ADDITION REQUIREMENTS
FOR
RATIONAL FUNCTIONS

David G. Kirkpatrick+
Cornell University

Zvi M. Kedem®
M.I.T.

TR 75-255

August 1975

Department of Computer Science
Cornell University
Ithaca, New York 14853

TThis research was done in part at the University of Toronto,

~ with the support of the National Research Council of Canada.
§This research was supported in part by the National Science
Foundation grant GP 22796 A2.






[ S, ST SO PSSP U o T e was T

Addition Requirements for Rational Functions

by David G. Kirkpatrick (Cornell University) t

and 2vi M. Kedem (Massachusetts Inst. of Technology) 5

Abstract

- A notion of rank or independence for arbitrary sets of
‘rational functions is developed, which bounds from below the
number of additions and subtractions required of all straight-
line algorithms which compute those functions. This permits
a uniform derivation of the best lower bounds known for a
number of familiar sets of rational functions. .

The result is proved without the use of substitution

arguements. This not only provides an interesting contrast
to standard approaches for arithmetic lower bounds, but also
allows the algebraic setting to be somewhat generalized.
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1.
I. Introduction

A central problem in arithmetic complexity is to take
some sét of rational functizﬁs and determine a“iﬁaer bound on
the number of arithmetic operations which are sufficient to -
compute the functions. It is a symptom of our 15ck of"
understanding of the interaction between multiplicatieve
operations (i.e. multiplication and division) and additive
operations (i.e. addition:and subtraction), that this problem
is rafely treated in its full generality. Indeed, most research
in arithmetic complexity has focussed on one, most often the
multiplicative, operation type.

While there is evidence that multiplication is inherently
more difficult than addition, this does not justify the
relative laék of attention paid to additive combléxity. This
lack is perhaps most effectively iliustrated by"the féct that,
prior to the work presented in this papér, there did not exist
any general framework for directly proving a non-trivial iower
bound on the additive complexity of the simplest of expressions,
ay+ a+t ... +a. While it is this lack which motivates our
study, we emphasize that both‘our techniques and our results
tend to complement as well as supplement previous work in
arithmetic complexity. .

We shall first present some basic definitions and a survey
of related work. Section III describes the algebraic setting
for our work, and introduces our notion of independence. This
notion is developed in the context of multivariate polynomials

in Section IV, and extended to general rational functions in



Section V. Section VI contains applications of our central
result tc; a number of common arithmetic expressions. Finally,
o

in Section VII, we mention a few open questions related to

our work.

II. Related Work

If F is any field and a2 ays eee a, is a sequence of
distinct indeterminates over F, then elemehts of F(’aw)\L are
called rational. functions in ays eee sy over F.

Following -Winoqfad [8], we say that (X is a (rational)
algorithm-over: (E(a),G), computing Y&SF(a) given G, if:

(1) 6SF(a) ‘

(2) Q& is'a finite sequence of pair's (@1,81)seeer(ag,By)

where either
(a) ai-—'(y) and Bi=y, where Y €G
or (b) Gi=(o, j,k) where o ¢ {+,-,%,/}, j,k<i, and
si=8joek. Furthermore, if o = / then Bk;‘O.
and (3) ‘HQ{BI,...,Bt}.
If we restrict (2) (b) so that o € {+,-,x}, then we say

that QU is a polynomial algorithm over (F(a),G).

We will denote by v((x) the number of additions and

subtractions in Q.

t 'F(a) denotes the field extension of F by the indeterminates

P W
1’ “n



In pioneering the area of arithmetic complexity,

Ostrowski [ 7 1, consideréd the problem of determining both
additive and multiplicative operation requirements for computing
a general n-th degree polynomial. Using straightforward
substitution techniques, he showed that for polynomial algorithms,
n additive operations are necessary.

Techniques which apply to more general classes of functions
are presented by both Belaga [ 1 ] and Winograd [ 8 ]. Belaga
employs the notion of degrees of freedom for rational functions
in a single indeterminate. The degree of freedom of such an
expression corresponds to the number of algebraically independent

coefficients.

THEOREM A (Belaga [11)
Any algorithm which contains p additions, computes a

rational expression with at most p+l degrees of freedom.

In a sense, Belaga's result is restricted by a dual theorem

due to Motzkin [ 6] which relqtes the same degrees of freedom

to multiplicative requirements. Combining the two, we find that
if a function can be computed using k multiplication/divisions
then the best lower bound on additions that can be obtained

by degrees of freedom arguements is about 2k. Degrees of freedom
arguements provide tight bounds for polynomials whose terms

are all algebraically independent, but they can easily fail to
do so if this condition is relaxed. For example, the polynomial
a2x2+ab3x+b5 requires two additions despite having algebraically

dependent coefficients.



Winograd [ 8] deals with the computation of functions
which are linear in the indeterminates KyreserXp. A set of
such functions can be expressed as a matrix-vector multiplication,
¢£, where ¢ is a txn matrix whose elements are drawn from some
field F, and x denotes the vector (xl,...,xn). Winograd's theorem

can be stated as,

THEOREM B (Winograd [8])

Any algorithm over (f(g),Fklﬁ ) which computes the
product %x, requires at least N(¢)-t addition/subtractions,
(where N(%) is the column rank of ¢ with respect to a rational

subfield GCF).

Actually, this can be strengthened in the case that
P=G(y1,...;yt) and G is a subfield of the complex numbers. In
this case, Theorem B holds for all algorithms over (F(i),F\JG(z))}
which ﬁeans that preconditioning of the set x is not charged.

Winograd also has the following unpublished result,

THEOREM C (Winograd [91)
Any polynomial algorithm over (F(ﬁ),F\)g ) which computes
*
the product ¢x, requires at least N (¢)-t addition/subtractions,

*
(where N (¢) is the number of non-zero columns in ¢).

Since N*(¢): N(¢), this gives a uniformly stronger bound
than Theorem B, at the cost of restricting the class of algorithms.
The principle advantage of Winograd's framework is that

it allows a straightforward analysis of problems which concern

the computation of a family of expressions. The obvious drawback



is that many problems carnot be advantageously expressed in
this framework. For example, it appears that Theorem B would

give a lower bound of zero for both the expression Xyteeotx

and the pair of expressions, axl—bxz, bx1+éxé (complex product).+
In this paper we present yet another complexity measure
which has its roots in algebraic independence. However, unlike
the degrees of freedom measure and Winograd's framework, our
notion of independence is not dependent on the structure of

expressions. Furthermore, a straightforward application of

our central result generalizes both Theorems B and C.

t+ The only straightforward adaptations are

(1,...,1) Xy and (a -b

xl) .
b a x,

X oees



III. Algebraic Preliminaries

<
Let D be any integral domain ' and let F be the quotient

field of D. Let as® S RERERL N and E 2 b . 'bm be sequences

1re
of distinct indeterminates over F. We are interested in finding
lower bounds on the number of additions and subtractions required
to compute finite subsets of F(a) using algorithms over

(F(a) , bya ).

Let N an.d Q denote the natural and rational numbers
A X §
1 n 1

. m
respectively. Let N<a,b> 2 { a; T...oa bl bm ) ,6i€N
We make use of the injection ©0: N<a,b> ~ Qn+m defined by

- Al o >‘n 61 6m
F-9
o( a; “...a, " by T...b ) 2 CAreeesd h8ypea8 ).

0 extends to subsets XEN<a,b> by 0(X) 2 { 0x,) i Xi€X }.
Thus © maps a set of monomials onto a set of vectors in Qr\+m_
So, if we let pv(s) denote the vector—rank§ of any finite subset

s CQ“"”“

, then we can define the monomial-rank ( denoted oM ) of
any subset XCN<a,b> as p,(X) & p,(e(X)).
Two important properties of monomial-rank are summarized

in the following lemma.

* An integral domain is a ring D for which

uw =06 =2>u=0o0rvs=0, for all u,véD.

5 The vector-rank of S is just the dimension of the subspace

n+m
{z J\isi | )-i€Q and siES 1<a .



LEMMA 1. Let YSXEN<g,b,,...,b >and e €£N<a>.
( +
Then, (a)  py(¥) S py(X) S oy (¥) + |X| - Y]
and (b) Py (X U{ebk+1}) = py(X) + 1.

Proof: These follow by straightforward applications of the

definitions. . g

IV. Computing Multivariate Polyromials

We start by restricting our attention to the computation
of arbitrary elements of D[g]§, using polynomial algorithms
over ( F(a) , D U{Ej ). If R is any ring, let R+‘denote the
set R - {0}. ]

Let E€D[a,b]l’. We define the term set of E, E, by

_ e €N<a,b> and'e appears with )

E 2 e .
a non-zero coefficient in E -)

We can now define the expression-rank ( denoted PE ) of a

set of expressions {E Et}CD[g] ag

Lreve
a Fh.+...4E D) -
ep( Eyreee /By ) py( Eqby+. . +ED, ) t.
That is, in order to find the expression-rank of a set of
expressions one must first combine the expressions, using new

indeterminates, and then find the monomial-rank of the term set

of the resulting expression.

|X| denotes the cardinality of the set X.

D[g] denotes the ring extension of D by the indeterminates

ayseeesdg.



The following simple properties of the expression-rank
of a set of expressions should indicate its potential as a

measure of arithmetic complexity.

LEMMA 2. Let E £p(a]* ana 1et u€D* ulal.

17 rBxs1
Then, for all 1Zi,j =k,
-
(a) oE( EqseeerBp By ) =oE( Ejreee By )
(b) QE( Elr---lEle ) = DE( Elr---lEk )
(c) pE( El,...,Ek,EiXEj ) = pE( El,...,Ek )

and (d) og( Ep,...,Ey B, *E. ) =

3 OE( El,...,Ek ) + 1

Remark: These statemerits assert that, (a) expression-rank is

not decreased by the addition of new expressions, (b),(c) the
addition of "free" expressions or products of earlier expressions
does not alter the expression-rank, and (d) the addition of an
expression formed by addition/subtraction of earlier expressions'

can increase the expression-rank by at most one.

Proof: Let ’e; and ey denote a fixed and an arbitrary element

of Ei' respectively. Then,

(@) pp( Ep,.ii By By )
2 oM( Elbl+"'+Ek+lbk+l ) (k+1)
= pM( Elbl+...+Ekbk v Ek+lbk+l ) = (k+1)
= W U leg, ibppl ) - (k1) , LEM 1(a)
= oyl Ep ¥ FE B ) - k ' , LEM 1(b)

1

oE( El"“’Ek )



) Since H €D* V] {2}, H contains exactly one element which
we denote by h. Hence,

g Eyseee By H )

a DM( Elb1+“'+EkBk+ku+1 ) - (k+1)
= py( EJB . FE By U{hbk+l} ) = (k+1) -
= E.b,+...%E,b_ ) -
py( E{py+ FE D ) k » LEM 1(b)

a
a pE( EjreeesEy )

(c) Since ‘eiejbk+1 = (e;egbk+l)(ei
it follows that O E;SI V] E;E; v {e;e;bk+l} ) generates
all of 0Of TEI;EETE;:I ). Hence,
py( E{B +.FE D \j(EixEijk+l )
= oyl EEBZ:TTT:EEEE v {e;egbk+l} )

N ° -1 ° -1
bi)(eibi) (ejbj)(ejbj)

Consequently,

DE(El,...,Ek,EiXEj )
2 oyl Elb1+...+Ekbk+(EiXEj)bk+l ) (k+1).
= ey EEREL U lejegn ) ) - (k)
= oy( EfBIF. . FE B ) - k , LEM 1(b)
2 pp( Eqpeee B )
{(a) Since eibk+l = (e;bk+1)(eibi)(eibi)-l and

1

ejbk+l = (egbk+l)(ejbj)(e§bj)_ it follows that

E.b. b ° ° TE.fE )b, ...
0 Eibi v Ej 3 0] {eibk+l'ejbk+1} ) generates all of o( i7Ey k+1).
Hence, oM( Elbl+...+Ekbk N (EitEj)bk+1)
= °
= oyl Elbl+...+Ek5k §] {e;b

k+1785Pk+1} )
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Consequently,
pE( El,...,Ek,EiiEj )
2 oyt Elbl+...+Ekbk+(Ei1Ej)bk+l ) (k+1)
S eyl BBy 3ER Dy U {efby seSby i} ) - (kel)
= py( BB+, FE B ) -k + 1 , LEM 1l(a)
‘—‘pM( Ejreee B ) + 1 m]

It is now possible to give a straightforward proof of

the following:

THEOREM 1.
Let (X 2 (al,Bl)‘,...,(at,Bt) be any polynomial algorithm

over ( F{(a),d u{a} ). Then, v(Q) Z pp( Byreee By )

Remark: This asserts that the number of. addition/subtractions
in a polynomial algorithm (X is at least the expression-rank

of the set of expressions computed by (X .
Proof: ( by induction on t )

( t=1 ) In this case 816 oty {a}, and hence pp( By ) = 0.

Thus the theorem holds trivially.
( t=Zs ) Assume that the theorem holds for all t=s.

( t=s+1 ) Let (X' = (al,Bl),.'.,(o‘s,Ss). It follows from
T the induction hypothesis that v(({') zoE( ByreeeiBg )e ’
There are three cases to consider:

(1) The t-th step introduces a new input. That is,

@, = (H) and B, = HEDY U {a}.
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Then, pE( Bl""'st ) A
= DE( Bl""’gs ) , LEM 3(b)

v = vt

(ii) The t-th step is a multiplication. That is,

Qt = (X,i,j) and Bt = Bixsj

Then,  pp(Bysee.,B. )
= pp( ByseeesBg) , LEM 3(c)
Sy = v

(iii) The t-th step is an addition/subtraction. That is,

o, = (+,1,3) and Bt = ei:sj

Then, pE( Bl....,Bt )

A

pE( Brrew-sBg ) + 1 , LEM 3(4)

via') +1 = v(Q)

A

Hence, the hypothesis holds for t=s+l, and by induction the

theorem is true for all tZ=1, is]

COROLLARY 1. If (X is any polynomial algorithm over
(Fla) , DU{z} ) which computes the expressions El,...','Ek€ D[2]+,

then viQy) Z pE( Ej e /Ey ).

Proof: If O = (al,Bl) ,...,(ut,St), then by the theorem
v(iQ) = DE( Bl""'st ). But, by definition

{El,...,Ek} < {Bl,...,S }, so by lemma 3(a),

t
Pl Byseea B ) = e Ejsees By ) o
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V. Computing Rational Functions

We now remove our earlier restrictions and consider the
computation of arbitrary finite subsets of F(2)+, using
general algorithms over ( F(a) , buf{al ).

Given any rational algorithm, we can construct a polynomial
algorithm which simulates the first by keeping track of the
numerator and denominator of every intermediate expression.

The following lemma shows that this can be done without increasing

the number of addition/subtractions.

LEMMA 3. Let C= (al:Bl),...,(ut,Bt) be any rational
algorithm over ( F(E) , DU{?«} ). Then, there exists a
polynomial algorithm, Q' = (ai,Bi),...,(aét,sét), where
v(Q') = v(Q) and for all i satisfying 1=iZt,

(Bﬁi,-l/eii) = By

Proof: ( by induction on t ) .
We shall. first make two assumptions concerning the form

of (X, neither of which affect the generality of our arguements:

(i) We assume that (al,Bl) = ((1),1). That is, the first

step of (X introduces the constant 1.

(ii) We assume that all addition/subtraction steps are of

the form (ai,Bi) where o, = (x,3,1) and Bi_= g, + 1,

J
for some j<i.

K =
both of these assumptions can be ensured without modifying

Given the identity, Bj‘:B ((Bj/Bk):l)XBk, it follows that

the number of addition/subtractions in an algorithm.
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( t=1 ) Since (al,Bl) = ((1),1), it suffices to make

a; = 0y = (1) and Bi = Bi =1
( tZs ) Assume that the theorem holds for all tZs.

( t=s+1 ) Let [3= (al,Bl),...,(as,Bs) and let -
3' = (a],8])s...s (03 ,B5) satisfy the induction

hypothesis. There are four cases to consider:

(i) The t-th step introduces a constant. That is,
(ay,By) = ((H),H) where H €D+kJ{£}.

Then, let (aét—l’sét—l) = ((H),H) and (“ét'Bit) = ((1),1).

kii) The t-th step is a multiplication. That is,
(ay,B,) = ((X,i,j),SiXSj).
Then, let (aét-l'sét—l) = ((X'Zi—l'zj-l)'Béi—leij—l)

and  (aj, ,B5,) = ((x,2i,23),85;x835)

(iii) The t-th step is a division. That is,
(at,St) = ((/,i,j),Bi/Bj).
Then, let (aét-l'sét-l) = ((X,Zi-l,zj),ﬁii_leij)

and  (o3e,83,) = ((x,21,23-1) 83, %855 1)

(iv) The t-th step is an addition/subtraction. That is,

(0, ,B,) = ((£,i,1),8;+1).

Then, let (aye 1rBre ) = ((t,Zi—l,zi),Béi_liﬁéi)
and (o), ,B5.) = ((x,2i,1),85;%1)

In all cases let Q' = [3',(0, /B3, 1), (05 ,B5).

It follows from our construction that v((Y') = v(Qt), and
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(sit—l/eét) = B,. Hence, the hypothesis holds for t=s+l, and

>

by induction the lemma holds for all t=1. a
COROLLARY 2. Let (= (al,Bl),...,(at,Bt) be any rational
algorithm over ( F(g) , D u{g}) , and suppose B, = Ai/Bi’

where Ai’Bi€ D[g\"]+ are relatively prime. Then, there exist
polynomials Cl,...,th D['g:']+ and a polynomial algorithm (',
over ( F(a) , DU{g} ), such that v(Q') = v(Qx) and &'

computes the polynomials A,C,,B,C.,...,A . C_,B.C, .
poly 1~17°1%1 ettt

Proof: Let (' be constructed as in the lemma. Then
Biiol/séi = Ai/Bi. But,' Ai and B, relatively prime implies

N + . 1 =
that, for some ciEDlP.,] + Bhi_y = B;C; and By, = B.Ci. o

As a result of the preceding corollary, we ar.e led to
ask whether it is possible for the expression-rank of a
sequence of expressions to be decreased through multiplication
by non-zero polynomials. The following two lemmas provide
the desired answer.

Suppose X,Y €D[2]+. We denote by X+Y the set
{xy | x€X , y€Y }. Note, XY is contained in but not
necessarily equal to X+Y, since some terms may cancel in the
product XY,
- If WCN<2,P‘>, then we difine the convex interior of W,

I 2§z |z=nw 9, w;€W and O:.\j.<l }.

J
{w€w | wfIW) }, the set of vertices

]

We call the set V(W)

of W. Clearly, I(W) I(V(W)).
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LEMMA 4.

If X,v€p[al", then V(X-T)STY

Proof: By definition, V(X-Y)&X:Y. Assume X-Y - XY # ¢,

( otherwise there is nothing to prove ). Let e€X-Y -~ X¥,
i.e., e is cancelled in the product XY. Since D is an integral
domain, there must exist distinct x,x'€ X, and distinct

v, y'€¥, such that e = xy = x'y'. Hence,

1/2 1/2 ~

e = (xy') (x'y) € I(X-¥). Thus, e g V(X-7),

and in general V(X-Y)<XY. o

This technical lemma allows us to give a very simple

_proof the following:

LEMMA 5. Let Xj,....X.,Y¥),..., v, €Dlal*.
Then, pE( lel,...,Xth ) = pE( xl,...,xt ).

Proof: Let W, 2 X..¥. b, , and let V. & V(W.).
_ i 1 "i%i i i
. c - .
.Slnce Vi o .Wi - I(wi) V] V(wi) I (Vi) V] Vi , it follows
that O(Vi) generates all of O(Wi) , and hence
pM( VlU"'UVt)= pM(Wlu...UWt) .

But, by lemma 4, we know that Vi < XiYiSi , and so, by

lemma 1l(a), el VyUeaou Ve ) = oyl X Nb ¥ X YBL ).
Thus, if y; denotes an arbitrary element of ¥,

we have oo X Y., ..,X. Y, )
E 171 t't

a -
2 py( lelbl+"'+xtytbt ) t

= oyl ViUe.ouv ) - t

= oy WjU-...ow, ) -t



»

el %y 191 Ve UK TB ) - ¢

pM( lel,bl U"'Uxtytbt ) - t , LEM 1l(a)
X by +...¥ X, b, ) -
oy ( X11+“"+ X bg ) t

v

‘—’*pE(Xl,...,Xt) 0

Finally, we have,

THEOREM 2.

Let (X be any rational algorithm , over ( F(a) , Du{g} ),
which computes the rati.‘onal functions Al/Bl""'Ak/Bk ,
where Ai'Bi€D[5]+ are relatively prime. Then ,

V(Q) Z pg( Ap,By,eea By ,B, ).

Proof: .By corollary 2 , we know that there exist
polynomials Cl,...,Ck € D[3]+ , and a polynomial algorithm
Q' , with v(Q') = v(Q) , such that (@' computes

A\C1,B.Cyees A C B C . But

v >
via') Z pE( Alcl,Blcl,...,Aka,Bka ) , COR 1
>
. Z op( A;,B,eeu By ,B ) , LEM 5
>
Hence , viQy) = pE( Al'Bl""'Ak’Bk ). o
COROLLARY 3. Let (0 be any rational algorithm over

( F(a) -, Du{a}l ), which computes the rational functions,

+ . .
Al/Bl""’Ak/Bk , where Ai,Bi€ Dla] are relatively prime.

-3
Then , v(Qy) Z pv( ( Albl+Blb2+...+AkT) b ) ) - 2k.

+B
2k=-1""k72zk
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In the case that the functions to be computed are all
mul;ivariate polynomials, the following corollary provides
the same bound as corollary 3, while being somewhat less

cumbersome to apply.

COROLLARY 4. Let (X be any rational algorithm over
(F(a) , pu{al ) , which computes the polynomials ,

Al,...,Ak € D[§j+. Then, Vv(Q) = pvf X A151+...+Ak5k ) ) - k.

Proof: . This follows directly from Theorem 2 and the
definitions, given the equality,
pE( Al,l,Az,l,...,Ak,l ) = pE( Ayrece By )

which was established by lemma 2(b). (m]

VI. Applications

Corollaries 3 and 4 provide straiqhtforwardvprocedurés
for reducing the problem of determining addition/subtraction
requirements for arbitrary sets of rational functions, to the
problem of determining the rank of a set of vectors in Qt .
In this way, we can generate the best lower bounds known, in
a numbér of cases optimal bounds, for a large number of
familiar arithmetic expxressions.'r

.As before, we let D denote an arbitrary integral domain,

T Most of these first appeared in [4] or [5]). Others

were given in [3].
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and F the quotient field of D. For the sake of uniformity,
let I denote the set of symbols formed from {a,x,y} by
the possible addition of primes or subscripts. I can be thought
of as an arbitrarily large pool of distinct indeterminates,
and will take the place of the set {al of the preceding
development. )

Let (X be any rational algorithm over ( F(I) , DUTI ).
As before, v((X) denotes the number of addition/subtraction

steps in Q.

Al. If (I computes the expression a, +a, + ... +a_ ,

then - v(Q) Z»n-1 .

Proof: We know, by corollary 4, that
> Ta+...Fa )b, -
VIQ) Z eyl 0 Tag*+vo#a Jby ) ) -1 .
But, it is easy to verify that the vectors in 9( lalf...+an§51 )

are all independent, over Q, and hence pv( 0 Za1+...+an5bl ) ) =n.

. a
More generally,
al + a2 +...F an
A2, If (1 computes the expression 7= ,
qn+17%n+27 T %nm
then v(Q1) Z n+m-2 . :
A3. If (X computes the pair of expressions, a,az = a,a,
and a1a4 + azé3 , ( the real and imaginary parts of the
complex product (aj+a,ij (ag+ayi) ), then vy Z 2.
Proof: By corollary 4, it suffices to verify that
pv( o 73133 - aza4)bl + (ala4 + a2a3)b2 ) ) =4 . [m]



Ad. If (1 computes the general rational fﬁnction,
anxn + a _]_xn-l +ooot ag
n , then v(Q1) Z n+m .
1y 0 ' m-1 '
a'x + a X +...+ a
m m-1 0

The following result generalizes both Theorems B and C.

*
AS. Let ¢ be any txn matrix over D , and let N (¢)
denote the number of columns of ¢ which are not identically

zero. If (X computes the matrix-vector product ,

a
l *
L I I then VIQ) Z N (9) -t .
a
n
. *
Proof: Let k =N (¢), and assume, without loss of

generality, that the first k columns of ¢ are not identicélly

11 -+ %10\ _
zero. Let ¢ =|: and for 1=ZiZk , define

¢tl Tt ¢tn

(i) 2 min { 3§ | ¢ji #0 1. By corollary 4, it suffices to

.

show that p;,( ©(E) )=k , where
v

E & (¢77a) +eoot 933, )by

+

(@) reet 93, )by

But, by the definition of [i] , we know that
{ alb[ll’azb[Z]""’akb[k] }SE.
Hence, pv( e(E) ) = pv( o({ alb[l]""’akb[k] )=k .

19.



A6. Let A 2 ( aij ) and X 2 ( xij ) be mxn and nxp
matrices, respectively. If (X computes the matrix product

A-X , then Vv(Q) Z ( m+p-1)( n-1).

In particular, this gives addition/subtraction lower
bounds of m( n-1 ) , for the product of an mxn matrix with
an n-vector , and 2n2-3n+l , for the product of two nxn

matrices.

n n-1
A7. X X ces 'xl 1
Let X 2 : . . .
n n-1
*n *m cce ¥n 1 a
. n
If (X computes the matrix-vector product Xe | 2 ’
a
then v(Q) Z n+m-1 . : 1
20

The obvious interpretation of the above is that it
requires at least n+m-1 addition/subtractions to evaluate

an n-th degree polynomial at m arbitrary points.

n(i)
a8. Let P, 2 I a,.x) , for i=1,...,t.
= i NP |
j=0
t
If (1 computes the set Py,...,Py , then v(iQ) Z L n(i) .
i=1
n n i3
A9. If (X computes the expression I z aijx y] ,
i=0 j=0

then  v(Q) = ( n+l )2

20.
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VII. Open Questions

The results and techniques of this paper leave unanswered
a number of interesting questions. Some of these, including both
a related development using substitution techniques and
observations on the structure of algorithms (if they exist)
which achieve the lower bounds given by our independence
measure, will be considered in future papers.

Of major importance is the problem of developing technidues
for lower bounds on additions, which are non-linear in the
number of indeterminants. We should mention the initial success
of Borodin and Cook [ 2 ] in this direction. It is hoped thag,
perhaps through consideration of the geometrical interpretations
employed in lemma 4, our techniques might be modified to provide

. this kind of bound. ‘ : v el D
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