model with 

style factors such as the market size, value, momentum, volatility, and liquidity and 29 

industry factors for the China equity market.  

III. Empirical Analysis on the Occurrence of Events and Stock Returns 

To carry out the tests of our hypotheses, identifying the events that are likely to be 

subject to manipulation is essential. We propose to identify the events for manipulation 

based on the predictions from our model. After identifying the events, we look at the 

abnormal returns after the events for different types of stocks. We further study the 

trading patterns of the speculative manipulators and behavioral investors by using 

investors’ trading records from a national brokerage firm in China. 
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A. Event Identification: hitting circuit breaker and experiencing abnormally high levels 

of trading volume 

The financial press in China highlights stocks that reach their daily price limit after the 

market closes. To attract positive feedback trading, manipulators need to pump up the 

prices. Therefore, we look for extreme returns in the data. Moreover, according to theory, 

manipulated stocks also have abnormal trading volumes. To identify events that are likely 

to be manipulated, we look for stocks that hit their upper price limit of the 10% return 

and simultaneously have daily turnover that is more than twice that of their average daily 

turnover in the previous 120 trading days.  

Since stocks sometimes hit the price limit several times within a short period of time, we 

identify each event as the first time in the last six months that a stock has reached the 

daily upper price limit. That is, if a stock has a 10% return and an abnormally high 

volume on both January 3 and January 5, we count it as one event on January 3, and we 

define this day with a 10% return as event day 0. 

To allow for analysis on the abnormal return after each event, we consider all such events 

between January 1, 2007, and December 31, 2012. This period gives us a total of 5,962 

events with 2,033 unique stocks and 1,294 unique event dates. The description of the 

occurrence of the events in each year is summarized in panel B of Table 12. 

After we identify these events, we further sort all of the events into different groups by 

the two criteria discussed in section I of this Chapter.  
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Criteria 1: Total fund-holding value 

According to Prediction #1, stocks with a low fund-holding value are more likely to be a 

victim of manipulation than stocks with a high fund-holding value. Fund-holding data are 

only available on a semi-annual frequency of June 30 or December 31 of each year. We 

calculate the fund-holding value as the multiplication of the percentage of shares held by 

all mutual funds and the market capital value at the end of the last half-year.
13

 At the end 

of each half-year, we sort all of the stocks in the SHSE and the SZSE into quartiles based 

on the fund-holding value and match the fund-holding value of each stock to the events 

that occur in the subsequent six months. Since, for most years in our sample, the stocks 

with no fund holdings constitute more than 25% of the whole sample, we assign all of 

these stocks to quartile 1 and sort the remaining sample into three groups based on the 

fund-holding values.  

Criteria 2: Previous gains 

According to Prediction #2, the stocks with a previous decline in value are more likely to 

become victims of manipulation. 

On the last trading day of each stock in each half-year, we calculate the volume-weighted 

price for the prior six months. Following Berkowitz, Logue, and Noser (1998), we 

calculate the average cost (volume-weighted average price) as: 

                                                           
13

 For all of the stocks for which their mutual fund holdings are not reported, we assign zero to the total fund holding value. 
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where     and     are the price and share volume at   days before the last trading day in 

each half year of stock  , and T is the total number of trading days of stock   during that 

half year. The price and volume used to calculate the average cost are adjusted by stock 

splits and dividend payouts. We use this measure of the average cost instead of an 

average cost calculated from an individual trading account for two reasons. First, the 

trading data in the record from the brokerage house only contain a fraction of all of the 

individual accounts and is only available for a shorter period of time (2007-2009). 

Second, and more importantly, the speculative manipulators need to rely on publicly 

observable measures to estimate the difficulty of the manipulation of a certain stock and 

coordinate among themselves. The volume-weighted average price is easily obtained by 

speculative manipulators, yet individual trading account information is not publicly 

available to the manipulators. 

Using the closing price on the last trading day of each half-year, we calculate the gains of 

each stock in this half-year as 

       
                 

    
 

where     is the closing price on the last trading day in each half year. On each June 30 

and December 31 between 2006 and 2012, we sort all of the stocks in the SHSE and the 
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SZSE into quartiles based on the gains during the past six months and match these 

quartiles of each stock to the events in the subsequent six months.  

TABLE 13 SUMMARY STATISTICS STOCKS HITTING CIRCUIT BREAKERS AND EXPERIENCING ABNORMAL HIGH TURNOVER ON EVENT 

DAY 

This table presents summary statistics of stocks in events between 2007 and 2012. Fund-holding value is the multiplication between 

percent of shares held by mutual funds and the market value of the stock at the end of the last half year. Gains is calculated with the 

closing price on the last trading day of the last half year and the volume-weighted average price in the six months in the last half year 
(excluding the last trading day).  Total cap is the market value of equity at the end of last half year. Float is value of floating shares at 

the end of last half year. Average turnover is the average ratio between trading volume and tradable shares in the last 120 trading days 
before the event. Event turnover is the ratio between trading volume and tradable shares on event day 0. Abnormal turnover is the ratio 

of event turnover to average turnover. Mean and median are reported for each group. 

Quartile Stats 
Closing 

price 

Percent 

shares 

held by 
funds 

(%) 

Fund 

holding 

value 

(Billion) 

Gains 

(%) 

Total 

Cap 
(Billion) 

Float 

(Billion) 

Average 

turnover 
(%) 

Event 

turnover 
(%) 

Abnormal 

Turnover 

Sorted by Total Mutual Fund Holding Value 

Quartile 1 Mean 9.76 0.01 0 -10.47 2.58 1.56 3.03 10.74 3.89 

 (Low) Median 8.75 0 0 -9.52 2.07 1.26 2.67 9.38 3.29 

  N 1700 1700 1700 1685 1700 1700 1700 1700 1700 

Quartile 2 Mean 10.84 0.5 0.01 -12.88 3.25 2.08 2.74 9.93 4.04 

 

Median 8.89 0.31 0.01 -11.28 2.65 1.57 2.39 8.66 3.41 

  N 1280 1280 1280 1278 1280 1280 1280 1280 1280 

Quartile 3 Mean 13.26 3.3 0.11 -10.38 5.36 3.07 2.7 9.47 3.98 

 

Median 10.78 2.39 0.09 -10.53 3.82 2.27 2.38 8.18 3.31 

  N 1493 1493 1493 1490 1493 1493 1493 1493 1493 

Quartile 4 Mean 19.93 13.26 1.88 -3.32 23.67 10.52 2.03 6.87 3.78 

 (High) Median 15.76 10.84 0.82 -5.22 8.7 5.49 1.75 5.78 3.14 

  N 1489 1489 1489 1487 1489 1489 1489 1489 1489 

Sorted by Previous Paper Gains 

Quartile 1  Mean 11.31 2.82 0.27 -21.6 6.59 3.79 2.55 9.22 3.99 

(Low) Median 9.23 0.65 0.02 -19.2 3.04 1.94 2.16 7.91 3.4 

  N 1879 1879 1879 1879 1879 1879 1879 1879 1879 

Quartile 2 Mean 11.39 3.05 0.32 -12.3 8.13 4.01 2.58 9.35 4.03 

 

Median 9.37 0.39 0.01 -10.2 3 1.98 2.21 8.07 3.45 

  N 1590 1590 1590 1590 1590 1590 1590 1590 1590 

Quartile 3 Mean 13.46 4.04 0.53 -5.51 10.14 4.48 2.69 9.25 3.86 

 

Median 10.69 0.89 0.03 -3.52 3.35 2.09 2.36 7.99 3.25 

  N 1396 1396 1396 1396 1396 1396 1396 1396 1396 

Quartile 4  Mean 19.97 8.84 1.12 12.3 11.21 5.38 2.78 9.15 3.65 

(High) Median 15.08 4.48 0.18 12.0 4.41 2.65 2.38 7.53 2.98 

  N 1075 1075 1075 1075 1075 1075 1075 1075 1075 
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Table 13 exhibits the descriptive statistics for the events in each quartile sorted by the 

fund-holding value and the previous gains. As expected, the stocks with a high fund-

holding value have greater total capital and floating capital than stocks with a low fund-

holding value. The stocks in quartile 4 with fund-holding values also tend to have lower 

average turnover and higher gains before the events. The four groups divided by the 

fund-holding value are similar in other dimensions. Different cutoff points for the fund-

holding value generate similar results in the subsequent analysis, so we do not report 

these results for abbreviation.  

The average turnover is uniformly decreasing in the gains quartiles and the higher fund-

holding values (also total fund-holding percentage) are uniformly increasing in the gains 

quartiles. The stocks in the higher gains quartile are also slighter higher in total capital 

and floating capital. Stocks in the four quartiles sorted by the previous gains are similar in 

other dimensions. 

B. Occurrence of Events 

To confirm Predictions #1 and #2, we perform a logistic regression on the occurrence of 

events. We count each half-year of each stock in the SHSE and the SZSE as one 

observation. If an event occurs during a half year for a certain stock, we set the 

occurrence to one. Otherwise, the occurrence equals zero. Table 14 exhibits the logistic 

regression with the occurrence of events as the dependent variable and the total fund-

holding value and previous gains quartiles as explanatory variables.  
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The results from all three model specifications are consistent with Predictions #1 and #2. 

In the baseline specification in the first column, only the holding value and gains 

quartiles are included. We use the quartile numbers for gains in the previous half-year as 

an explanatory variable to avoid the direct comparison in gains between different years. 

Since the Chinese stock market experienced overall extreme positive and negative returns 

over the sample years, the actual level of gains primarily captures the gain or loss in stock 

values over the years, instead of a cross-sectional comparison between stocks. Since we 

are trying to measure the reluctance of the loss aversion investors to sell a stock, we use 

the quartile number to compare this reluctance across different stocks. 

TABLE 14 LOGISTIC REGRESSION ON THE OCCURRENCE OF EVENTS  

This table presents the logistic regression of occurrence of events on fund-holding value and gains quartile. An event is defined as 

stocks hitting circuit breaker for one day and experience abnormal high turnover simultaneously. Each half year of trading between 

2007 and 2012 of each stock traded in SHSE and SZSE is counted as one observation. Occurrence equals one if an event occurred in 
this half year for a certain stock. Average turnover is the average daily turnover in the previous half year. Amihud illiquidity measure 

is defined as        (   (
            

                     
)) ∗     in the previous half year. White-robust t-stats are presented in parentheses.  

  Base Model   

Control for 

Semi-Year 

Fixed Effect   

Control for 

Liquidity   

Total Fund-holding Value -0.068 *** -0.053 *** -0.074 *** 

 

(-3.785) 

 

(-3.388) 

 

(-3.914) 

 Gains Quartile -0.23 *** -0.25 *** -0.242 *** 

 
(-16.286) 

 
(-17.037) 

 
(-16.338) 

 
Average Turnover 

    
-0.052 *** 

     

(-8.996) 

 
Amihud Illiquidity Measure 

    

-0.020 

 

     
(-1.101) 

 
Semi-year Fixed Effect No 

 
Yes 

 
Yes 

 
Intercept -0.592 *** 0.49 *** 0.648 *** 

 

(-24.108) 

 

(8.290) 

 

(10.607) 

 
Pseudo R-squared 0.0137 

 
0.0677 

 
0.0718 

 
Number of Observations   21257   21257                21257  

 

*** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level. 
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Events are less likely to occur for stocks with high fund-holding values. Also, events are 

more likely to occur for stocks with low previous gains than for stocks that experience 

high previous gains. As shown in the second column, this effect is still significant after 

controlling for the half-year fixed effect.  

One alternative explanation is that stocks with low liquidity tend to coincide with a low 

fund holding, and extreme return events tend to happen to low liquidity stocks. In the 

third regression, we show that the effect from the fund-holding value and the previous 

gains still exist after controlling for the average turnover and for the Amihud illiquidity 

measure of each stock in the previous half year (Amihud 2002). The t-statistics reported 

in Table 14 are adjusted by using White‘s robust standard errors. 

C. Abnormal Return after Event 

To study the return of manipulated stocks after events, we adopt the standard event study 

method in MacKinlay (1997). The cumulative abnormal return (CAR) of stock   on event 

day   is defined as: 

   (     )   ∑      
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where       is the daily return adjusted by a Barra-style risk model with style factors such 

as market size, value, momentum, volatility, and liquidity and 29 industry factors for the 

China equity market.
14

 

Since the manipulation event can last for multiple days, we define the first day after the 

event when the daily turnover is below the turnover on event day 0 as event day 1. Figure 

3 displays the CAR for events from event day +1 to event day +60 for events in each 

quartile sorted by the fund-holding value and the gains, respectively. The result confirms 

Predictions #3 and #4.  

  

                                                           
14 Abnormal return data is provided by one of the largest fund management companies in China. 
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FIGURE 3 CUMULATIVE ABNORMAL RETURNS AFTER TURNOVER DROPS  

In the upper part, stocks are sorted by fund holding value. In the lower part, stocks are sorted by previous gains, Cumulative abnormal 
returns are calculated from the first trading day that daily turnover is below the event day turnover.  
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As shown in the upper panel of Figure 3, the stocks with a low fund-holding value 

gradually decline in value within 60 trading days, yet stocks with a high fund holding 

value remain at a value similar to the value on event day 0. Similarly, stocks that 

experienced low recent gains underperform stocks with high recent gains substantially, as 

shown in the lower panel of Figure 3. 
15

 The significant reversal in price is consistent 

with the hypotheses that the initial run-up of price is partially due to manipulation. 

Table 15 summarizes the CAR after the event (from event day +1 to event day +60). 

After the event, the stocks with a high fund-holding value have a cumulative return of -

0.279% that is not significantly different from zero. Yet, the low fund-holding value 

stocks have an average CAR of -3.00% between event day +1 and event day +30. The 

difference in CAR between the two groups is -2.73% and significant at the 1% level for 

the same horizon. Moreover, the difference between the low fund-holding quartile and 

the high fund-holding quartile is significant for the CAR after 5 to 60 trading days. 

Similarly, stocks with a previous gain in value have a cumulative return of 0.699% that is 

not significantly different from zero. Yet, the stocks with a previous loss in value have an 

average CAR of -2.964% between event day +1 and event day +30. The difference in 

CAR between the two groups is -1.99% and significant at the 1% level for the same 

horizon. Moreover, the difference between the low gains quartile and the high gains 

quartile is significant for the CAR after 5 to 60 trading days. 

 

                                                           
15 Defining the event day in the conventional way (event day is set to one for the first trading day after the event, etc.) generates 

qualitatively the same result. Except for that the CAR is on average positive in the first trading day, consistent with the effect from 
positive feedback trading.  
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TABLE 15 CUMULATIVE ABNORMAL RETURNS AFTER EVENT DAY 

This table presents the mean cumulative abnormal returns of stocks after events for various horizons. Abnormal returns are calculated 

by fitting a Barra style factor model. We collect stocks hitting circuit breaker and experience abnormal high turnover between 2007 
and 2012. Stocks are sorted into quartiles based on fund-holding value, previous gains, asset float value, and percentage shares held by 

mutual funds. CAR of stocks in bottom quartiles and top quartiles, and difference between the two are reported in this table. P-values 

are presented in parentheses.  

    5 Days   10 Days   20 Days   30 Days   60 Days   

By Fund  Low Fund-holding Value 

Holding Value Mean -1.116 *** -2.299 *** -2.769 *** -3.002 *** -2.021 *** 

 P-value (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  

 High Fund-holding Value 

 Mean -0.04  -0.125  0.191  -0.279  -0.029  

 P-value (0.713)  (0.526)  (0.496)  (0.422)  (0.952)  

 Difference in Mean 

 Difference -1.077 *** -2.174 *** -2.96 *** -2.723 *** -1.993 *** 

  P-value (0.000)   (0.000)   (0.000)   (0.000)   (0.002)   

 

Low Previous Gains 

By Previous  Mean -0.921 *** -1.514 *** -2.128 *** -2.694 *** -2.689 *** 

Gains P-value (0.000)   (0.000)   (0.000)   (0.000)   (0.000)   

 

High Previous Gains 

 

Mea -0.412 *** -0.637 ** -0.632 * -0.699 

 

0.285 

 

 
P-value (0.006)   (0.017)   (0.091)   (0.133)   (0.644)   

 
Difference in Mean 

 

Difference -0.509 *** -0.876 *** -1.496 *** -1.994 *** -2.974 *** 

  P-value (0.006)   (0.006)   (0.001)   (0.000)   (0.000)   

 
Low Asset Float 

By Asset Float Mean -1.264 *** -2.268 *** -2.683 *** -3.241 *** -2.185 *** 

 

P-value (0.000)   (0.000)   (0.000)   (0.000)   (0.000)   

 

High Asset Float 

 
Mean -0.075 

 
-0.254 

 
-0.249 

 
-0.418 

 
0.476 

 

 
P-value (0.513) 

 
(0.223) 

 
(0.393) 

 
(0.252) 

 
(0.343) 

 

 

Difference in Mean 

 

Difference -1.19 *** -2.014 *** -2.434 *** -2.822 *** -2.661 *** 

  P-value (0.000) 
 

(0.000) 
 

(0.000) 
 

(0.000) 
 

(0.000) 
  Low Percentage Share Holding by Funds 

By Percentage  Mean -1.246 *** -2.408 *** -2.725 *** -2.984 *** -1.719 *** 

Fund-holding P-value (0.000)   (0.000)   (0.000)   (0.000)   (0.001)   

 High Percentage Share Holding by Funds 

 Mean -0.059  -0.111  0.094  -0.548  -0.226  

 P-value (0.620)   (0.609)   (0.764)   (0.151)   (0.663)   

 Difference in Mean 

 Difference -1.187 *** -2.297 *** -2.819 *** -2.435 *** -1.493 ** 

  P-value (0.000)   (0.000)   (0.000)   (0.000)   (0.042)   

*** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level. 

As a robustness check for Predictions #3 and #4, Table 15 also compares the CAR for the 

high or low total floating capital value of each stock and for the high or low fund-holding 
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quartiles sorted by the percentage of shares held by the mutual funds. Consistent with the 

prediction from the model, the small stocks and low fund-holding percentage stocks both 

decline in value, whereas the large stocks and the high fund-holding percentage stocks do 

not decline in value after the same extreme return and volume.  

Table 16 shows the cross-sectional regression result for the CAR on the total fund-

holding values and the previous gains quartiles. All of the regression coefficients on the 

two variables are significant with the expected sign for all horizons. To further account 

for the change in the stock market condition through time, we add event half-year 

dummies to the regressions. The coefficients for the total fund-holding value and gains 

quartile are still significantly positive for all horizons.  

In Panel C, the average turnover before the event and the Amihud illiquidity measure are 

added as controls for stock liquidity; and the abnormal turnover, defined as the event day 

turnover divided by the average turnover in the 120 trading days prior to the event day, is 

added as an explanatory variable. The CAR after the event is negatively related to the 

abnormal turnover on the event day. This is consistent with our model. Events with high 

abnormal turnover are more likely to be an event subject to manipulation by speculators.   
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TABLE 16 CROSS-SECTIONAL REGRESSIONS FOR LONG-RUN CAR OF STOCKS IN SAMPLE 

This table represents the cross-sectional regression result of CAR on fund-holding value and gains quartile. Panel A is the baseline 

model with only fund-holding value and gains quartile as explanatory variables. Panel B controls for fixed effect of each half year. 

Panel C controls for stock liquidity and include abnormal turnover on the event day as an additional explanatory variable. Abnormal 
Turnover is defined as turnover on the event day divided by average turnover in the previous 120 trading days. White-robust t-stats are 

presented in parentheses. *** Significant at the 1 percent level, ** Significant at the 5 percent level. 

Panel A: Baseline Model 

Independent Variables 5 Days 
 

10 Days 
 

20 Days 
 

30 Days 
 

60 Days 
 Total Fund-holding Value 0.151 *** 0.267 *** 0.387 *** 0.441 *** 0.609 *** 

 

(4.988) 

 

(5.043) 

 

(5.707) 

 

(6.063) 

 

(4.547) 

 Gains Quartile 0.123 ** 0.221 ** 0.445 *** 0.59 *** 0.826 *** 

 
(2.151) 

 
(2.275) 

 
(3.210) 

 
(3.539) 

 
(3.718) 

 Intercept -0.981 *** -1.75 *** -2.312 *** -2.822 *** -2.605 *** 

 

(-10.440) 

 

(-11.272) 

 

(-10.665) 

 

(-11.124) 

 

(-7.451) 

 Semi-year Fixed Effect No 

 

No 

 

No 

 

No 

 

No 

 Adj. R-Square 0.005 
 

0.005 
 

0.007 
 

0.007 
 

0.007 
 Number of Observations 5939   5938   5937   5937   5921   

Panel B: Control for Semi-year Fixed Effect 

Total Fund-holding Value 0.15 *** 0.277 *** 0.392 *** 0.428 *** 0.56 *** 

 
(4.979) 

 
(5.203) 

 
(5.780) 

 
(5.946) 

 
(4.208) 

 Gains Quartile 0.13 ** 0.228 ** 0.438 *** 0.58 *** 0.833 *** 

 

(2.272) 

 

(2.331) 

 

(3.141) 

 

(3.462) 

 

(3.729) 

 Intercept -0.99 *** -1.764 *** -2.305 *** -2.803 *** -2.589 *** 

 
(-10.422) 

 
(-11.203) 

 
(-10.480) 

 
(-10.912) 

 
(-7.344) 

 Semi-year Fixed Effect Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 Adj. R-Square 0.011 

 

0.01 

 

0.011 

 

0.01 

 

0.015 

 Number of Observations 5939   5938   5937   5937   5921   

Panel C: Control for Liquidity 

Total Fund-holding Value 0.134 *** 0.248 *** 0.355 *** 0.395 *** 0.535 *** 

 

(4.663) 

 

(4.918) 

 

(5.313) 

 

(5.560) 

 

(3.997) 

 Gains Quartile 0.132 ** 0.221 ** 0.421 *** 0.553 *** 0.805 *** 

 
(2.307) 

 
(2.252) 

 
(2.998) 

 
(3.272) 

 
(3.586) 

 Abnormal Turnover -0.095 ** -0.282 *** -0.469 *** -0.518 *** -0.476 *** 

 

(-2.546) 

 

(-4.978) 

 

(-5.693) 

 

(-5.611) 

 

(-4.191) 

 Average Turnover before Event -0.101 ** -0.175 ** -0.2 * -0.165 

 

-0.083 

 

 
(-2.260) 

 
(-2.328) 

 
(-1.757) 

 
(-1.100) 

 
(-0.468) 

 Amihud Illiquidity Measure 0.025 
 

0.1107 
 

-0.0317 
 

0.154 
 

-0.044 
 

 

(0.310) 

 

(0.701) 

 

(-0.206) 

 

(0.601) 

 

(-0.185) 

 Intercept -0.348 

 

-0.195 

 

0.101 

 

-0.314 

 

-0.457 

 

 
(-1.582) 

 
(-0.552) 

 
(0.189) 

 
(-0.495) 

 
(-0.601) 

 Semi-year Fixed Effect Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 Adj. R-Square 0.013 

 

0.015 

 

0.016 

 

0.015 

 

0.017 

 Number of Observations 5939   5938   5937   5937   5921   
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IV. Empirical Analysis on Trading Records 

A. Trading Direction and Portfolio Return 

We now focus on the trading behavior of speculative manipulators and behavioral 

investors during events. The anecdotal evidence suggests that wealthy individuals are the 

driving force for this type of manipulation. Unlike mutual funds, they are subject to little 

regulation on their investment. We treat individual accounts with more than 5 million 

RMB in equity as speculative manipulators. To the contrary, the previous literature shows 

that small individual investors tend to exhibit behavioral bias, such as loss aversion and 

positive feedback trading, when making their investment decisions. We suspect less 

wealthy individual investors are the victims to the implicitly coordinated manipulation. 

Therefore, we treat investors with less than 100,000 RMB in equity as behavioral 

investors. Following Barber and Odean (2008), the buy-sell imbalance of each type of 

investors for stock   on day   is calculated as: 

     
             

 
∑        ∑       

∑        ∑       
 

where    is the number of shares of stock   purchased by investor   at time t, and    is 

the number of shares of stock   sold by investor   at time t.  The buy-sell imbalance is 

calculated separately for speculative investors and behavioral investors, for each event 

day 0, and for each event day +1 respectively.   
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TABLE 17 INVESTORS’ TRADING DIRECTION ON EVENT DAY 0 AND EVENT DAY +1  

This table captures investors’ pattern of manipulated stocks during and after manipulation. Speculative manipulators are defined as 

investors who hold portfolio over 5 million RMB in value. Behavioral investors are those who hold portfolios less than 100,000 in 
value. We use buy-sell imbalance to proxy for investors’ trading direction of stocks. P-values are reported in parenthesis under the 

mean value. 

 Low Institution Holding, 
Losing Stocks 

High Institution Holding, 
Winning Stocks 

Diff 

Panel A: During Manipulation (EventDay=0) 

Speculative Manipulators 

Mean 0.265*** 

(0.000) 

0.167*** 

(0.000) 

0.098 

(0.170) 

Median 0.719 0.332  

Behavioral Investors 
Mean -0.173*** 

(0.000) 

-0.151*** 

(0.000) 

-0.021 

(0.487) 

Median -0.173 -0.196  

Diff 
0.438*** 

(0.000) 

0.318*** 

(0.000) 
 

Panel B: After Manipulation(EventDay=1) 

Speculative Manipulators 

Mean -0.226*** 

(0.000) 

-0.094** 

(0.028) 

-0.132* 

(0.054) 

Median -0.585 -0.113  

Behavioral Investors 

Mean 0.139*** 

(0.000) 

0.079*** 

(0.000) 

0.060** 

(0.012) 

Median 0.147 0.107  

Diff 
-0.367*** 

(0.000) 

-0.173*** 

(0.000) 
 

*** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level 

The results in Table 17 confirm Prediction #5 on the trading direction of investors. On 

average, speculative manipulators are net buyers during manipulation, and behavioral 

investors are net sellers. The direction flips sides for both types of investors on event day 

+1, the first trading day after the manipulators pump up the price. On event day 0, the 

difference in the buy-sell imbalance between the two groups of events is not significant. 

The result is consistent with the hypothesis that loss aversion investors tend to sell 

winners irrespective of whether there are potential changes in their fundamental values.  

On event day +1, the speculative manipulators sell more shares of stocks with low fund-

holding values and low previous gains as opposed to stocks with high fund-holding 

values and high previous gains, the difference is significant at the 10% level. The buy-sell 
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imbalance is reversed for behavioral investors. They purchase significantly more shares 

of stocks with low fund-holding values and low previous gains than stocks with high 

fund-holding values and high previous gains. The difference between the two groups is 

significant at the 5% level for the behavioral investors. 

B. Realized profit for speculative manipulators  

Market manipulations are supposed to be profitable. Indeed, speculative manipulators 

realize significant gains by trading stocks with low fund-holding values and low previous 

gains between event day -1 and event day +1. The round trip return earned by the 

speculative manipulators is 2.95% (t-stat=3.30)
16

. Our analysis of the trading imbalance 

for the behavioral investors shows that they are net buyers of manipulated stocks on event 

day +1. They immediately suffer an unrealized loss of 1.89% (t-stat=4.54) on event day 

+2. If they hold on to the losing stocks, which they usually do, their unrealized loss 

reaches 2.52% (t-stat = 3.52) on event day +10.  

V. Conclusion 

In this paper, we provide an explanation for the phenomenon that the stock price and 

trading volume rise after news that is not related to a concrete change in the firm’s 

fundamental value. The phenomenon is pervasive in the Chinese A-share market, yet is 

rarely seen in developed stock markets.  

                                                           
16

 Our trading data contains the weighted average cost of stocks held by each investor on a daily basis. The realized gains of the 

speculative manipulators are calculated as the difference in selling prices and average costs over average costs. The unrealized gains 
of behavioral manipulators are calculated as the difference in closing prices and average costs over average costs. 
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We develop a model of trade-based manipulation in which a large number of speculative 

manipulators coordinate implicitly to exploit investors with behavioral biases. Because of 

the existence of investors with behavioral bias and the special stock-market environment 

in China, this new type of manipulation differs from those studied in the literature in 

several ways. The manipulation is not performed by a single manipulator or several 

manipulators with an explicit agreement. The manipulators coordinate implicitly after the 

observation of a public news event. 

Successful manipulation does not rely on spreading false rumors or taking actions that 

change the value of the firm, which is illegal in a variety of stock markets. Moreover, no 

one in the market needs to be better informed than any other.  

According to our model, we identify events that satisfy the key features of manipulation. 

We find empirical evidence consistent with the theoretical predictions on stock returns. 

The stocks with a low fund-holding and with a high average purchase cost among 

shareholders are more likely to be manipulated. After the initial run-up in price, these 

stocks experience reversals. Stocks with a low mutual-fund-holding value underperform 

stocks with a high mutual-fund-holding value by 2.73% in the 30 days after manipulation. 

The stocks with low previous gains prior to manipulation underperform stocks with high 

previous gains by 1.99% after manipulation. These results shed some light on the role of 

fundamental investors in a market dominated by individual investors. A certain level of 

mutual-fund-holding can provide stability for stocks in the sense that stocks with a high 

mutual-fund-holding value are less exposed to this type of manipulation. 
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The empirical evidence on super individual accounts is also consistent with the 

theoretical predictions. These accounts, which we suspect to be held by speculative 

manipulators, accumulate shares to pump the stock price initially and dump them after 

the significant rise in the price. Moreover, these accounts realize abnormally high returns 

during the days of manipulation. With this investor trading data, we provide evidence that 

speculative manipulators create attention-grabbing events by pumping up stock prices 

and make profits by leading behavioral investors to buy from them.  
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CHAPTER 3 

SENTIMENT, DISAGREEMENT, AND IPO PRICING 

The mispricing of a stock can exist as early as in the IPO process. This mispricing 

generally does not vanish until the delisting of the stock. As such, studying the mispricing 

of a stock from the first day of trading is of interest in order to examine its evolution 

afterwards. Indeed, there is an extensive line of literature on why IPOs are underpriced in 

the US stock market. Agency problems and information asymmetry are convincing 

explanations for IPO underpricing (Ritter 2011).
17

 In this paper, instead of answering the 

question of why IPOs are underpriced, we test how the investor’s sentiment and 

disagreement predict the cross-section of IPO underpricing.  

An IPO first-day return is a commonly used indicator to evaluate its underpricing (Ritter 

2011). The higher the IPO first-day return is, the more severely this IPO is underpriced. 

Recently, Baker and Wurgler’s (2006, 2007) research on investor sentiment in the stock 

market has gained success in predicting the cross-section of stock returns. They predict 

that when market-wide sentiment is high, speculative and hard-to-value stocks receive 

higher relative valuations. Their empirical tests confirm that stocks with speculative and 

hard-to-value characteristics, such as young stocks, high-return volatility stocks, and 

unprofitable stocks, can earn lower subsequent returns when the prior sentiment is high. 

A safe assumption is that some IPO stocks are more speculative and hard-to-value than 

others. However, empirically using Baker and Wurgler’s (2006, 2007) theory to predict 
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 Ritter (2011) presents a recent survey on this line of research. 
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which IPO stocks are underpriced is challenging because of the endogenous issue and 

data restrictions. First of all, as noted in the “hot market” literature, IPO first-day returns, 

the number of IPOs, and the number of shares issued are successful proxies for the 

investors’ enthusiasm for stock trading. Indeed, Baker and Wurgler (2006, 2007) 

construct a sentiment index that factors in the aforementioned three proxies. The 

endogenous issue occurs if we try to predict the IPO underpricing by using data on IPO 

activities. Secondly, a direct measure of the disagreement on IPO valuation is lacking. As 

pointed out in Baker and Wurgler (2007), analysts’ earnings forecasts for a company is a 

natural indication of its valuation. The smaller the differences in forecasts, the easier the 

valuation of the stock is. Unfortunately, there are no analysts covering the earnings of 

IPO firms in the US market. These two issues make testing the effects of sentiment and 

disagreement on IPO first-day returns infeasible when using data from the US market. 

We find several unique features of the Chinese stock market that make it better suited for 

testing Baker and Wurgler’s (2006, 2007) theory on the role of investor sentiment in 

predicting the cross-section of IPO first-day returns.  

First, the IPO issuance mechanism in the Chinese stock market solves the endogenous 

issue. In the United States, issuers usually time the market when deciding the IPO dates. 

However, firms in China do not have this privilege when going public. The IPO 

committee of the China Securities Regulatory Committee (hereafter CSRC) issues the 

IPO permissions after lengthy scrutiny. Many factors other than investor sentiment, such 

as the state economic development plan, the State-Owned-Enterprise reform goal, 

inflation rate, and GDP growth rate, affect the CSRC’s decision on granting permits to 
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pre-IPO firms. Theoretically, issuers and underwriters can choose a listing date six 

months after they receive the permission from the CSRC. In practice, they all decide to 

get listed as soon as possible without considering the market sentiment. The majority of 

them start trading within five business days of the CSRC’s permission letters. Although 

bad for issuers in China, this mechanism significantly reduces the endogenous issue 

between sentiment and IPO activities in the Chinese stock market. 

Secondly, analysts provide forecasts of the IPOs offer prices in the Chinese stock market. 

The analysts’ predictions are a direct measure of the IPOs firms’ valuations. Thus, we are 

able to estimate the dispersion of analysts’ predictions to gauge how difficult discovering 

the true value of an IPO stock is for retail investors. We obtain the forecast data from 

WIND, a dominant and reliable financial data provider in China.  

Last but not least, naive individual investors dominate the Chinese stock market. They 

usually have difficulty in discerning the fundamental values of stocks, but they are also 

attracted to the speculative appeal of IPOs. The first-day closing price of the IPOs may be 

significantly affected by their sentiment, especially when short sales of IPOs stocks are 

prohibited in the Chinese stock market.   

Our testing produces two results. First of all, hard-to-value IPOs have higher first-day 

returns. We divide IPOs into three (five) portfolios by disagreement. The difference in 

the first-day returns of the hardest-to-value IPOs and those of the least hard-to-value 

IPOs is 54.47% (70.84%). These results are significant at the 1% level. This finding 

might be consistent with the disagreement model proposed by Hong and Stein (2007): in 
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a market with short-sale constraints, disagreement fuels the trading among investors with 

positive views who bid the price up. We find that the first-day closing price is higher 

when the disagreement is greater in the Chinese stock market. The turnovers of IPOs on 

their first-day are 70% during our sample period.  

Second, we find that the first-day returns of hard-to-value IPOs are even higher when the 

investor sentiment is high. We regress the first-day returns of the hardest-to-value IPOs 

on a sentiment index and known determinants of first-day returns and find that the 

coefficients on sentiment are positive and have 1% significance. In other words, there is a 

positive correlation between the first-day returns and investor sentiment. We repeat this 

exercise with portfolios consisting of less harder-to-value IPOs and we find the 

coefficients on sentiment are smaller. According to Baker and Wurgler (2006, 2007), 

hard-to-value stocks are overpriced more when market sentiment is higher. Our findings 

confirm that hard-to-value IPOs are more sensitive to investor sentiment than easy-to-

value IPOs. Market sentiment further increases the dispersion of the first-day returns after 

the effect of disagreement.   

Because, the Chinese stock market provides an ideal environment, we believe our results 

have general interest given the growing significance of this market. The Chinese stock 

market was ranked as one of the top-five IPO markets
18

 and had the second-largest 

market capitalization among all national stock markets at year-end 2010.  

                                                           
18

 See Doidge, Karolyi, and Stulz (2011) for a summary of global IPO activities from 1990 to 2007. 
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The rest of the paper is organized as follows. Section I provides a review of the related 

literature. Section II describes the institutional setup of the Chinese IPO market and data. 

Section III presents the empirical results. Section IV reports the results from the 

robustness check. Section V concludes. 

I. Literature Review 

The underpricing of IPOs exists in the United States, China, and many other countries 

(Ritter 2011). There is a rich literature that studies why IPOs are underpriced. Our paper 

attempts to identify how sentiment and disagreement affect the magnitude of IPO 

underpricing or IPO first-day returns. Our paper is related to the research on factors that 

predict the cross-section of IPO first-day returns, which we briefly review here. Then we 

introduce the findings of sentiment’s role in predicting cross-sectional returns, which has 

not been used to predict IPO first-day returns. Last but not least, we review the findings 

of the speculative nature of the Chinese stock market that is essential for sentiment and 

disagreement to gain predictive power in the IPO market. 

A. Information and the IPO Market 

Extending models in which underpricing is a compensation for uninformed investors who 

participate in IPOs, Carter and Manaster (1990) posit that high-quality issuers hire 

prestigious underwriters to signal to the market their low-risk characteristics, because 

prestigious investment banks have a reputation to maintain. Indeed, the authors find a 
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significantly negative relation between prestige and the magnitude of IPO first-day 

returns.
19

  

The book-building models (Benveniste and Spindt (1989) and Cornelli and Goldreich 

(2001)) assume that IPO underpricing is the cost to obtain a more accurate demand for 

the IPO stocks from institutional investors. If the offer price is so high that no money is 

left on the table, then institutional investors have no incentive to bid at all. Underwriters 

in the US IPO market, reward institutional investors who disclose their true valuation of 

the issuer’s stock with disproportionately large allocations of shares. Aggarwal, Prabhala, 

and Puri (2002) find that there is indeed a positive relation between institutional 

allocation and first-day returns. In other words, IPOs with more institutional allocation 

earn higher first-day returns. 

Ljungqvist and Wilhelm (2003) support the negative relation between an investment 

bank's pre-IPO equity holding and the first-day returns of IPOs. Their sample period is 

between 1996 and 2000, which is before and during the Dotcom Bubble. This is plausible 

because more informed investment banks benefit from higher offer prices on top of the 

fees earned.  

B. Investors Sentiment and the IPO Market 

Sentiment, as a bias borne by most investors, is useful for explaining bubbles and market 

crashes in the history of stock markets. Speculative and hard-to-value stocks draw 

investors’ attention when investor sentiment is high, which might cause bubbles in asset 
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 This relation is sensitive to the period studied. Beatty and Welch (1996) find a positive relationship using data from early 1990s.  
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prices. However, when the sentiment is low, investors rush out to liquidate their holdings, 

causing market crashes. The rise and the burst of the Internet Bubble in the 1990s is an 

excellent illustration of investor sentiment’s role in an extreme market fluctuation (Baker 

and Wurgler (2007)).   

Baker and Wurgler (2006, 2007) show that speculative and hard-to-value stocks could be 

overpriced (underpriced) and earn lower (higher) future returns when investor sentiment 

is high (low).   

Evidence also exists that proves investor sentiment’s effect on IPO underpricing among 

developed stock markets.  Studying a sample of more than 5,000 US IPOs from 1981 to 

2009, Hrnjić and Sankaraguruswamy (2011) find a positive relation between aggregate 

investor sentiment and IPO underpricing. Darrien (2005) finds a positive relation among 

12 French IPOs. Cornelli et al. (2006) extend the scope of study to 486 IPOs in 12 

European countries and draw the conclusion that IPO underpricing is related to firm-level 

investor sentiment, instead of market-level investor sentiment. Dorn (2009) finds that 

IPOs attracting more individual purchases by investors exhibit higher first-day returns. 

C. Speculation in the Chinese Stock Market 

Empirical evidence demonstrates asset price bubbles generated by speculation in the 

Chinese stock and warrant markets.  Mei et al. (2009) study the Chinese A-B share 

premium, which is puzzling since shareholders have the identical rights in dual-class 

shares. They find speculative trading of A-shares by domestic Chinese investors can 
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explain the anomaly, because B shares were only allowed to be traded by foreign 

investors (mostly institutional investors) during their sample period.   

Most recently, Xiong and Yu (2011) study the Chinese warrants bubble in which soon to 

expire, deep out of money, worthless warrants traded at substantially inflated prices with 

huge volume.  They confirm that there was a speculative motive among Chinese investors 

that caused this bubble. 

In the U.S. market, the average first-day return was about 17.6% between 1980 and 2011, 

with a historical high of 64.5% during the Internet Bubble. We find that the average first-

day returns in the Chinese stock market are about 70% from 2005 to 2010. Thus, the 

average first-day return in the Chinese stock market is even higher than that of the U.S. 

market during the Internet Bubble. If there is a Chinese IPO bubble
20

, one possible 

explanation is that the speculative trading among retail investors bid the price up in the 

Chinese stock market. The uncertainty of the IPOs’ valuations certainly appeals to the 

speculative characteristics of Chinese retail investors.  

II. Institutional Background and Data Description 

A. IPO process in the Chinese stock market 

Between January 1, 2005, and December 31, 2010, the Chinese stock market adopted a 

hybrid book-building procedure for IPOs.
21

 There are several unique features to this 

procedure. First, the procedure consists of an offline soliciting stage and an online 

                                                           
20

 Existing behavioral literature shows that a bubble can rise due to, disagreement and short-sale constraints (Miller (1977) and 

Chen et al. (2002)), speculative trading (Scheinkman and Xiong (2003)), and positive feedback trading (Delong et al. (1990)).  
21

 Fixed price and auction-like IPO allocations were implemented before 2005.  
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bidding stage. Only institutional investors can participate in the offline soliciting stage,
22

 

while both institutional and individual investors can participate in the online bidding 

stage. In other words, institutional investors can obtain IPO shares during both stages. 

The institutional investors’ allotment received in the offline stage has at least a six-month 

lock-up restriction.  However, shares obtained in the online stage can be sold on the first 

day. Second, the issuer and the underwriters determine the IPO offer price based on the 

institutional investors’ bids. Winning institutional investors buy IPO shares according to 

the final offer price, not necessarily equal to their bidding prices. This offer price is also 

used for the online bidding by both institutional and individual investors. Third, the 

underwriters are not allowed to allocate more shares to institutional investors who 

disclose their true valuations of IPO stocks during the book-building process.
23

 

Institutional investors participating in the offline process receive the exact number of 

shares in their proposal. Fourth, the remaining shares are distributed to both institutional 

and individual investors through an online “lottery” system.
24

 Investors have to pre-

deposit funds into custody accounts designated for IPO stock purchases. If investors 

successfully win the IPO “lottery”, the shares are transferred into their accounts. 

Unsuccessful bidders get refunds. 

These features lead to the underpricing of IPOs in the Chinese stock market for the 

following reasons. First, institutional investors are motivated to bid a lower price during 

                                                           
22

 At least 20 institutional investors have to bid during the process; otherwise the IPO process stalls. 
23

 In the US market, underwriters allocate more shares to bidding institutions with higher prices as compensation for disclosing 

their true valuation.  
24

 Approximately one week before the IPO, potential investors, including both institutional and individual investors, specify the 

number of shares they desire and deposit the equivalent fund into the designated bank account. In return, they receive a number of 

tickets for the later IPO “lottery”. In the Shanghai Stock Exchange, one ticket represents 1,000 shares of subscription, while it 
represents 500 shares in the Shenzhen Stock Exchange. 
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the offline stage. Even if they lose the right to buy offline, they can still buy IPO shares 

during the online bidding. Indeed, the lower the offer price is, the more shares institution 

investors can afford. Second, as IPOs in China usually receive over-subscriptions, the 

exchanges have to draw the winning tickets. Only investors with the winning tickets 

receive the IPO shares at the offer price. The investors who can afford to subscribe to 

more IPO shares get more tickets, and hence have a higher chance of winning an IPO 

lottery. Indeed, institutional investors, who are much wealthier than retail investors, are 

much “luckier” in winning the IPO shares. Third, it is harder for individual investors to 

obtain IPO shares during the online stage because the success rate of the IPO lottery is 

extremely low. Those unlucky individual investors usually purchase IPOs on the first day, 

which eventually pushes the price up. Fourth, the persistence of IPO underpricing 

generates the positive feedback effect. On average, the opening price on the first day of 

each IPO during our sample period doubles the offer price. The closing price is even 

higher. Thus, institutional investors always have the motivation to set a lower offer price 

by collectively lowering their bids. Individual investors always want to fulfill their 

demand for IPO shares if they do not win the “lottery”.   

B. Data Description 

We study IPOs between 2005 and 2010 in the Chinese stock market because of the 

hybrid IPO procedures.
 25

 We obtain return, volume, and financial data from the China 

Security Market and Accounting Research (CSMAR), the only data vendor in the 

                                                           
25

 After the reform, institutional investors are not allowed to participate in both the offline bookbuilding stage and the online 

bidding stage. The IPO offer prices are now set much higher than before because the institutional investors are competing with each 

other for the allotment from the offline stage. As a result, negative first-day returns appear more often in the market. Individual 
investors’ demand towards IPO stocks is diminishing. 
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Chinese stock market accessible via WRDS. The first-day return is defined as the 

difference between the offer price and the first-day closing price. The turnover ratio is 

based on the total tradable shares.  

WIND provides the analysts’ forecasts about the IPO offer prices since January of 2005 

when the hybrid book-building process was adopted. This data set also contains the 

affiliations of the analysts who provide the forecasts. We calculate the standard deviation 

for the analysts’ forecasts for each IPO and use it as a proxy for the disagreement over 

the IPO valuation.   

Table 18 provides the summary data for the IPOs from 2005 to 2010. The IPO offer 

prices, and P/E ratios generally seem to increase over our sample period. However, the 

number of IPOs and first-day returns fluctuate over the sample period.  

We observe high first-day returns and huge turnover for IPO stocks in the Chinese stock 

market. The first-day average turnover is about 70%. To put this number into perspective, 

only 80% of the float is tradable on the first day. The other 20% of the shares is allocated 

to institutional investors during the offline book-building process and locked up for the 

next six months.  Considering investors cannot sell shares they bought on the same day, 

we infer that the majority of investors who won IPO “lotteries” sell their holdings on the 

first day.  This inference also implies that the demand for IPO stocks is constantly strong 

on the first day over our sample period. Considering the speculative nature of Chinese 

retail investors, this demand could come from the disagreement over valuation and 

market-wide sentiment.  
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TABLE 18 SUMMARY STATISTICS OF IPOS ACTIVITIES  

This table presents average IPOs offer price, offer price earnings ratio, return and turnover ratio on the 1st day. 1st day return is the 

closing price divided by the offer price minus 1. Turnover ratio is total trading volume divided by all tradable shares.  

III. Empirical Results 

We first provide the results regarding the effects of the disagreement on the IPO first-day 

returns. The first-day closing price of the IPO stocks contains the true value of the stocks 

and the value of the option to sell the stocks the next day. Since the dispersion in opinion 

causes trouble for finding the fair value of the IPO stocks and make the option worth 

more, we expect that hard-to-value IPO stocks to close at a higher price.  

There are different ways to measure the disagreement over a stock’s valuation. As noted 

in Baker and Wurgler (2007), a common practice is to use dispersion in the analysts’ 

forecasts and/or trading volume to measure the level of disagreement over the valuation. 

Here we obtain the analysts’ forecasts on the lower and upper limit of the IPO offering 

price from the WIND database. And we calculate the dispersion with respect to the actual 

offering price as a proxy for the disagreement over the IPO stock value. With the increase 

in the dispersion of opinion, we observe the cross-sectional difference among the 

portfolio returns. Indeed, we observe a huge return difference (54%) between the hard-to-

value and the easy-to-value IPO stocks. Although the average offer price is higher for 

IPOs with more disagreement, the relative pricing, that is, the M/B ratio, increases with 

Year Number of IPOs Offer Price 1st Day Return  P/E 1st day Turnover 

2005 15 6.65 45.12% 21 57.14% 

2006 66 8.15 84.81% 19 71.12% 

2007 126 11.47 193.07% 27 64.56% 

2008 77 11.95 114.87% 25 80.36% 

2009 63 23.32 74.15% 36 79.31% 

2010 232 29.40 44.56% 58 71.83% 
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the dispersion in opinion. Also, small stocks seem to not always be hard to value. We 

present our results in Panel A of Table 19.  

TABLE 19 DISAGREEMENTS AND FIRST DAY TRADING 

We divide IPOs between 2006 and 2010 into 3(5) portfolios ranking on analysts disagreement about offer prices. IPO 1st day return is 
closing price divided by offer price minus 1. Book value and earnings are data for the year prior to IPOs. Market capitalization is the 

product of closing price of the 1st day and number of tradable shares. 

The literature well documents that IPOs underperform the market in the long run. We test 

whether disagreement over IPO valuations can predict the cross-sectional difference in 

the long-term cumulative abnormal returns of the IPOs. Table 20 presents the abnormal 

returns of three groups of IPOs sorted on disagreement under the CAPM and Fama-

French three-factor models. The abnormal returns are cumulated over different horizons 

of up to one year. Consistent with the literature, we show that IPOs underperform in the 

long run in the Chinese stock market. Moreover, we find that the hard-to-value IPOs 

provide higher returns to investors over short horizons. However, the difference becomes 

insignificant when holding the stocks for one year.  

Panel A: 3 Portfolios 

 
Dispersion in Opinion 

  

 

Low 

 

Mid  

 

High H-L 

 
IPO 1st day return  49.34   65.95   103.82 54.47*** 

 
IPO Offer Price 13.04   18.83   28.01 

  
Market/Book 5.79   4.88   2.88 

  
Price/Earnings 55.72   75.25   75.59 

  
Market Cap (in 1,000) 3,323   1,038   2,310 

  
Panel B: 5 Portfolios 

 

Dispersion in Opinion 

  

 

Low 

 

Mid 

 

High H-L 

 
IPO 1st day return  41.20 59.90 64.94 82.75 112.04 70.84*** 

 
IPO Offer Price 11.72 15.56 18.46 21.31 30.90 

  
Market/Book 4.24 6.57 4.63 4.95 2.88 

  
Price/Earnings 51.20 64.61 76.78 69.06 80.06 

  
Market Cap (in 1,000) 3,990 1,961 1,184 1,079 2,837 
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TABLE 20 DISAGREEMENT AND LONG-TERM RETURNS 

We divide IPOs between 2006 and 2010 into 3 portfolios ranking on analysts disagreement about offer prices. Abnormal return is the 

predicted value from the regression of portfolio returns using CAPM and Fama-French three factors model. Cumulative returns are 
calculated for different horizons. 

Hong et al. (2006) model a negative relation between a bubble’s size and the asset float 

and predict that bubbles are larger when the asset float is limited. In the time-series 

domain, the price of IPO stocks drops after the lock-up restriction expires for the insiders 

and institutional investors. We observe that the cumulative excess returns become 

negative around six months, which is the length of the lock-up in the Chinese stock 

market.  

We now turn our focus to the effect of market sentiment on IPO pricing. Baker and 

Wurgler (2006, 2007) find a cross-section difference between hard-to-value (speculative, 

divergence in opinion) stocks and easy-to-value (safe, convergence in opinion) stocks 

under the fluctuation of market sentiment. Baker and Wurgler (2006, 2007) show that 

when investor sentiment is high, speculative stocks are overpriced and hence earn a low 

 Dispersion in Opinion 

Cumulative Low Mid High 

Abnormal Return Panel A: CAPM 

1 week  18.17% 27.88% 36.98% 

2 weeks 32.57% 48.82% 66.19% 

1 month 35.47% 62.07% 98.09% 

3 months 2.78% 14.52% 43.19% 

6 months -30.41% -27.06% -12.54% 

1 year -75.58% -73.56% -73.26% 

 Panel B: Fama-French three factors 

1 week  8.78% 12.04% 14.86% 

2 weeks 16.44% 22.38% 25.25% 

1 month 16.86% 22.33% 35.60% 

3 months -11.70% -10.71% 2.27% 

6 months -39.84% -42.74% -35.64% 

1 year -79.07% -78.33% -78.55% 
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future return. Because some IPO stocks are harder to value and hence are more 

speculative, we expect that investor sentiment generate a bigger bubble on those 

speculative stocks.  

To facilitate the analysis, we first have to build an investor-sentiment index for the 

Chinese stock market. The number of IPOs and the new shares issued in the IPOs are two 

important proxies for the investor-sentiment analysis because they represent the 

underwriters timing the market and catering to investors. Unfortunately, we are unable to 

use these two IPO related proxies in this analysis.   

Considering the lesser connection between IPO activities and investor sentiment, we 

propose an alternative proxy: units issued by open-end funds. Open-end funds were 

introduced to China investors in 2001 as investment vehicles managed by sophisticated 

professionals. Although more and more empirical evidence shows open-end fund 

managers do not have superior stock picking abilities, they are good at catering to the 

market. Fund managers will issue new funds when they sense investor sentiment is high. 

Furthermore, we also use the closed-end fund discount, market turnover (excluding IPO 

stocks), new stock trading accounts, and the Consumer Confidence Index (CCI) when 

measuring investor sentiment in the Chinese stock market.  We standardized all of the 

variables before performing any further analysis. 

To filter out the macroeconomic shock to investor sentiment, we also regress the above 

five sentiment indicators on macro-variables, including the growth of the industry’s 

product (IAV), CPI, PPI, and MBCI. However, we find poor explanatory power between 
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the macro-variables and the sentiment indicators. As such, we perform a principal 

component analysis on the five sentiment indicators directly and use the coefficients for 

the first principal component in forming the investor-sentiment index. 

The sentiment index is a time series. Thus we match the IPO first-day return with the 

sentiment value on the listing date. We also add factors related to the first-day returns: 

proceeds and firm age.
26

  For each of the 579 IPOs during 2005 to 2010, we regress their 

first-day returns on the market sentiment for their listing dates, IPO proceeds, and firm 

age. We repeat this analysis for the three groups of IPOs sorted on disagreement levels.  

Panel A in Table 21 presents the regression results for the different portfolios sorted on 

disagreement. To begin with, we find the coefficients for investor sentiment are all 

significantly positive over the different levels of disagreement. This finding confirms our 

conjecture that investor sentiment increases IPO first-day returns. Moreover, we observe 

that the coefficient on sentiment increases monotonically with respect to the level of 

disagreement. This finding confirms the conjecture that speculative stocks are more prone 

to overpricing when investors sentiment is high. 

IV. Robustness Check 

In the above section, we sort IPOs into three portfolios based on the level of disagreement. 

Here we repeat our analysis with a smaller group. We sort the IPOs into five portfolios 

based on the level of disagreement. The results are qualitatively similar for all analyses. 

We present our results in Panel B of Table 19 and Panel B of Table 21.  

                                                           
26

 Due to the difference between the book-building process in the US market and the hybrid book-building process in the Chinese 

stock market, we do not include factors related to the reputation of underwrites and the institutional ownership prior to the IPOs.  
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TABLE 21 DISAGREEMENT, SENTIMENT AND DETERMINANTS OF IPO FIRST-DAY RETURNS 

We divide IPOs between 2006 and 2010 into 3(5) portfolios ranking on analysts disagreement about offer prices. We explain the 

cross-sectional differences of IPOs 1st day returns using sentiment, proceeds, and age.  Sentiment is a time-series index, compositing 
of units issued by open-end funds, close-end fund discounts, market turnover, new stock trading accounts, and consumer confidence 

index. Proceeds is calculated as the natural log of funds received by issuers. Age is the difference between IPO date and foundation 

date. White-robust t-stats are presented in parentheses. 

Panel A: 3 Portfolios 

Independent Variables Dispersion in Opinion 

 

Low 

 

Mid  

 

High 

Sentiment 12.51***   13.48***   26.62*** 

 
(7.55)   (7.04)   (13.40) 

Proceeds -15.33***   -23.79***   -27.22*** 

 

(-6.23)   (-5.46)   (-6.53) 

Age -0.0035**   0.0000   -0.0019 

 
(-2.15)   (0.02)   (-0.63) 

Intercept 278.43***   386.76***   461.83*** 

 

(7.91)   (6.72)   (8.20) 

Adj. R2 0.361   0.363   0.537 

Panel B: 5 Portfolios 

Independent Variables Dispersion in Opinion 

 

Low 

 

Mid  

 

High 

Sentiment 6.5170*** 11.2228*** 17.8183*** 20.5429*** 26.5153*** 

 
(2.63) (8.04) (4.45) (7.93) (10.65) 

Proceeds -12.2701*** -17.1525*** -25.9736*** -33.1838*** -24.9602*** 

 

(-4.13) (-4.18) (-4.77) (-5.07) (-0.84) 

Age -0.0036* -0.0046* 0.0012 -0.0001 -0.0034*** 

 
(-1.79) (-1.84) (0.39) (-0.03) (-5.10) 

Intercept 228.6378*** 308.7658*** 412.3284*** 522.6236*** 441.0856*** 

 

(5.21) (5.55) (5.76) (5.95) (6.63) 

Adj. R2 0.206 0.453 0.323 0.506 0.533 

*** Significant at the 1% level. ** Significant at the 5% level.* Significant at the 10% level. 

V. Conclusion 

Traditional finance theory shows which stocks achieve higher first-day returns, that is, 

hard-to-value stocks reward investors more than easy-to-value stocks do as they bear the 

risk of information asymmetry. By incorporating the investors’ sentiment fluctuations, we 
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extend this line of research by answering the question of when do hard-to-value IPOs get 

hotter and even become bubbles. 

There are two major obstacles keeping us from answering this question with US data. In 

US markets, IPO underpricing is a well-accepted proxy for investors’ sentiment, which 

causes an endogenous issue. Also, the lack of the analysts’ coverage of IPO stocks makes 

it impossible to reasonably measure the disagreement over IPO valuation. On the 

contrary, IPOs in the Chinese stock market are granted by the regulator without 

considering investor sentiment. We also obtain a unique database with analysts’ 

predictions of IPO offer prices in the Chinese stock market. The dispersions in these 

forecasts reflect the magnitude of disagreement. 

Our empirical results show that hard-to-value IPOs achieve higher first-day returns when 

the market sentiment is higher. This is consistent with the findings in Baker and Wurgler 

(2006). The difference lies in that their testing applies to listed stocks. We extend their 

reasoning to IPOs. 
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Appendix A: The case of Zhejiang Dongri 

In this appendix, we present another typical case of implicitly-coordinated manipulation, 

the case of Zhejiang Dongri (hereafter “ZJDR”), a real estate firm incorporated in 

Wenzhou, China. The firm has 5% stock holding of Bank of Wenzhou, a small local bank 

with minimal value compared to ZJDR. 

On March 28th, 2012, Chinese State Council assigned the city of Wenzhou to status of a 

‘Comprehensive Pilot Financial Reform Zone’. This is the only zone of this kind in 

China.  Wenzhou, a coastal city, which already has the most vital private owned 

enterprises in China, is regarded by the market as the spearhead of financial sector 

liberalization in China. With the news reaches the market; it draws collective attention of 

speculators.  

Right after the policy announcement, “ZJDR”’s price rose from 6.6 RMB to 17.4 RMB 

during April 2012, a 160% monthly return, which is the top performer in that month. The 

average daily turnover is 16% in the meantime. To put this set of number in perspective, 

we note that the average monthly return was 7% and the average turnover is 2.32% in A-

share market during April 2012. Excluding trading days in 2012, “ZJDR” reports an 

average monthly return of 0.7% and average monthly turnover of 1.33% since listing. 

Figure 5 presents the change of volume and price of “ZJDR” in year 2012.  
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FIGURE 4 STOCK PRICE AND TRADING VOLUME OF ZJDR 

This figure presents the change of volume and price of “ZJDR” in year 2012. Right after the policy announcement on March 28, 2012, 
“ZJDR”’s price rose from 6.6 RMB to 17.4 RMB during April 2012. The price and volume slide down-ward after the Board’s 

clarification that there is no change in firm’s fundamentals. “ZJDR” closes at 11.62 RMB as of June 29, 2012. In other words, those 
who bought “ZJDR” in April suffer a loss of 33% in 3 months.  

The month long roar of price and trading volume drew attention of China Securities 

Regulatory Commission (hereafter “CSRC”). CSRC is the market authority in China and 

plays similar role as SEC in the US market. They monitor the market closely. CSRC halts 

ZJDR’s trading for 3 days at the end of April and request the Board of ZJDR to announce 

any information that might cause the abnormal activities of its stock. The board of “ZJDR” 

issued a statement on the last trading day of April 2012, clarifying that there is no under-

disclosed events or secrets. More specifically, the management team has no plan to 

undertake asset reorganization, SEO, M&A, or etc., in the future. 

This statement probably cooled down enthusiastic investors. The price and turnover slide 

down-ward after the Board’s clarification. “ZJDR” closes at 11.62 RMB as of June 29, 

2012. In other words, those who bought “ZJDR” in April suffer a loss of 33% in 3 

months.  
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Appendix B: Proof of prediction #2 

For two distribution function of loss aversion investors’ purchase cost,   ( ) and   ( ), 

if   ( ) first order stochastic dominates   ( ), then   
    

  and  (  
   )  

  

 (  
   )  

 . The condition for manipulation to be an equilibrium is  (    )       , 

as derived in the solution to the model. Therefore, given the same level of attention 

triggered by the event (n) and the amount of capital held by each manipulator (c), the 

condition is more likely to be satisfied when the distribution function is   ( ).  
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