
SYNTHESIS OF TRANSLINEAR ANALOG SIGNAL

PROCESSING SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Eric John McDonald

August 2004



c© 2004 Eric John McDonald

ALL RIGHTS RESERVED



SYNTHESIS OF TRANSLINEAR ANALOG SIGNAL PROCESSING

SYSTEMS

Eric John McDonald, Ph.D.

Cornell University 2004

Even in the predominantly digital world of today, analog circuits maintain a sig-

nificant and necessary role in the way electronic signals are generated and pro-

cessed. A straightforward method for synthesizing analog circuits would greatly

improve the way that analog circuits are currently designed. In this dissertation,

I build upon a synthesis methodology for translinear circuits originally introduced

by Bradley Minch that uses multiple-input translinear elements (MITEs) as its

fundamental building block. Introducing a graphical representation for the way

that MITEs are connected, the designer can get a feel for how the equations relate

to the physical circuit structure and allows for a visual method for reducing the

number of transistors in the final circuit. Having refined some of the synthesis

steps, I illustrate the methodology with many examples of static and dynamic

MITE networks. For static MITE networks, I present a squaring reciprocal circuit

and two versions of a vector magnitude circuit. A first-order log-domain filter and

an RMS-to-DC converter are synthesized showing two first-order systems, both

linear and non-linear. Higher order systems are illustrated with the synthesis of

a second-order log-domain filter and a quadrature oscillator. The resulting cir-

cuits from several of these examples are combined to form a phase-locked loop

(PLL). I present simulated and experimental results from many of these exam-



ples. Additionally, I present information related to the process of programming

the floating-gate charge for the MITEs through the use of Fowler-Nordheim tun-

neling and hot-electron injection. I also include code for a Perl program that

determines the optimum connections to minimize the total number of MITEs for

a given circuit.
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Chapter 1

Analog Circuit Design

The recent technology trends for computers and electronics have been focused on

pushing digital circuits toward faster clock speeds and smaller channel lengths while

still using the analog circuits of yesterday. The lengthy design time required to go

from system specification to circuit design has partially contributed to this setback

in analog advancements. Even though the analog part of a mixed-signal circuit

is generally quite small in comparison to its digital counterpart, it is essential for

interfacing with the analog signals of the real world.

With the boom in wireless communications, low power supply and minimal

power consumption have become extremely important. Low-power, compact ana-

log circuits could be used to replace their bulky power-hungry digital counterparts

if the design time could be reduced. Without a defined method for approach-

ing analog circuit design, each design must be approached starting from scratch

or alternately, modifications can be made to an existing circuit if the systems’

functionalities match. A circuit synthesis methodology, originally introduced by

Minch [20,21,24], allows for a straightforward path from a high-level system spec-

ification to transistor-level circuit design.

1
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This methodology describes the construction of a class of circuits known as

static and dynamic translinear circuits [12, 23, 30, 40]. These circuits are able to

realize a wide range of systems whose behavior is described by polynomial con-

straints or algebraic differential equations. The following work is not intended to

be a complete tutorial on the entirety of the methodology but rather to expand

upon the already published work in this area. Specifically, I focus on some of the

more ambiguous aspects of this methodology using many circuit examples to high-

light the result of certain design decisions. Refining some of the original synthesis

steps, I hope to make the methodology easier to understand and use. Addition-

ally, I present a detailed discussion of issues related to actually realizing circuits

in silicon using this methodology. For a more detailed discussion, see [11, 30] for

translinear circuits in general and [17] for the basis of this methodology.

1.1 Analog Signal Processing

Whether we are willing to admit it or not, the world is not going digital anytime

soon. It is probably true that 99% of the products on our shelves are fundamentally

digital. Digital circuits are powerful. Digital signal processing is everywhere and

its abilities seem limitless. At some point, the question changes from “Can a digital

circuit do this?” to “Should a digital circuit do this?” There is no way of bypassing

the fact that the world is analog. The best we can do is take an analog sensor

(photo-sensitive transistors, microphones, stress sensors, etc.), run it through an

analog anti-aliasing filter, and then feed it to an analog-to-digital converter. In

the other direction, the minimum path would include the digital output passing

through a digital-to-analog converter, a reconstruction filter, and then going into
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whatever output device is required (loudspeaker, monitor, etc.). In either case, the

signal either starts as being analog or ends as being analog.

If we have to deal with an analog signal anyway, it might be beneficial to

also process that signal in an analog fashion either before we make it digital or

instead of processing it digitally at all. In the case of wireless electronics, low-

power operation is ultimately the most important feature. A wireless phone that

could automatically convert your voice into text and email it to a friend would be

worthless if the battery only lasted 15 minutes. Every system designer must be

aware of the total power consumption required by the system. If we can perform the

same digital operations using a similar analog counterpart and reduce the power

consumption, then it is surely worthwhile to explore the possibilities of analog

signal processing.

1.2 Analog Versus Digital

In signal processing, as with most things, there is a tradeoff between power con-

sumption and precision. For digital signal processing, increasing precision means

adding more bits to the numbers which increases power consumption and com-

plexity but does so in a linear way. For analog signal processing, increasing the

precision sometimes means simply increasing the power by increasing the current

levels. However, since power is a quadratic function of current level, doubling the

current level to get an extra bit’s worth of precision quadruples the power con-

sumption. The real advantage of analog systems is that they use the physics of

the actual devices to perform the calculations. The advantage of this is that it

is possible to perform complex calculations with a relatively few number of tran-
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sistors compared to the number of devices a similar digital system would require.

This leads to small areas and lower power than the digital counterpart. However,

the drawback is that the modeling of the physics of the devices is never exact,

thereby limiting the precision of these calculations. Due to the inherent nature of

digital circuits, each stage includes a full signal restoration and the only accumu-

lated noise is a result of numerical rounding. Alternately, analog systems have to

compete with temperature variations, mismatch, and offsets as well as the inaccu-

racies of the modeling. All of these sources of error for analog circuits accumulate

throughout the entire system.

Power consumption, area (size), precision (noise), and signal frequency are the

main characteristics to be examined when considering how to process a signal.

Where high precision arithmetic is required, digital signal processing is most likely

the better choice. If medium or low precision is all that is needed, then it is

possible that analog signal processing may prove to be the more efficient option.

Sarpeshkar suggests that analog signal processing is often better in power and area

for applications requiring under 10 bits of precision (∼60dB SNR) [38]. However,

some more subtle factors play a role in determining which style is best suited for

a certain application such as available tools, designer skills, and required time

to market. Because there are seemingly endless ways of implementing various

systems, deciding whether analog or digital signal processing is most appropriate

is not obvious. If it can be accepted that there are some cases when analog signal

processing is useful, then it follows that it is worthwhile to research ways of creating

such analog systems in a straightforward and efficient manner.

There are many CAD tools on the market today that assist in creating digital

circuits from high level circuit descriptions including programming languages like
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VHDL and reconfigurable devices such as FPGA’s that allow for fast prototyping.

While current research is being done on various ways to synthesize analog circuits

[1,3,10,15,19,21,24,26,29,30,32,37,39,44,46,47], none have been proven to be able

to be used for an automated method of circuit synthesis that can produce circuits

that perform a wide range of functions. Often times, these techniques will only

provide proper sizing and biasing for a fixed circuit topology and are not applicable

to a wide range of applications. Alternately, several methods based on a variety

of ”analog cells” have be developed including a method based on the Bernoulli

cell for log-domain filters [3] and one that uses a “tau-cell” to implement arbitrary

differential equations [51]. An overview of some automated design techniques that

use a cell-based method can be found in [1] and some more recent work in [16,43,47].

In spite of the ongoing work, the currently published synthesis methods are either

very limited in what functions they can perform or are too complicated and unclear

to be used by the average reader.

Without the aid of a straightforward synthesis methodology, if one wants to

design an entire analog system from scratch, he will be investing a great deal

of time and energy. The synthesis methodology described in this dissertation

is intended to be concise enough to be understood by the majority of readers,

allowing them to reduce the amount of time required for analog design and create

a solid foundation upon which CAD tools can be designed to further lessen the

required work. (Appendix C includes the code for a very rough Perl program

that was written to perform part of the synthesis methodology described in this

dissertation.)
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1.3 Why Translinear?

In 1975, Barrie Gilbert coined the term translinear by noting that the trans-

conductance for a bipolar junction transistor varies linearly with the current. This

term also applies to the behavior of a MOSFET when operated in weak inver-

sion or subthreshold. An emerging class of circuits, referred to as translinear

circuits [12, 23, 30, 40], has been shown to provide a solid foundation for building

circuits that can compute a large variety of functions. A subset of this class of

circuits, known as log-domain filters, has also proven useful for performing various

kinds of filtering operations.

Expanding upon this class of circuits, Minch developed another subset of

translinear circuits using circuit elements labeled as multiple-input translinear ele-

ments (MITEs) [17]. MITEs can be implemented in a variety of fashions and lend

themselves well to a double-poly process. It is also possible to implement MITEs

in any single-poly process as detailed in [25]. When combined to form complex

systems, these MITE networks are capable of performing numerous functions in-

cluding any systems defined by algebraic differential equations and polynomial

constraints. Minch further went on to develop a structured synthesis methodology

for constructing MITE networks. The following pages expand upon this body of

work in hopes that it will advance the understanding of how MITE networks are

created, provide evidence as to their validity, and inspire further research into their

development.
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I

w2

w1

wk Vk

V2

V1

(a)

I

w2

w1

wk Vk

V2

V1

Vcp

(b)

Figure 1.1: Two possible MITE implementations. (a) An simple k-input MITE

realized by a floating-gate PMOS transistor operated in weak inversion. (b) A

more practical implementation including a cascode transistor (with bias voltage,

Vcp) to reduce the Early effect and the gate-drain parasitic. All results are obtained

from circuits using this cascoded implementation.

1.4 Multiple-Input Translinear Elements

By limiting circuit construction to identical building blocks, MITEs, a straightfor-

ward synthesis methodology for analog circuits has become possible. Figure 1.1

shows two of many implementations of a k-input MITE. For an ideal MITE, the

output current, I, is given by

I = Ise
κ(w1V1+···+wkVk)/UT , (1.1)

where Is is a pre-exponential scaling current, κ accounts for the back-gate effect, Vk

is the kth input voltage, wk is a dimensionless positive weight that scales Vk, and

UT is the thermal voltage, kT/q. MITEs can be realized using a variety of tran-

sistor configurations [17, 21]. However, to simplify schematics, for the entirety of
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this dissertation, I implement MITEs using the non-cascoded floating-gate PMOS

transistor, shown in Fig. 1.1(a). For all simulated and experimental results, MITEs

are implemented with the cascoded implementation, shown in Fig. 1.1(b). From

MITEs, we can build more complex translinear circuits, called static MITE net-

works [21,22,24] (vector magnitude circuits, squaring-reciprocal circuits, etc.) and

dynamic MITE networks (log-domain filters, oscillators, RMS-to-DC converters,

etc.) [18,20,21].

1.5 MITE Fundamentals

As mentioned in Section 1.4, we implement MITEs using floating-gate transistors.

By connecting several capacitors to the floating-gate of a transistor, we gain the

ability to have multiple controlling voltages. The effective floating-gate voltage

can be calculated as the weighted sum of the control gate voltages. The weight of

each control gate voltage is given by the ratio of that control gate capacitance to

the total capacitance at the floating-gate, i.e.,

wi =
Ci

∑k
i=1Ci + Cparasitic

=
Ci

Ctotal
(1.2)

Since we ultimately want to connect multiple MITEs together, we would like these

control gate weights to be equal across all MITEs. With good layout techniques

and adequately sized transistors and capacitors to make mismatch negligible (area

of capacitors ≥ 100λ2, W/L of transistors ≥ 20/4), we can assume that the parasitic

capacitance will be approximately equal for all MITEs. Using unit-sized control

gate capacitors with an equal number per MITE will both swamp out variations in

parasitics and create uniform weights. With these requirements, Eq. 1.2 simplifies
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to

w =
Ccg

kCcg + Cparasitic
=

Ccg

Ctotal
, (1.3)

where Ccg is the capacitance for a unit-sized control gate thereby creating uniform

weights for every control gate.

As shown in Fig. 1.1(a), a single floating-gate transistor could be used for MITE

implementation. However, the gate-drain overlap capacitance causes this imple-

mentation to have an unacceptable performance. With floating-gate transistors,

the drain voltage can be thought of as an additional controlling voltage where

the gate-drain overlap capacitance determines its weight. We can remove almost

all dependency on the drain voltage by using a cascode transistor, as shown in

Fig. 1.1(b). This configuration also has the positive effect of drastically reducing

the Early effect.

With the drain voltage’s influence on the floating-gate voltage effectively re-

moved, the floating-gate voltage can be calculated as the weighted sum of the

control gate voltages plus the charge trapped on the floating-gate itself.

Vfg =
k∑

i=1

wiVi +
Q

Ctotal

(1.4)

(Since the drain voltage variance should be small and the gate-drain overlap ca-

pacitance is nearly constant over the operating range, the drain’s influence on the

floating-gate voltage can be approximated as being constant and therefore, can be

thought of as being lumped in with the trapped charge, Q.)

We can derive the equation for the MITE drain current in Eq. 1.1 by substi-

tuting the expression for Vfg into the relationship between drain current and gate

voltage for a subthreshold MOS transistor,

Id = Ioe
(κVg/UT) . (1.5)
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This substitution results in

Id = Ioe
κ

(
∑k

i=1
wiVi+

Q

Ctotal

)

/UT
, (1.6)

which can be rearranged to find the MITE current expression from Eq. 1.1 by

grouping the floating-gate charge, Q, into the pre-exponential scaling factor, Is,

Id = Ioe
κQ/CtotalUT

︸ ︷︷ ︸

Is

e
κ

(
∑k

i=1
wiVi

)

/UT
. (1.7)

Note that the trapped charge on each control gate, Q, is not uniform across all

MITEs initially and must be adjusted so that each MITE has the same value of Is.

Methods of programming the floating-gate charge are addressed in Appendix A.6.

1.6 Circuit Synthesis Overview

The following chapters detail the specifics of circuit synthesis for various types

of systems and progress in increasing complexity. The synthesis methodology is

summarized by the following overview. First, high-level system descriptions are

broken down into equations of polynomial constraints and first-order differential

equations. The dimensionless variables are replaced by ratios of currents. Any time

derivatives are replaced with a product of currents according to an output structure

primitive. These equations of currents are arranged into translinear loop (TL)

equations and Kirchhoff Current Law (KCL) equations. The TL equations are used

to generate connections between MITEs. Very often, several MITEs are determined

to be redundant and can be removed through a process called consolidation [17].

Once the MITEs are biased with current sources and the constraints in any KCL

equations, they are locally diode connected to force a signal flow and generate the

proper control gate voltages, completing the circuit.



Chapter 2

Static MITE Networks

Due to the exponential relationship between the drain current and the control gate

voltages, MITE networks are ideal for many system implementations. This ex-

ponential relationship coupled with the weighted summation at the floating-gate

allows for the easy calculation of products of currents raised to various powers.

Summations are computed by simply summing currents through Kirchhoff’s Cur-

rent Law (KCL).

The term static MITE networks refers to MITE networks whose high-level

description does not include a dependency on time. In other words, the output

is dependent upon the inputs to the network only and does not retain any kind

of “state”. Examples of static MITE networks are the squaring reciprocal circuit

described by

Iout =
I2
x

Iy

(2.1)

and the vector magnitude circuit described by

Iout =
√

I2
x + I2

y . (2.2)

Sections 2.1, 2.2, and 2.3 outline the steps necessary to synthesize several example

11
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static MITE networks.

2.1 Squaring Reciprocal Circuit

Our first example network will compute the function,

z =
x2

y
, (2.3)

where z is the output given by the square of x divided by y. The first step is to

decompose the high-level description into a collection of translinear loop (TL) and

Kirchhoff Current Law (KCL) equations.

2.1.1 System Decomposition

We replace the dimensionless variables, x, y, and z, by making substitutions of

ratios of currents. We do so by defining a constant unit current, I1, that represents

the number 1. Making three definitions,

x =
Ix

I1

, y =
Iy

I1

, and z =
Iz

I1

, (2.4)

we can replace the original system description with

Iz

I1

=
(

Ix

I1

)2 I1

Iy

. (2.5)

Multiplying through by I1, we can simplify Eq. 2.5 to

Iz =
I2
x

Iy

. (2.6)

It is worthwhile to note that very often the unit currents will cancel out (as in this

example). However, this cancellation does not always occur and therefore this step

is strongly recommended for each decomposition. Next, we rearrange Eq. 2.6 to
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Iy Ix

(a)

Iy Ix Iz

(b)

Iy Ix Iz

Iy Ix

(c)

Iy Ix Iz

Iy Ix

Iz

(d)

Figure 2.1: Synthesis of a squaring reciprocal circuit that computes the function

Iz = I2
x/Iy. (a) MITE connections according to the inverse of the relationship

of powers between Iy and I2
x. (b) Additional MITE connections according to the

inverse of the relationship of powers between I2
x and Iz. (c) Biasing the MITEs

with the input currents for Iy and Ix. (d) Completing the network by making local

diode connections around the Iy and Ix MITEs to generate control gate voltages

and force a signal flow to the output MITE passing Iz.
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remove any quotients, finding a single translinear loop equation (no KCL equations

in this example),

IzIy = I2
x . (2.7)

2.1.2 Translinear Loops

MITE connections are made in a similar fashion to the clockwise/counter-clockwise

method of traditional translinear circuit synthesis. For MITEs, connections are

made from odd currents (left-hand side) to even currents (right-hand side). The

only choices available for this simple circuit are connections from Iz to Ix and from

Iy to Ix. Considering the connection from Iy to Ix, we connect the control gates of

two MITEs according to the inverse of the ratio of their powers. In this case, we

connect two control gates from an Iy MITE to one control gate of an Ix MITE, as

shown in Fig. 2.1(a). A connection from one control gate of the Ix MITE is then

made to two control gates of the Iz MITE according to the relationship between

I2
x and Iz. This last connection is shown in Fig. 2.1(b).

2.1.3 Biasing

Once all connections have been made, we need to bias the MITEs. Biasing can

be completed by either adding current sources for inputs, making connections

according to any KCL equations, or adding NMOS current mirrors. The convention

of labelling the expected MITE current at the transistor has been adopted in order

to eliminate confusion during the biasing stage. This example requires only two

biasing current sources for the two inputs, Ix and Iy. The biased circuit is shown

in Fig. 2.1(c).



15

2.1.4 Diode Connections

Looking at the circuit in Fig. 2.1(c), it is obvious that nothing is driving the ca-

pacitors connecting the MITEs. In order to force these control gate voltages to the

appropriate potentials such that each MITE passes the expected current, we make

local connections from the drains to the control gates. These kind of connections

are referred to as diode connections since they give the MITE a behavior similar

to that of a diode. (An NMOS transistor with the gate and drain tied together

becomes very similar to a diode.) These local feed-back connections ensure that

the MITEs will pass the biasing currents. Since the output MITEs are not biased,

diode connections are not made around them. There is only one possible diode

connection scheme for this circuit, diode connecting around the two input MITEs

(Ix and Iy). The completed circuit is shown in Fig. 2.1(d).

2.2 Vector Magnitude

Suppose that we need a circuit to compute the magnitude of a two-dimensional

vector, [x, y], where we take x and y to be strictly positive. The magnitude can be

computed as the square root of the sum of the squares,

r =
√

x2 + y2 . (2.8)

One possible solution would be to use two squaring circuits whose output currents

are summed at a KCL node. These summed currents can then be used as the input

to a square-rooting circuit. While this straightforward method will work, we can

address this problem as a complete system resulting in a more efficient design.
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2.2.1 System Decomposition

We begin by representing the input and output signals by current ratios,

r =
Ir

I1

, x =
Ix

I1

, and y =
Iy

I1

. (2.9)

By substituting these representations into Eq. 2.8, we find that

Ir

I1

=

√
√
√
√

(
Ix

I1

)2

+
(

Iy

I1

)2

, (2.10)

which can easily be arranged to obtain

(
Ir

I1

)2

=
(

Ix

I1

)2

+
(

Iy

I1

)2

. (2.11)

Multiplying through by I2
1 removes all dependency on I1 resulting in

I2
r = I2

x + I2
y . (2.12)

Dividing through by Ir in order to get a representation of the output current to

the first power,

Ir =
I2
x

Ir
︸︷︷︸

Ir1

+
I2
y

Ir
︸︷︷︸

Ir2

, (2.13)

allows us to find the following KCL equation and two TLP equations:

KCL : Ir = Ir1 + Ir2

TL : Ir1Ir = I2
x Ir2Ir = I2

y .
(2.14)

2.2.2 Translinear Loops

Every circuit construction begins with the TL equations. In this case, we examine

the relationships of the powers of the currents in Eq. 2.14. Noting that these two TL

equations are of the same form as the equation for the squaring reciprocal circuit

of Section 2.1, we can make the same control gate connections (repeated here for
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clarity). Because Ix and Iy are raised to the second power, their connections to

the other MITEs must be in a relationship of one to two. Specifically, the ratio of

connections between any two alternating currents (currents on opposite sides of the

equation) will be the opposite of the ratio of their powers. To list the connections

more succinctly, the TL equations can be rearranged into an alternating pattern

that more clearly represents the MITE connections.

Currents Power ratios Connection ratios

I1
r

-¾ I2
x

-¾ I1
r1 1:2:1 2:1:2

I1
r

-¾ I2
y

-¾ I1
r2 1:2:1 2:1:2

Due to the circuit’s symmetry, we chose to draw the MITEs in a symmetric fashion

by placing the Ir MITEs on the outside, as shown in Fig. 2.2(a).

2.2.3 Consolidation

Once the MITEs have been drawn with the proper connections, it is sometimes

possible to examine the circuit to remove redundant components. In this example,

the Ir MITEs on the ends in Fig. 2.2(a) are identical. Since both of their control

gates are tied together and they are both passing the same current, Ir, then the

voltages on the control gates must be equal. Therefore, we can remove the MITE

on the right end and use only the one on the left, as shown in Fig. 2.2(b). This

can be seen more clearly by examining the current-voltage relationship of a MITE

(with two control gates tied together),

Id = Ise
κ(2wVcg)/UT . (2.15)

Because Id and Vcg are the only varying terms, if the Id’s are equal, then the

Vcg’s must also be equal. A more visual method for consolidation is presented in

Section 2.3.
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Ir Ix Ir1 IrIyIr2

(a)

Ir Ix Ir1 IyIr2

(b)

Ir Ix Ir1 IyIr2

Ir

IyIxIr

(c)

Ir Ix Ir1 IyIr2

Ir

IxIr

IyIr

Ir

(d)

Figure 2.2: Circuit construction for a vector-magnitude circuit.
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2.2.4 Biasing

To bias the circuit in Fig. 2.2(b), we begin by adding current sources to the drains

of the Ix and Iy MITEs since these are the inputs. The Ir1 and Ir2 MITEs are

biased through the use of the KCL equation in Eq. 2.14 by tying their drains

together and connecting those to an NMOS transistor that is passing Ir. Since Ir

is the output of this circuit, we must use an NMOS current mirror to sink Ir for the

KCL constraint. The output MITE (passing Ir) is similarly biased with an NMOS

transistor sinking Ir creating the other half of the current mirror. At this point, it

does not matter which direction the current mirror is going. The direction of the

current mirror is determined when the diode connections are made. Figure 2.2(c)

shows the appropriate biasing additions. Simple NMOS transistors are shown in

all schematics to keep them compact. For all simulated and experimental results,

all NMOS transistors are cascoded to reduce gain error due to the Early effect.

2.2.5 Diode Connections

Diode connections must be made to force the gates (for NMOS transistors) and

control gates (for MITEs) to the proper voltages. Starting with the input MITEs

(Ix and Iy), we diode connect from the drains to the first control gate for each.

The Ir MITE is then diode connected leaving only the NMOS transistor below the

Ir1 and Ir2 MITEs (the KCL node) available for diode connection. The completed

circuit is shown in Fig. 2.2(d). Note that another NMOS transistor is shown to

provide a mirrored copy of Ir as an output. It would also be possible to use a

MITE to mirror Ir as an output should a current source be required instead of a

current sink. Experimental results for this circuit can be found in Section 6.1.

It is possible to choose a different diode connection scheme. The behavior of all
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valid schemes will still be the same to the first order. However, second order effects

will cause varying performance (particularly at higher frequencies). Analyzing

higher order effects for translinear circuits is an ambitious task and beyond the

scope of this dissertation (even more so for MITE networks whose signal flow is

primarily through capacitively coupled nodes). Limited work has been done in the

analysis of higher order effects in log-domain filters by Leung [14] and Frey [10].

2.3 Vector Magnitude with Offsets

Thus far, I have proceeded with the unmentioned assumption that all currents are

positive (as is required for MITE networks). Reconsidering the vector magnitude

function of Section 2.2,

r =
√

x2 + y2 , (2.16)

we observe that r will always be positive due to the squaring functions on x and

y. However, x and y could take on negative values. In order to ensure strictly

positive currents, we can introduce an offset to both x and y,

a = x + f and b = y + f . (2.17)

Squaring both sides of Eq. 2.16 and inserting these new expressions for x and y,

we find

r2 = x2 + y2 = (a − f)2 + (b − f)2

= a2 + b2 + 2f 2 − 2fa − 2fb
(2.18)

2.3.1 System Decomposition

Examining Eq. 2.18, we see that the factor, 2f , appears in three of the five terms on

the right-hand side. Recognizing that by lumping the 2 and the f together when
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the current ratios are introduced, the three terms containing the 2f factor will

only contain two terms instead of three (i.e. I2fIa instead of I2IfIa). Sometimes it

can prove beneficial to leave dimensionless numbers in the equations until later in

the decomposition process, as demonstrated in the oscillator circuit of Section 4.2.

Determining whether making such a grouping simplifies the resulting circuit is

often difficult to see in advance and is usually determined only after trying several

different decompositions.

Defining I2f as 2If , we introduce current ratios and solve for Ir, obtaining

(
Ir

I1

)2

=
(

Ia

I1

)2

+
(

Ib

I1

)2

+
I2f

I1

If

I1

− I2f

I1

Ia

I1

− I2f

I1

Ib

I1

. (2.19)

Finding that every I1 cancels out, the result simplifies to

I2
r = I2

a + I2
b + I2fIf − I2fIa − I2fIb . (2.20)

Dividing both sides by Ir, we obtain

Ir =
I2
a

Ir
︸︷︷︸

Ir1

+
I2
b

Ir
︸︷︷︸

Ir2

+
I2fIf

Ir
︸ ︷︷ ︸

Ir3

− I2fIa

Ir
︸ ︷︷ ︸

Ir4

− I2fIb

Ir
︸ ︷︷ ︸

Ir5

. (2.21)

By introducting five intermediate currents, we reduce this constraint to five TL

equations and one KCL equation:

KCL : Ir = Ir1 + Ir2 + Ir3 − Ir4 − Ir5

TL : Ir1Ir = IaIa Ir2Ir = IbIb Ir3Ir = I2fIf

Ir4Ir = I2fIa Ir5Ir = I2fIb .

(2.22)

For complex networks, I have found that limiting MITEs to two control gates and

only one to one connections simplifies the synthesis process allowing for easier con-

solidation. This also has the added benefit of removing several degrees of freedom

making the automation of this synthesis methodology easier to implement. (Ap-

pendix C includes a Perl program that takes advantage of the two control gate limit
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and finds the best connection scheme in order to maximize consolidation result-

ing in the minimum number of required MITEs.) Limiting MITEs to two control

gates, we represent any currents raised to a power other than one as a repeated

product, as shown in the first two TL equations in Eq. 2.22. This restriction also

allows a rewording of the original Translinear Loop Principal to apply to static

MITE networks:

Following the connections of control gates through a static MITE net-

work limited to one to one connections and two control gates per MITE,

the product of the currents for even MITEs is equal to the product of

currents for odd MITEs when the starting and ending control gates are

at the same potential.

2.3.2 Translinear Loops

Since we have limited MITEs to only two control gates each and one to one con-

nections only, any currents raised to powers greater than one have been repeated

(i.e., I2
a becomes IaIa). The first TL equation, Ir1Ir = IaIa, can be arranged in

one to one connections as

Ir1
-¾ Ia

-¾ Ir
-¾ Ia . (2.23)

This configuration leaves the end MITEs (Ir1 and Ia) without a connection to their

second control gate. According to the balancing theorem [21], we can connect these

unused control gates to a DC reference voltage, labeled Vref in Fig. 2.3. Examining



23

the five TL equations,

Ir1Ir = IaIa

Ir2Ir = IbIb

Ir3Ir = I2fIf

Ir4Ir = I2fIa

Ir4Ir = I2fIb ,

(2.24)

we see that the similarities will provide us with opportunities to consolidate. We

arrange the above equations into the following odd-even pairings:

Ir
-¾ Ia

-¾ Ir1
-¾ Ia

Ir
-¾ Ib

-¾ Ir2
-¾ Ib

Ir
-¾ I2f

-¾ Ir3
-¾ If

Ir
-¾ I2f

-¾ Ir4
-¾ Ia

Ir
-¾ I2f

-¾ Ir5
-¾ Ib .

Figure 2.3 shows the layout of MITEs with these connections.

2.3.3 Consolidation

Looking at the MITE arrangement in Fig. 2.3, we see that the Ir MITEs on the

left can all be shared and that the Ia MITEs along with the Ib MITEs on the right

ends can be shared. When limited to the two control gate structure, opportunities

to consolidate can be seen by observing the order of currents as they accumulate

from the edges and proceed inward. Any time that two or more rows of currents

contain the same ordering on either end, they can be shared, as indicated below

for Ir, Ia, and Ib:
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Ir Ia Ir1 Ia

VrefVref

Ir I2f Ir3 If

VrefVref

Ir Ib Ir2 Ib

VrefVref

Ir I2f Ir5
Ib

VrefVref

Ir I2f Ir4 Ia

VrefVref

Figure 2.3: Initial MITE connections for the radius calculation.
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Ir
-¾ Ia

-¾ Ir1
-¾ Ia

Ir
-¾ Ib

-¾ Ir2
-¾ Ib

Ir
-¾ I2f

-¾ Ir3
-¾ If

Ir
-¾ I2f

-¾ Ir4
-¾ Ia

Ir
-¾ I2f

-¾ Ir5
-¾ Ib

Ir
-¾ Ia

-¾ Ir1
-¾

Ia

Ir
-¾ Ib

-¾ Ir2
-¾

Ib

Ir
-¾ I2f

-¾ Ir3
-¾ If

Ir
-¾ I2f

-¾ Ir4
-¾

Ia

Ir
-¾ I2f

-¾ Ir5
-¾

Ib .

The removal of the redundant MITEs is shown in Fig. 2.4. Looking towards

the insides from the left side, we see that several of the I2f ’s can be shared as

highlighted below.

Ir
-¾ Ia

-¾ Ir1
-¾ Ia

Ir
-¾ Ib

-¾ Ir2
-¾ Ib

Ir
-¾

I2f
-¾ Ir3

-¾ If

Ir
-¾

I2f
-¾ Ir4

-¾ Ia

Ir
-¾

I2f
-¾ Ir5

-¾ Ib

The final MITE network has been reduced to 12 MITEs from the original 20. The

currents highlighted below indicate the MITEs that remain after all consolidations

have been completed. The reduced MITE network is shown in Fig. 2.5.

Ir
-¾

Ia
-¾

Ir1

-¾
Ia

Ir
-¾

Ib
-¾

Ir2

-¾
Ib

Ir
-¾

I2f
-¾

Ir3

-¾
If

Ir
-¾ I2f

-¾
Ir4

-¾ Ia

Ir
-¾ I2f

-¾
Ir5

-¾ Ib

2.3.4 Biasing

The MITEs from Fig. 2.5 have been rearranged into an array, shown in Fig. 2.6.

Biasing for this circuit is very straightforward. Placing current sources for all of
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Ir Ia Ir1 Ia

VrefVref

I2f Ir3 If

Vref

Ib Ir2 Ib

Vref

I2f Ir5

I2f Ir4

Vb

Va

Figure 2.4: Initial consolidations for the radius calculation.
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Ir Ia Ir1 Ia

VrefVref

I2f Ir3 If

Vref

Ib Ir2 Ib

Vref

Ir5

Ir4

Vb

Va

Figure 2.5: Final consolidated MITE network for the radius calculation.
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IfIa Ir1 IbI2fIr3Ib
Ir2 Ir5Ir4 Ir

VrefVref Vref Vref

Ia

Vb Va

Figure 2.6: Final consolidated MITE network for the radius calculation.
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the inputs (Ia, Ib, If , and I2f ) leaves only the outputs of the translinear loops and

the final output, Ir. Observing that the KCL equation equates the sum of Ir1, Ir2,

and Ir3 to the sum of Ir4, Ir5, and Ir, we connect the drains of the appropriate

MITEs and send these two summed currents into a current mirror by adding two

NMOS transistors. The biased circuit is shown in Fig. 2.7.

2.3.5 Diode Connections

Making diode connections around all the MITEs passing input currents leaves just

the two KCL nodes. Choosing to diode connect around the NMOS transistor

passing Ir4 + Ir5 + Ir forces us to diode connect around the Ir3 MITE. The final

circuit is shown in Fig. 2.8.
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IfIa Ir1 IbI2fIr3Ib
Ir2 Ir5Ir4 Ir

VrefVref Vref Vref

Ia

Ir4+Ir5+IrIr1+Ir2+Ir3Ia Ib If I2f Ib Ia

Vb Va

Figure 2.7: Biasing of the radius calculation network.
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IfIa Ir1 IbI2fIr3Ib
Ir2 Ir5Ir4 Ir

VrefVref Vref Vref

Ia

Ir4+Ir5+IrIr1+Ir2+Ir3Ia Ib If I2f Ib Ia

Vr

Vb Va

Figure 2.8: Diode connections to complete the radius calculation network.



Chapter 3

Linear and Non-Linear

First-Order Dynamic MITE

Networks

3.1 Dynamic MITE Networks

A more interesting type of MITE network is called the dynamic MITE network.

These networks are identified by having a dependency on time and most easily

recognized by a d/dt in the system description. Some circuits that fall into this

classification are RMS-to-DC converters, log-domain filters, and oscillators. Two

sample system descriptions are a first-order low-pass filter,

τ
dy

dt
= x − y , (3.1)

and an RMS-to-DC converter,

2τz
dz

dt
+ z2 = u2 − 2uv + v2 . (3.2)

32
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3.2 First-Order Low-Pass Filter

3.2.1 System Decomposition

A first-order low-pass filter of the form,

τ
dy

dt
= x − y , (3.3)

is a good example to demonstrate how to implement a dynamic MITE network.

We can define ratios of currents to represent the variables, x and y, given by

x =
Ix

I1

and y =
Iy

I1

. (3.4)

Introducing these representations, we find that

τ
d

dt

(
Iy

I1

)

=
Ix

I1

− Iy

I1

, (3.5)

which we can simplify by multiplying through by I1, to obtain

τ
dIy

dt
= Ix − Iy . (3.6)

The form of the above equation requires us to introduce an output structure in or-

der to generate the dIy/dt. Either an inverting or a non-inverting output structure

can be used. Experience with both kinds of output structures has indicated that

the non-inverting version often requires additional transistors in order to mirror

currents resulting in a more complicated circuit. Therefore, the inverting output

structure, shown in Fig. 3.1 and detailed in Section 3.2.2, will be used for all

dynamic MITE network examples.

3.2.2 The Inverting Output Structure

In order to analyze this structure (shown in Fig. 3.1) and ultimately find an ex-

pression for dIout/dt, we represent the output current, Iout, in terms of the control
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IC

IDC

C

Vref

Iout

Vout

V

Figure 3.1: Inverting output structure used to introduce a dI/dt.

gate voltages, Vref and Vout,

Iout = Ise
κ(wVref+wVout)/UT , (3.7)

where Vref is a DC reference voltage. Similarly, the current flowing through the

other MITE is represented by

IDC = Ise
κ(wV +wVout)/UT . (3.8)

We can remove Vout by dividing Eq. 3.7 by Eq. 3.8, obtaining

Iout

IDC

= eκ(wVref+wVout−wV −wVout)/UT . (3.9)

Solving for Iout, we find that

Iout = IDCeκ(wVref−wV )/UT . (3.10)

Assuming κ is constant (i.e., only Iout and V vary with time), the derivative of Iout

with respect to time is found to be

dIout

dt
= IDCeκ(wVref−wV )/UT

︸ ︷︷ ︸

Iout

(

−κw

UT

)
dV

dt
, (3.11)
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which can be simplified to

dIout

dt
= Iout

(

−κw

UT

)
dV

dt
. (3.12)

Noticing that the capacitor current, IC, can be defined as

IC = C
dV

dt
, (3.13)

we can use this expression to remove the dV/dt from Eq. 3.12 to find

dIout

dt
= Iout

(

−κw

UT

)
IC

C
. (3.14)

Multiplying both sides by τ and rearranging gives us the desired term on the left-

hand side and the grouped expression on the right-hand side has units of inverse

current.

τ
dIout

dt
= −IoutIC

(
τκw

UTC

)

. (3.15)

We can define a current, Iτ , that can be used to tune the time constant of the

circuit.

Iτ ≡ UTC

τκw
(3.16)

The final result of the analysis of this output structure is an expression for the

derivative of Iout in terms of the capacitor current and a current that controls the

time constant.

τ
dIout

dt
= −IoutIC

Iτ

(3.17)

Using this expression, we can remove all time derivatives during the decomposition

phase. The negative sign on the right hand side gives this structure its name,

inverting output structure. The remaining chapters will assume that every output

structure is of the inverting kind.

It is very important to remember that this result is only valid if the general form

of the output structure is maintained. Specifically, the capacitor must connect to
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the output MITE through a single MITE passing a DC current. The output MITE

must also only have DC voltages connected to its ”unused” control gates (shown

as being connected to Vref in Fig. 3.1). This configuration is easily maintained by

restricting the output currents to be on either end of the connection graphs with

DC currents as their inner neighbors. It is a good practice to double-check that the

form of the output structure has been maintained after the circuit is completed.

3.2.3 System Decomposition Continued

Using the expression derived from the inverting output structure, we can continue

to decompose the low-pass filter description in Eq. 3.6. Note that a separate output

structure is required for every derivative. See Sections. 4.1 and 4.2 for examples

of higher order systems requiring multiple output structures. Replacing τdIy/dt

according to the relationship in Eq. 3.17 (Iout is replaced with Iy), we find that

−ICIy

Iτ

= Ix − Iy . (3.18)

Because the capacitor current, IC, is not an input current and not generated by a

transistor, it cannot be a part of any TL equation. Therefore, all equations must

be solved for any capacitor currents (if they are present) in order to ensure that

they are only included in KCL equations. Solving for IC, we obtain

IC = Iτ −
IτIx

Iy
︸ ︷︷ ︸

ITL

, (3.19)

which leaves us with the following KCL equation and TL equation:

KCL : IC = Iτ − ITL

TL : ITLIy = IτIx .
(3.20)
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3.2.4 Translinear Loops

We can begin to construct this circuit by examining the TL equation shown in

Eq. 3.20. Because all currents are of the first degree, we can connect them in

an alternating pattern of one to one connections as shown in Fig. 3.2(a) and as

detailed below:

Ix
-¾ ITL

-¾ Iτ
-¾ Iy .

Note that we have maintained the output structure ordering by placing the output

current, Iy, on the right end with a DC current, Iτ , as its inner neighbor.

We begin with a MITE for Ix from the right-hand side and make a single

connection to a MITE for ITL from the left-hand side. Then using the other

control gate of the ITL MITE, we make a connection to a MITE for Iτ from the

right-hand side. The connections are completed with a final connection from the

remaining control gate of Iτ ’s MITE to a MITE for Iy. This order was chosen

because Ix is the input and Iy is the output thus giving a signal flow from left to

right. Note that the unused control gates on both ends have been given connections

that are connected to a reference voltage (also ensuring that the output structure

relationship remains valid).

3.2.5 Biasing

Each MITE needs to be biased according to the label shown on the floating-gate

transistors. We accomplish this by connecting input current sources to the drains

for the Ix and Iτ MITEs. The KCL equation (from Eq. 3.20) is then used to bias

the ITL MITE. Figure 3.2(b) shows the circuit with the proper biasing.
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Ix ITL Iτ Iy

Vref Vref

(a)

Ix
Ic

Ix IτIτ

C

Iy

ITL Iτ Iy

Vref Vref

(b)

Ix
Ic

Ix IτIτ

C

Iy

ITL Iτ Iy

Vref Vref

(c)

Figure 3.2: Circuit construction for a first-order low-pass filter.
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3.2.6 Diode Connections

Since the signal flow of this circuit is very obviously left to right, we make the

diode connections in the same direction starting with the input MITE passing Ix.

The KCL node is then diode connected. The circuit is completed with the final

diode connection of the Iτ MITE. Figure 3.2(c) shows the completed low-pass filter

circuit and experimental data from this circuit can be found in Section 6.2.

3.3 RMS-to-DC Converter

Suppose that we need to implement an RMS-to-DC converter, which we can de-

scribe in the time domain with two static nonlinear constraints and a linear ordi-

nary differential equation, given by

x = w2, τ
dy

dt
+ y = x, and z =

√
y, (3.21)

where w is the input signal, whose RMS amplitude we want to compute, x is

the square of the input signal, y is a low-pass filtered version of x, giving an

approximation of the time average of the square of the input signal, and z is the

output of the system, giving the square-root of the time average value of the square

of the input signal. We shall assume that w can take on both negative and positive

values. Since all variables are represented by currents and must be strictly positive,

we will need to provide a DC offset, v, which will make positive the total input,

u = w + v, to the circuit that computes x. Note that x = w2 will always be a

nonnegative quantity, so the low-pass filter only needs to be single-ended.
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3.3.1 System Decomposition

One approach to designing such a circuit would be to synthesize separately a

squaring circuit, a first-order low-pass filter, and a square-root circuit and cascade

these together with current mirrors. Although this approach will work, we shall

take a different tact in this example, resulting in a more efficient implementation.

We begin by eliminating x and y from the description of the system given in

Eq. 3.21. We have that

x = w2, y = z2, and
dy

dt
= 2z

dz

dt
, (3.22)

which we can substitute into the ordinary differential equation in Eq. 3.21, thereby

obtaining a first-order algebraic differential equation, given by

2τz
dz

dt
+ z2 = w2 . (3.23)

However, this equation is not directly implementable as a dynamic translinear

circuit because w can be positive or negative. To remedy this situation, we sub-

stitute u − v for w into this equation and expand the right-hand side to obtain a

directly-implementable equation, given by

2τz
dz

dt
+ z2 = u2 − 2uv + v2 . (3.24)

Next, we represent u, v, and z as ratios of signal currents to a unit current, I1,

given respectively by

u =
Iu

I1

, v =
Iv

I1

, and z =
Iz

I1

. (3.25)

We substitute these representations into Eq. 3.24 and after multiplying both sides

of the equation by I2
1 , we obtain

Iz

(

2τ
dIz

dt

)

+ I2
z = I2

u − Iu (2Iv) + I2
v . (3.26)
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In order to implement the time derivative in this equation, we use the inverting

output structure to replace 2τdIz/dt with −IzIC/Iτ to get

Iz

(−IzIC

Iτ

)

+ I2
z = I2

u − IuI2v + I2
v . (3.27)

Note that we have absorbed the first 2 into the τ constant which becomes part of

Iτ ,

Iτ =
UTC

2τκw
, (3.28)

and the second 2 into the offset current Iv,

I2v = 2Iv . (3.29)

Solving for IC, we find

IC = Iτ −
IτI

2
u

I2
z

︸ ︷︷ ︸

ITL1

+
IτIu (2Iv)

I2
z

︸ ︷︷ ︸

ITL2

− IτI
2
v

I2
z

︸ ︷︷ ︸

ITL3

. (3.30)

From this equation, we obtain the following KCL equation and three TL equations:

KCL : IC = Iτ − ITL1 + ITL2 − ITL3

TL : ITL1I
2
z = IτI

2
u ITL2I

2
z = IτIuI2v ITL3I

2
z = IτI

2
v .

(3.31)

3.3.2 Translinear Loops

For this example, I have chosen to not adhere to the two control gate restriction

in order to give an example where more than two control gates are used. Before

we begin, it is worthwhile to point out that each of the TL equations have the

same relationship between Iz and Iτ (illustrated below in bold) which will provide

an opportunity to simplify the network through consolidation. To take advantage

of the similarity, we first make MITE connections according to the relationship

between Iz and Iτ and then between Iτ and ITLi. This arrangement maintains the
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required output structure connections (Iz
-¾ Iτ ) and is summarized below. For this

example, 3-control gate MITEs are used allowing for a connection from the ITL2

MITE to both the Iu and I2v MITEs, as shown on the last three lines below:

I
2

z
-¾

Iτ
-¾ ITL1

-¾ I2
u

I
2

z
-¾

Iτ
-¾ ITL3

-¾ I2
v

¡µ¡ª
Iu

I
2

z
-¾

Iτ
-¾ ITL2

@R@I
I2v

These connections are shown in Fig. 3.3(a) with all unused control gates connected

to Vref . Note that allowing more than two control gates has significantly increased

the complexity of the inter-MITE connections and has also eliminated the ”linear”

one to one connections. (The ITL MITE has two right neighbors instead of the

usual single right neighbor.)

3.3.3 Consolidation

Connecting in the above order allows for the removal of several MITEs. Since there

are three control gates per MITE and the connectivity is not in a straightforward

left to right order, more care must be given to make sure that all sharing is valid.

In this case, we can share a voltage when two MITEs are passing the same current

and two of the three control gate potentials match. This observation implies that

the third control gate on each MITE must be at the same potential, and therefore,

can be shared. Looking at Fig. 3.3, we find that a single Iu MITE can be shared

since Vu1 and Vu2 must be equal. We can also share a single Iz and a single Iτ

MITE since nodes Vz1, Vz2, and Vz3 must be equal which implies that nodes Vzτ1,

Vzτ2, and Vzτ3 must also be equal. Figure 3.3(b) shows the consolidated network
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Iu ITL1 Iτ Iz

Vref Vref

Iv ITL3 Iτ Iz

Vref Vref

Iu ITL2 Iτ Iz

Vref Vref

I2v

Vref

Vz1

Vz2

Vz3

Vzτ1

Vzτ2

Vzτ3

Vu1

Vu2

(a)

Iu Iτ Iz

Vref Vref

Iv

Vref

I2v

Vref

Vz

Vzτ

Vu

ITL2

ITL3

ITL1

(b)

Figure 3.3: Initial MITE connections and consolidation for an RMS-to-DC con-

verter.
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IzIu Iτ
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Iv I2v ITL2 ITL1 ITL3

(a)

IzIu

Vref

Iv I2v

Iv Iu I2v

Iτ

Ic

C

Iτ Iτ

ITL1 ITL3ITL2

ITL2ITL2

Iz

(b)

IzIτ

Iτ Iτ

Iu

Vref

Iv I2v

Iv Iu I2v

Ic

C

Iz

ITL3ITL1

ITL2ITL2

ITL2

(c)

Figure 3.4: Biasing and diode connections to complete the RMS-to-DC converter

circuit.
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with the removal of those five redundant MITEs.

3.3.4 Biasing

The consolidated network is rearranged and shown in Fig. 3.4(a). Half of the

MITEs can be biased with simple current sources (Iv, Iu, I2v, and Iτ ). Because a

current sink passing ITL2 is required in the KCL equation, we bias the ITL2 MITE

with an NMOS current mirror. We now use the other half of that mirror in the

KCL equation,

IC = Iτ − ITL1 + ITL2 − ITL3 , (3.32)

adding a current source for Iτ and a capacitor. These components are connected

to the two drains of the ITL2 and ITL3 MITEs. Figure 3.4(b) shows all biasing

connections.

3.3.5 Diode Connections

Finally, we diode connect the MITEs by starting with those connected to current

sources on the left. Choosing to diode connect the left NMOS of the ITL2 mirror

forces us to diode connect around either the ITL1 or ITL3 MITE. Since the only

available control gate is shared by both, a double diode connection is made at the

KCL node. The final diode connection is made at the Iτ MITE, which also creates

the inverting output structure that we were required to maintain.

The final circuit is shown in Fig. 3.4(c) where all Vref nodes have been connected.

In practice, it is generally not wise to create any signal path that does not explicitly

pass through the capacitor for a dynamic MITE network as was done when all Vref

nodes were connected. A further explanation of reasons to avoid these kind of
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connections can be found in Chapter 6. Experimental data from this circuit can

be found in Section 6.3.



Chapter 4

Linear and Non-Linear

Second-Order Dynamic MITE

Networks

In this chapter, we shall consider second-order systems whose dynamics are de-

scribed by a second-order algebraic differential equation (ADE) or by a system of

two coupled first-order ADEs. During the initial decomposition, any high order

systems must be separated into a set of first-order ADEs before continuing on with

the normal decomposition process.

4.1 Second-Order Low-Pass Filter

4.1.1 System Decomposition

We can implement a second-order low-pass filter, described by

τ 2d2y

dt2
+

τ

Q

dy

dt
+ y = x , (4.1)

47
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in much the same way as we did the first-order one by viewing it as a first-order

filter embedded inside another. This way, we break down the second-order system,

τ
d

dt

(

τ
dy

dt
+

y

Q

)

︸ ︷︷ ︸

z

+y = x , (4.2)

into two first-order systems,

τ
dz

dt
= x − y and τ

dy

dt
= z − y

Q
. (4.3)

We then represent the variables by current ratios to find

τ
d

dt

(
Iz

I1

)

=
Ix

I1

− Iy

I1

and τ
d

dt

(
Iy

I1

)

=
Iz

I1

− 1

Q

Iy

I1

. (4.4)

In this example, we chose to leave Q as a dimensionless scaling factor because

it can be combined with Iτ as will be shown in the next few steps. Multiplying

through by I1 simplifies the equations to

τ
dIz

dt
︸ ︷︷ ︸

−ICzIz

Iτ

= Ix − Iy and τ
dIy

dt
︸ ︷︷ ︸

−ICyIy

Iτ

= Iz −
Iy

Q
. (4.5)

As shown above, we use the relationship for the output structure from Eq. 3.17

to remove the time derivatives. Note that multiple capacitor currents should be

labeled differently, because the capacitor currents were introduced by way of two

different output structures. Also, if the time constants are different, the Iτ currents

should be labeled accordingly (not so in this example). By solving for the capacitor

currents and defining the current, Iτ/Q to be Iτ/Q, we find

ICz =
IyIτ

Iz
︸ ︷︷ ︸

ITL1

− IxIτ

Iz
︸ ︷︷ ︸

ITL2

and ICy = Iτ/Q − IzIτ

Iy
︸ ︷︷ ︸

ITL3

. (4.6)
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Defining TL equations as shown with the underbraces, we are left with the following

final decomposed system:

KCL : ICz = ITL1 − ITL2 ICy = Iτ/Q − ITL3

TL : ITL1Iz = IyIτ ITL2Iy = IzIτ ITL3Iz = IxIτ .
(4.7)

4.1.2 Translinear Loops

Before beginning to connect MITEs, it is useful to arrange the KCL equations

in an alternating pattern to try to determine if any opportunities to consolidate

MITEs exist. This is similar to factoring out common terms for algebraic manip-

ulations. Using all one to one connections and restricting MITEs to two control

gates, the connections can be arranged in the alternating odd-even order shown

below. We have maintained the form for both output structures by placing the

two output currents, Iy and Iz, on the outsides with DC currents (Iτ ) for their

inner neighbors. The currents on the ends can easily be compared to look for com-

mon patterns going inwards. The following arrangement allows for the maximum

amount of consolidation, as explained in Section 4.1.3. The initial connections for

this arrangement is shown in Fig. 4.1(a).

Ix
-¾ ITL3

-¾ Iτ
-¾ Iz

Iy
-¾ ITL1

-¾ Iτ
-¾ Iz

Iy
-¾ Iτ

-¾ ITL2
-¾ Iz

4.1.3 Consolidation

As indicated below, the Iy terms on the left end of the latter two rows imply that

one of these MITEs can be removed. This consolidation arises from the fact that

Vy1 and Vy2 in Fig. 4.1(a) must be equal. Similarly, the Iz terms on the right end
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(b)

Ix ITL3

IzIy
ITL1 Iτ

Vz

VrefVref

Vref

Vy

Vτ z

ITL2Iτ

(c)

Ix ITL3

Iy
ITL1 Iτ

Vz

Vref

Vref

Vy

Vτ z

ITL2Iτ

(d)

Figure 4.1: Initial MITE connections and consolidation during circuit construction

for the second-order low-pass filter.
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also allow one Iz MITE to be used for all three Iz MITEs. This step is possible

because all three Vz voltages must also be equal.

Ix
-¾ ITL3

-¾ Iτ
-¾

Iz

Iy
-¾ ITL1

-¾ Iτ
-¾

Iz

Iy
-¾ Iτ

-¾ ITL2
-¾

Iz

The highlighted terms below show another opportunity to consolidate. The top

two rows share an IτIz combination on their right ends. The top row’s Iz has

already been removed, but this does not change the fact that it still matches the

middle one. Thus, we can remove the Iτ MITE as indicated in Fig. 4.1(c). Looking

at the circuit in Fig. 4.1(b), it should be fairly obvious that the Vτz voltages are

equal which allows us to remove one of those two Iτ MITEs.

Ix
-¾ ITL3

-¾
Iτ

@R@I

Iy
-¾ ITL1

-¾
Iτ

-¾
Iz

@R@I
Iτ

-¾ ITL2
¡µ¡ª

To summarize, the original ordering is shown below on the left and the new con-

solidated network is shown on the right.

Ix
-¾ ITL3

-¾ Iτ
-¾ Iz

Iy
-¾ ITL1

-¾ Iτ
-¾ Iz

Iy
-¾ Iτ

-¾ ITL2
-¾ Iz

⇒

Ix
-¾ ITL3

@R@I

Iy
-¾ ITL1

-¾ Iτ
-¾ Iz

@R@I
Iτ

-¾ ITL2
¡µ¡ª

Taking a closer look at the circuit in Fig. 4.1(c), we see that it is possible to

remove another MITE. Thinking back to the original decomposition, we defined

Iz (or z) as the intermediate variable used to break the second-order system down

into two first-order equations. Because we are not interested in what Iz actually

looks like, we can remove that MITE altogether. This does not remove the effect

of having Iz in the circuit but merely leaves this signal in a log-compressed form
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at the node labeled Vz. The remaining MITEs are shown in Fig. 4.1(d). If this

MITE remained until the circuit was completed, it would become obvious that

it is unnecessary since it will not be diode connected (outputs are never diode

connected unless mirrored) and the generated current will not be mirrored around

for use elsewhere in the circuit.

4.1.4 Biasing

Figure 4.2(a) shows the consolidated and reduced MITEs in the same configuration

but rearranged into a one dimensional array for biasing. As with all inputs, current

sources are added for biasing the Ix MITE and the two Iτ MITEs. The first

KCL equation allows us to bias the ITL2 MITE with a capacitor and an NMOS

transistor sinking ITL1. This NMOS transistor implies that it will be either the

input or output of a current mirror passing ITL1 so another NMOS transistor is

used to bias the ITL1 MITE. With the Iy MITE remaining unbiased, we bias the

final MITE with the second KCL equation by adding a capacitor and a current

source passing Iτ/Q.

4.1.5 Diode Connections

Starting at the left and forcing a left to right signal flow, we diode connect around

the Ix MITE. Choosing to diode connect around the ITL2 MITE forces us to also

diode connect the ITL1 NMOS transistor. Continuing on in a straightforward left

to right order, we can finish all the diode connections and complete the circuit.

Figure 4.2(c) shows the completed second-order low-pass filter and experimental

data can be found in Section 6.4.
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ITL1ITL2 ITL3
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Figure 4.2: Biasing and diode connections for the completion of a second-order low

pass filter.
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4.2 Quadrature Oscillator

Another useful circuit that is significantly more complicated than the earlier exam-

ples is a quadrature oscillator. There are two output signals in this system which

are both sinusoidal and 90 degrees out of phase. The frequency and amplitude of

these signals are controlled by inputs. Controllable oscillators have many uses and

the one described in this chapter will be used in the phase-locked loop example in

Chapter 5.

4.2.1 System Decomposition

We begin by listing the constraints for a quadrature oscillator in polar coordinates

(constant radius vector of the two outputs, r, and frequency, dθ/dt),

τ
dr

dt
= γr(ρ − r) and τ

dθ

dt
= 1 , (4.8)

where ρ is the desired radius and γ determines the circuit’s sensitivity to deviations

in the desired radius. We can transform these constraints to the Cartesian system

with the following mapping:

x = r cos (θ) and y = r sin (θ) . (4.9)

Finding dx/dt gives

dx

dt
= cos (θ)

dr

dt
− r sin (θ)

dθ

dt
. (4.10)

Using Eqs. 4.8 and 4.9 to eliminate θ from the right-hand side results in

dx

dt
=

γ

τ
x (ρ − r) − y

τ
. (4.11)

Similarly, we can calulate dy/dt as

dy

dt
=

γ

τ
y (ρ − r) +

x

τ
, (4.12)
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giving us the following system description:

r =
√

x2 + y2 (4.13)

τ
dx

dt
= −y + γ(ρ − r) (4.14)

τ
dy

dt
= x + γ(ρ − r) . (4.15)

It is possible to combine the radius calculation of Eq. 4.13 into Eqs. 4.14 and 4.15

but it seems to make more sense to have a separate network calculate the radius.

We have already constructed a vector magnitude circuit (with offsets applied to x

and y) in Section 2.3 that will be used to calculate the radius.

4.2.2 Dynamic Constraints

Decomposing the dynamic constraints on x, we add offsets and introduce current

ratios for the variables in Eq. 4.14,

τ
dx

dt
= −y + γx (ρ − r) . (4.16)

We add offsets to x and y (in the same way as in the vector magnitude circuit of

Section 2.3), which are given by

a = x + f b = y + f , (4.17)

finding that Eq. 4.16 becomes

τ
d (a − f)

dt
= − (b − f) + γ (a − f) (ρ − r) , (4.18)

which we can solve for τda/dt,

τ
da

dt
= f − b + γ (aρ − ar − fρ + fr) . (4.19)
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Introducing current ratios, we obtain

τ
d

dt

(
Ia

I1

)

=
If

I1

− Ib

I1

+ γ

(

IaIρ

I2
1

− IaIr

I2
1

− IfIρ

I2
1

+
IfIr

I2
1

)

, (4.20)

and multiplying through by I1, we find

τ
dIa

dt
= If − Ib + γ

(
IaIρ

I1

− IaIr

I1

− IfIρ

I1

+
IfIr

I1

)

. (4.21)

We chose to leave γ as a dimensionless scaling factor that will later be combined

with a DC current.

We can remove the τdIa/dt expression through the introduction of the inverting

output structure of Fig. 3.1 where the output current is related to the capacitor

current by

τ
dIa

dt
= −IaICa

Iτ

, (4.22)

where ICa is the capacitor current and Iτ is a function of the value of the capacitor,

τ , the thermal voltage, and the weighting of the MITE inputs (Iτ ≡ CUT/wτ).

Using this relationship and solving for the capacitor current, we obtain

ICa = − IfIτ

Ia
︸ ︷︷ ︸

Ia1

+
IbIτ

Ia
︸ ︷︷ ︸

Ia2

− IγτIρ

I1
︸ ︷︷ ︸

Ia3

+
IγτIr

I1
︸ ︷︷ ︸

Ia4

+
IγτIfIρ

IaI1
︸ ︷︷ ︸

Ia5

− IγτIfIr

IaI1
︸ ︷︷ ︸

Ia6

. (4.23)

By introducing intermediate currents, we obtain the following TL and KCL equa-

tions:

KCL : ICa = −Ia1 + Ia2 − Ia3 + Ia4 + Ia5 − Ia6

TL : Ia1Ia = IfIτ Ia2Ia = IbIτ Ia3I1 = IγτIρ

Ia4I1 = IγτIr Ia5IaI1 = IγτIfIρ Ia6IaI1 = IγτIfIr ,

(4.24)

where we define Iγτ as γIτ .

By following an almost identical procedure, we find the equations defining the

capacitor current for the “b” side (where y has been replaced with an offset variable,
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b = y + f):

ICb =
IfIτ

Ib
︸ ︷︷ ︸

Ib1

− IaIτ

Ib
︸ ︷︷ ︸

Ib2

− IγτIρ

I1
︸ ︷︷ ︸

Ib3

+
IγτIr

I1
︸ ︷︷ ︸

Ib4

+
IγτIfIρ

IbI1
︸ ︷︷ ︸

Ib5

− IγτIfIr

IbI1
︸ ︷︷ ︸

Ib6

(4.25)

and

KCL : ICb = Ib1 − Ib2 − Ib3 + Ib4 + Ib5 − Ib6

TL : Ib1Ib = IfIτ Ib2Ib = IaIτ Ib3I1 = IγτIρ

Ib4I1 = IγτIr Ib5IbI1 = IγτIfIρ Ib6IbI1 = IγτIfIr .

(4.26)

4.2.3 Translinear Loops

We can configure the TL equations for the “a” side of the dynamic constraints in

the following order:

Ia
-¾ If

-¾ Ia1
-¾ Iτ

Ia
-¾ Ib

-¾ Ia2
-¾ Iτ

Ia3
-¾ Iρ

-¾ I1
-¾ Iγτ

Ia4
-¾ Ir

-¾ I1
-¾ Iγτ

Ia
-¾ If

-¾ Ia5
-¾ Iρ

-¾ I1
-¾ Iγτ

Ia
-¾ If

-¾ Ia6
-¾ Ir

-¾ I1
-¾ Iγτ .

The MITE network for this ordering is shown in Fig. 4.3. The “b” side TL equa-

tions can be arranged in an ordering that is almost identical to the “a” ordering

as follows:

Ib
-¾ If

-¾ Ib1
-¾ Iτ

Ib
-¾ Ia

-¾ Ib2
-¾ Iτ

Ib3
-¾ Iρ

-¾ I1
-¾ Iγτ

Ib4
-¾ Ir

-¾ I1
-¾ Iγτ

Ib
-¾ If

-¾ Ib5
-¾ Iρ

-¾ I1
-¾ Iγτ

Ib
-¾ If

-¾ Ib6
-¾ Ir

-¾ I1
-¾ Iγτ .
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Ia If Ia1 Iτ

VrefVref

Ia3 Iρ I1 Iγτ

VrefVref

Ia Ib Ia2 Iτ

VrefVref

Ia If Ia5

Vref

Ia4 Ir I1 Iγτ

VrefVref

Iρ I1 Iγτ

Vref

Ia If Ia6 Ir I1 Iγτ

Vref Vref

Figure 4.3: Initial connections for the “a” side of the dynamic constraint network.
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This ordering was chosen from many possible choices by looking at the required

inputs and the similarities of the “a” and “b” sides. The most notable of these

similarities is that both sides include the Iγτ
-¾ I1 factor in eight of the twelve total

TL equations. (The above ordering was determined by using the Perl program in

Appendix C.)

4.2.4 Consolidation

Having taken the time to arrange the TL equations to maximize the chances for

consolidation, we can now remove redundant terms. The highlighted currents

below indicate which factors or combinations can be removed, because they have

already appeared. For clarity, the list of shared terms are: Ia, Ia
-¾ If , Iτ

-¾ I1,

Iγτ
-¾ I1, Iγτ

-¾ I1
-¾ Iρ, and Iγτ

-¾ I1
-¾ Ir.

Ia
-¾ If

-¾ Ia1
-¾ Iτ

Ia
-¾ Ib

-¾ Ia2
-¾

Iτ

Ia3
-¾ Iρ

-¾ I1
-¾ Iγτ

Ia4
-¾ Ir

-¾
I1

-¾
Iγτ

Ia
-¾

If
-¾ Ia5

-¾
Iρ

-¾
I1

-¾
Iγτ

Ia
-¾

If
-¾ Ia6

-¾
Ir

-¾
I1

-¾
Iγτ

Ib
-¾ If

-¾ Ib1
-¾ Iτ

Ib
-¾ Ia

-¾ Ib2
-¾

Iτ

Ib3
-¾ Iρ

-¾ I1
-¾ Iγτ

Ib4
-¾ Ir

-¾
I1

-¾
Iγτ

Ib
-¾

If
-¾ Ib5

-¾
Iρ

-¾
I1

-¾
Iγτ

Ib
-¾

If
-¾ Ib6

-¾
Ir

-¾
I1

-¾
Iγτ
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Ib If Ib1 Iτ

VrefVref

Ib3 Iρ I1 Iγτ

VrefVref

Ib Ia Ib2 Iτ

VrefVref

Ib If Ib5

Vref

Ib4 Ir I1 Iγτ

VrefVref

Iρ I1 Iγτ

Vref

Ib If Ib6 Ir I1 Iγτ

Vref Vref

Figure 4.4: Initial connections for the “b” side of the dynamic constraint network.
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Because the “a” and “b” sides share some similar terms, we can share a voltage

from one to remove the MITEs in the other that are used to generate that voltage.

These reductions are shown in Figs. 4.5 and 4.6. (Even though Ia3 = Ib3 and

Ia4 = Ib4, we cannot remove the MITEs that generate these currents since they

are required in distinct KCL equations.)

4.2.5 Biasing

Figure 4.7 shows the MITE networks of Figs. 4.5 and 4.6 rearranged into two

connected rows for biasing. In order to bias the network, we can add current

sources for all of the MITEs except the Iai, Ibi, Ia, and Ib ones. Using the KCL

equations,

KCL : ICa = −Ia1 + Ia2 − Ia3 + Ia4 + Ia5 − Ia6

KCL : ICb = −Ib1 + Ib2 − Ib3 + Ib4 + Ib5 − Ib6 ,
(4.27)

we can add a capacitor to each side and sum the currents appropriately while

mirroring them around to enforce the KCL constraints. Since we have two MITEs

passing Ia and two passing Ib (the outputs), we bias these pairs with a set of NMOS

current mirrors each. The fully biased circuit is shown in Fig. 4.8.

4.2.6 Diode Connections

The diode connections for this circuit follow the same kind of pattern as before.

Starting at the left, we can choose the first MITE in each row to be the “output”

MITE and diode connect around the NMOS to generate the voltages required for

the mirrors. Connecting around the next two If MITEs leaves us at nodes that

are part of the KCL constraints. Because this system is large, we skip these nodes

until later. The next set of MITES are passing the output currents. Since we have
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If Ia1 Iτ

Vref

Ia3 Iρ I1 Iγτ

VrefVref

Ib Ia2

Ia5

Ia4 Ir

Vref

Ia6

Vγτ_1_r

Vγτ_1_ρ

Vτ

To “b” side

To “b” side

Ia

Vref

Figure 4.5: Consolidations for the “a” side of the dynamic constraint network.
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If Ib1

Ib3

Vref

Ia Ib2

Ib5

Ib4

Vref

Ib6

Vγτ_1_r

Vγτ_1_ρ

Vτ
From“a” side

From“a” side

Ib

Vref

Figure 4.6: Consolidations for the “b” side of the dynamic constraint network.
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If Ia1
Iτ Ia3IρI1

Vref

Ib Ia2 Ia4Ir Ia6Iγτ

Vref

Ia5

VrefVref

If Ib1 Ib3Ia Ia2 Ib4 Ib6Ib5

VrefVref

Vγτ_1_r Vγτ_1_ρ

Vτ

Ia

Vref

Ib

Vref

Figure 4.7: Rearranged consolidated network for both the “a” and “b” sides.
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If Ia1
Iτ Ia3IρI1

Vref

Ib Ia2 Ia4Ir Ia6Iγτ

Vref

Ia5

VrefVref

If Ib1 Ib3Ia Ia2 Ib4 Ib6Ib5

VrefVref

Vγτ_1_r Vγτ_1_ρ

Vτ

If
Iτ Iγτ I1 Ir Iρ

If

C
ICb

C

ICa

IKCLa
IKCLa

IKCLb IKCLb

Ia

Vref

Ib

Vref

Ib

Ia

Ia

Ib

Figure 4.8: Rearranged consolidated network for both the “a” and “b” sides where the voltages, Va and Vb, are shared

from the radius calculation network.
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already diode connected the other half of the mirror around the NMOS transistors,

we diode connect around these MITEs. Skipping more KCL nodes, we then diode

connect around the input current MITEs passing Iτ , Iγτ , I1, Ir, and Iρ. With just

the KCL nodes remaining, we can diode connect around the Ia6 and Ib6 MITEs

which also forces diode connections around the other half of the NMOS current

mirrors. These diode connections are shown in Fig. 4.9.

Looking back at the vector magnitude circuit of Fig. 2.8, we observe that there

are four places where the output currents of the dynamic networks are required.

Since we already have voltages that represent log-compressed currents for Ia and

Ib (labeled Va and Vb in Fig. 4.8), we can remove the two input MITEs on the right

end of the radius calculation network. Recognizing that Ia and Ib are not actual

input current sources, we replace the two remaining current sources with NMOS

transistors that mirror the output currents from the dynamic side of the system.

Similarly, we need to mirror Ir from the radius calculation side to the dynamic

side. Since we have not already mirrored Ir and do not even have a MITE passing

this output current, we must generate this current by adding a MITE that sources

Ir into a diode connected NMOS transistor allowing us to mirror it to the dynamic

side. These changes, completing the oscillator circuit, are shown in Fig. 4.10.
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If Ia1
Iτ Ia3IρI1

Vref

Ib Ia2 Ia4Ir Ia6Iγτ

Vref

Ia5

VrefVref

If Ib1 Ib3Ia Ia2 Ib4 Ib6Ib5

VrefVref

Vγτ_1_r Vγτ_1_ρ

Vτ

If
Iτ Iγτ I1 Ir Iρ

If

C
ICb

C

ICa

IKCLa
IKCLa

IKCLb IKCLb

Ia

Vref

Ia

Ia

Ib

Ib

Vref

Ib

Va

Vb

Figure 4.9: Diode connections for the dynamic constraints. Voltages Va and Vb represent log-compressed currents and

can be used to remove the two input MITEs in the radius calculation network.
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If Ia1
Iτ Ia3IρI1

Vref

Ib Ia2 Ia4Ir Ia6Iγτ

Vref

Ia5

VrefVref

If Ib1 Ib3Ia Ia2 Ib4 Ib6Ib5

VrefVref

Vγτ_1_r Vγτ_1_ρ

Vτ

If
Iτ Iγτ I1 Iρ

If

C
ICb

C

ICa

IKCLa
IKCLa

IKCLb IKCLb

Ia

Vref

Ia

Ia

Ib

Ib

Vref

Ib

IfIa Ir1 I2fIr3Ib
Ir2 Ir5Ir4 Ir

VrefVref

Ir4+Ir5+IrIr1+Ir2+Ir3If I2f

Vr

Ia Ib

Ir

Vref

Ir

Ir

Figure 4.10: Final changes to complete the entire oscillator circuit linking the radius and dynamic sides.



Chapter 5

Phase-Locked Loop

5.1 System Decomposition

This final example illustrates how multiple MITE networks can be combined by

integrating complete smaller networks into a larger complex system. We demon-

strate this process by designing a phase-locked loop (PLL), as shown in Fig. 5.1.

The input signal is expected to be a sinusoid whose frequency changes slowly in

time. The feedback loop is expected to adjust the oscillator’s output frequency to

match that of the input by examining the phase difference between the two signals.

When the phase difference becomes constant, the PLL is said to be “locked” onto

the input signal’s frequency.

Phase
Detector

Loop
Filter

Amplifier

Oscillator

Input
Signal Output

Figure 5.1: Phase-locked loop block diagram.
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Multiplier
Low-Pass Filter

with Variable Gain

Quadrature
Oscillator

Input
Signal Output

Figure 5.2: Phase-locked loop block diagram.

The phase detector can be realized by a simple multiplier resulting in a low-

frequency component representing the frequency difference between the input and

the oscillator’s output. There will also be a high-frequency component (at ap-

proximately twice the input’s frequency) that will be removed by the loop filter.

A first-order low-pass filter is sufficient to accomplish this filtering operation. By

introducing a variable gain into the low-pass filter, we can combine both the loop

filter and amplifier into a single circuit as shown in Fig. 5.2. The quadrature

oscillator from the previous chapter is sufficient for this system.

5.2 Multiplier

This section describes the process by which we transform the polynomial constraint

for a multiplier,

z = xy , (5.1)

into the necessary translinear loops. Because both the inputs and the output need

to represent positive and negative values, we must introduce offsets to force the

variables to be positive. Doing so, we obtain

a = x + f , b = y + f , and c = z + f

⇒ (c − f) = (a − f) (b − f) .
(5.2)
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The dimensionless variables are replaced with ratios of signal currents to a unit

current.

Ic − If =
(Ia − If ) (Ib − If )

I1

(5.3)

Solving for the output current, Ic, defining I2f as 2If , and equating If to I1 (to

help reduce the number of separate bias currents), results in

Ic =
IaIb

If
︸ ︷︷ ︸

ITL

−Ia − Ib + 2If
︸︷︷︸

I2f

(5.4)

which can be represented by the following TL and KCL equation:

KCL : Ic = ITL − Ia − Ib + I2f

TL : ITLIf = IaIb .
(5.5)

Having already constructed much more complicated MITE networks, this mul-

tiplier circuit should seem trivial. Arranging the TL equation as

Ia
-¾ If

-¾ Ib
-¾ ITL , (5.6)

we connect the MITEs, as shown in Fig. 5.3(a). We then bias with three input

current sources on the first three MITEs and add several more current sources

and an NMOS current mirror according to the KCL equation. We have added the

current mirror to generate an usable copy of the output current, Ic. The biased

circuit is shown in Fig. 5.3(b). Since we have to mirror the output current, we

must diode connect around the left NMOS transistor. Diode connecting around

the three input MITEs completes the multiplier circuit, as shown in Fig. 5.3(c).

5.3 Low-Pass Filter

The low-pass filter detailed in Section 3.2 could be used for the PLL loop filter if

we could control the gain. Considering the transfer function for a low-pass filter
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Ia ITLIf

Vref Vref

Ib

(a)

Ia ITLIf

Vref Vref

Ib

Ia If Ib IcIcIa Ib

I2f

(b)

Ia ITLIf

Vref Vref

Ib

Ia If Ib IcIcIa Ib

I2f
Ic

(c)

Figure 5.3: Construction of the multiplier circuit. (a) Initial connections. (b)

Biasing for the circuit. (c) Completed circuit.
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with a DC gain of k,

H(s) =
k

1 + τs
, (5.7)

rearranging to find

τsy(s) = kx(s) − y(s) (5.8)

allows us to use the inverse Laplace transform to get the differential equation for

a first-order low-pass filter with gain, k,

τ
dy

dt
= kx − y . (5.9)

Replacing the variables with current ratios, we find that

τ
d

dt

(
Iy

I1

)

= k
Ix

I1

− Iy

I1

, (5.10)

which we can reduce to

τ
dIy

dt
= kIx − Iy . (5.11)

Using an inverting output structure, we replace the derivative to find

−ICIy

Iτ

= kIx − Iy , (5.12)

which becomes

IC = Iτ −
kIτIx

Iy
︸ ︷︷ ︸

ITL

. (5.13)

Absorbing the gain factor, k, into one of the Iτ ’s, we get the following KCL and

TL equations.

KCL : IC = Iτ − ITL

TL : ITLIy = IkτIx

(5.14)

Recognizing that the final decomposition is almost identical to that of the filter

described in Section 3.2, we can simply use the same circuit by just varying the

rightmost current source to be Ikτ instead of Iτ . This circuit is shown in Fig. 5.4.
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Ix
Ic

Ix IkτIτ

C

Iy

ITL Iτ Iy

Vref Vref

Figure 5.4: Modified low-pass filter from Section 3.2 to include a gain of k.

5.4 Inter-Network Connections

Now that we have the phase detector (multiplier), loop filter and amplifier (modi-

fied low-pass filter), and an oscillator (quadrature oscillator), we can connect them

all to form the PLL. Starting with the multiplier, we chose to have the external

input be defined as Iin (replacing Ia) and the output of the oscillator that is fed

back to the phase detector as Iosc. Since either of the oscillator’s outputs will work

(only a 90 degrees phase shift between them), we choose to use the Ia output.

Since the multiplier is expecting two current sinks passing Iosc, we can replace

the Ib current sources with NMOS transistors whose gates are tied to the diode

connected NMOS from the oscillator circuit that is passing the Ib output current.

The relevant sections of the circuits are shown in Fig. 5.5.

The output of the multiplier can be passed to the input of the loop filter in a

similar manner. Since we already have an NMOS transistor passing the multiplier’s

output current and the filter is expecting the input to be supplied as a current sink,

we can replace the input current source of the filter with the NMOS transistor from
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Ia ITLIf

Vref Vref

Ib

Iin If IcIcIin

I2f
Ic

If

If

Ia

Vref

Ia

From Oscillator

Iosc Iosc

Multiplier

Figure 5.5: Connecting the output of the oscillator to the second input of the multiplier.
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IcIc

I2f

Iosc

From Multiplier

Ix
Ic

IkτIτ

C

Iy

ITL Iτ Iy

Vref Vref

Loop Filter

Figure 5.6: Connecting the output of the oscillator to the second input of the

multiplier.

the multiplier, as shown in Fig. 5.6. Note that the output of the multiplier, Ic,

becomes the input of the filter, Ix.

The output of the loop filter, Iy, becomes the input to the oscillator, Iτ . The

oscillator is expecting a current sink passing Iτ , so we can mirror the output of the

filter using two NMOS transistors. However, we also need a scaled version of Iτ ,

Iγτ = γIτ .

We approach calculating Iγτ just as we would any other function. Beginning

by replacing the dimensionless variable, γ, with a current ratio, we find that

Iγτ =
Iγ

I1

Iτ . (5.15)

We can then rearrange Eq. 5.15 into the following TL equation:

TL : IγτI1 = IγIτ (5.16)

Arranging the currents into the order,

Iτ
-¾ Iγτ

-¾ Iγ
-¾ I1 , (5.17)
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Iτ I1

Vref Vref

Iγτ Iγ

(a)

Iτ I1

Vref Vref

Iγτ Iγ

Iτ Iγ I1

(b)

Iτ I1

Vref Vref

Iγτ Iγ

Iτ Iγ I1

Iγτ

(c)

I1

Vref

Iγτ Iγ

Iγ I1

Iγτ

Vτ
from
loop
filter

(d)

Figure 5.7: Additional circuit to generate the γ-scaled version of Iτ .

we can connect the MITEs, as shown in Fig. 5.7(a). The biasing and diode con-

nections for the circuit are shown in Fig. 5.7(b) and (c). Recognizing that the

input current, Iτ , is the output current of the loop filter, we are able to share the

voltage to remove the input MITE, as shown in Fig. 5.7(d). Figure 5.8 shows the

connections from the loop filter that are used to generate the required Iτ and Iγτ .
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Ikτ

Iτ Iy

Vref

From Loop Filter

Iτ Iγ

Vref

Iγ
Iτ

Section of Oscillator

Iy

Vy
I1

I1

Vγτ

Figure 5.8: Connecting the output of the filter, Iy, to the oscillator to generate

both Iτ and the scaled version, Iγτ .



Chapter 6

Results and Conclusions

The following sections present results from the majority of the circuits presented

in the previous chapters. I present each circuit’s results separately and address

global issues in Section 6.7. Comparing the results found in this dissertation to the

results of similar circuits would only mislead the reader because the comparisons

would rarely be fair. The majority of translinear circuits are implemented using

bipolar junction transistors fabricated in a BiCMOS process allowing for much

higher current levels (∼milliamperes) and thus, higher frequencies. All results in

this dissertation are measured from circuits implemented with floating-gate PMOS

transistors operated in weak inversion (limiting current levels to a maximum of

approximately 100nA). It follows that BiCMOS implementations will operate for

higher frequencies but require more power than their MITE network counterparts.

Additionally, signal-to-noise (SNR) ratios are not quoted in the results because for

these large signal circuits, the mere definition of the SNR becomes ambiguous and

the measurement is difficult. (Noise levels are dependent upon the signal levels and

therefore, the best SNR will most likely not be found for the maximum allowable

signal levels.)

79
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Alternate implementations of translinear circuits can be found in [4,6–8,15,30,

32,36] for log-domain filters, in [9,28] for RMS-to-DC converters, in [33,41,45] for

oscillators, and in [40,42,45] for phase-locked loops.

6.1 Vector Magnitude Results

Data collected from the circuit described in Section 2.2 is shown in Fig. 6.1. The

vector magnitude was calculated for values of Ix and Iy over the range of 1nA to

50nA and a Vdd of 2V. The MITEs were programmed to pass a nominal current

of 10nA with control gate voltages at 1V (under a 1% variance in current at that

operating point). Investigation into the reason for the error in the results lead to

a discovery that the subthreshold slopes of the floating-gate transistors did not

match. See Section 6.7 for a detailed discussion of reasons for error in the collected

data.

6.2 First-Order Low-Pass Filter Results

The frequency response for the first-order low-pass filter described in Section 3.2

is shown in Fig. 6.2. Data was collected for five values of Iτ (corner frequencies

ranging from 3kHz to approximately 13kHz for values of Iτ from 5nA to 150nA).

Evidence of higher order effects start appearing above 10kHz preventing the phase

to level off at the expected −90 degrees and altering the roll-off rate in the magni-

tude response. This is probably the result of higher order effects or feed through

from various control gates to others. What appears to be a double-zero around

16kHz is most likely a direct feed through of the input through either the off-chip

circuitry or the global reference signal, Vref . See Section 6.7 for a more detailed
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Figure 6.2: Frequency response for a first order low-pass filter.

discussion of experimental results.

6.3 RMS-to-DC Converter Results

Figures 6.3 and 6.4 show input and output traces measured from the RMS-to-DC

converter along with the ideal expected value. Due to high frequency feed through

(>10kHz) and a limited range of corner frequencies (>1kHz, limited by the on-chip

capacitor and a minimum value for Iτ ) it was not possible to completely filter out

the AC variations of the squared input signal. Considering that a first order low-

pass filter can only approximate the mean of a signal, the circuit performs within



83

0 50 100 150 200 250 300 350 400 450

-20

-10

0

10

20

30

Time (us)

RMS to DC Converter

Current
(nA)

Input

Output

Idea l

Figure 6.3: Results from the RMS-to-DC converter circuit with a sinusoidal input

signal.
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expectations. An obvious gain or offset error can be seen that may be the result of

mismatch or transistors coming out of saturation. Results may be very sensitive

to operating levels since this circuit must be able to handle a wide range of current

levels. The input is initially squared, creating a large current which can force

transistors into non-ideal operating conditions (the input current is not centered

about zero since an offset is required to ensure strictly positive currents). The time

constant can be observed in Fig. 6.4 by examining the output after sharp changes

in the input. While no formal comparison to alternate implementations of RMS-to-

DC converters is presented here, it is worthwhile to note that the implementation

detailed in Section 3.3 does not assume a rectified input signal as do most published

implementations. Additional RMS-to-DC converters are published in [28] and [9].

6.4 Second-Order Low-Pass Filter Results

Frequency responses for the second-order low-pass filter of Section 4.1 are shown

in Figs. 6.5, 6.6, and 6.7 for three values of Iτ (three corner frequencies of about

4kHz, 8kHz, and 10kHz). Each plot shows the responses for various quality factors

(0.25, 0.5, 1, and 2). What appears to be a double-zero around 11kHz is most

likely a direct feed through of the input through either the off-chip circuitry or the

global reference signal, Vref . See Section 6.7 for a more detailed discussion of this

anomaly.

6.5 Quadrature Oscillator Results

Plots of various experimental results from the quadrature oscillator of Section 4.2

fabricated in an AMI 0.5- µm process are shown in Figs. 6.8 – 6.12. Figures 6.8 –
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Figure 6.5: Frequency response for a second-order low-pass filter with various

quality factors (Q=0.25, 0.5, 1, 2) and an approximate corner frequency of 4kHz.
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Figure 6.6: Frequency response for a second-order low-pass filter with various

quality factors (Q=0.25, 0.5, 1, 2) and an approximate corner frequency of 8kHz.
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Figure 6.7: Frequency response for a second-order low-pass filter with various
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6.10 show a sample of the two oscillator outputs over varying oscillation frequencies

where Iτ was swept from 10nA to 200nA. The only bias current that was changed

during these data collections was Iτ . It is possible to tweak other biases to get

less distorted output signals for a given Iτ . By tweaking other bias signals, valid

output signals can be generated at oscillation frequencies as low as a few hundred

Hz (where Iτ ≈ 0.1nA). Figure 6.11 shows a plot of the oscillation frequency

versus Iτ . By plotting one output versus the other, it is possible to graphically

examine the phase difference as shown in Fig. 6.12. Two sinusoids at the same

frequency with a 90 degrees phase shift will appear as a perfect circle. Using zero-

crossings, the phase difference for this frequency (8.93kHz) was calculated as 87.4

degrees. The phase jitter was measured to be approximately 4% and the total

harmonic distortion (THD) ranged from 6% (10kHz) to 10% (90kHz). The THD
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can be expected to be fairly high considering the frequency range and the capacitive

nature of the circuit (becoming increasingly worse at higher frequencies).

It is worthwhile to note that this circuit is sensitive to certain biasing conditions

with an exceptionally strong dependence on the cascode voltages. This implies that

small gain errors around the feedback loop have a significant impact on the output

signals’ distortion, phase, and frequency.

6.6 Phase-Locked Loop Results

Simulations run in TSpice showed that the PLL was able to lock onto frequencies

in the range of 20 to 30kHz when the free-running frequency was set to approxi-

mately 23kHz. Figure 6.13(a) shows the output of the filtered phase detector signal

demonstrating the locking behavior. Traces of the input and output signals after

locking are shown in Fig. 6.13(b).

The fabricated phase-locked loop of Chapter 5 was unable to lock onto the

input signal’s frequency. Figure 6.14 shows the oscillator output and the output

of the loop filter (which controls the oscillator frequnecy). It is clear that the loop

filter’s output was able to modulate the oscillator frequency. However, the signal

was too noisy (primarily from 60Hz interference) in order to be able to serve as an

effective phase detector.

6.7 Results Summary

The results presented in this dissertation show that the synthesis methodology is

both sound and viable for a wide range of applications. The three most limiting

factors in preventing better results are mismatch of the the subthreshold current-
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voltage curves, difficulty in getting clean and accurate measurements due to the

low current levels, and the potential for higher order effects to create unexpected

behaviors due to the capacitive nature of MITE networks.

6.7.1 Mismatch

Being able to inject the floating-gate transistors such that they passed the same

current within under one percent variance for the same control gate voltages, did

not guarantee the same tolerance for different control gate voltages. For instance,

programming with a 0.5% tolerance for a current level of 20nA at a control gate

voltage of 1V, might still mean that a change of 50mV on the control gates causes

the variance in current to change to several percent. It is not exactly clear what is

the fundamental cause for this error. Looking at the relationship for a two-input

MITE where the control gates are shorted,

Id = Ise
κ(2wV +Q/Ctotal)/UT , (6.1)

we can find the slope of the plot of ln (Id) versus V by examining

ln (Id) = ln (Is) +
κ2wV

UT

+
κQ

CtotalUT

, (6.2)

resulting in a slope of 2κw/UT. By programming the MITEs, we are able to remove

any offsets due to the variance in the trapped floating-gate charge, Q. However, it

appears that there still remains a noticeable variance in the slopes which implies

that either κ or the weights are not matched well (UT is the thermal voltage, kT/q,

and should remain constant across all MITEs). Since both κ and the weights are

dependent upon the geometry of the transistors and the capacitors, it is possible

that using larger-sized devices might improve these errors. For the work presented

here, the variance in these slopes amounted to errors as large as 6% at the edges
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of the operating range. This is most likely the cause for the offset and gain errors

present in the results.

6.7.2 Measurement Errors and Noise

The second biggest problem was trying to get clean unamplified signals into and

out of a chip. With currents on the order of nanoamperes, simply dropping a chip

into a breadboard and connecting up devices is not advisable. A gain factor of

ten was achieved by duplicating many MITEs to effectively accept or generate ten

copies of the input or output currents. Even with this boost, wires connecting

the breadboard to the various biasing equipment and oscilloscopes introduced a

noticeable amount of noise (especially 60Hz line noise). Additionally, since these

circuits are inherently current-mode circuits, to supply and measure any AC signals

the AC currents were required to run through off-chip voltage-to-current or current-

to-voltage converters which served as another potential noise source.

For optimum performance, these circuits should be run off of a single battery

and the bias currents provided by on-chip programmable current sources, such as

proposed in [5]. Additionally, custom designed printed circuit boards should help

to reduce noise by shortening the wires and moving signal sources closer to the

chip. Ideally, on-chip amplifiers would be used to reduce high-amplitude input

signals down to the nA level and boost output signals to be easily measured by an

oscilloscope.

If the off-chip noise influences can be reduced or eliminated, it will then become

more important to investigate the nature of the noise generated within the MITE

networks themselves. Because of the inherent non-linear behavior of translinear

circuits, analyzing the noise is non-trivial. Additionally, the large signal behavior
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of these circuits introduce signal × noise intermodulation as well as resulting in

non-stationary noise sources. A complete treatment of noise present in translinear

circuits is worthy of an entirely separate dissertation. Work has been done on noise

analysis for various types of translinear circuits [13,27,31,34,35,48–50].

6.7.3 Feed Through and Higher Order Effects

With a class of circuits that is so inherently dependent upon capacitive coupling

to relay signals, it is always possible that under certain conditions these capacitors

will no longer act as one-way ports and allow a significant amount of signal to pass

both ways. Using the first-order low-pass filter from Section 3.2, if the reference

voltage, Vref , were not driven by a source with a low output impedance it is probable

that at some higher frequency the input signal would bypass the filter capacitor

by following the path shown in Fig. 6.15. What appears to be a double zero in

the frequency responses for the first and second-order low-pass filters can probably

be attributed to this kind of feed through. The best way to avoid such problems

in dynamic MITE networks would be to make certain that the only signal path

from one side of a filtering capacitor to the other is either through that capacitor

node or through a required feedback connection. For the first-order low-pass filter,

this would mean having a separate voltage source for the left-hand side Vref and

a separate voltage source for the right-hand side Vref . As would be expected,

increasing the transistor sizes to allow for higher current levels while reducing the

control gate capacitor size will help to alleviate this phenomenon.

Even for static MITE networks, where no large filtering capacitor is present, the

capacitive coupling becomes increasingly more relevant for higher signal frequen-

cies. Analyzing these higher order effects is non-intuitive and is beyond the scope
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Figure 6.15: Path by which a high frequency input signal could bypass the filter

capacitor and show up at the output if the driving source for Vref does not have a

low enough output impedance to keep Vref fixed to an effective DC potential.

of this dissertation. While higher order effects in MITE networks is not addressed,

some work addressing higher order effects for log-domain filters implemented with

BJTs and ways to compensate for these non-idealities can be found in [10,14,48].

6.8 Conclusions

This synthesis methodology is a powerful tool for designing a vast range of analog

circuits. However, more research must be invested before it can become a reliable

tool for the average circuit designer. With its very structural mathematical basis,

it lends itself well to computer aided design as demonstrated by the circuit consol-

idation script included in Appendix C. It is not unreasonable to imagine software

that accepts high-level differential equations describing a system and then returns

a low-level system decomposition, a fully connected and biased MITE network,

and even layout. By removing some of the ambiguity, such as limiting all MITEs

to having only two control gates, the intuition required during the circuit construc-
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tion can become unnecessary allowing for a fixed set of rules to govern the entire

synthesis process.

6.9 Contributions

My contributions to this body of work include the synthesis of more complex sys-

tems (vector magnitude with offsets, quadrature oscillator, and phase-locked loop).

These examples provide a greater insight into the various options that arise during

synthesis that are not present for simpler circuits. While working on the decom-

position of several systems, I developed the graphical representation for MITE

connections used in this dissertation. This graphical representation helped me to

recognize that the circuit construction phase along with the consolidation step

could be simplified by restricting MITEs to two control gates and one to one con-

nections. Once restricted, the connection ordering that provided the most oppor-

tunities to consolidate MITEs could be determined (somewhat visually) through a

process of permutations on the odd and even currents within the graphs that was

similar to the way in which equations are factored. Inspired to find the absolute

minimum MITE configuration for the oscillator circuit of Section 4.2, I developed

the Perl program in Appendix C to perform all the possible permutations for a

given set of TL equations and by comparing the order of terms from the out-

sides progressing inwards, calculate the required number of MITEs to implement

a given ordering after consolidation. This graphical representation of connections

and the consolidation program should also be valid for standard translinear circuit

synthesis.

After an ambitious attempt to synthesize an 8-tap adaptive filter that failed
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(presumably due to our inability to balance the trapped charge on the floating-

gates), I fabricated a test chip with the programming infrastructure shown in

Appendix A.7 to determine if it was possible to accurately program the floating-

gate charge for a MITE network. After much experimentation and a steep learning

curve, I sought advice from Paul Hasler at Georgia Institute of Technology on

methods of fast and accurate programming, which lead to the modeling outlined

in Appendix A.5. Having designed the largest MITE networks to date, I have

included in Appendix B some generalizations about the nature of these circuits as

well as some practicalities when designing large networks.



Appendix A

Programming Floating-Gate

Charge

A.1 Programming Overview

One of the underlying assumptions that simplifies the synthesis methodology is

that each floating-gate’s trapped charge is equal such that for matched floating-

gate transistors with equal control gate voltages, the drain currents will be equal.

Due to the processes involved during fabrication, the trapped floating-gate charge

across an entire chip can vary greatly. One method of equalizing this floating-gate

charge was through the exposure of the silicon to UV light. Variations in fabrica-

tion technologies made it difficult to be sure that UV light exposure was sufficient

in balancing the trapped floating-gate charge. For instance, the opaqueness of the

overglass could vary drastically reducing the effectiveness of this method requiring

additional design considerations (i.e., making cuts in the overglass layer in the lay-

out). Since it is essential that the floating-gate charge be balanced, the combination

of Fowler-Nordheim tunneling and hot-election injection are used to guarantee this

100
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condition. (Tunneling can be used on both PMOS and NMOS floating-gate tran-

sistors but due to the lightly doped drain implants employed in most fabrication

processes, hot-electron injection is only effective for PMOS transistors.) The goal

of this charge-balancing process is to get the drain current of each MITE within a

certain variance when all the control gates are fixed at a set voltage. The tunneling

process is used to globally remove electrons from the floating-gates and injection

is used to add electrons to individual floating-gates in a controlled manner.

The process by which the above techniques are used to balance the charge is

as follows. Initially, all floating-gate transistors are globally tunneled to remove

electrons from the floating-gate. This process continues until the “least tunneled”

transistor’s drain current (with a particular voltage at all control gates) is less

than some threshold value. Individual transistors are then “programmed” through

injection until they hit the target [VCG, Id] condition. Since this balancing of

charge of crucial to the correct operation of the circuits, great care must be shown

during this process and the following section details one way in which this can be

accomplished. It is important to understand the basics of tunneling and injection

before we look at the overall programming process.

A.2 Fowler-Norheim Tunneling

The basic principle by which this process is used to remove electrons from the

floating-gate involves creating a large voltage across the tunneling capacitor. (A

tunneling capacitor is created when a small “finger” of the floating-gate’s polysili-

con overlaps highly doped N within an N-well.) This potential difference is great

enough that electrons are forced through the thin oxide that separates each half
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of this capacitor. (With MOSIS’ AMI 0.5 µm 5V CMOS process, I found that

tunneling may begin with a tunneling voltage, Vtun, around 10-12V with a 5V Vdd

and should be sufficiently fast for a quick global “erase” with Vtun at 15V. Note

that too great a potential across the tunneling capacitor can damage the oxide

insulator and therefore caution should be used. Also, additional care must be used

when creating the layout since the average CMOS process is not rated for such

high voltages.

A.3 Hot-Electron Injection

Hot-electron injection occurs when electrons traveling through the channel achieve

a high enough velocity that they can travel through the gate oxide over the channel.

The conditions for this to occur involve the combination of a significant source-

drain voltage (approximately 4V for the MOSIS AMI 0.5 µm process) and the

correct “tilt” from the channel to gate (i.e., gate voltage must be more positive

than the channel in order to steer the electrons into the oxide surface). Specifically,

holes travel down the length of the channel from source to drain and collisions at

the drain cause electron-hole pairs. These electrons then travel back up the channel

with increasing velocity and are steered towards the oxide. A very small percentage

of these electrons reach a high enough velocity and are able to travel through the

oxide and make their way to the floating-gate.

A.4 Programming Method

A simple self-convergent method for a controlled injection process is described

in [2] but was found to result in an unacceptably inaccurate programming for
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any reasonable length process. (The self-regulation of this method does allow for

increased accuracy at a cost of a longer programming time.) The method presented

here involves modeling the injection process over a range of operating conditions

that will allow for a faster and more accurate programming method. This method

involves “pulsing” the drain voltage for various pulse lengths.

A.5 Derivation

Injection current is described as

Iinj = Iinj0

(
Id

Ido

)α

e(δVsd/Vinj) (A.1)

where Iinj0 is a scaling current, Id is the drain current, Ido is the bias drain current,

δVsd is the change in Vsd from the bias value of Vsd0, and α and Vinj are extracted

values. Note that
(

Id

Ido

)α

=
% change @ Id

% change @ Ido

(

tnorm

tpulse

)

(A.2)

and that

eδVsd/Vinj =
% change @ (Vsd0 + δVsd)

% change @ Vsd0

(

tnorm

tpulse

)

. (A.3)

Thinking of the charge flowing off of the floating-gate (or negative charge, electrons,

flowing onto the floating-gate):

CT
dVfg

dt
= −Iinj . (A.4)

The PMOS subthreshold current can be viewed as the present current, Ido, scaled

as a function of ∆Vfg,

Id = Idoe
−(κ∆Vfg)/UT . (A.5)

Taking the derivative of the above results in

dId

dt
= Id

(

− κ

UT

)
dVfg

dt
. (A.6)
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Substituting in dVfg/dt into the above, we find

dId

dt
= Id

(

− κ

UT

) (

−Iinj

CT

)

. (A.7)

Inserting the representation for Iinj (under the assumption that Iinj remains con-

stant throughout the pulse and has no dependency on time) results in

dId

dt
= Id

κ

CT UT

[

Iinj0

(
Id

Ido

)α

eδVsd/Vinj

]

. (A.8)

Rearranging and dividing both sides by Ido, we find

d

dt

(
Id

Ido

)

=
κIinj0

CT UT
︸ ︷︷ ︸

1/tpulseo

[(
Id

Ido

)1+α

eδVsd/Vinj

]

. (A.9)

Note that an Id/Ido was grouped resulting in the 1 + α exponent. Defining tpulseo

as CT UT/κIinj0 and x as Id/Ido simplifies the above to

tpulseo
dx

dt
= x1+αeδVsd/Vinj . (A.10)

δVsd is fixed during the pulse so defining a new tpulseo,

t′pulseo = tpulseoe
−δVsd/Vinj , (A.11)

results in

t′pulseo

dx

dt
= x1+α . (A.12)

Integrating across the pulse length we find

∫ x(t=tpulse)

x(t=0)

dx

x1+α
=

∫ tpulse

0

dt

t′pulseo

, (A.13)

which becomes

− 1

α

1

xα

x(t=tpulse)

x(t=0)
=

tpulse

t′pulseo

. (A.14)
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Evaluating the above results in

1

x(t = 0)α
− 1

x(t = tpulse)α
= α

tpulse

t′pulseo

. (A.15)

Solving for t′pulseo, we find

t′pulseo =
αtpulse

1
x(t=0)α − 1

x(t=tpulse)α

, (A.16)

which becomes

tpulseoe
−δVsd/Vinj =

αtpulse
1

x(t=0)α − 1
x(t=T )α

(A.17)

when the expression for t′pulseo is inserted. Solving for δVsd, we find

δVsd = Vinj ln




αtpulse/tpulseo
1

x(t=0)α − 1
x(t=tpulse)α



 , (A.18)

which simplifies to

δVsd = Vinj ln

(

α
tpulse

tpulseo

)

− Vinj ln

(

1

x(t = 0)α
− 1

x(t = T )α

)

. (A.19)

x(t = 0)α =
(

Ido

Ido

)α

= 1 (A.20)

x(t = T )α =
(

Id

Ido

)α

=
(

Ido + ∆Id

Ido

)α

= (1 + PC)α , (A.21)

where PC represents the percent change of Id. Using these expressions for x, we

substitute into Eq. A.19 and set δVsd = 0 to solve for the prefactors.

0 = Vinj ln

(

α
tpulse

tpulseo

)

− Vinj ln

(

1 − 1

(1 + PC)α

)

(A.22)

Simplifying, we find

α
tpulse

tpulseo

= 1 − 1

(1 + PC)α . (A.23)

Once modeling data is collected and α is extracted, a point can be chosen (giving

tpulse and PC) to determine tpulseo. Equation A.19 can then be solved for the

expected current after a certain programming pulse, [tpulse, δVsd], when the starting

current is Ido.

Iα
d = Iα

do

(

1 − α
tpulse

tpulseo

e−δVsd/Vinj

)

(A.24)
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A.6 Data Collection

The modeling of the injection process requires data spanning across a variety of

programming conditions (i.e., Vsd = 4V ↔ 6V, tpulse = 0.1ms ↔ 5s, Istart = 1nA ↔

100nA). Initially, all transistors should be tunneled so that they pass very small

currents for the chosen programming Vcg (about an order of magnitude smaller

than any current that would be chosen as the target current). Each transistor

is injected according to a [Vsd, tpulse] pair. These pairs are determined such that

the first transistor starts at the smallest Vsd and the largest tpulse. The Vsd values

should be scaled linearly such that the last transistor will be using the largest Vsd.

The tpulse values should be scaled logarithmically such that the last transistor will

be programmed with the smallest tpulse value. Measuring the drain current before

every pulse, each transistor should be pulsed according to the prearranged pulsing

conditions. (It might be useful to also pulse Vcg up by a fixed amount to offset the

effect of the drain coupling into the gate through the overlap capacitance to keep

the transistor in weak inversion. If the transistor is forced out of weak inversion,

the modeling data will not be useful.) When the current exceeds some maximum

level (ie. 100nA), this transistor is finished and pulsing should be continued with

the appropriate pulsing conditions until all transistors have been completed. For

an array of ten transistors with Vdd = 5V, Vsd = 4.5 ↔ 5V, and tpulse = 0.1 ↔ 10s:

Transistor Vsd tpulse

1: 4.5V 10s

2: 4.55V 5.99s

...
...

...

10: 5V 0.1s
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Figure A.1: Plots of injection data used to extra modeling parameters.

Plotting log(Id) vs. pulse iteration should display an exponential relationship, as

shown in Fig. A.1(a). (Displayed as plotting Id on a semilogy plot-type.) This

signifies a “double exponential” relationship. Plotting log
(

∆Id
1sec
tpulse

)

(normalized

δId) versus log(Id) should result in straight parallel lines with slopes of approx-

imately 0.7-1.2, as shown in Fig. A.1(b). The slope of these lines is extracted

as α. Choose a fitting current, Ido, in the middle of the programming range (ie.

Ido = 10nA). The slope values at this current should be interpolated and plot-

ted versus the corresponding Vsd, as shown in Fig. A.1(c). (Note that the initial
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normalization vertically shifts the log-log plot lines and only comes into play on

the computation of Vinjbelow.) The slope (i.e., α) may increase significantly with

higher Vsd values. You can account for this by extracting the slope in Fig. A.1(c)

and replacing α with α0 + αslopeVsd. Otherwise, an average of these α values can

be used in the below model.

Using the same Ido, extract the “Normalized % Change” (y-value in Fig. A.1(b))

and plot these extracted values as log(∆Id@Id = Ido) versus Vsd. This should result

in a straight line from Vsdmin to Vsdmax. Choose a fitting Vsd level, Vsdo, in the

middle of the pulse range (ie. Vsdo = 4.75V ). The extracted slope at this point

is equal to 1/Vinj. Figure A.1(d) shows the final plot used for the Vinj parameter

extraction.

To summarize, α takes into account the injection current’s dependency on the

starting current level and Vinj accounts for the dependency on Vsd.

A.7 Programming Infrastructure

In Sections. 1.4 and 2.2, I mentioned that all MITEs are implemented with cas-

coded floating-gate PMOS (FGPMOS) transistors and all current mirrors are im-

plemented with cascoded NMOS transistors. While these cascode transistors are

needed to improve circuit performance, they also serve the additional purpose of

assisting in the programming scheme. Figure A.2(a) shows the actual implemen-

tation of a typical “slice” of a MITE circuit. By turning the cascode transistors off

(i.e., Vcp = Vdd and Vcn = Gnd), we effectively isolate the drain of the floating-gate

PMOS and remove any connections to the control gates, as shown in Fig. A.2(b).

Setting the global programming signal, Prog, high, all control gates are shorted
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together through the transmission gates to the control gate bus, CGbus. Using a

simple shift register, a single FGPMOS can be selected by setting Seli high, which

shorts the FGPMOS drain to the drain bus, Dbus. With global control of all the

control gate voltages and individual control of FGPMOS drains, each FGPMOS

can be programmed separately.

The “third” control gates shown in Fig. A.2 represent the tunneling capacitor

needed for the global “erase”. This tunneling capacitor is formed by running a thin

poly “finger” from the floating-gate across a highly doped NWell. All MITEs share

the same tunneling line, Vtun, and therefore, tunneling can only be used to tunnel

all the MITEs. Individual tunneling lines are impractical because the necessary

tunneling voltages (∼ 10-15 V) exceed the voltage limitations for most CMOS

processes, preventing standard digital circuitry (transmission gates, multiplexers,

etc.) from passing these high voltages. When creating layout for nodes that will

exceed the recommended voltage for a process, additional care must be used to

prevent unexpected behavior since the standard design rules are no longer valid. i.e.

The minimum well-to-well spacing for wells at different potentials should probably

be doubled to prevent any unexpected well-to-well current flowing through the

substrate. As an aside, the effects of the tunneling fingers on the total capacitance

should be investigated to ensure that they are not the cause of mismatch across

all MITEs.
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Vcp
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CGbus
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(a)

Prog
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Dbus

CGbus
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(b)

Figure A.2: Programming infrastructure that allows for a global “erase” through

the shared tunneling line, Vtun, and individual hot-electron injection through the

use of the MITE select signal, Seli, control gate bus, CGbus, and drain bus, Dbus.

(a) MITE cell including two cascode transistors and two transmission gates. (b)

Effective MITE cell during the programming phase when both cascode voltages

are turned off.



Appendix B

Circuit Practicalities

B.1 Power Supply

Because all transistors are cascoded, most “slices” of a MITE network will involve

a stack of four transistors between the power supply and ground (FGPMOS, p-

cascode, n-cascode, NMOS mirror). In order to remain saturated, each transistor

must have a minimum of approximately 4UT (∼100mV) across its drain-source

nodes, requiring a total power supply of at least 400mV. Additionally, there must

be enough headroom to bias the cascode transistors appropriately (i.e., Vcp ∼ Vdd−

1V and Vcn ∼ 0.8V). Because the voltages are logarithmically compressed signals,

a few hundred millivolts of swing can produce several decades of current levels.

(The number of control gates and their size affect the coupling each control gate

requiring more voltage swing for circuits with smaller control gates.) Therefore,

if the FGPMOS are programmed such that the average control gate voltage is at

Vdd/2, a 1V power supply would allow for a control gate voltage swing of 600mV

(1V −4UT = 600mV). With careful programming, operation, and biasing, it would

be reasonable to expect these circuits to work down to a power supply as low as

111
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600-700mV. (Below a Vdd of 1V, it would probably be necessary to consider making

the cascode transistors wider to reduce the required Vgs voltages.)

B.2 Current Levels

Maintaining transistor operation within the subthreshold region is necessary to

take advantage of the exponential I-V relationship. Reasonably sized transistors

(W/L ∼ 60/4) in the MOSIS AMI 0.5 µm process start to show deviation from

the exponential curve around 150nA. Using stacked transistor layout, it should be

possible to create moderately sized transistors that allow for subthreshold current

levels approaching 1uA or higher. Alternately, lateral BJT’s from a Bi-CMOS

process could be used, allowing for much higher current levels.

B.3 Frequency Limits and Higher Order Effects

Methods for increasing the current levels (i.e., a bipolar MITE implementation),

will allow for higher frequency operation before higher order effects cause unac-

ceptable performance. If technology improvements allow for greater control gate

coupling, decreasing the control gate size (while maintaining sufficient coupling)

will help to increase the frequency range before higher order effects begin to limit

operation.

B.4 General Design and Layout Techniques

Because these circuits inherently require many current biases and often times,

several of each, it is recommended that when a current sink is required, it be gen-
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erated by sourcing a current into an NMOS mirror. Alternately, if a current source

is required, sinking a current from a PMOS mirror is recommended. Another im-

portant reason for using mirrors to provide currents is that taking an internal node

out to a bonding pad that is not at the beginning of a MITE array adds a sig-

nificant amount of capacitance to that particular node and may cause unexpected

behavior. Mirroring the necessary currents maintains a similar environment seen

by all MITEs. Dummy devices at all “ends” should also be used to help maintain

consistent coupling between neighboring devices.



Appendix C

Perl Code for Automated

Consolidation

#!c:\perl\bin\perl

use strict;

use warnings;

our $min_mites;

our $best_sol_cnt;

our @shared_best;

our @best;

our @LR;

my $time;

$time = localtime time;

print $time;

my ($i,$j,$k); #temp variables

#alias used for powers greater than 1 and should

# be "undone" after optimizing

my @alias=([’u2’,’v2’],

[’u’,’v’]);

#avail used for previous knowledge of terms that

#are available for sharing (presumably from another

#circuit that is already constructed
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my $avail=’’;

my @L=(); #left side TLP terms (GLOBAL)

my @R=(); #right side TLP terms (GLOBAL)

@L=([’r1’,’r’],

[’r2’,’r’],

[’r3’,’r’],

[’r4’,’r’],

[’r5’,’r’]

);

@R=([’u2’,’u’],

[’v2’,’v’],

[’2z’,’z’],

[’2z’,’u’],

[’2z’,’v’]

);

#NEED TO IMPLEMENT FLAG TO MARK CERTAIN

#MITES AS "UNSHARABLE" (ie. OUTPUT MITES)

# - PRECEED TERMS WITH AN UNDERSCORE?

#Need to implement as method for maintaining

#output structure form

my $rows=$#L+1; #rows in L and R

my $cols=$#{$L[0]}+1; #columns in L and R

$min_mites=$rows*$cols*2;

#best solution mite count update through ’mutate#()’

$best_sol_cnt=0; #counts matches to best solution

#stick @L and @R together for mutations by row

@LR=@L;

for($i=0;$i<$rows;$i++){

@{$LR[$i+$rows]}[0..$cols-1]=@{$R[$i]}[0..$cols-1];

}

print "\nTLP’s:\n";

for($i=0;$i<$rows;$i++){

print @{$L[$i]}," = ",@{$R[$i]},"\n";

}

&mutate1();
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print "\nShared Layout: $min_mites:$best_sol_cnt\n";

for($i=0;$i<=$#best;$i++){

for($j=0;$j<=$#{$best[0]};$j++){

if($shared_best[$i][$j]==0){

print $best[$i][$j]," ";

if(length($best[$i][$j])==1){

#add space is not 2-char term

print " ";

}

}else{

print " ";

}

}

print "\n";

}

$time = localtime time;

print $time;

#Expects array-of-arrays of strings that contain TL terms

#Additional arrays requiring mutation are

#read from global array-of-arrays (@LR)

#If next loaded array is undef assume

#at lowest level and call consol()

#Current best-so-far mite count and

#configuration is compared/updated globally

#If not at lowest level, call mutate2()

#to mutate current array

#mutate1(@S[2-d])

sub mutate1{

my $count;

my @tmp;

my $i;

my $j;

if($#_==$#LR){ #no more rows to mutate so call consol

($count,@tmp)=&consolidate(@_);

if($count<$min_mites){

#separate 2 matrices

for($i=0;$i<($#tmp+1)/2;$i++){

@{$best[$i]}[0..$#{$tmp[0]}]=@{$tmp[$i]}[0..$#{$tmp[0]}];

@{$shared_best[$i]}[0..$#{$tmp[0]}]

=@{$tmp[$i+($#tmp+1)/2]}[0..$#{$tmp[0]}];
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}

$min_mites=$count;

print "\nNew Best Layout: $min_mites\n";

for($i=0;$i<=$#best;$i++){

for($j=0;$j<=$#{$best[0]};$j++){

if($shared_best[$i][$j]==0){

print $best[$i][$j]," ";

if(length($best[$i][$j])==1){

#add space is not 2-char term

print " ";

}

}else{

print " ";

}

}

print "\n";

}

$best_sol_cnt=1; #reset "multiple best" counter

}elsif($count==$min_mites){

$best_sol_cnt++; #add to multiple best

}

}else{

push(@_,$LR[$#_+1]);

#push next row from global @LR onto current set

&mutate2(0,@_);

#call individual row mutation sub with level ’0’ status

}

}

#mutate2($lev,@strings[2-d])

#Expects $lev to know where to start mutations

#and expects array of strings that contain TLP terms

#Current best-so-far mite count is compared

# and updated globally ($min_mites)

#If new ’best’, update grid as well

#Each new mutation calls mutate2()

#recursively with that mutation

sub mutate2{

my $lev=shift @_;

#how many terms are already ’set’

#(lev=2 means [0] and [1] are ’set’)

my $rows=$#_; #rows in @_
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my $cols=$#{$_[0]}+1; #cols in @_

if($lev==$cols){

#call mutate1 for next row/consolidation

#(if no more rows)

&mutate1(@_);

}else{

&mutate2($lev+1,@_);

#call for more mutations at next level (column)

my $i=0;

for($i=$lev+1;$i<$cols;$i++){

#make mutations after init call to mutate2

my $temp=$_[$rows][$lev];

$_[$rows][$lev]=$_[$rows][$i];

#swap terms at current level

$_[$rows][$i]=$temp;

&mutate2($lev+1,@_);

#call for more mutations at next level (column)

}

}

}

#expecting (@grid[2-d])

#@grid - array of arrays of strings with first

#half/2nd half of rows being L/R sides of TLP equations

sub consolidate{

my $rows=$#_+1; #get row count

my $cols=$#{$_[0]}+1; #get $cols

my @g; #Grid of terms alternating odd/even per line

my @shared=(); #flag if shared mite

my ($i,$j); #temp vars

for($i=0;$i<$rows/2;$i++){

for($j=0;$j<$cols;$j++){

#creates odd/even mix of terms

#(1st half of rows odd, 2nd even)

$g[$i][$j*2]=$_[$i][$j];

$g[$i][$j*2+1]=$_[$i+$rows/2][$j];

$shared[$i][$j*2]=0;

$shared[$i][$j*2+1]=0;

}

}

#recalculate the new dimensions

$cols=$cols*2;
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$rows=$rows/2;

# Find the number of unique terms and

# create a space-separated string of them

my $terms=" "; #string of terms (space-delimited)

my $nterms=0; #count of terms

my $share.=$avail;

#string to hold list of sharable chars/strings

#(add known values here)

my $nmites=$rows*$cols;

#holds the count of Mites needed

#(will decrement upon sharing)

# Left to Right terms (skipping last term)

for($i=0;$i<$rows;$i++){

for($j=0;$j<$cols-1;$j++){

#note that the entire line should not be added

if($shared[$i][$j]!=1){ # if not shared so far

my $temp=’ ’; #holds temporary string to match

for($k=0;$k<=$j;$k++){

$temp.=$g[$i][$k];

#gathers terms from L->R to curr column

}

$temp.=’ ’; #will start/end match with spaces

if(index($share, $temp)!=-1){

#if term is already in shared list

$shared[$i][$j]=1; #set that it is shared

$nmites--; #remove from Mite count

#print "Sharing: ", $g[$i][$j], "\n";

}else{

#print "Added: ",$temp,"\n";

$share.=$temp; #add term to shared list

}

}

}

} # Right to Left terms (skipping last term)

for($i=0;$i<$rows;$i++){

for($j=$cols-1;$j>0;$j--){

#note that the entire line should not be added

if($shared[$i][$j]!=1){ # if not shared so far

my $temp=’ ’; #holds temporary string to match

for($k=$cols-1;$k>=$j;$k--){

$temp.=$g[$i][$k];

#gathers terms from R->L to curr column
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}

$temp.=’ ’; #will start/end match with spaces

if(index($share, $temp)!=-1){

#if term is already in shared list

$shared[$i][$j]=1; #set that it is shared

$nmites--; #remove from Mite count

#print "Sharing: ", $g[$i][$j], "\n";

}else{

#print "Added: ",$temp,"\n";

$share.=$temp; #add term to shared list

}

}

}

}

return ($nmites,@g,@shared);

}
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