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ALLOSTERIC MECHANISMS 

Michael V. LeVine, Ph.D. 

Cornell University 2016 

It is well documented that molecular processes can be thermodynamically coupled 

such that the shift in the equilibrium of one process (e.g. ligand binding) can modify 

the kinetics and/or equilibrium of another process (e.g. receptor activation). This form 

of thermodynamic coupling is known as allostery and is believed to be a ubiquitous 

mechanism of function throughout cell, especially in the function of membrane 

proteins such as G protein-coupled receptors and transporters. In addition, the 

existence of ligand-specific allosteric modulation in both transporters and GPCRs 

emphasizes the importance of understanding how allostery works in these systems in 

terms of atomic-level physical mechanisms. Towards that goal, the work described in 

this dissertation will focus on two specific aims: i) the development of theoretical 

models that provide insight into the structural and dynamic features required for 

systems to be allosteric, and ii) the development of computational methods that can 

identify these features in specific systems of interest. First, we present a new 

theoretical model of allostery, the Allosteric Ising Model, which leads to several 

analytical conclusions regarding the structural and energetic requirements for long-

distance allostery. Next, we present N-body Information Theory (NbIT) analysis, 

which improves on existing methods for identifying the structural components that act 

as allosteric channels. We illustrate the power of NbIT by identifying the allosteric 

channel underlying allosteric modulation of intracellular domain motions by substrate 



	
  

in LeuT. Then we present a random forest-based method for identifying class-specific 

behavior from ensembles of the same protein bound to different ligands. This method 

is able to identify interactions that respond in a hallucinogen-specific manner in the 

serotonin receptor 5-HT2AR. Finally, we present a generalized form of the two-state 

allosteric efficacy that can be applied to discrete and continuous variables. This 

description of allosteric coupling suggests that mutual information, a common 

measure of allostery, is fundamentally related to allostery but in itself is not a good 

quantification of it. The new quantification of allosteric coupling is then used to 

identify allosteric couplings in the simplest allosteric system, alanine dipeptide.  
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1. Introduction 

Note: much of the text in this chapter has been adapted from two previously published 

manuscripts1,2, with permission from the publisher.  

1.1. Proteins as Molecular Machines 

British science fiction writer Arthur C. Clark famously stated, “any sufficiently 

advanced technology is indistinguishable from magic”3. Technology has played a 

crucial role in the evolution of human society, and while Clark’s quote is often used in 

reference to potential alien or futuristic technologies, the technology of today is often 

indistinguishable from the magic of yesterday. Since the earliest days of civilization, 

we have invented and constructed tools and machines to aid us in performing the 

many difficult tasks that are require for human survival and flourishing. In particular, 

much of the history of mankind was forged on the back of mechanical engineering – 

on the back of clocks, steam engines, pumps, and power plants. But while to the 

modern, educated eye, man-made machines are entirely distinguishable from magic, as 

we have the tools from mathematics, physics, and engineering to build them and 

understand how they work, there is a whole hidden world of machines that were not 

built by man. These machines were built over millions of years by the process of 

biological evolution. They are the machines that the human species is made of – the 

proteins, nucleic acids, and other biomolecules that make up human cells and the cells 

of every other living organism on the planet. However, because man didn’t design 

these machines, because they arose out of random mutation and natural selection, even 

the most well-studied modern scientist does not have a complete understanding as to 

how the machines work, and up to this point, there has been limited success in 

building our own synthetic biomolecular machines de novo. This lack of 
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understanding may explain to some extent, why for much of history, humanity largely 

subscribed to a vitalistic view of biology; it was believed that the matter composing 

living organisms was somehow fundamentally different from that of non-living 

matter. Vitalism4, which mistook molecular biology for magic, did eventually fall out 

of favor, in part due to Friedrich Wohler’s 1828 discovery5 that a biological substance, 

urea, could be synthesized without the use of biological material. Only within the last 

century, in 1931, did the physiologist John Scott Haldane declare “biologists have 

almost unanimously abandoned vitalism as an acknowledged belief”6. With the 

replacement of vitalism with mechanistic and reductionist scientific philosophies, 

biological entities such as protein began to be described in the language of man-made 

machines, merging the life sciences with the physical sciences and giving birth to the 

fields of biochemistry and biophysics.   

Proteins have been conceptualized as molecular machines since as early as 19507, 

when the term was used to describe the oxygen transport protein hemoglobin. Just as 

mechanical machines are not random assemblies of parts, but instead are able to 

perform their functions due to the purposeful arrangement of those parts by engineers, 

proteins are not simply linear biopolymers of amino acids, and have evolved to 

perform their many functions by folding into 3-dimensional structures that are 

composed of a hierarchy of secondary and tertiary structural elements. These 3-

dimensional structures can now be determined using techniques like x-ray 

crystallography8, nuclear magnetic resonance (NMR)9, and cryo-electron microscopy 

(cryoEM)10, and the growing accessibility of protein structural data has led to a 

conserved effort in the theme of structure-function relationships11–13, in which we 

would like to deduce the mechanism of a protein’s function through the structures the 

protein takes on.  
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However, a protein’s function cannot be fully understood through only the structures 

or states in which it can be found in. In order to describe the physical mechanisms 

involved in the function of a protein it is essential to i) define the states involved in the 

functional process in terms of molecular structure, ii) define the relations among those 

states in a kinetic model dependent on rate and equilibrium constants, and iii) express 

the protein function in terms of the kinetic model. The thermodynamics and kinetics of 

protein function have been studied by biochemists and biophysicists for some time, 

and detailed experiment and analysis has revealed that essential rate and equilibrium 

constants that describe the state and conformational changes of the protein are often 

modulated by its environment (especially in the case of membrane proteins) and by the 

ions, substrates, and ligands involved in the functional process. This crucial 

modulation of the kinetics and thermodynamics of the protein by outside actors is 

known as allostery. Despite the apparently fall of vitalism in biology, allostery is still 

largely invoked as a magic-like biophysical phenomenon with little mechanistic 

understanding. Allostery is often used as the answer for questions of “how”, such as 

“how does a ligand activate a receptor”, but this answer is not satisfying as it provides 

very little new understanding of the nature of the receptor itself or the nature of the 

specific receptor-ligand interaction. It is likely that more important are the questions 

such as “how does the ligand activate the receptor allosterically”, which is a question 

that is often difficult to answer due to the fact that allostery has been largely 

phenomenological. Developing a physics-based, mechanistic description of the 

phenomenon of allostery will allow for us to answer questions that forward out 

understanding of biomolecular machines, and has been the focus of my doctoral 

research and this dissertation.  
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1.1.1. Allostery 

1.1.1.1. History 

It is often stated that the first recorded observation of allostery was by Christian Bohr, 

who found that oxygen displayed an unusual shaped equilibrium binding curve14. In 

the simple case of a ligand L binding a protein P, the equilibrium is written as: 

 L + P kon

koff
⎯ →⎯← ⎯⎯ LP   (1.1) 

where kon and koff are the rate constants for binding and unbinding, respectively. At 

equilibrium, this defines the equilibrium binding dissociation constant, 

 LP[ ]
L[ ] P[ ] =

koff
kon

= KD   (1.2) 

It can easily be shown that the fraction of ligand:protein complexes as a function of 

the concentration of ligand is simply the Michaelis-Henri equation: 

 LP[ ]
P[ ]+ LP[ ] =

L[ ]
KD + L[ ]   (1.3) 

If one plots this fraction as a function of the concentration of ligand, the resulting 

curve is known as a saturation binding curve (see Figure	
  1).   
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Figure	
  1.	
  Expected saturation binding curve for Michaelis-Henri binding.  

The fraction of protein bound to ligand is shown as a function of ligand concentration 

(in arbitrary unites) for KD of 1 (black), 10 (red), 100 (blue), and 1000 (green). 

As hemoglobin is a four subunit protein and can binding one oxygen in each subunit, 

if the binding were independent in each subunit, (1.3) would be sufficient and binding 

would display the expected saturation behavior.  However, Bohr found that 

hemoglobin did not generate display the expected saturation binding curve, but rather 

a sigmoidal binding curve that was dependent on the partial pressure of carbon dioxide 

(see Figure 2).  
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Figure 2. Sigmoidal oxygen binding in hemoglobin.  

The original plot by Bohr14 indicating both cooperative binding of oxygen and 

competitive binding by carbon dioxide, reproduced with permission. The x-axis is the 

oxygen partial pressure in mmHg, and the y-axis is the percentage oxy-hemoglobin. 

Reproduced with permission. 

This led to the interpretation that binding in one subunit of hemoglobin was changing 

the binding affinity of oxygen binding in the other subunits. This phenomena and 

others like it are generally referred to as cooperativity. 

Despite the role of hemoglobin as a prototypical allosteric system, there were many 

examples of allostery in a non-oligomeric system by the mid 1900s. In 1963, Monod, 

Changeux, and Jacob noted that “[it] would appear, in other words, that certain 

proteins, acting at critical metabolic steps, are electively endowed with specific 



	
  7	
  

functions of regulation and coordination; through the agency of these proteins, a given 

biochemical reaction is eventually controlled by a metabolite acting apparently as a 

physiological "signal" rather than as a chemically necessary component of the reaction 

itself”15. Here, they referred to the common process of end-product inhibition, in 

which enzymes are often inhibits by downstream metabolites in a non-competitive 

manner. While this observation can be seen at the spark that drove Monod, Changeux, 

and Jacob to being their work on a theory of allostery, which will be described in the 

following section (Section 1.1.1.2. Theoretical Background), many instances of non-

oligomeric allostery have been observed since16, and it is now believed that nearly all 

protein may be allosteric17. Of specific interest to pharmacology and medicine has 

been the allostery involved in the activation of receptor proteins such as the G protein 

coupled receptors (GPCRs). In addition, many other membrane proteins have been 

noted to be allosteric, such as the secondary active symporters. These two systems will 

be the focus of study in this dissertation, and will be described in significant detail in 

Section 1.1.2.	
  Allostery	
  in	
  Membrane	
  Proteins.  

1.1.1.2. Theoretical Background 

Due to the ubiquitous nature of allostery, many have sought to define it using 

quantitative, theoretical models. In order to interface with experiments, many of these 

models are thermodynamic in nature. The first model is known as the Monod-Wyman-

Changeux (MWC) model18 and was constructed to describe the cooperativity among 

several ligands binding to the same protein. In the following description of the model, 

we will differ from the original notation used by MWC in order to be consistent in 
model notation throughout the dissertation. Rate constants will be written as kprocess

state , 

where the subscript denotes the transformation process and the superscript denotes 

relevant characteristics about the state of the system on which the process is acting. 
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Similarly, an equilibrium constant will be written as Kprocess
state , where the state and 

process correspond to those of the forward reaction. In the cases presented throughout 

the dissertation, these characteristics will include, but are not limited to, being 

activated or bound to ligands; the unbound, inactive state will be taken as default and 

not indicated as a superscript. In the MWC model, one imagines an oligomer of 

identical protomers. Each protomer has two states, R and T, which refer to be 

“relaxed” or “tense”, respectively. Additionally, the protomers within an oligomer are 

forced to be in identical states such that the whole oligomer has only two states, R and 

T. We will refer to the protomer as P, and will note the state with subscript, and their 

equilibrium constant will be denoted as Ktense.  

 PT[ ]
PR[ ] = Ktense   (1.4) 

Ligand can bind sequentially to either state such that 

 PRL[ ]
PR[ ] L[ ] = Kbind,L

R   (1.5) 

and 

 PTL[ ]
PT[ ] L[ ] = Kbind,L

T   (1.6) 

We will define the ratio of these binding affinities as 

 α =
Kbind,L
R

Kbind,L
T   (1.7) 

Taking into account the probabilities for n identical binding sites, the following 

equilibrium equations are written: 
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PRL[ ] = n PR[ ] L[ ]
Kbind,L
R PTL[ ] = n PT[ ] L[ ]

Kbind,L
T

PR L( )2⎡⎣ ⎤⎦ =
n −1
2

PRL[ ] L[ ]
Kbind,L
R PT L( )2⎡⎣ ⎤⎦ =

n −1
2

PTL[ ] L[ ]
Kbind,L
T

! !

PR L( )n⎡⎣ ⎤⎦ =
1
n
R L( )n−1⎡⎣ ⎤⎦ L[ ]
Kbind,L
R PT L( )n⎡⎣ ⎤⎦ =

1
n
PT L( )n−1⎡⎣ ⎤⎦ L[ ]
Kbind,L
T

  (1.8) 

The fraction of protein bound to the ligand as a function of ligand concentration, YL is 

then: 

 YL =
Ktenseα

L[ ]
Kbind,L
R 1+α L[ ]

Kbind,L
R

⎛
⎝⎜

⎞
⎠⎟

n−1

+ L[ ]
Kbind,L
R 1+ L[ ]

Kbind,L
R

⎛
⎝⎜

⎞
⎠⎟

n−1

Ktense 1+α
L[ ]

Kbind,L
R

⎛
⎝⎜

⎞
⎠⎟

n

+ 1+ L[ ]
Kbind,L
R

⎛
⎝⎜

⎞
⎠⎟

n   (1.9) 

In the MWC model, the parameters that control the observed coopertivity are Ktense 

and α. Ktense, the intrinsic conformational preference of the protein, controls how 

slowly the sigmoid saturates. As Ktense is increased, the saturation occurs more slowly. 

α, which describes the degree of ligand preference for binding the R state over the T 

state, controls how sharp the sigmoidal function is (e.g. the slope around the inflexion 

point). While this model can qualitatively predict many of the features of cooperative 

proteins, several assumptions are made that limit the use. First, it assumes that the 

protomers must all be in the same state. This implies that there must be an additional 

parameter that describes the coupling between protomers, and that the parameter is at 

the limit of maximal coupling. Additionally, once a ligand binds, there is no 

equilibrium established between bound T and R states, which can only be assumed if 

there is a separation of time scales between the equilibriums between the T and R 

states while bound to ligand and all other equilibriums. While extended approaches of 

the MWC model have been developed to remove these assumptions, they most relate 
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to modeling cooperativity in oligomeric systems, which is not the specific focus of this 

dissertation.  

Even within these generalizations, the MWC model fails to describe allostery within 

monomers, such as allosteric modulation of an enzyme’s activity by a non-substrate 

ligand, or activation of a receptor by the receptor’s ligand. To describe allostery within 

the context of a ligand activating a single protomer, the two-state allosteric model 

(TSAM) was developed. As an example, one can imagine a description of protein 

function in terms of its two distinct states, one of which is “active” and the other is 

“inactive”. We can represent the equilibrium of such a protein transitioning between 

an “inactive” state (P) and an “active” state (P*). 

 P kactivate

kinactivate
⎯ →⎯⎯← ⎯⎯⎯ P*   (1.10) 

and 

 Kactivate =
kactivate
kinactivate

  (1.11) 

The binding of ligand (L) to P  

 L + P
kbind,L

kunbind,L
⎯ →⎯⎯← ⎯⎯⎯ LP   (1.12) 

can modify the equilibrium between in active and active states in some way: 

 LP kactivate
L

k inactivate
L

⎯ →⎯⎯← ⎯⎯⎯ LP*   (1.13) 

so that a new equilibrium constant is achieved 

 Kactivate
L = kactivate

L

kinactivate
L   (1.14) 
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This corresponds to the following thermodynamic cycle connecting the activation and 

the ligand binding processes: 

	
  

Scheme 1. The thermodynamic cycle for protein activation and ligand binding. 

For this thermodynamic cycle, it is possible to quantify the allosteric efficacy. The 

allosteric efficacy is a measure of the allosteric coupling between two equilibrium 

processes18–20, and can be used to characterize the allostery in the thermodynamic 

cycle presented in Scheme 1. The allosteric efficacy, α, with which this particular 

ligand binding process modifies the activation equilibrium, is expressed as the ratio of 

the equilibrium constants: 

 αactivate
bind,L = Kactivate

L

Kactivate

  (1.15) 

It should be noted that the α of the TSAM turns out to be equivalent to the α used in 

the MWC model, which may suggest that it is a fundamental characteristic of models 

of allostery in general. In an equilibrium regime, the binding equilibrium constants of 

L to P and P*, will also change proportionately, such that the allosteric efficacy can 

equivalently be defined as 

P LP 

P* LP* 

L

L
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 αactivate
bind,L =

Kbind,L
*

Kbind,L

  (1.16) 

Recalling that an equilibrium constant is a function of the difference in free energy of 

the two states: 

 K = e−βΔG   (1.17) 

then 

 − 1
β
log αactivate

bind,L( ) = G LP*( ) +G L + P( )−G LP( )−G L + P*( )   (1.18) 

When α = 1, the ligand binding is not coupled to the state of the protein, whereas an α 

> 1 denotes positive coupling (i.e., the binding of ligand increases the probability of 

the active state) and α < 1 denotes a negative coupling (i.e., the binding decreases the 

probability of the inactive state). This type of allostery in which the ligand modulates 

an equilibrium constant, is known as K-type allostery and is recognizable in a great 

variety of systems16,21. One of the most notable examples is the activation of receptors 

(e.g., GPCRs) by ligands, which will be discussed in the following section.  

Notably, however, in addition to K-type allosteric modulation of equilibrium 

constants, the experimental evidence pointing to the modulation of maximum velocity 

of enzymatic reaction, vmax , by allosteric ligands indicates that there is a second type 

of allosteric modulation possible. In Michaelis-Menten kinetics22, one uses a two-step, 

irreversible kinetic model: 

 E + S
kbind,S

kunbind,S
⎯ →⎯⎯← ⎯⎯⎯ ES kcat⎯ →⎯ E + P   (1.19) 

The rate of product formation is then: 
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 d P[ ]
dt

=
vmax S[ ]
KD + S[ ]   (1.20) 

where 

 vmax = kcat E[ ]+ ES[ ]( )   (1.21) 

The second type of allosteric modulation describes the case in which vmax is modulated 

by changing the rate constants, and is known as V-type allostery18,21. V-type allostery 

has been identified in several enzymes, although it is currently thought to be rare, 

accounting for less than 1% of allosteric mechanisms. Notably, some G proteins have 

been shown to exhibit V-type allosteric regulation. In particular, GTPase activating 

proteins (GAPs) bind to G proteins and increase the kcat of GTP hydrolysis. For 

p21ras, for example, kcat was shown to increased by over four orders of magnitude23. 

This type of allostery couples a binding reaction, 

 GAP +G
kbind,GAP

kunbind,GAP
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ GAPG   (1.22) 

to GTP hydrolysis, 

 G +GTP khydrolysis⎯ →⎯⎯ G +GDP + PI   (1.23) 

as is shown in Scheme 2: 
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Scheme 2. The kinetic scheme for receptor GAP binding coupled to GTP hydrolysis 

To illustrate this type of allostery we can quantify the modulation effects using the V-

type allosteric efficacy, β: 

 βbind,GAP
hydrolysis =

khydrolysis
GAPG

khydrolysis
  (1.24) 

Using transition state theory (TST)24 and the Eyring-Polanyi equation25 with the rate 

constant k expressed as : 

 k = κ kBT
h
e
−ΔG

†

RT   (1.25) 

where kB is Boltzmann’s constant, h is Planck’s constant, κ is the transmission 

coefficient, and ΔG
†

 is the activation free energy, the V-type allosteric efficacy β can 

be written as a function of the change in the energy of the transition state upon GAP 

binding, (assuming κ is a constant) as:  

 βbind,GAP
hydrolysis = e

−ΔΔG†
RT   (1.26) 

G	
  +	
  GAP	
   G	
  +	
  GAP	
  +	
  GDP	
  +	
  Pi 

GGAP	
   G	
  +	
  GAP	
  +	
  GDP	
  +	
  Pi 

GTP 

GTP 



	
  15	
  

While the MWC and TSAM models have a long history of illustrating their power in 

the interpretation and analysis of experiments, they both fail to provide a mechanistic 

understanding of allostery. While these models can be extended to systems with 

multiple ligand binding sites and/or allosterically regulated sites (for a detailed review 

of extension of TSAM, see 19), this clearly provides only a phenomenological 

explanation of allostery. According to this description, often considered “the 

thermodynamic” perspective, allostery occurs because of the differences in free energy 

of the respective states. However, this conclusion appears to be a definition, i.e. that 

allostery is the phenomena in which that the stability of the on state relative to the off 

state is greater when the ligand is bound, and lesser when the ligand is unbound. From 

a “structural” perspective, one needs to consider the differences in free energy as 

emerging from some feature of the underlying network of interacting structural 

components, and it is this feature that makes the system allosteric. This unresolved 

problem will be the focus in this dissertation. 

1.1.2. Allostery in Membrane Proteins 

While allostery is thought to be a ubiquitous process17, it has been frequently claimed 

to be involved in the mechanisms of membrane proteins. In particular, allostery has 

been invoked in both membrane transporters and membrane receptors, where there is 

allosteric coupling observed between the intracellular and extracellular domains of the 

proteins. The communication of information regarding the external environment to 

intracellular machinery that can initial the appropriate adaptive response is crucial to 

cellular survival, and long-distance allostery through transmembrane (TM) domains is 

an intuitive physical mechanism by which this information can be transmitted. In this 

section, thermodynamic and kinetic models of transporter and receptor function will 

be described in the context of what is known about these systems structurally, 
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thermodynamically, and kinetically, in order to motivate the need for theoretical and 

computational methods that can determine the physical mechanisms of these allosteric 

systems.  

1.1.2.2. G Protein-Coupled Receptors 

G protein-coupled receptors (GPCRs) are 7 TM receptor proteins that act as mediators 

of information flow between the extracellular space and the intracellular signaling 

machinery, playing an essential role in cell-cell signaling across many cell and tissue 

types. Given this crucial positioning in cellular physiology, GPCRs are the targets of a 

large fraction of the pharmacopeia, and there are numerous mutations across the many 

GPCR subtypes that are implicated with disease26.  

While all GPCRs have a conserved 7TM topology, when clustered by sequence 

similarity, they can be broken down into several classes. The classes include the 

rhodopsin family (Class A), secretin and adhesion family (Class B), the glutamate 

family (Class C), and the frizzled/TAS2 family. The Class A GPCRs, for which there 

is the largest and most diverse set of crystal structures, will be the focus of study in 

this dissertation. At the neuronal synapse, Class A GPCRs play a large role in 

neurotransmission and signal transduction by responding to the presence 

neurotransmitters such as dopamine, norephinephrine, and serotonin27. Most 

hallucinogens, painkillers, and anti-psychotics are thought to act by competitively 

binding to these biogenic amine GPCRs and influencing their function28,29,30 . 

The experimental investigation of these receptor systems points to allosteric 

mechanisms as the central mode of molecular function for intracellular signal 

transduction in response to extracellular ligand binding. The fraction of the 



	
  17	
  

concentration of receptors in the active state, fP*, can be written as a function of the 

ligand concentration [L] and total concentration of receptor [P0]:  

 f
P*

L[ ], P0[ ]( ) = P*⎡⎣ ⎤⎦ + P*L⎡⎣ ⎤⎦
P0[ ] =

P*⎡⎣ ⎤⎦ + P*L⎡⎣ ⎤⎦
P*⎡⎣ ⎤⎦ + P*L⎡⎣ ⎤⎦ + P[ ]+ PL[ ]   (1.27) 

Assuming that activation of downstream signaling is a linear function of the number of 

active receptors, simplification of (1.27) using the equilibriums described in Scheme 1 

results in: 

 activation L[ ], P0[ ]( ) ≈ Kactivate +αactivate
bind,L Kbind,LKactivate L[ ]

1+Kactivate +Kbind,L L[ ]+αactivate
bind,L Kbind,LKactivate L[ ]   (1.28) 

Equation (1.28) is analogous to (1.9) of the MWC model. An allosteric mechanism in 

which ligand binding shifts the equilibrium between the receptor’s active and inactive 

states explains the action of agonists, which activate the receptor (α > 1), neutral 

antagonists, which block activation by agonists without activating the receptor (α = 1), 

and most importantly the inverse agonists that inactivate the receptor (α < 1). These 

types of allosteric behavior have traditionally been observed through dose response 

curves (see Figure 3), in which some downstream signaling marker is observed as a 

function of the ligand. Assuming the linear model in (1.28), these experiments can 

directly monitor the allosteric efficacy of the ligand without any direct information 

regarding the structure of the GPCR or the relative probability of its active and 

inactive states.  
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Figure 3. Ideal behavior of different pharmacological classes.  

The dose-response curve for an idealized full agonist, partial agonist, neutral 

antagonist, and inverse agonist. Adapted from Wikipedia31. 

The allosteric mechanism described above predicts the existence of an active and 

inactive state for each class A GPCR, and that these states should be able to be 

crystalized through the use of strong agonists and inverse agonists, or even antagonists 

(given the receptor has low basal activity). While the model predates crystal structures 

of class A GPCRs, a large number of x-ray structures have been solved since 2007. 

These structures have largely supported the existence of active and inactive states that 

are associated with ligand binding, although it is now known that it is unlikely that 

there are singular active and inactive states associated with any given GPCR (this will 

be discussion further in Section 1.1.3.1. Ligand-specific Allosteric Modulation in 

GPCRs).  

The first crystal structure of a class A GPCR came from bovine rhodopsin, which was 

crystallized in what was assigned to be an inactive state32. Rhodopsin, unlike other 
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class A GPCRs, contains a covalently bound ligand, 11-cis retinal, and is activated 

when the ligand undergoes a light-induced cis to trans transition. While this 

mechanism differs from the above-described mechanism in detail, the state of the 

covalently bound ligand can be seen as equivalent to the binding state (bound versus 

unbound) of a non-covalently bound ligand. Thus, the structure of rhodopsin bound to 

11-cis retinal was assigned as the inactive state (also known as the “dark state”), 

whereas a hypothetical structural of rhodopsin bound to 11-trans retinal would be 

expected to be in the active state. Later, retinal-free rhodopsin (known as opsin) was 

crystalized in a state in which opsin bound to a synthetic Gα carboxy terminus (GαCT) 

peptide33, and thus the structure was expected to be active. The structure featured 

prominent conformational changes, including a 6-7 A tilt of TM6 (see Figure 4) and 

reorganization of both a salt bridge composing the conserved E(D)RY motif and an 

aromatic stacking interaction in the conserved NPxxY.  
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Figure 4. Ligand binding and conformational changes in rhodopsin.  

(A) Chemical structures of 11-cis- and all-trans-retinal. (B) 11-cis-retinal (in gray) in 

the ligand binding pocket (green, PDB: 1F88). (C) Conformational changes in retinal 

and the binding pocket of rhodopsin upon photoactivation. The photoactivated all-

trans-retinal (PDB: 3PQR) is magenta and the ground-state 11-cis-retinal (PDB: 1F88, 

gray) is superposed on the activated all-trans-retinal for comparison. The activated 

protein (PDB: 3PQR) is dark brown. (D) The outward tilting of the cytoplasmic end of 

helix 6 (indicated by the horizontal arrow) and the elongation of the cytoplasmic end 

of helix 5 (indicated by the vertical arrow). Green shows the inactive conformation 

(PDB: 1F88), and brown shows the activate conformation (PDB: 3PQR). (E) Bottom 

view of panel D. Figure and legend reproduced from 34 with permission. 
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While the opsin state requires a more complicated model than the simple two-state 

model (as the ligand has effectively three states, unbound, bound/cis, and 

bound/trans), one would expect that the GαCT-bound receptor would be in the active 

state, if it is assumed that the active state is described phenomenologically as “active” 

because it has higher affinity for the down-stream signaling G protein (i.e. the 

activation is also allosterically coupled to G protein binding via a K-type mechanism). 

However, light states were eventually crystalized in various states that were 

considered intermediates to the fully active state, such as bathorhodopsin35, 

metarhodopsin I36, and then the fully activated, deprotonated metarhodopsin II37. 

However, due to the covalent nature of the ligand, the quantum nature of light-induced 

isomerization of retinal, and the several intermediates, rhodopsin may not be the best 

model for the mechanism of activation of class A GPCRs by non-covalent agonists. 

X-ray structures of the β2 adrenergic receptor and A2A adenosine receptor in inverse 

agonist, antagonist, and agonist bound states have made it possible to directly address 

the structures involved in non-covalent ligand-induced allosteric modulation of 

function. The first crystal structure of β2AR was solved in complex with the inverse 

agonist carazolol. While the structure was incredibly similar to that of dark rhodopsin, 

with a TM RMSD of 1.56 A, there was a notable difference in TM3 and TM6 local to 

the so-called “ionic lock” composed by E6.30 and R3.50 of the E(D)RY motif, where the 

ionic lock mimicked the state seen in light-activated rhodopsin32. This difference was 

seen in the subsequent structures of a β2AR/T4L chimera bound the inverse agonist 

timolol38, avian β1AR bound to the antagonist cyanopindolol39, and human A2A 

bound to the antagonist ZM24138540. However, the active state structure of β2AR, 

bound to the high affinity BI-167107 agonist and Nb8041, a nanobody that acts as a G 

protein mimetic, revealed similar conformations changes as seen in the active state 
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opsin and rhodopsin structures, with large outward displacement of TM6. Outward 

displacements of TM6 are consonant with the predictions of early biophysical 

experiments42,43, which suggested a TM6 conformational change being characteristic 

of ligand-induced activation.  
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Figure 5. The agonist-Nb80 stabilized crystal structures of β2AR.  

The structure of β2AR-T4L bound to the inverse agonist carazolol (β2AR-Cz) is shown 

with β2AR-T4Lin blue and carazolol in yellow. The structure of BI-167107 agonist 

bound and Nb80 stabilized β2AR-T4L (β2AR-Nb80) is shown with β2AR-T4L in 

orange and BI-167107 in green. (a) The β2AR-Nb80 complex with β2AR in orange 

and CDRs of Nb80 in light blue (CDR1) and blue (CDR3). (b) Superposition of 

β2AR-Cz and β2AR-Nb80. (c) Extracellular view of the superposition of β2AR-Cz and 

β2AR-Nb80.  Extracellular view of the superposition of β2AR-Cz and β2AR-Nb80. (d) 

Intracellular view of the superposition of β2AR-Cz and β2AR-Nb80. (e) Superposition 

of β2AR-Nb80 with the structure of opsin crystallized with the C-terminal peptide of 

Gt (transducin). Adapted from 41 with permission.  
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However, a later structure of β2AR in complex with a heterotrimeric GS complex44 

indicated that the conformational change required to accommodate the G protein was 

significantly larger than that expected from the structures of agonist-bound receptor 

(see Figure 6).  

 

 

Figure 6. The structure of β2AR bound to a heterotrimeric Gs protein complex.  

The overall structure of the β2AR (green) bound to an agonist (yellow spheres) and the 

heterotrimeric Gs composed of Gαs (orange), Gβ (cyan) and Gγ (purple). Reproduced 

with permission from 44. 

It should be noted that while GPCR allostery is generally discussed in the context of 

the ligand’s ability to stabilize the activate state of the GPCR, the function of the 

GPCR comes from its own ability to activate a G protein. One mechanism of 

activation of a G protein by a GPCR that utilizes allostery is a K-type mechanism in 

which either state of the GPCR can activate the G protein, but the active state of the 



	
  25	
  

GPCR has higher affinity for the G protein, and thus the coupling of G protein binding 

to receptor activation must be considered: 

	
  

Scheme	
  3.	
  The thermodynamic cycle for the coupling of G protein binding to 

receptor activation.  

And thus there is a K-type coupling between the activation state of the receptor and 

the binding of the G protein: 

 αactivate
bind,G = Kactivate

G

Kactivate

=
KD,G
inactive

KD,G
active   (1.29) 

However, there is additional evidence that G proteins may be pre-coupled to their 

receptors. If this is the case, the inactive state of the G protein may have high affinity 

for the inactive form of the receptor, and the active state of the G protein may have 

high affinity for the active form of the receptor. Thus, the allostery could involve the 

coupling of the active states (see Scheme 4). 

R GR 

G 

R* GR* 

G 
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Scheme 4. The thermodynamic cycle for receptor activation coupled to G protein 

activation. 

Thus, 

  αactivate,R
activate,G =

Kactivate,R
Gactive

Kactivate,R
Ginactive

=
Kactive,G
inactive

Kactive,G
active   (1.30) 

Lastly, as described in Section 1.1.1.2. Theoretical Background, the GPCR may act as 

a GAP and increase the rate of GTP hydrolysis by the G protein. 

	
  

Scheme 5. The kinetic scheme for receptor GAP binding coupled to GTP hydrolysis 

Thus, the complex process of inducing intracellular G protein signaling through 

activation of a GPCR by an extracellular ligand has the potential to involve several 
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different allosteric mechanisms that likely will involve very different underlying 

physical mechanisms.  

1.1.2.2. Membrane Transporters 

The transport of solutes across cell membranes is an essential process in the life of 

each cell. Membrane transport maintains homeostasis and connects the cell to its 

environment by establishing and keeping ion gradients45, and absorbing essential 

substrates such as sugar46,47 and amino acids48. In multicellular organisms most 

physiological processes utilize solute transport to enable the specific function of 

tissues and organs, from concentrating the urine in the kidney49, to reuptake of 

released neurotransmitter that enables neurotransmission in the brain50. Not 

surprisingly, transport malfunction has been implicated in many disease states51, and 

the molecular machines involved in transport are the targets of both medications and 

various drugs of abuse52. 

Three main mechanisms of transport across the cell membrane have been identified, 

and each can be described in the framework of thermodynamics and chemical kinetics. 

The simplest mechanism is passive transport45, in which solutes diffuse across the 

membrane without the assistance of other molecules. The concentration gradient and 

the membrane potential determine the net direction of the diffusion. With the equation 

for a transport of a solute S from the extracellular space to the intracellular space 

written as: 

 Sout → Sin   (1.31) 

the free energy change, ΔG, associated with this transport process is simply  
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 ΔG
passive

= −RTlog
Sout[ ]
Sin[ ]

⎛

⎝⎜
⎞

⎠⎟
− zFEm   (1.32) 

where [Sout] and [Sin] are the solute concentrations on the outside and inside of the 

cell, R is the gas constant, T is the temperature, z is the charge of the solute, F is the 

Faraday constant, and Em is the membrane potential. The solute equilibrium can be 

written as 

 Sout
kp

k− p
⎯ →⎯← ⎯⎯ Sin   (1.33) 

where kp and k-p are the rate constants for the forward and backward passive transport, 

respectively. These rate constants implicitly include the effect of the membrane 

potential. At equilibrium, 

 ΔGpassive = −RTlog
kp
k−p

⎛

⎝⎜
⎞

⎠⎟
= 0   (1.34) 

and assuming (for simplicity) the membrane potential is 0, the new diffusion rates in 

either direction become equal, and the equilibrium substrate concentrations are such 

that 

 Sout[ ]eq = Sin[ ]eq   (1.35) 

While small, uncharged solutes can equilibrate via passive diffusion at a reasonable 

rate, the membrane is not permeable to larger, charged molecules. These move across 

the membrane through facilitated diffusion45. Facilitated diffusion is mediated by a 

class of transport proteins known as uniporters, which can be either channels or carrier 

proteins. Channels act as regulated pores that open in response to a stimulus and allow 

the free flow of specific solutes. Carrier proteins bind one molecule at a time and 
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transport it across the membrane with the solute concentration gradient. In both cases, 

uniporters act by increasing the effective membrane permeability for the solute and 

thus the rate of equilibration of concentrations on either side of the membrane.  

Denoting the transporter protein as T, the facilitated diffusion equilibrium is 

 Sout + T
kf

k− f
⎯ →⎯← ⎯⎯ Sin + T   (1.36) 

where kf and k-f are the rates of forward and reverse facilitated transport, respectively. 

Given the fact that the free energy of facilitated transport is the same as ΔGpassive, 

which depends only on the intra- and extracellular substrate concentrations and the 

membrane potential,    

 
kp
k−p

= kf
k− f

  (1.37) 

However, the free energy barrier for transport is lowered, such that 

 kf > kp,k− f > k−p   (1.38) 

Both passive transport and facilitated transport are determined by the direction of the 

gradient or the electric field. However, much of the transport required for cell 

physiological processes do not occur in the direction of the solute’s concentration 

gradient. When transport of a solute alone is not thermodynamically spontaneous, a 

third mechanism of transport, active transport45, is required. To achieve transport 

against a concentration gradient, the thermodynamically unfavorable transport of the 

solute is coupled to an energy source. The nature of the energy source classifies active 

transport into “primary” and “secondary”.  
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In primary active transport45, the thermodynamically unfavorable transport process is 

coupled to a chemical reaction that proceeds in a thermodynamically favorable 

direction. This can be written as: 

 Sout +R + T ka

k− a
⎯ →⎯← ⎯⎯ Sin + P + T   (1.39) 

where R and P are the reactant and product of the chemical reaction, respectively, and 

ka and k-a are the rate constants for forward and reverse transport. Here, the relation to 

passive transport rates is  

 ka
k−a

= ΔGactive < ΔGpassive   (1.40) 

Although ΔGpassive > 0, the energy released by the chemical reaction allows reversal of 

the equilibrium, such that ΔGactive < 0 when the system is out of equilibrium and 

inward transport becomes effective. A common energy source for primary active 

transport is ATP hydrolysis45, which is used by the family of transporters known as 

transmembrane ATPases53. For this family, (1.39) becomes 

 Sout +ATP + T
ka

k− a
⎯ →⎯← ⎯⎯ Sin +ADP + Pi + T   (1.41) 

The manner in which the energy from ATP hydrolysis is used to enable solute 

transport against its gradient by the primary active transporter is a key consideration in 

understanding the molecular mechanism of these membrane proteins. While the 

binding of ATP to a primary active transporter has been suspected for a long time to 

be separate from that of a solute54, it is now made clear from the known molecular 

structures of such transporters that the binding sites are well separated spatially55–57. 

By virtue of this spatial relationship, it is reasonable to consider the coupling between 

ATP hydrolysis and solute transport to involve an allosteric mechanism.  
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Indeed, potential allosteric mechanisms for the coupling of ATP hydrolysis to solute 

transport against its gradient have been proposed since as early as the 1960s. In 1966, 

Jardetzky proposed a “simple allosteric model” for phosphorylation-driven transport 

of an ion58, which corresponds to the following formulation:  

 Sout +ATP + Tout
ks

k− s
⎯ →⎯← ⎯⎯ ATP + STout

krelease⎯ →⎯⎯ Sin +ADP + pTin   (1.42) 

In this mechanism, the solute binding to the transporter occurs from the outside (i.e., 

the extracellular environment) when the transporter adopts an “outward-facing” 

conformation, denoted Tout. The substrate binding and unbinding rate constants are 

denoted ks and k-s, respectively. In a second step ATP-dependent phosphorylation of 

the transporter drives it into an inward-facing conformation so that the phosphorylated 

form is pTin, which has low affinity for the solute and releases it into the cell. Because 

of the large amount of energy released by ATP hydrolysis, the second step is assumed 

to be irreversible and the transport reaction leading to intracellular substrate release is 

described by the forward rate constant krelease. This mechanism has often been referred 

to as a “rocker switch” for the transition between an outward-facing and an inward-

facing conformation of the transporter59, and is generally cited as the origin of what is 

now known as the “alternating access” model or mechanism (the authors note that 

while we were unable to locate the first instance of the use of the name “alternating 

access”, it has been in use since as early as 1977 in 60).  

The alternating access model describes transport as the following process: 

  Sout + TOF! STOF! STOCC! STIF! Sin + TIF   (1.43) 

In this mechanism, the transporter has three states: outward-facing (TOF), occluded 

(TOCC), and inward-facing (TIF). While Jardetzky’s simple representation of the 
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allosteric model (see (1.42)) for the ATP dependent transporters did not include an 

occluded state as in (1.43), it still fits within the alternating access framework, and 

there is a substantial body of work clarifying how ATP hydrolysis is allosterically 

coupled to solute transport in an alternating access manner. Indeed, for some systems 

such as the sodium/potassium exchanger Na+/K+ ATPase, the mechanism of Na+ 

import is strikingly similar to the original model61, but for the important class of 

transporters identified as the ATP Binding Cassette (ABC) transporters, it appears that 

the mechanism can be fundamentally different within subfamilies, as illustrated below.  

The ABC transporter superfamily is the largest transporter gene family and is 

responsible for the transport of many different types of substrates, both as exporters 

and importers62. Based on an abundance of structural, biochemical, and biophysical 

data, an “ATP switch” model has been proposed for ABC transporters in which the 

translocation step is driven by ATP binding and not hydrolysis63,64. According to this 

mechanism (presented for ABC exporters), substrate binding to the inward-facing 

transporters causes the transition to an occluded state of the transporter, and increases 

the transporter’s affinity for ATP. ATP binding then stabilizes the outward-facing 

conformation, which has low affinity for substrate, and substrate is released: 

  TIF + Sin +ATP! TOCCS+ATP! TOFATP+ Sout   (1.44) 

Finally, the hydrolysis of ATP is then proposed to drive the resetting of the empty 

transporter to the inward-facing state in preparation for the next cycle of substrate 

transport: 

  TOFATP→ TOCCADP + Pi! TIF +ADP + Pi   (1.45) 
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In this component of the mechanism, ATP hydrolysis with the transporter in the 

outward-facing state, leads to occlusion of the binding site from the extracellular 

environment. Dissociation of the low affinity ADP then produces an apo state of the 

transporter, which favors the inward-facing conformation. This combined mechanism 

enables primary active transport of the solute against its gradient, but appears 

considerably more complicated than Jardetzky’s simple allosteric model in (1.42). 

Despite the apparent increased complexity, this mechanism has significant empirical 

support (for reviews, see 63,64 and references therein). 

In contrast to the primary active transporters, in which the overall thermodynamically 

unfavorable substrate transport process is coupled to a favorable chemical reaction, the 

secondary active transporters couple the unfavorable transport process to the favorable 

transport process of one or several ions, (denoted as I). The ions are either transported 

in the same direction of the substrate (symport) or in the opposite direction (antiport). 

In inward symport, the equilibrium becomes: 

 Sout + Iout + T
ks

k− s
⎯ →⎯← ⎯⎯ Sin + Iin + T   (1.46) 

The net free energy change of the coupled process can be written as Δ Gsymport = Δ GS 

+ Δ GI, with the transport free energies for solute and ions defined as in (2). This 

yields: 

 ΔGsymport = −RTlog
Sout[ ] Iout[ ]
Sin[ ] Iin[ ]

⎛

⎝⎜
⎞

⎠⎟
− (zS + zI )FEM   (1.47) 

Here, zS and zI indicate the charges of the solute and ion, respectively. When DGsymport 

is negative, unfavorable substrate import can be driven against the concentration 

gradient. In particular, sodium uptake is used in many of the known secondary active 
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transports, with the large difference in extracellular and intracellular sodium 

concentrations in most tissues and environments providing a significant source of 

electrochemical energy.  

The sodium-coupled symporters are a large family of great interest because the solutes 

transported span a vast array of chemical compositions and they are essential 

components of many physiological functions. For example, sodium-coupled 

symporters play an essential role in neurotransmission, where they mediate the 

reuptake of neurotransmitter into the presynaptic and glial cells, and thus enable the 

transduction of information. Consequently, these transporters are also efficient targets 

for psychoactive therapeutics. The reasons for the attention accorded here to sodium-

coupled symporters go beyond the importance due to their sheer abundance in 

biological systems, and their diversity. It includes as well the central role of allostery 

in the mechanisms of transport that have been proposed for their various subfamilies, 

and their diversity.  

While the sodium-coupled symporters are also believed to use an alternating access 

mechanism as shown in (1.43), the molecular and thermodynamics details of the 

mechanism are not obvious. For sodium-coupled symporters, neither of the simple 

allosteric model or the model described above for the ABC transporters are supported 

by experimental or computational evidence.  

1.1.2.1.1 LeuT- a prototype for secondary transporters 

The small amino acid transporter LeuT, originally identified as a bacterial leucine 

transporter, has proven to be an extremely useful tool in understanding the allosteric 

mechanisms involved in secondary transport. LeuT was originally identified as a 12-

transmembrane segment (TM) homologue of the Na+/Cl- -dependent transporters65, 
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but with the rapid growth in structural and functional information about other 

members of the SLC6 gene family, the current view is that the pair of pseudo-

symmetric 5 TM bundles in LeuT (TMs 1-5/6-10) represent a more general protein 

fold motif termed the “LeuT-fold”, shared by many membrane proteins performing a 

variety of transport functions66.  For these reasons, the structure and dynamics of LeuT 

and its functional mechanisms became the focus of intense investigations and it 

continues to serve as a prototype for the large class of mammalian monoamine 

transporters (MATs) that are Na+/Cl--dependent neurotransmitter symporters (NSS) 

and carry out the symport of Na+ and a biogenic amine, together with Cl- antiport (see 

below). 

The first step towards understanding the transport functions of LeuT-fold proteins 

from the context of a 3D molecular structure was the determination of a high 

resolution x-ray crystal structure of LeuT bound to two sodium ions and to leucine 65, 

which is a slowly transported as a substrate (vmax = 334 pmol/min/mg). The 1.7 Å 

resolution leucine-bound structure (PDB 2A65) revealed the topology of the twelve 

TM domains, ten of which form the two TM bundles arranged in the pseudo-

symmetry characteristic to the LeuT-fold family (see Fig. 1A). The substrate binding 

site, termed S1, was found at the midpoint of the two pseudo-symmetric domains, 

local to TM3, TM8, and the unstructured regions at the centers of TM1 and TM6 

helices. Adjacent to the substrate are two distinct sodium sites, termed Na1 and Na2. 

The sodium in the Na1 site is directly coordinated by the leucine’s carbonyl oxygen 

(see Fig. 1B), as well as by residues A22 and N27 of TM1, T254 of TM6, and N286 of 

TM7. In the Na2 site, the Na+ ion does not interact directly with the substrate, but is 

coordinated by residues G20 and V23 of TM1, and A351, T354, and S355 of TM8. 

Na+ titration experiments showed that no substrate will bind in the absence of Na+, 
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and subsequent studies indicated that the binding of Na+ and leucine was 

cooperative67, as might be expected from the interaction of substrate and the Na1 

sodium identifiable in the crystal structure.  
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Figure 7. LeuT fold and binding sites. 

(A) Crystal structure of LeuT bound to two Na+ and a leucine (2A65). The 

pseudosymmetric TM repeats are represented in silver ribbons (TMs 1–5) and gold 

illustration (TMs 6–10). TMs 11 and 12 and loops are shown in cyan ribbons. Leucine 

and Na+ are represented as orange and yellow van der Waals spheres, respectively. (B) 

Primary substrate binding site S1. Leucine is shown in orange, and the binding 

residues are colored by element (cyan for carbon, blue for nitrogen, and red for 

oxygen). Na+ ions are shown as yellow van der Waals spheres and labeled according 

to their binding site. (C) Clomipramine binding site in S2. Clomipramine is shown in 

pink, EL4 is shown as cyan ribbon, and the remaining residues and substrates are 

colored as in B, except that the backbone is omitted for clarity. 
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The detailed interactions between the Na+ ions and the substrate can be considered as 

a basic form of allostery, in which two structural components influence each other’s 

binding equilibria (hence K-type allostery) through direct interaction, as described by 

(1.15) and (1.16) in Section 1.1.1.2. Theoretical Background. But in MD simulations, 

however, the Na+ binding led to opening of the extracellular vestibule that would 

allow the substrate to bind68, thus pointing to a more intricate network of allosteric 

interactions. Indeed, later studies with electron paramagnetic resonance (EPR) 

confirmed Na+ -induced outward opening69,70, suggesting that Na+ binding may 

allosterically modulate the extracellular vestibule and the S1 site to increase substrate 

binding through a mechanism other than just direct interactions.  

Together, these results of the functional and structural analysis of LeuT functions can 

be considered to represent the first steps in an allosteric transport mechanism in 

which the transporter can only bind its substrate when the energy source to which it is 

coupled is already bound. This allosteric coupling is represented by the following 

thermodynamic cycle: 

	
  

Scheme 6. The thermodynamic cycle for binding of Na+ and substrate. 
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The typical substrate binding equilibrium can be written as: 

 Leu + T
kbind,Leu

kunbind,Leu
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ LeuT   (1.48) 

and the dissociation constant for leucine binding to the apo transporter will be denoted 

as: 

 KD,Leu =
kunbind,Leu
kbind,Leu

  (1.49) 

In the presence of Na+, one can write the modified equilibrium as: 

 Leu +Na2
+T

kbind,Leu
Na2

+

kunbind,Leu
Na2

+
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ LeuNa2

+T   (1.50) 

with the new dissociation constant 

 KD,Leu
Na2

+

=
kunbind,Leu
Na2

+

kbind,Leu
Na2

+   (1.51) 

so that the allosteric coupling between leucine and Na+ binding can be quantified as a 

function of the dissociation or association constants: 

 αbind,Leu
bind,2Na+ =

KD,Leu

KD,Leu
Na2

+   (1.52) 

Thus, α > 1 for cooperative binding. Assuming that the concentration of Na+ is 

saturating, and thus LeuT is in the sodium-bound state before binding substrate, the 

transport process can be represented as: 

 Leuout +Na2
+T

kbind,Leu
Na2

+

kunbind,Leu
Na2

+
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ LeuNa2

+T kcat⎯ →⎯ Leuin + 2Nain
+ + T   (1.53) 



	
  40	
  

For this process, we can write a MM equation that accounts for the K-type allosteric 

modulation of transport due to the coupling of leucine and sodium binding: 

 
d Leuin[ ]
dt

=
kcat T0[ ] Leuout[ ]

αbind,Leu
bind,2Na+( )−1 KD,Leu + Leuout[ ]

  (1.54) 

Equation (1.54) demonstrates the first allosteric component in LeuT’s secondary 

active transport mechanism, with the following implications: The stronger the 

allosteric coupling between the binding of leucine and of sodium, the higher the 

transport rate will be, because more transporters will be in the fully bound state and 

prepared for release. Notably, transporters could still perform symport if these two 

binding events were independent, as long as both binding events are 

thermodynamically favorable. However, their allosteric coupling makes transport 

significantly faster when release is the rate-limiting step. 

Moreover, by favoring the fully bound state, the allosteric coupling makes the 

substrate-only bound state less populated, and thus less Na+-independent substrate 

export would be expected than when compared to binding that is not allosterically 

coupled.   

While the leucine-bound structure of LeuT described above enabled the appreciation 

of an allosteric coupling can be achieved between sodium binding and substrate 

binding, structures alone cannot show how domains of the transporter are involved in 

outward and inward opening, nor suggest the presence of any intrinsic allosteric 

coupling between these domains. These elements of allostery in the function of the 

transporter emerge from the analysis in the context of previous studies of residues 

believed to be involved in gating in mammalian homologous71,  from steered 

molecular dynamics simulations that simulated the translocation of leucine68, 
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additional structures of the sodium-bound outward-open state and a mutant apo 

inward-open state72. All these studies helped reveal the domains involved in gating, 

their potential open and closed conformations, and the networks of interactions that 

stabilized these conformations. Despite the pseudo-symmetry of the TM domains, it 

became clear from these simulations and the various structures that significant 

differences between the intracellular and extracellular domains are likely to be 

important for the functional mechanism. This is illustrated by the specific details of 

the extracellular gate (EG, see Figure 8) and the intracellular gate (IG, see Figure 9).  
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Figure 8. The extracellular gate of LeuT in the open and closed states.  

A. The structure of the extracellular gate in the outward-open (red) and outward-

closed (blue) conformations. Domains involved in the conformational change (EL4, 

TM1b, TM6a, and TM8) are shown as ribbons, while the rest of the protein is shown 

as transparent cylinders. B and C. A closer view of the open and closed extracellular 

gates, respectively. Residues involved in stabilizing the closed conformations are 

shown in pink and light blue. 
 



	
  43	
  

 

Figure 9. The intracellular gate of LeuT in the open and closed states. 

A. The structure of the intracellular gate in the inward-closed (red) and inward-open 

(blue) conformations. Domains involved in the conformational change (TM5, TM8, 

TM6b, TM1a) are shown as ribbons, while the rest of the protein is shown as 

transparent cylinders. B and C. A closer view of the open and closed intracellular 

gates, respectively. Residues involved in stabilizing the closed conformations are 

shown in pink and light blue.  
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The EG is formed by F253, which occludes the substrate from extracellular water, a 

salt bridge between R30 and D404, and it is capped by the extracellular loop 4 v-helix 

(see Figure 8). Outward opening corresponds to the disruption of the R30/D404 salt 

bridge, isomerization of F253, a reorientation of the EL4, and the outward motion of 

TM1b, TM6a, and TM8. Conversely, the intracellular gate (IG) is composed of a more 

extensive interaction network of residues from TM1a (R5), TM6b (S267 and Y268), 

TM8 (D369), and TM2 (I187), and these interactions are all disrupted in the inward-

open mutant, leading to a large displacement of TM1a, smaller displacements of 

TM6b and TM8, and an unwinding of the TM5 kink (see Figure 9). These crystal 

structures, and the experimentally determined existence of intracellular and 

extracellular gates with open and closed states, supported the proposal of a gated pore 

alternating access mechanism for transport, in which (i)-LeuT binds an extracellular 

substrate while in an outward open/inward closed state (OO:IC), (ii)-transitions to a 

doubly-occluded state (OC:IC), and then into (iii)-an outward closed/inward open state 

(OC:IC), from which the substrate can be released into the intracellular space. 

Forward transport is often written with only three states, as: 

  2Naout
+ + Leuout + TOO:IC! LeuNa2

+TOC:IC → 2Nain
+ + Leuin + TOC:IO   (1.55) 

and the mechanism is represented in the following thermodynamic cycle: 
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Scheme 7. The thermodynamic cycle for substrate binding and gating. 

However, the complete mechanism actually implies a number of additional states, 

including a doubly open state and all possible combinations of gate states bound to 

substrate.  

Notably, the simplified three-state model implied in (1.55) would be approximately 

accurate in the regime of high K-type allostery between the EG and IG (e.g. the limit 

as α goes to infinity). While an allosteric coupling between the gates appears 

reasonable given the alternating access model and the available crystal structures, this 

inference cannot be drawn from the crystal structures, each of which represents only 

one conformation in an ensemble of microstates. Because these structures do not 

provide evidence for an allosteric coupling between the gates, nor can they suggest the 

role that such an allosteric coupling would play in the molecular mechanism of 

transport, as is necessary to evaluate the relative free energies of all states in Scheme 

7, it is impossible to determine the allosteric efficacy between gate conformational 

changes. Thus, in order to understand the properties and mechanism of LeuT as a 

transporter, the determination of structures representing several conformational 

states along the transport cycle needs to be complemented by the characterization of 
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the many kinetic and thermodynamic parameters that are required to form a kinetic 

model of transport composed of these states. 

Soon after the initial occluded structure, several additional structures of LeuT were 

solved in which the transporter was crystallized in complex with bound 

antidepressants 73,74 that are known to act as inhibitors of mammalian NSS 

transporters, and also act as inhibitors of LeuT. In the structures of these complexes 

with LeuT, the antidepressants were bound in an extracellular vestibule containing the 

extracellular gate, and were positioned above the substrate binding site (S1) observed 

in the original leucine-bound crystal structure. This binding site is now referred to as 

the secondary substrate site S2, and its properties and proposed functions will be 

detailed further below.  

Because the inhibitors bound in S2 occludes access to S1, which contained a bound 

leucine, (see Figure 7B), it was inferred that inhibitor binding has to occur after ligand 

binding, and it was further suggested that the inhibitors impeded substrate transport in 

a non-competitive manner by locking the extracellular gate in a state that is 

incompatible with inward-opening or substrate release. In terms of the MM 

representation typically used to analyze transport, this implies that in order to achieve 

inhibition by this mechanism, inward opening must be the rate-limiting step.  In fact, 

kinetic analysis of alanine transport under saturating sodium and inhibitor 

concentrations found73 that the inhibitors decreased the vmax, (from 1890 ± 90 without 

inhibitor to 770 ± 40 pmol/min/mg) while KD was unchanged (450 ± 70 versus 480 ± 

80 nM). This indicates a V-type allosteric mechanism for antidepressant inhibition. 

Indeed, binding experiments found that inhibitors caused the transporter to retain the 

bound alanine substrate, indicating that they greatly reduced the rate constant for 

intracellular release.  
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With the assumption that substrate binds first, followed by the binding of inhibitor is 

supported by the crystal structure, so that the mechanism of transport in the presence 

of an inhibitor, Inh, can be written as: 

 Inhout + LeuNa2
+T

kbind,Inh
Na2

+

kunbind,Inh
Na2

+
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ InhLeuNa2

+T kcat
Inh

⎯ →⎯ Leuin + 2Nain
+ + InhT   (1.56) 

The V-type allosteric efficacy is 

 βcat
bind,Inh = kcat

Inh

kcat
  (1.57) 

so that the rate of transport under saturating sodium and inhibitor concentrations 

becomes 

 
d Leuin[ ]
dt

=
βcat
bind,Inhkcat T0[ ] Leuout[ ]

αbind,Leu
bind,2Na+( )−1 KD,Leu + Leuout[ ]

  (1.58) 

This analysis provided significant, quantitative evidence for allosteric modulation of 

transport that is achieved by modulating the conformation of the extracellular gate. 

However, at the time it was carried out73 there was no structure of an inward open 

state, and the structures of substrate-bound transporters were all inward closed. 

Consequently, there was no structural evidence for allosteric modulation of inward 

opening, and such an inference could be made from the existing inhibitor-bound 

structures only by assuming a model of the transporter as an allosteric gated pore. But, 

the mechanism implied by the structures differed from that of a typical gated pore, 

because the inhibitor-bound structures did not exhibit any more outward opening than 

the original leucine-bound structure, which had been described as “doubly occluded”, 

and thus was unlikely to represent an outward open state. However, a conformation 

nearly identical to the original leucine-bound structure, in which a β-octoglycoside (β-
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OG) detergent bound in S2 was crystalized later75, and EPR experiments revealed that 

the  β-OG bound conformation corresponded to an outward open state69, which led to 

the suggestion that the states may be at least partially inward open.  

Consequently, the inhibition mechanism can be considered consistent with an 

allosteric gated pore model, but without the clear open/closed two-state behavior 

described for the extracellular gate. We note, moreover, that in itself, the finding of a 

V-type allosteric mechanism of inhibition by the synthetic tricyclic antidepressants 

does not necessarily implicate V-type allostery as a required component of the 

physiological mechanism of transport. 

A detailed assessment of the function role of the allosteric coupling between the 

intracellular and extracellular gates in the physiological mechanism of transport has 

emerged from a combination of computational and biochemical experiments68. The 

results of these studies led to the conclusion that by modulating inward opening, this 

allosteric coupling could serve both to induce, and to inhibit. A particular role in this 

modulation was suggested for the functional secondary binding site (S2) that identified 

from steered molecular dynamics simulations (SMD)68 of substrate translocation. As 

leucine was pulled through the transporter in order to identify the conformational 

changes required for transport the presence of a relatively stable binding site in the 

extracellular vestibule emerged, which overlapped significantly with the inhibitor 

binding site observed in the crystal structures. As mentioned above, this site was 

deemed to be the secondary substrate site, S2. The first experimental evidence for this 

site was provided by careful evaluations of binding stoichiometry under various 

conditions using scintillation proximity assays.  These experimental results revealed a 

2:1 substrate:transporter binding stoichiometry, which was inconsistent with the 1:1 

binding stoichiometry seen in the leucine-bound structure. Interestingly, in long 
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dissociation experiments in the presence of Na+, this measured binding stoichiometry 

decreased to 1:1, with the remaining leucine trapped in the S1 site. However, addition 

of non-radiolabelled leucine led to rapid dissociation of the trapped radiolabelled 

leucine, suggesting that a second leucine was acting on the transporter in a way that 

induced release of the trapped one. Importantly, mutations of residues identified from 

the computation to be within the S2 site were shown to reduce the experimentally 

determined binding stoichiometry from 2:1 to 1:1, and prevented substrate-induced 

dissociation of trapped substrate68.  

That substrate-induced substrate release was related to transport was subsequently 

demonstrated by repeating the experiments with LeuT reconstituted in 

proteoliposomes68. These displayed both S1 substrate trapping and S2-dependent 

substrate-induced substrate release. Importantly, the S2 mutants essentially completely 

abolished transport in the proteoliposomes, indicating an essential role in the transport 

mechanism. 

The corresponding mechanism of transport dependent on substrate binding in both 

sites (assuming only the S1 substrate is released) in the MM representation can be 

described as: 

 LeuS2LeuS1Na2
+T βcat

bind,LeuS2kcat⎯ →⎯⎯⎯⎯ Leuin + 2Nain
+ + LeuS2T   (1.59) 

and thus the rate of transport at initial high, saturating concentrations of extracellular 

leucine would be 

 
d Leuin[ ]
dt

= βcat
bind,LeuS2kcat T0[ ]   (1.60) 
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This representation of the results suggests that the S2 site could allosterically 

modulate substrate release in both positively and negatively, i.e., the binding of a 

second substrate molecule in S2 will induce the release of the S1 substrate (β >1), 

whereas inhibitor binding in S2 will inhibit the release of the substrate in S1 (β <1).  

It is interesting to note that the mechanistic model implies that by increasing the rate 

of transport when substrate is bound, the relative degree of substrate-independent Na+ 

import (which we will refer to as “leak”, but note to the reader that we refer here to ion 

transport, rather than a conductive, channel-like process) could be minimized is the 

transporter has low, substrate-free inward opening.  

The key elements that were revealed by the SMD simulations regarding the molecular 

process required for leucine to be released intracellularly included (i)-the evidence for 

the S2 site, (ii)-conformational changes that resulted in outward opening movements 

of intracellular domains TM1a and TM6b, and (iii)-the increased accessibly of water 

from the intracellular side that reached all the way to the substrate and ion binding 

sites. The binding of substrate in the S2 site has not yet been confirmed by 

crystallographic evidence, and it became clear from a well-documented controversy75–

80 that the experimental conditions have much to do with the availability of this site for 

ligand binding. However, the specific structural rearrangements suggested by the 

simulation results were confirmed by the subsequently determined x-ray structure of a 

LeuT mutant in the apo inward-open state72. Moreover, MD simulations suggested 

that binding of alanine in S2 was strongest when the extracellular gate was closed and 

the intracellular gate was in the process of opening81. This is consistent with the gated 

pore allosteric mechanism, according to which binding in S2 can facilitate the opening 

of the intracellular gate.  
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Together, the various results from computational modeling suggested that intracellular 

conformational changes at the intracellular end of the transporter involve TM1a and 

TM6b, and that these conformational changes can be induced by binding of substrate 

in S2. It should be noted, however, that the potential conformational transitions 

between gate opening states were proposed on the basis of SMD simulations68, which 

like other trajectories calculated subsequently using MD and path finding 

algorithms81–83, provide important information regarding the processes by which the 

states exchange, but do not on their own suggest anything about an allosteric coupling 

mechanism that modulates the equilibrium between those states. In order to extract 

any suggestions about allosteric mechanisms themselves from these simulations, 

accurate free energy differences and barriers would need to be calculated. Thus, 

notwithstanding the reasonable and compelling mechanistic models inferred from both 

computation and experiment, direct evidence that intracellular gate opening is rate 

limiting, or modulated by the inhibitors, remained elusive.  

The direct measurement of molecular dynamics of LeuT in experiments utilizing 

single molecule Förster resonance energy transfer (smFRET)84,85 and electron 

paramagnetic resonance (EPR)69,70, have provided important support and validation 

for the conformational changes observed in the SMD simulations and from the 

comparisons of various x-ray structures. Moreover, these results also provided 

quantitative measures of the equilibrium populations of states visited by the LeuT 

protein in the corresponding experimental conditions, as well as the rates of transition 

between. This type of information is essential for building a full model of transport, 

and as detailed below it supports the proposed allosteric modulation of the 

conformational changes by substrates and inhibitors. 
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The smFRET experiments on LeuT84,85, the first such investigations of a membrane 

transporter, revealed intrinsic gating dynamics, as well as allosteric modulation of 

those gating dynamics by substrates and inhibitors. Specifically, intracellular gating 

dynamics were measured in this set of experiments from the interactions of 

fluorophore labels at the positions of His7 in the N-terminus and Arg86 in intracellular 

loop 1 (IL1). The dynamics of the extracellular gate were assessed with labels at the 

position of Lys239 in extracellular loop 3 (EL3) and His480 in EL6. The results 

showed that on the intracellular side, the apo transporter dynamically exchanged 

between two kinetically distinct FRET states (referred to as the high and low FRET 

states), but preferred the low FRET state. Based on their positions and response to 

ligands, these states were presumed to correspond to inward closed (IC) and inward 

open (IO) states of the transporter, respectively. The equilibrium between these states 

can be written as 

 TIC
kopen

kclose
⎯ →⎯⎯← ⎯⎯⎯ TIO   (1.61) 

where 

 Kopen =
kopen
kclose

<1   (1.62) 

Addition of saturating Na+, leucine, or the inhibitor CMI further stabilized the high 

FRET, inward closed state. Thus,  

 αopen
bind,Leu =

Kopen
LeuNa2

+

Kopen

<1   (1.63) 
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Additionally, under conditions of saturating Na+, or leucine in the presence of non-

saturating Na+, or CMI, decreased the rate of transitions between states (7-fold, 3.5-

fold, and unreported, respectively)85.  Thus, 

 βopen
bind,Leu =

kopen
LeuNa2

+

kopen
<1   (1.64) 

In fact, transition state theory (TST) calculations suggested that the combination of 

Na+ and leucine led to an increase in the transition state energy of approximately 3 

kJ/mol, which, corresponds to a β value of ~ 0.3.   

The mechanistic inferences from the smFRET study were aided by the investigation of 

mutants with previously determined, well-known functional properties86. Thus, 

constructs with mutations in the intracellular gate, R5A and Y268A, were found to 

exhibit a stabilized low FRET state, reinforcing the expectation that the low FRET 

state indeed corresponded to a state in which the intracellular gate was open, in 

agreement with the SMD simulations68 and inward-open crystal structure72; 

conversely, the high FRET state corresponded to a state in which the intracellular gate 

was closed, as had been seen in the leucine-bound65 and inhibitor-bound73,74 crystal 

structures. Notably, the result that the tricyclic antidepressant CMI both closed the 

intracellular gate and decreased the transitions between the open and closed state, 

supports a mechanism in which it blocks transport via V-type allosteric modulation of 

the inward opening.  

The smFRET studies also showed that on the extracellular side, the apo transporter 

displayed a unimodal FRET distribution. Importantly, this distribution was found to be 

sensitive to the R5A and Y268A mutations at the distal, intracellular end of the 

transporter: they shift the FRET distribution to higher values, indicating that the 
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extracellular domain may become more closed as the intracellular gate opens. Taken 

together, the evidence for induction of intracellular closing by CMI and for 

extracellular closing induced by the intracellular gate mutants supports the model of 

an allosteric gated pore mechanism for transport by LeuT. But it also suggests that the 

behavior at the extracellular gate may not be well described by a two-state model.  

The main inferences about the allosteric interconnection of the intracellular and 

extracellular gates of LeuT obtained from the smFRET studies were supported by 

results from extensive mapping of LeuT’s structural ensemble obtained using site-

directed spin labeling and double electron-electron resonance (DEER) EPR 

experiments70 under varying conditions of ion and substrate concentrations, and 

mutations. The results from these measurements were interpreted in a structural 

context70 with the application of restrained ensemble MD (REMD) calculations87. 

Measurements of extracellular pairs revealed distinct open and closed populations 

(unlike what had been seen in smFRET) that displayed Na+-induced opening and Na+-

and leucine-induced closing69. On the intracellular side, EPR measurements of the 

H7C/R86C pair reproduced the smFRET results84,85 with the finding of two well-

separated peaks in the distance distribution that were modulated by ions and substrate 

to favor a closed state. In addition, the EPR measurements revealed modulation of 

several other distances on the intracellular side, primarily involving the TM6b 

segment and TM770. However, the measurements in this study did not support the 

large conformational change in TM1a suggested by the inward-open crystal 

structure72. Instead, these measurements suggested that the conformational change 

observed by monitoring H7C/R86C pair in both smFRET and EPR corresponded to 

the movement of the N-terminus rather than a substantial movement of TM1a. 

Notably, both the Y268A mutation, which had been used to stabilize the inward-open 
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state captured in the crystal structure72, and the R5A mutation yielded large 

displacements of TM1a in the EPR measurements. This led to the suggestion that the 

large displacement of TM1a seen in the crystal structure could be an artifact of the 

mutated construct used for crystallization, in which an intrinsically available motion of 

this TM1a segment was exacerbated when the mutations loosened constraints on that 

region of the transporter structure.  

Despite their disagreement with the x-ray structure, the combined results from 

smFRET84,85 and EPR69,70 demonstrate definitively the allosteric modulation produced 

by the substrate and ions. Even if the exact atomic details of the conformational 

changes are still not entirely clear, the biophysical evidence from these and other 

experiments, amplified by, and interpreted in the context of results from simulations of 

various states of the transporter, implicate the binding processes at a distal part of the 

transporter in the allosteric modulation of the conformational ensemble and dynamics 

of the intracellular gate. 

The mammalian monoamine transporters (MATs) in the subclass of the LeuT-fold 

transporters are Na+/Cl--dependent neurotransmitter:symporters, which carry out the 

symport of Na+ and a biogenic amine, together with Cl- antiport. The three major types 

of plasma membrane synaptic MATs (sMATs) include the dopamine transporters 

(DAT), serotonin transporters (SERT), and norepinephrine transporters (NET). The 

three classes share high homology and are believed to be both structurally and 

functionally similar to each other, and to a lesser extent, to LeuT71. It is reasonable to 

question if and how the allosteric mechanism described above for LeuT translates to 

these transporters, as they are of great importance in basic neurobiology (for their role 

in the fundamental mechanisms composing neurotransmission) and medicine (for their 

role as validated targets for a large variety of drugs).  
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Given the great interest in mechanistic insights about the sMATs, they were subjected 

to kinetic analyses long before the molecular structures of NSS family members 

became available from x-ray crystallography. Kinetic analysis of dopamine uptake in 

rat striatal synapatosomes88 revealed that the sodium dependence of DAT function was 

evident both in a change in maximum velocity due to the sodium gradient, and in a 

change in the affinity of dopamine for DAT. The reported allosteric efficacy of ~2 for 

DA binding was observed as well for SERT89. These results are consistent with the 

findings for LeuT, and suggest that K-type allosteric coupling between Na+ and 

substrate binding discussed in the previous Sections is a fundamental component of 

the family’s transport mechanism. Interestingly, the more recent x-ray structures90–92 

and homology models93,94 of sMATs found that the Na+ ions do not interact directly 

with the substrate as is seen in LeuT65, indicating that the coupling can be 

accomplished via more than one structural mechanism.   

The presence of an allosteric coupling between ligand binding and the proposed 

extracellular and intracellular gates of the sMATs had been inferred from structure-

function analysis with a variety of approaches by monitoring ligand-induced 

conformational changes with the substituted cysteine accessibility method (SCAM)95–

98. In DAT, such experiments in which the sensitivity of extracellular and intracellular 

cysteine point mutants to reaction with methanethiosulfonate was monitored, revealed 

that the binding of cocaine, a transport inhibitor, increased the accessibility of 

extracellular residues, while decreasing the accessibility of intracellular residues95. 

The binding site of cocaine was unknown at the time, and these results suggested that 

cocaine locked DAT in a conformational state with outward-open/inward-closed 

characteristics. To various degrees, combinations of such conformational changes 

were identified for other substrates and inhibitors as well, clearly demonstrating a 
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coupling between accessible conformations and ligand binding97. The finding that 

homologous intracellular residues in SERT were also shown to be less reactive after 

binding serotonin or cocaine99,100 reinforced the consideration of common coupling 

mechanisms in the sMAT family. The structural context for such coupling 

mechanisms was offered recently by x-ray structures of drosophila DAT (dDAT) 

bound to various inhibitors90–92, including cocaine, as well as dopamine, which were 

found in outward open/inward closed configurations. Furthermore, the intracellular 

Cys342 in DAT was shown to become more reactive during Na+-dependent, inward 

transport of the substrate m-tyramine, and this was interpreted as an indication that an 

opening of this intracellular region was required for transport98.  

Other structure-function studies also pointed to residues in the intracellular domain 

that were involved in determining the intracellular conformation equilibrium. 

Specifically, an endogenous Zn2+ binding site in DAT was used to show that while 

Zn2+ binding usually inhibits transport101, the Y355A transport-inactivating mutation 

reversed this effect of Zn2+ binding, so that Zn2+ activated transport in the inactive 

mutant102. The Y355A mutant also decreased the affinity of cocaine-like inhibitors, 

suggesting that this tyrosine was somehow required for the stabilization of an inward-

closed conformation usually associated with cocaine binding.  

Computational analysis of the conformational changes associated with the Y355A 

mutation in models of hDAT constructed by homology to LeuT attributed the effects 

to the role of Y355 as part of the conserved intracellular network described in 86. 

Indeed, mutations of other residues in this network, R60A and D436A, were shown to 

lead as well to transport inhibition, and to activation of transport by Zn2+ binding86. 

The proposed mechanism for the effects of these mutations was the stabilization of an 

inward open state, and this was confirmed when the homologous mutations in LeuT 
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(Y265A and R5A) were examined with smFRET84, EPR66, and x-ray crystallography72 

and found to stabilize the inward open state (for details see above).  

A LeuT-based hDAT homology model was further used to investigate the 

conformational changes associated with substrate release, as well as the existence and 

mechanistic role of the secondary substrate binding site S2 in the extracellular 

vestibule that had been previously identified in LeuT93. By using an SMD procedure 

based on the one used to study LeuT68, a homologous S2 site was identified in hDAT, 

and so were many of the same conformational changes observed in LeuT during the 

transition to an inward-open conformation.  

1.1.3. Ligand-Specific Allosteric Modulation 

While allostery is well documented in both GPCRs and transporters, the simple 

models of allostery described in Section 1.1.1.2. Theoretical Background are not 

sufficient to describe many new functional observations. In particular, growing 

evidence suggests that the functions of these two classes of membrane proteins 

(GPCRs and transporters) are not binary. GPCRs are not simply active or inactive, and 

transporters do not simply transport whatever substrate can bind to their substrate 

binding site. Instead, the allosteric modulation of functional equilibrium and kinetics 

function appears to be ligand-specific. In the section below, we refer to this new 

behavior as ligand-specific allosteric modulation.  

1.1.3.1. Ligand-specific Allosteric Modulation in GPCRs 

The traditional allosteric receptor activation model assumes the receptor is 

phenomenologically a two-stat system (active and inactive, in respect to its ability to 

activate a G protein) and also assumes that ligand binding modifies the relative energy 
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of the two states without modulating the distribution (or ensemble) of conformations 

within those states. However, this model predicts that a GPCR only has a single mode 

of activation. This prediction has been long contested by the observation that GPCRs 

can activate many different G proteins (e.g., Gi, Gs, and Gq) to different extents103, in 

addition to signaling through of arrestin104,105. However, if one invokes a phenomenon 

known as “biased signaling”, the two-state model’s parsimony is preserved. It has 

been observed that different receptors can have their own inherent efficacy for 

activating different pathways, due to differences in either sequence or structure, and 

thus it would be expected that there exists receptor-specific active and inactive states, 

and each receptor can still be a two-state system. While biased signaling can explain 

multi-model signaling with different efficacies profiles, the two-state model has 

recently been refuted by the observation that ligands of differing structures that target 

the same receptors appear to activate these multi-model signaling profiles in ligand 

specific manners (for examples, see 106). The preferential activation of specific 

signaling or downstream phenotypes is referred to as “functional selectivity” or 

“biased agonism”107,108,109. The existence of functional selectivity requires a more 

complex model for GPCR activation. This new model must either i) allow for more 

“active” states, i.e. at least one state per potential signaling modality, ii) allow for 

ligand-specific active states, i.e. that the character of the active state is modulated by 

the ligand itself, or iii) some combination of the two, i.e. within the active state there 

are substates that are involved in activating different signaling modalities, and thus the 

overall active state is stabilized by all agonists, but the specific distribution of 

functional substates are modulated differently depending on the agonist. However, 

multiple activate states present a major problem for crystallography, which has 

generally relied on the assumption that ligands stabilize a single crystallographically 

resolved structure given their two-state pharmacology. If many different active states 
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exist, which of these states have been captured in past structures? Can these states be 

observed without the downstream effector bound? The second model, in which the 

active state is specific to the ligand, also presents a problem crystallographically, as it 

would be difficult to infer the activation mechanism of a GPCR by one ligand based 

on previously solved structures of that GPCR with other ligands, unless their 

activation profiles are significantly similar. However, mass spectroscopy studies of 

β2AR support the second model. The accessibility of nine endogenous cysteine and 

lysine residues to reaction with N-ethylmaleimide and succinic anhydride reagents 

was quantified, and compared for nine ligands of differing pharmacology. While two 

residues, Cys772.48 and Cys3277.54, were found to respond in accordance with the 

pharmacological class of the ligand (agonist versus antagonist/inverse agonist), many 

other residues were found to respond in a ligand-specific manner without any 

correlation with the functional output of the ligand (see Figure 10). These data 

suggested that while GPCRs may have somewhat discrete active and inactive states, 

these active states display significant ligand-specific character, which is currently not 

understood through any physical mechanism.
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Figure 10. Ligand-specific allosteric modulation of β2AR.  

Top: effects of nine β2AR ligands on neM reactivity at cys77 (a) and at cys327 (b). 

Bottom: (a–g) The effects of various ligands on the changes in the l-factors of seven 

different sites of the β2AR, expressed relative to the receptor without ligand: cys125 

(a), lys140 (b), lys227 (c), lys235 (d), lys263 (e), cys265 (f) and lys305 (g). Data 

correspond to the means ± standard errors from at least three independent experiments. 

Asterisks indicate statistical significance (*P < 0.05) compared to control receptor 

alone by one-way ANOVA. 

1.1.3.2. Ligand-Specific Allosteric Modulation in Transporters 

While LeuT does transport leucine, it does so at an incredibly slow rate (vmax = 334 

pmol/min/mg)110.  In contrast, LeuT transports alanine much more efficiently (vmax = 

1730 pmol/min/mg)110, and thus alanine has become a popular substrate for functional 



	
  62	
  

and dynamics experiments. Interestingly, smFRET experiments85 reveal that unlike 

leucine, which closes the intracellular gate and reduces dynamics, alanine increases 

the dynamics at the intracellular end of the transporter without altering the relative 

populations of each state with a β value of  ~ 5. The differential effects of the 

substrates and their consequences for the transport function led to the proposition85,111 

that the increased dynamics are responsible for the increased vmax measured 

experimentally. This proposal is consistent with the theoretical result encoded in 

(1.60), namely that the velocity of transport can be increased by a greater rate of 

inward opening, and not necessarily by an increase in the equilibrium population of 

that inward open state. 

However, while this striking observation of ligand-specific allosteric can be linked to 

transport on a theoretical level, the physical basis for this allosteric effect was 

unknown at the time. While several x-ray structures of LeuT bound to various 

substrates in S1 have been solved110, nearly all of them were identical in terms of Cα 

RMSD, with only very minor differences in the binding pocket. Furthermore, these 

structures were for the most part the same state as the original leucine-bound structure 

– only tryptophan crystallized in a new state, which was outward open with tryptophan 

bound in both S1 and S2. With these structures alone, it is not possible to make any 

strong hypotheses regarding the mechanism of allosteric modulation of intracellular 

gating, nor is it clear as to how the various substrates of different transport efficacies 

were engaging that mechanism differently. These open questions will be addressed in 

this dissertation.  
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1.2. Dissertation Overview 

The existence of ligand-specific allosteric modulation in both transporters and GPCRs 

emphasizes the importance of understanding how allostery works in these systems in 

term of atomic-level physical mechanism. In order to understand how ligand-specific 

allostery occurs, a general model of allostery that allows for ligand-specific allosteric 

modulation is required, and thus it must be a physical model rather than a 

phenomenological model. The overarching hypotheses driving the work described in 

this dissertation is that proteins such as transporters and GPCRs are intrinsically 

allosteric (i.e. structural components are allosterically coupled in the absence of 

external perturbations) and that ligand-specific allosteric modulation is due to 

differential engagement of structural components involved in the protein’s intrinsic 

allosteric behavior (i.e. the response of the receptor to ligands with different 

pharmacological profiles is the results of ligand-specific engagement of the structural 

components involved in activation). Towards that goal, the work described in this 

dissertation will focus on two specific aims: i) the development of theoretical models 

that provide insight into the structural and dynamic features required for systems to be 

allosteric, and ii) the development of computational methods that can identify these 

features in specific systems of interest. The utility of these aims will be demonstrated 

through application to the membrane transporters LeuT and DAT, and the serotonin 

receptor 5-HT2AR. In specific, these advances will be used to i) generate new 

understanding regarding the ligand-specific allosteric effects that have been observed 

in these systems, and ii) generate novel hypotheses that can be addressed 

experimentally. 
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2. Theoretical Models and Computational Methods 

The following section will describe theoretical models and computational methods 

that were developed towards the goals of the dissertation. The section is divided into i) 

Allosteric Ising Models, a theoretical model for allostery that can be related 

analytically to the allosteric efficacy for simple systems, ii) N-body Information 

Theory Analysis, a computational method for identifying allosteric channels in 

proteins, and iii) a random forest-based method for differentiating class-specific 

allosteric modulation from ligand-specific allosteric modulation.  

2.1. Allosteric Ising Models 

Note: much of the text in this chapter has been adapted from a previously published 

manuscript2 with permission from the publisher.  

2.1.1. Motivation for Model 

As described in Section 1.1.1.2. Theoretical Background, the allosteric efficacy is a 

powerful tool for quantifying the allosteric coupling between molecular processes. 

However, it provides only a phenomenological explanation of allostery. According to 

the description, often considered “the thermodynamic” perspective, allostery occurs 

because of the differences in free energy of the respective states. However, this 

conclusion appears to be a definition, i.e. that allostery is the phenomena in which that 

the stability of the on state relative to the off state is greater when the ligand is bound, 

and lesser when the ligand is unbound. From a “structural” perspective, one needs to 

consider the differences in free energy as emerging from some feature of the 

underlying network of interacting structural components, and it is this feature that 

makes the system allosteric.  
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To understand allostery at a level that explains how allosteric biomolecular systems 

work in a structural context requires a quantitative theoretical description that bridges 

the features of the structural components and their interactions, to the thermodynamic 

allosteric parameters.   

2.1.1.1. Previous Statistical Mechanical Models of Allostery 

While the structural features of proteins are often invoked when attempting to describe 

the physical mechanism underlying a particular allosteric response in a particular 

system, little has been done to construct a theory which can describe how the 

energetics of individual structural components and networks of their interactions 

between them leads to the emergence of allostery. At the thermodynamic level, 

allostery can be described through the free energy of specific states, and thus a theory 

of allostery must be able to calculate probabilities of specific states system and express 

those probabilities in terms of the system’s potential energy function. One model that 

comes close to providing this level of insight in the framework of statistical mechanics 

is the ensemble allosteric model (EAM)112, which describes multi-component 

cooperative systems. For the sake of brevity, we will describe the model in terms of a 

two-component cooperative system, although the model is not limited in size in 

theory. In the EAM, each component of the system has two states, R or T, but the 

system is not presumed to be a homo-oligomer. The reference state is taken to be RR. 

The free energy difference between each other possible state (TR, RT, TT) from RR is 

expressed as a change in free energy due to the conformational change, and then a 

change free energy due to the interaction between the domains. There is an identical 

change in free energy due to the interaction between the domains for all non-RR 

states. From here, the partition function can be calculated (see Figure 11). To account 

of the effect of ligand binding, it is assumed that ligands can bind their respective 
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domains only when the domain is in the R state. Given that assumption, one can 

calculate how the binding of ligand B binding in domain 2 modulates the binding of 

ligand A in domain 1 by calculating the change in probability of state RR when the 

free energy of states RR and TR is increased or decreased by a given ligand binding 

energy. 
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Figure 11. The two-domain ensemble allosteric model.  

(a) A hypothetical two-domain protein (blue and orange boxes) contains effector and 

active sites. (b) Each state of the two-domain protein (RR, TR, RT, and TT), where the 

T state is denoted as a grey random loop. The free energy differences from the RR 

state, the statistical Boltzmann weight, and the probability are shown for each. (c) The 

relative free energy of the states before and after ligand binding. The values used for 

this example are ΔG1 = −0.7 kcal mol−1, ΔG2 = −2.3 kcal mol−1, Δgint = +1.6 kcal 

mol−1, ΔgLig,B = −3.0 kcal mol−1. Reproduced from 112.  
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To quantify the allostery in these systems, the allosteric efficacy is not calculated, 

although it is possible. Instead, the coupling response (CR) is calculated: 

 CR =
pB RR( ) + pB RT( )− p RR( )− p RT( )

log ZB( )− log Z( )   (1.65) 

The CR describes the change in probability relative to the amount of free energy 

introduced into the system due to the binding of ligand B.  

The EAM suffers from some severe limitations that narrow the applicability of its 

predictions. First, while it is not required, the model assumes that a ligand can only 

bind to the R state of its corresponding domains, which is referred to as the “high 

affinity state”. This is assumption is non-physical, and implicitly assumes that the 

allosteric efficacy for the “activation” of any binding domain by its ligand is INF, 

which is contradicted by the known existence of ligands that bind at the same site of 

the same protein with similar affinities and yet have different allosteric effects in terms 

of agonism/antagonism/inverse agonism. In the EAM, the allosteric effect is encoded 

in the coupling between the domains, and thus does not allow for different ligands to 

differentially modulate the same system. Even if the “high affinity state” is switched 

from R to T to model an antagonist, partial agonism and antagonism is not possible. 

Thus, it is necessary to add the ability of the ligand to bind both states is required. 

Additionally, the use of CR rather than allosteric efficacy as a quantification of 

allostery leads to apparent insights that are actually just artifacts of the CR function. 

For example, as the CR uses raw changes in probabilities, changing the free energy of 

the R and T states by the same amount will always result in a larger CR if the R state 

was initially low probability. Thus, the prediction that systems that begin in the T state 

are more allosteric is simply due to the construction of the CR measure. Furthermore, 
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while it has been claimed that the EAM model proves that a structural pathway for 

allosteric coupling is unnecessary, this apparent insight is due to the use of an 

unreasonable interaction term. There is no reason for the interaction energies between 

domains for the RT, TR, and TT states to be equivalent, and they likely are not. 

Instead, each state may have a potentially unique interaction energy term, which 

would result in a minimum of two more parameters in the model. While some of these 

parameters can be assumed to be merged into the conformational free energy changes, 

the EAM can only be recovered when ΔGint(RT) + ΔGint(TR) = ΔGint(TT), which is an 

added constraint that has no justification. In fact, the value of four potentially unique 

interaction energies is likely to relate to the specific type of interactions that can be 

formed between the differing conformations of the domains, i.e. their values report on 

something about how the two domains are interacting physically.  

In the following sections, we will present a statistical mechanical model for allostery 

that is constructed to i) include the allosteric efficacy of a ligand for shifting the 

conformation of its binding site, ii) naturally express the allosteric efficacy of a ligand 

for shifting the conformation of an allosteric site in terms of the model parameters, and 

iii) include the presence of allosteric modulation through indirect coupling through 

intermediate structural elements.  

2.1.2. Derivation and Results 

2.1.2.1. The allosteric efficacy as a function of local interactions  

We approach the problem of formulating a theory of “how allostery works” by 

studying the statistical mechanics of a system of interacting structural components. 

These structural components may be any subset of a biomolecular system that can be 

treated as a unit when described at some level of coarse-graining (i.e, a helix, a β 
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strand, a helical bundle, a binding site, etc). The approach we will pursue is 

conceptually similar to the EAM112, but with the goal of introducing a structural 

context that can be analyzed analytically. Defining an n-component system X where 

for a single configuration each component can be in one of m states, we write the 

potential energy function of a given configuration of X, U(X), as 

 
 
U X( ) = Uconf Xi( )

i=1

n

∑ +
Uint Xi,X j( )

2j=1

n

∑
i=1

n

∑   (1.66) 

The first term in (1.66) represents the conformational energy of each state of each 

component independent of other components, and the second term represents the 

pairwise interaction energy between components; all interaction terms when i = j are 

0. We can write the probability of any conformation of the system according to the 

Boltzmann distribution as: 

 
 
p X( ) = e−βU X( )

Z
  (1.67) 

β is 1/kBT, where kB is the Boltzmann constant and T is the temperature in Kelvin. The 

numerator is known as the Boltzmann factor, and Z is the partition function, which 

sums over the Boltzmann factors of all states and normalizes the probability 

  Z = e−βU X( )∑   (1.68) 

We can then define the specific case of ligand binding to a two-state receptor. This 

system can be defined as a two-component system in which each component is two-

state: one component representing the receptor, R, with states on and off, and the 

second component representing the ligand, L, with states bound and unbound. It 

should be noted that for the ligand, the conformational energy term represents the 
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component of the binding energy that is independent of the state of the receptor. Using 

the explicit definition of the concentration: 

 
 

X⎡⎣ ⎤⎦ =
NX

V
  (1.69) 

where Nx is the number of molecules of X and V is the volume, we can rewrite (1.7) 

with the explicit definition of protein concentration,   

 

 

K =

Nfon

V
Nfoff

V

=
fon

foff

  (1.70) 

where N is the total number of receptors and fon and foff are the fraction of receptors in 

the on and off states, respectively. Given that the system is ergodic, the frequency of a 

given state at steady state will converge to the ensemble probabilities. Rewriting (1.7) 

by substituting thermodynamic equilibrium constants with ratios of probabilities, we 

can define the allosteric efficacy as 

 
 
α

p L = unbound,R = on( )
p L = unbound,R = off( ) =

p L = bound,R = on( )
p L = bound,R = off( )   (1.71) 

Using (1.67) and (1.68), we can write (1.71) as 

 
 
α e

−β Uconf L=unbound( )+Uconf R=on( )+Uint L=unbound,R=on( )⎡
⎣

⎤
⎦

e
−β Uconf L=unbound( )+Uconf R=off( )+Uint L=unbound,R=off( )⎡

⎣
⎤
⎦
= e

−β Uconf L=bound( )+Uconf R=on( )+Uint L=bound,R=on( )⎡
⎣

⎤
⎦

e
−β Uconf L=bound( )+Uconf R=off( )+Uint L=bound,R=off( )⎡

⎣
⎤
⎦

 (1.72) 

Equation (1.72) reduces to 

  α = e
−β Uint L=bound,R=on( )−Uint L=bound,R=off( )( )+ Uint L=unbound,R=off( )−Uint L=unbound,R=on( )( )⎡

⎣⎢
⎤
⎦⎥   (1.73) 

We then find the analogous expression of (1.18): 
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− 1
β

log α( ) = Uint L = bound,R = on( )− Uint L = bound,R = off( )( ) + Uint L = unbound,R = off( )− Uint L = unbound,R = on( )( )  (1.74) 

As (1.74) indicates, the allosteric efficacy is a function the interaction energy between 

the states, and we have succeeded in expressing the thermodynamic allosteric efficacy 

as a function of local interactions in our simple two-component ligand/receptor 

system. However, this result is significantly more useful for considering multi-

component systems if additional energetic symmetries are imposed by using an Ising 

model potential energy function. While these symmetries are not strictly realized in a 

biomolecular system, we will show that their application leads to concise analytic 

expressions that are qualitatively and quantitatively accurate as well for systems in 

which these symmetries are not present. 

2.1.2.2. The Allosteric Ising Model (AIM) for multicomponent systems 

The Ising model is a statistical mechanical model originally developed to describe 

phase behavior in ferromagnetic materials 113. The Ising model, as well as Ising-like 

models, have since been applied to other complex systems with collective behavior 
114,115, including cooperativity during folding 116–118 and in oligomeric assemblies  
119,120. In the Ising model, each particle has two states, corresponding to a spin state of 

up or down 

 
 
sX = −1 X =↓

1 X =↑

⎧
⎨
⎪

⎩⎪
  (1.75) 

The potential energy function of an n-component Ising model is: 

 
 
U X( ) = − hisi

i=1

n

∑ −
jij
2j=1

n

∑
i=1

n

∑ sis j   (1.76) 
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In the Ising model, hi is the potential energy of particle i due to the magnetic field, and 

jij is the spin coupling between particles i and j, where jii is taken to be 0. If the field 

term is taken to be site-specific, one can see that the field term can be considered to 

correspond to the conformational energy, and the spin coupling term to the pairwise 

interaction energy. We can rewrite the potential function as: 

 
 
U X( ) = ui

confsi
i=1

n

∑ +
ui,j

int

2
si

j=1

n

∑
i=1

n

∑ s j   (1.77) 

where  ui
conf

 is the conformation energy of component i and  
ui,j

int

  is the interaction 

energy of components i and j. By using (1.77) for the potential energy function, we 

impose the following symmetries on the two-state components (with binary states 

represented by up and down arrows): 

 

 

Uconf X =↑( ) = −Uconf X =↓( )
Uint Xi =↑,X j =↑( ) = Uint Xi =↓,X j =↓( ) = −Uint Xi =↑,X j =↓( ) = −Uint Xi =↓,X j =↑( )  

 (1.78) 

For Ising models composed of several components and various interaction topologies, 

these symmetries allow for concise analytical expression for the allosteric efficacy and 

binding affinity. We will refer to these models as Allosteric Ising Models (AIMs).  
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Figure 12. Schematic representations of allosteric Ising models (AIMs). 

In the 4 AIMs analyzed here the ligand, L, is represented as a red triangle, and the 

protein is the blue circle subdivided into various constituent structural components. 

Lines separating ligand from protein or protein structural components from each other 

are labeled with the appropriate interaction energy term (as used in the text). Allosteric 

effective interactions are represented with green dotted lines. The schemes in (A) to 

(D) represent, respectively: (A): The simple two-component ligand/receptor system. 

(B): A three-component ligand/receptor system with two allosteric sites, A1 and A2. 

(C):  A three-component ligand/receptor system with one channel, C, coupling the 

ligand and the allosteric site A. (D): A four-component ligand/receptor system with 

two channels, C1 and C2, coupling the ligand and the allosterically coupled site A. 
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Considering the analogy to the ligand(L)-receptor(R) systems and treating the on/off 

and bound/unbound states as up/down spins (see Figure 12A), the potential energy 

function according to (1.77) can be written as: 

 
 
U sL ,sR( ) = uL

confs L+uR
confs R+uL,R

int s Ls R   (1.79) 

As the interaction energy between the receptor and the ligand must be zero when the 

ligand is in the unbound state, we write an alternative non-Ising potential energy 

function where the interaction energy is 0 when the ligand is unbound: 

 
 
U sL ,sR( ) = uL

confsL + uR
confsR + uL,R

int sL +1
2

sR   (1.80) 

This equation can be re-written as an Ising model potential energy function: 

 
 
U sL ,sR( ) = uL

confsL + uR
conf +

uL,R
int

2

⎛

⎝
⎜

⎞

⎠
⎟ sR +

uL,R
int

2
sLsR   (1.81) 

Thus we will proceed with (1.79) despite the seemingly non-physical interaction, and 

later confirm that the relationships derived using this model accurately represent those 

of non-Ising systems. The allosteric efficacy using this potential energy function is: 

 
 
α

p L =↓,R =↑( )
p L =↓,R =↓( ) =

p L =↑,R =↑( )
p L =↑,R =↓( )   (1.82) 

and we can simplify (1.73) to: 

  α = e−4βuL,R
int

  (1.83) 

Equation (1.83) indicates that in the Allosteric Ising Model for the ligand/receptor 

system (“ligand/receptor AIM”), the allosteric efficacy is simply a function of the 
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ligand-receptor interaction energy term. Positive allostery (agonism) is attributed to 

negative interaction energy; negative allostery (inverse agonism) is attributed to 

positive interaction energy. Note that as the interaction energy between the ligand and 

receptor is related to the allosteric efficacy by a log transformation, we will use here 

the allosteric efficacy and interaction energy interchangeably, and specifically use 

interaction energy for visual representations, where the log scale is required.  

The two-component model assumes that the protein is entirely rigid, with two global 

states. However, it is possible for the ligand to allosterically modulate multiple distinct 

allosteric sites (see Figure 12B). It is well known that GPCRs can signal through 

multiple downstream signaling pathways through coupling to various G protein 

subtypes and β arrestin121,122, and that different ligands can differentially activate these 

pathways106,107. This distinction is therefore necessary in the representation of receptor 

allostery. If we introduce two non-interacting allosteric sites, A1 and A2, we can write 

the potential energy function as: 

 
 
U L,A1,A2( ) = uL

conf + uA1

conf + uA2

conf + uL,A1

int + uL,A2

int   (1.84) 

Then the allosteric efficacy at a site as: 

 
 
α

p L =↓,A1 =↑( )
p L =↓,A1 =↓( ) =

p L =↑,A1 =↑( )
p L =↑,A1 =↓( )   (1.85) 

The probabilities of each state is the sum of the probability of two underlying states: 

 
 
αL,A1

p L =↓,A1 =↑,A2 =↑( ) + p L =↓,A1 =↑,A2 =↓( )
p L =↓,A1 =↓,A2 =↑( ) + p L =↓,A1 =↓,A2 =↓( ) =

p L =↑,A1 =↑,A2 =↑( ) + p L =↑,A1 =↑,A2 =↓( )
p L =↑,A1 =↓,A2 =↑( ) + p L =↑,A1 =↓,A2 =↓( )   (1.86) 

which is equal to: 
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αL,A1

e
−β −uL

conf +uA1
conf +uA2

conf −uL,A1
int −uL,A2

int⎡
⎣⎢

⎤
⎦⎥ + e

−β −uL
conf +uA1

conf −uA2
conf −uL,A1

int +uL,A2
int⎡

⎣⎢
⎤
⎦⎥

e
−β −uL

conf −uA1
conf +uA2

conf +uL,A1
int −uL,A2

int⎡
⎣⎢

⎤
⎦⎥ + e

−β −uL
conf −uA1

conf −uA2
conf +uL,A1

int +uL,A2
int⎡

⎣⎢
⎤
⎦⎥
= e

−β uL
conf +uA1

conf +uA2
conf +uL,A1

int +uL,A2
int⎡

⎣⎢
⎤
⎦⎥ + e

−β uL
conf +uA1

conf −uA2
conf +uL,A1

int −uL,A2
int⎡

⎣⎢
⎤
⎦⎥

e
−β uL

conf −uA1
conf +uA2

conf +uL,A1
int −uL,A2

int⎡
⎣⎢

⎤
⎦⎥ + e

−β uL
conf −uA1

conf −uA2
conf −uL,A1

int −uL,A2
int⎡

⎣⎢
⎤
⎦⎥
  (1.87) 

This reduces to: 

 
 
αL,A1

= e−4βuL,A1
int

  (1.88) 

which indicates that the allosteric efficacy of a ligand for an allosteric site is 

independent of other allosteric sites it also modulates (provided the allosteric sites are 

not coupled through another interaction). In terms of receptor signaling, this analysis 

predicts that for ligands with absolute bias for only one signaling pathway to exist, the 

downstream effectors (i.e., G proteins, β arrestin) would need to interact with unique 

and independent allosteric sites.  

In addition to the existence of multiple allosteric sites, allosteric conformational 

coupling can be propagated through specific regions within the protein, often called 

“paths” or “channels”. Using the AIM approach described here, we can expand the 

treatment of allostery to proteins with multiple structural components, where some 

components are allosterically regulated, and some mediate the allosteric regulation. 

We begin with a three-component model, composed of the ligand L, a channel C, and 

an allosteric site A (see AIM represented in Figure 12C). The potential energy 

function is 

 
 
U L,C,A( ) = uL

confsL + uC
confsC + uA

confsA + uL,C
int sLsC + uC,A

int sCsA + uL,A
int sLsA   (1.89) 

The allosteric efficacy is then 

 
 
αL,A1

e
−β −uL

conf +uC
conf +uA

conf −uL,C
int −uL,A

int +uC,A
int⎡

⎣
⎤
⎦ + e

−β −uL
conf +uC

conf −uA
conf −uL,C

int +uL,A
int −uC,A

int⎡
⎣

⎤
⎦

e
−β −uL

conf −uC
conf +uA

conf +uL,C
int −uL,A

int −uC,A
int⎡

⎣
⎤
⎦ + e

−β −uL
conf −uC

conf −uA
conf +uL,C

int +uL,A
int +uC,A

int⎡
⎣

⎤
⎦
= e

−β uL
conf +uC

conf +uA
conf +uL,C

int +uL,A
int +uC,A

int⎡
⎣

⎤
⎦ + e

−β uL
conf +uC

conf −uA
conf +uL,C

int −uL,A
int −uC,A

int⎡
⎣

⎤
⎦

e
−β uL

conf −uC
conf +uA

conf +uL,C
int −uL,A

int −uC,A
int⎡

⎣
⎤
⎦ + e

−β uL
conf −uC

conf −uA
conf −uL,C

int −uL,A
int +uC,A

int⎡
⎣

⎤
⎦
 (1.90) 

Equation (1.90) simplifies to 
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αL,A = e−4βuL,A
int cosh 2β uL,C

int + uC,A
int( )( ) + cosh 2βuC

conf( )
cosh 2β uL,C

int − uC,A
int( )( ) + cosh 2βuC

conf( )   (1.91) 

where cosh is the hyperbolic cosine function, 

 
 
cosh x( ) = ex + e−x

2
  (1.92) 

It should be noted that the exponential term in (1.91) is the conditional allosteric 

efficacy (i.e. the allosteric efficacy contributed by the direct interaction between the 

two components). The conditional allosteric efficacy can be written as the sum of 

weighted allosteric efficacies, with each allosteric efficacy conditioned on a different 

state of the channel and then weighted by the corresponding probability of that state: 

 
 
αL,A C = p C =↑( )αL,A C=↑ + p C =↓( )αL,A C=↓   (1.93) 

where for a given state, s, of C, 

 
 
αL,A C=s =

p L =↑,A =↑,C = s( )p L =↓,A =↓,C = s( )
p L =↑,A =↓,C = s( )p L =↓,A =↑,C = s( )   (1.94) 

Equation (1.94) simplifies to 

 
 
αL,A C = e−4βuL,A

int

  (1.95) 

Comparing (1.95) with the allosteric efficacy of the two-component ligand/receptor 

system expressed in (1.83), it is clear that the conditional allosteric efficacies in the 

three-component system are simply the allosteric efficacies of the corresponding two-

component systems.  
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We can then differentiate the allosteric efficacy contributed by the direct interaction of 

two components, the conditional allosteric efficacy, from the indirect contributions 

and write: 

 
 
αL,A = αL,A CαL,A

indirect   (1.96) 

where the allosteric efficacy contributed by the indirect interaction is: 

 

 

αL,A
indirect,C =

cosh 2β uL,C
int + uC,A

int( )( ) + cosh 2βuC
conf( )

cosh 2β uL,C
int − uC,A

int( )( ) + cosh 2βuC
conf( )   (1.97) 

Importantly, (1.97) provides a description of the allosteric efficacy as a function of the 

channel through which it is propagated. There are immediate inferences that can be 

drawn from this representation. First, the channel must have little preference for either 

one of its conformations, so that signaling through it can have a high intrinsic signal-

to-noise ratio. Based on this inference, mutations that further stabilize the intrinsically 

preferred conformation of a channel will decrease the allosteric efficacy of a ligand, 

whereas mutations that destabilize that conformation will increase the allosteric 

efficacy. The existence of these two classes of mutations has immediate implications 

for the ability to test experimentally the role of specific domains in allosteric 

signaling. Second, because allosteric transmission through the channel depends on a 

balance between the channel’s conformational energy and the interaction energy 

between the channel and ligand, and the channel and allosteric site, it follows that a 

low intrinsic signal-to-noise ratio can be overcome by an increased coupling of the 

ligand to the channel. Lastly, if the sign of the coupling of the ligand to the channel is 

opposite that of the channel to the allosteric site, the allosteric signal can be reversed. 

Consequently, a binding site on a protein that has been evolved for positive allostery 

by endogenous ligands can be targeted as a site for negative allosteric modulation, 
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and vice versa. It is well known that endogenous agonist-binding sites can be targeted 

by inverse-agonists, so this result is anchored in experimental evidence.  

Comparison of (1.94) with (1.95) indicates that the allosteric efficacy can be written in 

terms of the conditional allosteric efficacies due to direct interactions: 

 

 

αL,A = α
L,A C

cosh
1
2

log α
L,C A

α
C,A L( )⎛

⎝⎜
⎞
⎠⎟
+ cosh 2βuC

conf( )

cosh
1
2

log
α

L,C A

α
C,A L

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ cosh 2βuC

conf( )
  (1.98) 

In effect, the conditional allosteric efficacy is the signal-to-noise ratio for a single step 

in the signal propagation process, and the effective signal-to-noise ratio for the entire 

signal propagation system can be described by a non-linear function of all the 

constituent propagation steps.  

Equation (1.98) can also be written as the effective interaction energy,  
uL,A

int ∗

  

 

 

uL,A
int ∗ = uL,A

int − 1
4β

log
cosh 2β uL,C

int + uC,A
int( )( ) + cosh 2βuC

conf( )
cosh 2β uL,C

int − uC,A
int( )( ) + cosh 2βuC

conf( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (1.99) 

and thus as the sum of the direct and indirect interactions 

 
 
uL,A

int ∗ = uL,A
int + uL,A

indirect,C   (1.100) 

It should be noted that the designation of channel versus allosteric site is purely an 

operational definition in which the site that performs the function of interest is referred 

to as the allosteric site. If both sites are functional, such as in the case of two 

independent allosteric sites described above, and if they interact, we can rewrite (1.98) 

as 



	
  81	
  

 

 

αL,A1
= α

L,A1 A2

cosh
1
2

log α
L,A2 A1

α
A1,A2 L( )⎛

⎝⎜
⎞
⎠⎟
+ cosh 2βuA2

conf( )
cosh

1
2

log
α

L,A2 A1

α
A1,A2 L

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ cosh 2βuA2

conf( )
  (1.101) 

The description of the allosteric efficacy as a function of the channel through which it 

is propagated, in (1.97), indicates that if the channel is a one-dimensional chain of 

interacting structural components, the allosteric efficacy is quickly diminished (it has 

been shown that the spin correlation function decays exponentially with distance in 

one-dimensional Ising models 113).  In Figure 13, the effective interaction energy 

between the first and last components of one-dimensional Ising chains with uniform 

conditional allosteric efficacies of 10, 100, 1000, 10000, and 100000 are shown as a 

function of chain length. For weakly interacting systems, channels formed by 

structural components interacting in series do not appear to be good mediators of 

allosteric efficacy. The prevalence of multi-segment transmembrane signaling 

complexes may indicate an evolutionary mechanism to overcome the limitations of 

serial channels. 
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Figure 13. The effective interaction energy through serial channels. 

Effective interaction energies of the first and last components of one-dimensional 

Ising chains are plotted as a function of chain length for direct allosteric efficacy 

values of 10 (black), 100 (blue), 1000 (purple) 10000 (red) and 100000 (orange). The 

inset shows detail for short chain lengths. The effective interaction energy is seen to 

decay exponentially with channel length. 
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As described above, this analysis is made possible through the energetic symmetries 

imposed by the Ising model. However, it is unlikely that these energetic symmetries 

exist in real allosteric proteins. Thus, it is important to consider how well the 

relationships derived from AIMs describe non-Ising two-state models, which are 

expected to be better representations of the types of interaction networks present in the 

biomolecular systems of interest.  

To consider this problem, we sampled 100,000 non-Ising two-state allosteric systems 

with interaction energies and configurational energies sampled from normal 

distributions of mean 0 and standard deviation of β-1, 3/β, or 5/β.  The exact allosteric 

efficacies, calculated from the exact probabilities of each state, were then compared to 

the allosteric efficacies estimated from (1.98) using the direct allosteric efficacy terms.  

We should note that while direct allosteric efficacies can be calculated for non-Ising 

model, the calculation of the configuration energy term followed 

 
 
2uC

conf ≈ Uconf C =↑( )− Uconf C =↓( )   (1.102) 

As above, we addressed problems that may arise from the non-physical interaction 

energy between unbound ligand and the protein by setting to 0 all interaction energies 

with the unbound ligand. Results of these calculations are shown in Figure 14, where 

the corresponding effective interaction energies have been used for clarity. Our 

calculations indicate that (1.98) is a good estimate of the true allosteric efficacy in 

non-Ising systems in which the allosteric efficacy is high (see Figure 14A). As the 

standard deviation on the energy term distribution increases, and more systems have 

significant deviation from Ising-like behavior, two distinct groups of false positives 

(exact effective interaction energy is 0 but estimated interaction energy is non-zero) 

and true negatives appear (exact effective interaction energy is non-zero but estimated 
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interaction energy is 0), but the sign of the allosteric modulation is conserved (see 

Figure 14B-C). That the model maintains high accuracy for systems with high 

allosteric efficacy in spite of the two groups of inaccuracy, suggests that this model 

should reflect many of the qualitative and quantitative properties of actual allosteric 

systems. 

 

Figure 14. Using the Ising model to estimate effective interaction energies in non-

Ising three-component/two-state systems.  

The exact effective interaction energies of 100,000 three-component/two-state non-

Ising systems are plotted against the effective interaction energy estimated using the 

equations derived for the three-component Ising model. The systems are generated 

using energy terms sampled from a normal distribution of mean 0 and standard 

deviation of 1/β (A), 3/β (B), and 5/β (C) and the points are plotted with 10% opacity. 

Efforts to identify allosteric sites and channels in the structures of functional 

biomolecules have utilized estimates of correlation or mutual information between the 

structural dynamics of known allosteric sites and candidate modulation sites or 

channels, most often based on the analysis of molecular dynamics (MD) trajectories 
111,123–125 or elastic network models (ENMs) 126,127. Equation (1.99) indicates that 
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structural components that can act as channels will have high effective interaction 

energy with known allosteric sites (e.g.,  uC,A
int

).  

It is not clear, however, how this relates to the mutual information that is evaluated 

from an MD simulation. As we and others have used mutual information successfully 

to interpret the structural dynamics and allostery from MD trajectories 111,125,128, it is 

interesting to test the use of mutual information as an identifier of allostery in the 

context of AIMs. To this end we calculated the symmetric uncertainty 129, a 

normalized variant of the mutual information, between each component in two-

component Ising models and two-component non-Ising models, and compared the 

symmetric uncertainty to the absolute interaction energy.  The symmetric uncertainty 

(SU) between components is 

 
 
SU Xi,X j( ) = 2I Xi,X j( )

H Xi( ) + H X j( )   (1.103) 

where I is the mutual information 

 
 
I Xi,X j( ) = H Xi( ) + H X j( )− H Xi,X j( )   (1.104) 

and H is the Shannon entropy  

 
 
H X( ) = − p X( )log p X( )( )∑   (1.105) 

We generated 100,000 two-component Ising systems and 100,000 two-component 

non-Ising systems with energy terms sampled from a normal distribution with mean 0 

and standard deviation of 1, and calculated the symmetric uncertainty and allosteric 

efficacy of each. We find that the symmetric uncertainty enforces a lower limit on the 

allosteric efficacy, and allosteric efficacy increases with higher symmetric uncertainty 
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(see Figure 15). Thus, mutual information is a good predictor of allosteric activity in 

the two-state models explored here. The use of mutual information in systems that are 

not two-state will be discussed further below. 

 

Figure 15. Calculated mutual information between the channel and allosteric sites 

sets a lower bound on the allosteric efficacy.  

The symmetric uncertainty between the two components is plotted against the absolute 

effective interaction energy for 100,000 two-component/two-state non-Ising models 

(A), and two-component Ising models (B). The systems are generated using energy 

terms sampled from a normal distribution of mean 0 and standard deviation of 1/β, and 

the points are plotted with 10% opacity. 

Many proteins have been suggested to have multiple allosteric channels 130. Assuming 

that the channels are independent, careful algebra (not shown) reveals that to study the 

allosteric efficacy of a multi-channel system one can iteratively replace the direct 

interaction energy term with a direct interaction and indirect interaction of the same 

effective interaction energy. The effective interaction energy due to multiple 

independent channels is additive: 
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uL,A

int ∗ = uL,A
int + uL,A

indirect,CN

i=1

N

∑   (1.106) 

and the allosteric efficacy is then multiplicative 

 
 
αL,A = α

L,A C1,...,CN{ } αL,A
indirect,CN

i=1

N

∏   (1.107) 

This formally obvious result reveals the advantage of multiple channels in an allosteric 

protein: perturbations such as mutations that disrupt the conformational stability of 

one channel will not abolish allosteric function completely. Many parallel weak 

channels introduce significant robustness when compared to the allosterically 

equivalent single strong channel built in series, because the latter is completely 

eliminated by disruption of even a single interaction between two of its structural 

components. 

To test the ability of (1.107) to reflect accurately the behavior of non-Ising systems, 

we again constructed 100,000 two- and three-channel non-Ising allosteric systems 

using the methodology described for single channel systems, and compared the 

resulting allosteric efficacy to that calculated using (1.107) (see Figure 16). Again, we 

find good agreement between the estimates using (1.107) and the exact calculated 

efficacies, although the accuracy is slightly reduced as the number of channels 

increases from two to three.  
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Figure 16. Relation of effective interaction energies in non-Ising two-state systems 

with multiple independent channels to estimates from the corresponding Ising 

model.  

The exact effective interaction energies of 100,000 two-state non-Ising system is 

plotted against the effective interaction energy estimated using the equations derived 

for the n-channel Ising model for two (A), and three (B) independent channels. The 

systems are generated using energy terms sampled from a normal distribution of mean 

0 and standard deviation of 1/β, and the points are plotted with 10% opacity.  

Because it is unlikely that allosteric proteins consist of absolutely independent 

channels, we explored the effect of interaction between channels through the use of 

two AIMs: one two-channel system where both channels provide equal magnitude 

positive allosteric coupling, and one two-channel system where both channels are of 

equal magnitude but opposite direction. The allosteric efficacy was calculated for each 

system as a function of the interaction energy between the two channels of allostery 

for ligands that are coupled to one, or both channels.  
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As depicted in Figure 17, we found that when two channels mediating positive 

allosteric modulation have negative interaction energy, the allosteric efficacy of the 

ligand is increased, even if the ligand only interacts with one channel (Figure 17A). 

This is not unexpected; the second channel acts as an indirect channel from the first 

channel to the allosteric site and additionally multiplies the allosteric efficacy of the 

channel. However, if the ligand interacts with both channels, the allosteric efficacy is 

not the square of the allosteric efficacy of binding to one channel as would be for two 

identical, independent channels. This is because the interaction of the ligand with the 

first channel has already partially shifted the conformational distribution of the second 

channel, decreasing its channel efficacy by effectively increasing its intrinsic 

conformational preference.  

For the second two-channel system, with channels providing allosteric coupling in 

opposite directions, we find that when the interaction energy between the channels is 

negative, there is decreased allosteric efficacy for the ligand in either channel, whereas 

positive interaction energy between the channels leads to increased allosteric efficacy 

(Figure 17B). From the perspective of the positive channel, if the channels are 

positively coupled the second (negative) channel is an indirect channel that flips the 

sign of the allosteric signal, which leads to reduced overall allosteric efficacy due to 

negation. However, if they are negatively coupled, the signal through the second 

channel is flipped twice and left unchanged, leading to increased allosteric efficacy. 

Interestingly, if the ligand interacts with both channels equally, the effective 

interaction energy from this pair of channels is 0, independent of the interactions 

between the channels. In a receptor with these characteristics, antagonists could 

interact with each channel without conformational preference for the channel, or 

interact with both channels with the same sign, leading to no allosteric signal.  
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Figure 17. The effective interaction energy of a two-channel AIM as a function of 

the interaction energy between the channels.  

(A): The two-channel system in which each channel contributes to positive allosteric 

modulation is shown for a ligand that interacts with one channel (blue) or both 

channels (black). (B): A two-channel system with one positive allosteric channel and 

one negative allosteric channel is shown for a ligand that interacts only with the 

positive channel (blue), only with the negative channel (red), or both channels (black). 

The effect of interactions between channels is seen to modify significantly the 

allosteric signal transduction. 

2.2. N-body Information Theory Analysis 

Note: much of the text in this chapter has been adapted from two previously published 

manuscripts111,131, with permission from the publishers.  
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2.2.1. Motivation for Method 

As mentioned previously, the specific process of allosteric signal propagation in a 

molecular system through intramolecular interactions between structural components 

has not yet been subjected to direct experimental measurements. This is somewhat 

surprising, because the allosteric effects can be observed experimentally from the 

apparent relation between distal parts of a macromolecule. Indeed, to date, there are no 

experimental methods capable of specifically and definitively defining the role of the 

intramolecular interactions involved in propagating allostery. Most proposed 

mechanisms are descriptions of series of local rearrangements that are at best 

presumed (but not demonstrated) to be causally sequential, but a specific, quantitative 

definition of the information flow does not exist. For example, a successful 

experimental method for determining residues that are coupled to ligand binding is the 

mutant cycle analysis132. While it is able to quantify thermodynamic coupling at a 

distance, the approach relies on these sequential descriptions to propose the underlying 

mechanism of propagation. In addition, the simple procedure of mutating a residue 

and measuring the allosteric efficacy in the mutant does not directly test hypotheses 

regarding the role of that residue in a specific mechanism under wild-type conditions. 

Viewing the system from the perspective of the AIM described above, one would like 

to be able to test if either the conformational preference of that residue, or its 

interaction with another residue, is involved in allostery. While the mutation of a given 

residue to a “benign” residue such as alanine, as is traditional, can modify interactions 

between residues involved in propagation, it also modifies the states that residue can 

adopt and their distribution. Thus, a mutation does not simply remove a residue from 

the AIM, but instead modifies its role in the AIM in a possibly unpredictable way. If a 

mutation is to be performed to test hypotheses regarding the role of a specific residue 
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in an allosteric mechanism, this must be done with specific care for the local structural 

ensemble both before and after mutation.  

Due to this difficulty, many have developed computational methods through which 

structural information is used to derive an allosteric mechanism. Largely, these 

methods can be subdivided in two ways. In the first subbdivision, most methods can 

often be classified by the data they use: they are either structure-based or ensemble-

based. In structure-based approaches, allosteric mechanisms are derived from one or 

more experimentally determined 3-dimensional structures, while in ensemble-based 

approaches, allosteric mechanisms are derived from the ensemble of conformations 

the system can adopt, generally estimated using a physics-based sampling method 

such as Molecular Dynamics. In the second, the methods can be classified by the 

observable that is used to indicate the presence of allostery: they either look for 

allosterically-induced conformational changes in terms of significant differences in the 

structure or ensemble between the apo and ligand-bound state, or for allosteric 

couplings between domains in terms of statistical or graph theoretical associations. 

Below, some of these methods will be briefly described. 

2.2.2. Previous Methods 

2.2.2.1. Structure-based Methods 

The simplest method for proposing an allosteric mechanism is through the 

investigation of the differences between an apo and ligand-bound structure of a 

comparable construct. At the limits of very large allosteric efficacy and very low basal 

activity, one might expect that for a ligand-activatable protein, the apo structure is 

likely to be in an inactive state, whereas the ligand-bound state is likely to be in the 

active state. It is often, but not always, possible to trace conformational changes from 
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the ligand-binding site to distant domains. However, observations of an allosteric 

conformational change do not themselves generate hypotheses as to why that specific 

conformational change occurred. Rather, mechanistic hypotheses are generally 

constructed by visually investigating the structure and invoking biophysical intuition.  

Returning to the statistical mechanical models of allostery, it should be possible to 

predict what kinds of allosteric behaviors are possible and the components crucial for 

those behaviors if one knows the components and their interactions, as well as their 

intrinsic conformational preferences. While a single structure does not inform about 

the conformational preferences of its structural components, it does contain the 

topology of interactions for one of the states. Most often, electrostatic or Lenard-Jones 

interactions are considered, and are inferred from certain geometric criteria, such as 

contact distances, or angles of relative orientation between atoms133,134. Many methods 

rely on the analysis of the interaction topology by using graph theoretical statistics135–

137, such as centrality, which quantifies the extent to which a given residue plays a role 

in the overall connectivity of the network. While these methods do not always directly 

reveal allosteric networks, as not all pathways identifiable from an interaction network 

will contribute strongly to the emergent allosteric efficacy, these methods have been 

able to find some motifs in protein structure, such as interaction hubs136,138 of densely 

connected elements, and conclude that differences between these networks highlight 

interactions that may stabilize one conformational state over others139. 

2.2.2.1. Ensemble-based Methods 

As allostery is fundamentally a statistical mechanical phenomenon that pertains to the 

relative probability of specific states of the system, methods that draw conclusions 

from the ensemble of conformational states available to the allosteric system of 
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interest are likely to generate more reasonable predictions regarding the underlying 

physical mechanism. The generation of these ensembles is not trivial however, as 

there is no existing experimental method for determining a multi-dimensional 

conformational ensemble, even at a coarse-grain scale. For example, while EPR can be 

used to determine many distance distributions simultaneously, it can only measure 

these distributions independently, and thus the full multivariate ensemble cannot be 

recovered from the experiment alone. In addition, while multi-color smFRET 

experiments could in theory measure a multivariate distribution, to our knowledge 

there are few examples of more than two distances being measured simultaneously, 

and the conformation of transmembrane domains is not accessible due to the bulk of 

the dyes required for smFRET. Due to these experimental limitations, computational 

conformational sampling approaches such as elastic network models (ENM) and 

Molecular Dynamics simulations (MD) have been extremely useful.  

In ENMs140, the system is represented with only the Calpha carbons, and each carbon 

is attached to each other carbon within a given cut-off distance by a spring. Here, we 

will detail only the Gaussian network, although other variants have been proposed141. 

The potential energy function is: 

 
 
UENM = γ

2
Δ!riΓ ijΔ

!rj
j

N

∑
i

N

∑⎡
⎣
⎢

⎤

⎦
⎥   (1.108) 

where: 
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⎩

⎪
⎪
⎪

  (1.109) 

The covariance between the fluctuations of any two atoms can be shown to be: 
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Δ!ri ⋅ Δ

!rj = 3kBT
γ

Γ−1( )ij   (1.110) 

The covariance matrix, C, is then defined as: 

 C = 3kBT
γ

Γ−1( )   (1.111) 

An eigenvalue decomposition of C can be performed, 

 Γ−1 = UΛUT = λk
−1 ukuk

T⎡⎣ ⎤⎦
k=1

N−1

∑   (1.112) 

which leads to independent normal modes whose low frequency (high eigenvalue) 

models contribute most to equilibrium fluctuations. 

It should be noted that the covariance measure defined in (1.110) is not the typical 

covariance between variables, which will be discussed later. The dot product between 

two vectors is 0 whenever the vectors are orthogonal to each other. Thus, this 

covariance measure is dependent on the relative orientation of the fluctuation vectors, 

which is not desirable. We will refer to this measure as the vector covariance to 

differentiate it from other measures of covariance.  

When using ENM approaches to study allostery, it is implicitly assumed that 

perturbations that have allosteric effects, such as ligand binding or mutations at key 

position in an interaction network, modulate the dominant eigenmodes. This 

assumption appears to be reasonable and has yielded important mechanistic insights 

about collective conformational changes, e.g., in response to different ligands binding 

to GPCRs142, or to mutations at the intracellular gate of LeuT86. The successful 

investigation of such perturbations has been extended to even larger membrane protein 
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systems (as reviewed in 143), such as the role of inter-domain or lipid–protein 

interactions in the conformational transition energy in GltPh144,145 

While there are some successful applications of ENMs, modeling the free energy 

landscape as a single harmonic basic around an x-ray structure is unlikely to 

accurately represent the true ensemble of the system. In order to generate a more 

accurate estimate of the conformational ensemble, MD is used. In MD, the system is 

represented at the classical, atomic scale. The potential energy function, also known as 

the force field, defines the types of interactions between the atoms and the parameters 

of these interactions for a given set of atom types. A typical force field includes 

bonded and non-bonded potential energy terms: 

 U = Ubonded +Unonbonded   (1.113) 

The bonded terms are harmonic energy terms for the bond, angles, dihedrals, improper 

angles, Urey-Bradley, and correction map (CMAP) terms: 

 

Ubonded = Ubond +Uangle +Udihedral +Uimproper +UUB +UCMAP

Ubond = kr r − r0( )2
bonds
∑

Uangle = kθ θ − θ0( )2
angles
∑

Udihedral = kϕ 1+ cos nϕ + δ( )( )( )
dihedrals
∑

Uimproper = kw ω −ω0( )2
angles
∑

UUB = kub r
1−3 − r0

1−3( )2
Urey−Bradey
∑

UCMAP = uCMAP
residues
∑ Φ,Ψ( )

  (1.114) 

In each equation, k represents a force constant. The Urey-Bradley terms impose an 

additional energetic constraint on each atom by imposing a pseudo-bond between the 

first and third atom, whereas the CMAP correction biases the backbone angles of each 
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residue to better resemble those sampled in quantum mechanical calculations. The 

non-bonded terms include the electrostatics and van der Waals interactions: 

 

Unon−bonded = Uelectrostatic +UVDW

UVDW = εij
rij
min

rij

⎛

⎝⎜
⎞
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− 2
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⎢

⎤

⎦
⎥
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Uelectrostatic =
qiq j
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∑

  (1.115) 

Here, the VDW term uses the standard 6-12 Leonard-Jones potential. Given this force 

field, a set of coordinates and velocities, and a function to numerically integrate 

Newton’s equations of motion, the dynamics of the system can be simulated. 

Newton’s equations define the force, F, exerted on a given particle as: 

  
!
F = m!a   (1.116) 

where m is the particle’s mass and a is its acceleration. Additionally, the force is equal 

to the negative of the potential energy gradient: 

  
!
F = −∇U   (1.117) 

Combining the two leads to: 

 − dU
dr

= m d
2r
dt2

  (1.118) 

Typically, the equations of motion are numerically integrated using an algorithm such 

as Velocity Verlet146: 

 

 

!xt+Δt =
!xt +
!vtΔt +

!at
2
Δt

!vt+Δt =
!vt +
!at +
!at+Δt
2

Δt
  (1.119) 
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MD can be used to estimate the conformational ensemble of a system given that 

system is ergodic, i.e. the system is not periodic and there exists a number of time 

steps, n, in which the system can evolve from any state i to any other state j. If these 

conditions are met, the time average of some observable will approach the ensemble 

average of that observable: 

 
 
lim
T→∞

A !rt( )
T

dt
0

T

∫
⎡

⎣
⎢

⎤

⎦
⎥ = A !r( )p !r( )∫ d!r = A !r( )   (1.120) 

Thus, the desired conformational ensemble can be estimated at the limit of very long 

simulation times: 

 
 
A !r( ) ≈

A !rt( )
Tt=1

T

∑   (1.121) 

From an MD simulation of N atom for T time steps, the 3N x T time series X is 

produced: 

 

 

X =
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  (1.122) 

From this time series, several characteristics can be calculated. First, it is important to 

note that unlike in the ENM, each x, y, and z coordinate of each atom is implicitly 

represented in these time series. Thus, (1.122), is equivalent to: 

 
 
X = X1 X2 ! XN

⎡
⎣

⎤
⎦   (1.123) 

where 
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  (1.124) 

As is the case for the ENMs, the vector covariance can be calculated from these time 

series: 

 
 
Ca,b
vector = !ra ⋅

!rb ≈
!ra,t ⋅
!rb,t
Tt=1

T

∑   (1.125) 

While the vector covariance has been used as an end point of analysis in the past [59], 

a better measure of covariance can be calculated. The average value of each 

coordinate can be estimated, 

 ri ≈
ri,t
Tt=1

T

∑   (1.126) 

and the 3N x 3N atomic fluctuation covariance matrix, C can be estimated: 

 Cij = ri − ri( ) rj − rj( ) ≈
ri,t − ri( ) rj,t − rj( )

Tt

T

∑   (1.127) 

Unlike the vector covariance, the covariance terms in C correspond to true statistical 

covariance. However, the covariance for two atoms, a and b, is then described by a 3 x 

3 non-symmetric cross-covariance matrix: 

 Ca,b =

Caxbx Caxby Caxbz
Caybx Cayby Caybz
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  (1.128) 

While this representation leads to difficulties in interpretation, as the covariance 

between each atom pair is represented by nine numbers rather than 1, eigenvalue 
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decomposition can also be performed on the full 3N x 3N covariance matrix. The 

eigenvalue decomposition of a covariance matrix is known as principal component 

analysis (PCA) or essential dynamics (within the MD community), and similar to 

normal mode analysis, PCA can be used to identify the system’s highest variance (and 

potential largest spatial scale) motions. However, like normal mode analysis, PCA 

only identifies the largest linearly independent motions in a given trajectory, and these 

motions are not guaranteed to be functionally relevant in terms of responding to 

allosteric perturbations.   

As PCA does not directly identify the motions that will be allosterically modulated by 

a given perturbation, methods have been developed to specifically search for networks 

of residues that are expected to mediate the long-distance allosteric couplings between 

specific residues or clusters of residues. We will refer to these methods as analyses of 

dynamical network models (DNMs)123,147,148. 

In the DNMs, network representations of the protein are built by treating each residue 

as a node and assigning weights to the edges between each node, eab, using the dot 

correlation, rho, between each atom:  

 
 

eab = − log ρab
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  (1.129) 

In this representation, maximally dot correlated residues have an edge weight of 0, 

whereas maximally uncorrelated residues have an edge weight of ∞. This 

representation allows for the calculation of allosteric pathways through the protein by 

using shortest pathway algorithms from graph theory and network theory. In this 

framework, an allosteric pathway is defined as a sequence of residues, each of which 

has high pairwise correlation with the residues before it and after it. In addition, this 
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framework has been extended to account for sub-optimal pathways149, and allows for 

the quantification of statistics such as the centrality and the identification of structures 

such as communities150. This method has been illustrated in applications to 

tRNA:synthetase complexes123, in which the identified allosteric pathways pinpointed 

interactions between conserved residues and specific nucleotides that were shown with 

mutagenesis experiments to affect synthetase kinetics. An alternative to the original 

dynamic network analysis in DNM, which is based on linear correlations, is to use the 

mutual information from information theory151, which captures non-linear 

dependencies.  

In information theory, the entropy is a functional over the probability distribution of a 

given variable, and is defined as the average value of the information content of that 

variable: 

 H p x( )⎡⎣ ⎤⎦ = − p x( )log p x( )( )
x∈X
∑   (1.130) 

This measure of the entropy is analogous to the entropy of statistical mechanics, but 

was devised by Shannon due to its favorable characteristics: it is non-negative, is 0 

when a variable can take on only one value and is thus non-informative to measure, 

and is additive for independent variables. While the entropy is additive for 

independent variables, it is not additive for dependent variables. When variables are 

dependent, the entropy of the joint distribution is less than the sum of the entropy of 

the marginal distributions, but no less than the minimum entropy of the two 

distributions: 

 H p x( )⎡⎣ ⎤⎦ +H p y( )⎡⎣ ⎤⎦ ≥ H p x,y( )⎡⎣ ⎤⎦ ≥min H p x( )⎡⎣ ⎤⎦,H p y( )⎡⎣ ⎤⎦( )   (1.131) 

The mutual information is then defined as the entropy difference between the entropy 
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of the joint distribution and the sum of the entropy of the marginal distributions: 

 I2 p x,y( )⎡⎣ ⎤⎦ = H p x( )⎡⎣ ⎤⎦ +H p y( )⎡⎣ ⎤⎦ −H p x,y( )⎡⎣ ⎤⎦   (1.132) 

Equation (1.132) can be alternatively express as: 

 I2 p x,y( )⎡⎣ ⎤⎦ = H p x( )⎡⎣ ⎤⎦ +H p x y( )⎡⎣ ⎤⎦ = H p y( )⎡⎣ ⎤⎦ +H p y x( )⎡⎣ ⎤⎦   (1.133) 

where H[p(x|y)] is the conditional entropy of x given y: 

 H p x y( )⎡⎣ ⎤⎦ = H p x,y( )⎡⎣ ⎤⎦ −H p y( )⎡⎣ ⎤⎦   (1.134) 

Many approaches have been developed based on the mutual information152–154. 

Because mutual information ranges from 0 to ∞, it is desirable to normalize it in some 

way. Normalization is not trivial, however. The mutual information is bounded: 

 I2 p x,y( )⎡⎣ ⎤⎦ ≤min H p x( )⎡⎣ ⎤⎦,H p y( )⎡⎣ ⎤⎦( )   (1.135) 

Thus, in the discrete case, several intuitive normalizations are available. The 

symmetric redundancy, R, is particularly useful: 

 R p x,y( )⎡⎣ ⎤⎦ =
2I2 p x,y( )⎡⎣ ⎤⎦

H p x( )⎡⎣ ⎤⎦ +H p y( )⎡⎣ ⎤⎦
  (1.136) 

However, entropy is often estimated from continuous estimates of the distribution. 

This is done using the differential entropy, which is the continuous counterpart to the 

discrete entropy: 

 Hdiff p x( )⎡⎣ ⎤⎦ = − p x( )log p x( )( )dx∫   (1.137) 

Unlike the discrete entropy, the differential entropy can be negative. It is well known 

that the differential entropy is infinitely shifted from the true entropy155, but the 
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mutual information is unaffected by this property. However, because the true entropy 

in infinite, the mutual information is unbounded. To bound it, the generalized 

correlation coefficient156, which uses the relationship between the mutual information 

among two normal distributions and their correlation coefficient, r: 

 I2 p x,y( )⎡⎣ ⎤⎦ =
1
2
log 1− rxy

2( )   (1.138) 

where: 
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  (1.139) 

Assuming that the maximum mutual information scales with dimension, the 

generalized correlation coefficient between two d-dimensional distributions is then 

defined as: 

 rGC p x,y( )⎡⎣ ⎤⎦ = 1− e
−2
d
I2 p x,y( )⎡⎣ ⎤⎦   (1.140) 

This normalization has several problems, which will be discussed later. Despite these 

problems, using the generalized correlation coefficient with the DNM has been used in 

the analyses of allosteric networks in thrombin128 and imidazole glycerol phosphate 

synthase157 to some success, although with minimal experimental validation. 

However, while DNM and mutual information methods can identify pathways with 

high consecutive pairwise correlation or mutual information, these formulations do not 

guarantee that all components of the pathway are correlated. We will illustrate with 

the use of a simple two-dimensional three-body chain (see Figure 18) that if the axes 

of covariance are not aligned, the pairwise correlations between bodies that are 

consecutive in the chain may be high, but the system cannot transmit information.  
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Figure 18. Efficient information transmission by a 3-body system.  

Information transmission through a 3-body system (solid blue lines represent direct 

interactions), moving in 2D, is inefficient if the axes of covariance of each pair (thick 

arrow) are not aligned (left). Information transmission it is efficient if the axes of 

covariance are aligned (right); the dotted blue lines represent indirect allosteric 

interaction as a result of information sharing. 

If A and B co-vary on the blue axis, information about the position of A on the blue 

axis is present in the position of B on the blue axis, and if B co-varies with C on the 

red axis, information about the position of B on the red axis is present in the position 

of C on the red axis. When A and C co-vary with B on different axes, no information 

about the position of B on the blue axis is present in the position of C on the red axis, 

and thus no information about the position of A on the blue axis is present in the 

position of C on the red axis, i.e., there is no allosteric information transmission (see 

Figure 18, left).  

However, when the blue and red axes are aligned, A, B and C all co-vary on the same 

axis and the 3-body correlation leads to information about the position of A on the 

blue axis being present in the position of C on the red axis (see Figure 18, right). This 
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model illustrates a weakness in the use of network theoretical methods that do not 

maximize the higher n-body correlations: while shortest path analysis maximizes the 

pairwise correlations, one would expect that many pathways found using such network 

theoretical methods may not actually be efficient information channels.  

Indeed, higher-order correlations between multiple residues in the network, which can 

be described using higher-order mutual information158, are required for a system to 

transmit information through the network. In the following sections, we will present a 

method that uses these high-order mutual information terms to identify allosteric 

information channels in proteins.  

2.2.3. N-body Information Theory (NbIT) Analysis 

The new NbIT analysis method presented here utilizes a generalization of the concept 

of n-body mutual information, also known as co-information or interaction 

information158–161, an information theoretical measure which enables a description of 

the possible contribution that a variable makes to the mutual information shared 

between two other variables. The N-body information is calculated recursively as: 

 
 
IN p x1,x2,…,xN( )⎡⎣ ⎤⎦ = IN−1 p x1,x2,…,xN−1( )⎡⎣ ⎤⎦ − IN−1 p x1,x2,…,xN−1 xN( )⎡⎣ ⎤⎦   (1.141) 

where 

 
 
IN−1 p x1,x2,…,xN−1 xN( )⎡⎣ ⎤⎦ = IN−2 p x1,x2,…,xN−2 xN( )⎡⎣ ⎤⎦ − IN−2 p x1,x2,…,xN−2 xN,xN−1( )⎡⎣ ⎤⎦  

 (1.142) 

Recursion will eventually lead to the 3-body information terms, which are the central 

information measurements in the analysis. The 3-body information is: 
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 I3 p x,y,z( )⎡⎣ ⎤⎦ = I2 p x,y( )⎡⎣ ⎤⎦ − I2 p x,y z( )⎡⎣ ⎤⎦   (1.143) 

where 

 I2 p x,y z( )⎡⎣ ⎤⎦ = H p x z( )⎡⎣ ⎤⎦ +H p y z( )⎡⎣ ⎤⎦ −H p x,y z( )⎡⎣ ⎤⎦   (1.144) 

3-body information can be visualized easily using an information Venn diagram (see 

Figure 19). While several representations of this information are found in the 

literature with varying signs, we have chosen to use the sign convention described by 
159,161. Using this convention, when 3-body information is positive, the third body may 

increase the information transmission between the two others, whereas when it is 

negative, the third body diminishes it.  
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Figure 19. The 3-body information Venn diagram.  

In a 3-body system, the co-information between three variables is the 3-way intersect, 

denoted as I3(X1,X2,X3). Blue circles denote the transmitter and receiver, whereas the 

green circle denotes the channel. 
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It is important to discuss the interpretation of negative 3-body information. If X1 and 

X2 are positively correlated by direct interaction, but X2 is positively correlated to X3 

while X1 is negatively correlated to X3 (both by direct interaction), the information 

shared by X1 and X2 is diminished due to their interaction with X3 for certain 

parameters (for example, when the correlation between X1 and X2 is 0.1, the 

correlation between X1 and X3 is -0.7, and the correlation between X2 and X3 is 0.7). 

While this can occur in allosteric biomolecular systems, we have found it to be rare in 

our applications. In fact, it appears to occur when data is limited (data not shown), 

which may indicate that it is an indication of poor sampling.  

When calculating the 3-body information in order to analyze whether some body acts 

as a channel for the information transmission between two others, we will refer to the 

3-body information as co-information. In order to compare co-body information and 

quantify the potential fraction contribution of a channel variable to information 

transmission between two other residues, we calculate the normalized co-body 

information, defined as: 

 I3 p x,y,z( )⎡⎣ ⎤⎦ =
I3 p x,y,z( )⎡⎣ ⎤⎦
I2 p x,y( )⎡⎣ ⎤⎦

*100%   (1.145) 

In this normalized form, the third variable (in this case z) is specifically taken to be a 

potential channel for information transmission between the first two variables (x and 

y). This normalization is useful as it allows for a distinction between potential channel 

topologies. If x and y are conditionally independent given z, then: 

 I2 p x,y z( )⎡⎣ ⎤⎦ = 0   (1.146) 

and  
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 I3 p x,y,z( )⎡⎣ ⎤⎦ = 100%   (1.147) 

However, unless all three variables are maximally dependent, x and z will not be 

conditionally independent given y, and y and z will not be conditionally independent 

given x. Thus, 

 
I3 p x,y,z( )⎡⎣ ⎤⎦ > I3 p x,z,y( )⎡⎣ ⎤⎦

I3 p x,y,z( )⎡⎣ ⎤⎦ > I3 p y,z,x( )⎡⎣ ⎤⎦
  (1.148) 

The property in (1.148) is desirable, as the co-information itself is invariant to the 

order of the variables and thus cannot on its own reveal anything about the topology. 

In order to illustrate the power of using the normalized co-information to identify 

allosteric channels, we designed symmetric K1,4 networks of coupled univariate 

normal distributions (see Figure 20, top left). Each of the three illustrative systems - 

weak, moderate, and strong - is defined by a covariance matrix with the diagonal 

elements (the variances) equal to 1. In the weak system, the covariance between 

directly coupled distributions, rdirect, is 0.25 and the covariance between indirectly 

coupled distributions, rindirect, is 0.0625. In the moderate system, rdirect = 0.5 and rindirect 

= 0.25, and in the strong one, rdirect = 0.75 and rindirect = 0.2625. For each system, 

inverting the covariance matrix produces 0 in all the elements corresponding to 

interactions between indirectly coupled distributions, which indicates that they are 

conditionally independent as intended. 

We sampled the complete multivariate distribution of the symmetric K1,4 networks 

with observations ranging from 200 to 10000 (in multiples of 200), each with ten 

realizations, using the mvrnorm function within the R package MASS. We then tested 

how well one could differentiate node 1, which is the true channel between nodes 2 

and 3, from node 4, which is a false channel, by using the normalized co-information. 
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The results are summarized in Figure 20, showing that even for the weak system, 

where the true indirect correlations are lower than would traditionally be considered 

for investigation, the normalized co-information can be used to determine the true 

channels from the false channels if one has over 8000 observations of the systems. For 

the moderate system, channels can be identified with fewer than 2000 observations.  
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Figure 20. Co-information and Mutual Coordination Information can identify 

channels in K1,4.  

Top left: The K1,4 network that serves to illustrate the ability of these measures to 

discriminate between true and false channels. Each circle is a node and the connecting 

lines are the edges. Edges represent direct interactions with covariance rdirect, and all 

nodes that are not connected by an edge display indirect interactions with covariance 

rindirect. Top right: Figure shows the results from separate calculations with different 

numbers of observations, of normalized co-information (red) and normalized mutual 

coordination information (blue) in the strong K1,4 network. True channels are shown in 

solid lines and false channels are shown in dashed lines, and bars represent the 

standard deviation of 10 realizations. Bottom left: Same as top right, for the moderate 

K1,4 network. Bottom right: Same as left panel, for the weak K1,4 network. 
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However, more complex information transmission networks may be imagined than the 

simple 3-body system for which co-information applies. For example, more than two 

domains may display coupled motions, and these coupled motions may be due to a 

central channel. While the N-body information can be used to quantify how much 

information in shared by all members in a set, there may be many different collective 

motions existing involving different subsets of the full set of N. To quantify overall 

amount of information shared by N bodies, including all possible n-body coupled 

motions ranging from n=2 to n=N, we can calculation the total correlation, also known 

as the multi-information: 

 
 
TC p x1,x2,…,xN( )⎡⎣ ⎤⎦ = H p xi( )⎡⎣ ⎤⎦

i=1

N

∑ −H p x1,x2,…,xN( )⎡⎣ ⎤⎦   (1.149) 

We can generalize the co-information to describe how much information that is shared 

by a set of variables of arbitrary size is also shared with another variable. This is 

calculated as the difference between the TC and the conditional TC, which we will call 

the coordination information, (CI): 

 
 
CI p x1,x2,…,xN( ),p y( )⎡⎣ ⎤⎦ = TC p x1,x2,…,xN( )⎡⎣ ⎤⎦ − TC p x1,x2,…,xN y( )⎡⎣ ⎤⎦   (1.150) 

This contribution describes the amount of total correlation in a set of variables (the 

“coordinated set”) that is shared with a variable (or multivariate distribution) that is 

not included in the coordinated set (“the coordinator”). When calculated in this 

manner, CI describes the contribution of a site to all possible n-body correlations 

within another site. We can define the normalized coordination information (NCI), 

analogous to the normalized co-information, in which the coordination information is 

normalized to the total correlation within the coordinated site: 
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CI p x1,x2,…,xN( ),p y( )⎡⎣ ⎤⎦ =

CI p x1,x2,…,xN( ),p y( )⎡⎣ ⎤⎦
TC p x1,x2,…,xN( )⎡⎣ ⎤⎦

  (1.151) 

It should be noted that coordinators are not all coordination channels. Coordinators 

can be coupled to coordination channels, and thus perturbation to the coordinator 

leads to a perturbation in the coordinated set. In order to define channels that mediate 

coordination information, we calculate the amount of coordination information that is 

shared between two residues and the same set, which we call mutual coordination 

information, (MCI):  

 
 
MCI p x1,x2,…,xN( ),p y( ),p z( )⎡⎣ ⎤⎦ = CI p x1,x2,…,xN( ),p y( )⎡⎣ ⎤⎦ −CI p x1,x2,…,xN( ),p y( ) p z( )⎡⎣ ⎤⎦  (1.152) 

The mutual coordination information can also be normalized: 

 
 
MCI p x1,x2,…,xN( ),p y( ),p z( )⎡⎣ ⎤⎦ =

MCI p x1,x2,…,xN( ),p y( ),p z( )⎡⎣ ⎤⎦
CI p x1,x2,…,xN( ),p y( )⎡⎣ ⎤⎦

  (1.153) 

Using the K1,4 network, we demonstrate how well one could differentiate node 1 - the 

true coordination channel for the coordination of nodes 2 and 3 by node 5 - from node 

4, a false coordination channel, using mutual coordination information. We find 

results similar to those of the co-information, indicating that the mutual coordination 

information is also a good tool for identify allosteric channels.  

Of additional interest is the study of rigid bodies and rigid-body-like behavior. 

Because much of the dynamics in proteins is often considered qualitatively in terms of 

“rigid body motions”, it is of interest to study such behavior, and rigid-body-like 

behavior, in the context of information.  In general, a rigid body is considered to be a 

solid body in which internal deformations can be neglected. But formal description of 

what constitutes a rigid body in a molecular system, which can be independent of the 

particular physics of the system of interest, is lacking. Nevertheless, the qualitative 
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description implies specific constraints on the conformational entropy and N-body 

information of the system. We can consider as an example a sphere of densely packed 

atoms. The coordinate of any atom in this sphere after a translation can be determined 

by measuring only one atom. Thus, for any atom i: 

 
 
H ptranslation x1,x2,…,xN( )⎡⎣ ⎤⎦ = H ptranslation xi( )⎡⎣ ⎤⎦   (1.154) 

As all atoms have the same translational entropy: 

 
 
H ptranslation x1,x2,…,xN( )⎡⎣ ⎤⎦ = H ptranslation xi( )⎡⎣ ⎤⎦ = IN ptranslation x1,x2,…,xN( )⎡⎣ ⎤⎦   (1.155) 

Thus, a system is maximally rigid in regard to translations if (1.155) is true. In the 

same sense, as the constituents atoms can be considered points in space, the coordinate 

of any atoms after a rotation can be determined, given the axis of rotation, by 

measuring only one atom. Thus, ignoring atoms that lie perfectly on the axis of 

rotation: 

 
 
H protation x1,x2,…,xN( )⎡⎣ ⎤⎦ = H protation xi( )⎡⎣ ⎤⎦ = IN protation x1,x2,…,xN( )⎡⎣ ⎤⎦   (1.156) 

If the rotations and translations are taken to be independent, the total entropy is then: 

 
 
H p x1,x2,…,xN( )⎡⎣ ⎤⎦ = IN p x1,x2,…,xN( )⎡⎣ ⎤⎦ = IN protation x1,x2,…,xN( )⎡⎣ ⎤⎦ + IN ptranslation x1,x2,…,xN( )⎡⎣ ⎤⎦  (1.157) 

Thus, an intuitive quantification of the rigid-body dynamics of a system, R, can be 

written as: 

 
 
R p x1,x2,…,xN( )⎡⎣ ⎤⎦ =

IN p x1,x2,…,xN( )⎡⎣ ⎤⎦
H p x1,x2,…,xN( )⎡⎣ ⎤⎦

  (1.158) 

However, R is not useful for a continuous distribution, in which the entropy is infinite 

for all non-Dirac delta distributions162, and the commonly used differential entropy 
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can be negative. Instead, it is useful to normalize to a strictly positive quantity that is 

also strictly greater than the N-body information and equal to the N-body information 

when the system is maximally rigid. One such quantity is the average 2-body 

information, and thus we can calculate the rigid-body fraction, RBF, as: 

 

 

RBF p x1,x2,…,xN( )⎡⎣ ⎤⎦ =
IN p x1,x2,…,xN( )⎡⎣ ⎤⎦

N2 −N
2

I2 p xi,x j( )⎡⎣ ⎤⎦
j=1,i≠ j

N

∑
i=1

N

∑
  (1.159) 

However, the RBF can be problematic. Given a system composed of one rigid body, 

adding a single particle to the system that is independent of the existing rigid body 

results in a RBF of 0. In general, it would be useful to have a measure that could 

quantify rigid-body behavior in a system of multiple, possibly coupled, rigid bodies. 

To do this, one can consider the mutual information expansion of the entropy: 

 

 

H p x1,x2,…,xN( )⎡⎣ ⎤⎦ = H p xi( )⎡⎣ ⎤⎦
i=1

N

∑ + −1j−1
Ij
N
j

⎛

⎝
⎜

⎞

⎠
⎟

∑
j=2

N

∑

⎛

⎝

⎜
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⎞

⎠

⎟
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  (1.160) 

where the sum over Ij is the sum of all j-body information terms.  Given that: 

 
 
IN p x1,x2,…,xN( )⎡⎣ ⎤⎦ ≤min IN−1( )   (1.161) 

then 

 

 

IN p x1,x2,…,xN( )⎡⎣ ⎤⎦ ≤
IN−1
N
N −1

⎛
⎝⎜

⎞
⎠⎟

∑ ≤ IN−2
N
N − 2

⎛
⎝⎜

⎞
⎠⎟

∑ ≤…≤ I2
N
2

⎛
⎝⎜

⎞
⎠⎟

∑   (1.162) 

Thus, the curve representing the average n-body information as a function of n is 

strictly decreasing. In fact, for a model system consisting of a finite one-dimensional 

lattice of one-dimensional normal distributions with unit variance and uniform 
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covariance between neighbors, we find that an approximately exponential decay of the 

average n-body information is expected for a range of covariances (see Figure 21). 

Additionally, adding heterogeneity by modifying some of the covariances did not 

change the decay (see Figure 21). 

 

Figure 21. Approximately exponential decay of the average n-body information 

in model 1-dimensional lattices of coupled 1-dimensional normal distributions. 

Covariance between neighbors are 0.7 (diamond), 0.8 (square), and 0.9 (circle, solid 

line). The dashed and dotted lines correspond to systems where the fourth and fifth 

distributions have greater covariance with their neighbors (0.95 and 0.99, 

respectively). All lines are parameterized as exponential decays using Eq. (1.163). 

Thus, in order to describe the average n-body information term as a function of n from 

2 to N, we can parameterize a function with the following exponential form: 

 In = Ae
− n−2( )

CO +B   (1.163) 
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By parameterizing the exponential function, we calculate the correlation order, CO, 

which describes the rate of decay of n-body correlations in the system. A CO of 1 

would indicate that the average nat (the unit of information when the natural logarithm 

is used) of n-body information is contributed by an n + 1 body correlation. In the 

model system described above, if the correlations between neighboring distributions 

are low, the exponential will decay quickly and have a low CO, and if the correlations 

between neighbors are high, the exponential decays slowly due to the emergence of 

higher correlations and have a high CO.  

Finally, we must address an issue regarding the normalization of the mutual 

information between multivariate continuous distributions through the lens of two 

rigid bodies. The generalized correlation coefficient, shown in (1.140), normalizes the 

mutual information between d-dimensional distributions by dividing the information 

by d. However, the mutual information is not expected to scale linearly with the 

additional of new dimensions. Consider two rigid bodies, each composed of some 

number of atoms. If they behave as perfectly rigid bodies, their translational entropy 

does not increase as new atoms are added to the rigid bodies, while their 

dimensionality clearly will. Thus, as the number of constituent atoms in the rigid 

bodies approaches infinity, the generalized correlation coefficient describing their 

translations will approach 0, even in the case where their translations are perfectly 

coupled. To remedy this, we developed a new quantification of the information shared 

between two multivariate distributions, which can be normalized similar to the 

generalized correlation coefficient. We begin with two multivariate distributions, X 

and Y. 

 
 

X = X1,X2,…,Xdx{ }
Y = Y1,Y2,…,Ydx{ }

  (1.164) 
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We start by calculation the joint total correlation:  

 
 
TC p x1,x2,…,xdx ,y1,y2,…,ydx( )⎡⎣ ⎤⎦ = H p xi( )⎡⎣ ⎤⎦

i=1

N

∑ + H p yi( )⎡⎣ ⎤⎦
i=1

N

∑ −H p x1,x2,…,xdx ,y1,y2,…,ydx( )⎡⎣ ⎤⎦  (1.165) 

However, this measure of information also includes information shared with X and 

within Y that is not shared between X and Y. Thus, we subtract out that excess 

information to result at the total intercorrelation:

 

 
TC p x,y( )⎡⎣ ⎤⎦ = TC p x1,x2,…,xdx ,y1,y2,…,ydx( )⎡⎣ ⎤⎦ − TC p x1,x2,…,xdx y1,y2,…,ydx( )⎡

⎣
⎤
⎦ − TC p y1,y2,…,ydx x1,x2,…,xdx( )⎡

⎣
⎤
⎦  

 (1.166) 

The total intercorrelation describes the total amount of information shared between 

two multivariate distributions through any n-body correlation that contains at least one 

dimension from both distributions, and equals the 2-body information between X and 

Y in the univariate case. Total intercorrelation is distinctly different from the (dx + 

dy)-body information as it counts the n-body information between dimensions of A 

and B that is not shared by all dimensions of both A and B.  

For illustration, we discuss a system of two atoms where the marginal entropy of each 

dimension of each atom has been standardized to H. If all dimensions share maximum 

information, then: 

 
 
max TCINTER p x,y( )⎡⎣ ⎤⎦( ) = max TC p x1,x2,…,xdx ,y1,y2,…,ydx( )⎡⎣ ⎤⎦( ) = dx + dy −1( )H   (1.167) 

Thus, the maximum total intercorrelation can be easily scaled to account for 

dimensionality. Since in the one-dimensional case, total intercorrelation is equivalent 

to 2-body information, we can write an intercorrelation coefficient that is analogous to 

the generalized correlation coefficient: 
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 rint er p x,y( )⎡⎣ ⎤⎦ = 1− e
− 2
dx+dy−1( )TCINTER p x,y( )⎡⎣ ⎤⎦

  (1.168) 

However, it should be noted that the total intercorrelation behaves differently from the 

mutual information in important ways. The total intercorrelation maximizes when X 

and Y are perfectly coupled rigid bodies, whereas the mutual information maximizes 

when X and Y have no rigid-body like behavior but are perfectly coupled to each 

other.  

Lastly, the domains involved in allostery, such as ligand binding sites, are generally 

composed of many residues. Thus, it is desirable to be able to differentiate between 

residues that are involved in information transmission with other sites (we will refer to 

these residues as “communicators” versus those that may be essential to the internal 

dynamics of its constituent site (we will refer to these residues as “stabilizers”). 

To identify residues that contribute significantly to information measures, we 

calculated the contribution of a variable x to an arbitrary information metric describing 

a set of variables X that contains x, which we will denote as I[f(X)], as: 

 Contribution I f X( )⎡⎣ ⎤⎦,x( ) = I f X( )⎡⎣ ⎤⎦ − I f X x( )⎡⎣ ⎤⎦
I f X( )⎡⎣ ⎤⎦

  (1.169) 

Lastly, we described a method that can be used to identify residues that play a 

significant role as a channel. To identify the residues with high co-information (or 

mutual coordination information), we take advantage of an empirically observed 

relationship between the co-information and the co-information rank. We find that 

when plotting co-information against the co-information rank for an arbitrary pair of 

sites, the midsection contains a large linear region, surrounded with a large co-

information extreme on the left and a small co-information extreme on the right. To 
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identify a cut-off for the high co-information extreme region, we calculate a linear fit 

to the middle residues (the exact number determined on a case-by-base basis) and 

calculate the root mean squared residual (RMSR) for the fit. We then project the fit 

across all residues, and define the residues with high co-information as those that have 

a residual of greater than 1 RMSR. An example distribution and the corresponding fit 

and cut-off are shown in Figure 22. This type of method has been used previously 163 

to identify residues that are important for function from multiple sequence alignments. 
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Figure 22. The typical co-information plot.  

The co-information for a given residue (the channel) with the INI (receiver) and S1 

(transmitter) is plotted against the co-information rank of that residue (black circles). 

The black line is the linear fit to the middle 200 residues and the blue line is the cut-

off for high co-information residues.   
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2.3. Random Forest-Based Identification of Ligand-Specific Allosteric 

Modulation 

2.3.1. Motivation for Method 

While residues involved in function are often known from detailed biochemical and 

pharmacological analysis, their responses to ligand-specific allosteric modulation are 

hard to characterize experimentally outside of the use of structural method such as x-

ray crystallography. However, both the crystallization of specific ligand-protein 

complexes and the determination of high resolutions structures from these crystals are 

non-trivial undertakings. Even when structures are available, modulation that affects 

either the distribution or dynamics of the protein, such as the local flexibility of loops 

or the frequency of interactions, are difficult or impossible to quantify from single 

structures. To identify these differences, estimation of the ensemble through MD is 

commonly employed. 

2.3.2. Previous Work 

Many methods have been proposed to differentiate ensembles under different 

conditions. These methods sometimes utilize measures from probability theory and 

information theory, such as the Kullback-Leibler divergence164,165 and the related 

Jensen-Shannon divergence166,167, or methods from machine learning such as support 

vector machines168. While these methods are theoretically rigorous, it is beneficial to 

utilize a method that specifically analyzes characteristics of the protein that can be 

modulated experimentally through mutagenesis, such as pairwise interactions. The 

dimensionality of the pairwise interaction space can be very high and cannot be 

estimated using quasi-harmonic approximations of the distributions. However, it has 

been shown that rather simple statistical analysis of the differences in pairwise 
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interaction frequencies between simulations with and without allosteric modulators or 

mutations that have allosteric effects can reveal interactions that are likely to compose 

the allosteric interaction networks (AINs) that propagate long-distance conformation 

change134. Still, these statistical differences are not guaranteed to be statistical 

differences related to allosteric modulation; they may be statistical differences that 

would also appear if two MD simulations of the same system were run and neither 

reached the true equilibrium distribution, which is expected to be common even as we 

reach the micro- and millisecond times scales. Since the number of simulation is finite 

even when multiple simulations are performed, the proper reweighting procedure is 

required to ensure that an outlier simulations trapped in a low probability region of 

conformational space does not bias the entire analysis. 

This problem is further amplified when the goal is to identify class-specific statistical 

differences rather than ligand-specific differences. The naïve approach would be to 

combine the simulations of ligands of the same classes, and compare these 

agglomerated simulations. However, due to this implicit averaging, the naive approach 

is sensitive to mistaking ligand-specific interactions for class-specific interactions. For 

example, imagine that one wishes to compare the allosteric modulation of interaction 

frequencies by three ligands of class A to that of three ligand of class B. If an 

interaction is formed in two of the ligands in class A and none of class B, pooling the 

data for class A and class B ligands will result in a significant difference in the 

interaction frequency between class A and class B. However, as one ligand in class A 

does not allosterically induce that interaction, it cannot actually be a class-specific 

interaction. Thus, the problem must be divided into two steps: first, ligand-specific 

interaction frequencies within the classes must be identified and removed, and then the 
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remaining interaction frequencies can be compared between classes. To solve this 

two-step problem, we developed a two-step method utilizing random forests. 

2.3.3. 2-Step Random Forest Identification of Class-Specific Features 

We treat the problem of determining which interaction frequencies display class- or 

ligand-specific modulation as a classification problem, in which we would like 

determine which interactions are most useful in classifying which ligand or class of 

ligand is likely to be bound to a given protein structure. As interaction frequencies 

deal with binary variables, decision trees become a powerful tool for this classification 

problem.  

A decision tree is a tree-like graph in which each internal node denotes a splitting 

process that divides the given attribute by categories: each branch represents the 

categorical output of the preceding node, and each terminal leaf represents a class 

label. In order to classify a data point using a decision tree, one begins at the first 

internal node (called the root) and traverses the decision tree until a leaf is reached, 

which outputs the class prediction for that data point. While there are many methods 

for training decisions trees, most methods are known to be sensitive to over-fitting the 

training data. To overcome this over-fitting problem, random forest methods build an 

ensemble of decisions trees using different subsets of the training data, and then 

outputting a class prediction using the mode classification across all trees. Random 

forests have been shown to be less sensitive to over-fitting and outperform single 

decision trees.  

However, we are not primarily interested in classification per se. Instead, we would 

life to first identify interactions that are most important for the classification of 

structures by ligands of the same class. To do so, we perform random forest 
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classification and then calculate a normalized variant of the variable importance for 

each interaction. The variable importance describes the contribution of a given 

variable to a random forest, and is most often described by the mean decrease in 

accuracy across all trees in the random forest when a predictor variable in randomly 

permuted and the accuracy is re-calculated. The accuracy, A, is calculated as: 

 A d( ) = ncorrect
ntotal

  (1.170) 

where d is a set of data points, ncorrect is the number of correctly classified data points, 

and ntotal is the total number of data points.  

Thus, the mean decrease in accuracy for a variable x, <dA>x, is calculated as: 

 ΔA x =
Ai d( )−Ai dx( )

i=1

N

∑
N

  (1.171) 

where Ai is the accuracy of a given decision tree, N is the number of decision trees in 

the random forest, and dx is the set of data points with variable x permuted. Another 

measure, the mean decrease in node impurity, is also used but is difficult to normalize 

across variable of differing number of categories. For this reason, we chose to use the 

mean decrease in accuracy to quantify the role of an interaction in predicting the 

ligand or class of ligand bound to a given structure.  

To normalize the decrease in accuracy, we use Cohen’s kappa, k.  

 κ =
A −Aexp

1−Aexp

  (1.172) 

where Aexp is the expected accuracy if data points were classified by random given the 

frequency of that class in the data set. The value of κ is 1 if classification is perfect, 
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and 0 if classification is no better then random assignment. Thus, we write a 

normalized variable importance as: 

 Δκx =
ΔA x

1−Aexp

  (1.173) 

To solve the first step of the problem, we first pool the trajectory data by class, and 

then we then build for  each class a random forest to classify the structures by the 

ligand, rank the interactions by Dk, and remove all interactions that exceed some 

threshold, which we will call k. After doing this for each class, we pool the classes 

together, remove their ligand labels, and classify the structures by class with the 

remaining interactions. All interactions with Dk > k are then deemed to be important 

for the classification of class but not ligand, and thus are likely to be signatures of 

hallucinogen-specific allosteric modulation.  

One difficulty is then choosing the cut-off for importance, k. The goal of the analysis 

is to find the interactions that best classify the ligand class and not the individual 

ligands. Thus, it seems reasonable that enough interactions should be removed such 

that, given the reduced set of interaction data, a random forest for predicting class 

outperforms random forests for predicting the ligands within class. To identify when 

class prediction outperforms ligand prediction, we calculate the ratio of the Cohen’s 

kappa for classification by ligand class over the average k for classification of ligands 

within each class: 

 α = κ class
κ ligand

  (1.174) 

While ideally α should exceed 1, it is not necessarily the case that the classification of 

structures by ligand class will be highly accurate. One could imagine that there exist 
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two active states of the receptor, one that results in hallucinogenic activity and one that 

mediates all other activities, hallucinogens may increase the probability of the 

hallucinogenic state more than the non-hallucinogenic ligands, but the resulting 

ensembles will still be mixtures of the two states and thus significantly overlapping. 

Thus, we test many values of k and choose the cut-off that maximized α.  
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3. Application to Membrane Protein Systems 

While the models and methods described above may be of interest to theoreticians, the 

merit of their development is determined by their ability to help us describe and 

understand real systems. Below, the use of several of these methods will be illustrated 

in the context of membrane transporters and GPCRs.  

3.1. Allostery in the Transport Mechanisms of LeuT 

Much of the content in this section has been adapted with permission from 110. 

The prototypical member of the family of neurotransmitter:sodium symporters (NSS), 

the bacterial transporter LeuT has been particularly well studied, and the results from 

many experimental and computational investigations suggest that transport is driven 

by a complex allosteric mechanism spanning the entire length of the transporter. From 

single molecule FRET (smFRET) experiments carried out on LeuT, a number of 

transport-related structural transitions were identified in the intracellular gate region 

that occludes the substrate from the cytoplasm169, and these were shown to be 

modulated by binding events at the extracellular end 84,170. Crystallographic studies 

have also revealed that a second binding site in the extracellular vestibule (termed S2) 

is the target of several transport inhibitors (including many of the psycho-active drugs 

acting on the cognate NSS neurotransmitter transporters) 73,171, and biochemical and 

computational evidence suggests that the release of substrate is allosterically 

connected to the binding of a second substrate in this site68,81,93. These results bring to 

light the cross talk between several allosterically coupled domains in the transport 

mechanism of NSS transporters, and suggest that modulation of these domains can 

both facilitate and hinder function. However, the smFRET and crystallographic data 

did not provide a basis for understanding which domains and interactions were crucial 
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for the observed substrate-modulated dynamics. Thus, we proposed that the NbIT 

analysis method would be able to identify tentative channels and crucial interactions 

between the channel and substrates that mediate the allosteric modulation.  

Problematically, simulating the complete equilibrium distribution of LeuT, in any 

substrate or ion condition, is still unfeasible due to computational restrictions on the 

time scales of MD simulations. We reasoned that if the metastable states of two 

domains are coupled (e.g., if the population of the open and closed state of the 

intracellular gate, and/or the transitions between them, are coupled to the occupancy 

state of the substrate sites), their microstates were likely to also exhibit coupling (e.g., 

the fluctuations within the closed state of the intracellular gate would be coupled to the 

fluctuations within the bound state of the substrate site). It should be noted that while 

there is no theoretical basis that requires this to be true, it has been previosuly found 

that fluctuations around a single state can be indicative of dynamics that are relevant 

to function172. 

3.1.1. NbIT Identifies Allosteric Channels and Functional Residues in LeuT 

The application of the NbIT analysis to LeuT will be presented below. The section 

will be subdivided into two subsections. First, the results of the analysis performed in 
111 will be presented and discussed (text and figures have been adapted with 

permission). In the next subsection, unpublished results that are currently in 

preparation for submission will be presented, including follow-up computational work 

and experimental validation.  
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3.1.1.1. Methods 

3.1.1.1.1. Simulations 

Two separate trajectories of the same LeuT structure were analyzed with the NbIT 

method, denoted as LeuTPOPE/POPG and LeuTMNG-3. The LeuTPOPE/POPG trajectory is a 

simulation of the occluded LeuT structure75 (PDB ID 3GJD) bound to the two sodium 

ions and leucine, but with the octyl-glucoside (OG) detergent molecule removed, 

which has been described previously173. The LeuTMNG-3 trajectory is for the same 

LeuT structure simulated in lauryl maltose-neopentyl glycol (MNG-3), a detergent 

known for its excellent stabilization of transmembrane proteins, including LeuT, in 

micellar environments174,175. Both simulations were run at in an NPT ensemble under 

semi-isotropic pressure coupling conditions and at 310 K temperature using the 

CHARMM27 force field with CMAP corrections for proteins176 and CHARMM36 

lipid force field177 in NAMD 2.7178 using the Nose-Hoover Langevin piston algorithm 

and PME for electrostatic interactions. The trajectories used for the analysis are from 

the production phase and only include the segment of the simulations after the Cα 

RMSD had converged. The total lengths of the equilibrated trajectories were 148 ns 

for LeuTPOPE/POPG and 146 ns for LeuTMNG-3.  

3.1.1.1.2. Definition of functional residue clusters 

Mechanistic and structure-function studies of LeuT as a prototypical NSS transporter 

have identified specific residues and structural microdomains that have significant 

roles in functional mechanisms. These include the binding sites for substrate and ions 

identified in the crystal structures 65,73,75, as well as the intracellular gate and 

surrounding interaction network, which has been shown to be involved in the transport 

mechanism 169. We used these findings to define functional residue clusters (frc-s). 
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Specifically, we defined the S1-frc to include the substrate, leucine, and residues L25, 

G26, V105, Y108, F253, T254, S256, F259, S355, and I359. The NA1-frc includes the 

bound ion, leucine, and residues A22, N27, T254, and N286 of the Na1 binding site.  

The NA2-frc is composed of the second ion bound, and residues G20, V23, A351, 

T354, and S355 of the Na2 binding site. We defined the S2-frc as composed of L29, 

R30, Y107, I111, W114, F253, A319, F320, F324, L400, and D404, and the 

intracellular gate region as an “intracellular network of interactions”, INI-frc, 

composed of R5, I187, S267, Y268, Q361, and D369. The locations of these sites in 

the LeuT structure are presented in Figure 23. 



	
  132	
  

 

Figure 23. The structure of LeuT.  

Top panels: The 3GJD crystal structure of LeuT from two perspectives. TMs are 

displayed as cyan cylinders connected by loops. Each frc-site is represented by an 

outer surface: S1 (grey), S2 (orange), INI (tan), Na1 (yellow) and Na2 (purple). 

Bottom left: The INI-frc; numbers refer to the residue identity. Bottom right: The S1-

frc (the leucine substrate is in grey, Na2 is added for reference). 
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3.1.1.1.3. Correcting for symmetric side chain conformations  

Some post-processing was required for the analysis by the NbIT method. In order to 

estimate entropy from MD simulations, the coordinate of each atom is tracked 

throughout the trajectory to create a distribution of Cartesian coordinates. For side 

chains that display symmetry (Phe, Tyr, the carboyxlate groups of unprotonated Glu 

and Asp), simple tracking of atoms based on their numbering in the structure file can 

make symmetric states appear non-symmetric. To account for this, we used a 

clustering algorithm to group states by dihedral angles, and then divide the states by 

symmetry. For Phe and Tyr, we defined the state of the ring by the dihedral angle 

formed by the Cα, Cβ, the benzyl carbon bound to Cβ, and a benzyl carbon para to 

that carbon. For Glu and Asp, the state of the carboxylate was defined as the dihedral 

angle formed by N, Cα, the carbonyl carbon, and a carboxylate oxygen. For each 

residue, the sin and cos of each angle was calculated in order to project the angles onto 

the unit circle. Finally, the projections were collected into two clusters using the k-

means clustering algorithm (implemented in R using the kmeans function in the stats 

package). If the angle between the centers of the two clusters was > 90°, the position 

of the fourth atom was rotated by 180° relative to the plane formed by the first three 

atoms (as listed above) in frames from the second cluster.  

3.1.1.1.4. Clustering 

The MD trajectories analyzed with NbIT for this illustration of the method include 

only the long segments in which the interaction between R5, D369, and S267, which is 

observed crystallographically, is maintained. From analysis of a large number of LeuT 

simulations in our lab, we became aware of long-lived rearrangements in the 

conformation of the INI. We determined first if there were distinct substates of the 
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INI, by using k-means clustering on the minimum distances between side chains in the 

INI. Indeed, this revealed the transition between two long-lived states in the two 

simulations used for the NbIT analysis. Specifically, in LeuTPOPE/POPG, the system 

transitioned after ~118 ns from the crystal structure configuration in which R5 

interacts with D369 and S267 in the INI, to a new configuration where R5 interacts 

with the surrounding water. In LeuTMNG-3, the equilibrated portion of the simulation 

begins with R5 interacting with the D369 and S267, but after ~25 ns there is a 

transient rearrangement event, leading to a state in which R5 breaks away from D369, 

followed by a return of the INI to its original state after ~20 ns. In order to isolate 

these states, MD simulation trajectories were clustered by the minimum distance 

between non-hydrogen side chain atoms of residues within the frc-s using the k-means 

clustering algorithm. Distance time series were smoothed over 1 ns windows to 

minimize thermal noise, and the best clustering was taken from 100 k-means runs. We 

performed the same clustering analysis using each frc individually, and found that not 

only did the INI have the most conformational variability (nearly an order of 

magnitude greater sum of square distance between frames in comparison to the other 

frc-s), but clustering into two states accounted for most of the variability (see Table 

S2). Furthermore, we determined the similarity between results of clustering by the 

conformation of a specific frc versus all frc-s, by calculating the overlap as: 

 
 
overlap = occludedfrc ∩ occludedall

occludedfrc ∪ occludedall
  (1.175) 

where occludedfrc corresponds to the set of frames in the occluded state when clustered 

by a given frc, whereas occludedall corresponds to the set when clustered by all frc-

s. We find that clustering by all residues in the frc-s of interest provided a near 

identical result to clustering specifically by the INI. These results indicate that the INI 
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rearrangement is the only significant rearrangement of a structural motif that takes 

place in the simulation trajectories.  As the interaction between R5, D369, and S267 is 

observed crystallographically, we focused the study herein on comparing only this 

state from both simulations, in trajectories of over 100 ns from each simulation. While 

it might be interesting eventually to study as well the minor states of the INI not 

observed crystallographically, in which the gate is broken, these were not sampled 

sufficiently in either trajectory and thus are not yet adequate for rigorous analysis. 

3.1.1.1.5. Entropy estimations 

In order to estimate the configurational entropy from the MD simulations, we first 

approximated the probability distributions of the atomic coordinates as a 3N-

dimensional multivariate normal distribution.  The probability density function of a 

multivariate normal distribution is: 

 
 

p !x( ) = e
−1
2
!x− !x( )TC−1 !x− !x( )

2π( )k C
  (1.176) 

where k is the rank of the covariance matrix. Covariance matrices were calculated 

using carma179. The entropy of the continuous multivariate normal distribution can be 

calculated analytically through the differential entropy: 

 
 
H p !x( )⎡⎣ ⎤⎦ =

1
2
log 2πe C( )   (1.177) 

It should be noted that while the multivariate normal distribution is the maximum 

entropy distribution given constraints on the mean and covariance matrix, it can be a 

very poor estimator of the entropy if the distribution is multi-modal, and while the 

multivariate normal approximation of the mutual information between two 

distributions has been claimed to define the lower bound on the true mutual 
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information, it has been shown to be untrue. Thus, care must be taken when using the 

multivariate approximation. However, calculating the configuration entropy through 

more rigorous means is computationally intensive and not reasonable in the case of 

calculating the entropy of different subsets of the space many times as is done when 

performing NbIT analysis.  

3.1.1.2. Results 

3.1.1.2.1. The Pairwise Mutual Information 

The analysis of pairwise mutual information for each of the functional residue clusters 

(frc-s) is summarized in Table 1. The calculated values show that the component 

residues in each of the frc-s exhibit coupled motions within the leucine-bound state 

studied here, as indicated by the mutual information that is greater than zero. Note, 

however, that it is difficult to compare the strength of coupling between two different 

sets of frc-s, because mutual information cannot be easily normalized from differential 

entropies calculated from multivariate normal distributions (see Section 2.2.3.	
  N-­‐body	
  

Information	
  Theory	
  (NbIT)	
  Analysis). Therefore, we will not discuss further below 

the coupling strength between sites until we discuss other measures of information that 

can be normalized. 
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Table 1. Mutual information between known function sites in LeuTPOPE/POPG. 

 S1  S2  Na1  Na2  Na1, 

Na2  

Na1, 

Na2, S1  

Na1, Na2, 

S1, S2  

INI  

S1  -328.1 

(0.5)  

23.4 

(0.6)  

9.3 (0.1)  7.1 (0.1)  13.2 

(0.2)  

X  X  12.9 

(0.3)  

S2  X  -356.3 

(0.7)  

14.9 

(0.3)  

7.5 (0.2)  21.6 

(0.6)  

33.0 

(1.0)  

X  15.1 

(0.4)  

Na1  X  X  -141.2 

(0.1)  

8.3 (0.1)  X  X  X  4.8 

(0.1)  

Na2  X  X  X  -112.9 

(0.1)  

X  X  X  4.0 

(0.1)  

Na1, Na2  X  X  X  X  -262.4 

(0.12  

X  X  8.4 

(0.3)  

Na1, Na2, 

S1  

X  X  X  X  X  -519.2 

(0.9)  

X  18.1 

(0.6)  

Na1, Na2, 

S1, S2  

X  X  X  X  X  X  -869.6 

(2.5)  

31.7 

(1.2)  

INI  X  X  X  X  X  X  X  -136.8 

(1.4)  
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Off-diagonal elements correspond to the mutual information between two given frc-s, 

where as the diagonal elements correspond to the entropy of a given frc. Units are in 

nats.  

3.1.1.2.2. The Communication Channel Coupling the S1-frc to the INI-frc utilizes 

TM6 

A central mechanistic question regarding the functional dynamics of transporters is 

how the binding of substrate can trigger the conformational reorganization leading to 

the intracellular-open state from which the substrate is eventually released. Because 

studies have shown that just the binding of Na+ and substrate cause measurable 

dynamic effects at the intracellular end of the LeuT molecule, even in the absence of 

transport 84,170, we sought to determine the information channel enabling this allosteric 

behavior. To this end, we performed co-information analysis to evaluate which 

residues played the role of channel in the information exchange between the substrate 

sites and the INI. Applying co-information analysis reveals that S1 and the INI are 

coupled through a set of residues consisting largely of residues from TM6b, TM8, and 

TM2 (see Figure 24).  
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Figure 24. TMs 2, 6b, and 8 form a co-information channel between S1 and the 

INI.  

Main: Residues found to have high co-information with S1 and the INI are colored by 

their calculated normalized co-information (NCo-I) values using the scale at the top 

right, where the Min and Max NCo-I refer to the minimum and maximum values 

among all possible residues. All other residues are represented in grey. Bottom right: 

A close up of the TM6b and TM8 interface. 

Co-information analysis also reveals a channel between S2 and the INI, which is 

similarly composed of residues from TM6b and TM8, in addition to residues from S1 

in the unstructured region between TM6a and TM6b (see Figure 25). 
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Figure 25. TMs 2, 6b, and 8 form a co-information channel between S2 and the 

INI. 

Main: Residues found to have high co-information with S2 and the INI are colored by 

their calculated normalized co-information (NCo-I) values using the scale at the top 

right, where the Min and Max NCo-I refer to the minimum and maximum values 

among all possible residues. All other residues are represented in grey. Bottom right: 

A close up of the TM6b and TM8 interface. 

Not all the residues in a particular frc contribute equally to the allosteric 

communication. In order to identify which residues within the substrate sites and the 

INI are essential for allosteric communication we identified the residues within these 

sites that made large contributions to the mutual information. Such residues contribute 

by coupling the sites directly to the channel, and by distributing the information 
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throughout the rest of their respective site. It is essential to note that the total sum of 

contribution from all residues does not necessarily sum to 100%. This occurs because 

just as the residues share information, they can also share their contribution to the 

mutual information, so the sum of the contribution will exceed 100%. This is also the 

case for other contribution measures, as described further below. 

We found that for the coupling between the S1-frc and the INI, it is residues I359,  

F259, F253 in the S1-frc that make the largest contributions (21.2% 18.8%, and 12.5% 

respectively), and in the INI the largest contribution is from residues Q361, R5, and 

Y268 (28.3%, 21.6%, and 21.3% respectively). These very specific identifications 

underscore the validity of the calculated communication channel, as they are 

consistent with results from previous work in which mutations of I359 and F259 were 

shown to modulate transport efficacy 180. Interestingly, we find that for the coupling 

between the S2-frc and the INI, residues R30, F324, and W114 make the largest 

contributions in S2 (20.1%, 12.9%, and 12.5%), and in the INI residues R5, I187, and 

Y268 make the largest contributions (27.1%, 23.3%, and 9.5% respectively). Because 

R30 is considered to form an extracellular gate with D404, the significant role we find 

for it here in the coupling of S2 and the INI underscores the strong relationship 

between the extracellular and intracellular gates. These results are summarized in 

Table 2A and Table 2B.  
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Table 2A. Specific residues highly contribute to mutual information between S1 
and the INI in LeuTPOPE/POPG. 

S1  Leu  L25  G26  V104  Y108  F253  

 10.5% 

(0.1%) 

9.9% 

(0.0%) 

6.4% 

(0.0%) 

8.4% 

(0.1%) 

11.8% 

(0.1%) 

12.5% 

(0.1%) 

 T254  S256  F259  S355  I359  Na1  

 8.8% 

(0.1%)  

9.3% 

(0.1%)  

18.8% 

(0.1%)  

7.7% 

(0.1%)  

21.2% 

(0.2%)  

3.0% 

(0.0%)  

INI  R5  I187  S267  Y268  Q361  D369  

 21.6% 

(0.3%)  

19.7% 

(0.4%)  

14.6% 

(0.1%)  

21.3% 

(0.1%)  

28.3% 

(0.3%)  

15.6% 

(0.1%)  

The contribution of specific residues in S1 (top) and the INI (bottom) to the 

communication between S1 and the INI (top 3 in each site are bold). 

Table 2B. Specific residues highly contribute to mutual information between 

S2and the INI in LeuTPOPE/POPG.  

S2  L29  R30  Y107  I111  W114  F253  

 8.8% 

(0.6%)  

20.1% 

(0.0%)  

9.9% 

(0.1%)  

7.5% 

(0.1%)  

12.5% 

(0.1%)  

10.6% 

(0.1%)  

 A319  F320  F324  L400  D404   

 6.1% 

(0.1%)  

10.2% 

(0.1%)  

12.9% 

(0.1%)  

9.1% 

(0.1%)  

8.6% 

(0.1%)  
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INI  R5  I187  S267  Y268  Q361  D369  

 27.1% 

(0.3%)  

23.3% 

(0.5%)  

14.6% 

(0.2%)  

19.5% 

(0.1%)  

17.3% 

(0.2%)  

18.2% 

(0.2%)  

The contribution of specific residues in S2 (top) and the INI (bottom) to the 

communication between S2 and the INI (top 3 in each site are bold). 

3.1.1.2.3. The Coordination within frc-s is Performed by Known Functional Residues 

We hypothesized that that the proper fold and specific local function of a given frc, 

such as substrate binding, are maintained through short-distance allosteric couplings 

underlying collective behavior among the residues in the clusters. We probed this by 

calculating the total correlation (TC) for each frc to obtain a measure of the total 

amount of information shared by a set of size N through any type of correlation from 2 

to N-body.  We then calculated the contribution of a given residue in the frc to this TC. 

With this approach, we find that in the INI, the three largest contributors are Y268 

(60.7%), S267 (59.0%) and R5 (42.7%). This is consistent with their central location 

in the INI topology and with previous reports that mutation of the highly conserved 

Y268 and R5 to alanine has a strong effect on the structure and dynamics of the 

intracellular gate 84,169. In the S1-frc, the largest contributions to the TC were 

calculated to come from T254 (40.3%), the leucine substrate (38.9%), and F253 

(38.9%). The bound Leu is expected to contribute strongly, as seen here, because it 

interacts with all other residues in S1. Furthermore, as mutation of F253 has been 

shown to greatly reduce binding in S169,170, it is possible that its role is not only to 

stabilize Leu binding through direct interaction, but also to stabilize the site as a whole 

by coordinating the rest of the S1 residues.  
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In the other frc-s we also found a small number of specific high contributions. Thus, in 

the Na1 site the largest contributions to the total correlation are made by the Na1 

sodium ion (61.7%), T254 (60.1%), and by leucine (58.4%).  Interestingly, in the Na2 

site, T354 and S355 contribute significantly more (70.9% and 66.4%, respectively) 

than the Na+ ion (52.1%). Finally, in S2, residues F320, A319, and R30 are found to 

make the largest contributions of 39.6%, 33.0%, and 31.1%, respectively. These 

results are summarized in Table 3.  

Table 3. The contribution of specific residues to the total correlation of their sites 
in LeuTPOPE/POPG. 

S1  Leu  L25  G26  V104  Y108  F253  

 38.9% 

(0.2%) 

36.2% 

(0.2%) 

32.3% 

(0.3%) 

13.2% 

(0.1%) 

23.3% 

(0.1%) 

38.9% 

(0.2%) 

 T254  S256  F259  S355  I359  Na1  

 40.3% 

(0.3%) 

29.1% 

(0.2%) 

20.1% 

(0.2%) 

13.6% 

(0.2%) 

12.1% 

(0.1%) 

20.2% 

(0.2%) 

S2  L29  R30  Y107  I111  W114  F253  

 25.6% 

(0.1%) 

31.1% 

(0.2%) 

17.4% 

(0.1%) 

17.4% 

(0.1%) 

18.5% 

(0.1%) 

10.9% 

(0.0%) 

 A319  F320  F324  L400  D404   

 33.0% 

(0.3%) 

39.6% 

(0.3%) 

20.9% 

(0.1%) 

14.0% 

(0.1%) 

15.0% 

(0.1%) 

 

Na1  Na1  A22  N27  T254  N286  Leu  
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 61.7% 

(0.3%) 

49.5% 

(0.2%) 

50.0% 

(0.2%) 

60.1% 

(0.2%) 

36.3% 

(0.2%) 

58.4% 

(0.2%) 

Na2  Na2  G20  V23  A351  T354  S355  

 52.1% 

(0.2%) 

37.6% 

(0.2%)  

40.1% 

(0.2%)  

38.6% 

(0.2%)  

70.9% 

(0.1%) 

66.4% 

(0.1%) 

INI  R5  I187  S267  Y268  Q361  D369  

 42.7% 

(0.4%)  

34.8% 

(0.8%)  

59.0% 

(0.6%)  

60.7% 

(0.4%)  

23.8% 

(0.4%)  

28.8% 

(0.4%)  

For each frc, the contribution of each residue to the total correlation is presented. The 

top 3 residues in each site are shown in bold. 

3.1.1.2.4. Both the S1-frc and the S2-frc Coordinate Multi-Body Collective Motions in 

the INI 

Key findings from smFRET experiments investigating the allosteric modulation of 

intracellular gating in LeuT 84 were that conformational changes in the intracellular 

gates require collective motions resulting in large spatial displacements, and that these 

motions are modulated (in some undetermined way) by the state of the substrate 

binding sites, S1 and S2 170. In order to investigate the role of these substrate binding 

sites in the collective dynamics within the INI-frc, we calculated how much each of 

the two binding sites contributed to the total correlation of INI. This contribution, 

termed here coordination information (CI), describes the amount of total correlation in 

a set of variables (the “coordinated set”, here the INI-frc) that is shared with a variable 

(or multivariate distribution) that is not included in the coordinated set (“the 
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coordinator”, here the S1 or S2 frc-s). When calculated in this manner, CI describes 

the contribution of a site to all possible n-body correlations within another. Here we 

used as the descriptor the normalized coordination information (NCI), in which the 

coordination information is normalized to the total correlation within the coordinated 

site. It should be noted that coordinators are not all coordination channels. 

Coordinators can be coupled to coordination channels, and thus perturbation to the 

coordinator leads to a perturbation in the coordinated set. 

As summarized in Table 4, the NCI calculated for S1 and S2 show that they both 

coordinate the INI, with values of 19.1% for S1, and 21.2% for S2. The Na1 and Na2 

sites coordinate the INI only weakly (NCI = 9.0% and 6.9%, respectively), and their 

combined NCI in coordinating the INI is 11.1%. The coordination of INI by the 

combination of S1, S2, and the Na1 and Na2 frc-s is 27.1%, indicating that just under 

a third of all the correlated motions in the INI are related to these sites. The 

coordination exerted by INI on the binding sites was also calculated, because 

coordination information is not symmetric. We find that while S1 and S2 coordinate 

the INI strongly, the INI coordinates the two only moderately (NCI = 12.0% and 

7.4%, respectively). Interestingly, in the MD trajectory we analyzed, the coordination 

by INI of the Na1 (NCI = 14.2%) and Na2 (NCI = 10.5%) sites is stronger than in the 

opposite direction. These results, along with results for all comparisons of sites, are 

summarized in Table 4.   
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Table 4. Normalized Coordination Information between sites in LeuTPOPE/POPG. 

 S1  S2  Na1  Na2  Na1, Na2  Na1, Na2, S1  Na1, Na2, S1, 

S2  

INI  

S1  30.6 (0.2)  23.8% 

(0.5%)  

27.5% 

(0.4%)  

17.3% 

(0.3%)  

31.0% 

(0.5%)  

X  X  12.0% 

(0.4%)  

S2  14.2% 

(0.4%)  

33.1 

(0.4)  

8.2% 

(0.2%)  

4.5% 

(0.2%)  

8.9% 

(0.3%)  

15.0% 

(0.5%)  

X  7.4% 

(0.3%)  

Na1  51.5% 

(0.5%)  

44.2% 

(0.5%)  

9.2 

(0.1)  

39.1% 

(0.3%)  

X  X  X  14.2% 

(0.5%)  

Na2  40.1% 

(0.4%)  

16.7% 

(0.3%)  

32.4% 

(0.3%)  

12.04 

(0.1)  

X  X  X  10.5% 

(0.3%)  

Na1, Na2  32.1% 

(0.3%)  

23.3% 

(0.4%)  

X  X  29.8 (0.2)  X  X  10.1% 

(0.3%)  

Na1, Na2, 

S1  

X  16.3% 

(0.5%)  

X  X  X  67.2 (0.6)  X  8.8% 

(0.3%)  

Na1, Na2, 

S1, S2  

X  X  X  X  X  X  132.9 (2.0)  6.2% 

(0.4%)  

INI  19.1% 

(0.6%)  

21.2% 

(0.7%)  

9.0% 

(0.3%)  

6.9% 

(0.3%)  

11.1% 

(0.4%)  

20.5% 

(0.7%)  

27.1% (1.2%)  14.3 

(0.1)  
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For each pair of frc-s, the normalized coordination information is presented, with 

residues on the top (columns) acting as the coordinator and residues on the left (rows) 

being coordinated. On the diagonal, the total correlation of the site is shown in bold. 

To estimate the importance of these coordination values for the allosteric mechanism, 

we performed control calculations of the normalized coordination information for S1 

and S2, with several other intracellular sites not known for their functional roles, 

including specific helices, loops, and interfaces between them. In all cases, S1 and S2 

coordination of any of these control sites was half (or much less) that of the INI (see 

Table 5). 
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Table 5. Coordination of control regions by S1 and S2 in LeuTPOPE/POPG and 
LeuTMNG-3. 

 

The coordination of each control region by S1 and S2 are presented with the standard 

error of the mean in parenthesis, estimated using moving block bootstrapping with 50 

realizations.  

Given the importance of the INI in the function of the transporter, we also determined 

which individual residues make the largest contributions to coordination of the INI. 

For each residue in the S1-frc and S2-frc residue we calculated the contribution of the 

residue to the particular frc coordination of the INI, as well as the contribution of INI 



	
  150	
  

residues to receiving that coordination, using Equation (S5). Results summarized in 

Table 6 show that for coordination of the INI-frc by S1, the top 3 coordinators are 

F259 (contribution = 69.6%), S256 (contribution = 34.9%), and I359 (contribution = 

34.6%), and the top 3 receivers are R5 (contribution = 67.8%), I187 (contribution = 

63.8%), and S267 (contribution = 59.9%). For coordination by S2, the top 3 

coordinators are R30 (contribution = 54.7%), F253 (contribution = 28.7%), and F324 

(contribution = 24.0%), and the top 3 receivers are R5 (contribution = 80.8%), I187 

(contribution = 71.0%), and D369 (contribution = 58.1%).  This underscores the 

important role of INI residues R5, I187, and S267 in the coordination of the INI-frc by 

the known allosteric substrate sites. 

Table 6A. Specific residues highly contribute to coordination of the INI by S1 in 
LeuTPOPE/POPG. 

S1  Leu  L25  G26  V104  Y108  F253  

24.5% 

(0.1%)  

22.8% 

(0.2%)  

21.9% 

(0.2%)  

18.8% 

(0.2%)  

13.9% 

(0.1%)  

31.0% 

(0.2%)  

 T254  S256  F259  S355  I359  Na1  

27.3% 

(0.2%)  

33.6% 

(0.3%)  

67.6% 

(0.2%)  

13.3% 

(0.2%)  

33.2% 

(0.4%)  

16.6% 

(0.1%)  

INI  R5  I187  S267  Y268  Q361  D369  

66.1% 

(0.3%)  

63.1% 

(0.2%)  

58.7% 

(0.1%)  

57.3% 

(0.2%)  

57.2% 

(0.4%)  

48.1% 

(0.3%)  

The contribution of specific residues in the S1-frc (top) and the INI-frc (bottom) to the 

coordination of the INI-frc by the S1-frc (top 3 in each site are bold). 
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Table 6B. Specific residues highly contribute to coordination of the INI by S2 in 

LeuTPOPE/POPG.  

S2  L29  R30  Y107  I111  W114  F253  

20.1% 

(0.2%)  

53.8% 

(0.5%)  

10.6% 

(0.2%)  

9.0% 

(0.3%)  

14.6% 

(0.2%)  

28.0% 

(0.2%)  

 A319  F320  F324  L400  D404   

10.7% 

(0.0%)  

11.4% 

(0.1%)  

23.2% 

(0.1%)  

16.2% 

(0.1%)  

18.8% 

(0.1%)  

 

INI  R5  I187  S267  Y268  Q361  D369  

78.3% 

(0.2%)  

69.0% 

(0.2%)  

48.5% 

(0.2%)  

42.5% 

(0.3%)  

40.0% 

(0.3%)  

57.6% 

(0.4%)  

The contribution of specific residues in the S2-frc (top) and the INI-frc (bottom) to the 

coordination of the INI-frc by the S2-frc (top 3 in each site are bold). 

3.1.1.2.5. The Coordination Channel Mediating the INI-frc Coordination by the 

Substrate frc-s is Through TM6b 

Because TM6b emerged as the major channel for communication between S1 and the 

INI, we investigated whether it was also the major channel for the CI between the 

substrate sites and the INI. We calculated the mutual coordination information (MCI), 

which described how much of the coordination information is shared between two 

coordinators that are coordinating the same set, and then normalized to the 

coordination information of the coordinator of interest (NMCI). Using this analysis, 

we identified residues in the high NMCI region using the same criteria described for 
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co-information. The results identify a coordination channel that is nearly identical to 

the channel revealed by the co-information analysis, with a significantly larger signal 

in TM6b than that calculated with co-information analysis (see Figure 26).  

 

Figure 26. TMs 2, 6b, and 8 form a coordination channel between S1 and the INI. 

Main: Residues found to have high mutual coordination information with S1 and the 

INI are colored by their calculated normalized mutual coordination information 

(NMCI) values using the scale at the top right, where the Min and Max NMCI refer to 

the minimum and maximum values among all possible residues. All other residues are 

represented in grey. Bottom right: A close up of the TM6b and TM8 interface. 

interface.  
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We are able to identify a similar coordination channel for S2 (see Figure 27). These 

results indicate that TM6b is the major channel for the coordination of the INI by S1 

and S2. 

 

Figure 27. TMs 2, 6b, and 8 form a coordination channel between S2 and the INI 

in LeuTPOPE/POPG.  

Main: Residues found to have high mutual coordination information with S2 and the 

INI are colored by their calculated normalized mutual coordination information 

(NCMI) values using the scale at the top right, where the Min and Max NCMI refer to 

the minimum and maximum values among all possible residues. All other residues are 

represented in grey. Bottom right: A close up of the TM6b and TM8 interface. 
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3.1.1.3. Discussion 

Taking advantage of the information about specific functional motifs for the allosteric 

transporter LeuT, the illustration of the new NbIT analysis method brings to light how 

it identifies the details of allosteric couplings, and can quantify them at a previously 

unattained level of detail. Moreover, the choice of LeuT for this illustration of NbIT 

allowed us not only to start from well-defined frc-s, but also to compare the results 

and the inferences from NbIT analysis to known mechanistic elements in the allosteric 

process underlying LeuT function. Indeed, the allosteric pathway between the known 

ligand (ions, substrate) binding sites and previously proposed functional elements such 

as the intracellular gate (in INI), were identified by the NbIT analysis as the channels 

that propagate these couplings. This agreement with previous mechanistic insights is 

important because computational approaches, and in particular the type of MD 

simulations utilized here as well, have been used successfully to study the dynamics of 

transporter molecules and to infer on residues and motifs that play essential roles in 

the allosteric mechanisms81,181–183, By taking advantage of this kind of data, the novel 

NbIT analysis provides the first rigorous method for the identification of specific 

channels by which information is transmitted between functional sites of an allosteric 

molecular system. Key observations from the present application of NbIT analysis are 

discussed below to stress the specific molecular detail of the results, and to indicate 

the predictive power that this new method can bring to the many other allosteric 

protein systems for which the type of information available for LeuT is currently 

lacking.  
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3.1.1.3.1. Allosteric Coordination of the INI by S1 and S2 

The CI calculations were essential in revealing that the S1 and S2 sites coordinate the 

internal dynamics of the INI (see Table 4). The allosteric modulation of the 

intracellular gate considered on the single molecule macro scale has been noted 

previously in the dynamic changes revealed by smFRET experiments with LeuT in 

detergent; this study showed how the allosteric connection enabling modulation at the 

micro scale is effectuated. Coordination information as calculated here connects the 

collective coordination of the INI domain to the individual components (specific 

residues) and interactions (within, and outside the frc to which they belong) that 

underlie it. This provides insight at unprecedented detail about the elaborate 

coordination in the allosteric mechanism underlying ligand-induced opening of the 

gate. An intriguing observation in view of the ongoing controversy surrounding the 

role of the S2 binding site 68,75–78,81,93,184 is that the S2-frc coordinates the INI through 

a channel that includes the S1 site. The coordination found here, of the INI by the apo 

S2 site (the MD trajectories analyzed here did not include substrate bound in S2) may 

explain why mutations to the S2 site have been shown to affect intracellular gating 

dynamics 84. Although they demonstrate the ability of the S2-frc to coordinate the 

intracellular gate, the present results cannot inform about the role of substrate binding 

in S2 in the transport process, since this was not covered in the MD simulation. 

3.1.1.3.2. Propagation of Information between S1, S2, and the INI Requires TM6b 

The channel that propagates the coordination of the INI by S1 and S2 was found here 

to consist largely of residues in TM6b (see Figure 26 and Figure 27). Indeed, several 

residues in the S1 site and the INI are part of the highly conserved TM6, and its 

intracellular end, TM6b, was shown to undergo a large rotation of 17° in a recent 



	
  156	
  

crystal structure of a LeuT mutant stabilized in what is believed to be an apo 

intracellular-open state 185; TM1a and TM8 also contain many residues from S1 and 

the INI.  

Notably, while this work was originally in preparation, a set of LeuT mutants have 

been described that were constructed to resemble the human serotonin transporter 186, 

and all constructs containing a mutation of the TM6b residue Y265 to F, were found to 

lack transport activity despite retaining high affinity inhibitor binding. This indicates a 

possible role of TM6b in function, and we interpret the observed rotation of TM6b and 

the effect of the Y265F mutation as support for their role in propagating information 

from the substrate site to the intracellular gate during the transition between LeuT 

states. The fact that the role of TM6b became evident from the NbIT analysis of the 

S1-occupied occluded state supports its role as an information conduit from the 

substrate sites to the intracellular gate.  

3.1.1.3.3. The Intramolecular Allosteric Mechanism Involves a Subset of Residues 

Known to Have Functional Roles 

With NbIT analysis, we identified specific residues that play a role in allosteric 

connections related to function, and were able to discern different contributions (i.e., 

“stabilizers” and “communicators”). In the S1-frc we find that while the bound leucine 

substrate, F253, and T254 coordinate the binding site’s internal correlations (hence 

acting as stabilizers), residues F259, S256, and Q359 contribute to the coupling 

between S1 and the INI (Table 5A) and belong to “communicators”, which are 

involved in between-site allosteric communication. We know of no previous 

computational method that offered such functionally specific discrimination. 
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The identification of functional roles for specific residues in the allosteric 

communication revealed further details of their mechanistic involvement: 

3.1.1.3.3.1. F259 

Our analysis predicted that F259 interactions may have a significant effect on 

transport. Earlier crystallographic studies had indicates that F259 may be involved in 

the diversity of transport phenotypes produced by various LeuT substrates 110. Three 

basic modes of interaction have been observed: (i)-in crystal structures of LeuT in 

complex with leucine, methionine, or p-flurophenylalanine, the hydrophobic side 

chains interact with F259; (ii)-in LeuT structures with alanine or glycine, this 

interaction is lost, leading to a 30° rotation of the F259 side chain; (iii)-in the structure 

bound to tryptophan, the indole ring makes a ring-ring contact with the F259 side 

chain. The three distinct modes of interaction observed for F259 correlate with distinct 

transport phenotypes. Thus, although the overall binding modes could appear nearly 

identical, the transport efficiencies differ, with alanine being transported with highest 

efficiency (kcat/Km); leucine, methionine, and p-flurophenylalanine displaying low 

efficiency, and tryptophan acting as an inhibitor. While the efficiency for glycine is 

even lower than for the low efficiency amino acids mentioned above, the difference 

may in fact be due to the very low affinity of Gly for LeuT which may not allow it to 

remain bound to the transporter long enough to initiate transport (no kon or koff values 

have been reported). Together, these structure/function relations suggest that substrate 

interactions with F259 may lead to different effects on transport. Our analysis 

predicted a specific participation in the allosteric mechanism. We suggest that because 

alanine does not interact with F259 and induces a change in the rotameric state of 

F259 relative to that observed for the less efficiently transported substrates, F259 plays 

an inhibitory role by allosterically blocking transport. Clarification of the specific role 
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that this type of allosteric modulation plays in the transport cycle with the NbIT 

method must await a complete trajectory of the transition among the different states, 

but the insights gained in this study offer an intriguing avenue for future 

experimentation. 

3.1.1.3.3.2. Y268, S267, R5, and I187 – stabilizers and communicators in the INI 

We find that Y268 R5, and S267 all play the role of both strong stabilizers and 

communicators in the INI. Both R5 and Y268 are known to be involved in function, 

with mutation of either residue to alanine resulting in disruption of the intracellular 

gate 84,169, characterized by an increased “open” (intracellular gate) population 

observed in smFRET experiments of the intracellular gate. However, the R5A 

mutation has also been shown to cause increased transitions between the “open” and 

“closed” (intracellular gate) state in the presence of leucine 84. Considered together, 

these experimental findings indicate that mutation of R5 can affect the allosterically 

modulated gating dynamics; in agreement, R5 is predicted to be the strongest 

coordinator within the INI. The result that Y268, S267, and R5 all play the role of 

both coordinator and stabilizer is especially noteworthy because one would expect 

that residues that are essential to the stability of the gate would need to be modulated 

in order to initiate large collective conformational changes, such as the opening of the 

gate. That such residues are also communicators substantiates the allosteric 

modulation of the conformational change that opens the gate. Indeed, these residues 

are highly conserved in NSS transporters71, and our finding leads to the prediction that 

disruption of interactions between S267 and its surrounding network will strongly 

affect transport. Future experiments should be able to better define the role of S267 in 

the transport function based on this testable hypothesis. In addition, we find that while 

I187 has a minor stabilizer role in the INI, it plays a significant role as a 
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communicator. This leads to the mechanistic prediction that mutation of I187 may lead 

to disruption of allosteric modulation without disrupting the structure of the 

intracellular gate.  

3.1.1.2. Related Work  

Another quantitative computational approach was used to investigate allosteric 

couplings in LeuT from MD simulation trajectories, utilizing a comparative analysis 

of the results from a large set of simulations of the transporter and mutant constructs 

(Y268A/R5A/D369A) in complexes with various combinations of ions (Na+/Li+) and 

substrates (no substrate/leucine/alanine)187. The MD simulation of the Na+-bound, 

substrate free state of LeuT was used as a reference relative to which the various 

trajectories for different ion binding states and mutations were considered as 

perturbations. To follow the manner in which the “perturbations” affected the 

allosteric coupling in a detailed structural context, the comparative analysis was 

formulated in terms of the interaction frequencies between residue pairs observed in 

the compared trajectories. These interaction frequencies were used to build a network, 

termed “allosteric interaction network” (AIN), that contains the conformational 

changes produced by each of the “perturbations”. 

A key finding of this analysis of the interactions involved in the conformational 

changes is the consistency of the AIN in the various constructs. Thus, the 

perturbations - whether induced by ion, substrate, or mutation - led to changes in a 

core interaction network. This network, the AIN, surrounds S1 substrate binding site 

and spreads out to the intracellular and extracellular domains. The large changes in 

this core interaction network were observed in the unwound region of TM6 and the 

central region of TM10. Notably, the analysis predicted that the Y268A mutation at 
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the intracellular end of the LeuT transporter would perturb the Na+ binding sites, 

through a propagation of changes involving TM6b, TM8, and F259 in particular. The 

excellent agreement of these results with the findings from the NbIT analysis111 

supports the involvement of these structural elements in the coupling between binding 

sites and the intracellular gate region. Indeed, the associated experiments reported in 

this study187 found that the Y268A mutation disrupted Na+ binding in the distal 

binding site, and that due to the cooperative binding of Na+ and substrate, it also 

disrupted substrate transport in a clear coupling of distal structural motifs. 

3.1.2. Additional Computational and Experimental Studies  

We hypothesized that the role of F259 in the substrate-specific allosteric modulation 

of intracellular gating dynamics could be investigated by a systematic study of how 

the interaction between F259 and substrate affected F259 dynamics (using MD 

simulations) and the corresponding allosteric modulation of intracellular gating (using 

smFRET). Because it is difficult to modify the interaction between F259 and the 

substrate from the side of F259 in a semi-continuous fashion by modifying F259, we 

modify the interaction by changing the substrate instrad. We chose to study the 

substrates leucine, valine, alanine, and glycine, which maintains the interaction as a 

van der Waals interaction but is expected to reduce the interaction strength as the side 

chain is shortened and eventually removed completely. The results of this study will 

be detailed below. 
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3.1.2.1. Methods  

3.1.2.1.1. Computational Methods  

We constructed models of LeuT bound to leucine, valine, alanine, and glycine by 

starting from the PDB crystal structure of LeuT bound to leucine and using the 

Mutator plug-in within VMD to mutate the leucine substrate to the corresponding 

amino acid of choice. The simulations were constructed as described in Section 

3.1.1.1.1.	
  Simulations, but with reduced box size such that the total number of atoms 

was approximately ~120,000. This was required to run on the Anton supercomputer at 

the Pittsburgh Supercomputing Centers, which limits system size. After an initial 

minimization and equilibration as described in Section 3.1.1.1.1.	
  Simulations, the 

systems were subjected to microsecond-scale MD simulations on Anton, a special-

purpose supercomputer machine188. These production runs implemented the same set 

of CHARMM36 force-field parameters and were carried out in the NPT ensemble 

under semi-isotropic pressure coupling conditions (using the Multigrator scheme that 

employs the Martyna-Tuckerman-Klein (MTK) barostat189 and the Nosé-Hoover 

thermostat190), at 310 K temperature, with 2 fs time-step, and using PME for 

electrostatic interactions. All the other run parameters were derived from the Anton 

guesser scripts based on the system chemistry 62. 

A mutant construct, F259W bound to glycine, was also constructed from a 

representative from of the glycine-bound construct in which F259 was in the 

perpendicular state and simulated using the same protocol for 3 microseconds. 
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3.1.2.1.2. Experimental Methods  

All experiments were performed in the laboratory of Scott Blanchard by Daniel Terry. 

3.1.2.1.2.1. TIRF single-molecule fluorescence imaging of LeuT 

Microfluidic chambers passivated with polyethylene glycol (PEG) and a small 

percentage of biotin-PEG191 were incubated for 5 min with 0.8 µM streptavidin 

(Invitrogen), followed by 4 nM biotin-tris-NTA-Ni2+ 192 in T50 buffer (50 mM KCl, 

10 mM Tris-acetate, pH 7.5). LD550/LD650-labeled, His-tagged LeuT molecules 

were immobilized via the His-tag:Ni2+ interaction by incubating for 2 min at ~4 nM 

concentration. Subsequent imaging experiments were conducted in imaging buffer 

containing 50 mM Tris/Mes (pH 7.5), 10% glycerol, 0.05% (w/v) DDM, 1 mM β-

mercaptoethanol and 200 mM total salt (KCl and NaCl, as specified). An oxygen 

scavenging system consisting of 0.1% w/v glucose, 0.2 units/mL glucose oxidase 

(Sigma), and 1.8 units/µL catalase (Sigma) was added to minimize photobleaching. 

Both enzymes were purified by gel filtration prior to use. Microfluidic chambers were 

reused up to five times by eluting the protein from the surface with 0.3 M imidazole in 

imaging buffer. 

Single-molecule FRET imaging of LeuT dynamics was performed at 25 °C using a 

custom-built prism-based total internal reflection (TIR) microscope, as previously 

described84,85,193. Surface-bound LD550 fluorophores were excited by the evanescent 

wave generated by TIR of an Opus 532 nm solid state laser (Laser Quantum). 
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Scattered excitation light was removed by a ET555lp filter (Chroma) between the 

objective and the MultiCam. Synchronization was ensured with an external pulse 

generator and verified with an oscilloscope. Data were acquired with 2x2 hardware 

binning using custom software implemented in LabView (National Instruments). 

Unless otherwise noted, data were recorded at a rate of 10 s-1 (100 ms time resolution). 

3.1.2.1.2.2. Analysis of smFRET data 

Analysis of single-molecule fluorescence data was performed in MATLAB {Juette 

2016, Nature Methods}. Single-molecule fluorescence traces were extracted from 

wide-field movies and corrected for background, spectral crosstalk, and unequal 

apparent brightness194. Each FRET trajectory was calculated as EFRET = IA/(IA+ID), 

where IA and ID are the acceptor and donor fluorescence intensities at each frame, 

respectively. Traces were selected for further analysis according to the following 

criteria: (1) single-step photobleaching, (2) signal to background noise ratio > 8, (3) 

less than four donor blinking events, and (4) FRET efficiency above baseline levels 

(0.15) for at least 100 frames. Figures were made with Origin software (OriginLab). 

To quantify dwell-times in each state, we idealized the smFRET trajectories using the 

segmental K-means algorithm in QuB195 with models containing three non-zero FRET 

states. The model FRET values (0.0, 0.52, 0.65, and 0.82) were obtained by fitting 

FRET histograms to a sum of three Gaussian functions in Origin (OriginLab). 

3.1.2.2. Results  

We investigated the nature of the F259-substrate interaction in each of the wild-type 

trajectories. The F259 side chain can undergo a rotation, which we monitored by 

calculating the dihedral angle formed by the Cα, Cβ, Cγ, and CD1 (benzyl carbon 
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ortho in respect to the Cβ).  We found that in the WT:Leu trajectory, F259 rotation is 

constricted and only two rotation events can be observed (see Figure 28, top left), 

between symmetric states of the phenyl ring at approximately 80-110° and -80-110°, 

which we will call the “perpendicular state”, to reflect the orientation relative to the 

side chain of the substrate. In the WT:Val trajectory, the rotation between thee two 

symmetric perpendicular states becomes more frequent (see Figure 28, bottom left). 

However, in the WT:Ala and WT:Gly simulations, two new states (symmetric to each 

other at approximately 90° from the ) appear with high frequency (see Figure 28, 

right). We call these symmetric states the “parallel states”.  

 

Figure 28. The F259-substrate interaction in various substrate-bound complexes. 

In each system, the starting state of the F259-substrate interaction is shown with the 

protein backbone shown in cyan cartoon and the substrate and side chain in licorice 

representation (carbon in cyan, oxygen in red, and nitrogen in blue). The dynamics of 

the dihedral angle formed by the CA-CB-CG-CD1 atoms over the course of each 3 

microsecond simulation is shown to the right. Top left: LeuT:Leu. Bottom left: 

LeuT:Val. Top right: LeuT:Ala. Bottom right: LeuT:Gly. 
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We hypothesized that the ligand-specific smFRET behavior previously observed for 

Leu and Ala was related to their ligand-specific modulation of F259, and thus 

predicted that Val’s effect on intracellular smFRET would resemble that of Leu, and 

that Gly’s effect would resemble that of Ala. The corresponding smFRET 

experiments, performed by Daniel Terry in the Blanchard lab, are presented in Figure 29 

and Figure 30. Due to improved experimental methodology, three states could be 

resolved in the smFRET data. In accordance with our predictions, Leu and Val both 

stabilize the high FRET state (see Figure 29), indicating they induce intracellular 

closing. Additionally, Ala and Gly both stabilize the mid FRET state (see Figure 29) and 

increase the frequency of transitions (see Figure 30). This data suggest that ligand-

specific modulation of the F259 is correlated with ligand-specific modulation of 

smFRET distributions and dynamics. However, the data does not necessarily suggest a 

causal relationship. 

  



	
  166	
  

 

Figure 29. 3-State smFRET distributions as a function of substrate concentration. 

The idealized population of each state (low FRET in green, mid FRET in red, and high 

FRET in blue) is shown as a function of substrate concentration for Leu, Val, Ala, and 

Gly. 
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Figure 30. Transition density as a function of substrate concentration.  

The transition density, represented as the number of events in which the FRET 

transitions from a given initial value (x-axis) to a given final value (y-axis), as a 

function of substrate concentration for Leu, Val, Ala, and Gly. 

These results are supported by a recent report of results from fluorescence quenching 

experiments that indicate that substrate binding in S1 induces conformational changes 

at the intracellular end of the transporter196, and that lead to reduced transport. In these 

experiments, TM5, which undergoes a conformational change during inward 

opening72,197, was labeled with a fluorescence tag and the quenching of the 

fluorescence by the water-soluble reagent potassium iodide was measured in response 

to ions, substrates, and inhibitors. Substrate binding was found to induce quenching of 

fluorescence (indicating increased accessibility of the fluorophore), but when 

measured across a panel of substrates with varying transport efficacy, the magnitude 

of maximal quenching was inversely correlated with transport efficacy (the correlation 
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between the quenching rate constant and transport efficacy was 0.985). This was taken 

to indicate that while substrate binding may induce transport dynamics, poorly 

transported substrates like leucine might actually prevent this induction of dynamics 

by stabilizing either an inward closed state, or a rate-limiting intermediate in the 

inward opening process. 

Based on these observations, we hypothesized that it would be possible to decrease the 

occupancy of the inward closed state and increase the rate of transitions if F259 could 

be locked into a parallel state. To investigate this possiblity, we constructed an F259W 

mutant bound to Gly, and simulated the new system to determine if this mutant would 

exclusively sample states in which the tryptophan ring was in a perpendicular state (as 

it would not fit in the site with the rings in the parallel orientation). Our simulations 

revealed that over the course of the 3-microsecond trajectory, the F259W side chain 

did not rotate, suggesting that the mutant was constrained to the perpendicular state 

(see Figure 31). As F259 is a W in the glycine transporter GlyT, we hypothesized that 

the mutant would be folded and able to transport glycine. However, we did not expect 

binding or transport of Leu, Val, or Ala as the presence of the bulky F259W side chain 

would likely produce a steric clash with the substrate side chain. 
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Figure 31. F259W:Gly is locked in a parallel state.  

The F259W-glycine interaction is shown with the protein backbone shown in cyan 

cartoon and the substrate and side chain in licorice representation (carbon in cyan, 

oxygen in red, and nitrogen in blue). The dynamics of the dihedral angle formed by 

the CA-CB-CG-CD1 atoms over the course of the 3 microsecond simulation is shown 

to the right.  
  



	
  170	
  

In related smFRET experiments with the F259W mutant, the apo state was found to 

exhibit an increased occupancy of the inward open state (see Figure 32) and the 

dynamics were also increased to levels greater than were previously seen when 

induced by alanine (see Figure 33), supporting our hypothesis that the parallel state of 

the F259 allosterically induces inward opening, whereas the perpendicular state of 

F259 allosterically induces inward closing. 

 

Figure 32. 3-State smFRET distributions for F259W as a function of substrate 

concentration.  

The idealized population of each state (low FRET in green, mid FRET in red, and high 

FRET in blue) is shown as a function of substrate concentration for Leu, Ala, and Gly. 
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Figure 33. Transition density of F259W as a function of substrate concentration. 

The transition density, represented as the number of events in which the FRET 

transitions from a given initial value (x-axis) to a given final value (y-axis), as a 

function of substrate concentration for Leu, Ala, and Gly. 

However, the effect of substrates on F259W smFRET also revealed some unexpected 

behavior. Whereas in the wild-type transporter the allosteric effect of Gly is similar to 

that of Ala, in the F259W mutant the allosteric effect of Gly is similar to that of Leu 

on the wild-type transporter (see Figure 32 and Figure 33). As the F259W side chain 

and glycine Cα are in close proximity, this may indicate that any constriction of the 

dynamics of TM6b through interaction with the substrate can lead to inward closing 

and reduced dynamics, even if the ring can be in the parallel state. Secondly, Leu and 

Ala still have an allosteric effect on intracellular dynamics, even though they are not 

expected to be able to bind in S1 in the F259W mutant, which makes the S1 pocket 

very crowded. In F259W, the Leu allosteric effect is similar to the allosteric effect of 
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Ala on the wild-type transporter. As F259W should not be able to bind Leu in S1, 

these results may indicate that the Ala/Gly allosteric effect on the wild-type 

transporter is actually mediated by binding in the S2 site. Previously, it was shown 

that L400S and F253A both blocked Ala's induction of dynamics85. While the F253A 

mutant does inhibit the Ala effect, the inhibition may be due to allosteric coupling 

between S2 and S1 rather than S1-mediated allostery.  

3.1.1.1.5.3. Discussion 

These results lead us to hypothesize that the smFRET data present two separate 

ligand-mediated allosteric effects. We propose that allosterically induced intracellular 

closure, as seen for Leu and Val, is mediated by substrate binding in S1 through the 

stabilization of the F259 perpendicular state. However, the allosterically induced 

intracellular dynamics, as seen for Ala and Gly, is mediated by S2 binding. This 

hypothesis can explain both the wild-type LeuT and F259W mutant results. In wild-

type LeuT, Leu interacts with F259 strongly, leading to an S1-dominated phenotype, 

whereas Ala and Gly do not interact with F259 strongly, leading to S2-dominated 

phenotypes. However, in F259W, Leu and Ala both do not bind to S1, leading to S2-

dominated phenotypes, whereas Gly binds to S1 and interacts with F259W, leading to 

an S1-dominated phenotype.  

To test this hypothesis, it is necessary to confirm the binding stoichiometry in the 

F259W mutant, as the above described proposal necessitates 1:1 F259W:Leu binding, 

1:1 F259W:Ala binding, and 1:2 F259W:Gly binding. Estimating the likely 

stoichiometry of binding using MD poses some difficulties, as the binding free 

energies that can be calculated using techniques like free energy perturbation198 are 

sensitive to the conformations of both the protein and the ligand. However, as future 
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work, these calculations will be performed in parallel to stoichiometry experiments. 

Furthermore, to confirm that the Leu and Ala allosteric effect on F259W is S2-

mediated, it is necessary to perform the same smFRET experiments on an F259W/S2 

double mutant, such as F259W/L400S.  

In the future, it will be necessary to decompose the S2-mediate allosteric modulation 

of intracellular gating in a similar way as to S1-mediated allosteric modulation was 

decomposed in the work presented here. While our original analysis suggested 

residues that were important for communication, the channel was expected to be 

composed of S1 and TM6b. This suggests a complex mechanism in which S2 

somehow modulates the conformation of S1, and potentially F259, to induce 

dynamics. By further investigating the S2-mediated allosteric induction of transport-

relevant dynamics, the role of this secondary site in physiological transport may 

become clearer. 

3.2. Allostery in the Transport Mechanisms of DAT 

Much of the content in this section has been adapted with permission from 199. 

As mentioned in Section 1.1.2.2. Membrane Transporters, much of the evidence for 

allosteric modulation in LeuT is mirrored by similar experiments in DAT and other 

sMATs. However, the N-terminal domains of sMATs are much longer than that of 

LeuT and are likely to be composed of significant structured segments200. These 

segments have been implicated in key mechanistic elements of NSS function including 

regulatory phosphorylation201–206, and the actions of psychostimulants201,202,207–210. 

Indeed, the involvement of the N-terminal domain (N-term) in amphetamine (AMPH)-

induced reverse transport (efflux) of the substrate has been well documented for 

different neurotransmitter transporters201,207,208,211–214. In hDAT, specifically, the 
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AMPH-induced efflux has been shown to be modulated by the first (distal) 22 residues 

in the hDAT N-term210, their electrostatic interactions with highly charged 

phosphatidylinositol 4,5-biphosphate (PIP2) lipids215, and by phosophorylation of this 

region at one or multiple Ser residues201.  

In order to investigate the potential role of the N-term as an allosteric modulator one 

of more components of the transport process, we performed extensive ( > 14 

microseconds  in total time) unbiased MD simulations of an hDAT homology model 

in a physiologically relevant lipid membrane environment, and used analysis tools 

based on NbIT to understand the allosteric coupling between the N-term and other 

functional domains.  

3.2.1. The role of allostery in spontaneous inward opening of hDAT 

As the work described in this section has been previously published199, only an 

abbreviated version of the Methods and Results, focusing on the application of NbIT, 

will be presented below. 

3.2.1.1. Methods 

Several molecular models of the full-length hDAT (residues 1-620) were prepared for 

all-atom MD simulations in explicit lipid membrane and water environment. Briefly, 

we used Modeler 9v10216 and a previously published sequence alignment of the NSS-

family proteins217 to first construct homology models for the transmembrane (TM) 

part of the hDAT (contained in residues 57-590) based on either recently released 

structure of the dDAT (PDB code:4M48)218, or on the high resolution outward-open 

X-ray structure of the bacterial member of the NSS-family, LeuT (PDB code:3TT1)72. 

The models included the substrate, dopamine (DA), positioned in the central binding 
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S1 site, two Na+ ions, positioned equivalently to those in the LeuT crystal structure, 

and a Cl- ion coordinated by residues Asn82, Tyr102, Ser321, and Asn353 of hDAT, 

based on the chloride binding site described previously219,220. 

As described earlier200, the 3D folds of the structurally unknown N- and C-terminal 

domains of the hDAT (fragments 1-57 and 591-620, respectively, that lack sequence 

homology to proteins of known fold) were generated using Rosetta-based ab initio 

structure prediction algorithms. Briefly, different fragments of the termini were 

subjected to the Rosetta ab initio fold prediction routine and for each construct, the 

predicted structures were clustered under various residue exclusion conditions. 

Clusters containing the majority of structures were identified. The conformations in 

the top clusters were evaluated with the RMSDTT iterative fitting algorithm to find 

regions with the highest structural conservation within each cluster, and the folds with 

the lowest scores (from the Rosetta energy function) in each cluster were selected.  

The predicted structures for the N- and C-termini were docked onto the two models of 

the hDAT TM bundle described above to complete the full-length hDAT models 

based on dDAT and LeuT (referred to throughout as hDATdDAT and hDAT3TT1, 

respectively). For the hDAT3TT1 model, two alternative docking poses were 

considered, resulting in two starting conformations in which the relative positioning of 

the two termini were different. For the hDATdDAT model only one docking pose was 

considered in which the positioning of the C-terminus closely followed that in the 

dDAT X-ray structure, and the N-terminus was docked so as not to contact any residue 

in the TM bundle. 

hDATdDAT and hDAT3TT1 models were immersed into a pre-equilibrated membrane 

containing an asymmetric lipid distribution of 451 lipids between the two leaflets so as 
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to resemble a lipid composition of neuronal cell plasma membranes221: 

100:40:32:27:29 mixture of POPE/POPC/PIP2/POPS/Cholesterol on the intracellular 

leaflet, and 176:29:18 mixture of POPC/DPPC/Cholesterol on the extracellular leaflet. 

For each transporter-embedded membrane patch, lipids overlapping with the protein 

were removed. After solvating with TIP3P water, the transporter-membrane 

complexes were neutralized with either K+Cl- or Na+Cl- salt, resulting in a final atom 

count of ~150,000.  

Simulations of the hDATdDAT and hDAT3TT1 constructs in the corresponding 

membrane environments were carried out with NAMD software version 2.9178. During 

this stage, the backbone of the protein was first fixed and then harmonically 

constrained. The solvent was initially prevented from entering the lipid-water 

interface. The constraints on the protein backbone were released gradually in three 

steps of 300 ps each, changing the force constants from 1, to 0.5, and 0.1 kcal/ (mol 

Å2), respectively. This step was followed by relatively short (50-100ns) unbiased MD 

simulations performed with 2fs integration time-step and under the NPT ensemble (at 

T=310K), using the Particle-Mesh-Ewald (PME) method for electrostatics and the 

Nose-Hoover Langevin piston to control the target 1atm pressure, with Langevin 

piston period and decay parameters set to 100 fs and 50fs, respectively. 

After this equilibration phase, long, microsecond-scale unbiased MD simulations were 

initiated on the Acellera GPU cluster that runs the specialized MD simulation software 

ACEMD222. ACEMD allows computations with standard CHARMM force fields and 

for all the runs (including the equilibration phases with the NAMD described above) 

we used the all-atom CHARMM27 force field for proteins with CMAP corrections176, 

the CHARMM36 force field for lipids177, the TIP3P water model, and the CHARMM-
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compatible force-field parameter set for PIP2 lipids223. The simulations with ACEMD 

implemented the PME method for electrostatic calculations, and were carried out with 

4 fs integration time-step. The computations were conducted under the NVT ensemble 

(at T=310K), using the Langevin Thermostat with Langevin Damping Factor set to 

0.1.  

The temporal correlation between time-dependent variables extracted from the MD 

simulations was quantified by calculating the Pearson correlation coefficients between 

the pairs of variables. To cluster the dynamic quantities based on the strength of 

temporal correlations between them, we then performed agglomerative mutual-

hierarchical clustering224 on the matrix of correlation coefficients, using the mutual 

information as the distance criterion. The linear approximation of the mutual 

information was calculated, and corrected for dimensionality using the generalized 

correlation coefficient156. Briefly, the clustering algorithm first assigns each variable 

to its own branch, and then calculates the pairwise generalized correlation coefficient 

between all branches. Two branches with the highest correlation are then merged, and 

the generalized correlation coefficient between the new branch and all other branches 

are recalculated. The algorithm continues until all variables are members of the same 

branch. In our application here, the dendrogram (tree) is built from the small number 

of medium-sized clusters consisting of highly correlated variables. The moderately 

correlated clusters are then merged into one large cluster. Finally, the tree is completed 

with the remaining small clusters that are weakly correlated to both each other and the 

large cluster.   

In order to quantitatively identify when medium-sized clusters of interest were 

merged, we used the Fowlkes-Mallows Index (FMI)225 as a measure of similarity 

between the different clustering before and after each merger. The FMI is defined as: 
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In the above, n is the number of objects being clustered and M is a matrix with rows 

equal to the number of clusters in the pre-merger clustering, columns equal to the 

number of clusters in the post-merger clustering, and elements mij equaling the number 

of common members in cluster i of the pre-merger clustering and cluster j of the post-

merger clustering. The FMI ranges from 0 to 1, with low values indicating merger of 

similarly sized clusters that significantly change the clustering, and high values 

describing mergers that do not change the overall clustering, such as the joining of 

small clusters (compared to other existing clusters) to each other or to a larger cluster. 

Therefore, the mergers of the medium-sized clusters will have relatively low FMI, 

whereas the mergers of small clusters to the large cluster (as is observed at the end of 

the clustering) will have a high FMI.  

3.2.1.2. Results 

In this section, results that do not pertain to the NbIT method will be described briefly 

and can be found in greater detail in the published manuscript199.  

By measuring several variables that are believed to be associated with conformational 

differencing between gating states of the transporter, we found that spontaneous 

inward-opening occurred in several simulations. Figure 34 shows the count of water 

molecules inside the EC and IC vestibules during the hDATdDAT simulation, which 

indicates a rapid transitioning of the transporter from the initially outward-open state 
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to the occluded state by the loss of hydration in the EC vestibule and increase in water 

count in the IC vestibule (see Figure 34).  

 

Figure 34. Spontaneous inward opening of hDAT.  

(A) Snapshots of the hDAT TM bundle (gray cartoon) in the hDATdDAT trajectory at 

0.13 and 1.3 µs time-points. Red and blue spheres represent oxygen atoms of the water 

molecules in the IC and EC vestibules, respectively (see Methods for description of 

the water count algorithm). The substrate, DA, is shown in van der Waals rendering. 

The TM1a segment is labeled. (B) Time evolution of the number of water molecules 

in the IC (red) and EC (blue) vestibules in the hDAT/dDAT simulation. The green 

arrows denote time-points at which the snapshots in panel A were taken. 

Distance measurements between various IC regions of the transporter (see Figure 

35A-C), reveal large-scale concerted motions of the intracellular TM1a, TM6b, and 
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TM9 segments during the subsequent trajectory interval (~0.2-0.6 µs), whereby 

TM1a-TM6b, TM1a-TM9, and TM6b-TM9 distances increase by ~4.5Å, 8Å, and 5Å, 

respectively. As a result, the TM1a and TM9 segments swing away from the TM 

bundle (see Figure 35F-G) and the IC vestibule opens, allowing the large influx of 

water molecules (see red trace in Figure 34B).   

  



	
  181	
  

 

Figure 35. Time evolution in the hDATdDAT simulation of Cβ-Cβ distances 

between residues in various TM segments.  

(A) I67 (in TM1a) and L447 (in TM9); (B) I67 (in TM1a) and S333 (in TM6b); (C) 

S333 (in TM6b) and L447 (in TM9); (D) E307 (in TM6a) and F171 (in TM3); and (E) 

F171 (in TM3) and K92 (in TM1b). Panels F and G depict conformations of the hDAT 

TM bundle (silver) in the initial and final frames of the trajectory. The IC and EC 

segments from panels A–E are labeled and colored in yellow. Blue arrows in panel F 

indicate the direction of movement of the different regions in the transition from F to 

G. Collective motions of TM1b and TM6a segments are highlighted by a red dotted 

oval. 
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Collectively, the data indicate that the hDATdDAT simulation captures the event of the 

inward-opening in hDAT, which follows dynamic trends which are consonant with the 

DEER distance measurements226 in LeuT where TM1a, NT (the fragment of the N-

terminus adjacent to TM1a), TM6b, and TM7a segments undergo the most substantial 

ion- or ligand-dependent movements at the IC side. Computational explorations of 

dynamics of LeuT68,82, DAT227, and SERT228 showed that the isomerization to the 

inward-open state induces a destabilization of the ion in Na2. Consistent with these 

findings, we observe that the transition to the inward-open state in our simulations is 

accompanied by the spontaneous release of the Na+ ion from the Na2 site. 

We note that a similar isomerization event was detected in the two 4 µs long control 

simulations initiated from the hDAT3TT1 model. Importantly, we found that the inward 

opening in these simulations followed dynamic trends largely similar to those 

observed in hDATdDAT.  

We additionally found that PIP2 lipids mediated an interaction between the N-term and 

ICL4, which appears to be related to the intracellular opening.  To establish the 

relation between the PIP2-mediated association of the N-term with ICL4, and the 

sequence of rearrangements leading to the inward-opening transition, we clustered the 

time-dependent variable describing PIP2-mediated N-term/ICL4 contacts with the 

several other dynamics measurements. To determine the temporal relationship 

between the structural motifs that underlie the isomerization event in the hDAT and 

the PIP2-controled N-term/ICL4 dynamics we identified the dominant clusters using 

the FMI measure described in Methods above. The resulting dendrogram is shown in 

Figure 36. 
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Figure 36. Mutual information dendrogram of several measures of hDAT 

structure.  

The dendrogram shows a merger of two clusters (variables and limbs shown in red and 

blue) and a connection of the resulting large cluster to smaller branches of the tree (in 

black). The variables in black are weakly correlated with those belonging to the 

colored clusters; as assessed by the Fowlkes–Mallows Index, the variables in black do 

not affect the clustering significantly. 

The dendrogram shows a large cluster of highly correlated variables (rendered in red) 

consisting of distance changes on the IC and EC sides of the transporter. The cluster 

identifies strong temporal correlations between the dynamics of the 

TM1a/TM6b/ICL4/TM9 segments on the IC end, and the distance changes related to 

the movements of TM1b/TM6a regions on the EC vestibule combined with the 
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movement of the ECL4b region with respect to TM1b (involving residues W84, F387, 

and F391). Connected to this limb of the dendrogram is another large branch (shown 

in blue in Figure 36), which consists mostly of additional dynamic variables that 

describe the opening of the IC vestibule during the isomerization. This branch also 

contains the PIP2-mediated N-term/ICL4 contacts (“NT/ICL4 cont.” in Figure 36), as 

well as the dynamics of the Na2 ion.  

Clustering analysis on the same quantities extracted from hDAT3TT1Run1 and 

hDAT3TT1Run2 trajectories again revealed merger of two clusters (in red and blue 

colors) containing various IC and EC structural motifs that describe inward-opening of 

the transporter (most prominently, dynamics in TM1a/TM6b/ICL4/TM9 segments), 

movement of the Na2 ion, the extent of PIP2-mediated N-term/ICL4 contacts, and the 

dynamics of the ECL4b. Together, the clustering analysis quantitatively establishes 

coupling between the PIP2-mediated N-term/ICL4 association and the structural 

hallmarks related to the inward-opening transition in the hDAT.  

The prominent role played by the ICL4 region in the inward opening transition 

prompted a deeper analysis of the manner in which dynamics in the ICL4 propagates 

to the functional sites of the transporter. To this end we quantified in the simulated 

trajectories the total intercorrelation between the ICL4 segment and (i)-the residues 

that line ion binding Na1 and Na2 sites, and (ii)- the residues in the primary S1 and the 

presumed secondary S2 substrate binding sites in hDAT.  

The time evolution of the total intercorrelation coefficient (rINTER), used to quantify 

the extent of coupling between the collective motions of the ICL4 region and various 

functional sites, was calculated from the hDATdDAT, hDAT3TT1Run1, and 

hDAT3TT1Run2 trajectories and is shown in Figure 37.  
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Figure 37. Total intercorrelation coefficient between the residues in ICL4 and in 

different functional sites of the hDAT.  

Substrate binding S1 and S2 sites (green and red, respectively); Na+ ion binding sites 

Na1 and Na2 (blue and black, respectively). The intercorrelation coefficients are 

shown separately for simulations Run1 (A), Run2 (B), and hDATdDAT (C) and were 

obtained as averages over 500 ns time intervals by sliding the analysis windows by 50 

ns.  
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Figure 37 reveals strong coupling (large rINTER values) between the dynamics within 

the ICL4 segment and that in the functional sites of the transporter in the initial stages 

of the hDATdDAT, hDAT3TT1Run1, and hDAT3TT1Run2 simulations. The reduction in 

coupling that occurs within the first ~0.5µs could be due to collective relaxation 

dynamics from the starting outward-open model towards the occluded state in these 

systems. However, since the initial 0.5 µs interval coincides in time with the inward 

opening in these simulations (see above), the results may also indicate that the 

isomerization event is preceded by highly coupled motions in the ICL4 and the 

functional regions. In fact, the same analysis performed on trajectories in which PIP2 

was not a component of the membrane (dDATΔPIP and Run2ΔPIPa trajectories), for 

which the initial protein models where the same as in hDATdDAT and hDAT3TT1Run2 

simulations, respectively, but in which the hDAT did not transition to the inward-open 

state, revealed rINTER values equivalent to the late time values of hDATdDAT, 

hDAT3TT1Run1, and hDAT3TT1Run2. This leads to the inference that the high 

correlations measured in the trajectories collected in PIP2-enriched membranes are 

indeed related to the transition to the inward-open state observed in these systems.  

Figure 37 also shows that after the initial decrease in the correlations, the coupling 

between the ICL4 and some of the functional sites rises again in the hDATdDAT, 

hDAT3TT1Run1, and hDAT3TT1Run2 systems. Especially notable is the higher value of 

rINTER for the S2 site (red traces in Figure 37). The S2 site in hDAT includes residues 

W84, P387, and F391, which are involved in the conformational rearrangements 

accompanying the inward opening (i.e., the specific motion in ECL4b results in 

pulling F391 towards W84 while P387 moves away from W84). Thus, we find that the 

observed strong correlations between the ICL4 and the S2 site is primarily due to 
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highly coupled motions in the ICL4 segment and the S2 residues from the ECL4b 

loop, adjacent to P387, that participate in the described pulling motion.  

The timing of the increase in correlations shown in Figure 37coincides with the event 

of Na+ release from the Na2 site (at ~0.75, 1.25, and 1.0 µs time-points in the 3 

simulations hDATdDAT, hDAT3TT1Run1, and hDAT3TT1Run2 systems, respectively). 

After the release is complete, we observe a slow relaxation of the correlations (see 

hDAT3TT1Run2 in Figure 37), with the coupling between ICL4 and the S2 site 

remaining the highest among all the correlations considered. Collectively, the NbIT 

analysis demonstrates and quantifies the allosteric coupling between the ICL4 and the 

functional sites during the PIP2-mediated inward-opening of the hDAT, and identifies 

the S2 site as the region with the strongest coupling to the ICL4, suggesting that this 

distant communication is mechanistically important for the inward-opening transition. 

3.2.1.3. Discussion 

The analysis of the >14 µs unbiased atomistic MD trajectories of a full-length model 

of the hDAT in lipid membranes presented here addresses, to our knowledge for the 

first time, the mechanistic involvement of the N-terminal region of the hDAT in the 

functionally relevant conformational transitions of the transporter involved in the 

inward-opening of the hDAT. The results show that the conformational isomerization 

triggered by the strong tendency of the N-term to associate with the ICL4 segment 

through PIP2-mediated electrostatic interactions. The mechanistic consequences of the 

PIP2-mediated N-term/ICL4 association that emerge from this analysis are the 

disruption of a conserved IC network of ionic interactions, which triggers the inward-

opening by destabilizing the IC network of ionic interactions, and the associated 

release of the Na+ ion from the Na2 site causes destabilization of the substrate DA in 
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the primary S1 site. The consequences of these interactions for the functional 

mechanism of the transporter are underscored by our findings showing that inward 

opening is accompanied by concomitant movements in the EC vestibule, and that 

isomerization to the inward-facing state in hDAT results in the release of the Na+ ion 

from the Na2 site, and the destabilization of the substrate (DA) in the S1 site.  

Our analysis using NbIT found that the collective motions triggered by the N-

term/ICL4 association on the intracellular side are strongly coupled to collective 

motions in the extracellular vestibule and in the substrate and ion binding sites. 

Further substantiating the mechanistic importance of the PIP2-mediated N-term/ICL4 

interactions, is the clear identification from the mutual information clustering (MIC) 

results of their effect on the intracellular side. This substantiates the allosteric coupling 

of these N-term/ICL4 interactions to the functional sites in hDAT involved in inward-

opening dynamics. Thus, the MIC revealed a strongly coupled helical bundle 

(composed of TM1a, TM6b, and TM9) in the intracellular side that was highly 

correlated to the N-term/ICL4 association, suggesting how the N-term can modulate 

the stability of this bundle and thus modulate intracellular gating. In combination, 

these results identify the N-terminus as an important allosteric modulator of the 

functional inward-opening and ion/substrate release in hDAT. 

3.3. The D2 Dopamine Receptor 

3.3.1 The asymmetric D2 receptor homodimeric signaling complex as an 

illustration of AIM-based analysis of allosteric coupling mechanisms 

The D2 dopamine receptor is know to signal as both a monomer and a homodimer, but 

a novel experimental construct developed in the Javitch lab 229 was required to make 

possible the characterization of the dimer as a signaling unit. The results demonstrated 
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experimentally that rather than signaling through each monomer independently, the 

D2R homodimer signals through a single protomer at a time (the signaling protomer 

will be referred to as “protomer A”). Furthermore, the results indicate that the function 

of the protomers is characterized by negative cooperativity: the stabilization of the on 

state of the non-signaling monomer (“protomer B”) by agonist biding decreases 

signaling by protomer A, whereas the stabilization of the off state of protomer B by the 

binding of an inverse agonist increases signaling by protomer A. Lastly, it is shown in 
229 that perturbations known to completely disrupt activation in the monomer, 

including (i)-ablation of ligand binding, (ii)-removal of intracellular loop 3 (IL3), and 

(iii)-mutations to (a)-intracellular loop 2 (ICL2), (b)-the conserved DRY motif, and 

(c)-the conserved NPxxY motif –  all disrupt activation in the homodimer when 

applied to protomer A. Unexpectedly, however, the perturbations in (iii) also disrupt 

activation when applied to protomer B.  

To explain the experimental results in a structural context, a molecular model of the 

homodimer complex with the G protein that senses the activation of the receptor was 

constructed in 229 using the active state crystal structure of another GPCR, rhodopsin, 

bound to its G protein, transducin. In this molecular model the interface of the 

homodimer involves the 4th transmembrane segment (TM4), and the G protein 

interacts with the signaling protomer A through IL3, IL2, and helix 8 (H8), while 

protomer B interacts through its IL2 and H8 (see Figure 38). We used AIMs as 

described below to explore the feasibility of the allosteric properties proposed for this 

structural model.  

Based on the experimental measurements of activation, an AIM representing the 

homodimer was constructed starting with a model for a signaling monomer (monomer 

A) and a G protein that can bind this monomer and become activated. Since the 
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experiments had shown229 that mutations in IL2, the DRY motif, and the NPxxY motif 

has identical phenotypes with regard to G protein binding, we represented all three as 

a single structural component termed conserved binding motifs (CBMs), due to their 

role in G protein activation by the GPCR230–234.  In the AIM constructed accordingly 

(see Figure 38A), the signaling monomer is composed of the following structural 

components: a ligand that can bind and unbind, a transmembrane domain, and two 

intracellular regions (IL3 and the CBMs); the G protein is composed of a structural 

component that can bind and unbind the signaling monomer, and one that can be 

activated. The conformational energies of the components of each protomer were 

chosen to prefer the off state ( u
conf = 1 ), and the interaction energies between all 

components were negative such that they preferred to be in the same state ( u
int = −1 ). 

We find that this coarse grained model responds as expected to agonists, antagonists, 

and inverse agonists (see Figure 38B). To create a homodimer with negative 

cooperativity, we then added to the AIM a negative interaction between the one 

monomer that can bind G protein (which is now protomer A) and one that cannot 

(protomer B), represented as a positive interaction energy between their 

transmembrane domains (see Figure 38C). We then calculated the allosteric efficacy 

for the homodimer when promoter A was bound to agonist and protomer B was 

simultaneously bound to either an agonist, an antagonist, or an inverse agonist.  This 

model reproduces the observed negative cooperativity (see Figure 38D). 
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Figure 38. Analysis of the AIM for a well-characterized asymmetric D2 

homodimer of the dopamine D2 receptor (D2R). 

(A): The D2R monomer AIM. (B): The effective interaction energy calculated for the 

D2R monomer AIM is presented for ligands that are agonists, antagonists, and inverse 

agonists, and also for the mutation of either IL3 or the conserved binding motifs 

(CBMs). (C): A molecular model of the homodimer obtained as described in the text, 

is shown with each AIM domain labeled in white on the structural representation. 

Protomer A is in blue, protomer B is in orange, and the G protein is in red. (D): The 

effective interaction energy for the D2R homodimer AIM is presented for different 

combinations of the states of protomer A (indicated by A in the top row) and those of 

protomer B in the dimer (B, bottom row).  
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To explore the effects of removing IL3 and introducing the CBM mutations, we 

constructed AIMs with the perturbations modeled as either i) stabilizing the off state of 

the mutated structural component, ii) stabilizing its on state, or iii) reducing the 

interaction energy between the structural component and the G protein to 0. Modeling 

the two perturbations in protomer A by imposing (i) or (iii), reduced activation as 

expected. However, stabilizing the off state of IL3 in protomer B increases activation 

in our model when it should have no effect, indicating that treating the IL3 mutation 

such that it eliminates interaction between IL3 and the G protein is a better model. On 

the other hand, treating the CBM perturbation in protomer B as stabilizing the off state 

leads to more activation, so that the effect of the mutation cannot be explained without 

an interaction between the CBM in protomer B and the G protein. To reconcile these 

effects in the model, we assumed that protomer B and the G protein bind in a state-

independent way (the G protein’s state independent binding is represented by  
uG binding

conf

 

in the AIM), and modeled the CBM mutation effect as further decreasing state-

independent binding. We find that if  
uG binding

conf

 is increased from 1 to 2, allosteric efficacy 

is reduced (see Figure 38D). The finding that state-independent interactions between 

the G protein and CBMs on both protomer A and protomer B are required for 

activation is in full agreement with the structural model of the dimer as presented229, in 

which not only protomer A, but also ICL2 and H8 from protomer B interact with the G 

protein directly. As this structural information was not used in the construction of the 

AIMs, the prediction from the allosteric model underscores the ability of the AIMs-

based approach in this illustration to connect the representation of allostery with the 

structural context of the modeled biomolecular systems. 
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3.4. 5-HT2AR 

Of the fifteen different receptors activated by the neurotransmitter serotonin, the 5-

HT2A subtype is of great interest not only because it plays a crucial role in cognitive 

processing but also because it is the target of a large number of medications including 

antidepressants and antipsychotics235–237. Remarkably, several 5-HT2A agonists, such 

as LSD28, are known to display hallucinogenic properties. Indeed, a large body of 

evidence indicates that the common target of all hallucinogens is the 5-HT2A receptor 

(5-HT2AR)28,235,237.  

Given that 5-HT2AR agonists and partial agonists can exhibit hallucinogenic properties 

or not by activating the same receptor, indicates a strong functional selectivity. 

Functional selectivity by hallucinogenic ligands (HLs) and non-hallucinogenic ligands 

(NHLs) at the level of PLC and PLA signaling pathway activation has been observed 

pharmacologically at 5-HT2AR and 5-HT2CR238,239,240,241. Furthermore, it has been 

observed that in a transgenic mouse model with humanized HT2AR, hallucinogenic 5-

HT2AR agonists induce a gene expression profile distinct from that elicited by non-

hallucinogenic 5-HT2AR agonists242,235.  In addition, recent computational work by our 

lab investigated the activation of the 5-HT2A serotonin receptor by endogenous, 

hallucinogenic, and non-hallucinogenic ligands using Molecular Dynamics (MD) 

simulations of homology models of 5-HT2AR233. This work indicated that these 

ligands can induce very different structures and dynamics in known functional micro 

domains similar findings were reported by others for the β2AR adrenergic receptor 

using computational243 and experimental techniques244,245. Lastly, very recently, 

structures of 5-HT1BR and 5-HT2BR bound to the agonist ergoline were solved using 

x-ray crystallography246,247. Ergoline displays no β-arrestin bias in 5-HT1BR while 

showing substantial bias in 5-HT2BR. While nearly all known activation motifs were in 
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their “active-like” conformation in both structures, the conserved PIF motif displayed 

an “inactive-like” conformation in the 5-HT2BR:ergoline structure, providing the first 

structural evidence that allosteric modulation of known functional microdomains may 

contribute to functional selectivity. These results support the role of specific structural 

components in activation and inactivation and also indicate that ligands induce distinct 

conformational ensembles that may be responsible for functional selectivity. 

3.4.1 Identification of Hallucinogen-Specific Allosteric Modulation of 5-HT2AR  

The Methods and Results described in this section are an abbreviated adaptation of 

previously published results131,248, adapted with permission. This will be followed 

below by a more complete description of new analysis of these trajectories, which is 

currently in preparation.  

The remarkable functional selectivity of HL compounds on 5-HT2AR235,249–251, 

included in the ample literature on the experimentally determined properties of the 

receptor and of structure-activity relations for its ligands28, prompted us to investigate 

structural and dynamical elements associated with the functional selectivity of the HL 

and cognate NHL 5-HT2AR agonists235. To cover a chemically distinct ligand space, 

we selected 5-HT2AR complexes with the four agonists (i-iv) described below for 

extensive unbiased all-atom MD simulations. We chose two HL compounds: (i)- the 

hallucinogenic substituted amphetamine, 2,5-dimethoxy-4-iodoamphetamine (DOI), 

and (ii)- the prototypical hallucinogen L-lysergic acid diethylamide (LSD). DOI has a 

relatively small and flexible chemical structure, whereas LSD is representative of the 

larger and more rigid chemical family of ergots. We also selected two cognate NHL 

compounds: (iii)- the endogenous 5-HT2AR ligand serotonin (5-HT), and (iv)- the 

partial agonist R-lisuride (LIS) that belongs to the same chemical family as LSD but 
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has a very different pharmacological fingerprint with regards to perceptional and 

cognitional phenotypes235. These ligands are shown in Figure 39.  

 

 

Figure 39. Schematic representation of the MD simulations and different ligands.  

(A) The structures of the four ligand agonists involved in this study, two hallucinogens 

(LSD and DOI) and two non-hallucinogens (5-HT and LIS), are depicted. For 

comparison the structure of ergotamine is also depicted. Ergotamine is one of the 

ligands co-crystallized with the closely related serotonin receptors, 5-HT1BR, and 5-

HT2BR. (B) Starting from the same 5-HT2AR structure, five different simulations were 

carried out. Although the production phase consists of 1000 ns, during the analysis 

just the second half, from 500 ns to 1000 ns, was considered. The midpoint of the 

simulations is indicated with black dots. Previously, a short segment of the two of the 

simulations (5-HT and LSD) were included as part of a study from our group233. These 

segments range from the starting point until the point indicated by an open circle in 

each of the simulations, ~175 ns for 5-HT and ~250 ns for LSD. 
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All four ligands have been extensively characterized with diverse biophysical and 

physiological techniques in vitro and in vivo with respect to serotonergic signaling 

efficacy across several downstream pathways and hallucinogenic phenotypes235.  

3.4.1.1. Methods 

Microsecond unbiased all-atom MD simulations were carried out in the membrane-

embedded 5-HT2AR in the unbound form (APO) and in complex with four different 

agonists: 5-HT, LSD, DOI and LIS. For two of the systems described here (5-

HT2AR/5-HT) and (5-HT2AR/LSD), shorter segments of the simulations (relative to the 

extent of the trajectories presented in this work) were part of a previous study from our 

group233. As a control, MD simulations of two closely related 1B (5-HT1BR) and 2B 

(5-HT2BR) human serotonin receptors in complex with the 5-HT ligand were carried 

out (100 ns each). All analyses were performed on the second half of the trajectories. 

3.4.1.1.2.  5-HT2AR structure complexes.  

The different systems were constructed as described previously233. Briefly, the 5-

HT2AR model was created with homology modeling using as templates, the high-

resolution X-ray crystal structures of the β2 adrenergic receptor (PDB accession code, 

2RH1) and bovine rhodopsin (PDB accession code, 1U19)252. The crystal structures of 

two closely related human serotonin receptors, the 1B (5-HT1BR) and 2B (5-HT2BR) 

receptors, were solved after the MD simulations presented here were collected246,253 

and thus, they were not considered as template for the 5-HT2AR structure, but were 

used for validation and controls. The resulting 5-HT2AR structure is comprised of the 

segment S67 to K400 (a 28-residue segment in the long ICL3, the first 66 N-terminal 

residues and the last 70 C-terminal residues were not included, see Fig. S3A in SI) and 

was capped at its N- and C-termini by the acetyl and N-methylamide groups, 
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respectively. A palmitoyl moiety was attached at position C397 based on the structural 

information of the β2 adrenergic receptor (PDB accession code, 2RH1). All MD 

simulations started from the same 5-HT2AR structure and the initial positioning of the 

agonists in the ligand binding pocket of 5-HT2AR was carried out by using several 

docking protocols (i.e., Autodock 4254, Simulated Annealing Docking255, and Glide 

and IFD (Schrödinger Inc.)) and were consistent with experimental information233. 

The 5-HT2AR systems were embedded in a physiologically relevant lipid membrane 

composed of a symmetric 7:7:6 mixture of SDPC (1-stearoyl-2-docosa-hexaenoyl-sn-

Glycero-3-phosphocholine):POPC (phosphatidylcholine):Cholesterol, respectively. 

The GPCR-membrane systems were then hydrated by using the TIP3P water model 

followed by neutralization of the entire system by introducing ions to generate a NaCl 

salt concentration of 0.15 M233.  

The parameters for the different ligands were obtained as described previously233.  

3.4.1.1.3.  All-atom molecular dynamics simulations.  

Details of the 5-HT2AR simulations are as described previously233. Briefly, unbiased 

all-atom MD simulations were performed using NAMD178 with the all-atom 

CHARMM27 force field with CMAP corrections for proteins and lipids176 for 

trajectories of at least 1 microsecond. Langevin dynamics and the hybrid Nosé-Hoover 

Langevin piston were used to maintain constant temperature (310 K) and constant 

pressure (1 atm), respectively. Full electrostatics were evaluated using PME 

techniques with grid spacing less that 1.0 Å in each dimension and a fourth-order 

interpolation. Bond lengths involving hydrogen atoms were constrained to their 

equilibrium values by the SHAKE algorithm256. All MD simulations were performed 

with a 2 fs time step.  
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3.4.1.1.4. Structural alignment.  

For the structural analyses, all the structures were aligned to the structure of the β2 

adrenergic receptor (PDB accession code, 2RH1) oriented with respect to the lipid 

bilayer according to the Orientations of Proteins in Membranes (OPM) database257 by 

using the Cα atoms of the TM helices. Such alignment ensured that the Z-coordinate 

axis coincided with the helical axis of the TM bundle. 

3.4.1.1.5. Principal component analysis.  

We used PCA to quantify the major motions in ICL2. Using the Cα and heavy atom 

covariance matrices, we first found the first principal component (PC1) of the ICL2 

movement in each system, which represented a large portion of the variance in all 

systems except for APO. To investigate differences in ICL2 dynamics in all five 

systems, we calculated PC1 for each simulation and then calculated the variance 

across that principal component for each other simulation. Atomic fluctuation 

correlations were calculated using carma179, and PCA was performed with in-house 

programs.  

3.4.1.2. Results 

3.4.1.2.1. ICL2 rigid-body dynamics are modulated upon ligand binding.  

The application of the total intercorrelation and entropy decomposition measures to 

characterize rigid-body behavior was illustrated with the analysis of the results from 

for 1 microsecond MD simulations of 5-HT2AR, in the apo and 5-HT-bound states.  

The analysis focused on the secondary structure of ICL2 of the 5HT2AR. Residues 

I181-F186 were helical within the initial structures of both states, and traditional 
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secondary structure calculation using stride 258 indicates that the interior helical turn, 

composed of residues H182-R185, is stable throughout our simulations, with the turn 

being entirely helical for 84.3% of the apo trajectory and 89.7% of the 5-HT-bound 

trajectory. For the remainder of the analysis, we consider residues I181-F186 as ICL2. 

We then calculated generalized correlation coefficients (Eq. (1.140)) using N-body 

mutual information (Eq.(1.141)) and N-body total intercorrelation (Eq. (1.168)) for 

ICL2 in both simulations to quantify the rigid-body behavior of the helical segment 

and to assess if there were differences in rigid-body behavior between the two states 

that could not be observed by calculating the secondary structure alone.  We found 

that the apo state displayed weak rigid-body dynamics (rmutual = 0.30 and rTCinter = 

0.60), while the 5-HT bound state displayed stronger rigid-body dynamics (rmutual = 

0.52 and rTCinter = 0.89). These results indicate that there are increased rigid-body 

motions in the 5-HT bound simulation, although both states have a helical segment in 

the ICL2.  

Using the entropy decomposition framework to analyze the dynamics of IL2, one 

would expect a high RBF and CO if the helical segment truly behaves as a rigid body 

helix, and a moderate RBF and low CO if the backbone is behaving like a rigid body 

but the side chains are not (likely a more accurate expectation based on the previously 

calculated generalized correlation coefficients).  Conversely, if ICL2 were behaving as 

a completely disordered segment, which is not expected from its helical secondary 

structure, RBF and CO would be low. We find that while ICL2 is helical when the 

receptor is unbound, the RBF and CO parameters calculated from both the mutual 

information and total intercorrelation are low (see Table 7), indicating that ICL2 

contains a very flexible helix. In addition, we find that the RBF increases in the 5-HT 

bound state of the 5-HT2AR. Interestingly, the comparison of COmutual to COinter reveals 
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different trends upon 5-HAT binding, indicating that the choice of information 

measure can influence the interpretation of the system’s dynamics. Thus, most of the 

high-order correlation are identified as rigid body using total intercorrelation, but not 

when using mutual information. These results indicate that there is a significant 

increase in the rigidity of the IL2 upon ligand binding although the helical secondary 

structure is retained and comparable in both states.  

Table 7. Rigid-body parameters of the apo and 5-HT-bound 5-HT2AR. The 

standard error on the mean of 50 bootstraps is displayed in parenthesis. 

 Apo 5-HAT 

Mutual Inter mutual inter 

r 0.30 

(0.002) 

0.60 

(0.003) 

0.52 

(0.002) 

0.89 

(0.002) 

RB

F 

0.16 

(0.002) 

0.50 

(0.002) 

0.39 

(0.002) 

0.90 

(0.002) 

CO 0.77 

(0.001) 

1.91 

(0.001) 

1.11 

(0.004) 

0.67 

(0.005) 

Moreover, a greater overall rigidity is indicated for both systems when using total 

intercorrelation as opposed to mutual information, as seen in the N-body generalized 

correlation coefficient and rigid-body fraction. We expect this result to be general and 

apply to other systems as well. However, we find that the RBF and CO parameters are 

greater when using mutual information. Thus, we find that ICL2 of 5-HT2AR 

transitions from a flexible helix to a more rigid-body helix upon binding the 

endogenous agonist 5-HT. As previous crystallography data 33,44,259,260 and 

computational analysis 261,262 have pointed to the helix properties of IL2 in relation to 
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GPCR activation for different pathways, it is possible that ligands can determine their 

agonist bias by allosterically modulating the rigid-body properties of IL2 upon 

binding. 

3.4.1.2.2. ICL2 adopts distinct conformations in 5-HT2AR complexes with different 

ligands.  

From the analyses of the microsecond MD simulation trajectories of 5-HT2AR with 

different ligands, we found that ICL2 conformations favored in the HL-bound systems 

are different from those favored in the NHL-bound and in the unbound constructs. The 

distinct conformations were monitored by defining the center of mass of the helical 

segment on ICL2 as a collective variable, and calculating the root-mean-square 

deviation (rmsd) of the center of mass of the ICL2 along the trajectories, relative to the 

center of mass of the ICL2 in the initial structure. The distributions of the rmsd values 

show two distinct conformations for the ICL2 (see Figure 40). 
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Figure 40. RMSD distribution and representative structures of ICL2.  

(A) The distributions of rmsd values, relative to the starting structure, are shown for 

the five simulated systems, 5-HT2AR/5-HT, 5-HT2AR/LIS, 5-HT2AR/LSD, 5-

HT2AR/DOI and 5-HT2AR (APO), respectively. The more outward-upward 

conformations (blue) are highly favored in just the hallucinogenic systems. (B) 

Representative ICL2 structures for the five simulated systems, as seen from the 

intracellular side, are shown. As a reference, the initial structure (gray) is also depicted 

in each case. The more outward-upward ICL2 conformations are colored blue whereas 

the more inward-downward conformations are colored yellow. In these views, the 

more outward ICL2 conformations correspond to larger values in the X-axis 

coordinate. Interestingly, the outward-upward conformations (blue) are preferentially 

stabilized in the hallucinogenic systems, LSD and DOI. The thickness of the ICL2 

representation corresponds to the percentages of the distributions from (A). In the case 

of LIS, any of the conformations was sorted as part of the “blue” conformations. The 

helical axis of the TM bundle is represented by a magenta triangle in each case. 
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The more “outward” and more “upward” oriented ICL2 conformations (colored blue 

in Figure 40B) are seen to be highly favored by HL (DOI and LSD, see middle panel 

in Figure 40B) in contrast to the more “inward” and more “downward” ICL2 

conformations (colored yellow in Figure 40B) adopted when the NHL (5-HT and 

LIS) are bound or when the unbound (APO) receptor is simulated. The representative 

structures of the ICL2 segment conformations in each of the studied systems (Fig. 1B) 

show that the more outward conformations (favored by HL) situate the ICL2 segment 

farther away from the axis of the TM helical bundle, whereas more upward 

conformations place the ICL2 segment closer to the center of the membrane bilayer 

Representative structures in the 5-HT2AR/DOI complex are also depicted in Figure 

41. In this particular complex, ICL2 selectively prefers more outward-upward 

conformations (colored blue), but explores as well the inward-downward ICL2 

conformations preferred by the NHL (colored yellow), see Figure 41. All ligand-

bound receptors exhibited dynamic transitions between states, but with notable 

preferences related to their pharmacological class (see Figure 40B).  
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Figure 41. Conformations explored by the ICL2 in the 5-HT2AR/DOI complex.  

Lateral view of two representative structures of the 5-HT2AR/DOI system. The more 

outward (relative to the helical axis of the TM bundle, shown here as a magenta line) 

and more upward (that is, closer to the center of the lipid bilayer) are preferred in the 

hallucinogenic systems (DOI and LSD), colored here in blue. In these views, the more 

outward ICL2 conformations correspond to larger values in the X-axis coordinate 

while the more upward conformations correspond to larger values in the Z-axis 

coordinate. The more inward-downward conformations are preferentially sampled in 

the non-hallucinogenic systems (5-HT and LIS) and in the APO form, colored here in 

yellow. As a magnitude reference, the Cα atoms of residue H183 are depicted in both 

structures and the distance for these particular structures is 5.3 Å (indicated as a red 

line). The predicted intracellular boundary of the bilayer is depicted as a brown line.  
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In addition, we calculated the generalized correlation coefficient between the center of 

mass and the first principal component (PC1) of the ICL2 motion, which indicated that 

the center of mass motion of ICL2 was strongly correlated with the PC1 in each 

system (see Table 8A). This finding further supports the use of the center of mass as a 

collective variable, as described above. From the PCA we further found that the PC1 

motion in the 5-HT2AR/DOI system accounts for a large fraction of the variation 

present in 5-HT2AR/DOI and 5-HT2AR/LSD systems, but not in the 5-HT2AR/5-HT, 5-

HT2AR/LIS, or 5-HT2AR (APO) systems, indicating that this motion is HL-specific 

(see Table 8B). 

 
Table 8.  The major motion in ICL2 is highly correlated to the COM and 
discriminates hallucinogens from non-hallucinogens. 

A. Cα motions in ICL2  

 5-HT  LSD  LIS  DOI  APO  

r(PC1, COM)  0.894  0.971  0.935  0.964  0.470 

PC15-HT  0.637  0.502  0.452  0.248  0.098  

PC1LSD  0.498  0.629  0.477  0.469  0.106  

PC1LIS  0.545  0.573  0.523  0.384  0.104  

PC1DOI  0.215  0.473  0.316  0.605  0.092  

PC1APO  0.057  0.034  0.043  0.024  0.296  

B. Heavy atom motions in ICL2  

 5-HT  LSD  LIS  DOI  APO  

r(PC1, COM)  0.871 0.888 0.830 0.880 0.608 

PC15-HT  0.460  0.376  0.225  0.180  0.071  
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The major Cα (A) and heavy atom (B) motions of ICL2 are presented. Row 1 

corresponds to the generalized correlation coefficient9 between the first principal 

component of the ICL2 motions (PC1) and the center of mass of ICL2 (COM). Rows 

2 – 6 correspond to the fraction of total variance in ICL2 that is contributed by a given 

principal component. PC1X corresponds to the first principal component of ICL2 

motion found in system X. 

To identify specific molecular interactions involved in the observed differential 

conformations of the ICL2 segment, we analyzed comparatively the contacts involving 

residues in ICL2. The direct interaction between residue D1723.49 (from the conserved 

DRY motif) and H183 (located in the middle of the ICL2) was found to be more 

extensively maintained in the trajectories of HL systems compared to the NHL 

counterparts or the APO (see Figure 42A). Figure 42B shows that the minimal 

distance between any of the carboxylate oxygen atoms from the side chain of D1723.49 

with any of the imidazole nitrogen atoms from the side chain of H183ICL2 in the HL 

systems, fluctuates mainly to values ~ 4 Å or shorter. In contrast in the NHL systems 

the values are mostly larger than 4 Å (the 4 Å is selected as reference distance to 

match the cutoff distance value used herein to define a molecular contact). This 

interaction is proposed to play a key role in determining the different conformational 

and dynamic properties of the ICL2 in the HL versus NHL systems. 

PC1LSD  0.351  0.484  0.262  0.355  0.095  

PC1LIS  0.366  0.437  0.287  0.313  0.082  

PC1DOI  0.151  0.345  0.183  0.475  0.071  

PC1APO  0.068  0.083  0.057  0.062  0.261  
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Figure 42. Distances of residues D172 and H183. 

(A) Representative structure from the 5-HT2AR/DOI complex where the interaction of 

D1723.49 and ICL2 residue H183ICL2, is depicted. In the context of the DRY motif, this 

position in the ICL2 is a residue that can establish polar interactions by using its side 

chain and is located in the sequence position Z in the “DRY(X)5P(X)2Z” motif. (B) 

The minimal distances between any of the carboxylate oxygen atoms from the side 

chain of D1723.49 with any of the imidazole nitrogen atoms from the side chain of 

H183 are depicted. The distance (gray) and its moving average (black) are displayed. 

As a reference, a dashed line at 4 Å is also displayed (the same cutoff value used to 

define a receptor-ligand interaction contact). 
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3.4.1.2.3. Binding site interactions of 5-HT2AR agonists.  

The receptor-ligand contacts were evaluated by considering all positions at which any 

heavy atom from the ligand comes within 4 Å of any heavy atom from the protein in 

the course of the trajectory. From this set we identified six contact loci (I2104.60, 

G2385.42, S2395.43, F2435.47, W3366.48, and N3436.55) that were found in all the 

simulated complexes, but that exhibited differences in the frequency of contacts for 

HL versus NHL ligands (Fig. 5A and 5B). An additional position (W1513.28) was also 

found to have differential contact frequencies between HL and NHL but only in the 

case of the larger ergoline ligands, LSD and LIS (see Figure 43A and Figure 43B). 

Figure 43A and Figure 43B depict the seven residues in the context of their positions 

inside the binding site whereas Figure 43C displays their respective contact 

frequencies as the percentage of trajectory time in which each of the positions is in 

contact with the ligand. The location of this set of residues suggests that HL agonists 

preferentially interact with residues located in TM6, whereas their NHL counterparts 

preferentially establish contacts with residues in TM4 and TM3 (see Figure 43A). 

Both classes of compounds interact with residues in TM5 but the HL preferentially 

contact residues that are located at the helical interface formed with TM6, whereas the 

NHL contact residues located at the helical interface formed with TM3 and TM4 (see 

Figure 43A). Residues G2385.42 and S2395.43 present an interesting example of this 

selectivity because they occupy neighboring positions in the vicinity of the indole 

nitrogen of the 5-HT ligand (or equivalent atoms in the other ligands), see Figure 

43A. Yet, position 5.42 is preferentially contacted by NHL (94%, 98% for 5-HT, and 

LIS versus 37% and 79% for DOI and LSD, respectively), whereas position 5.43 is 

contacted more extensively by HL compounds (24%, 31% for 5-HT, and LIS, versus 

82% and 54%, by DOI and LSD, respectively). Interestingly, even though all the 
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ligands contact the same residues in the orthosteric binding site (albeit with different 

frequencies), two of the residues preferentially contacted by the HL are large aromatic 

amino acids that are located deep in the orthosteric binding pocket, i.e., the highly 

conserved W3366.48, known to be implicated in signal transduction in different 

GPCRs263, and F2435.47, known to modulate DOI-dependent downstream signaling in 

5-HT2AR264(see Figure 43B).  

It is noteworthy that in spite of the minimal chemical and structural similarity of the 

HL ligands, they both have a positively charged nitrogen atom and an indole-like 

nitrogen atom (or equivalent) which have long been considered to be particularly 

important in interacting in the 5-HT2AR orthosteric binding site264,265. This is also the 

case for the NHL ligands. The lack of chemical and structural similarity within the 

groups, and the much greater similarity of compounds belonging to the different 

groups (cf. LSD and LIS), accentuates the significance of the identified common set of 

residues that establish different protein-ligand contacts in the HL versus the NHL 

systems. 
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Figure 43. Ligand binding contacts in the 5-HT2AR. 

(A) Extracellular and (B) lateral views that show the seven residues (W1513.28, 

I2104.60, G2385.42, S2395.43, F2435.47, W3366.48, and N3436.55) that display preferential 

frequency contacts between HL (blue) and NHL (yellow) ligands (C) The percentage 

of time that each of the seven positions are in contact with the ligands along the 

trajectories are shown. Similar color code is used, 5-HT (orange), DOI (red), LIS 

(green) and LSD (cyan). The different agonist types are arranged: small agonists (first 

row), large agonists (second row), NHL (first column) and HL (second column). To 

discern contact frequency differences between NHL and HL compounds compare data 

in the different columns in each case. Similarly, by discern contact frequency 

differences between small and large agonists compare data in the different rows. The 

first three residues show a tendency to directly interact with NHL (W1513.28 only 

interacts with the ergoline ligands, LSD and LIS) whereas the other four show a 

preference for the HL. 
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3.4.1.3. Discussion 

Our findings described here, identifying a role for the second intracellular loop of the 

5-HT2AR in discriminant pathway activations, are consistent with previous 

observations about the signaling of class A GPCRs through various intracellular 

signaling partners230,266–268. Thus, the ICL2 of the 5-HT2AR has been shown to be 

involved in the interaction with G protein (including desensitization)269 and with β-

arrestin268, whereas for the related serotonin 1A receptor, ICL2 has been directly 

implicated in G protein coupling270. The more recent structural information, for the β2 

adrenergic receptor complexed with the Gs protein, shows the ICL2 establishing 

extensive interactions with the β2/β3 loop in the N-terminus of the Gα subunit and 

with the C-terminus of helix α544,271. In this context, the extensive unbiased MD 

simulations presented here provide evidence that different ligand classes bound to the 

5-HT2AR can produce distinct conformations of the ICL2. Thus, ICL2 favors more 

outward-upward conformations in the HL-bound systems (i.e., the 5-HT2AR/DOI and 

5-HT2AR/LSD complexes), while these conformations are not highly explored in the 

NHL systems, or in the unbound receptor. The spatial distributions of the ICL2 

conformations relative to the helical bundle are similar among the HL systems (DOI 

and LSD), as quantitatively depicted by the calculation of the overlap coefficient of 

the ICL2 center of mass and the projections of the principal components, and are 

different from those adopted by the NHL counterparts (5-HT and LIS) or the unbound 

receptor. This is consonant with previous results from Lefkowitz and coworkers who 

used quantitative mass spectrometry to identify ligand-specific conformations of the β2 

adrenergic receptor and found that ICL2 adopts distinct conformations that differ 

between agonists122.  
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Our computational analysis shows that the ICL2 conformations are likely to be largely 

dependent on the extent of the interaction between D1723.49, from the conserved DRY 

motif in TM3, and H183 in the ICL2. Interestingly, interactions of D1723.49 with 

H183-equivalent residues in ICL2 has been observed in the crystal structures of 

several other GPCRs: in all the opioids and the aminergic muscarinic receptors (with 

an Arg in the corresponding position)266, and in the serotonin 1B receptor (with a Tyr 

in that position)246. Moreover, in another related GPCR, the aminergic β1 adrenergic 

receptor, a hydrogen bond is formed between D1723.49 and a tyrosine residue (Y149) 

in the equivalent ICL2 position, and introduction of the Y149A mutation, decreases 

receptor stability39. The relevance of this interaction is further emphasized by the fact 

the in the β2 adrenergic receptor, the phosphorylation of the equivalent tyrosine 

(Y141) shifts the conformational equilibrium so as to facilitate active state 

conformations272. In the context of the DRY motif in TM3, this particular ICL2 

position is located in the sequence position Z in the “DRY(X)5P(X)2Z” motif, where in 

all the aforementioned examples position Z is a residue able to establish side chain 

polar contacts with D1723.49.  

3.4.2. Identification of Hallucinogen-Specific Allosteric Modulation of Pairwise 

Interactions using a Random Forest-based Method 

The original comparative analysis of HLs and NHLs identified hallucinogen-specific 

modulation of ICL2 by manually testing potential differences through trial and error. 

Additionally, we identified differences in the binding site and local to ICL2, but not a 

specific mechanism of allosteric transmission. To seek more hallucinogen-specific 

allosteric modulation that might be more general to all HL, we increased our 

comparison to include two new HLs, psilocin (PSI) and mescaline (MES), and another 

NHL, ergotamine (ERG) that has been crystalized in complex with 5HT2BR. We then 
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analyzed all of the HL and NHL simulations using the 2-step random forest-based 

method we developed to identify allosteric modulation of pairwise interactions. As we 

had previously identified a hallucinogen-specific change in the of D1723.49 /H183ICL2 

interaction, the approach was expected to reproduce the finding of our original 

analysis as well as identify new pairwise interaction that were subject to hallucinogen-

specific allosteric modulation. 

3.4.2.1. Methods 

Systems were prepared and simulated as described in the previous section. All new 

simulations were initiated from a representative frame of the lisuride-bound complex 

(see Figure 44). 
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Figure 44. Additional simulations of psilocin, mescaline, and ergotamine.  

While previously the last 500 ns of each simulation were analyzed, here we applied a 

recently described method273 to identify how much of the initial portion of the 

trajectories should be discarded. In brief, the goal of the method is to find the time 

point, t0, at which discarding all prior time points leads to maximization of the 

effective number of statistically independent data points, neff. Because it is impractical 

to apply this criterion to all pairwise interactions, we used the RMSD of TMs 1-4, 

after alignment using iterative fitting, as a global measure of convergence. We found 

that when plotting neff versus t0, there was often an increase in neff  after removing 

most of the trajectory (see Figure 45), and this sometimes resulted in a maxima 

towards the end of the trajectory. This behavior is likely due to a departure from the 

assumptions of the method (e.g. monotonic convergence to a specific average value), 

and thus we chose to ignore these end maxima in our choice of t0. 
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Figure 45. Convergence analysis.  

An example RMSD time series is shown over 1.2 microseconds of simulation. Neff is 

also shown (blue line) as a function of t0, normalized to its maximum. 

In order to identify pairwise interactions (PIs) throughout the trajectories, we used the 

PI Analyzer software. For this analysis, we used the default distance and geometry-

based interaction parameters to identify pairwise interaction between all possible 

residues, without distinguishing between side chain or backbone interactions. All 

interactions that were not made at least once in all systems at any point in the 

simulations (including the discarded region) were removed in order to prevent rarely 

sampled interactions from dominating the analysis. In addition, since we aim for a 

classification of the class of ligand that is not limited to the trivial classification from 

the binding site alone, even if allosteric effects are present, but rather one that reveals 
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the class of the ligand from specifically identified distant allosteric modulation, the 

ligand-protein contacts were removed from the analysis. 

3.4.2.2. Results 

An important parameter in the two-step random forest analysis is k, which sets the cut-

off for variable importance in both steps. Our analysis revealed two values of l that 

result in an α value of greater than 1 (see Figure 46). Here, we will present the 

analysis using the highest k cut-off of that still has α > 1. By investigating the raw κ 

values for both within-class and between-class classification, we find that the lowest 

cut-off results in nearly no remaining accuracy to predict class (κ = 0.1412), whereas 

the highest cut-off that still has α > 1 has reasonable accuracy (κ = 0.472). This is a 

weakness of using only the ratio to select the cut-off, and an improved automated 

selection method is required for the future. 

  



	
  217	
  

 

 

Figure 46. Class-specific classification of ligand as a function of the cut-off k.  

A representative plot of the class-specific classification score, α, is shown as a 

function of cut-off used, k.  
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Our analysis finds that PIs that contribute to discrimination between HL and NHLs 

occur throughout the TM region of 5-HT2AR. While it may certainly be the case that 

the PI signature of HLs may span the entirety of the TM region, and recent analysis of 

NMR data274 suggests that activation-associated conformational changes are present 

throughout the TM region, we investigated the top 7 PIs in further detail. As expected, 

an interaction was identified that involves H183ICL2. However, while we had 

previously identified an interaction between H183ICL2 and D1723.49 as being 

discriminant, the new analysis found the interaction between H183ICL2 and E3186.30 to 

be discriminant (see Figure 47). Overall, the results reinforce the finding that 

allosteric modulation of the interaction of ICL2 with the ionic lock / DRY motif 

region is a characteristic of HLs.  

 

Figure 47. Hallucinogen-specific PIs.  

4 of the top 7 interactions that are modulated in a hallucinogen-specific manner are 

presented. Residues denoted in red have been implicated in function, whereas residues 

in blue are conserved.  
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In addition to the H183ICL2 / E3186.30 PI, an additional TM5 / TM6 interaction, I2585.62 

/ K3236.35, was also identified. Notably, K3236.35 is strongly conserved among class A 

GPCRs and is local to E3186.30, and conformational changes in TM5 / TM6 are a 

hallmark of activation.  

Finally, two pairs of inter-TM interactions were identified at the interface of TM5 and 

TM, S2425.46 / I1633.40 and P2465.50 / C1633.44. These inter-TM interactions are both 

separated by a turn and indicate a HL-specific modulation of this interface. Interesting, 

P2465.50 and I1633.40 composed the so-called PIF motif that has recently been proposed 

to be involved in the difference in ergoline-induced activation of 5-HT1BR and 5-

HT2BR247. Additionally, interaction with S2425.46 has been proposed to be involved in 

ligand efficacy275,276, and the two interactions are local to two residues that we 

previously identified to make HL-favored contacts, S2395.43 and F2435.47, which are 

reproduced in the new analysis. 

3.4.2.3 Discussion 

Based on the new analysis, we hypothesize a process in which HL-specific 

engagement of TM5 triggers the propagation through TM5 to TM6 and TM3, which 

leads to allosteric modulation of the PIs between ICL2 and TM6 and the release of 

ICL2 into its previously described hallucinogen-specific conformation. These results 

provide a clear mechanism of hallucinogen-specific activation of 5-HT2AR, in which 

HLs engage the existing activation mechanism (involving conserved and functionally 

relevant residues in TM5) in a ligand-specific manner leading to the stabilization of a 

functionally selective conformation of ICL2. Indeed, mutations in ICL2 have recently 

been shown to induce receptor bias277, and comparison of x-ray structures of β2AR 

bound to a heterotrimeric G protein complex and rhodopsin bound to arrestin-1 
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suggest that these downstream effectors differentially engage ICL2 and thus their 

binding would be differentially affected by hallucinogen-specific modulation of ICL2.  
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4. Expanding Allostery Past the Two-State Model 

Little theory is available to describe allostery rigorously outside of the two-state 

models described in Section 1.1.1.2. Theoretical Background. However, there is no 

reason to assume systems will behave in a strictly two-state manner, and some systems 

are know to be more complex, as it was shown for the intracellular gate of LeuT in 

Section 3.1.2.2. Results. Thus, it is important to develop of a more general theory of 

allostery, even at the phenomenological level. Here, we derive a statistical mechanical 

form of the allosteric efficacy between collective variables that are either continuous 

or discrete.  

4.1. Derivation 

We would like to derive an analogous allosteric efficacy for the transformations of 

continuous or discrete variables. Let  represent the coordinates of a system that 

define the microstate. The microstates are distributed according to the Boltzmann 

distribution: 

 

 

p !r( ) = e−βU
!r( )

e−βU
!r( )

!r∈R
∑

  (1.179) 

where U(r) is the potential energy function. The free energy of this distribution is: 

 
 
A p !r( )⎡⎣ ⎤⎦ = − 1

β
log e−βU

!r( )
!r∈R
∑⎛⎝⎜

⎞
⎠⎟

  (1.180) 

We consider a collective variable (CV), X(r), which is a function of the coordinates.  

The probability density f(x) expresses the probability that X(r) takes value x.   

		 r∈!N
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p x( ) =
δX !r( )−xe

−βU !r( )
!r∈R
∑

e−βU
!r( )

!r∈R
∑   (1.181) 

where 

 

 

δX !r( )−x

1 X !r( )− x = 0
0 X !r( )− x > 0

⎧
⎨
⎪

⎩⎪
  (1.182) 

An analogous probability density function can be written for another CV, Y(r). For 

each CV, we can calculate the free energy of the distribution conditional on a value of 

the CV as: 

 
 
A p !r X !r( ) = x( )⎡⎣ ⎤⎦ = − 1

β
log δX !r( )−xe

−βU !r( )
!r∈R
∑⎛⎝⎜

⎞
⎠⎟

  (1.183) 

Equation (1.183) can be rewritten as: 

 
 
A p !r X !r( ) = x( )⎡⎣ ⎤⎦ = − 1

β
log p x( )( ) +A p !r( )⎡⎣ ⎤⎦   (1.184) 

We can also write a joint probability mass function for the two CVs: 

 

 

p x,y( ) =
δX !r( )−xδY !r( )−ye

−βU !r( )
!r∈R
∑

e−βU
!r( )

!r∈R
∑   (1.185) 

And then an analogous free energy conditional on values of both CVs: 

 
 
A p !r X !r( ) = x,Y !r( ) = y( )⎡⎣ ⎤⎦ = − 1

β
log δX !r( )−xδY !r( )−ye

−βU !r( )
!r∈R
∑⎛⎝⎜

⎞
⎠⎟

  (1.186) 

or 

 
 
A p !r X !r( ) = x,Y !r( ) = y( )⎡⎣ ⎤⎦ = − 1

β
log p x,y( )( ) +A p !r( )⎡⎣ ⎤⎦   (1.187) 
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We would now like to see if it is possible to calculate an allosteric efficacy between 

transformations of these collective variables, given the equilibrium joint probability 

distribution is known. Therefore, we will calculate the allosteric efficacy for 

transformations in which the CVs are constrained to specific values: 

 

 

p !r( ) ΔA1⎯ →⎯← ⎯⎯ p !r X !r( ) = x( )
ΔA4⎯ →⎯⎯← ⎯⎯⎯

ΔΔA = ΔA2 − ΔA1

ΔΔA = ΔA3 − ΔA4

ΔA3⎯ →⎯⎯← ⎯⎯⎯

p !r Y !r( ) = y( ) ΔA2⎯ →⎯⎯← ⎯⎯⎯ p !r X !r( ) = x,Y !r( ) = y( )

  (1.188) 

We will refer to this class of thermodynamic cycles as “allosteric cycles”. The 

thermodynamic coupling in this cycle can be calculated as: 

 
 
ΔΔA x,y( ) = A p !r X !r( ) = x,Y !r( ) = y( )⎡⎣ ⎤⎦ −A p !r X !r( ) = x( )⎡⎣ ⎤⎦ −A p !r Y !r( ) = y( )⎡⎣ ⎤⎦ +A p !r( )⎡⎣ ⎤⎦  (1.189) 

Equation (1.189) simplifies to: 

 ΔΔA x,y( ) = − 1
β
log

p x,y( )
p x( )p y( )

⎛
⎝⎜

⎞
⎠⎟

  (1.190) 

Interestingly, ΔΔA in (1.190) is proportional to the pointwise mutual information 

(PMI).  

 PMI x,y( ) = log p x,y( )
p x( )p y( )

⎛
⎝⎜

⎞
⎠⎟

  (1.191) 

From the perspective of information theory, the PMI is quantifies the loss in 

information gained from measuring one variable given that one has already measured 

another variable, when the measurements are those specified. The measure is 

symmetric, i.e. the order of variables does not matter. In fact, the mutual information 

is the average PMI, weighted by the equilibrium probability mass function.  
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 I p x,y( )⎡⎣ ⎤⎦ = p x,y( )log p x,y( )
p x( )p y( )

⎛
⎝⎜

⎞
⎠⎟y∈Y

∑
x∈X
∑   (1.192) 

One can immediately see the weakness of using the mutual information between two 

CVs as a description of their allosteric coupling. Functionally significant perturbations 

to allosterically coupled collective variables are not required to drive the system 

towards a region of the collective variable phase space that is already high probability 

at equilibrium. In fact, perturbations such as ligands generally drive the system away 

from its unbound equilibrium (e.g. from the inactive state to the active state). Thus, the 

mutual information does not necessarily capture the allosteric couplings that determine 

the response to physiological or synthetic modulators of function. It is instead 

preferable to analyze the entire 2-dimensional coupling surface, which we call the 

“allosteric landscape”, as it contains information regarding the allosteric efficacy for 

all possible perturbations to the distribution of those CVs. 

4.2. Illustration on Alanine Dipeptide 

To illustrate the utility of this representation of allostery, we analyzed the allosteric 

landscape of alanine dipeptide. The alanine dipeptide free energy landscape is 

generally described by two CVs – the ϕ and ψ angles around the peptide bond – and is 

a popular model system for free energy methods. However, the irregular free energy 

surface indicates that these CVs are thermodynamically coupled in a non-trivial way. 

Thus, alanine dipeptide is an ideal model allosteric system.  

4.2.1. Methods 

The alanine dipeptide (N-Acetyl-Alanine-N'-Methyl amide, see Figure 48A) was 

modeled with the all-atom charmm36278 force field and solvated in explicit TIP3P 

water molecules. Molecular dynamics simulation were performed using the Charmm 
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port279 in the Gromacs 4.5 program280 with particle-mesh Ewald281 treatment of 

electrostatics and Lennard-Jones interactions switched off between 10Å and 12Å. 

The systems were maintained at temperature T=300K with Nosé-Hoover chain 

thermostats190. Enhanced sampling was achieved with the driven adiabatic free energy 

dynamics282,283 (dAFED), also known as temperature accelerated molecular 

dynamics284 (TAMD), implemented in the PLUMED plugin285. Two collective 

variables (CVs), defined as the backbone dihedral angles ϕ and ψ were coupled 

(harmonic constant 1000 kJ/mol/rad2) to heavy fictitious particles (pseudo-mass 50 

amu•nm2/rad2) held at temperature Ts=600K or Ts=1000K by generalized Gaussian 

Moment thermostats (order 2)286. After a standard equilibration phase, simulations 

were conducted in five independent replicates of 50ns each.  Free energy surfaces 

(FESs) in the (ϕ,ψ) plane were reconstructed287 using the reweighted histogram 

smoothed with multivariate Gaussian kernel regression in Matlab (release 2014b, The 

MathWorks, Inc., Natick, Massachusetts, United States). A cutoff of 50 kJ/mol was 

used for the FESs, above which sampling was too poor for reliable surface estimation.  

In principle, estimating an observable from a dAFED/TAMD simulation requires 

binning the observable values in the CV space, and reweighting each bin by a function 

of the FES at this point288. However, the allosteric coupling depends only on the 

density at 300K in the CV space, p(ϕ,ψ). This can be obtained directly from the 

density obtained from the dAFED/TAMD simulation, pobs(ϕ,ψ), by rescaling and re-

normalizing: 

 !p Φ ,Ψ( )∝ padb Φ ,Ψ( )⎡⎣ ⎤⎦

Ts
T   (1.193) 

Due to the surface smoothing steps, propagation of uncertainties is not practical to 

estimate confidence intervals on the allosteric landscape. Instead, we use the 
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bootstrapping approach. Specifically, because observations from MD time series are 

notoriously not independent, we use block bootstrapping289, i.e. we generate artificial 

samples by drawing at random (with replacement) segments of trajectory of 1 ns in 

length. We then compute local standard deviations on the allosteric landscape 

calculated from each of these samples.  

4.2.1. Results 

The free energy landscape was recovered using the histogram method is shown in 

Figure 48B. 
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Figure 48. The allosteric couplings in alanine dipeptide.  

(A) Alanine dipeptide, colored by atom type (carbon in cyan, hydrogen in white, 

nitrogen in blue, oxygen in red). (B) The ϕ,ψ free energy surface. (C) The allosteric 

landscape calculated from the thermodynamic coupling between ϕ,ψ for different 

perturbations of the equilibrium distribution. (D) The normalized allosteric landscape 

using AC. 
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We find significant allosteric couplings in the regions of the left-handed α-helix and 

the C7ax (see Figure 48C), indicating that if ϕ is driven to the 0° to 120° region, the 

transition of ψ to the 0° to 120° and -60° to -180° region becomes thermodynamically 

more favorable. While these regions are low probability, the allosteric coupling may 

account for the small populations of the left-handed α-helix and C7ax conformations 

that appear at equilibrium. We also see significant allosteric coupling in the disallowed 

regions, indicating that an energetically unfavorable interaction is involved in the high 

free energy. 

It should be noted that the allosteric landscape has a natural normalization. If the two 

CVs are maximally coupled, constraining one CV will fully constrain the other. Thus, 

at maximum coupling, 

 
 
A p !r X !r( ) = x( )⎡⎣ ⎤⎦ = A p !r Y !r( ) = y( )⎡⎣ ⎤⎦ = A p !r X !r( ) = x,Y !r( ) = y( )⎡⎣ ⎤⎦   (1.194) 

and thus 

 
 
ΔΔAmax x,y( ) = A p !r( )⎡⎣ ⎤⎦ −A p !r X !r( ) = x,Y !r( ) = y( )⎡⎣ ⎤⎦   (1.195) 

We can then normalize (1.190) to this upper bound to find the normalized allosteric 

coupling, AC: 

 
 

−ΔΔA x,y( )
A p !r X !r( ) = x,Y !r( ) = y( )⎡⎣ ⎤⎦ −A p !r( )⎡⎣ ⎤⎦

=
log p x( )p x( )( )
log p x,y( )( ) −1= AC x,y( )   (1.196) 

The AC ranges from 1 to -1 and matches the convention of commonly used positive 

and negative allostery; positive values indicate that constraining one variable reduces 

the free energy required to constrain the other, whereas negative values indicates that 

constraining one variables increases the free energy required to constrain the other. In 
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essence, the AC describes what fraction of potential positive or negative allostery is 

contributing to the free energy of the joint state. In the AC landscape of alanine 

dipeptide (see Figure 48D), both the left-handed α-helix and C7ax regions have ACs of 

around 0.5, indicating a substantial amount of their stability is due to allostery. 

Similarly, the regions sampled around the highly unfavorable mid-ϕ region indicate 

ACs around -0.5, indicating that a substantial amount of the instability is due to 

allostery. 

4.3. Conclusions 

We have derived the generalized form of the allosteric coupling between continuous 

and discrete collective variables. We find that it is related to the pointwise mutual 

information, and is best represented in the form of an allosteric landscape to 

demonstrate the allosteric response to all possible perturbations of the CVs. Our 

calculation of the allosteric landscape of alanine dipeptide reveals positive allosteric 

coupling between the ϕ and ψ angles, which appear to stabilize the left-handed α-helix 

and C7ax conformations, and negative allosteric coupling due to steric clashes, which 

defines the unpopulated regions of CV space. This method is applicable to larger 

systems, and should be a strong tool in understanding allosteric molecular mechanisms 

and identifying novel allosteric sites for the modulation of functionally important CVs 

and reaction coordinates. 
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5. Concluding Remarks 

Allostery is a ubiquitous biophysical phenomenon that plays a crucial role in many 

cellular processes. Despite this ubiquity, the study of allostery has primarily been 

phenomenological in nature and limited to the quantification of specific observations 

of allosteric behavior rather than the construction of the detailed molecular 

mechanisms that give rise to those observations. In this dissertation, several theoretical 

models and computational methods have been presented that were constructed with 

the goal of creating the framework required for the study of allostery to move from an 

observational science to a mechanistic science. 

An essential component of the dissertation is the rigorous definition of the relationship 

between allostery and information theory. Information theory has been invoked to 

describe allostery, and cellular signaling in general, mostly due to the intuition that 

human communication systems and cellular signaling systems are likely to share 

essential features. However, it is important to recognize that prior to the use of 

information theory as a framework for allostery, simple covariance and correlation 

was the dominant language of allostery. The choice of the framework used to describe 

allostery has historically been pragmatic and empirical, not theory-driven. By seeking 

to bridge the relationship between mutual information and allosteric efficacy, it has 

become clear that while allostery can be described in the language of information 

theory, the intuitive information theoretical measure, mutual information, is actually 

misleading. By deriving the allosteric efficacy for coupled perturbations away from 

equilibrium, we find that the mutual information is actually the average allosteric 

efficacy over all perturbations. This ensemble average can be misleading, as functional 

perturbations, such as the binding of a ligand, generally push the system away from 

the unbound equilibrium, towards regions of conformational space that are low 
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probability and thus have little contribution to the mutual information prior to 

perturbation. This finding indicates that the NbIT method, which was built based on 

the intuition that a fundamental relationship existed between allostery and mutual 

information, must be recast into the language of coupled perturbations to the 3-

dimensional free energy landscape.  

In addition, analytical approaches similar to the Allosteric Ising Models must be 

constructed based on the analytical form of the allosteric efficacy for discrete and 

continuous distributions described here. While the two-state models described here are 

useful in providing a qualitative conceptual basis for more complex systems, it should 

be possible to relax the current assumptions and approximations in order to make the 

models more directly applicable to real, allosteric protein systems.  

The illustrations of the methodology and models to two essential membrane protein 

systems, transporters and receptors, revealed that allostery plays an essential role in 

much of the complex, previously unexplained ligand-specific behavior that has been 

documented over the last decade. By identifying specific residues that play crucial 

roles in ligand-specific allostery, it becomes clear overly generalized descriptions of 

the functional architecture of proteins, such as the “binding site”, the “allosteric site”, 

or the “channel”, must be replaced with a more detailed description of the structural 

components that compose these proteins and a physical model describing their 

thermodynamic couplings. A ligand or substrate does not simply bind to a binding 

site; it engages multiple partners whom may have thermodynamic couplings to other 

structural components distant within the protein. In the case of LeuT, differential 

engagement with a single residue can have substantial effects on the transporter’s rate 

of transport for a substrate. Additionally, a differential engagement within a small 

fraction of the ligand binding site in 5-HT2AR can initiate a downstream signaling 
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cascade resulting in the remarkable hallucinogenic phenotype. Functional differences 

of these magnitudes, initiated by structural differences that are often regarded as 

minor, demonstrate the importance of building a more complete understanding of the 

implicit allosteric properties of these proteins. 

Finally, most of the analysis present in this dissertation was performed using 

ensembles generated from MD. However, the analysis is not in anyway specific to a 

method of ensemble estimation. As experimental techniques such as smFRET, EPR, 

and cryoEM expand our ability to estimate multi-dimensional ensemble, it will be of 

great importance to be able to identify allosteric couplings directly from the 

experimental data. By combining experimentally derived ensembles with physics-

based models of allostery, it will be possible to truly the mechanism underlying 

protein function at the molecular level. 
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