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The appearance of a particular fabric is produced by variations in both large-scale

reflectance and small-scale texture as the viewing and illumination angles change

across the surface. This thesis presents a study of the reflectance and texture of

woven cloth that aims to identify and model the most important optical features of

cloth appearance. New measurements are reported for a range of fabrics including

natural and synthetic fibers as well as staple and filament yarns. A new scattering

model for woven cloth is introduced that describes the reflectance and the texture

based on an analysis of specular reflection from the fibers. Unlike data-based

models, our procedural model requires no image data. It can handle a wide range

of fabrics using a small set of physically meaningful parameters that describe the

characteristics of the fibers, the geometry of the yarns, and the pattern of the

weave. The model is validated against the measurements and by comparisons to

high-resolution video of the real fabrics.
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Chapter 1

Introduction
Cloth is an important material to render convincingly because it appears regularly

in computer graphics scenes, especially those involving virtual humans in everyday

environments. Fabric appearance is also important in applications of computer

graphics in the textile, garment, and fabric care industries. Our goal is to develop

a simple, easy-to-use procedural model for the appearance of cloth that efficiently

captures the important features of its appearance based on physically meaningful

parameters.

In scenes rendered for computer graphics, two aspects of cloth appearance are

important to capture in an appearance model. The directional reflectance, which

describes the total light reflected from a large (at least several millimeters across)

area of fabric, determines the overall shading. At the same time, the texture of the

weave pattern is visible in more close-up views. Each weave has its own distinctive

texture that is an important part of its appearance.

We assume that a general-purpose cloth model needs to be realistic at image

resolutions up to a few pixels per yarn, when yarns are resolved but not individual

fibers. Resolutions higher than this are in the realm of macrophotography and need

to be rendered using a complete model of the cloth’s three-dimensional structure.

This work makes two contributions: a set of measurements and a model to

fit them. We present new, detailed measurements of the anisotropic bidirectional

reflectance distribution function (BRDF) of six fabrics representing four textile

fibers and the three most common weave patterns, as well as texture measurements

for some of the fabrics. To study the appearance of the fabrics in context, we also

1
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took high-resolution video of the fabrics in a draped configuration under controlled

conditions.

Our second contribution is a new reflection model for woven fabrics. The model

is based on an analysis of specular scattering from fibers that are spun into yarns

and then woven into fabric based on a given weaving pattern. Its parameters are

all physically meaningful, describing the scattering properties of the fibers and

the geometry of the yarns and weave. The model predicts both BRDF and, by

a simple mapping of specular highlights onto the cloth surface, the texture of

specular highlights. It defines a spatially varying BRDF that fits into standard

realistic rendering systems and can be integrated over incident light using standard

methods.

Our model, then, is a physics-based model. In contrast, it is popular to render

cloth using data-based approaches, such as bidirectional texture functions (BTFs).

While physics-based models are derived from analysis of first principles, data-based

models gather the reflection data by taking many pictures of the material to be

modeled, store those data in a database, and query the database for the appropriate

reflection data at render time. We shall compare the two distinct approaches in

Chapter 3.

We validate our model against our measurements and find that it predicts

the most important features both of the directional reflectance distribution and

of the evolution of texture with viewing and illumination angle. Because all the

directional variation in the model is due to specular reflection, an implication of

this work is that specular reflection plays a more important role in the appearance

of even quite matte fabrics than previously appreciated.



Chapter 2

Background

2.1 Cloth

Cloth is an indispensable material in life, with applications ranging from clothing

to industrial uses. For some applications, the quality of cloth is judged on its ap-

pearance; for others, it is based on its durability, strength, and thermal resistance.

These myriad forms of cloth arise from the variety of textile fibers and production

methods used in the creation of the fabric. Because of their importance, in this

section we will briefly describe the different fibers and manufacturing processes

used in the production of cloth. Further information on cloth can be found in [24].

2.1.1 Textile fibers

Fibers used in cloth production can be classified into four broad categories based

on their origin: animal, plant, mineral, and synthetic.

Animal fibers mostly come from hair or fur. Wool is the fiber derived from the

hair of domestic sheep. Wool fabrics are thicker than other fabrics and used in

clothing, carpet, felt, insulation, and upholstery. Cashmere wool (also known as

pashmina) is derived from the hair of Cashmere goats and known for its incredibly

soft fibers. Cashmere fabrics are prized as light-weight insulators without bulk

and are fashioned into hats, socks, scarves, sweaters, and winter coats. Mohair is

derived from the hair of Angora goats. In addition to durability and insulating

properties, mohair is also known for its luster and sheen and used in socks, scarves,

sweaters, coats, suits, and carpet, among others. Hair from alpaca, Angora rabbit,

3
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camel, llama, and vicuña is also harvested and used in a variety of clothing. Unlike

wool, silk is derived from the cocoons of Chinese silkworm larvae. Silk is mainly

known for its high luster, resulting from its triangular cross section [6, 26]. Silk

fabrics are commonly used in clothing and furnishing.

Cotton fibers are strong, durable, and highly absorbent fibers harvested from

cotton plants. Cotton has many uses and is the most widely used natural-fiber in

clothing as well as “the single most important textile fiber in the world, accounting

for nearly 40 percent of total world fiber production” [41]. Flax fibers come from

the bast or skin of the stem of flax plant. Yarns and fabrics made from flax fibers

are called linen. Linen fabrics are lustrous, strong, durable, stiff, often come with

characteristic knots along the length of the yarns, and are used as furnishings,

summer clothing, and canvasses. Other plant-based fibers include: coir, hemp,

jute, piña, ramie, and sisal.

Mineral fibers, such as asbestos, basalt fiber, glass fiber, and metal fiber, are

used mainly to manufacture technical textiles for non aesthetic purposes. These

include insulators, spacesuits, cables, reinforcement fibers, and construction mate-

rials.

Unlike mineral fibers, synthetic fibers are mainly used in the production of

clothing. Polyester is one of the most commonly used synthetic fibers in the world.

Because of its wrinkle resistance, it is often used in clothing and furnishing in

place of or with cotton. Nylon has the ability to vary its luster and was made as a

synthetic replacement for silk. Nylon fibers are used in the production of women’s

stockings, carpets, guitar strings, and auto parts. Acrylic fibers are similar in

appearance and feeling to wool and often used to imitate the more expensive cash-

mere. Other synthetic fibers include: aramid, Ingeo, Lurex, olefin, and spandex.
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Fibers can also be classified into two types: staple fibers and filament fibers.

Staple fibers—such as cotton and wool—are relatively short. To make staple yarns,

staple fibers are twisted around one another so that they hold together by fric-

tion [49]. Because of this twisted structure, the fibers on the surface of a fabric

made from staple yarns appear in a diagonal arrangement, usually with alternating

directions for exposed parts of the warp and weft. We use the term “staple” to

refer to twisted staple yarn.

In contrast, filament fibers—such as silk and many synthetic fibers—are very

long. As the result, filament yarns do not need to be twisted together in order to

hold together. In this case the fibers lie parallel to the overall axis of the yarn. We

use the term “filament” to refer to untwisted filament yarn.

2.1.2 Production methods

Several methods exist to transform a collection of fibers into a piece of cloth, among

them: weaving, knitting, and bonding. Weaving is the process of interlacing two

sets of parallel yarns, known as the warp and weft, at right angles to each other

to form a piece of cloth. Knitting and crocheting involve pulling loops of yarn

(called stitches) through other loops of yarn for form a piece of cloth. Bonding

is the process of joining fibers together through the use of an adhesive agent (for

example, applying heat or chemical binders) to form a piece of cloth.

Each of these methods produces cloth with different characteristics. Weaving is

the most common cloth production method and woven cloth makes up the majority

of commercial fabrics. Depending on the textile fiber and weave pattern used,

woven cloth can have very different appearances, from the matte denim found

in blue jeans to the shiny silk charmeuse. Knitwear tends to be bulkier (with
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the exception of those made from very fine fibers such as cashmere) with very

distinctive texture. Because of the arrangement of yarns, knitwear is also more

elastic than woven cloth. Felt—cloth made from bonding processes—is tough and

matte in appearance and often used to manufacture rugs and tents.

In this work, we confine our attention to the largest and most diverse class of

cloth: woven cloth. We shall briefly look at the structure of woven cloth in more

details in the next section.

2.2 Structure of Woven Cloth

As stated earlier, woven cloth is constructed by interlacing two sets of parallel

yarns, known as the warp and weft, at right angles to each other. In the process of

weaving, warp yarns are raised or lowered and weft yarns (also known as fillings)

are inserted in the space that resulted. Figure 2.1 shows a loom with the warp

yarns before the weft yarns are inserted. The pattern in which the warp and weft

are interleaved varies greatly, but the majority of fabrics are made in one of the

three simplest weave patterns: plain weave, twill, and satin [34]. Some examples

of commonly found woven fabrics can be seen in Table 2.1. The weave patterns of

the some of these fabrics can be seen in Figure 5.1.

Weaving creates a complex, regular geometry that can be considered, for pur-

poses of appearance, to consist of a repeating pattern of visible segments of yarn.

A warp yarn segment begins where the yarn emerges from behind one weft yarn,

and continues until it next passes below another weft yarn (and similarly for weft

segments). Inter-yarn forces make segments bend into curved shapes, convex to-

ward the visible side. The degree of curvature is important to the appearance,

and it depends on the stiffness of the yarn, the length of the segment, and the



7

Figure 2.1: Loom with the warp yarns before the weft yarns are inserted.
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Table 2.1: Examples of commonly found woven fabrics.

Woven fabric Fiber Type Weave pattern

Batiste cotton, wool, polyester staple plain weave

Broadcloth wool staple plain weave, twill weave

Canvas cotton staple plain weave

Chambray cotton staple plain weave

Charmeuse silk, polyester filament satin weave

Chiffon silk filament plain weave

Chino cotton staple twill weave

Denim cotton staple twill weave

Duck cotton staple plain weave

Gabardine wool staple twill weave

Gingham cotton staple plain weave

Muslin cotton staple plain weave

Organdy cotton staple plain weave

Organza silk filament plain weave

Oxford cotton staple plain weave

Poplin cotton staple plain weave

Sateen cotton staple satin weave

Satin silk, nylon, polyester filament satin weave

Serge wool staple twill weave

Shantung silk filament plain weave

Taffeta silk filament plain weave

Tweed wool staple plain weave, twill weave

Twill cotton, wool staple twill weave
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tension in the yarn and in the other yarns it interacts with. For instance, satin

and twill weaves include long warp segments that will tend to lie flat and exhibit

lower curvature than the shorter weft segments. A plain weave fabric may have

similar yarn properties and tension in the warp and weft, leading to warp and weft

segments with similar shape (e. g., the polyester fabric we measured); or it may

be made with dissimilar yarns and/or tension, causing dissimilar segment shapes

(e. g., the silk shantung fabric).

2.3 Mathematical Preliminaries

Here we present notational convention and mathematical results in common use

in later chapters.

In this work, vectors in a vector space Rn are denoted v = (v1,v2, . . . ,vn)T .

Vectors in R3 are also denoted v = (vx,vy,vz)
T for convenience.

2.3.1 Rotation matrices

Let Rx(θ), Ry(θ), and Rz(θ) be the three matrices that rotates a vector by a

counterclockwise angle θ about the x-, y-, and z-axes, respectively [48].

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ



Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


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Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


2.3.2 Trigonometric identities

In this subsection we list trigonometric identities that are used in later chapters.

The first one is the simple inverse tangent identity:

arctan(b, a) = arctan(−a, b) +
π

2
(2.1)

where −π < arctan(y, x) ≤ π is the usual generalization of −π/2 < arctan(y/x) <

π/2. In many programming languages, this function is atan2(y,x).

For any a and b, the following is true.

√
a2 + b2 cos(x− arctan(b, a))

=
√
a2 + b2(cosx cos(arctan(b, a)) + sin x sin(arctan(b, a)))

=
√
a2 + b2

(
cosx a√

a2+b2
+ sinx b√

a2+b2

)
= a cosx+ b sinx

(2.2)

2.3.3 Conic sections

Ellipse

The formulae referenced in this subsection are standard formulae for ellipses; they

and further information on ellipses can be found in [47]. Parametric equations for

an ellipse are as follows.

x = â cos t

y = b̂ sin t
(2.3)

where â and b̂ are the semimajor axis and semiminor axis of the ellipse, respectively.
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The tangential angle u(t) of the ellipse is given by

u(t) = arctan

(
â

b̂
tan t

)
and therefore

t(u) = arctan

(
b̂

â
tanu

)
(2.4)

The radius of curvature R(t) of the ellipse is given by

R(t) =
(b̂2 cos2 t+ â2 sin2 t)1.5

âb̂
(2.5)

Parabola

The formulae referenced in this subsection are standard formulae for parabolas;

they and further information on parabolas can be found in [44]. Parametric equa-

tions for a parabola are as follows.

x = −b̂t2

y = 2b̂t
(2.6)

where b̂ is the distance from the vertex to the directrix or focus.

The tangential angle u(t) of the parabola is given by

u(t) = arctan t

and therefore

t(u) = tanu (2.7)

The radius of curvature R(t) of the parabola is given by

R(t) = 2b̂(1 + t2)1.5 (2.8)
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Hyperbola

The formulae referenced in this subsection are standard formulae for hyperbolas;

they and further information on hyperbolas can be found in [43]. Parametric

equations for a hyperbola are as follows.

x = â cosh t

y = b̂ sinh t
(2.9)

where â and b̂ are the semimajor axis and semiminor axis of the hyperbola, respec-

tively.

The tangential angle u(t) of the hyperbola is given by

u(t) = − arctan

(
â

b̂
tanh t

)
and therefore

t(u) = − tanh−1

(
b̂

â
tanu

)
(2.10)

The radius of curvature R(t) of the hyperbola is given by

R(t) = −(b̂2 cosh2 t+ â2 sinh2 t)1.5

âb̂
(2.11)

2.3.4 Dot and cross products

Let u and v be vectors in R3. The dot product of u and v can be defined as

follows:

u · v = |u||v| cos θ, (2.12)

where |u| and |v| are the norms of u and v respectively and θ is the angle between

the vectors. More information on the dot product can be found in [46].

The cross product of u and v can be defined as follows:

u× v = x̂(uyvz − uzvy)− ŷ(uxvz − uzvx) + ẑ(uxvy − uyvx), (2.13)
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where (x̂, ŷ, ẑ) is a right-handed orthonormal basis. More information on the cross

product can be found in [45].

The vector triple product identity (also known as the Lagrange’s formula or

the BAC-CAB identity) [23] relates dot products and cross products of vectors in

R3.

a× (b× c) = b(a · c)− c(a · b) (2.14)

2.3.5 Gauss map and Gauss sphere

The Gauss map is a function N : M → S2 that maps an oriented surface M in

Euclidean space R3 to the unit sphere S2 in R3. The map associates every point

on M to its oriented unit normal vector in S2 . Further information on Gauss map

can be found in [18].

The Gauss sphere is related to the Gauss map. In a Gauss sphere, unit vectors

in R3—not limited to normal vectors of points on a surface—are mapped to a unit

sphere S2 in R3. Gauss sphere is a convenient construct that allows us to visualize

the interactions of the various vectors that make up our models; the Gauss spheres

are used in Chapters 6 (see Figures 6.3, 6.4, 6.5, and 6.6) and 7 (see Figures 7.3,

7.4, 7.5, and 7.7).

2.3.6 Matrix calculus

The material in this subsection was adapted from [14]. A slightly different approach

to matrix calculus is explored in [8].

Let x and y be scalars and let x = (x1,x2, . . . ,xn)T and y = (y1,y2, . . . ,ym)T

be vectors.
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The derivative of y with respect to x is the n×m matrix

∂y

∂x
,



∂y1

∂x1

∂y2

∂x1
. . . ∂ym

∂x1

∂y1

∂x2

∂y2

∂x2
. . . ∂ym

∂x2

...
...

. . .
...

∂y1

∂xn

∂y2

∂xn
. . . ∂ym

∂xn


(2.15)

The derivative of y with respect to x is the vector

∂y

∂x
,



∂y
∂x1

∂y
∂x2

...

∂y
∂xn


(2.16)

The derivative of y with respect to x is the row vector

∂y

∂x
,

[
∂y1

∂x
∂y2

∂x
. . . ∂ym

∂x

]
(2.17)

As a corollary,

∂
∂x
|x| = ∂

∂x

√
x2

1 + · · ·+ x2
n

= 1
2
(x2

x + x2
y + x2

z)
− 1

2 [2x1 . . . 2xn]

= xT

|x|



Chapter 3

Prior Work
While most of the work on modeling cloth for computer graphics has focused on

motion rather than appearance, several researchers have addressed the problem of

rendering cloth.

3.1 BRDF and BTF

The fundamental descriptions of appearance used for rendering cloth are the bidi-

rectional reflectance distribution function (BDRF) and the bidirectional texture

function (BTF). The BRDF fr(ωi, ωr) is the ratio of radiance exiting a surface in

the exitant direction ωr to the irradiance arriving on the surface from an infinites-

imal solid angle about the incident direction ωi [33, 12]. The BRDF is symmetric

with respect to exchanging its arguments; that is, fr(ωi, ωr) = fr(ωr, ωi). The

BTF is a similar description but for texture: it gives the texture that appears in

an image of a surface as a function of the incident and reflection directions [7].

Since BRDF is a function of four variables, BTF is a function of six variables—the

additional two specify the texture coordinate.

3.2 Measurements and Studies of Cloth BRDF

In the textile research community, luster was defined as a function of the ratio

between specular reflection and diffuse reflection [22]. Buck and McCord provide

some of the earliest quantitative measurements of luster of textiles [4]. Among

their findings are: fabrics made of filament fibers exhibit the greatest luster, yarn

15
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twist tends to reduce luster, and knitted fabrics exhibit less luster than woven

fabrics.

Tao and Sirikasemlert measured specular reflection from single-jersey knitted

fabrics made from monofilament yarns and developed a theoretical model of the

reflection based on three parameters: fiber refractive index, yarn cross-sectional

shape, and incident light angle [40]. The model was later expanded to knitted

fabrics made from twistless multifilament yarns [39]. Both models were developed

to match goniophotometric measurements and no texture analysis or rendering

was done.

In the computer vision community there is work involving reflection from fibers

and woven materials. Lu et al. [27] presented a measurement and study of velvet

BRDF. They discovered that velvet cloth has a matte and diffuse reflectance with

specular reflectance near grazing angles and retroreflection. The same team [28]

later presented an analysis of the shape of specular highlights on fiber-covered

surfaces based on geometric considerations similar to those we used to derive our

model.

Ngan et al. [32] measured velvet and two satin fabrics and fit analytical BRDF

models to the measurements. They observed that the BRDFs of velvet and satin

“far exceed the expressive power of simple analytical models” and approximated

the cloth BRDF using a microfacet-based BRDF generator [3] with a tabulated

microfacet distribution based on the measurements. This, however, requires high

resolution measurements of the cloth being modeled.

Pont and Koenderink [36] presented a qualitative analysis of reflection from

woven structures, emphasizing the double-peak effect that is observed in some

woven structures (including the polyester cloth measured in the present paper).
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That work, unlike ours, did not aim to present a complete BRDF model or to

predict texture.

3.3 Modeling Cloth BRDF

Cloth often appears as an example of an unusual BRDF. Westin et al. [50] com-

puted BRDFs for velvet and nylon by ray tracing models of the microstructure.

In that work velvet was modeled as a collection of thin cylinders with randomly

perturbed orientation. Yarns in the nylon cloth were modeled as flat cylinders and

were interwoven according to the standard plain weave pattern.

Similarly, Volevich et al. [42] ray traced a plane of interwoven yarns to study

scattering from a piece of artificial silk. Unlike Westin et al. [50], in that work the

yarns were modeled as bundles of textile fibers, which in turn were modeled as very

long and thin cylinders parallel to one another. These, therefore, were attempts

to understand the appearance of woven (filament) cloth by explicitly modeling the

structure of the cloth.

In their work on efficient rendering of spatial bidirectional reflectance distri-

bution functions (SBRDF), McAllister et al. [30] measured anisotropic upholstery

fabric and represented each texel using two Lafortune BRDF lobes.

Ashikhmin et al. [3] dispensed with explicit models and used a combination

of two cylindrical Gaussian slope distributions to model satin as an example of

their microfacet-based BRDF generator. Velvet was another example of their

microfacet-based BRDF generator and it was modeled using an “inverse Gaus-

sian” heightfield.

Yasuda et al. [52] presented a microfacet-based model that is compared to

incidence-plane reflection measurements.
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3.4 Modeling Cloth Texture

Other works have focused on the structure and texture of fabric. Adabala et al. [1]

presented a method based on a microfacet model and procedural textures that

is capable of rendering cloth with a variety of weave patterns at different levels

of detail. Without data to support the model, however, it is hard to judge its

correctness. Furthermore, while the model is procedural, its parameters are not

physically meaningful and, as the result, fabric’s appearance is not connected to its

structure. Our understanding of the structure of woven cloth allows our model to

produce and explain phenomena such as the double-peak effect described earlier.

Glassner, in a series of three articles [15, 16, 17], presented a way to compactly

describe weave patterns and showed a digital loom to experiment with the rich

and interesting patterns found in woven cloth.

Drago and Chiba [11] modeled woven painting canvases with spline surfaces

shaded by a procedural texture.

Xu et al. [51] used a volume rendering approach called lumislice rendering

to produce realistic close-ups of coarse knit fabrics. Their approach is related

to our work because both consider a yarn as made up of helical fibers and take

a volumetric approach to calculating the scattered light. The goals are different,

however: our aim is an analytical model that works when yarns are barely resolved,

whereas the lumislice was designed for closeups in which yarns are well resolved and

fibers are prominent. Also, we focus on specular, rather than diffuse, reflection.

This approach to modeling the texture of knitwear—modeling the mesostructure

of the knitwear and using volumetric techniques to model the self-shadowing due

to the thicker yarns used in knitted fabrics—are used in many other works [19, 20,

31, 9, 10, 5].
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3.5 Data-based Approaches to Cloth Modeling

Because of its unusual BRDF and texture, simple analytical models often fail to

represent cloth appearance well. One class of approach in cloth modeling abandons

analytical models in favor of data-based ones. Data-based models such as [9]

and [37] start by taking many pictures of the cloth to be modeled and store the

images as compressed bidirectional texture function (BTF) [7] data in a database.

At render time, the appropriate BTF data are then retrieved from the database.

By their nature, data-based models require large storage space and are able to

model only the specific fabrics that have been captured and stored in the database.

Although current research is beginning to address the problems of editing BTFs [25,

35], measurements of very similar materials will continue to be required, and the

BTFs still cannot be controlled by parameters describing the structure of the

fabrics. Given BTF data for a particular cloth, however, data-based models can

reproduce that particular fabric very well. Data-based models, therefore, are well

suited to situations where analytical models of the material to be modeled aren’t

available. We aim to extend the range of analytical models by making one for

woven cloth available.

Because our model was built from first principles and is analytical in nature, it

doesn’t require any data at render time. Measurements of cloth BRDF and texture

discussed in this work were used only for study and verification of our model; the

model itself does not require any data.



Chapter 4

Overview of the Model
The idea behind our model is as follows: yarn segments are modeled as curved

cylinders (Figure 4.1) made of spiralling fibers that reflect light specularly. As we

will see later, specular reflection from the fibers forms a curved specular highlight

on the surface of the segment. To get the total contribution to the BRDF from

specular reflection, we can either integrate the reflection along the yarn segment

(u direction) or around the yarn segment (v direction). Thus our BRDF model

has two equations depending on how we choose to integrate the reflection.

The amount of light that is reflected at one point on the specular reflection

curve is GufcA or GvfcA (depending on how we choose to integrate the reflection),

which consists of the following terms:

1. The geometry factor Gu or Gv. This is determined by the geometry of the

yarn segment (including radius of curvature, size of the yarn segment, and

change in specular reflection with change in illumination direction) and is

discussed in Section 7.4.

2. The phase function fc. This function describes the local behavior of the

fibers, and it should be chosen according to the actual behavior of the fibers

being modeled. In this work we use a phase function that is the sum of a

constant and a forward-directed lobe detailed in Section 7.5.

3. The attenuation function A. This function describes the attenuation of light

by other fibers on the way into and out of the yarn; it depends on the

characteristics of the fibers as well as their microscopic arrangement. In

20
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u

v

specular curve

Figure 4.1: A yarn segment with a specular reflection curve.

this work we choose to use Seeliger’s law as our attenuation function; this is

described in Section 7.6.

Our model has two distinct incarnations: the reflectance model and the texture

model. The reflectance model fr(ωi, ωr) is used when only the BRDF of the cloth

is important (for example, in distant views of a large piece of cloth). The texture

model T (x, y, ωi, ωr), as the name implies, is used when the texture of the cloth

is also important. Both models were built on top of the same set of assumptions

and have the same average BRDF, which allows seamless switching between the

two. (ωi is incident direction, ωr is exitant direction, and (x, y) is a point on the

surface of the cloth.)

Our reflectance model consists of two functions:

fr,s(ωi, ωr) =

∫ umax

−umax

GvfcAdu or fr,s(ωi, ωr) =

∫ 2π

0

GufcAdv

Similarly, our texture model consists of two functions:

T (x, y, ωi, ωr) ∝ χGufcA
1

∆x
or T (x, y, ωi, ωr) ∝ χGvfcA

1

∆y

The function χ equals 1 if the point (x, y) lands in the band of width ∆x or ∆y

centered on the specular curve and 0 otherwise (see Figure 8.1). We shall elaborate

on both models in Chapter 8.



Chapter 5

Measurements
We made three types of measurements: reflectance (BRDF) measurements, close-

up texture (BTF) measurements, and turntable videos. The BTF measurements

were made to understand the behavior of the highlights; in this work we use them

primarily for illustrative purposes. The BRDF measurements and turntable videos

are used to validate our reflectance and texture model.

The fabrics we measured were:

1. Black cotton fabric in a 3–1 twill weave.

2. Denim, a cotton fabric with blue weft and white warp in a 2–1 twill weave.

3. Red gabardine, a wool fabric in a 2–1 twill weave.

4. Red polyester lining cloth with filament yarns in a very symmetric plain

weave.

5. Red charmeuse, a filament silk fabric in a satin weave.

6. Red shantung, a filament silk fabric with red weft yarns and much finer dark

gray warp yarns in a plain weave.

The weave patterns of the fabrics we measured can be seen in Figure 5.1. In this

work, we follow the convention that the warp yarns run vertically in the figures.

5.1 Reflectance

To measure the BRDFs of our materials, we illuminated them with a light source

of small solid angle (a DC regulated fiber-optic illuminator) and measured the

22
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cotton twill cotton denim wool gabardine polyester lining cloth silk charmeuse silk shantung

Figure 5.1: Weave patterns of our sample fabrics.

reflected radiance by photographing them with a scientific CCD camera (QImaging

Retiga 1300i, with frame-sequential RGB filter). The positions of the source and

camera were controlled by a four-axis spherical goniometer (see Figure 5.2). The

linearity of the camera and stability of the source have been verified.

From the resulting images we computed the average of a small rectangle posi-

tioned at the center of rotation of the camera and source motion. The position in

the image and with respect to the source were constant, eliminating the need for

flat field calibration of the source or the camera, and the measured area was small

enough to avoid significant variation in light source distance or incident angle over

the measured area. The values were corrected for the cosine of the incident angle

and normalized to a single measurement (per color channel) of a BRDF standard

(Spectralon).

We measured datasets consisting of 225 incident directions for each of seven ex-

itant directions. The incident directions are on a grid—generated using a matlab

implementation of the concentric map described in [38]—covering the hemisphere

out to approximately 75 degrees, and the viewing directions coarsely cover the

hemisphere (with the assumption of 180◦ rotational symmetry) out to 60 degrees—

in (elevation angle, azimuth angle) pairs: (0◦, 0◦), (30◦, 0◦), (30◦, 90◦), (60◦, 0◦),

(60◦, 45◦), (60◦, 90◦), and (60◦, 135◦).

The BRDF measurements can be seen in Figure 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8.
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Figure 5.2: Four-axis spherical goniometer.
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Figure 5.3: BRDF of cotton twill.
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Figure 5.4: BRDF of cotton denim.
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Figure 5.5: BRDF of wool gabardine.
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Figure 5.6: BRDF of polyester lining cloth.
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Figure 5.7: BRDF of silk charmeuse.
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Figure 5.8: BRDF of silk shantung.
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Each incident hemisphere is plotted in projection onto the tangent plane, with the

warp direction vertical, and the hemispheres are arranged to indicate the exitant

direction, which may also be seen by the shadow of the light source in the data. In

the plots there is an obvious difference between filament yarns, which produce a

pair of fairly classic anisotropic linear highlights (one from the warp yarns and one

from the weft), and staple yarns, which produce still quite directional patterns but

not distinct linear highlights. The BRDFs of staple fabrics are also asymmetric,

even when the view direction is aligned with the warp or weft, because of the twist

in the yarns. Also note that only the polyester is well balanced in the contribution

of warp and weft; the others are all warp-dominated except shantung, which is

heavily weft-dominated.

The plain weave filament fabrics both exhibit bright edges on the specular

highlight, which are most noticeable on the polyester but also present on the

warp component of shantung. This phenomenon has been explained by Pont and

Koenderink [36] as an effect of varying curvature of the yarns, with lower curvature

towards the ends of the visible segment, and has also been observed by others [32].

Most of the materials exhibit some retroreflection; and in particular the polyester

shows a very sharp retroreflective peak that runs across the highlight (it is most

noticeable in the 30◦ data). We believe that this is a result of interreflections

between fibers of circular cross-section, but the phenomenon requires further study.

5.2 Texture

The second set of measurements was made using the same setup but with the

camera attached rigidly to the platform on which the cloth rests and equipped with

a macro lens at a magnification that enabled the yarns to be clearly discerned.
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Figure 5.9: Raw texture measurement of black cotton twill.

Figure 5.10: Averaged texture measurement of black cotton twill.
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A representative frame from the measurements of a piece of black cotton twill

cloth is shown in Figure 5.9. In the photographs, the overall pattern is difficult to

discern because of the natural irregularities of the yarns. To remove this random

variation and make the systematic pattern more visible, we computed a regularly

tiled pattern by averaging all the unit tiles in the measured image. The averaged

image of the same piece of black cotton twill cloth under the same condition is

shown in Figure 5.10.

Figures 5.11 and 5.12 show the texture of black and white cotton twill under

various illumination directions. A particularly interesting feature of this measure-

ment is the similarity of texture between low and high reflectance fabrics. One

might expect to see a similar specular component with a much larger diffuse com-

ponent for white; in fact, the specular peaks in white are between 9 and 25 times

brighter than those in black. This suggests that the light contributing to the spec-

ular highlights is not simply due to surface reflection (which should be unaffected

by dyeing the fibers) but also includes substantial multiple scattering from well-

aligned fibers, which, as has been observed in other materials [29], continues to

obey specular reflection geometry.

The similarity of these two textures suggests that specular reflection (including

specular multiple scattering) is the main contributor to the texture of cloth. This is

contrary to the commonly accepted notion that textures on matte-looking fabrics

result primarily from diffuse reflection and shadowing–masking.

5.3 Turntable Sequences

To test our model in a more realistic context, we recorded high-resolution video of

the same fabrics that were measured for BRDF under controlled conditions that
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Figure 5.11: Texture of black cotton twill under various illumination directions.

The images are arranged in four half-circles, each represents the elevation angle of

the illumination direction (30◦, 45◦, 60◦, and 75◦).

Figure 5.12: Texture of white cotton twill under various illumination directions.

The images are arranged as in Figure 5.11.
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allowed for comparison to renderings. To isolate the optical behavior from the

confounding differences in appearance due to draping characteristics, we built a

rigid form by coating draped black canvas with epoxy resin. The fabric samples

were draped over the form in turn, ensuring that all the samples were photographed

with the same geometry. The form also served to absorb transmitted light, thereby

isolating reflection from transmission. We scanned the form with a laser range

scanner and fit a surface that was used for rendering the comparisons. The video

was captured using stop motion with a high-resolution still camera (Canon EOS

20D). The motion sequence includes a segment where the object rotates with the

light and camera stationary, and a sequence where the light moves with the object

and camera stationary. The turntable sequences are described in Chapter 9.



Chapter 6

Geometry
A piece of fabric can be thought of as a collection of segment rectangles—short

visible segments of yarn on the surface of the fabric—arranged in a particular

position and orientation relative to one another according to the weave pattern.

Each of these segment rectangles represents a yarn segment, which, in turn, is

modeled as a curved cylinder made up of fibers spiraling around its axis. Figure 6.1

shows a segment rectangle with its curved cylinder. This chapter describes the

geometry of the curved cylinder in detail.

6.1 Assumptions

A yarn is made up of relatively long fibers that may be twisted together. When a

staple yarn is straight, we assume that the fibers are aligned with helices spiraling

around the yarn axis and that the vectors tangent to fibers near the surface of the

yarn all make the same angle with the yarn axis. When the staple yarn is bent into

a curved configuration, we assume that it takes on the shape of a tube with curved

spine and circular cross section. We assume that the fibers’ directions rotate with

the cross section, remaining at the same angle to the spine. Since filament yarns

are not twisted, the fibers are simply parallel to the yarn axis.

6.2 Geometry of a Yarn Segment

The geometry of a yarn segment (Figure 6.2) is defined in a coordinate system that

has z parallel to the overall normal to the fabric surface, y parallel to the relevant

36
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Figure 6.1: A segment rectangle with its curved cylinder.

weaving direction (the warp or weft direction), and x completing the right-handed

orthonormal basis.

We model a yarn segment as a curved cylinder: a circular cross section with

radius a swept perpendicularly along a spine curve x0(u) in the y-z plane from

u = −umax to u = umax; here, umax is the maximum inclination angle. We will

discuss the parameter u a few paragraphs below.

Normally, the spine is a circular arc—resulting in a yarn segment in the shape of

a torus segment—though some materials may require a different spine curve. The

shape of the spine, however, only enters into the analysis through its curvature,

denoted R(u). When the spine is a circular arc, the radius of curvature of the

spine is a constant R.
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Figure 6.2: A yarn segment modeled as a curved cylinder parameterized by

−umax ≤ u ≤ umax, −π ≤ v ≤ π, and 0 < r < a. Textile fibers form helices

around the cylinder with a constant twist angle −π/2 < ψ < π/2.
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The yarn is parameterized by three variables: u, v, and r. The variable−umax ≤

u ≤ umax is the angle between the spine’s tangent and the y-axis (or, alternatively,

between the spine’s outward-directed normal and the z-axis). Parameterizing the

spine by the angle u of course requires that each tangent angle occur only once.

The variables −π ≤ v ≤ π and 0 < r < a parameterize the circular cross section

for each u in polar coordinates.

The normal to the yarn surface n is a function of u and v:

n(u, v) = Rx(−u)Ry(v)


0

0

1



=


sin v

sinu cos v

cosu cos v


(6.1)

and the parameterization of the segment can be written as follows:

x(u, v, r) = x0(u) + rn(u, v).

As explained earlier, we assume that the tangents of the fibers are carried along

with the cross section. Like n, they also rotate with v:

t(u, v) = Rx(−u)Ry(v)


− sinψ

cosψ

0



=


− cos v sinψ

cosu cosψ + sinu sin v sinψ

− sinu cosψ + cosu sin v sinψ


(6.2)

where −π/2 < ψ < π/2 is the twist angle of the fibers. At ψ = 0 we have a

filament yarn, in which t(u, v) = (0, cosu,− sinu)T is independent of v.
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6.2.1 Normal to the yarn surface and fiber tangent on

Gauss spheres

We can use Gauss spheres to visualize the various vectors we have in our model.

On a Gauss sphere, for a fixed u, the set of n(u, v) forms a circle of radius 1

(that is, a great circle) and center (0, 0, 0)T with normal (0, cosu, sinu)T . Figure 6.3

shows half of the circles (−π/2 ≤ v ≤ π/2) for several values of u.

On a Gauss sphere, For a fixed v, the set of n(u, v) forms a circle of radius cos v

and center (sin v, 0, 0)T with normal (1, 0, 0)T . Figure 6.4 shows half of the circles

(−π/2 ≤ u ≤ π/2) for several values of v.

On a Gauss sphere, for a fixed u, the set of t(u, v) forms a circle of radius | sinψ|

and center (0, cosu cosψ,− sinu cosψ)T with normal (0, cosu,− sinu)T . Figure 6.5

shows half of the circles (−π/2 ≤ v ≤ π/2) for several values of u.

On a Gauss sphere, for a fixed v, the set of t(u, v) forms a circle of radius√
1− cos2 v sin2 ψ and center (− cos v sinψ, 0, 0)T with normal (−1, 0, 0)T . Fig-

ure 6.6 shows half of the circles (−π/2 ≤ u ≤ π/2) for several values of v.

6.3 Relation Between a Segment Rectangle and Its Curved

Cylinder

Recall that we break a piece of fabric into segment rectangles, each of which repre-

sents a yarn segment. Also recall that we use a curved cylinder to model the yarn

segment. We have examined the geometry of the curved cylinders, but we haven’t

discussed its relationship with the segment rectangle. This section illustrates the

relationship for the simpler case involving circular spines (resulting in toroidal yarn

segments). Details of this relationship for the general case involving non-circular
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u = 0 u = π/3

u = π/6

u = -π/3

u = -π/6

Figure 6.3: Set of normal n(u, v) for several values of u and −π/2 ≤ v ≤ π/2.
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v = 0

v = -π/6

v = -π/3

v = π/6 v = π/3

Figure 6.4: Set of normal n(u, v) for several values of v and −π/2 ≤ u ≤ π/2.
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u = 0
ψ = −π/6

u = π/3

u = -π/6

u = π/6

u = -π/3

Figure 6.5: Set of tangent t(u, v) for several values of u and −π/2 ≤ v ≤ π/2. In

this figure, ψ = −π/6.
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v = 0 v = π/3

v = -π/4

v = π/6

v = -π/2

ψ = −π/6

Figure 6.6: Set of tangent t(u, v) for several values of v and −π/2 ≤ u ≤ π/2. In

this figure, ψ = −π/6.
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R

l/2

wa

a

umax

Figure 6.7: Relation between a toroidal yarn segment and the segment rectangle.

spines are discussed in the next section.

Let w and l be the width and length of a segment rectangle. Given the maxi-

mum inclination angle umax, our goal is to find R (the radius from the center of the

torus hole to the center of the torus tube) and a (the radius of the torus tube). We

do this by choosing the largest torus segment whose projection fits in the segment

rectangle. Figure 6.7 illustrates this concept.

From the figure, we can see the following relations:

a =
w

2
(6.3)
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Figure 6.8: Cross section of yarns arranged in plain weave (left) and satin patterns

(right).

and

R =
0.5l − a sinumax

sinumax

. (6.4)

Note that this imposes the following constraint: w
2

sinumax <
l
2
.

6.4 Spine Curves and Radius of Curvature

When the spine of the curved cylinder is a circular arc, the yarn segment is a

segment of a torus. In reality, however, the shape of the spine curve depends on

the weave pattern and the tension between the yarns of the fabric. Yarn segments

in a satin cloth are usually flatter overall and more curved at the ends, while yarn

segments in a plain weave cloth are usually more curved at the center. Figure 6.8

shows the cross section of yarns arranged in plain weave and satin patterns. This

section describes a way to adjust the curvature of the spine of the curved cylinder

to control the shape of the yarn segment.

As in the previous section, the projection of the curved cylinder must fit in the

segment rectangle (this implies that a = w
2

as shown in Figure 6.7). The spine

curve is further constrained such that its tangent direction at the ends is umax.

What we want is the ability to control the curvature of the yarn segment between

its two ends.

We use conic sections to define the spine of the segment: ellipses for segments
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umax

l/2 κ = -0.999
κ = -0.9
κ = 0 (circle)
κ = 1
κ = 10a

Figure 6.9: Effect of κ on the shape of the spine curve.

that are more curved at the ends, and ellipses, a parabola, or hyperbolas for

segments that are less curved at the ends (that is, more curved at the center). The

position and orientation of the conic sections are not important since we care only

about the radius of curvature of the segment.

Curvature of the segment is controlled by the spine curvature parameter −1 <

κ < ∞. The spine curve is a segment of a circle (and the yarn segment becomes

a segment of a torus) for κ = 0. The more negative κ is, the more curved the

segment is at the center. The more positive κ is, the more curved the segment is

at the ends. The effect of κ on the shape of the spine curve is shown in Figure 6.9.

Given κ, we compute the axis ratio r̂ as follows:

r̂ = 1 + κ(1 + cotumax). (6.5)

This variable determines whether the spine curve is a hyperbola, a parabola, or an

ellipse; r̂ < 0 specifies a hyperbola, r̂ = 0 a parabola, and r̂ > 0 an ellipse (r̂ = 1

specifies a circle). Additionally, r̂ relates the ellipse or hyperbola’s semimajor axis

â and semiminor axis b̂ in the following way:

r̂ =
b̂

â
. (6.6)

Given â and b̂, we can compute the radius of curvature R(u) required in eval-
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Figure 6.10: Elliptical spine curve (solid line) and the ellipse (dashed line) obtained

from r̂ = 0.75, umax = π/6, w = 1, and l = 4.

uating the scattering model:

R(u) =


(b̂2 cos2 t(u)+â2 sin2 t(u))1.5

âb̂
if r̂ > 0

2b̂(1 + t(u)2)1.5 if r̂ = 0

− (b̂2 cosh2 t(u)+â2 sinh2 t(u))1.5

âb̂
if r̂ < 0

(6.7)

where

b̂ =


0.5l−a sinumax

sin tmax
if r̂ > 0

0.5l−a sinumax

2tmax
if r̂ = 0

0.5l−a sinumax

sinh tmax
if r̂ < 0

(6.8)

and â is computed from b̂ and r̂.

We will now derive the formulae above.
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Elliptical spine curve (r̂ > 0)

Figure 6.10 shows an ellipse and the spine curve for r̂ = 0.75, umax = π/6, w = 1,

and l = 4. The spine curve is the segment of the ellipse that extends from −tmax

to tmax. We can observe the following equation from the figure.

b̂ sin tmax =
l

2
− a sinumax

Therefore, the semiminor axis b̂ can be computed as follows.

b̂ =
0.5l − a sinumax

sin tmax

where tmax is computed using Equation 2.4.

tmax = arctan(r̂ tanumax)

The semimajor axis â can be computed using Equation 6.6.

â =
b̂

r̂

The radius of curvature R(u) can then be computed using Equation 2.4 and

Equation 2.5.

R(u) =
(b̂2 cos2 t(u) + â2 sin2 t(u))1.5

âb̂

For the special case r̂ = 1, we have a circle with radius

R =
0.5l − a sinumax

sinumax

Notice that we arrive at the same formula found in Equation 6.4.

Parabolic spine curve (r̂ = 0)

Figure 6.11 shows a parabola and the spine curve for r̂ = 0, umax = π/6, w = 1,

and l = 4. The spine curve is the segment of the parabola that extends from −tmax
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Figure 6.11: Parabolic spine curve (solid line) and the parabola (dashed line)

obtained from r̂ = 0, umax = π/6, w = 1, and l = 4.

to tmax. We can observe the following equation from the figure.

2b̂tmax =
l

2
− a sinumax

Therefore, b̂ can be computed as follows.

b̂ =
0.5l − a sinumax

2tmax

where tmax is computed using Equation 2.7.

tmax = tanumax

The radius of curvature R(u) can then be computed using Equation 2.7 and

Equation 2.8.

R(u) = 2b̂(1 + t(u)2)1.5
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Figure 6.12: Hyperbolic spine curve (solid line) and the hyperbola (dashed line)

obtained from r̂ = −0.75, umax = π/6, w = 1, and l = 4.

Hyperbolic spine curve (r̂ < 0)

Figure 6.12 shows a hyperbola and the spine curve for r̂ = −0.75, umax = π/6,

w = 1, and l = 4. The spine curve is the segment of the hyperbola that extends

from −tmax to tmax. We can observe the following equation from the figure.

b̂ sinh tmax =
l

2
− a sinumax

Therefore, the semiminor axis b̂ can be computed as follows.

b̂ =
0.5l − a sinumax

sinh tmax

where tmax is computed using Equation 2.10.

tmax = − tanh−1(r̂ tanumax)
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The semimajor axis â can be computed using Equation 6.6.

â =
b̂

r̂

The radius of curvature R(u) can then be computed using Equation 2.10 and

Equation 2.11.

R(u) = −(b̂2 cosh2 t(u) + â2 sinh2 t(u))1.5

âb̂



Chapter 7

Reflection
Recall from the previous chapter that we think of a piece of fabric as a collection

of yarn segments, each modeled as a curved cylinder made up of fibers spiraling

around its axis. Light that strikes these fibers reflects specularly into a cone

centered on the local fiber axis (Figure 7.2). Different fibers reflect light that comes

from the same direction into different cones, and by summing over all the fibers

we can describe the scattering due to an entire yarn segment. The light scattered

from the whole fabric is then simply a weighted sum of the light scattered by the

different segments, together with a diffuse component.

By summing their contributions in this way, interactions between segments,

including masking, shadowing, and inter-reflection, are disregarded. The model

nonetheless succeeds in capturing the most important visual features of the fabrics

we have studied, which suggests that the local reflection geometry is the most

important factor in the appearance of woven cloth.

In this chapter, we describe light scattering from a yarn segment, derive the

scattering function, and explain the various components of the function. While this

material is important to the development of our model, readers interested only in

the model itself may prefer to skip this chapter and go to Chapter 8 instead.

7.1 Assumptions

Our reflection model for fabric is based on some simple assumptions about the

scattering behavior of the yarns that it is made from.

Since the fibers in a yarn are not tightly packed, the yarn must be treated as

53
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a volumetric medium, rather than as a reflecting surface. We do assume, how-

ever, that all important scattering happens close enough to the surface that their

direction is the same as for fibers on the surface.

Because most textile fibers are fairly specular and locally well aligned, we as-

sume that local reflection from the fibers is ideally specular: all light from a single

incident direction is reflected into the cone that has the same inclination to the

fiber tangent. Of course imperfections in the fibers and random variations in fiber

orientation mean the highlight will not be perfectly sharp, but other aspects of

the geometry serve to blur the highlight into a smooth distribution, and as long

as that blur is large compared to the width of the actual distribution it is safe to

use the ideal specular model. This assumption is important because it restricts

significant contributions to the scattering integral to happen only under certain

geometric conditions, significantly simplifying the model.

A second simplification about local reflection is that all scattering that hap-

pens outside of a local area of well-aligned fibers is diffuse. This means that all

directional effects are treated as single scattering.

7.2 Scattering from a Yarn Segment

The goal of this section is to compute the scattering function of a yarn segment, in

isolation from the rest of the cloth. The scattering function, fs(ωi, ωr), describes

the contribution of incident irradiance arriving from the direction ωi to scattered

intensity exiting in the direction ωr. The total scattered intensity is the integral

of the scattering function over incident light from the entire sphere (denoted by

“4π” below):

Ir(ωr) =

∫
4π

fs(ωi, ωr)Li(ωi) dωi
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dVl(x,ωi)

x

l(x,ωr)

ωi ωr

Figure 7.1: Scattering from a volume in a yarn segment.

In Subsection 7.2.1 we express Ir as a volume integral over the yarn segment, then

in Subsection 7.2.2 we specialize to the case of specularly reflecting fibers. This

establishes the general formula for the scattering function. In later sections we

discuss the details of each of the terms in the scattering function.

7.2.1 Scattering integral for a yarn segment

Under the assumption that a yarn acts like a single-scattering medium, we can

compute the contribution of a volume element dV (x) to the intensity scattered in

direction ωr by integrating over the incident radiance distribution Li(ωi):

dIr(ωr)

dV
=

∫
4π

σsfp(ωi, t(x), ωr)e
−σtl(x,ωi)e−σtl(x,ωr)Li(ωi) dωi

where σs and σt are the volume scattering and attenuation coefficients, fp is the

phase function, and l(x,v) is the distance from the point x to the outside of the

volume in the direction v (Figure 7.1). To obtain the total scattered intensity for

a segment of yarn viewed at a distance from direction ωr, we simply integrate this

expression over the segment’s volume:

Ir =

∫ ∫
4π

σsfp(ωi, t(x), ωr)e
−σt(l(x,ωi)+l(x,ωr))Li(ωi) dωi dV (x).
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For a segment parameterized as described in Section 6.2, we have:

dV = dr · rdv · (R(u) + r cos v)du

Therefore, we have:∫ umax

−umax

∫ 2π

0

∫ a

0

∫
4π

σsfp(ωi, t(x), ωr)

e−σt(l(x,ωi)+l(x,ωr))Li(ωi) dωi r(R(u) + r cos v) dr dv du.

where R(u) is the radius of curvature of the spine. With the assumption that

scattering happens near the surface, t doesn’t depend on r, and we can replace the

volume element r(R(u) + r cos v) with its value at r = a, leaving the attenuation

e−σt(l(x,ωi)+l(x,ωr)) as the only quantity depending on r. LetA, called the attenuation

function, be defined as follows:

A(ωi, u, v, ωr) =

∫ a

0

σse
−σt(l(u,v,r,ωi)+l(u,v,r,ωr))dr.

Using this notation we arrive at

Ir(ωr) =

∫ umax

−umax

∫ 2π

0

∫
4π

fp(ωi, t(u, v), ωr)Li(ωi)A(ωi, u, v, ωr)

dωi a(R(u) + a cos v) dv du. (7.1)

This equation can be used to define a scattering function that works for any phase

function but requires a double integral over u and v to compute its value. Instead,

we chose to make the assumption of ideal specular fibers, which allows us to remove

one more integral, as explained in the next subsection.

7.2.2 Scattering from specular fibers

We have stated the assumption that local scattering from the fibers is ideally

specular, as illustrated in Figure 7.2. This makes this integral simpler than over
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ωi φi

φr = 0
θrθi

ωr
n

t

Figure 7.2: Geometry of specular reflection from a fiber. Reflected light depends

only on incident light within the specular cone.

the whole sphere because only light on the specular cone can contribute to the

overall scattering. To write this integral we introduce a spherical coordinate system

aligned with t, where ωi = (θi, φi) and ωr = (θr, φr). As seen in the figure,

sin θi = ωi · t and φi = 0 when ωi is coplanar with t and n. Similarly, sin θr = ωr · t

and φr = 0 when ωr is coplanar with t and n. We denote the difference φr − φi

as φ. Ideal specular reflection occurs exactly when h · t = 0, where h is the half

vector, the bisector of the directions ωi and ωr. In this coordinate system, light

is only reflected from ωi to ωr when θi = −θr, as can be seen from Figure 7.2.

This assumption about the phase function fp can be expressed mathematically as

a statement about the local scattering integral:∫
4π

fp(ωi, t, ωr)Li(ωi) dωi =

∫ 2π

0

fc(θr, φ)Li(−θr, φi) dφ

That is, the radiance scattered locally from the fibers is an integral of the inci-

dent radiance only over the specular cone; the rest of the incident sphere does

not contribute. The function fc is the “circular phase function,” which describes

how scattered light is distributed over the specular cone. (If we were to write an
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expression for fp it would involve the product of fc with a delta function in terms

of θ.) We are assuming for simplicity that fc depends on φ = φr − φi rather than

on φi and φr separately.

Substituting this lower-dimensional scattering integral back into Equation 7.1

we obtain

Ir(ωr) =

∫ umax

−umax

∫ 2π

0

∫ 2π

0

fc(θr, φ)Li(−θr, φi)A(ωi, v, ωr) dφ

a(R(u) + a cos v) dv du.

The 4D integral in Equation 7.1 has become a 3D integral, expressed as an integral

over a 1D range of incoming directions for each point on the 2D surface of the yarn

segment—that is, for a given surface point, only a one-dimensional subset of the

incident sphere contributes. But it can also be interpreted as an integral along a 1D

path across the surface for each point in a 2D range of incoming directions—that

is, for a given incoming direction, only a one-dimensional subset of the surface

contributes. In each case, the contributing points are exactly those for which

h · t = 0. This integral is in the coordinates (u, v, φ), but these variables can be

computed from ωi and u or from ωi and v. If we reparameterize this integral by

(ωi, u) or by (ωi, v), we can move the integral over ωi to the outside, then extract

a scattering function from the equation.

To reparameterize the integral with u on the outside, we need to express (φ, v)

as a function of (ωi, u) and find the Jacobian |∂(φ, v)/∂ωi|. The integral then

becomes:

Ir(ωr) =

∫ umax

−umax

∫
4π

∑
k

fc LiA

∣∣∣∣∂(φ, v)k
∂ωi

∣∣∣∣ a(R(u) + a cos vk) dωi du

There will be zero, one, or two (φ, v) that satisfy h · t = 0 for a given u and ωi

and, in general, we need to sum over the different solutions, which we call (φk, vk).
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However, the particular attenuation function A we use has the implication that at

most one has a nonzero contribution.

To simplify, we introduce the geometry factor:

Gv(ωi, u, ωr) =

∣∣∣∣∂(φ, v)k
∂ωi

∣∣∣∣ a(R(u) + a cos vk)

and rearrange the equation into the form of a scattering integral:

Ir(ωr) =

∫
4π

[∫ umax

−umax

∑
k

Gvfc(θr, φk)A(ωi, u, vk, ωr) du

]
Li(ωi) dωi

from which we can read off the scattering function:

fs(ωi, ωr) =

∫ umax

−umax

∑
k

Gvfc(θr, φk)A(ωi, u, vk, ωr) du. (7.2)

Similarly, if we reparameterize with v on the outside we have:

fs(ωi, ωr) =

∫ 2π

0

∑
k

Gufc(θr, φk)A(ωi, uk, v, ωr) dv. (7.3)

where Gu is defined analogously to Gv.

These two integrals are equivalent except where the reparameterization fails.

In particular, we cannot use u as the parameter for filament yarns (with ψ = 0)

because t does not depend on v and therefore v cannot be written as a function of

ωi and u. We integrate over u for staple yarns and over v for the filament case.

7.3 Finding Ideal Specular Reflection

In order to compute the integral in the previous subsection, we need to be able to

express v as a function of u and vice versa. Geometrically, we want to find the

value of v at which the ideal specular reflection takes place given a value of u and

vice versa.
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Recall that ideal specular reflection occurs exactly when h · t = 0, where h is

the half vector. This means that, for given incoming and exitant directions, only

a one-dimensional subset of the surface of the yarn segment contributes to the

specular reflection. Since the surface of the yarn segment is parameterized using

u and v, we can write v as a function of u, incoming direction ωi, and exitant

direction ωr. Similarly, we can express u as a function of v, ωi, and ωr.

Solving the equality h · t = 0 for v given u, ωi, and ωr results in the following

equation.

h · t = 0

hx cos v − (hy sinu+ hz cosu) sin v = (hy cosu− hz sinu) cotψ

cos(v − arctan(−hy sinu− hz cosu,hx)) = hy cosu−hz sinu√
h2

x+(hy sinu+hz cosu)2
cotψ

v(ωi, u, ωr) = arctan(−hy sinu− hz cosu,hx)

± arccos(D)

(7.4)

where

D =
hy cosu− hz sinu√

h2
x + (hy sinu+ hz cosu)2

cotψ

If |D| > 1, no fiber tangent reflects light from ωi to ωr.

While not required in the analysis of ideal specular reflection, we will show that

at most one of the two reflections satisfies h · n > 0.

h · n = 0

(hy sinu+ hz cosu) cos v + hx sin v = 0

cos(v − arctan(hx,hy sinu+ hz cosu)) = 0

v = v0 ± π
2

where

v0 = arctan(hx,hy sinu+ hz cosu)
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Therefore a reflection v(ωi, u, ωr) satisfies h · n > 0 if and only if v0 − π
2
<

v(ωi, u, ωr) < v0 + π
2
.

We can further the derivation of Equation 7.4 as follows.

v(ωi, u, ωr) = arctan(−hy sinu− hz cosu,hx)± arccos(D)

= v0 − π
2
± arccos(D)

Since 0 ≤ arccos(D) ≤ π, v0 − π
2
≤ v0 − π

2
+ arccos(D) ≤ v0 + π

2
, while v0 − π

2
−

arccos(D) < v0 − π
2
. Therefore, at most only one of the two reflections satisfies

h · n > 0.

For the filament case (ψ = 0), we have the following equation.

h · t = 0

hy cosu− hz sinu = 0

cos(u− arctan(−hz,hy)) = 0

u(ωi, v, ωr) = arctan(−hz,hy)± π
2

(7.5)

Since −1 < hy < 1 and 0 < hz ≤ 1, we know that −π < arctan(−hz,hy) < 0 and,

therefore, −π
2
< arctan(−hz,hy) + π

2
= arctan(hy/hz) <

π
2
. The other reflection

occurs π radians away at the back of the yarn.

7.3.1 Ideal specular reflection on Gauss spheres

We can visualize the ideal specular reflection using Gauss spheres in the following

way.

Recall that the set of fiber tangents can be visualized as a circle on a Gauss

sphere (Figure 6.5 or 6.6). Since ideal specular reflection occurs when h · t = 0, h

must be perpendicular to t. We can draw a great circle that contains all vectors

that are perpendicular to h. Ideal specular reflection occurs at the intersection of

this great circle with the circle that contains the set of fiber tangents.
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u = 0

Figure 7.3: Ideal specular reflection v(ωi, u, ωr) for staple (in this case, ψ = −π/6)

given a particular h = (ωi + ωr)/|ωi + ωr| and u = 0.
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Figure 7.4: Ideal specular reflection u(ωi, v, ωr) for filament (ψ = 0) given a par-

ticular h = (ωi + ωr)/|ωi + ωr|.
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An example of v(ωi, u, ωr) for a particular h and u = 0 can be seen in Figure 7.3.

The blue circle is the great circle that contains all vectors that are perpendicular

to h. The red circle is the set of fiber tangents at u = 0. Ideal specular reflection

occurs at the intersection of the two circles. It may readily be seen from the

figure that certain h results in a great circle that doesn’t intersect the set of fiber

tangents, as predicted by Equation 7.4.

For the filament case, the set of tangents forms a great circle. Therefore, the

great circle defined by h always intersects the set of fiber tangents at two points

that are π radians apart. An example of u(ωi, v, ωr) for a particular h can be seen

in Figure 7.4.

7.4 Geometry Factor

Computing the geometry factors in Equation 7.2 or Equation 7.3 requires evalu-

ating the Jacobian of (φ, v) or (φ, u) with respect to ωi and the curvature R.

For the Jacobian, we begin by observing that the allowed variation in ωi is only

in directions tangent to the unit sphere (since ωi is a direction vector that cannot

change length). Furthermore, φ is unchanged by a small change in ωi perpendicular

to the reflection cone, and u or v is unchanged by a small change in ωi along the

cone. So the determinant of the derivative is the product of the two directional

derivatives: ∣∣∣∣∂(φ, v)k
∂ωi

∣∣∣∣ =

∣∣∣∣ ∂φ∂e1

∣∣∣∣ ∣∣∣∣ ∂v∂e2

∣∣∣∣
where e1 is the unit vector perpendicular to the cone at ωi and e2 is the unit vector

tangent to the unit sphere and to the cone at ωi (see Figure 7.5).
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Figure 7.5: Specular reflection cone with the associated e1, e2 and the radius r;

e1 ⊥ e2, e1 ⊥ ωi, and e2 ⊥ ωi.
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Let r be the radius of the circle that is the base of the reflection cone.

r = sin(t, ωi)

=
√

1− (t · ωi)2

An example of a specular reflection cone with the associated e1, e2, and the

radius r can be seen in Figure 7.5.

By relating the arc length of a circle with its radius and central angle, the e1

derivative may readily be seen to be:∣∣∣∣ ∂φ∂e1

∣∣∣∣ =

∣∣∣∣1r
∣∣∣∣

The e2 derivative can be worked out geometrically by analyzing the effect of

perturbing ωi on the result of intersecting the plane h · t = 0 with the set of

fiber tangent for a fixed u (Figure 7.5). From the figure, we can observe that

∂ωi

∂e2
= t−(ωi·t)ωi

|t−(ωi·t)ωi| .

∂ωi

∂e2
= t−(ωi·t)ωi

|t−(ωi·t)ωi|

= t−(ωi·t)ωi√
(t−(ωi·t)ωi)2

= t−(ωi·t)ωi√
t·t−2(ωi·t)(ωi·t)+(ωi·t)2(ωi·ωi)

= t−(ωi·t)ωi√
1−(ωi·t)2

= t−(ωi·t)ωi

r

Recall from Chapter 2 that:

∂

∂x
|x| = xT

|x|
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We use the fact above to derive ∂h.

∂h
∂ωi

= ∂
∂ωi

ωi+ωr

|ωi+ωr|

= ∂
∂ωi

(ωi + ωr)|ωi + ωr|−1

= I
|ωi+ωr| − (ωi + ωr)|ωi + ωr|−2 ∂

∂ωi
|ωi + ωr|

= I
|ωi+ωr| − (ωi + ωr)|ωi + ωr|−2 (ωi+ωr)T

|ωi+ωr|

= I
|ωi+ωr| −

(ωi+ωr)

|ωi+ωr |
(ωi+ωr)T

|ωi+ωr |
|ωi+ωr|

= I
|ωi+ωr| −

hhT

|ωi+ωr|

= I−hhT

|ωi+ωr|

∂h = I−hhT

|ωi+ωr|∂ωi

∂h = ∂ωi−(h·∂ωi)h
|ωi+ωr|

Since h is normal of a great circle (Figure 7.5), changing h rotates the great

circle. Let ∂a be the vector that describes the axis of rotation as well as the

magnitude. Note that the second term in ∂h becomes 0 by the cross product with

h and we have:

∂a = h× ∂h

= h× ∂ωi

|ωi+ωr|

Next we want to compute how much the great circle shifts at the point of

intersection with the set of fiber tangents when we rotate it (Figure 7.6). We use
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Figure 7.6: Original and shifted great circles and their intersections with the set

of fiber tangents.

vector triple product (Equation 2.14) in the derivation below.

∂d = |∂a× t|

= |(h×∂ωi)×t|
|ωi+ωr|

= |(t·h)∂ωi−(t·∂ωi)h|
|ωi+ωr|

= |−(t·∂ωi)h|
|ωi+ωr|

= t·∂ωi

|ωi+ωr|

= t·t−(ωi·t)(t·ωi)
r|ωi+ωr| ∂e2

= 1−(ωi·t)2

r|ωi+ωr| ∂e2

= r
|ωi+ωr|∂e2

We now compute sinα, where α is the angle the great circle makes with the set

of fiber tangents (Figure 7.6). This can be computed by taking the magnitude of

the cross product of the vector tangent to the great circle and the vector tangent

to the set of fiber tangents at the intersection point. The former is t× h and the
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latter is simply the torus normal n at that point.

sinα = |(t× h)× n|

= |(n · t)h− (n · h)t|

= | − (n · h)t|

= n · h

We can now compute the distance the intersection point moves because of the

change in the great circle.

∂s = ∂d
sinα

= r
|ωi+ωr|(n·h)

∂e2

Finally, we relate the arc length ∂s and the radius of the circle that is formed

by the set of fiber tangents to the central angle ∂v. Recall from Subsection 6.2.1

that, for a fixed u, the set of fiber tangents t(u, v) forms a circle of radius | sinψ|.

∂v = ∂s
| sinψ|

= r
|ωi+ωr|(n·h)| sinψ|∂e2∣∣∣ ∂v∂e2

∣∣∣ =
∣∣∣ r
|ωi+ωr|(n·h)| sinψ|

∣∣∣
Therefore, we have:

Gv(ωi, u, ωr) =
a(R(u) + a cos vk)

|ωi + ωr|(n · h)| sinψ|
(7.6)

We now turn our attention to the filament case and derive the following term.∣∣∣∣∂(φ, u)k
∂ωi

∣∣∣∣ =

∣∣∣∣ ∂φ∂e1

∣∣∣∣ ∣∣∣∣ ∂u∂e2

∣∣∣∣
An example of a specular reflection cone with the associated e1, e2, and the

radius r for filament can be seen in Figure 7.7.

The derivation up to ∂d is exactly the same as in the previous subsection.

Similar to the other case, sinα can be computed by taking the magnitude of the
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Figure 7.7: Specular reflection cone with the associated e1, e2 and the radius r for

filament; e1 ⊥ e2, e1 ⊥ ωi, and e2 ⊥ ωi.
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cross product of the vector tangent to the great circle and the vector tangent to the

set of fiber tangents at the intersection point. The former is still t × h; however,

the latter is now t×(1,0,0)T

|t×(1,0,0)T | . Note that, for filament, t ⊥ (1, 0, 0)T and therefore

|t× (1, 0, 0)T | = 1.

sinα =
∣∣(t× h)× (t× (1, 0, 0)T )

∣∣
=
∣∣((t× (1, 0, 0)T ) · t)h− ((t× (1, 0, 0)T ) · h)t

∣∣
=
∣∣−((t× (1, 0, 0)T ) · h)t

∣∣
=
∣∣(t× (1, 0, 0)T ) · h

∣∣
= |(t× h)x|

That is, sinα equals the x component of t× h.

We can now compute the distance the intersection point moves because of the

change in the great circle.

∂s = ∂d
sinα

= r
|ωi+ωr||(t×h)x|∂e2

Finally, we relate the arc length ∂s and the radius of the circle that is formed

by the set of fiber tangents to the central angle ∂u. For filament, the circle formed

by the set of fiber tangents has radius of 1.

∂u = ∂s
1

= r
|ωi+ωr||(t×h)x|∂e2∣∣∣ ∂u∂e2

∣∣∣ =
∣∣∣ r
|ωi+ωr||(t×h)x|

∣∣∣
Therefore, we have:

Gu(ωi, v, ωr) =
a(R(uk) + a cos v)

|ωi + ωr||(t× h)x|
(7.7)

This completes the derivation of the geometry factors.
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7.5 Phase Function

The phase function is a physical property of a particular type of fiber. Note that

the desired phase function is not the phase function of an individual fiber but a

phase function describing the effects of multiple scattering events occurring nearby

in the yarn, all encountering the same fiber tangent. Since the fibers share the same

tangent, the multiply scattered light will still stay in the specular cone, but will

be more spread out around the cone.

Investigating the scattering properties of individual yarns and fibers in isolation

to discover and model their behavior is an important research topic that is beyond

the scope of the current work. Instead we use a generic phase function with the

appropriate general properties that can be tuned to model different fibers. Pre-

liminary measurements of single-fiber scattering, together with experience fitting

the model to data, suggest that the phase function should be predominantly for-

ward scattering, with a smaller uniform component. To this end we use a phase

function that is the sum of a constant and a forward-directed lobe; we use the von

Mises distribution [13], evaluated for the angle between the incident and exitant

directions, for the lobe:

fc(θr, φ) = α + g(−ωi · ωr, β)

g(cosx, b) = exp(b cosx)
2πI0(b)

(7.8)

where α is the uniform scattering parameter, β is the forward scattering parameter,

and I0(x) is a modified Bessel function of the first kind of order 0 [2]. We chose

the von Mises function because it is continuous around the circle and has proven

to work well in practice.
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7.6 Attenuation Function

The attenuation function A describes the attenuation of light by other fibers on the

way into and out of the yarn. Our framework allows A to let light scatter through

the fiber, even when the scattering point is not facing both the light source and

the camera. After some experiments with sophisticated models for A, we found

that a very simple model, which is the limit of the more general case for shallow

penetration depths, worked well. In this limit the curvature of the yarn surface

may be neglected and Seeliger’s law, which describes scattering from a medium

below a flat surface [21], applies:

A(ωi, u, v, ωr) =
σs
σt

(ωi · n)(ωr · n)

ωi · n + ωr · n
(7.9)

where n = n(u, v) and the dot products are all clamped to nonnegative values. This

is the attenuation function we used for the results. The albedo σs/σt is unimportant

because it can be absorbed into the specular coefficient. An important feature of

this model is that it is zero when h · n < 0, which guarantees that Equation 7.4

has at most one solution, making the sum over k in Equation 7.2 unnecessary.

For filament fibers, because the highlight will maintain full intensity right up

to the moment it falls off the end of the segment (when u(v) becomes greater

then umax), it’s necessary to include some form of smoothing at the ends of the

integration domain, to simulate the gradual disappearance of the imperfect high-

light in a real material (as contrasted with the sudden disappearance of the ideally

sharp highlight in the model). We simply use a smoothstep cubic to fade out the

contribution to the integral smoothly over an interval leading up to u = umax:

As(u) = A(u)

(
1− s

(
|u| − (1− δ)umax

δumax

))
(7.10)
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where s(x) is a smooth step function that is 0 for x ≤ 0 and 1 for x ≥ 1 and

smooth in value and derivative in between, and 0 ≤ δ < 1 is filament smoothing

parameter (δumax is the size of the range over which the contribution ramps down).



Chapter 8

Reflectance Model and Texture Model
This chapter describes our two physically based appearance models for woven

cloth: the reflectance model and the texture model. The reflectance model is used

when only the reflectance of the fabric matters (for example, when the fabric is far

enough from the camera that the texture is not visible). In contrast, as the name

implies, the texture model is able to model the texture of the fabric. Both models

are based on the results developed in the previous two chapters. Because of this,

both models have the same BRDF and, therefore, switching between the models

doesn’t require any additional adjustments.

8.1 Reflectance Model

In the previous chapter, we derived the scattering functions fs(ωi, ωr) and ex-

plain the various components of the function. However, the function we actually

need for rendering is the BRDF, fr(ωi, ωr), which describes the contribution of

incident irradiance falling on the cloth surface from the direction ωi to reflected

radiance leaving the surface in the direction ωr. With no consideration for corre-

lated shadowing–masking or interreflection, we can derive fr from fs by assuming

that light scatters from a segment according to fs regardless of where it hits the

segment, and also that the scattered light has the same probability of escaping the

surface regardless of where it leaves the segment.

Under this assumption, we can apportion the incident irradiance uniformly to

all the segments, so that each segment receives an average radiance of Li(ωi) (ωi)z

where (ωi)z is the z component of ωi. The fraction of light escaping is also assumed

75
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to be proportional to (ωi)z, and since the projected area over which it escapes is

proportional to (ωi)z, the radiance is simply proportional to the intensity of the

segments.

This makes the relationship between fr and fs very simple: fr(ωi, ωr) is directly

proportional to fs(ωi, ωr), and the constant of proportionality can be absorbed into

the specular coefficient. Therefore fs will serve directly as the specular component

of our reflectance model.

There are, therefore, two ways to compute the BRDF, depending on how we

parameterize the integral:

fr,s(ωi, ωr) =

∫ umax

−umax

GvfcAdu or fr,s(ωi, ωr) =

∫ 2π

0

GufcAdv. (8.1)

As noted in Chapter 7, we integrate over u for staple yarns and over v for

filament yarns.

8.2 Texture Model

In order for a fabric to look realistic, the distinctive texture of reflections from

individual yarns must be reproduced when the cloth is rendered at high enough

magnification. All that is required for good results is to very roughly predict the

position and shape of the highlight; if the magnification is high enough to resolve

details within a yarn, a more detailed model such as lumislice rendering [51] must

be used.

Since our reflectance model already computes the highlight location in order to

evaluate the various geometry-dependent terms, we can make use of this informa-

tion to “unroll” the integrand into a texture in a way that satisfies the constraint

that the average brightness in texture space equals the value of the BRDF. We do
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Figure 8.1: The specular highlight in the texture is a fixed-width band around the

ideal highlight curve.

this by mapping u and v linearly to the segment rectangle on the cloth surface.

In the texture space, the segment rectangle is parameterized by −w/2 ≤ x ≤ w/2

and −l/2 ≤ y ≤ l/2 (recall that w and l are the width and length of the segment

rectangle). To unroll the yarn surface we map (x, y) to (u, v) using

u =
2umax

l
y

v =
π

w
x

(8.2)

This approach ignores visibility and foreshortening effects, but it nonetheless pro-

duces a realistic highlight texture.

The scattering model predicts an infinitely thin highlight, whose shape is de-

fined by the function v(u, ωi) or u(v, ωi). We widen this curve into a band of

constant width in the dependent coordinate: a constant width ∆x for staple yarns

and constant width ∆y for filament yarns. Therefore, the texture model returns

a non-zero value only if the point (x, y) lands inside this band of constant width.

This process is illustrated in Figure 8.1.

We can find whether (x, y) lands inside the band as follows: first use Equa-

tion 8.2 to map y (or x) to get u (or v). Then compute the location of ideal specular

reflection v(ωi, u, ωr) (or u(ωi, v, ωr)) using Equation 7.4 (or Equation 7.5). Next
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use Equation 8.2 to remap v(ωi, u, ωr) (or u(ωi, v, ωr)) to get x(v) (or y(u)). Finally,

clamp x(v) to the range ±(w −∆x)/2 (or clamp y(u) to the range ±(l −∆y)/2).

The point (x, y) lands inside the band if and only if |x − x(v)| < ∆x/2 (or

|y − y(u)| < ∆y/2). We can encode this in a function χ(x, y, ωi, ωr) defined as

follows:

χ =

 1 if |x− x(v)| < ∆x
2

0 otherwise
or χ =

 1 if |y − y(u)| < ∆y
2

0 otherwise
. (8.3)

If the reflectance model is a BRDF fr,s(ωi, ωr), the texture model is a BTF

(bidirectional texture function) T (x, y, ωi, ωr). Recall that we have the constraint

that the average brightness in texture space equals the value of the BRDF. Math-

ematically, this is expressed as follows:

fr,s(ωi, ωr) =
1

lw

∫
A

T (x, y, ωi, ωr)dA. (8.4)

Depending on how we parameterize the equation above, we have:

1

lw

∫ l/2

−l/2
T (x, y, ωi, ωr)∆xdy or

1

lw

∫ w/2

−w/2
T (x, y, ωi, ωr)∆ydx

for the staple or filament case. The brightness of the specular reflection, which

varies along the highlight but not across it, is calculated to match the average

value of the texture to the BRDF. To make these averages match Equation 8.1 we

need:

T (x, y, ωi, ωr) = χlwGufcA

∣∣∣∣dudy
∣∣∣∣ 1

∆x

= χlwGufcA
2umax

l

1

∆x

= χ2wumaxGufcA
1

∆x

or

T (x, y, ωi, ωr) = χlwGvfcA

∣∣∣∣dvdx
∣∣∣∣ 1

∆y

= χlwGvfcA
π

w

1

∆y

= χπlGvfcA
1

∆y

.

(8.5)

With the BTF defined in this way, the average value of the texture over a region

of the image with constant shading geometry will match the value of the BRDF:
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Figure 8.2: Illustration of the texture at three different magnifications, each a

factor of two from its neighbor. The simple, blocky shape of individual highlights

is sufficient to represent the appearance of the ribs found in twill cloth.

in essence, the antialiasing filter of the rendering system is performing the integral

that is done by quadrature in the reflectance model.

The result of the texture model for the black twill cloth can be seen in three

different magnifications in Figure 8.2. Despite the simple, blocky shape of individ-

ual highlights, together they form an accurate representation of the ribs found in

twill cloth and only at a very large magnification do they look artificial.

8.2.1 Noise

Since most textiles are not perfectly regular, we introduced two simple noise sources

to improve the appearance of the renderings. Although noise is ad hoc and essen-

tially separate from the model, the randomness is very important for visual quality.

To model irregularities in fiber structure, we scale the brightness of the spec-

ular component by a fixed noise texture with values drawn from the exponential

distribution (between 0 and ∞ with mean 1). The noise is constant over each

of a grid of k by k rectangles in a yarn segment. The parameter k controls the
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coarseness of the noise. This signal-independent multiplicative noise will not affect

the average BRDF.

The shape of a yarn segment depends on the stiffness and the tension of the

yarn, as well as the stiffness and the tension of the yarn crossing under the segment.

In some materials these yarn properties vary significantly but slowly along the

yarns, leading to a distinctive cross-hatch texture traditionally seen in linen and

silk materials. We define a 1D Perlin noise function along each yarn and modulate

umax for a segment based on the noise values for its yarn and also the yarns crossing

it.

8.3 Computing the Models

Our model defines a function of ωi and ωr based on the parameters in Table 8.1,

which describe the fibers, the yarns, and the weave pattern. All these parameters

(other than the specular and diffuse coefficients) are directly meaningful in terms

of the physical model of the fabric. A complete description of a fabric starts with

a single set of fiber parameters and diffuse coefficients. Then for each distinct type

of yarn segment in the weave pattern, we need a set of yarn and weave parameters

and a specular coefficient. All the examples in this paper have two distinct segment

types, one warp and one weft.

The models are defined as the sum of a diffuse component and a specular

component for each segment:

kd +
∑
j

ks,jfr,j(ωi, ωr)

where kd and the ks,j are the diffuse coefficient and the specular coefficients.

If one is interested only in the reflectance of the fabric but not in the texture,
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Table 8.1: All the parameters of the reflectance model.

Parameter Purpose Typical values

Fiber properties

α uniform scattering 0 to 0.1

β forward scattering 2 to 5

δ filament smoothing 0 to 1

Yarn geometry

ψ fiber twist angle −π/2 to π/2

umax maximum inclination angle 0 to π/2

κ spine curvature −1 to ∞

Weave pattern

w width of segment rectangle 0.1 mm to 1 mm

l length of segment rectangle 0.1 mm to 1 cm

Coefficients

ks specular coefficient 0 to ∞

kd diffuse coefficient 0 to ∞
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the reflectance model is sufficient. On the reflectance model, the BRDF fr(ωi, ωr)

is evaluated by computing the integral in Equation 8.1 using the parameters for

the jth segment type (normally one for warp and one for weft). In most cases

this must be done numerically. The plots for this work were computed using

the default quadrature routine in matlab. In practice, however, simple numerical

integration methods (such as Trapezoidal Rule with 11 samples) are sufficient since

the integrand is well behaved and no special precautions are required in integrating

it.

If, instead, the texture of the fabric is desired, one has to use the texture model.

In the texture model, as stated earlier, the integration in the BRDF fr(ωi, ωr) is

performed automatically by the antialiasing filter of the rendering system. That is,

only the integrand needs to be evaluated and no quadrature is required. Therefore,

whether on the reflectance model or on the texture model, we need to evaluate the

integrand.

8.3.1 Staple yarn

The algorithm is as follows: given texture coordinates on the cloth, find the type of

yarn segment, j, that the shading point falls into and the (x, y) coordinates relative

to the center of that segment’s rectangle. Compute u from y using Equation 8.2

and then find the point where the ideal specular reflection occurs v(ωi, u, ωr) us-

ing Equation 7.4. Next, we evaluate the geometry factor Gv using Equation 7.6,

the phase function fc using Equation 7.8, and the attenuation function A using

Equation 7.9. Multiply the three together and we have the integrand. On the re-

flectance model, depending on the numerical integration method used, this process

is repeated several times on different points on the fabric. The pseudocode for the
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reflectance model on staple yarn can be seen in Algorithms 1 and 2.

On the texture model, we instead compute x(v) from this v(ωi, u, ωr) using

Equation 8.2 and clamp it to the range ±(w − ∆x)/2. Compute χ using Equa-

tion 8.3. Finally, compute the BTF T (x, y, ωi, ωr) using Equation 8.5 and return

the sum of ksT (x, y, ωi, ωr) and kd. The pseudocode for the texture model on staple

yarn can be seen in Algorithm 5.

8.3.2 Filament yarn

The algorithm is as follows: given texture coordinates on the cloth, find the type of

yarn segment, j, that the shading point falls into and the (x, y) coordinates relative

to the center of that segment’s rectangle. Compute v from x using Equation 8.2

and then find the point where the ideal specular reflection occurs u(ωi, v, ωr) us-

ing Equation 7.5. Next we evaluate the geometry factor Gu using Equation 7.7,

the phase function fc using Equation 7.8, and the attenuation function As using

Equation 7.9 and Equation 7.10. Multiply the three together and we have the inte-

grand. On the reflectance model, depending on the numerical integration method

used, this process is repeated several times on different points on the fabric. The

pseudocode for the reflectance model on filament yarn can be seen in Algorithms

3 and 4.

On the texture model, we instead compute y(u) from this u(ωi, v, ωr) using

Equation 8.2 and clamp it to the range±(l−∆y)/2. Compute χ using Equation 8.3.

Finally, compute the BTF T (x, y, ωi, ωr) using Equation 8.5 and return the sum

of ksT (x, y, ωi, ωr) and kd. The pseudocode for the texture model on filament yarn

can be seen in Algorithm 6.
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fr(ωi, ωr) = integrate staple integrand from −umax to umax;1

return kd + ksfr(ωi, ωr);2

Algorithm 1: Reflectance model on staple yarn

Compute u from y using (8.2);1

Compute ideal specular reflection location v(ωi, u, ωr) using (7.4);2

if |v(ωi, u, ωr)| < π/2 then3

Compute Gv using (7.6);4

Compute fc using (7.8);5

Compute A using (7.9);6

return GvfcA;7

else8

// ideal specular reflection is not visible

return 0;9

end10

Algorithm 2: Staple integrand
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fr(ωi, ωr) = integrate filament integrand from −π
2

to π
2
;1

return kd + ksfr(ωi, ωr);2

Algorithm 3: Reflectance model on filament yarn

Compute v from x using (8.2);1

Compute ideal specular reflection location u(ωi, v, ωr) using (7.5);2

if |u(ωi, v, ωr)| < umax then3

Compute Gu using (7.7);4

Compute fc using (7.8);5

Compute As using (7.9) and (7.10);6

return GufcAs;7

else8

// ideal specular reflection is not visible

return 0;9

end10

Algorithm 4: Filament integrand
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Compute u from y using (8.2);1

Compute ideal specular reflection location v(ωi, u, ωr) using (7.4);2

if |v(ωi, u, ωr)| < π/2 then3

Compute Gv using (7.6);4

Compute fc using (7.8);5

Compute A using (7.9);6

Compute x(v) from v(ωi, u, ωr) using (8.2);7

Clamp x(v) to the range ±(w −∆x)/2;8

Compute χ using (8.3);9

Compute BTF T (x, y, ωi, ωr) using (8.5);10

return kd + ksT (x, y, ωi, ωr);11

else12

// ideal specular reflection is not visible

return 0;13

end14

Algorithm 5: Texture model on staple yarn
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Compute v from x using (8.2);1

Compute ideal specular reflection location u(ωi, v, ωr) using (7.5);2

if |u(ωi, v, ωr)| < umax then3

Compute Gu using (7.7);4

Compute fc using (7.8);5

Compute As using (7.9) and (7.10);6

Compute y(u) from u(ωi, v, ωr) using (8.2);7

Clamp y(u) to the range ±(l −∆y)/2;8

Compute χ using (8.3);9

Compute BTF T (x, y, ωi, ωr) using (8.5);10

return kd + ksT (x, y, ωi, ωr);11

else12

// ideal specular reflection is not visible

return 0;13

end14

Algorithm 6: Texture model on filament yarn
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Results
We implemented our reflectance model in matlab for data fitting and the texture

model in a Monte Carlo ray tracing system written in Java for rendering. In the

renderer, the cloth model acts as a spatially varying BRDF. It receives texture

coordinates, a shading frame, and incident and exitant directions, and it uses the

texture model to compute a BRDF value that is returned to the system.

The general behavior of the model can be understood starting from the de-

generate case of ψ = 0 and umax = ε (for a small nonzero ε), which describes a

surface covered with parallel, perfectly specular fibers and would produce a very

bright and thin anisotropic highlight (like a machined metal surface). As umax is

increased, the range of tangents present expands, causing the highlight to spread

out. The distribution of intensity across the highlight is controlled by the shape of

the yarn segment. A circular torus creates a fairly uniform highlight; a shape that

is straighter near the ends leads to bright edges (as seen in the polyester); a shape

that is flatter near the middle would lead to a highlight that falls off smoothly with

long tails. In this filament mode, the model behaves somewhat like (though not

identically to) a microfacet BRDF with a long, narrow facet normal distribution.

Increasing umax from zero also causes the highlight to broaden, but in a different

and asymmetric way. The fiber parameters control the intensity disribution along

the highlight. The weave parameters principally serve to establish the texture

and to balance the brightness of warp and weft, though they do subtly affect the

reflection pattern by affecting the relationship between R and a.

To compare our model to the BRDF data, we selected parameters by a com-
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Figure 9.1: BRDF comparison: cotton twill.
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Figure 9.2: BRDF comparison: cotton denim.



91

60°

30°

101.5

0.30

measurement
red channel

60°

30°

101.5

0.30

model
red channel

60°

30°

101.5

0.30

measurement
green channel

60°

30°

101.5

0.30

model
green channel

60°

30°

101.5

0.30

measurement
blue channel

60°

30°

101.5

0.30

model
blue channel

Figure 9.3: BRDF comparison: wool gabardine.



92

60°

30°

102.5

0.81

measurement
red channel

60°

30°

102.5

0.81

model
red channel

60°

30°

102.5

0.81

measurement
green channel

60°

30°

102.5

0.81

model
green channel

60°

30°

102.5

0.81

measurement
blue channel

60°

30°

102.5

0.81

model
blue channel

Figure 9.4: BRDF comparison: polyester lining cloth.



93

60°

30°

102.5

0.88

measurement
red channel

60°

30°

102.5

0.88

model
red channel

60°

30°

102.5

0.88

measurement
green channel

60°

30°

102.5

0.88

model
green channel

60°

30°

102.5

0.88

measurement
blue channel

60°

30°

102.5

0.88

model
blue channel

Figure 9.5: BRDF comparison: silk charmeuse.
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Figure 9.6: BRDF comparison: silk shantung.
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bination of direct measurement and manual and automatic fitting. The model

produces complex multi-component BRDFs, and fully automatic fitting proved

unreliable because of the difficulty of balancing fit in highlights against more dif-

fuse regions, fitting a weak weft component underneath the much brighter warp

residual, and balancing texture appearance against BRDF fit.

The weave dimensions and approximate values of ψ were measured by observing

the samples under a microscope, then umax, ψ, α, and β were chosen by plotting

the model BRDF for a coarse grid of parameters and picking parameters to yield

a good match to the measurement BRDF. For each setting of these parameters,

automatic linear fitting was used to obtain specular and diffuse coefficients to

match the data. Comparisons between the reality and the model can be seen in

Figures 9.1, 9.2, 9.3, 9.4, 9.5, and 9.6.

The median relative error was 21%, 18%, 12%, 19%, 40%, and 28% for cotton

twill, cotton denim, wool gabardine, polyester lining cloth, silk charmeuse, and

silk shantung, respectively. The 80th percentile relative error was 36%, 34%, 27%,

39%, 69%, and 54%. Note that our fitting procedure did not attempt to minimize

this error metric.

Using the same parameters as in the BRDF comparisons, we rendered anima-

tion sequences to match the known viewing, illumination, and surface geometry

from the turntable videos (described in Chapter 5). To compare them to the videos

(captured with a different camera), we computed a color space transformation from

photographs of a standard color chart and applied it to put the rendered images

in the color space of the photographs. Please refer to the accompanying video for

the complete turntable sequences. Weave patterns of the fabrics we analyzed are

shown in Figure 5.1.
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Figure 9.7: A frame from turntable video of cotton twill

Figure 9.8: Rendering of cotton twill
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Figure 9.9: A frame from turntable video of cotton denim

Figure 9.10: Rendering of cotton denim
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Figure 9.11: A frame from turntable video of wool gabardine

Figure 9.12: Rendering of wool gabardine
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Figure 9.13: The darkening effect of shadowing and masking can be seen at grazing

angle on denim (left image). Because our model lacks a shadowing and masking

term, our rendered image (right image) doesn’t have this darkening effect. This

demonstrates the extent to which shadowing and masking affect the BRDF of

cloth.
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9.1 Staple Fabrics

The BRDFs of staple fabrics are asymmetrical with a forward-scattering lobe. This

general structure is well matched by our model (though our forward-scattering

lobe is not as strong as the reality). One interesting feature in the BRDFs is the

darkening at grazing angles due to shadowing and masking. This effect can be

observed in the accompanying turntable video, in particular on denim. However,

it is relatively minor (see Figure 9.13) and suggests that shadowing and masking

have less influence on the appearance of staple cloth than is commonly accepted.

Because of the fairly subtle BRDFs, texture is often the prominent feature of

staple fabrics. Our model is able to replicate the twill ribs in cotton twill, including

the small dots of reflections between the ribs. For cotton denim, we are able to

model the white dots seen in the photograph and also the thin slivers of blue

reflections between the white dots. The wool gabardine is coarser than the cotton

twill with a higher ratio of weft to warp area and the red dots between the twill

ribs are easier to notice here. Even though our texture model operates purely in

a 2D manner (simple, blocky highlights on rectangles), the three fabrics rendered

using our model give an illusion of depth and three-dimensional structure.

9.2 Filament Fabrics

The contribution of the warp and weft yarns to the BRDFs of filament fabrics

can be easily discerned from looking at the BRDF plots. Filament fabrics with

warp and weft yarns of the same color and brightness, such as our polyester lining

cloth, have a cross shaped BRDF. In warp-dominated filament fabrics, such as

our silk charmeuse, one of the bars of the cross is less prominent; conversely, in
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Figure 9.14: A frame from turntable video of polyester lining cloth

Figure 9.15: Rendering of polyester lining cloth
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Figure 9.16: A frame from turntable video of silk charmeuse

Figure 9.17: Rendering of silk charmeuse
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Figure 9.18: A frame from turntable video of silk shantung

Figure 9.19: Rendering of silk shantung
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weft-dominated fabrics, such as our silk shantung, the other bar is less prominent.

Polyester lining cloth demonstrates a superposition of two highlights, which

is also predicted by our model. It also shows some irregularities along the edge

of the highlights, which we modeled using the correlated noise described in the

previous section. The edge-brightening effect seen in the photograph and the

BRDF is modeled effectively by using a hyperbolic shape for the segment spine (as

is appropriate for a tightly woven plain weave fabric). Silk charmeuse has much

thinner and brighter highlights with no apparent edge-irregularity. Because this is

a warp-dominated satin weave, we expect the warp segments to be prominent and

the weft segments less so, which can be seen both in the BRDF and in the video.

Silk shantung is woven with bright red weft yarns and darker warp yarns. Up close,

the texture looks like a grid of red dots. Shantung shows strong irregularities along

the edge of its highlights in form of cross-hatch formations. Similar to the polyester

lining cloth, shantung is a plain weave fabric and shows a mild edge-brightering

effect. The lack of good match for highlight profile in silk can be attributed to the

properties of silk fibers (such as their unusual cross section) to be studied in future

work.

9.3 Modeling New Fabrics

The examples we presented here were produced with a lot of effort to validate our

model against reality. To use the model to produce images of new fabrics, it is

not necessary to go through elaborate effort. Color and weave pattern (including

segment rectangle width w and length l) can be observed. For relatively matte

fabrics (staple fabrics and plain weave filament fabrics), the values α = 0.01 and

β = 4.0 work well; for shinier fabrics (such as charmeuse), a higher value of beta
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works better. On staple fabrics, δ = 0; for filament fabrics, we can set δ = 0.5.

For staple fabrics, a value of ψ = −30◦ or ψ = 30◦ work well; ψ = 0 for filament

fabrics. The value of umax varies according to the weave pattern, but umax = 30◦

is a good place to start. In twill weave and satin weave, the umax for the more

dominant yarn is smaller than the umax of the less dominant yarn. The value of κ

can be safely set to 0 for staple fabrics. For plain weave filament fabrics, κ should

be set to a value less than 0 to model the edge-brightening effect. Conversely,

κ > 0 works well for satin weave filament fabrics.
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Conclusion
The appearance of cloth depends on the textile fiber and production method.

Among the many ways of transforming a collection of textile fibers into a piece of

cloth, weaving is the most common method and woven cloth makes up the majority

of commercial fabrics. Woven cloth is also interesting because its appearance varies

greatly depending on the textile fibers and the weave pattern used, from the matte

denim found in blue jeans to the shiny silk charmeuse. This work has presented an

extensive study of light reflection from woven fabrics, starting from measurements

and ending with a model for the appearance of woven cloth.

Our reflectance measurements show a variety of phenomena, ranging from sharp

anisotropic highlights to asymmetric non-Lambertian diffuse patterns, and our

model demonstrates that most of these features can be explained as resulting from

specular reflection, once the structured geometry of the material is taken into

account. The textures we produce, again using only specular highlights, capture

the correct appearance over a remarkable range of conditions. These results are in

contrast with the prevailing assumption that the most important features of the

reflectance, and especially the texture, of fabrics with generally matte appearance

are mainly due to diffuse reflection and shadowing–masking.

We expect our model will be useful in practice wherever realistic cloth appear-

ance is needed. Although the derivation is fairly involved, the texture model itself

is not difficult to evaluate. Although the full form of the BRDF model requires

a numerical integration, the integrand is well behaved and the integration can be

done with a simple numerical integration routine such as the Trapeziodal Rule.
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One major advantage of using our model is that it doesn’t require any data

and thus can be used to model an arbitrary piece of fabric, even one that is not

available or has not been manufactured. In contrast, data-based models do require

BTF data of the fabric to be modeled. Not only does this require a large storage

space, but it also is able to model only the specific fabric that has been captured

and stored in the database. Our model also comes with physically meaningful

parameters, which is very important for the users of this model to be able to

tweak the appearance of the fabric to suit their particular need. This connection

to the fabric properties is also important for textile applications. Ultimately, our

goal is to extend the range of analytical models by making one for woven cloth

available.

The framework we have established in order to build our model can be used to

build other, more sophisticated fabric scattering models as future work. Research

should be done into appropriate phase function models; the empirical forward-

scattering function we use is just a start and a better model should be developed

based on actual measurements of the scattering properties of textile fibers and

yarns.

More sophisticated models for attenuation that dissipate light according to the

distance it travels can also be used. Measurements of light transmission from a

piece of cloth should be done. With proper analysis, it may be possible to further

expand this to a model of transmission of light.

We have ignored inter-yarn interactions in order to concentrate on specular re-

flection, but some effects of these interactions are visible in the data. For instance,

the white weft dots in denim disappear in the turntable photographs at grazing an-

gles, and the warp component of charmeuse shows a sharpening for grazing angles
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that we conjecture is a shadowing effect (vertical features in the center column of

the data). In order to correctly predict the appearance of materials with dissimilar

warp and weft tensions or colors, a model for shadowing/masking is required. One

idea is to use the idea of horizon mapping to model the height difference between

the valleys and the hills of a piece of woven cloth.

To improve the appearance of rougher pieces of cloth made of wool, a model

for stray fibers is required, possibly by using randomly generated curves on the

surface of the cloth.

Finally, it would be interesting to extend this framework to model knitwear;

instead of using conic sections to model the spine curve, we can use more complex

curves to model the way yarns form loops in a knitwear. This transition from plane

curves to general 3D curves will affect the specular reflections from the yarns. The

yarns themselves are no longer arranged in rectangular segments and a new way

to represent them will be needed.
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