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Abstract 

An extension is presented of the social/sexual mixing formalism of Blythe/Castillo­

Chavez/Busenberg, for incompletely connected activity groups. This is shown to include as 

special cases the one-sex and two-sex general solutions. A simple procedure for constructing 

mixing models for arbitrarily classified (e.g. by sex, age, geographical location, sexual 

preference) populations is outlined, including a scheme for finding the number of independent 

mixing parameters required, and a simple (linear algebra) means for finding the values of the 

dependent mixing parameters. Various worked examples are presented, including the two-sex 

problem and structured and selective mixing. 

Key Words: social/sexual mixing; sexual heterogeneity; mixing graphs; general solution; 

connectedness; HIV. 
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1. INTRODUCTION 

Interest in the sexual transmission of HIV has led to the rapid development in recent 

years of new mathematical descriptions of social/sexual mixing in heterogeneous populations 

(Nold 1980; Sattenspiel 1987a,b; Jacquez et al. 1988, 1989; Hyman and Stanley 1988, 1989; 

Blythe and Castilla-Chavez 1989; Castilla-Chavez and Blythe 1989; Busenberg and Castilla­

Chavez, 1989, 1990). The solution due to Blythe/Castillo-Chavez/Busenberg has been shown 

to be the general solution for the one-sex mixing problem (Busenberg and Castilla-Chavez, 

1990), and a related form has been derived for, and shown to be the general solution of the 

two-sex mixing problem (Castilla-Chavez and Busenberg, 1989, 1990). 

All of these solutions are written in terms of contact distributions - individuals in each of 

the groups comprising the population all take the same number of partners (contacts) per unit 

of time, and this number varies between groups, and possibly with time. An alternative 

approach studied by Kendall (1949), Frederickson (1971), Dietz and Hadeler (1988), Dietz 

(1988), Hadeler (1989 and MS) and Waldstatter (1989), considers the processes of pair 

formation and dissolution, with heterogeneity arising because different individuals have 

different rates for these processes. Some recent results show that is may be possible to map 

one approach into the other in the two-sex case (Castilla-Chavez and Busenberg MS), and 

stochastic simulation of the pair formation/dissolution processes may be a useful aid in 

formulating and understanding deterministic models of both kinds (Blythe and Castilla-Chavez 

1990, Blythe et al. in prep). 

A major (if largely unrecognized) drawback of the contact distribution framework is that 

it is very difficult to deal with incompletely connected groups (i.e., not every group mixes with 

every other group). If any "social" aspect to mixing is to be incorporated into contact 

distribution models, this deficiency must be overcome ( cf Sattenspiel 1987a,1988b; Sattenspiel 

and Simon 1988; Sattenspiel and Castilla-Chavez, 1990). 

In this paper I extend the heterogeneous contact distribution formalism of 

Blythe/Castillo-Chavez/Busenberg (see also Castilla-Chavez et.al., 1990; Castilla-Chavez and 

Busenberg, 1990) to take account of incomplete connectance between groups and show 

thereby that one and two sex models, and models with multiple classes (e.g., male and female 

homosexuals, bisexuals and heterosexuals) are all special cases. Connectance does not change 

with time. 

2. EXISTING MIXING SOLUTION 

Consider an arbitrary population divided into N groups. At time t, the ith group 
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contains Ti(t) individuals, each of whom is defined as taking ci(t) sexual partners per unit 

time (e.g. month, year). If Pij(t) (i, j = 1, 2, · ··, N) is the fraction of the ci(t) partners taken 

from group j, then the mixing problem is defined by the set of four constraints: 

(i) 0 < Pi/ t) < 1 for all i, j and t 

N 
(ii) I: p .. (t) = 1 for all i. 

. 1 lJ 
J= 

(iii) fori, j and t 

A solution to the mixing problem is a set of parameterized functions exactly prescribing the 

It is now known that the Blythe/Castillo-

Chavez/Busenberg solution is the general solution to the one-sex mixing problem (Blythe and 

Castilla-Chavez 1989; Castilla-Chavez and Blythe 1989; Dusenberg and Castilla-Chavez, 1989, 

1990; Blythe and Castilla-Chavez MS). The BCB solution is: 

all i, j, t (1) 

where 

pi(t) = 
ci(t)Ti(t) 

all i (2) N 
I: ck(t)Tk(t) 

k=1 
with 

N 
Ri(t) = 1 - k~1 pk(t) tPik' all i {3) 

and 
N 

V(t) = L pk(t) Rk(t), all i (4) 
k=1 

The { tPij} are a set of parameters known as the mixing parameters, and subject to 

(v) tP·· = ,p •• , all i, j and t 
IJ Jl 

(vi) 0 ~ tPij ~ uij' (all i, j, t) 

, where the {Uij} are simply the largest values of the {tfoij} such that all the {Ri(t)} are non-
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negative. The { <Pij} for all published particular solutions to the one-sex mixing problem have 

now been found (Blythe and Castillo-Chavez, MS; Blythe et.al., MS). 

A mixing framework is said to be completely connected if every group may mix with 

every other group (subject to (iv)) and with itself (self-loops). With the exception of the 

trivial case of pure self-mixing within each group (Pu(t) = 1, zero elsewhere, deriving from 

<Pii(t) = 1/pi(t), zero elsewhere), all solutions generated by Equation (1) are completely 

connected. 

3. MIXING WITH INCOMPLETE CONNECTION 

An incompletely connected mixing framework is one where at least one pij(t) is zero for 

all time t, regardless of the activity levels and population sizes of the groups: people in these 

groups do not mix. 

In principle the original formulation (Equation (1)) can handle such cases, but there are 

problems. Say groups l and k do not mix. Then for plk(t) = pkl(t) = 0 for all t we require 

R1(t) = 0 all t, and <folk = <Pkl = 0. Thus all the elements in the 1th row and kth column of p 

are either zeroes (as required) or else of the form Pij( t) = i>jC t )<foij. As it stands, this latter 

form is inconvenient, as the relevant { <P··} need to be functions of time, such that some R. = 0 
lJ 1 

while the others must satisfy Ri ~ 0 (essentially a linear programming problem). With just 

one missing connection per row, for example, all the Ri = 0, and we have no flexibility in the 

choice of the { <Pij}. 

To avoid this, we re-formulate Equation (1), taking explicit account of inter-group 

connectedness. The re-formulated mixing framework must have the following characteristics. 

First, it should permit a general description of mixing where an arbitrary number of 

connections are missing, and do so regardless of which connections these are. The second 

condition may be considered a corollary of the first, but is sufficiently important to be worth 

stating separately. If the population is partitioned into two classes, such that every group in 

each class mixes with every group in the other class, but with no group in the home class, then 

we have a situation exactly equivalent to two-sex mixing. This case represents complete 

degeneracy in Equation (1). We require that our new solution be able to cope with this case, 

and further that it must thereby agree with the general solution to the two-sex mixing 

problem (for complete bipartite connectedness), recently found by Castillo-Chavez and 

Busenberg (1989, 1990). Of course the new solution must reduce to the BCB equations under 

conditions of complete connectedness. 

The third condition is at once more subtle and more fundamental. It may readily be 
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demonstrated that not every incompletely connected mixing framework with heterogeneous 

ci(t) Ti(t) is valid - there may not be a solution. We expect that some relatively 

straightforward characteristic of the new solution will reveal whether or not a solution set 

exists, and if so that we can converge to a member of it. Figure (1) shows a graphical 

representation of a simple four group population where for some ci(t) Ti(t) a solution exists, 

but not for others. 

A new solution for incompletely connected mixing groups is now presented, and its ability 

to meet the above conditions evaluated. Again note that the pattern of connections between 

groups is assumed to hold for all time. 

Borrowing from graph theory, let~ be the adjacency matrix for a mixing structure, with 

_ { 1 if group i and j directly linked 
xij - 0 if not i, j = 1, 2, ·· · , N (5) 

Now define 

(6) 

i.e., qij(t) is the activity of group j relative to that of all groups linked to group i, or just the 

relative activity. If groups i and j are not connected, they have relative activity of zero with 

respect to one another. Next, define 
N 
k~1 xikck(t) Tk(t) 

Dij(t) = N ' 
:E x.kck(t) Tk(t) 

k=l J 

all i and j {7) 

as the ratio of relative activities between groups and j. Note that for completeness we 

require 

X••/X•• = 0 lJ Jl 

Redefining 

ifx .. = x .. = 0. 
lJ Jl 

and introducing the new quantities 

all i 

(8) 

all i (9) 

(10). 
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We may write the solution to the incompletely connected mixing problem as 

all i and j (11) 

which strongly resembles Equation (1). However, now the {<Pij(t)} are no longer symmetric, as 

we require 

<fo •• (t) = n .. (t) <P··(t) , 
Jl Jl lJ (12) 

and <Pij(t) is only defined where xij = 1. The time-dependence implicitly introduced into the 

{ <Pij} in Equation (10) is intended to take account of that explicitly appearing in Equation 

(13). 

We obtain solutions by specifying a set of <Pij for j ~ i (i.e. the upper triangular matrix), 

and obtain the rest (i < j) using Equation (12) (note that this is arbitrary: we must specify 

the diagonal terms <Pii' and then half of the remainder). In the next section we consider the 

question of when valid solutions exist. 
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4. EXISTENCE OF VALID SOLUTIONS 

A solution to the incompletely connected mixing problem for specified .2S exists if a set of 

¢ can be found such that conditions (i) to (iv) are satisfied for all non-negative £ and I· 
"" 
Consider each condition in turn: 

I) For small enough non-negative { ¢ij(t)}, the Ri(t) ;::: 0, so that condition (i) is satisfied. 

II) Summing over all j in Equation (11), the pij(t) clearly sum to unity, for all i. Therefore 

(ii) is satisfied. 

III) Condition (iii) must be impqsed, just as in the BCB and two-sex problems. 

IV) Constraint (iv) may be written 

P··(t) x .. c.(t) T.(t) 
1J 1J J J 

P··(t) = x .. c.(t) T.(t) 
J1 J1 1 1 

qij(t) 

- q .. (t) n .. (t) 
Jl Jl 

(13) 

for all i and j where xij = 1. Substituting into Equation (11), this amounts to the requirement 

(for the non-degenerate case of all Ri > 0), that 

v .. (t) = n .. (t) v.(t) , 
lJ J1 J 

where x .. = 1. 
1J 

(14) 

As diagonal cases (i=j) are automatically satisfied, and as Dji = 1/Dij' we may dispose of all 

but M of these simultaneous equations at once (where M is the number of non-zero xij above 

the diagonal, i.e., the number of links between groups). Further, these equations are not all 

independent, and in fact we require at most N-1 of them (if (14) holds for any i and all j #i, 

then it holds for all i). 

Now let 

N 
'lr· = n x .. , 

1 j=1 1J 
all i 

Then 1ri = 0 if row i of~ contains any zeros, 1ri = 1 if row i contains only ones. So 

N 
r = E 'lr· 

i=1 1 

(15) 

(16) 

is the number of rows of~ which do not contain zeros. For any pair of rows (say k and I) 

with 'Irk = 1ri = 1, we have Dkj = Dik = 1, and qkj = qij (all j), i.e. Vk = VI. Hence (14) is 
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satisfied for I = k, j = I. Further Dkj = Dlj (all j), so that choosing i = k (or l) in (14) 

reduces the number of simultaneous equations needed by two. This result readily extends to 

general r, and we may write the following: 

(a) If 3 i such that 'll'i = 1, then choose one of these (say i=k). Equation (14) then becomes 

the set of N -r independent equations 

where j =/:. k and '~~'j'~~'k = 0 (17) 

(b) Alternatively, if r=O, then choose any i, and there are then N -1 independent equations of 

the form (14) with j::;fi. 

Thus, if r=N (completely connected), we need solve no equations, and if r=O or 1 we need 

N-1 equations. Hence we may have at most K = M+ms-N+max{1,r} arbitrary constant tjJ •• 
lJ 

(j ~ i), where ms is the number of self-loops (where xii = 1, each i). So for the completely 

connected case (r=N, m8 =N, M=N(N-1)/2), we may have N(N+1)/2 arbitrary t/Jij' i.e. all of 

them. For r<N, K<M+ms, with N-max{1,r} of the t/Jij having to take on values at each time 

t such that (17) is satisfied. Now let X be the set of all t/Jij for j ~i, let x A be the subset which 

will be functions of time such that (17) is satisfied, and xc the complementary subset of K 

arbitrary constant t/Jij (i.e. x = xA uxc)· Then a valid solution to the mixing problem is a 

partition of x into XA and Xc with non-negative constant t/Jij t xc, such that (17) is satisfied, 

tPij t XA are non-negative and Ri(t) ~ 0 (all i, t) with at least one Ri(t) > 0. The conditions 

for existence of such solutions are not yet known for the incompletely connected problem, but 

the strong intuitive conjecture that ms=N (all groups have self-loops) is a sufficient condition 

has not yet found a counter example. 

5. SOME EXAMPLES 

We will look at a few examples of the general equation (11) for incompletely connected 

multi-group mixing, paying particular attention to how well it meets the requirements stated 

in Section 3, and to strategies for choosing the complementary set Xc· 

Example 1: Xij = 1, all i and j. This corresponds to complete connection (all vertices of 

the mixing graph are adjacent). Then 

(18) 
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and Dij(t) = 1, implying tPij(t) = tPji(t), and the time dependence may be dropped. Hence 

Vi(t) = V(t) for all i, and the solution collapses back to the BCB equation (1), as required. 

Example 2.: x1. = x.1 = 1, X··= 1 (all j), X·· = 0 elsewhere. 
J J JJ lJ 

This describes a homosexual population with a core group (i=1 w.l.o.g.), and N-1 peripheral 

groups. The peripheral groups mix in the home group and the core group, but no other (see 

Figure 2). 

Here M=N-1, ms=N and r=1, so we can have K=N arbitrary constants. Let us choose 

these as the mixing parameters of the core group, and denote the N-1 ¢ij to be calculated by 

Ok, k=1,2,-··N-1. Then 

¢ij = crj 

tP·· = (J. 1 ' JJ J-

(0 < crj < 1, all j) 

j * 1 

where crj are arbitrary parameters. 

Choosing our reference group in Equation (17) as group 1, we have N-1 equations 

j = 2, 3, ··· N 

which may easily be cast in the form 

where~ is the (N-1) x (N-1) matrix 

0 

0 

(19) 

(20) 

(21) 

(22) . 



and lJ is the vector 

where 

Now 

IJ= 

1~1 = (~1)N(N-1) f- 0' 

k~2 q1kqkk 

-11-

(23) 

(24) 

(25) 

~ is non-negative, lJ may be shown to be positive, so we are guaranteed a positive solution 

vector ~- This gives a valid solution to the mixing problem if all Ri ;:::: 0. A sufficient 

condition (Ok < 1) is 

fork= 1, ···, N-1 (26) 

if 0 < aj $ 1 for all j. For example, we can only use aj = 1, all j, if 

allj>l (27) 

Example .3.: Adjacency matrix ~ bipartite. There are two cases of note. In the first, the 

"in-mixing" case, we may write~ as the partition (see Figure 3) 

~= (29) 

where ~h and J2 are n x m and n x m matrices of ones respectively, and 01 and 02 are m x n 

and n x m matrices of zeroes respectively. Defining 
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(1) c. T. 
P· (t) = m J J = q .. 

J 'E T lJ 
k=1 ck k 

fori 5 n,j 5 m (29) 

and 

_(2) em+£ T m+£ . . 
P£ (t) = n = qij for 1 > n, J > m 

'E cm+r Tm+r 
r=1 

(30) 

with 
(1) m _(1) 

R. (t) = 1 - 'E pk (t) ¢·k(t) 
J k=1 J 

(31) 

(2) n _(2) 
R£ (t) = 1 - ~ Pr (t) 4>m+e n+£(t) 

r=1 ' 
(32) 

(33) 

(34) 

we see that this partitioning results in two decoupled but internally completely connected sub­

populations. We may of course then treat each as separate populations. 

The second major case of interest is complete "out mixing" case (see Figure 4). Here, 

(36) 

which is the adjacency matrix for a fully bipartite graph (two classes, with every element in 

one connected to all the elements in the other, but to none in the home class). Here 01 is n1 x 

n2. J2 is n1 x n1, J2 is n2 x n2 and 02 is n2 x n1, where n2 = n-n1. 

This problem may be approached with the full equation for all i and j (Equation (11)), 

but as with the previous example, it is instructive to define new variables for the two classes 
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(i ~ n1 and i > n1). 

(1) (1) 
ck Tk = ckTk fork~ n1 

(2) (2) 
(36) 

ce Te =cn1+tTn1+t fore~ n 

Then 
(1) /2)T(2) 

q _ e e e ~ n2 (37) e - n2 (2) (2) ' 
E cr Tr 

r=1 
and 

(2) /2)T(1) 
q - k k k ~ n1 (38) k - n1 (1) (1) ' 

E cr Tr 
r=1 

are the non-zero partitions of the qij matrix. Next 

R(1) _ 1 i: (1) /1) k ~ n1 (39) k-- qr kr' 
r=1 

and 

R(2)- 1 E (2) /2) e-- qr tr' 
r=1 

e ~ n2 (40) 

where 

/1)- tP 
kt - k,n1+e 

/2)- tP 
(41) 

tk - n1+e1 'k 

is the partition of the t/J matrix. Now let 

v(1)(t) = i: q~1) R~2) (42) 
r=l 

v<2)(t) = i: q~2) Rp) 
r=1 

{43) 

so that we have mixing probabilities for the two subpopulations 

I· 



-14-

(44) 

and 

(45) 

with k = 1,2,···n1, and e = 1,2,···n2. Equations (44) and (45) are now exactly in the form 

derived by Busenberg and Castilla-Chavez (1989, 1990) as the general solution to the two-sex 

mixing problem (they also give the general solution for an age-structured population). Their 

analysis reveals the existence of many types of particular solution, with only one of them 

("Ross's solution") being separable. 

Where cross-connection between the two classes (sexes) is not complete, we must use the 

full model Equation (11) rather than the special case Equation (44, 45), but this need present 

no especial difficulties, as the problem is no different in kind from any other incompletely 

connected multi-group problem - we have merely classified the rows of the mixing matrix. 

Example 1: (Structured mixing) 

The "structured mixing" formalism of Jacquez et.al. (1989) is a complicated parameter­

rich model designed to include a variety of mixing structures for AIDS transmission modelling. 

We shall use slightly different notation than that of Jacquez et.al. (1989) for the sake of 

consistency with the rest of this paper. 

The population is divided along two dimensions. The first partition is into "population 

sub-groups," according to type of person (e.g. drug user, male homosexual) with characteristic 

levels of sexual activity {ci(t)}. The second partition is into "behavior sub-groups" (called 

activity sub-groups by Jacquez et.al. (1989), according to location or practices. Structured 

mixing may best be understood as follows. 

Let Nr(t) (r = 1, 2, ···, n) be the population of population sub-group r, at timet, and let 

cr(t) be the sexual activity (partners per unit time) of individuals in the sub-group. Now 

partition the members of each population sub-group according to the discrete probability 

density function f, such that frsN(t) is the number of r-type people in behavior sub-group s (s 

= 1, 2, · · ·, m). The {frs} are specified, and may be functions of time. Mixing is specified 

across R = 1, 2, ···, n within each behavior sub-group. 

In order to phrase this model in the language of this paper, we must "unpack" the 

compact notation of Jacquez et.al. (1989). We regard the behavior groups as labelled blocks of 
'· 
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an (nxm) x (nxm) mixing matrix. Each such block is comprised of n rows (one for each level 

of activity) and n columns (for those portions of mixing occurring within the behavior group). 

The { ci ( t)} in the mixing matrix are reflected by 

e = 1, 2, ... , m k = 1, 2, ···, n (46) 

reflecting the fact that the same population sub-groups are represented in every behavior sub­

group. The population associated with each class (i.e. each row of our block-composed mixing 

matrix) is given by 

r = 1, 2, ···, n s = 1, 2, ···, m {47) 

The adjacency matrix.! contains no zeroes: absence of contact between classes i and j (say) 

occurs because one of these classes is empty (some frs = 0_. This is covered by constraint 

(iv), so that structured mixing is not an example of incomplete connection, and is covered by 

Equation (1) (with one provision discussed in the next example). 

It should be noted that Jacquez et.al. (1989) do not introduce the matrix f with the 

interpretation (partition of r-people across the s-groups) used here. They interpret frs as the 

fraction of the partners of a r-person who come from behavior group s. The two 

interpretations are equivalent, as frs acts as a scale factor for N r in behavior groups ( c.f. 

Jacquez et.al., 1989, p. 310); this may clearly be seen by writing the balance constraint (iii) in 

the manner of Jacquez et.al. (1989) for sexual contacts between group r and group r1 

individuals in behavior group s: 

crNrfrsp(s) 1 = c 1N 1f 1 p(s) 1 rr r r rs rr 
{48) 

Examole A: {Selective mixing) 

Another paper from the Michigan group {Koopman et.al., 1989) considers sexual mixing, 

effectively within a single behavior class of the previous example, according to the following 

schema. For a population consisting of N groups, Koopman et.al. {1989) introduce a 

"precursor," social, mixing process. Here all the individuals in group i have hi social contacts 

per unit time, and there is some prescribed mixing pattern (Koopman et.al. {1989) use 

proportionate mixing). Conditional upon a social encounter between an i and a j individual, 

there is then a probability dij that they find each other mutually acceptable, and that they 

then have sex. In Koopman et.al. {1989), a component of dij is a time-dependent function 

which adjusts the probability of sex occurring according to the availability of prospective 

partners. Morris (pers. comm.) uses a simpler version of this model in her log-linear 
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estimation scheme: all {hi} are assumed to be equal, and the { dij} are not functions. 

Some of the { dij} may have zero values for all time, if one group never accepts people 

from another as sexual partners, so this formulation is inherently one with incomplete 

connectedness. It is convenient (but does not change the model in any way) to define the 

usual adjacency matrix ~ by 

if dij(t) > 0 for any t 

if dij(t) = 0 for all t. 

Then selective mixing may be written 

X·· d .. h. T. (t) 
(t) - lJ lJ J J 

Pij - N 
L xik dik hk Tk (t) 

k=1 

(49) 

(50) 

Not all social encounters lead to sex, and we may calculate {ci(t)}, the rates of acquisition of 

partners, per unit time, for all groups: 

(i = 1, 2, · · ·, N). Hence we may write 

Pij(t) = xij Lij(t) cj(t) Tj(t) 

N 
= q .. (t) L .. (t) E x-kck(t)Tk(t) 

lJ lJ k=1 1 

(all i and j), where qij(t) is given by Equation (6), and 

d .• h. h. 
Lij(t) = Lji(t) = lJ N J 

ci(t) cj(t) E hk Tk(t) 
k=1 

(51) 

(52) 

(53) 

Equation (52) is thus a particular case of Equation (11), where the {<Pij} should be obtained 

from 
~(t)RjCt) N 

v ( ) + <P·. = L.. E X·kCkTk i t lJ 1J k=1 1 
(54) 

In the numerical example considered by Koopman et.al. (1989), N=9, M=27, ms=9 and r=3, 
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so that out of a total of 36 entries in the f/1 matrix, we have at most K=30 of them available 
'""' 

for arbitrary assignment. In fact, in this case making the f/1 some function of the L would 
'""' ..... 

probably be a better strategy. 

It is thus clear that the general case of selective mixing falls within the circuit of Equation 

(11); of course, if the {dij} are always positive, connectedness is complete and Equation (1) 

will suffice. Note that if an incompletely connected mixing model is used within one or more of 

the behavior groups of Jacquez et.al. (1989)--see previous example--then of course the 

structured mixing model is incompletely connected, and Equation (11) rather than Equation 

(1) must be used. The difference between zeroes in {dij} and zeroes in {frs} should be 

appreciated. 

Example ft: (Costly search) 

Kaplan et.al. (1989) suggest a model for the partner selection process in a male 

homosexual population with N groups. Each group has its distinct ci(t) as usual, and are 

ordered in such a way that increasing i means increasing risk. If individuals in group i refuse 

partners whose risk index is at most i + k (and hence presumably search for others), then one 

way to describe the mixing process is with the adjacency matrix 

{55) 
elsewhere 

(the lower occurs because xji = xij; the i class is itself too risky for people in classes 

lower than i-k). There is thus a band running diagonally across the adjacency matrix. In this 

case, with N groups, we have 

N(N-1) (N-k)(N-k-1) 
M = 2 - 2 (56) 

with ms =Nand r = 0, then K = M+l. For example, with N=6 and K=1, K = 6; i.e., of the 

11 { f/lij} on or above the diagonal, all but 6 are required to maintain balance between groups 

and ensure a solution. 

An alternative would be to use a like-with-like formalism {Blythe and Castilla-Chavez, 

1989; Castilla-Chavez and Blythe, 1989), where all groups are connected but preference falls 

off away from the diagonal. Castilla-Chavez and Blythe {1989) looked at a preference function 

f/1 in the form of a narrow rectangle around the line i = j. As the original spirit of Kaplan 

et.al. 's (1989) paper really involves preference or selection rather than complete disconnection, 

the like-with-like approach may be more appropriate in this case. 



-18-

6.. DISCUSSION AND CONCLUSIONS 

We have seen that the incomplete-connection solution, Equation (11), encompasses both 

the general solution to the one-sex and to the two-sex problem. As Blythe and Castilla­

Chavez (MS) and this paper have demonstrated, all published solutions to the one-sex problem 

can be derived from particular choices of { ¢ij}. 

A point worth commenting on is the calculation of the {¢ij}. It is not difficult to write 

down an algorithm for calculating the 4> values n~eded to satisfy Equation (14), but to be 

completely general (allowing arbitrary choice of Xc and its reference element k in Equation 

( 17)) this involves an unwarranted proliferation of indices. It should be clear, however, that 

all that is involved is the solution of an equation of the form ~ ~ = :e, where ~ and :e are 

given, and ~ contains the necessary ¢ij values. This is a simple operation in linear algebra that 

can be performed by standard software incorporated into the epidemic modelling package. 

The only point of concern is whether a valid solution can be found at all for certain 

mixing systems, particularly if there are few or no self-loops. It must be accepted that a 

mixing problem, in epidemiology or otherwise, where no solution can be found for given 

population and sexual activity vectors, is fundamentally ill-posed. It may be that the most 

effective approach will be to sacrifice the independence of the levels of sexual activity in the 

various groups by making some at least of these vary with time, perhaps as in Koopman et.al. 

(1989), or as functions of the {pjCt)}, in order to satisfy the mixing constants. This should be 

seen as an attempt to keep the ¢ij constant, rather than the more rigid constraint of keeping 

all the PjjCt) constant (as in Anderson et.al. 1989, Gupta et.al. 1989). 
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FIGURE CAPTIONS 

1. Not all mixing problems have a solution. Shown are two graphs representing N=4 mixing 

cases and their adjacency matrices. Each circle represents a group (number in 

parenthesis is group number) with a given population and characteristic activity level 

(lower number in each circle, ci Ti). Lines between groups indicate that two groups mix, 

and self-loops join a group to itself. (a) No solution possible (b) An infinite number of 

solutions possible. 

2. Mixing graph for multi-group mixing with a "core group" (group 1), with which all 

groups mix, and N-1 peripheral or satellite groups, which mix only with the home group 

and the core group, not with each other. The adjacency matrix has ones in the first row, 

the first column, and the main diagonal, with zero elsewhere. 

3. Bipartite graph, in-mixing case. All groups in class (1) mix, and all groups in class (2) 

mix, with no cross-over between classes. See Equation (29) for the adjacency matrix. 

Problem collapses to two separate populations. 

4. Bipartite graph, out-mixing or two-sex case. All groups in class (1) mix with all groups 

in class (2), with no group mixing with any group in the home class. See Equation (36) 

for the adjacency matrix. 
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