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Inspired by the Cucker-Smale flocking idea, we introduce a heterogeneous

agent-based price model that captures explicitly the impact of trader interac-

tion on asset price dynamics, in order to provide insights to a wide range of

puzzling stylized facts observed in financial asset returns. Discrete-time mod-

els for communication among individual market participants are investigated

in Chapter 3, while the role of an influential central authority, such as an eq-

uity analyst’s report, is studied under a continuous-time setting in Chapter 4.

In both cases, we provide limit theorems for normalized sums of dependent

stochastic processes that allow us to study analytically the aggregated effect of

micro-level communications among a large number of market participants. In

addition, we demonstrate via numerical examples that our price model is capa-

ble of reproducing asset returns with statistical properties, such as heavy tails,

aggregational Gaussianity and volatility clustering, that are in harmony with

empirical observations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The price of a risky asset is arguably one of the most important elements of

many mathematical finance models. In 1900, Louis Bachelier [4] introduced

Brownian motion as a model for stock prices in his Ph.D. thesis. At a first glance,

this approach has an intuitive economic interpretation: suppose a large number

of homogeneous agents trade independently in the market at any given time,

where the actual price of the traded asset is determined by its instantaneous

supply and demand. While each trade is small and insignificant on its own,

their aggregate will generate enough force to push the asset price up or down.

By the Central Limit Theorem, the resulting change of asset price will follow a

normal distribution under mild conditions. One immediate problem, however,

is that Brownian motion does not guarantee the positivity of asset prices at all

times. To correct this, Paul Samuelson [51] proposed to use geometric Brownian

motion (GBM) as a replacement in 1965. The idea was then championed by the

famous Black-Scholes-Merton[10] formula and became a benchmark approach

in the modeling of asset prices.

Although mathematically elegant, many empirical properties of stock prices

observed in the actual market suggest that geometric Brownian motion is not

an accurate representation of asset prices. For example, according to the GBM

model, the logarithmic asset return over a certain time period ∆t should follow

a normal distribution, where ∆t can range from a few seconds to several weeks.

In reality however, empirical facts shared by price variations of a wide range
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of financial instruments across different markets show otherwise [15]. In par-

ticular, the following statistical properties are often observed in the logarithmic

returns of financial assets1:

(1) ”Heavy tails”: the distribution of logarithmic returns often displays a lep-

tokurtic shape, with kurtosis greater than three and tail index between two to

five (which excludes the normal distribution and stable laws with infinite vari-

ance).

(2) ”Aggregational Gaussianity”: as we increase the time scale over which log-

arithmic returns are calculated, their distribution looks more and more similar

to a normal distribution.

(3) ”Volatility clustering”: of either sign, large (resp. small) logarithmic re-

turns tend to be followed by large (resp. small) logarithmic returns. i.e. the

magnitude of logarithmic return displays a significant positive autocorrelation.

Figure 1.1 and 1.2 demonstrate the above empirical findings for logrithmic re-

turns of the S&P 500 Index between January 2000 and December 20102.

The incompetency of GBM in capturing the stylized facts of asset returns

has detrimental impact in areas such as risk management and option pricing.

For example, quantile-based portfolio risk measures, such as the industry stan-

dard Value-at-Risk (VaR), may be very different when calculated using a heavy-

tailed return distribution rather than a Normal distribution. This is particularly

true for the highest quantiles of the return distribution, which is associated to a

portfolio’s potential loss during rare but extremely adverse market movements.

1see Cont (2001) [15] for a more comprehensive list of stylized facts.
2historical price data obtained from Yahoo! Finance. All calculations, plots and statistical

estimations are carried out using software package R, version 2.12.0.

2



Figure 1.1: Kernel density estimations of 1, 5, 21 and 63-day logarithmic returns
of the S&P 500 Index between January 1, 2000 and December 31, 2010,
each compared with a Normal density (red) of matching mean and
variance. Respective excess sample kurtosis are also reported.

In option pricing, a core premise of the most celebrated Black-Scholes-Merton

(BSM) formula is that the underlying asset price follows a geometric Brownian

motion. Since the constant volatility parameter σ in the BSM model is a prop-

erty of the underlying asset, its value should not be dependent on a particular

option’s strike or maturity. In reality however, when equating an option’s BSM

model price with its actual market price, the resulting value of the volatility

parameter, referred to as the Implied Volatility, clearly depends on the option’s

strike and maturity in a systematic and time-varying fashion. In particular, for a
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Figure 1.2: Time series of 1-day logarithmic return of the S&P 500 Index between
January 1, 2000 and December 31, 2010.

fixed underlying asset, lower-strike options tend to have hight implied volatil-

ities, which means that their actual prices in the market are higher than those

predicted by the BSM model. Such deviations, known as the ”volatility skew”,

have created many challenges for the pricing and hedging of exotic derivative

securities.

In response to shortfalls of the geometric Brownian motion, many sophisti-

cated mathematical models have been developed in attempts to provide a more

adequate description of asset price fluctuations and to resolve conflicts arising

from derivative securities pricing. Most of them fall under one of the following

four categories:

1. Lévy Jump-diffusion Models

Since extremely large returns occur rather frequently in financial data, many

suspected that asset prices not only move continuously, but jump from time to

time. Merton (1976) proposed the first Jump-diffusion model for equity prices,
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which uses Brownian motion to capture small price movements and jumps for

the larger ones. Under this model, option payoffs cannot be replicated by trad-

ing in the primitive assets, resulting in an incomplete market. Other models

featuring jumps in asset returns include Madan et al. (1998) on the Variance

Gamma model and Carr et al. (2002) on the CGMY model (named after the au-

thors). Since the jump structures are usually specified to match the observed

volatility skew, this class of models can generate implied volatility curves that

are fairly consistent with market option prices for a single maturity. However,

the implied volatility curve of the longer-dated options flattens out due to the

models’ i.i.d. return structure [6]. The models also fail to explain the volatility

clustering and leverage effect observed in the historical realized volatility.

2. Local Volatility Models

Dupire (1994) and Derman and Kani (1994) note that under risk-neutrality,

there exists a unique deterministic ”local volatility function” of the underlying

price S and calendar time t, which is consistent with and can be implied from

the current European option prices. Such ”local volatility” does not represent

how volatilities evolve over time. Instead, it attempts to capture an ”average”

over all possible instantaneous volatilities under a stochastic setting [28]. Lo-

cal volatility models retain a convenient hedging argument similar to that of

the BSM model, and are widely used to price exotic options after proper cali-

bration to market data. Nevertheless, the use of time-dependent instantaneous

volatilities makes it difficult to implement empirical tests, which are based on

stationarity assumptions with respect to calendar time.

3. Stochastic Volatility Models
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Stochastic Volatility models, including Hull and White (1988) and Hes-

ton (1993), are largely inspired by the phenomenon of Volatility Clustering. They

employ a separate Markovian stochastic process to capture the evolution of the

instantaneous volatility, while assigning a non-zero correlation between the as-

set’s log-returns and changes in its volatility process in order to reproduce the

volatility skew observed in the market. Although it can be challenging to fit

parameters to the current European option prices, these models are often qual-

itatively consistent with the stochastic, yet mean-reverting nature of implied

volatilities. They are also capable of generating autocorrelations in absolute

asset returns that are present in the empirical data. Unfortunately, the path con-

tinuity ties these models to Brownian motions and prevents the possibility of

having very large variations in a short period of time. As a result, it is difficult

for Stochastic Volatility models to replicate the steep skews typically observed

for options with very short maturities.

4. Affine Jump-diffusion Models with Stochastic Volatility

This last class of price models are designed to combine the advantages of

Lévy Jump-diffusion models and Stochastic Volatility models. Carr et al. (2003)

employ an additional Markovian process to time-change the Lévy process that

governs the underlying asset price dynamics. Bakshi and Madan (2000) and

Duffie et al. (2000) provide general discussions of affine jump-diffusion models

with stochastic volatility, which yield analytic solutions to derivative security

pricing.

It is without a doubt that many of the above price models can successfully

reproduce several empirical properties of asset returns. Nevertheless, they tend

to be mathematically engineered and lack fundamental economic interpreta-
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tion. This observation motivated us to search for a new asset price model, which

not only captures the important stylized facts of asset returns observed in the

market, but also is easy to understand from an economic point of view.

One of the most criticized assumptions embedded in the GBM model is that

market participants act independently from one another. As we all know, an

individual’s thoughts and actions can be heavily influenced by others through

observation and communication. The finance literature attributes a wide range

of trading behaviors observed in security markets to interactions among mar-

ket participants. One popular example, referred to as ”herding”, describes the

situation where an agent imitates others’ actions irrespective of his own pri-

vate information [12]. Based on data from the Toronto Stock Exchange, Griffiths

et al. (1998) find increased similarity in successive trades for securities that are

exchanged in an open outcry market, which supports the hypothesis of traders

engaging in imitating behavior when they can better identify each other [8].

Wermers (1999) analyze the trading activity of mutual funds from 1975 through

1994. He reports a higher level of herding among growth-oriented funds, and

find that stocks the herd buy outperform stocks they sell during the following

six months. Welch (2000) shows that the buy or sell recommendations of secu-

rity analysts have a significant positive influence on the recommendations of the

next two analysts and that analysts’ choices are correlated with the prevailing

consensus forecast even when it is subsequently proven inaccurate. Another

well documented trading behavior, known as ”contrarianism”, is the intuitive

counterpart to herding. In this case, agents choose to go against the direction of

the crowd in stead of following. Griffin et al. (2003) study the trading of individ-

ual investors in NASDAQ 100 securities and provide evidence of contrarian be-

havior by traders who submit orders through retail brokers. Kaniel et al. (2008)
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examine NYSE trading data from 2000 to 2003 and find that individuals buy

stocks after prices decrease and sell stocks after prices increase.

While some believe that herding and contrarianism are results of investors’

irrational ”animal instinct”, many economists support full or partial rationality

behind these trading behaviors in financial markets. A seminal work is the fa-

mous Keynesian Beauty Contest analogy introduced by Keynes [38] in 1936, who

argued that in order to maximize their profitability, rational investors would

price an asset not based on their own information regarding its fundamental

value, but on what they think other market participants might perceive that

value to be. Scharfstein and Stein (1990), Graham (1999), Trueman (1994) and

others3 find that when the evaluation process is based on relative rather than ab-

solute performance, reputation concerns will cause individual agents to mimic

others’ actions instead of following their private information. Welch (1992) pro-

poses yet another explanation for rational herding, known as ”informational

cascade”. When actions rather than private information are publicly visible,

agents gain useful information from observing their predecessors’ decisions,

which ultimately lead to abandonment of their own private information. As a

result, all subsequent agents will behave alike. Informational cascade can help

explain phenomena such as massive herding on an inferior decision or sudden

reverse of long-standing trends. References related to this notion can be found

in [9].

In this dissertation, we use limit theorems and the Cucker-Smale flocking

idea [19] to construct dynamic asset price models, which capture explicitly the

impact of communications among market participants. We demonstrate, via

simulation and statistical analysis, that certain rational behaviors of traders and

3For a list of references see Devenow and Welch (1996) and Hirshleifer and Teoh (2003).
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specific dependence structures amongst them could provide a strong alternative

explanation to many empirical properties of asset returns noted at the beginning

of this section.

1.2 Agent-Based Price Models: A Review

During the past few decades, modeling economic markets from the bottom up

with a large number of interacting heterogeneous agents has become a popu-

lar research field, especially in financial settings where information aggregation

across the market is critical to the formation of asset prices. While some models

provide rigorous theoretical analysis, others rely heavily on computational tools

to break through the restrictions of analytic methods. In this section, we review

a few important early papers from each category.

1.2.1 Analytic Models

There exist many analytically tractable heterogeneous agent-based models that

focus on the stochastic interaction amongst market participants and its finan-

cial implications. Although most admittedly rely on unrealistic simplifications

and assumptions, they provide valuable mathematical explanations to many

puzzling stylized facts observed in empirical market data. As an early exam-

ple, Föllmer (1974) analyzes an exchange economy with random preferences

using results on interacting particle systems in physics, and shows that even

short-ranged interaction among individual agents can propagate through the

economy and cause significant impact on price dynamics in aggregation.
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Kirman (1991) considers an exchange rate model consisting of two distinct

types of traders - fundamentalists and chartists - choosing to invest in a risk free

domestic currency or a risky foreign currency in order to maximize their ex-

pected utilities. While a fundamentalist believes that the exchange rate will

always move towards a certain fundamental value and formulates her demand

for the foreign currency accordingly, chartists base their exchange rate forecast

on past rates observed in the market. Fractions of both types of agents evolve

stochastically as agents try to assess the current majority type of the market

and decide whether to act as a fundamentalist or a chartist. An equilibrium

exchange rate is then obtained by equating the total supply of the foreign cur-

rency with the aggregated individual demands. Simulated time series of such

an equilibrium rate captures several stylized facts observed in empirical mar-

ket data [40]. In particular, when the two types of traders alternate to dominate

the market, we observe clear volatility clustering in the corresponding exchange

rate. Another agent-based model that’s rather successful in explaining similar

stylized facts was introduced in Lux (1998), where a fixed number of specu-

lative traders are again divided into fundamentalists and chartists. Individuals

from different groups randomly meet one another, compare their respective ex-

pected gains and losses, and possibly change to the opposite trading strategy

afterwards. In addition, the chartists are further categorized as either optimistic

or pessimistic, and may switch from one subgroup to another by following the

predominant opinion in the current market as well as the actual price changes.

Finally, a market maker absorbs the aggregated excess demand of individual

participants while making price changes accordingly in any given period.

A major drawback shared by many analytic agent-based models is that mar-

ket participants are usually divided into several distinct groups and are as-
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sumed to behave homogeneously within each group. As a result, both the in-

teraction among agents and the aggregation of their excess demands are often

formulated at the group-level, making these models only quasi heterogeneous.

One of the few exceptions was Föllmer and Schweizer (1993) and Föllmer

et al. (1994), who study the derivation of diffusion price models by combin-

ing the microeconomic point of view with an invariance principle. Their model

motivates the equilibrium price process in terms of assumptions at the level

of individual agents, who are not restricted to any specific strategy group and

may have mixed trading behaviors. Nevertheless, as pointed out by Föllmer

et al. (1994), this model focuses primarily on local interactions between the tran-

sition probability of each individual’s behavior and the overall market envi-

ronment, while the transitions themselves are made independently by different

agents. If additional interactions appear directly among these transitions, the

law of large numbers may no longer hold.

1.2.2 Computational Models

Analytic agent-based models gain their mathematical tractability at the price of

deviating further away from the real world due to inevitable assumptions and

simplifications. As abundant computational power and high quality financial

data sets become widely available, computer simulated agent-based models at-

tracted increasing attention from researchers. These models are able to incorpo-

rate complicated market dynamics and heterogeneity concerning information

representation, preference types, the price formation mechanism, as well as in-

dividual learning and communication among market participants. Meanwhile,

the complexity of the resulting artificial markets makes it almost impossible to
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study them analytically.

Using a Genetic Algorithm common in many computational learning mod-

els, Lettau (1997) implements a financial market model with a set of heteroge-

neous learning agents, whose only task is to decide how to divide their invest-

ment between a risky asset and a risk-free asset paying zero interest. Instead of

looking at the impact of agents’ excess demands on asset returns, the price of the

risky asset is given exogenously, which allows the model to concentrate solely

on agents’ learning behavior. Results show that given simple agent preferences,

the evolutionary Genetic Algorithm is able to discover the optimal portfolio

weights, with a slight bias towards holding more risky asset.

Arifovic (1996) simulates a more complicated two-period, two-country equi-

librium foreign exchange market, where agents have income and consumption

in both periods, and may save their income from the first to the second period

in either country’s currency. Their goal is to maximize a two-period log util-

ity function subject to certain budget constraints. Unlike Lettau (1997), agents’

aggregated consumption and portfolio decisions endogenously determine the

price levels in the market. Results from the Genetic Algorithm learning proce-

dure show that the first period consumption level is rather stable but the ex-

change rate fails to settle to any constant value. Laboratory experiments on the

same foreign exchange model with human subjects yield similar conclusions.

The Santa Fe Artificial Stock Market described in LeBaron et al. (1999) is one

of the most complex agent-based computational models created to study the

co-evolution of different types of strategies in a dynamic trading environment.

Market participants have one-period myopic preferences of future wealth, and

must allocate their investments between a risk free bond yielding constant in-
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terests and a risky stock paying stochastic dividends. A classifier system is used

to form agents’ individual expectations, which maps information regarding the

current state of the economy into a future price and dividend forecast. In ad-

dition, traders have the flexibility of using or ignoring different pieces of infor-

mation presented to them. They may also, with a certain probability, engage in

learning processes to update their current forecasting rules at the end of each

period. With its publicly available software, the Santa Fe model has served as

a platform for many studies regarding interactions between different types of

traders. Unfortunately, given the complexity of the model, it is ultimately dif-

ficult to make conclusions about how well the simulated market can reflect the

real world.

1.3 A Note on Dependence and the Central Limit Theorem

From a microeconomic point of view, the geometric Brownian motion price

model relies on the Central Limit Theorem (CLT) to describe the aggregated

supply and demand of a large number of agents participating in the market.

In its most basic form, the CLT states that if a sequence of random variables

X1, X2, . . . are independent and identically distributed with zero mean and vari-

ance 0 < σ2 < ∞, the normalized partial sum S N = 1
√

N

∑N
i=1 Xi converges in

law to a N(0, σ2) random variable as N → ∞. If in addition E[|Xi|
3] = ρ < ∞,

the Berry-Esseen Theorem guarantees that the distance between the cumulative

distribution functions of S N and N(0, σ2) is at most 3ρ
σ3
√

N
.

As discussed in Section 1.1, it has become widely accepted that observation

and communication may create a complicated dependence structure amongst
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participants in a financial market. As a result, newly proposed agent-based

models that incorporate individual learning and interactions can no longer ap-

ply the traditional CLT when analyzing the aggregated macro-effect of micro-

level trader behaviors. Much literature has been devoted to relaxing the CLT’s

independence assumption, including deep convergence results based on vari-

ous strong mixing conditions proposed by Rosenblatt (1956) and others4. For

example, Samur (1984) and Peligrad (1996) consider limit theorems for mixing

triangular arrays. Unfortunately, strong mixing conditions can be quite difficult

to check, and many classes of time series simply do not satisfy them [1]. On

the other hand, most of these time series enter the scope of Mixingales, which

is another popular concept developed to study the dependence among random

variables. However, it is far more difficult to obtain limit theorems or even mo-

ment inequalities under the mixingale setting.

The limit theorems presented in Chapter 3 of this dissertation fall un-

der the framework of m-dependent random variables with unbounded m given by

Berk (1973). It is worth mentioning that limit theorems for mixing triangular ar-

rays such as Samur (1984) and Peligrad (1996) do not imply our results, since in

our model the dependence among random variables strengthens (as opposed to

uniformly decay) with the row index. In Chapter 4 we provide a Central Limit

Theorem for the normed sum of a sequence of dependent stochastic processes

(instead of a sequence of dependent random variables). While literature in this

area is rather scarce, Jacod and Shiryaev (1987) provides a set of results for i.i.d

semimartingales that serve as a building block for the proof of our theorem.

4See Bradley (2005) for a survey.
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CHAPTER 2

A FLOCKING-INSPIRED PRICE MODEL

2.1 The Cucker-Smale Flocking Model

The mathematical models we use to describe communication among market

participants in Chapter 3 and Chapter 4 are inspired by Cucker and Smale’s

work on modeling emergent behavior in flocks [18] [19] [17].

It has been observed that under certain initial conditions, the state of a flock

converges in time to one in which all birds fly with the same velocity. Cucker

and Smale postulate a model for the evolution of a flock, where each bird adjusts

its velocity by adding to it a weighted average of the difference between its own

velocity and those of the other birds. The weights used to quantify how birds

influence one another are assumed to be a function of the distance between each

corresponding pair [18].

More specifically, consider a flock of k birds, where xi(t) ∈ R3 and vi(t) ∈ R3

represent the position and velocity of bird i ∈ {1, . . . , k} at time t, respectively. In

a discrete-time setting, the Cucker-Smale flocking model is given by:


xi(t + h) = xi(t) + hvi(t)

vi(t + h) = vi(t) + h
∑k

j=1 ai j

(
v j(t) − vi(t)

) i ∈ {1, . . . , k}. (2.1)

Here h > 0 is the magnitude of the time step and the weights
{
ai j : i, j ∈ {1, . . . , k}

}
are defined as
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ai j =
K(

1 + ‖xi − x j‖
2
)β , for some fixed K > 0 and β ≥ 0. (2.2)

Intuitively, the communication strength between bird i and j decreases contin-

uously as they separate in space, and the ”rate of decay” is captured by the

constant β > 0. It is worth mentioning that there exist other related models [55]

where bird i only communicates with those birds that are ”not too far away”,

i.e. ai j , 0 if and only if ‖xi − x j‖ ≤ r for some constant r > 0. Our discrete-time

model in Chapter 3 adopts the latter approach.

System (2.1) has the following continuous-time counterpart:


x′i(t) = vi(t)

v′i(t) =
∑k

j=1 ai j

(
v j(t) − vi(t)

) i ∈ {1, . . . , k}. (2.3)

In both discrete-time and continuous-time cases, under communication scheme

(2.2), Cucker and Smale [18] provide a set of explicit conditions on the initial

state of the flock {xi(0), vi(0) : i ∈ {1, . . . , k}} and the constants β ≥ 0, K > 0, such

that whenever these conditions are satisfied, the state of the flock is guaranteed

to converge to one where all birds fly with the same velocity, i.e. there exists

some v̂ ∈ R3 such that vi(t) → v̂ as t → ∞. They also extend the results to several

different communication schema in [19], including

(1) ”k birds with sequential leadership”, where bird i influences bird (i + 1) for

all i ∈ {1, . . . , k − 1} and no other influence between different birds occur. Our

discrete-time model in Chapter 3 follows this scheme.

(2) ”k birds with a leader”, where bird 1 influences birds 2, . . . , k and no other
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influence between different birds occur. The same communication structure is

used in our continuous-time model in Chapter 4.

More recently, Cucker and Mordecki study a flock’s emergent behavior

in a noisy environment under a communication scheme very similar to (2.2).

In particular, they perturb (2.1) and (2.3) with some additive random noises,

{Hi(t) : i = 1, . . . , k}, which result in the following systems:

In discrete-time:
xi(t + h) = xi(t) + hvi(t)

vi(t + h) = vi(t) + h
∑k

j=1 ai j

(
v j(t) − vi(t)

)
+ hHi(t)

i ∈ {1, . . . , k}; (2.4)

In continuous-time:
x′i(t) = vi(t)

v′i(t) =
∑k

j=1 ai j

(
v j(t) − vi(t)

)
+ Hi(t)

i ∈ {1, . . . , k}. (2.5)

For the discrete-time model (2.4), the perturbation terms H(t) = (H1(t), . . . ,Hk(t)),

t ∈ {0, h, 2h, . . .} form an i.i.d sequence of random variables, where H(t) ∈ R3k

follows either a Uniform distribution on B(0, r) ⊂ R3k for some r > 0, or a cen-

tered Gaussian distribution with covariance matrix σ2Id3k. The latter probabil-

ity structure is sometimes referred to as a ”Gaussian white noise sequence”. We

investigate a stochastic model involving a multiplicative (rather than additive)

noise of the same type in Chapter 3 of this dissertation. For the continuous-time

model (2.5), the perturbation terms are constructed by differentiating smooth

approximations of Wiener processes with respect to time. The authors also re-

marked an alternative way of modeling H(t) using Itô Stochastic Calculus [17].

Due to the presence of noise, convergence of the birds’ velocities to a com-
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mon value cannot be expected as described in the deterministic case [19]. In-

deed, when {v1, . . . , vk} are ”similar enough” compared with the perturbation,

the latter could outdo the contractive nature of the flock. Nevertheless, in both

discrete-time and continuous-time cases, Cucker and Mordecki show that with

high probability, a ”nearly-alignment” of {v1, . . . , vk} occurs after a give time

point, when certain restrictions on initial state of the flock and the model pa-

rameters are satisfied. In particular, if the perturbation remains small relative to

the ”dissimilarities” among {v1, . . . , vk} throughout the evolution of the flock, a

perfect alignment of the birds’ velocities will occur almost surely as t → ∞.

2.2 A Mathematical Model for Asset Price

In Chapters 3 and 4 of this dissertation, we present two Flocking-inspired math-

ematical models that allow us to describe the (normalized) aggregated excess

demand of all interactive agents in the entire market. To incorporate this infor-

mation into asset price formation, we adopt the following slow price adjustment

approach: Suppose the market-maker quotes a price that reflects the current

fundamental value of the traded asset. Individual traders can then submit their

buy or sell orders at this price. If an agent has private reasons to speculate that

an asset will become more valuable in the near future, her interest in buying

this asset will increase, i.e. the ”positive” speculation will generate certain extra

demand for the asset on top of its fundamental economic demand. Similarly, an

agent’s ”negative” speculation will raise her interest in selling the asset and in

turn lead to additional supply in the market. When aggregated over all mar-

ket participants, such speculative demand or supply will also cause the asset

price to fluctuate. In particular, if the sum of all market orders turns out to
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be an excess ”sell”, the price of the asset will decrease from its original quote.

Otherwise, if the market orders total to an excess ”buy”, the price will increase

instead. The magnitude of the price change is often assumed to be proportional

to the amount of overall excess supply or demand.

To put the above idea in a mathematical context, let S (t) be the logarithmic

price of a risky asset and V∗(t) be its normalized aggregated speculative demand

at time t, as modeled in Chapter 3 and Chapter 4. Changes in S (t) then satisfy

the following equality:

∆S (t) = f (∆W(t)) + g(∆V∗(t))

where f (·) and g(·) are both deterministic, monotone increasing functions that

vanish at 0. W(t) is a standard Brownian motion and the term f (∆W(t)) repre-

sents fluctuation in the logarithmic asset price caused by changes in the funda-

mental value of the asset. Taking a first-order approximation, we get

∆S (t) ≈ c · ∆W(t) + d · ∆V∗(t)

where c, d > 0 are some constants. Therefore, to study the process S (·), we need

only to understand the process V∗(·).

Although our price formation method makes it easy to pin down the impact

of agent communication through the aggregated speculative demand process

V∗(·), it implies that the market is never really in equilibrium. One thing we

should always keep in mind is that under such a setting, it’s often possible for

the resulting asset price to spend a lot of time being far away from the value

that actually clears the market. It is worth mentioning that there indeed exist

price formation methods that clear the market in each time period. However,

it is difficult to apply them to our problem, as agents’ speculative demands are

affected solely by their interaction with one another, not the current asset price.
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CHAPTER 3

DISCRETE-TIME INTERACTION AMONG MARKET PARTICIPANTS

3.1 Model Specification

Consider a finite time horizon [0,T ]. For all i ∈ N+, V i
t represents the speculative

demand of agent i at time t ∈ [0,T ]. For each fixed K ∈ N+, let

ΠK :=
{
0 = tK

0 < tK
1 < · · · < tK

K−1 < tK
K = T

}
be an equidistant partition of the interval [0,T ], where

tK
k = k ·

T
K

=: k · hK for all k ∈ {1, . . . ,K}.

From here onwards, we will suppress the superscript K whenever the context is

clear.

At time t0 = 0, agents form i.i.d. speculative demand ξi according to some

common distribution, i.e.

V i
0 = ξi

where E[ξi] = 0 and E[ξ2
i ] = σ2 < ∞ for all i ∈ N+. Subsequently, at times

{tk : k ∈ N+}, agent i modifies her speculative demand by adding to it a weighted

average of the difference between several other agents’ speculative demands

and that of her own. More specifically, for all i ∈ N+ and k ∈ {1, . . . ,K},

V i
tk = V i

tk−1
+

∑
j∈Ai

α
i j
tk · h ·

(
V j

tk−1
− V i

tk−1

)
, (3.1)

where the set Ai ⊂ N
+\{i} contains all market participants whom agent i actively

communicates with. The stochastic process αi j captures the directed instanta-

neous impact agent j has on agent i through their interactions, so αi j and α ji are
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different processes in general. By construction, the processes V i depend on the

total number of periods K we have in the time horizon [0,T] for all i ∈ N+.

Finally, we consider the process1

V
K,N

:=
1
√

N

N∑
i=1

V i,K , (3.2)

As K,N → ∞, V
K,N

captures the normalized aggregated speculative demand

of all agents participating in the market as their interactions become more and

more frequent.

3.2 Case I: Constant Sequential Communication

3.2.1 Assumptions and the Main Theorem

Assumption 3.2.1 In addition to Section 3.1, suppose the following hold:

(1) the initial speculative demand of agent i satisfies E[ξ4
i ] = ν < ∞ for all

i ∈ N+ and some constant ν > 0;

(2) Ai = {i + 1} for all i ∈ N+, i.e. at each time step, agent i adjusts her specula-

tive demand only through communication with agent (i+1);

(3) for each fixed K ∈ N+, αi,i+1 ≡ α · K
T > 0 for all i ∈ N+, where 0 < α < 1

is some constant. That is, agent i mimics the trading behavior of agent (i+1)

at a constant rate that’s inversely proportional to the length of the time steps

1We include the superscript K in this definition explicitly as a reminder that the process V
K,N

depends not only on the number of agents in the summation, but also the number of time steps
in the corresponding partition of [0,T ].
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throughout the entire horizon [0,T ]. As a result, equation (3.1) simplifies to

V i
tk = (1 − α)V i

tk−1
+ αV i+1

tk−1
. (3.3)

Theorem 3.2.2 Let N = N(K). Suppose Assumption 3.2.1 holds, and

lim
K→∞

K3

N
= 0.

Then

V
K,N
t :=

1
√

N(K)

N(K)∑
i=1

V i,K
t

L

=⇒ N(0, σ2) as K −→ ∞

for all t ∈ [0,T ], where σ2 = E[ξ2
i ] < ∞.

3.2.2 Proof of the Main Theorem

We first prove a few useful Lemmas.

Lemma 3.2.3 For each K ∈ N+, the corresponding {V i
tk : i ∈ N+} is a k-dependent

sequence of random variables such that E[V i
tk] = 0 and E[|V i

tk |
4] ≤ ν + 6σ4 for all k ∈

{1, . . . ,K}, where ν = E[ξ4
i ] and σ2 = E[ξ2

i ].

Proof By the model specification in Section 3.1 and Assumption 3.2.1, agent i’s

speculative demand satisfies the following system of difference equations for all

i ∈ N+: 
V i

t0 = ξi

V i
tk = (1 − α)V i

tk−1
+ αV i+1

tk−1
for all k = 1, . . . ,K.
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Iterated computations yield

V i
t0 = ξi

V i
t1 = (1 − α)ξi + αξi+1

V i
t2 = (1 − α)2ξi + 2α(1 − α)ξi+1 + α2ξi+2

· · ·

V i
tk =

k∑
j=0

(
k
j

)
α j(1 − α)k− jξi+ j =:

k∑
j=0

θk, j · ξi+ j

for all k = 1, . . . ,K and i ∈ N+. Since 0 < α < 1 by assumption and
k∑

j=0

θk, j =

k∑
j=0

(
k
j

)
α j(1 − α)k− j = (α + 1 − α)k = 1

by the Binomial Theorem, we know that 0 < θk, j < 1 for all k and j. Moreover,

{ξi : i = 1, 2, . . .} are i.i.d. random variables with

E
[
ξi
]

= 0, E
[
ξ2

i

]
= σ2 < ∞ and E

[
ξ4

i

]
= ν < ∞

Thus,

E
[
V i

tk

]
= E

 k∑
j=0

θk, j · ξi+ j

 = E[ξ1] ·
k∑

j=0

θk, j = 0,

and the Multinomial Theorem implies that

E
[∣∣∣V i

tk

∣∣∣4] = E


 k∑

j=0

θk, j · ξi+ j


4

= E


∑

d0 ,...,dk∈N
d0+···+dk=4

(
4

d0, . . . , dk

) k∏
j=0

(
θk, j · ξi+ j

)d j


= E

 k∑
j=0

(
θk, j · ξi+ j

)4
 + E


k∑

j,r=0
j<r

6
(
θk, j · ξi+ j

)2 (
θk,r · ξi+r

)2


= E

[
ξ4

1

]
·

k∑
j=0

θ4
k, j + 6E

[
ξ2

1

]
· E

[
ξ2

1

]
·

k∑
j,r=0
j<r

θ2
k, jθ

2
k,r

= ν ·

k∑
j=0

θ4
k, j + 6σ4 ·

k∑
j=0

θ2
k, j ·

k∑
r= j+1

θ2
k,r


≤ ν + 6σ4.
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The last inequality holds as 0 < θk, j < 1 for all k and j implies that

0 <
k∑

j=0

θ4
k, j <

k∑
j=0

θ2
k, j <

k∑
j=0

θk, j = 1.

Finally, for any r ∈ N+,

{
V i

tk : i ≤ r, i ∈ N+
}

=
{
g (ξi, . . . , ξi+k) : i ≤ r, i ∈ N+} =: S1,

and

{
V i

tk : i > r + k, i ∈ N+
}

= {g (ξi, . . . , ξi+k) : i > r + k, i ∈ N+}

= {g (ξi+k, . . . , ξi+2k) : i > r, j ∈ N+} =: S2.

Since {ξi : i = 1, 2, . . .} are i.i.d. random variables and g(·) is a measurable func-

tion of its arguments, we know that S1 and S2 are also independent. By def-

inition2, {V i
tk : i ∈ N+} is a k-dependent sequence of random variables. This

completes the proof.

�

Lemma 3.2.4 For each K ∈ N+, the corresponding sequence {V i
tk : i ∈ N+} satisfies

Var
[
V i+1

tk + · · · + V i+r
tk

]
≤ r · 2σ2,

for all k ∈ {1, . . . ,K} and i, r ∈ N+.

Proof As we’ve seen in the proof of Lemma 3.2.3,

V i
tk =

k∑
j=0

θk, j · ξi+ j for all i and k.

Since

Var

 n∑
i=1

Xi

 =

n∑
i=1

Var [Xi] +

n∑
i=1

n∑
j=1

Cov
[
Xi, X j

]
2See Chapter 16 of Athreya and Lahiri (2006)
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and

Cov

 n∑
i=1

Xi,

m∑
j=1

Y j

 =

n∑
i=1

m∑
j=1

Cov
[
Xi,Y j

]
,

we have

Var
[
V i+1

tk + · · · + V i+r
tk

]
=

r∑
l=1

Var
[
V i+l

tk

]
+

r∑
l=1

r∑
s=1

Cov
[
V i+l

tk ,V
i+s
tk

]
=

r∑
l=1

Var

 k∑
j=0

θk, j · ξi+l+ j

 +

r∑
l=1

r∑
s=1

Cov

 k∑
j=0

θk, j · ξi+l+ j,

k∑
j′=0

θk, j′ · ξi+s+ j′


=

r∑
l=1

Var
[
ξ1

]  k∑
j=0

θ2
k, j


 +

r∑
l=1

k∑
j=0

θk, j

k∑
j′=0

θk, j′Cov

ξi+l+ j,

r∑
s=1

ξi+s+ j′

 .
Note that {ξi : i = 1, 2, . . .} are i.i.d. random variables, so

Cov
[
ξi, ξi′

]
=


σ2 if i = i′

0 if i , i′.

Therefore, for any i, j, j′, l and r,

Cov

ξi+l+ j,

r∑
s=1

ξi+s+ j′

 ≤ σ2.

Moreover, 0 < θk, j < 1 for all k and j implies that

0 <
k∑

j=0

θ4
k, j <

k∑
j=0

θ2
k, j <

k∑
j=0

θk, j = 1.

Thus,

Var
[
V i+1

tk + · · · + V i+r
tk

]
≤

r∑
l=1

Var
[
ξ1

]
+

r∑
l=1

k∑
j=0

θk, j

 k∑
j′=0

θk, j′

σ2

= rσ2 + rσ2

= r · 2σ2.

�
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We are now ready to prove Theorem 3.2.2.

Proof of Theorem 3.2.2 For each K ∈ N+, let ΠK = {0 = t0 < t1 < · · · < tK = T } be

the equidistant partition of [0,T ] as specified in Section 3.1. Given any t ∈ [0,T ],

there exists a unique k = k(K) = b tK
T c and a corresponding point tk = tk(K) in the

partition ΠK such that tk(K) ≤ t < tk(K)+1. By construction of the model, we have

V i,K
t = V i

tk(K)
for all i ∈ N+. Moreover, since 0 ≤

∣∣∣t − tk(K)

∣∣∣ < ∣∣∣tk(K)+1 − tk(K)

∣∣∣ = T
K → 0 as

K → 0, we know that tk(K) → t as K → 0.

As shown in Lemma 3.2.3, for each K ∈ N+, {V i
tk(K)

: i ∈ N+} is a k(K)-dependent

sequence of random variables such that

E
[
V i

tk(K)

]
= 0 and E

[
|V i

tk(K)
|4
]
≤ ν + 6σ4 for all i,K ∈ N+. (3.4)

Moreover, by Lemma 3.2.4,

Var
[
V i+1

tk(K)
+ · · · + V i+r

tk(K)

]
≤ r · 2σ2 for all i, r and K ∈ N+. (3.5)

Since {ξi : i = 1, 2, . . .} are i.i.d. and V i
tk(K)

=
∑k(K)

j=0 θk(K), j · ξi+ j for all i ∈ N+, we have

Var

 N∑
i=1

V i
tk(K)


= Var

 N∑
i=1

k(K)∑
j=0

θk(K), j · ξi+ j


= Var

k(K)+1∑
i=1

 i−1∑
j=0

θk(K), j

 ξi +

N−1∑
i=k(K)+2

k(K)∑
j=0

θk(K), j

 ξi +

k(K)+N∑
i=N

 k(K)∑
j=i−N

θk(K), j

 ξi


= Var

[
ξ1

]
·

k(K)+1∑
i=1

 i−1∑
j=0

θk(K), j


2

+

N−1∑
i=k(K)+2

k(K)∑
j=0

θk(K), j


2

+

k(K)+N∑
i=N

 k(K)∑
j=i−N

θk(K), j


2 .

In addition, we know that 0 < θk(K), j < 1 for all j and
∑k(K)

j=0 θk(K), j = 1, so

0 <
k(K)+1∑

i=1

 i−1∑
j=0

θk(K), j


2

< k(K) + 1,
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0 <
k(K)+N∑

i=N

 k(K)∑
j=i−N

θk(K), j


2

< k(K) + 1,

and for any N >> K,

N−1∑
i=k(K)+2

k(K)∑
j=0

θk(K), j


2

= N − k(K) − 2.

By assumption, N = N(K) satisfies limK→∞
K3

N = 0, which implies that

lim
K→∞

k(K)3

N
= 0 (3.6)

as k(K) ∈ {1, . . . ,K}. Therefore,

lim
K→∞

1
N

k(K)+1∑
i=1

 i−1∑
j=0

θk(K), j


2

= lim
K→∞

1
N

k(K)+N∑
i=N

 k(K)∑
j=i−N

θk(K), j


2

= 0

and

lim
K→∞

1
N

N−1∑
i=k(K)+2

k(K)∑
j=0

θk(K), j


2

= 1.

As a result, we have

lim
K→∞

1
N

Var

 N∑
i=1

V i
tk(K)

 = σ2 · [0 + 1 + 0] = σ2 > 0. (3.7)

By Berk’s Theorem in [7], (3.4), (3.5), (3.6), and (3.7) imply that

1
√

N(K)

N(K)∑
i=1

V i
tk(K)

L

=⇒ N(0, σ2) as K −→ ∞.

This completes the proof of Theorem 3.2.2.

�
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3.3 Case II: Stochastic Communication with m Neighbors

3.3.1 Assumptions and the Main Theorem

Assumption 3.3.1 In addition to Section 3.1, suppose the following hold:

(1) there exists a constant Cξ > 0 such that |ξi| ≤ Cξ a.s. for all i ∈ N+;

(2) Ai = { j : 0 < j − i ≤ m} = {i + 1, . . . , i + m} for all i ∈ N+, where m ∈ N+

is some constant. That is, agent i can only consult with m individuals who are

”sufficiently close” to her. Clearly, |Ai| = m and i < Ai;

(3) αi j ≡ αi for all j ∈ Ai, i.e. all agents in the set Ai communicate to agent i in

the same fashion. In this case, equation (3.1) simplifies to

V i
tk =

(
1 − mhαi

tk

)
V i

tk−1
+ hαi

tk

i+m∑
j=i+1

V j
tk−1
. (3.8)

For any i ∈ N+ and k ∈ {1, . . . ,K}, assume that

E[αi
tk] = 0, E[(αi

tk)
2] = γ2, and |αi

tk | ≤ Cα a.s.

where γ > 0 and Cα > 0 are some constants. In addition, let αi
tk and αi

tk′ be

independent for all k , k′. Such correlational structure of the process αi is in

fact similar to that of a ”white noise” as described in Chapter I of Risken (1996).

Finally, let αi and α j be identical and independent processes for all i , j, and

take {αi : i ∈ N+} to be independent from the set of initial speculative demands

{ξi : i ∈ N+}.

Theorem 3.3.2 Let N = N(K). Supopose Assumption 3.3.1 holds, and

lim
K→∞

K2+ε

N
= 0 for some small ε > 0.
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Then

1
√

N(K)

N(K)∑
i=1

V i,K
t

L

=⇒ N(0, σ2) as K −→ ∞

for all t ∈ [0,T ], where σ2 = E[ξ2
i ] < ∞.

3.3.2 Proof of the Main Theorem

We first prove a few useful Lemmas.

Lemma 3.3.3 For each fixed K ∈ N+, {V i
tk : i ∈ N+} is an mk-dependent sequence of

random variables for each k ∈ {1, . . . ,K}.

Proof For each fixed K ∈ N+, we prove the claim by induction on k. When k = 1,

V i
t1 = (1 − mhαi

t1)ξi + hαi
t1

i+m∑
j=i+1

ξ j = g
(
αi

t1 , ξi, . . . , ξi+m

)
for all i ∈ N+,

where g(·) is a real-valued polynomial function of its arguments, and thus con-

tinuous and Borel measurable. For any r ∈ N+, define

{
V i

t1 : i ≤ r, i ∈ N+
}

=
{
g
(
αi

t1 , ξi, . . . , ξi+m

)
: i ≤ r, i ∈ N+

}
=

{
g
(
α

j−m
t1 , ξ j−m, . . . , ξ j

)
: m < j ≤ r + m, j ∈ N+

}
= : S1,

and

{
V i

t1 : i > r + m, i ∈ N+
}

=
{
g
(
αi

t1 , ξi, . . . , ξi+m

)
: i > r + m, i ∈ N+

}
=

{
g
(
α

j
t1 , ξ j, . . . , ξ j+m

)
: j > r + m, j ∈ N+

}
= : S2.
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By Assumption 3.3.1, the set
{
α

j−m
t1 , ξ j−m, . . . , ξ j : m < j ≤ r + m, j ∈ N+

}
and the set{

α
j
t1 , ξ j, . . . , ξ j+m : j > r + m, j ∈ N+

}
are independent. Since g(·) is measurable, we

know that S1 and S2 are also independent. Thus, by definition3, the sequence

{V i
t1 : i ∈ N+} is m-dependent.

Assume the lemma holds for every k ∈ {1, . . . , k∗}, where k∗ ∈ {1, . . . ,K}. For

k = k∗ + 1 and any r ∈ N+, define{
V i

tk∗+1
: i ≤ r, i ∈ N+

}
=

{
g
(
αi

tk∗+1
,V i

tk∗ , . . . ,V
i+m
tk∗

)
: i ≤ r, i ∈ N+

}
=

{
g
(
α

j−m
tk∗+1

,V j−m
tk∗ , . . . ,V j

tk∗

)
: m < j ≤ r + m, j ∈ N+

}
= : S′1

and {
V i

tk∗+1
: i > r + m(k∗ + 1), i ∈ N+

}
=

{
g
(
αi

tk∗+1
,V i

tk∗ , . . . ,V
i+m
tk∗

)
: i > r + m + mk∗, i ∈ N+

}
=

{
g
(
α

j
tk∗+1

,V j
tk∗ , . . . ,V

j+m
tk∗

)
: j > r + m + mk∗, j ∈ N+

}
= : S′2.

Since {V i
tk∗ : i ∈ N+} is mk∗-dependent by the induction hypothesis and αi is

assumed to be independent of α j for any i , j, we know that the set{
α

j−m
tk∗+1

,V j−m
tk∗ , . . . ,V j

tk∗ : m < j ≤ r + m, j ∈ N+
}

and the set {
α

j
tk∗+1

,V j
tk∗ , . . . ,V

j+m
tk∗ : j > r + m + mk∗, j ∈ N+

}
are also independent. Thus, the measurability of g(·) implies that S′1 and S′2

are independent for any r ∈ N+. By definition, the sequence {V i
tk∗+1

: i ∈ N+} is

m(k∗ + 1)-dependent.
3See Chapter 16 of Athreya and Lahiri (2006).
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By induction, we conclude that for each fixed K ∈ N+, {V i
tk : i ∈ N+} is an

mk-dependent sequence of random variables for all k ∈ {1, . . . ,K}.

�

Lemma 3.3.4 For each fixed K ∈ N+, {V i
tk : i ∈ N+} is a stationary sequence of random

variables for all k ∈ {0, . . . ,K}.

Proof For each fixed K ∈ N+, we prove the claim by induction on k. When k = 0,

{V i
t0 : i ∈ N+} = {ξi : i ∈ N+} is an i.i.d. sequence, so

P (ξ1 ≤ x1, . . . , ξl ≤ xl) = P (ξi+1 ≤ x1, . . . , ξi+l ≤ xl) =

l∏
j=1

P(ξ1 ≤ x j)

for all l ∈ N+, (x1, . . . , xl)′ ∈ Rl, and i ∈ N+. By definition4, the sequence {V i
t0 : i ∈

N+} is stationary.

Now suppose the lemma holds for every k ∈ {0, . . . , k∗}, where k∗ ∈ {0, . . . ,K}.

For k = k∗ + 1, since

V i
tk∗+1

= (1 − mhαi
tk∗+1

)V i
tk∗ + hαi

tk∗+1

i+m∑
j=i+1

V j
tk∗

= g
(
αi

tk∗+1
,V i

tk∗ , . . . ,V
i+m
tk∗

)
where g(·) is measurable, we have

P
(
V1

tk∗+1
≤ x1, . . . ,V l

tk∗+1
≤ xl

)
= P

(
g
(
α1

tk∗+1
,V1

tk∗ , . . . ,V
1+m
tk∗

)
≤ x1, . . . , g

(
αl

tk∗+1
,V l

tk∗ , . . . ,V
l+m
tk∗

)
≤ xl

)
=

∫
P

(
g
(
z1,V1

tk∗ , . . . ,V
1+m
tk∗

)
≤ x1,

. . . , g
(
zl,V l

tk∗ , . . . ,V
l+m
tk∗

)
≤ xl

)
dFα1

tk∗+1
···αl

tk∗+1
(z1, . . . , zl)

4See Chapter 8 of Athreya and Lahiri (2006).

31



and

P
(
V i+1

tk∗+1
≤ x1, . . . ,V i+l

tk∗+1
≤ xl

)
= P

(
g
(
αi+1

tk∗+1
,V i+1

tk∗ , . . . ,V
i+1+m
tk∗

)
≤ x1, . . . , g

(
αi+l

tk∗+1
,V i+l

tk∗ , . . . ,V
i+l+m
tk∗

)
≤ xl

)
=

∫
P

(
g
(
z1,V i+1

tk∗ , . . . ,V
i+1+m
tk∗

)
≤ x1,

. . . , g
(
zl,V i+l

tk∗ , . . . ,V
i+l+m
tk∗

)
≤ xl

)
dFαi+1

tk∗+1
··· αi+l

tk∗+1
(z1, . . . , zl).

By Assumption 3.3.1, we know that αi and α j are identical and independent

processes for all i , j, so

Fα1
tk∗+1

··· αl
tk∗+1

(z1, . . . , zl) = Fαi+1
tk∗+1

··· αi+l
tk∗+1

(z1, . . . , zl)

for all l ∈ N+, (z1, . . . , zl)′ ∈ Rl and i ∈ N+. Moreover, by the induction hypothesis,

{V i
tk∗ : i ∈ N+} is a stationary sequence of random variables, so

{V1
tk∗ , . . . ,V

l+m
tk∗ }

D
= {V i+1

tk∗ , . . . ,V
i+l+m
tk∗ }.

Therefore, for all l ∈ N+, x1, . . . , xl ∈ R and i ∈ N+,

P
(
V1

tk∗+1
≤ x1, . . . ,V l

tk∗+1
≤ xl

)
= P

(
V i+1

tk∗+1
≤ x1, . . . ,V i+l

tk∗+1
≤ xl

)
and the sequence {V i

tk∗+1
: i ∈ N+} is stationary.

By induction, we conclude that for each fixed K ∈ N+, the sequence {V i
tk : i ∈

N+} is stationary for all k ∈ {0, . . . ,K}.

�

Lemma 3.3.5 For each fixed K ∈ N+,

(1) E
[
V i

tk

]
= 0,

(2) E
[(

V i
tk

)2
]

= (1 + mh2γ2 + m2h2γ2)kσ2, and

(3) E
[
V i

tkV
d
tk

]
= 0 if i , d.

for all i ∈ N+ and k ∈ {1, . . . ,K}.
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Proof Recall that by Assumption 3.3.1, the set {αi : i ∈ N+} is taken to be in-

dependent from the set of initial speculative demands {ξi : i ∈ N+}, and αi is

independent from α j for all i , j. Moreover, for each i ∈ N+, αi
tk is independent

from αi
tk′ for all k , k′. Since

V i
tk = (1 − mhαi

tk)V
i
tk−1

+ hαi
tk

i+m∑
j=i+1

V j
tk−1

= g
(
αi

tk ,V
i
tk−1
, . . . ,V i+m

tk−1

)
= g

(
αi

tk , g
(
αi

tk−1
,V i

tk−2
, . . . ,V i+m

tk−2

)
, . . . , g

(
αi+m

tk−1
,V i+m

tk−2
, . . . ,V i+2m

tk−2

))
...

= ĝ
({
α

j
t : t ∈ {t1, . . . , tk}, j ∈ {i, . . . , i + (k − 1)m}

}
,
{
ξ j : j ∈ {i, . . . , i + km}

})
,

the previous assumptions imply that αi
tk+1

is independent from {V i
tk : i ∈ N+} for

all i ∈ N+ and k ∈ {0, . . . ,K − 1}.

We now prove each claim by induction on k. Throughout the proof, we rely

on the above independence structures to factor expectations of products into

products of expectations.

For k = 1, since E
[
ξi
]

= 0 for all i ∈ N+, we have

E
[
V i

t1

]
= E

(1 − mhαi
t1)ξi + hαi

t1

i+m∑
j=i+1

ξ j


= E

[
(1 − mhαi

t1)
]
· E

[
ξi
]
+ E

[
hαi

t1

]
·

i+m∑
j=i+1

E
[
ξ j

]
= 0

Assume E
[
V i

tk

]
= 0 for all i ∈ N+, then

E
[
V i

tk+1

]
= E

(1 − mhαi
tk+1

)V i
tk + hαi

tk+1

i+m∑
j=i+1

V j
tk


= E

[
(1 − mhαi

tk+1
)
]
· E

[
V i

tk

]
+ E

[
hαi

tk+1

]
·

i+m∑
j=i+1

E
[
V j

tk

]
= 0
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By induction, this completes the proof for (1).

For (2) and (3), when k = 1,

E
[(

V i
t1

)2
]

= E


(1 − mhαi

t1)ξi + hαi
t1

i+m∑
j=i+1

ξ j


2

= E
[
1 − 2mhαi

t1 + m2h2(αi
t1)

2
]
· E

[
ξ2

i

]
+ E

[
h2(αi

t1)
2
]
· E


 i+m∑

j=i+1

ξ j


2

+ 2E
[
(1 − mhαi

t1) · hα
i
t1

]
·

i+m∑
j=i+1

E
[
ξiξ j

]
for all i ∈ N+ and d , i,

E
[
V i

t1V
d
t1

]
= E


(1 − mhαi

t1)ξi + hαi
t1

i+m∑
j=i+1

ξ j


(1 − mhαd

t1)ξd + hαd
t1

d+m∑
j=d+1

ξ j




= E
[
(1 − mhαi

t1)(1 − mhαd
t1)

]
E
[
ξiξd

]
+ E

[
(1 − mhαi

t1)
]
E
[
hαd

t1

]
·

d+m∑
j=d+1

E
[
ξiξ j

]
+ E

[
hαi

t1

]
E
[
(1 − mhαd

t1)
] i+m∑

j=i+1

E
[
ξdξ j

]
+ E

[
hαi

t1

]
E
[
hαd

t1

]
E


 i+m∑

j=i+1

ξ j


 d+m∑

j=d+1

ξ j




By model specifications in Section 3.1 and Assumption 3.3.1,

E
[
ξi
]

= 0, E
[
ξ2

i
]

= σ2, E
[
αi

t1

]
= 0, E

[(
αi

t1

)2]
= γ2,

and {ξi : i ∈ N+} is an i.i.d. sequence of random variables. Thus,

E
[
(V i

t1)
2] = (1 + mh2γ2 + m2h2γ2)σ2 and E

[
V i

t1V
d
t1

]
= 0

for all i ∈ N+ and d , i.

Now suppose E
[
(V i

tk)
2] = (1+mh2γ2 +m2h2γ2)kσ2 and E

[
V i

tkV
d
tk

]
= 0 for all i ∈ N+

and d , i. Then,
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E
[(

V i
tk+1

)2
]

= E


(1 − mhαi

tk+1
)V i

tk + hαi
tk+1

i+m∑
j=i+1

V j
tk


2

= E
[
1 − 2mhαi

tk+1
+ m2h2(αi

tk+1
)2
]
E

[
(V i

tk)
2
]

+ E
[
h2(αi

tk+1
)2
]
E


 i+m∑

j=i+1

V j
tk


2

+ 2E
[
(1 − mhαi

tk+1
) · hαi

tk+1

]
·

i+m∑
j=i+1

E
[
V i

tkV
j

tk

]
= (1 + m2h2γ2)(1 + mh2γ2 + m2h2γ2)kσ2 + h2γ2 · m(1 + mh2γ2 + m2h2γ2)kσ2 + 0

= (1 + mh2γ2 + m2h2γ2)k+1σ2

and

E
[
V i

tk+1
Vd

tk+1

]
= E


(1 − mhαi

tk+1
)V i

tk + hαi
tk+1

i+m∑
j=i+1

V j
tk


(1 − mhαd

tk+1
)Vd

tk + hαd
tk+1

d+m∑
j=d+1

V j
tk




= E
[
(1 − mhαi

tk+1
)(1 − mhαd

tk+1
)
]
E
[
V i

tkV
d
tk

]
+E

[
(1 − mhαi

tk+1
)
]
E
[
hαd

tk+1

]
·

d+m∑
j=d+1

E
[
V i

tkV
j

tk

]
+ E

[
hαi

tk+1

]
E
[
(1 − mhαd

tk+1
)
] i+m∑

j=i+1

E
[
Vd

tkV
j

tk

]
+E

[
hαi

tk+1

]
E
[
hαd

tk+1

]
E


 i+m∑

j=i+1

V j
tk


 d+m∑

j=d+1

V j
tk




= 0

for all i ∈ N+ and any d , i. By induction, this completes the proof of (2) and (3).

�

Lemma 3.3.6 Suppose there exist constants Cξ, Cα such that |ξi| ≤ Cξ and |αi| ≤ Cα

a.s. for all i ∈ N+. Then for each fixed K ∈ N+,∣∣∣V i
tk

∣∣∣ ≤ (1 + 2mhCα)kCξ

35



for all i ∈ N+ and k ∈ {1, . . . ,K}.

Proof For each fixed K ∈ N+, we prove the claim by induction on k. For k = 1,

since |ξi| ≤ Cξ and |αi
t1 | ≤ Cα a.s. for all i ∈ N+, we know that

∣∣∣V i
t1

∣∣∣ =
∣∣∣∣(1 − mhαi

t1)ξi + hαi
t1

i+m∑
j=i+1

ξ j

∣∣∣∣
≤ (1 + mhCα)Cξ + mhCαCξ

= (1 + 2mhCα)Cξ.

Now suppose
∣∣∣V i

tk

∣∣∣ ≤ (1 + 2mhCα)kCξ for all i ∈ N+, then

∣∣∣V i
tk+1

∣∣∣ =
∣∣∣∣(1 − mhαi

tk+1
)V i

tk + hαi
tk+1

i+m∑
j=i+1

V j
tk

∣∣∣∣
≤ (1 + mhCα) · (1 + 2mhCα)kCξ + hCα · m(1 + 2mhCα)kCξ

= (1 + 2mhCα)k+1Cξ

By induction, for each K ∈ N+,
∣∣∣V i

tk

∣∣∣ ≤ (1 + 2mhCα)kCξ for all i ∈ N+, k ∈ {1, . . . ,K}.

�

We are now ready to prove Theorem 3.3.2.

Proof of Theorem 3.3.2 For each K ∈ N+, let ΠK = {0 = t0 < t1 < · · · < tK = T } be

the equidistant partition of the interval [0,T ] as specified in Section 3.1, where

hK := |ΠK | = T
K and tk = k ·hK for all k ∈ {1, . . . ,K}. Given any t ∈ [0,T ], there exists

a unique k = k(K) = b tK
T c and a corresponding point tk = tk(K) in the partition ΠK

such that tk(K) ≤ t < tk(K)+1. By construction of the model, we have V i
t = V i

tk(K)
for

all i ∈ N+. Moreover, since 0 ≤
∣∣∣t − tk(K)

∣∣∣ < ∣∣∣tk(K)+1 − tk(K)

∣∣∣ = T
K → 0 as K → 0, we

know that tk(K) → t as K → 0.
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By Lemma 3.3.3 and Lemma 3.3.5, {V i
tk(K)

: i ∈ N+} is an m · k(K)-dependent

sequence of random variables with zero means. In order to prove the conver-

gence in Theorem 3.2.2, we check the criterion given in Berk (1973). As shown

in Lemma 3.3.6, for each K ∈ N+,∣∣∣V i
tk(K)

∣∣∣ ≤ (1 + 2mhKCα)k(K)Cξ ≤
(
1 + 2mCα

T
K

)K

for all i ∈ N+ and k(K) ∈ {1, . . . ,K}. Since

lim
K→∞

(1 +
2mCαT

K
)K = e2mCαT ,

there must exist some constant ε > 0 and n(ε) ∈ N+ such that∣∣∣∣(1 +
2mCαT

K

)K
− e2mCαT

∣∣∣∣ < ε for all K ≥ n(ε).

Thus,(
1 +

2mCαT
K

)K

≤ max
({(

1 +
2mCαT

j
) j : j = 1, 2, . . . , n(ε)

}
, e2mCαT + ε

)
=: M1

for all K ∈ N+, which implies that for any given δ > 0,

E
[∣∣∣V i

tk(K)

∣∣∣2+δ
]
≤ E

[
M2+δ

1

]
= M2+δ

1 (3.9)

for all K ∈ N+, i ∈ N+, and k(K) ∈ {1, . . . ,K}.

On the other hand, for each K ∈ N+,

E
[(

V i
tk(K)

)2
]

= σ2
(
1 + m(

T
K

)2γ2 + m2(
T
K

)2γ2
)k(K)

for all i ∈ N+ and k(K) ∈ {1, . . . ,K} by Lemma 3.3.5. Therefore,

σ2 ≤ lim
K→∞
E

[(
V i

tk(K)

)2
]

= lim
K→∞

σ2
(
1 + m(

T
K

)2γ2 + m2(
T
K

)2γ2
)b tK

T c

≤ lim
K→∞

σ2

1 +
mt2γ2 + m2t2γ2

tK
T

·
T
tK

 tK
T

< lim
K→∞

σ2

1 +
(mt2γ2 + m2t2γ2) · ε

tK
T

 tK
T

= σ2 · e(mt2γ2+m2t2γ2)ε
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for any ε > 0. Since

e(mt2γ2+m2t2γ2)ε −→ 1 as ε −→ 0,

we know that

lim
K→∞
E

[(
V i

tk(K)

)2
]

= σ2 > 0,

which in turn implies that

E
[(

V i
tk(K)

)2]
≤ max

({(
1 +

mT 2γ2 + m2T 2γ2

j2

)b t
T jc : j = 1, . . . , n(ε)

}
, σ2 + ε

)
=: M2

for all i ∈ N+, K ∈ N+ and k(K) ∈ {1, . . . ,K}, where ε > 0 is some constant and

n(ε) ∈ N+.

Finally, by Lemma 3.3.5, E
[
V i

tk(K)

]
= 0 and E

[
V i

tk(K)
Vd

tk(K)

]
= 0 for all i ∈ N+ and

d , i. Thus, for all i, j and K ∈ N+, we have

Var
[
V i+1

tk(K)
+ · · · + V j

tk(K)

]
= Var

[
V i+1

tk(K)

]
+ · · · + Var

[
V j

tk(K)

]
= E

[(
V i+1

tk(K)

)2
]

+ · · · + E
[(

V j
tk(K)

)2
]

= ( j − i) · E
[(

V i
tk(K)

)2
]

≤ ( j − i) · M2, (3.10)

and for any N = N(K),

lim
K→∞

1
N(K)

Var
[
V1

tk(K)
+ · · · + VN(K)

tk(K)

]
= lim

K→∞

N(K)
N(K)

· E
[(

V i
tk(K)

)2]
= σ2 > 0. (3.11)

Moreover,

lim
K→∞

K2+ε

N
= 0 for some small ε > 0 (3.12)

by assumption. Taking the constant δ in (3.9) to be equal to the constant ε in

(3.12), we see that (3.9), (3.10), (3.11) and (3.12) together imply

1
√

N(K)

N(K)∑
i=1

V i
tk(K)

L

=⇒ N(0, σ2) as K −→ ∞

by Berk’s Theorem in [7]. This completes the proof of Theorem 3.2.2.

�
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3.4 Numerical Analysis

3.4.1 Statistical Properties of Simulated Data

To investigate statistical properties of the normalized total speculative demand

V
K,N

as defined in Section 3.1, we simulate5 the stochastic communication model

as specified in Section 3.36, where

• T = 1 is the length of the entire time horizon.

• K = 200 is the number of time steps in the equidistant partition.

• N = 52132 is the total number of agents participating in the market7.

• m = 10 is the number of individuals each agent communicates with.

• All initial speculative demands ξi’s follow a Uniform[−2, 2] distribution.

• All communication rates αi
tk ’s follow a Uniform[−5, 5] distribution.

Figure 3.1 shows a simulated sample path of V
K,N

, along with the path of a

standard Brownian motion sampled over the same time grid. The former seems

to have a higher volatility towards the end of the time horizon, while the latter

displays a rather stable volatility throughout the entire period.

In order to test our model’s ability to capture the empirically observed ”styl-

ized facts” of logarithmic asset returns as discussed in Section 1.1, we turn our

5All simulations, statistical tests and data plotting are carried out using software package R,
Version 2.12.0.

6Simulation of the constant communication model as specified in Section 3.2 yields similar
qualitative results.

7Note that 2002+0.05 ≈ 52132.
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Figure 3.1: (Upper panel) Simulated sample paths of V
K,N

; (Lower panel) sim-
ulated sample paths of a standard Brownian motion over the same
time grid.

attention to the set of values{(
V

K,N
tk − V

K,N
tk−1

)
: k = 1, . . . ,K

}
,

which can be viewed as the logarithmic asset returns generated by the normal-

ized total speculative demand over each individual time step tk, k = 1, . . . ,K.

As shown in Figure 3.2, the ”distribution” of 1-step returns generated by

an arbitrary sample path of V
K,N

displays a clear leptokurtic shape. That is, it

seems to have a more acute peak around the mean and heavier tails than those

of a Normal distribution. Some descriptive statistics8 associated with the set of

1-step returns given by this particular sample are reported in Table 3.1. In ad-

dition, we simulate 500 additional sample paths of V
K,N

and calculate the same

statistics for the set of 1-step returns generated by each one of them. The corre-

8From here onward, ”kurtosis” is always calculated as (E[X4]/E[X2]2) − 3, i.e. the ”excess
kurtosis” relative to a normal distribution.
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Figure 3.2: Histogram generated by the set of values
{(

V
K,N
tk −V

K,N
tk−1

)
: k = 1, . . . ,K

}
given by the sample path of V

K,N
shown in Figure 3.1. The Kernel

density estimation (blue) and a Normal density (red) with mean and
variance matching the simulated data are also plotted.

sponding results are summarized in Table 3.2. It’s easy to spot that the ”distri-

bution” of the 1-step returns
{(

V
K,N
tk − V

K,N
tk−1

)
: k = 1, . . . ,K

}
given by an arbitrary

sample path of V
K,N

is characterized by significant excess kurtosis.

Table 3.1: Descriptive statistics for the set of 1-step returns associated with the
sample path of V

K,N
shown in Figure 3.1. All statistics are calculated

using the fBasics package in R 12.2.0.

Mean Variance Skewness Kurtosis

-0.112 0.727 -0.574 3.16

Two normality tests are carried out on each of the 500 sets of 1-step returns

associated with 500 individual sample paths of V
K,N

. The Shapiro−Wilk test
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Table 3.2: Mean, Variance, Skewness and Kurtosis are repeatedly calculated for
each of the 500 sets of 1-step returns associated respectively with 500
individual sample paths of V

K,N
. The resulting values are then aver-

aged and reported along with the corresponding standard deviation.

Mean Variance Skewness Kurtosis

Average Value
(over 500 sample sets)

-2.50×10−4 0.618 9.95×10−3 3.22

Standard Deviation
(over 500 sample sets)

5.89×10−2 0.533 0.520 2.15

is based on order statistics while the Jarque−Bera9 test relies on sample kur-

tosis and skewness. Summary of the resulting test statistics and p−values are

reported in Table 3.3, which lead to strong rejections of the null hypothesis of

normality in both cases.

Table 3.3: Shapiro−Wilk and Jarque−Bera normality tests are performed repeat-
edly on each of the 500 sets of 1-step returns associated respectively
with 500 simulated paths of V

K,N
. The resulting test statistics and p-

values are then averaged and reported along with the corresponding
standard deviations.

Shapiro−Wilk Jarque−Bera

Test Statistic p−value Test Statistic p−value

Average Value
(over 500 sample sets)

0.935 2.17×10−3 138 2.14×10−3

Standard Deviation
(over 500 sample sets)

4.06×10−2 1.67×10−2 303 1.54×10−2

Recall from Section 1.1 that ”Heavy tails” is one of the most well-known sta-

tistical properties observed in the empirical logarithmic returns of financial as-

sets. The Q-Q plot in Figure 3.3, together with the previously calculated sample

9The stats and tseries packages in R 12.2.0 are used to implement the Shapiro−Wilk test and
the Jarque−Bera test, respectively.

42



kurtosis in Table 3.1, seem to indicate a similar behavior for the ”distribution”

of 1-step returns given by the simulated path of V
K,N

as shown in Figure 3.1. To

further investigate this observation, we turn our attention to Hill Estimators for

the 10%-, 5%- and 2.5%- tails of the set of 1-step returns associated with sample

paths of V
K,N

.

We calculate the Hill estimators for the 10%−, 5%− and 2.5%−tails of each

of the 500 sets of 1-step returns given by individual simulated sample paths of

V
K,N

. The corresponding results, summarized in Table 3.4, are in great harmony

with various tail index estimates for empirical financial asset returns, which

typically range from 2 to 5.

Figure 3.3: Q-Q plot of the set of values
{(

V
K,N
tk − V

K,N
tk−1

)
: k = 1, . . . ,K

}
given by

the simulated sample path of V
K,N

shown in Figure 3.1.

Aggregational Gaussianity is also a common empirical property shared by the

logarithmic returns of a wide set of financial assets. As we increase the length of

the time interval over which the returns are calculated, their ”distributions” ap-

43



Table 3.4: Hill Estimators for 10%−, 5%− and 2.5%−tails are repeatedly calcu-
lated for each of the 500 sets of 1-step returns associated with 500 in-
dividual sample paths of V

K,N
. The resulting values are then averaged

and reported along with the corresponding standard deviations.

10% 5% 2.5%

Average Value
(over 500 sample sets)

2.15 2.97 4.13

Standard Deviation
(over 500 sample sets)

0.469 0.877 2.18

pear to become more and more similar to a Normal distribution. In our model,

the logarithmic return generated by the normalized total speculative demand,

namely V
K,N

, seems to possess the same property, as illustrated graphically by

Figure 3.4. To further support this finding, we calculate the sample kurtosis10 for

the sets of 1-, 7- and 14-step returns associated with each of the 500 individual

sample paths of V
K,N

. The results are summarized in Table 3.5.

Table 3.5: The sample kurtosis is repeatedly calculated for the sets of 1-, 7- and
14-step returns associated respectively with 500 individual sample
paths of V

K,N
. The resulting values are then averaged and reported

along with the corresponding sample standard deviations.

1-step 7-step 14-step

Average Value
(over 500 sample sets)

3.22 2.39 1.64

Standard Deviation
(over 500 sample sets)

2.15 2.20 1.93

Volatility clustering is yet another empirical property of logarithmic asset re-

turns observed in the market. Large returns, positive or negative, tend to be

10Recall that in this dissertation, all kurtosis are calculated as (E[X4]/E[X2]2)−3, i.e. the ”excess
kurtosis” relative to a normal distribution.
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Figure 3.4: (Left to right) Histograms generated by the sets of 1-, 7- and 14-step
returns given by the simulated sample path of V

K,N
shown in Figure

3.1. The corresponding Kernel density estimation (blue) and a Nor-
mal density (red) with mean and variance matching the simulated
data are also plotted.

followed by large returns, while small returns are often followed by small re-

turns. In other words, the magnitude of logarithmic asset returns display a sig-

nificant, positive autocorrelation [15]. The same phenomenon appears in Figure

3.5, when we plot the set of values
{(

V
K,N
tk − V

K,N
tk−1

)
: k = 1, . . . ,K

}
given by an ar-

bitrary simulated sample path of V
K,N

against the time steps {tk : k = 1, . . . ,K}.

A more quantitative manifestation of Volatility Clustering lies in the fact that,

while the logarithmic asset returns are themselves uncorrelated, their absolute

values usually display a significant, positive, and slow-decaying autocorrela-

tion function [15]. In Figure 3.6, we plot the autocorrelation function of the set

of 1-step returns associated with the simulated sample path of V
K,N

in Figure

3.1, as well as the autocorrelation function of their absolute values. In contrast

to the same plot created for a standard Brownian motion, our simulated data is

again in qualitative agreement with empirical findings.
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Figure 3.5: (Upper panel) The set of 1-step returns associated with the simulated
sample path of V

K,N
in Figure 3.1, plotted against the time grid

{
tk :

k = 1, . . . ,K
}
; (Lower panel) the same plot for a standard Brownian

motion is presented for comparison.

A Multi-period Extension

As a direct extension to our 1-period model, consider an M-period communi-

cation model over a finite time horizon [0,T ], where the i-th period is denoted

by [Ti−1,Ti). Suppose T0 = 0 and the length of each time period is T
M . Similar

to the 1-period model, we partition every interval [Ti−1,Ti) into K equidistant

time steps for some fixed K ∈ N+. For each i = 1, . . . ,M, agents form i.i.d spec-

ulative demand at time Ti−1 and subsequently update them throughout the in-

terval [Ti−1,Ti) according to the communication scheme specified in Section 3.3.

46



Figure 3.6: Autocorrelation functions of: (1) the 1-step returns given by the sim-
ulated sample path of V

K,N
in Figure 3.1; (2) their corresponding ab-

solute values; (3) the 1-step returns given by a standard Brownian
motion sampled over the same time grid; (4) their absolute values.

Intuitively, at time Ti−1, investors are informed about an upcoming event i (e.g. a

company’s quarterly earnings release), which may seriously affect the value of a

risky asset traded in the market. This information leads them to form indepen-

dent initial speculative demands, which are subsequently adjusted over time

via communication with other market participants. At time Ti, the outcome of

event i is revealed and all related speculations vanish. In the meanwhile, agents

begin to speculate about the next event i + 1 and same cycle repeats itself until

we reach the end of the time horizon.
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Figure 3.7 shows a simulated sample path of the normalized total specula-

tive demand V
M·K,N

in our model11, along with a path of the standard Brownian

motion sampled over the same time grid. Note that in the case of V
M·K,N

, jumps

may occur naturally at mesh points of consecutive time periods.

Figure 3.7: (Upper panel) Simulated sample path of V
M·K,N

; (Lower panel) sam-
ple path of a standard Brownian motion simulated over the same
time grid.

3.4.2 Rate of Convergence

By Theorem 3.3.2, as K and N = N(K) ≈ K2+δ (δ > 0 is some small con-

stant) tend to infinity, the distribution of V
K,N
tk , k ∈ {1, . . . ,K} converges to

N(0, σ2), where σ2 is the variance of the agents’ initial speculative demands

ξi, i ∈ {1, . . . ,N}. To illustrate the convergence described in the theorem and

11V
M·K,N

is the M-period analogy to V
K,N

defined in Section 3.1.
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gain some insights regarding the corresponding rate of convergence, we simu-

late the system specified in Section 3.4.1 under different values of K and N(K),

where K = 50, 100, 200, 300, 400, 500, 600, 1000, 1500 and N(K) = [K2.05]. We then

study in each case the empirical distribution of V
K,N
tK given by 300 samples and

compare their statistical properties with those of the N(0, σ2 = 4
3 )12 distribution.

As shown in Figure 3.8, starting from K = 300, the shape of each kernel

density estimator of V
K,N
tK seems rather similar to that of the theoretical Normal

density with matching mean and variance. To further test a more strict hypoth-

esis that ”the sample comes from a population with a N(0, 4
3 ) distribution”, we

apply the Komogorov-Smirnov Goodness-of-Fit Test to each set of the 300 sam-

pled values of V
K,N
tK . The resulting test statistics and p-values are presented in

Table 3.6. Note that in the case of K = 1500, we no longer have evidence to reject

the null hypothesis.

Table 3.6: Results of Komogorov-Smirnov Goodness-of-Fit Tests performed on
samples of V

K,N
tK with different values of K. Each sample is of size 300.

K = Test Statistics p-values

50 0.514 0

100 0.503 0

200 0.381 0

300 0.316 0

400 0.231 2.39 × 10−14

500 0.208 1.05 × 10−11

600 0.176 1.68 × 10−8

1000 0.095 8.94 × 10−3

1500 0.055 3.13 × 10−1

12In Section 3.4.1, ξi is assumed to follow a Uniform[−2, 2] distribution, so σ2 = Var(ξi) = 4
3 .
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Figure 3.8: Histograms of V
K,N
tK for different values of K, each generated by 300

samples. The corresponding Kernel density estimation (blue) and a
Normal density (red) with mean and variance matching the simu-
lated data are also plotted.

For each value of K, several basic statistics of V
K,N
tK calculated from a sample

of size 300 are presented in Table 3.713, along with the corresponding theoretical

values of the N(0, 4
3 ) distribution.

In Figure 3.9, we plot the logarithmic values of the sample ”Absolute Mean”

of V
K,N
tK (reported in Column 3 of Table 3.7) against the corresponding values of

K. The shape of the resulting curve indicates that E
[∣∣∣∣VK,N

tK

∣∣∣∣] converges to E [|V∗|]

13The ”Absolute Mean” of a random variable X is calculated as E[|X|] and ”Kurtosis” as usual
refers to the ”excess kurtosis”.
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Table 3.7: Basic statistics calculated from samples of V
K,N
tK with different values

of K. Each sample is of size 300. The corresponding theoretical values
of the N(0, 4

3 ) distribution is provided for comparison.

Absolute StandardK = Mean
Mean

Variance
Deviation

Skewness Kurtosis

50 32.2 434.8 7.14×105 845.2 1.57 20.6

100 3.26 38.6 3.47×103 58.9 5.8×10−2 8.64

200 0.115 8.36 142.0 11.9 0.984 7.2

300 -0.01 4.24 27.6 5.25 0.183 -0.24

400 -6.63×10−3 2.86 13.6 3.69 -0.312 0.431

500 -0.054 2.42 9.54 3.09 -0.013 0.209

600 -0.28 1.97 6.36 2.52 -0.307 0.118

1000 3.58×10−3 1.42 3.1 1.76 0.105 -0.148

1500 0.038 1.25 2.41 1.55 0.097 -0.161

N(0, 4
3 ) 0 0.921 1.33 1.15 0 0

at polynomial rate O
[
C0 ·K−ρ

]
, where V∗ is a N(0, 4

3 ) random variable and C0, ρ > 0

are some constants. Since∣∣∣∣∣E [∣∣∣∣VK,N
tK

∣∣∣∣] − E [|V∗|]
∣∣∣∣∣ ∼ C0 · K−ρ

implies that

log
(∣∣∣∣∣E [∣∣∣∣VK,N

tK

∣∣∣∣] − E [|V∗|]
∣∣∣∣∣) ∼ log C0 + (−ρ) · log K,

we perform a linear regression of y = log
(∣∣∣∣∣E [∣∣∣∣VK,N

tK

∣∣∣∣] − E [|V∗|]
∣∣∣∣∣) on x = log K to

help identify the two constants C0 > 0 and ρ > 0. The estimated model parame-

ters are given in Table 3.8 while the fitted line is plotted in Figure 3.10 .

Results from the linear regression suggest that

C0 ≈ e13.4 ≈ 6.6 × 105 and ρ ≈ 2.06.
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Figure 3.9: Plot of logarithmic values of sample ”Absolute Mean” of V
K,N
tk re-

ported in Table 3.7 against the corresponding values of K. The hori-
zontal line y = log(0.921) represents the logarithmic of the theoretical
absolute mean of N(0, 4

3 ).

Table 3.8: Results of linear regression using data in Columns 1 and 3 of Table 3.7,
where x = log K, y = log

(∣∣∣∣Absolute Mean − 0.921
∣∣∣∣).

Model: y = a + bx R2 = 0.963

Coefficients Estimate Std. Error t-value Pr(> |t|)

a 13.4 0.908 14.7 1.6 ×10−6

b -2.06 0.154 -13.4 2.98×10−6
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Figure 3.10: Plot of data points and the fitted line as specified in Table 3.8.

Thus, ∣∣∣∣∣E [∣∣∣∣VK,N
tK

∣∣∣∣] − E [|V∗|]
∣∣∣∣∣ ∼ 6.6 × 105 · K−2.06.

Such slow rate of convergence, compared to that of a typical Central Limit Theo-

rem where the random variables are identically and independently distributed,

is not surprising given the dependence structure of our model.
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CHAPTER 4

CONTINUOUS-TIME INTERACTION WITH A CENTRAL AUTHORITY

4.1 Model Specification

Consider a finite time horizon [0,T ]. For all i ∈ N+, V i
t represents the speculative

demand of agent i at time t ∈ [0,T ], with initial value V i
0 = 0. Over time, each

agent modifies her speculative demand by continuously comparing it against

signals given by an independent central authority (Yt)t≥0, e.g. some analyst re-

port, and making adjustments accordingly. More specifically, for each i ∈ N+,

the process V i satisfies the following Stochastic Differential Equation:

dV i
t = α

(
Yt − V i

t−

)
dMi

t

where Y is a continuous semimartingale, Mi is a càdlàg semimartingale indepen-

dent from Y , and α is some constant. The term αdMi
t captures the instantaneous

stochastic rate of impact the central authority has on agent i at time t.

In the rest of the chapter, we investigate mainly two types of traders com-

monly observed in the financial market, namely the Followers and the Non-

Followers. If agent i is a Follower, then α < 0 and Mi
t ≡ N i

t − λt, where N i is a

Poisson process with arrival rate a(t) = λt. Thus, the corresponding process V i

satisfies

dV i
t = α

(
Yt − V i

t−

)
d(N i

t − λt).

Intuitively, a Follower actively mimic the opinion of the central authority Y at all

times, except when she receives certain private information that causes her to

act differently. On the other hand, if agent i is a Non-Follower, then α > 0 and
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Mi
t ≡ Bi

t is taken to be a standard Brownian motion, and the corresponding V i

satisfies

dV i
t = α

(
Yt − V i

t

)
dBi

t.

In this case, agent i processes the received signal randomly, i.e. depending on

the sign of dBi
t, she either follows or acts opposite to the central authority.

Finally, we consider the process

V
N

:=
1
√

N

N∑
i=1

V i. (4.1)

As N → ∞, V
N

captures the normalized aggregated speculative demand of all

agents across the entire market.

4.2 A Central Limit Theorem for Processes

4.2.1 Mathematical Setup

Consider a stochastic basis B = (Ω,F ,F,P) on which a càdlàg, finite activity

Lévy processes M is defined. M has bounded jumps, i.e. sups |∆Mi
s| ≤ a a.s. for

some constant a > 0, Mi
0 = 0 and Ẽ[Mi

t] = 0 for all t ∈ [0,T ]. Let
(
Bi,Mi

)
i≥1

be a sequence of identical copies of the pair (B,M). Define the stochastic basis

B̂ = (Ω̂, F̂ , F̂, P̂) as the tensor product of all Bi’s. More specifically,

Ω̂ = Ω1 ×Ω2 × · · · F̂t = ∩s>tF
1
s ⊗ F

2
s ⊗ · · ·

F̂ = F 1 ⊗ F 2 ⊗ · · · P̂(dω̂) = P1(dω1)P2(dω2) · · ·

In addition, let B′ = (Ω′,F ′,F′,P′) be another stochastic basis and Y be a contin-

uous square-integrable martingale on B′ such that Y0 = 0. We can then define
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the stochastic basis B̃ = (Ω̃, F̃ , F̃, P̃) as the tensor product of B′ and B̂ in the

same fashion as before. Note that any process defined on Ω′ or Ωi’s can also be

considered as a process on Ω̃ and/or Ω̂ by setting

X(ω̃) = X(ω′, ω̂) = X(ω′)

X(ω̃) = X(ω′, ω̂) = X(ω′, ω1, . . .) = X(ωi)

X(ω̂) = X(ω1, ω2, . . .) = X(ωi).

Moreover, since the extensions are very good, all martingales on the basis B′ or

Bi are also martingales on B̃ and/or B̂1.

4.2.2 Main Theorem

Theorem 4.2.1 Let Y = (Yt)t≥0 be a continuous square-integrable martingale such that

Y0 = 0. For each i ∈ N+, let Mi = (Mi
t)t≥0 be a càdlàg, finite activity Lévy processes with

bounded jumps, i.e. sups |∆Mi
s| ≤ a a.s. for some constant a > 0, such that Mi

0 = 0 and

Ẽ[Mi
t] = 0 for all t ∈ [0,T ]. Suppose the processes V i, i = 1, 2, . . ., satisfy

dV i
t = α

(
Yt − V i

t−

)
dMi

t , V i
0 = 0 (4.2)

for some constant α , 0. Then the sequence of processes

V
N

:=
1
√

N

N∑
i=1

V i, N = 1, 2, . . .

converges in law to a process V∗ as N → ∞, where V∗ is a stochastic time-changed

Wiener process. Moreover,

(a) (Non-Followers) If Mi
t ≡ Bi

t is a standard Brownian motion, then

[V∗,V∗]t = α2eα
2t
∫ t

0
e−α

2 sY2
s ds.

1See Chapter VI of Jacod and Shiryaev (1987)
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(b) (Followers) If Mi
t ≡ N i

t−λt, where N i is a Poisson process with arrival rate a(t) = λt,

then

[V∗,V∗]t = α2λeα
2λt

∫ t

0
e−α

2λsY2
s ds.

4.2.3 Proof of Main Theorem

We first prove a few useful Lemmas.

Lemma 4.2.2 For each i = 1, 2, . . ., the Stochastic Differential Equation (4.2) has a

unique (strong) solution V i, which is a semimartingale. Moreover,

(a) (Non-Followers) If Mi
t ≡ Bi

t is a standard Brownian motion, then

V i
t = E

(
− αBi)

t

∫ t

0
E
(
− αBi)−1

s ·
(
αYsdBi

s + α2Ysds
)
;

(b) (Followers) If Mi
t ≡ N i

t − λt, where N i is a Poisson process with arrival rate

a(t) = λt, then

V i
t =

∫ t

0
exp

{
αλ(t − s)

} ∏
s≤u≤t

(
1 − ∆αMi

u

) (α2YsdN i
s + αYsdMi

s

)
.

Proof Since V i
0 = 0, we can rewrite the SDE (4.2) as

V i
t =

∫ t

0
α(Ys − V i

s−)dMi
s =

∫ t

0
αYsdMi

s +

∫ t

0
−αV i

s−dMi
s. (4.3)

By assumption, Mi is a semimartingale with Mi
0 = 0 and Y is an adapted, contin-

uous process. Thus, Ji
t :=

∫ t

0
αYsdMi

s is also a semimartingale and Theorem 7 in

Chapter V of Protter (2004) implies that (4.3) has a unique solution V i, which is

again a semimartingale.

(a) If Mi
t ≡ Bi

t, the closed form of V i can be obtained by directly applying

Theorem 52 in Chapter V of Protter (2004).
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(b) If Mi
t ≡ N i

t − λt, let ∆Mi
t := Mi

t − Mi
t− = Mi

t − lims↑t Mi
s. To obtain the closed-

form V i, we first define a sequence of stopping times

T0 = 0,

T1 = inf{t > 0 : 1 + ∆(−αMi
t) = 0},

...

Tn+1 = inf{t > Tn : 1 + ∆(−αMi
t) = 0}

Since Mi
t = N i

t − λt and α < 0, we know that ∆(−αMi
t) = −α∆N i

t ≥ 0 a.s. for all

t ∈ [0,∞). Thus, Tn = +∞ for all n ≥ 1. Moreover, [Mi,Mi]c ≡ 0 and Mi
0 = 0. By

Exercise 27 in Chapter V of Protter (2004), we have

V i
t =

∑
n≥0

Zn
t 1[Tn,Tn+1)(t) = Z0

t for all t ∈ [0,T ],

where

Z0
t =

(∫ t

0

1
U0

s−
αYsdMi

s −

∫ t

0

1
U0

s−
(αYs)(−α)d[Mi,Mi]s

)
· U0

t

with

U0
t = exp

{
−αMi

t

}
·
∏
0<s≤t

(
1 + ∆(−αMi

s)
)

exp
{
∆αMi

s

}
.

Since ∑
0<s≤t

∆Mi
s =

∑
0<s≤t

∆N i
s = N i

t for all t ∈ [0,T ],

we know that

U0
t = exp

{
−αMi

t

}
·
{ ∏

0<s≤t

(
1 − ∆αMi

s

) }
·
{ ∏

0<s≤t

exp
{
∆αMi

s

} }
= exp

{
−αMi

t

}
·
{ ∏

0<s≤t

(
1 − ∆αMi

s

) }
· exp

{
α

∑
0<s≤t

∆Mi
s

}
= exp

{
−α(Mi

t − N i
t )
}
·
{ ∏

0<s≤t

(
1 − ∆αMi

s

) }
= exp {αλt} ·

{ ∏
0<s≤t

(
1 − ∆αMi

s

) }
.
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So for any 0 < s ≤ t,

U0
t

U0
s−

=
exp {αλt} ·

{∏
0<u≤t

(
1 − ∆αMi

u

) }
exp {αλs} ·

{∏
0<u<s

(
1 − ∆αMi

u
) } = exp

{
αλ(t − s)

}{ ∏
s≤u≤t

(
1 − ∆αMi

u

) }
Moreover, d[Mi,Mi]s = dN i

s. Therefore,

V i
t =

∫ t

0
exp

{
αλ(t − s)

} ∏
s≤u≤t

(
1 − ∆αMi

u

) (α2YsdN i
s + αYsdMi

s

)
.

�

Lemma 4.2.3 For each i ∈ N+, V i is a square-integrable martingale on B̃, i.e. Ct :=

Ẽ
[
(V i

t )
2
]
< ∞ for all t ∈ [0,T ]. Moreover,

(a) (Non-Followers) If Mi
t ≡ Bi

t is a standard Brownian motion, then

Ct := Ẽ
[
(V i

t )
2
]

= α2eα
2t
∫ t

0
e−α

2 sẼ[Y2
s ]ds ∀ t ∈ [0,T ];

(b) (Followers) If Mi
t ≡ N i

t − λt, where N i is a Poisson process with arrival rate

a(t) = λt, then

Ct := Ẽ
[
(V i

t )
2
]

= α2λeα
2λt

∫ t

0
e−α

2λsẼ
[
Y2

s

]
ds ∀ t ∈ [0,T ].

Proof By assumption, for each i ∈ N+, Mi
t is a finite activity Lévy process with

bounded jumps, i.e. sups |∆Mi
s| ≤ a a.s. for some constant a > 0. Moreover,

Ẽ[Mi
t] = 0 for all t ∈ [0,T ], so Mi is a square-integrable martingale by Theorem 34

and Theorem 41 in Chapter I of Protter (2004), and the Lévy-Khintchine triplet

(b, c, F) of Mi must satisfy b = 0 and
∫
R

F(dx) = λ < ∞ [24]. In addition, the Lévy

Decomposition Theorem in Chapter I of Protter (2004) implies that Mi
t =
√

cW i
t +

Ji
t , where W i

t is a standard Brownian motion and Ji
t is a purely discontinuous

martingale independent of Wt. Denote by µMi
(ω; dt, dx) the random measure of
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jumps associated with process Mi, then

Jt =

∫ t

0

∫
{|x|≤a}

x
(
µMi

(ds, dx) − dsF(dx)
)

and we have

V i
t =

∫ t

0

√
cα

(
Ys − V i

s−

)
dW i

s +

∫ t

0
α
(
Ys − V i

s−

)
dJi

s.

By Lemma 4.2.2, V i is a semimartingale. Since Y is adapted and continuous, we

know that α(Yt − V i
t−) is adapted and càglàd, thus predictable. Moreover, Mi is

a square-integrable martingale, so Theorem 33 in Chapter III of Protter (2004)

implies that V i is a local martingale. Thus, by Corollary 3 in Chapter II of Prot-

ter (2004), in order to prove V i is a square-integrable martingale on B̃, we are

left to show that Ẽ
[
[V i,V i]t

]
< ∞ for all t ∈ [0,T ].

For n ≥ 1, define τn := inf
{

t ≥ 0 : |V i
t | ≥ n

}
. Since V i is an adapted and càdlàg

process with V i
0 = 0, we know that (τn)n≥1 is a sequence of stopping times in-

creasing to infinity almost surely as n ↑ ∞, and
∣∣∣V i
−1[0,τn]

∣∣∣ ≤ n a.s., where V i
− is the

left continuous version of V i. Let V i,τn
t = V i

t∧τn
be the stopped process, then

V i,τn
t =

∫ t

0

√
cα

(
Ys − V i

s−

)
1{0≤s≤τn}dW i

s︸                                   ︷︷                                   ︸
=:Ci,τn

t

+

∫ t

0
α
(
Ys − V i

s−

)
1{0≤s≤τn}dJi

s︸                             ︷︷                             ︸
=:Di,τn

t

by Theorem 12 in Chapter II of Protter (2004). Since α(Yt − V i
t−)1{0≤t≤τn}(t) is an

adapted, càglàd process (hence predictable) and W i, Ji are both martingales, by

Theorem 33 in Chapter III of Protter (2004), we know that Ci,τn and Di,τn are both

local martingales. Moreover,
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Ẽ
[
[Ci,τn ,Ci,τn]t

]
= Ẽ

[∫ t

0
cα2

(
Ys − V i

s−

)2
1{0≤s≤τn}ds

]
≤ Ẽ

[∫ t

0
2cα2

(
Y2

s + (V i
s−)

2
)

1{0≤s≤τn}ds
]

≤

∫ t

0
2cα2Ẽ

[
Y2

s 1{0≤s≤τn}

]
ds +

∫ t

0
2cα2Ẽ

[
(V i

s−)
21{0≤s≤τn}

]
ds

≤

∫ t

0
2cα2Ẽ

[
Y2

s

]
ds +

∫ t

0
2cα2n2ds

< ∞

for all t ∈ [0,T ], where the interchanging of expectation and integral is justified

by Fubini’s Theorem and
∫ t

0
Ẽ

[
Y2

s

]
ds < ∞ by assumption. Thus, Ci,τn is a square-

integrable martingale. On the other hand,

Di,τn
t =

∫ t

0

∫
{|x|≤a}

xα
(
Ys − V i

s−

)
1{0≤s≤τn}

(
µMi

(ds, dx) − dsF(dx)
)
.

Since xα
(
Ys − V i

s−

)
1{0≤s≤τn} is an adapted, càglàd process (hence predictable) and

Ẽ

[∫ T

0

∫
R

x2α2
(
Ys − V i

s−

)2
1{0≤s≤τn}dsF(dx)

]
= Ẽ

[∫ T

0
α2

(
Ys − V i

s−

)2
1{0≤s≤τn}

(∫
{|x|≤a}

x2F(dx)
)

ds
]

≤ Ẽ

[∫ T

0
2α2

(
Y2

s + (V i
s−)

2
)

1{0≤s≤τn}a
2λds

]
≤

∫ T

0
2a2λα2Ẽ

[
Y2

s 1{0≤s≤τn}

]
ds +

∫ T

0
2a2λα2Ẽ

[(
V i

s−1{0≤s≤τn}

)2
]

ds

≤

∫ T

0
2a2λα2Ẽ

[
Y2

s

]
ds +

∫ T

0
2a2λα2n2ds

< ∞,

by Proposition 8.8 in Chapter 8 of Cont and Tankov(2004), Di,τn is also a square-

integrable martingale with

Ẽ
[
(Di,τn

t )2
]

= Ẽ

[∫ t

0

∫
{|x|≤a}

x2α2
(
Ys − V i

s−

)2
1{0≤s≤τn}dsF(dx)

]
.
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Combine the above arguments, we see that V i,τn
t = Ci,τn

t + Di,τn
t is itself a square-

integrable martingale. Moreover, since W i and Ji are independent, [W i, Ji]t = 0

for all t ∈ [0,T ]. Thus,[
Ci,τn ,Di,τn

]
t
=

∫ t

0

√
cα2

(
Ys − V i

s−

)2
1{0≤s≤τn}d[W i, Ji]s = 0.

By Proposition 4.50 in Chapter I of Jacod and Shiryaev (1987), Ci,τn Di,τn is a uni-

formly integrable martingale. Thus, Ẽ
[
Ci,τn

t Di,τn
t

]
= Ci,τn

0 Di,τn
0 = 0, which implies

that

Ẽ
[
(V i,τn

t )2
]

= Ẽ
[
(Ci,τn

t )2
]

+ Ẽ
[
(Di,τn

t )2
]

for all t ∈ [0,T ].

Since
∣∣∣V i
−1[0,τn]

∣∣∣ ≤ ∣∣∣V i,τn
−

∣∣∣ a.s. and Ẽ
[
(V i,τn

t )2
]

= Ẽ
[
(V i,τn

t− )2
]
, we see that

Ẽ
[
(Ci,τn

t )2
]

= Ẽ
[
[Ci,τn ,Ci,τn]t

]
≤

∫ t

0
2cα2Ẽ

[
Y2

s 1{0≤s≤τn}

]
ds +

∫ t

0
2cα2Ẽ

[(
V i

s−1{0≤s≤τn}

)2
]

ds

≤

∫ t

0
2cα2Ẽ

[
Y2

s

]
ds +

∫ t

0
2cα2Ẽ

[
(V i,τn

s )2
]

ds

Ẽ
[
(Di,τn

t )2
]

= Ẽ

[∫ t

0

∫
{|x|≤a}

x2α2
(
Ys − V i

s−

)2
1{0≤s≤τn}dsF(dx)

]
≤

∫ t

0
2a2λα2Ẽ

[
Y2

s 1{0≤s≤τn}

]
ds +

∫ t

0
2a2λα2Ẽ

[(
V i

s−1{0≤s≤τn}

)2
]

ds

≤

∫ t

0
2a2λα2Ẽ

[
Y2

s

]
ds +

∫ t

0
2a2λα2Ẽ

[
(V i,τn

s )2
]

ds.

Thus,

Ẽ
[
(V i,τn

t )2
]
≤

∫ t

0
2cα2Ẽ

[
Y2

s

]
ds +

∫ t

0
2cα2Ẽ

[
(V i,τn

s )2
]

ds

+

∫ t

0
2a2λα2Ẽ

[
Y2

s

]
ds +

∫ t

0
2a2λα2Ẽ

[
(V i,τn

s )2
]

ds

=

∫ t

0
2α2(c + a2λ)Ẽ

[
Y2

s

]
ds +

∫ t

0
2α2(c + a2λ)Ẽ

[
(V i,τn

s )2
]

ds,

and the Gronwall’s Inequality implies that

Ẽ
[
(V i,τn

t )2
]
≤ e2α2(c+a2λ)t ·

∫ t

0
2α2(c + a2λ)Ẽ

[
Y2

s

]
ds.
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Therefore, we have

Ẽ
[
[V i,V i]t

]
= Ẽ

[
lim
n→∞

[V i,V i]t∧τn

]
= Ẽ

[
lim
n→∞

[V i,τn ,V i,τn]t

]
= lim

n→∞
Ẽ

[
[V i,τn ,V i,τn]t

]
= lim

n→∞
Ẽ

[
(V i,τn

t )2
]
≤ e2α2(c+a2λ)t ·

∫ t

0
2α2(c + a2λ)Ẽ

[
Y2

s

]
ds < ∞,

where the interchanging of limit and expectation is justified by the Monotone

Convergence Theorem. This in turn implies that V i is a square-integrable mar-

tingale.

Finally, since Y is a square-integrable martingale independent from Mi,

[
Y,V i

]
t
=

∫ t

0
α
(
Ys − V i

s−

)
d[Y,Mi]s = 0 for all t ∈ [0,T ].

Again by Proposition 4.50 in Chapter I of Jacod and Shiryaev (1987), YV i is a

uniformly integrable martingale and Ẽ
[
YtV i

t

]
= Y0V i

0 = 0 for all t ∈ [0,T ]. There-

fore,

(a) If Mi
t ≡ Bi

t, we have

Ẽ
[
(V i

t )
2
]

= Ẽ
[
[V i,V i]t

]
=

∫ t

0
α2Ẽ

[(
Ys − V i

s

)2
]

ds =

∫ t

0
α2Ẽ

[
Y2

s

]
ds +

∫ t

0
α2Ẽ

[
(V i

s)
2
]

ds

i.e.

dẼ
[
(V i

t )
2
]

= α2Ẽ
[
Y2

t

]
dt + α2Ẽ

[
(V i

t )
2
]

dt, with Ẽ
[
(V i

0)2
]

= 0

Solving the nonhomogeneous ODE, we get

Ẽ
[
(V i

t )
2
]

= α2eα
2t
∫ t

0
e−α

2 sẼ
[
Y2

s

]
ds ∀ t > 0.

(b) If Mi
t ≡ N i

t − λt. Since α
(
Ys − V i

s−

)
is an adapted, càglàd process (hence

predictable), and
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Ẽ

[∫ t

0
α2(Ys − V i

s−)
2d〈Mi,Mi〉s

]
= Ẽ

[∫ t

0
α2(Ys − V i

s−)
2λds

]
=

∫ t

0
α2λẼ

[
Y2

s − 2YsV i
s− + (V i

s−)
2
]

ds

=

∫ t

0
α2λẼ

[
Y2

s

]
ds +

∫ t

0
α2λẼ

[
(V i

s)
2
]

ds

< ∞.

By Theorem 6.5.8 in Kuo (2006),

Ẽ
[
(V i

s)
2
]

=

∫ t

0
α2λẼ

[
Y2

s

]
ds +

∫ t

0
α2λẼ

[
(V i

s)
2
]

ds

i.e.

dẼ
[
(V i

s)
2
]

= α2λẼ
[
Y2

t

]
dt + α2λẼ

[
(V i

t )
2
]

dt, with Ẽ
[
(V i

0)2
]

= 0

Solving the above ODE, we get

Ẽ
[
(V i

t )
2
]

= α2λeα
2λt

∫ t

0
e−α

2λsẼ
[
Y2

s

]
ds.

This completes the proof.

�

Recall that for each N ∈ N+, we have

V
N

=
1
√

N

N∑
i=1

V i,

where (V
N

)N≥1 can be considered as a sequence of R-valued continuous pro-

cesses on the stochastic basis B̃ = (Ω̃, F̃ , F̃, P̃).

Lemma 4.2.4 The sequence (V
N

) is tight2.

2See Chapter VI of Jacod and Shiryaev (1987) for definition.
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Proof: To establish tightness for the sequence (V
N

), we check the criteria given

in Chapter VI of Jacod and Shiryaev (1987).

Since V
N
0 = 0 for all N ∈ N+, the sequence (V

N
0 ) is trivially tight inR. Moreover,

since V i is a square-integrable martingale (see Lemma 4.2.3), we know that

1. Ẽ
[
V i

t

]
= V i

0 = 0,

2. Ẽ
[
V i

t V
j

t

]
= Ẽ

[[
V i,V j]t

]]
= Ẽ

[∫ t

0
α2(Ys − V i

s−)(Ys − V j
s−)d[Mi,M j]s

]
= 0,

3. Ẽ
[
(V i

t )
2
]

= Ẽ
[
[V i,V i]t

]
≤ e2α2(c+a2λ)t ·

∫ t

0
2α2(c + a2λ)Ẽ

[
Y2

s

]
ds

for all t ∈ [0,T ] and i, j ∈ N+, i , j. Therefore, the Markov inequality implies that

∀ ε > 0,

lim
δ↓0

lim sup
N
P̃
[∣∣∣∣VN

δ − V
N
0

∣∣∣∣ > ε]
≤ lim

δ↓0
lim sup

N

1
ε2 · Ẽ

[
(V

N
δ )2

]
= lim

δ↓0
lim sup

N

1
ε2 ·

1
N

N∑
i=1

Ẽ
[
(V i

δ)
2
]

≤ lim
δ↓0

1
ε2 · e

2α2(c+a2λ)t
∫ δ

0
2α2(c + a2λ)Ẽ

[
Y2

s

]
ds

= 0.

In addition, for any ξ > 0, s < r < t and N ∈ N+, we have

P̃
[
|V

N
r − V

N
s | ≥ ξ, |V

N
t − V

N
r | ≥ ξ

]
≤ P̃

[
(V

N
r − V

N
s )2 + (V

N
t − V

N
r )2 ≥ 2ξ2

]
≤

1
2ξ2 · Ẽ

[
(V

N
r − V

N
s )2 + (V

N
t − V

N
r )2

]
=

1
2ξ2 ·

1
N
· Ẽ


 N∑

i=1

(V i
r − V i

s)

2

+

 N∑
i=1

(V i
t − V i

r)

2 .
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Note that for any i, j ∈ N+, i , j and s < r,

Ẽ
[
(V i

r − V i
s)(V

j
r − V j

s )
]

= Ẽ
[
V i

rV
j

r

]
+ Ẽ

[
V i

sV
j
s

]
− Ẽ

[
V i

rV
j
s

]
− Ẽ

[
V i

sV
j

r

]
= 0 + 0 − Ẽ

[
Ẽ

[
V i

rV
j
s |F̃s

]]
− Ẽ

[
Ẽ

[
V i

sV
j

r |F̃s

]]
= −Ẽ

[
V j

s · Ẽ
[
V i

r|F̃s

]]
− Ẽ

[
V i

s · Ẽ
[
V j

r |F̃s

]]
= −Ẽ

[
V j

s V i
s

]
− Ẽ

[
V i

sV
j
s

]
= 0,

and

Ẽ
[
(V i

r − V i
s)

2
]

= Ẽ
[
(V i

r)
2
]

+ Ẽ
[
(V i

s)
2
]
− 2Ẽ

[
V i

rV
i
s

]
= Ẽ

[
(V i

r)
2
]

+ Ẽ
[
(V i

s)
2
]
− 2Ẽ

[
Ẽ

[
V i

rV
i
s|F̃s

]]
= Ẽ

[
(V i

r)
2
]

+ Ẽ
[
(V i

s)
2
]
− 2Ẽ

[
V i

s · Ẽ
[
V i

r|F̃s

]]
= Ẽ

[
(V i

r)
2
]

+ Ẽ
[
(V i

s)
2
]
− 2Ẽ

[
(V i

s)
2
]

= Ẽ
[
(V i

r)
2
]
− Ẽ

[
(V i

s)
2
]
.

So

P̃
[
|V

N
r − V

N
s | ≥ ξ, |V

N
t − V

N
r | ≥ ξ

]
≤

1
2ξ2 ·

1
N
· Ẽ

 N∑
i=1

(V i
r)

2 − (V i
s)

2 + (V i
t )

2 − (V i
r)

2


=

1
2ξ2 ·

1
N
· Ẽ

 N∑
i=1

(V i
t )

2 − (V i
s)

2

 .
Finally, recall that

V i
t =

∫ t

0

√
cα

(
Ys − V i

s−

)
dW i

s︸                        ︷︷                        ︸
=:Ci

t

+

∫ t

0
α
(
Ys − V i

s−

)
dJi

s︸                   ︷︷                   ︸
=:Di

t

.
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Following similar arguments as in the proof of Lemma 4.2.3, we see that

Ẽ
[
(V i

t )
2
]

= Ẽ
[
(Ci

t)
2
]

+ Ẽ
[
(Di

t)
2
]

= Ẽ

[∫ t

0
cα2

(
Ys − V i

s−

)2
ds

]
+ Ẽ

[∫ t

0

∫
{|x|≤a}

x2α2
(
Ys − V i

s−

)2
dsF(dx)

]
.

Thus, for each i ∈ N+,

Ẽ
[
(V i

t )
2 − (V i

s)
2
]

= Ẽ

[∫ t

s
cα2

(
Yu − V i

u−

)2
du +

∫ t

s

∫
{|x|≤a}

x2α2
(
Yu − V i

u−

)2
duF(dx)

]
≤ Ẽ

[∫ t

s
cα2

(
Yu − V i

u−

)2
du +

∫ t

s
a2λα2

(
Yu − V i

u−

)2
du

]
≤ Ẽ

[∫ t

s
α2(c + a2λ)

(
2Y2

u + 2(V i
u−)

2
)

du
]
,

and we have

P̃
[
|V

N
r − V

N
s | ≥ ξ, |V

N
t − V

N
r | ≥ ξ

]
≤

1
2ξ2 ·

1
N

N∑
i=1

Ẽ
[
(V i

t )
2 − (V i

s)
2
]

≤
1

2ξ2 ·
1
N

N∑
i=1

Ẽ

[∫ t

s
α2(c + a2λ)

(
2Y2

u + 2(V i
u−)

2
)

du
]

≤
1
ξ2 · α

2(c + a2λ)
(
Ẽ

[
Y2

t

]
+ Ẽ

[
(V i

t )
2
])

(t − s)

≤ ξ−2 ·
[
α2(c + a2λ)t

(
Ẽ

[
Y2

t

]
+ Ẽ

[
(V i

t )
2
])
− α2(c + a2λ)s

(
Ẽ

[
Y2

s

]
+ Ẽ

[
(V i

s)
2
]) ]
.

The last two inequalities hold as both Ẽ
[
Y2

t

]
and Ẽ

[
(V i

t )
2
]

are continuous, in-

creasing and finite-valued functions of t ≥ 0, so α2(c + a2λ)t
(
Ẽ

[
Y2

t

]
+ Ẽ

[
(V i

t )
2
])

is

also a continuous, increasing function of t ≥ 0. By Theorem 4.1 in Chapter VI of

Jacod and Shiryaev (1987), we conclude that the sequence (V
N

) is tight.

�

As specified in Section 4.2.1, B = (Ω,F ,F,P) and B′ = (Ω′,F ′,F′,P′) are

stochastic bases on which a finite activity Lévy process M with bounded jumps

67



and a continuous square-integrable martingale Y are defined, respectively. For

each fixed ω′ ∈ Ω′, let yt := Yt(ω′). Following similar arguments as in Lemma

4.2.2 and Lemma 4.2.3, we see that the SDE

dVt(ω′, ·) = α
(
yt − Vt−(ω′, ·)

)
dMt (4.4)

has a unique strong solution V(ω′, ·), which is a càdlàg square-integrable mar-

tingale on the stochastic basis B, with Cω′

t := E
[
Vt(ω′, ·)2

]
< ∞ for all t ∈ [0,T ].

Lemma 4.2.5 For fixed ω′ ∈ Ω′ and yt = Yt(ω′), the sequence of processes V
N

(ω′, ·)

converges in law to a Wiener process with characteristics (0,Cω′ , 0) as N → ∞. In

particular,

(a) (Non-Followers) If Mi
t ≡ Bi

t is a standard Brownian motion, then

Cω′

t = α2eα
2t
∫ t

0
e−α

2 sy2
sds ∀ t ∈ [0,T ];

(b) (Followers) If Mi
t ≡ N i

t − λt, where N i is a Poisson process with arrival rate

a(t) = λt, then

Cω′

t = α2λeα
2λt

∫ t

0
e−α

2λsy2
sds ∀ t ∈ [0,T ].

Proof: By construction (see Section 4.2.1), (Bi,Mi)i≥1 is a sequence of identical

copies of the pair (B,M). Moreover, for each fixed ω′ ∈ Ω′ and yt = Yt(ω′), the

process V i(ω′, ·) for each i ∈ N+ is defined as the unique strong solution of

dV i
t (ω

′, ·) = α
(
yt − V i

t−(ω
′, ·)

)
dMi

t

(see Lemma 4.2.2). As a result, we can view
(
Bi,V i(ω′, ·)

)
i≥1

as a sequence of iden-

tical copies of the pair (B,V(ω′, ·)), where V(ω′, ·) is a càdlàg, square-integrable

martingale. Since Cω′

t = E
[
Vt(ω′, ·)2

]
is continuous and finite-valued for all

t ∈ [0,T ], Theorem 3.46 in Chapter VIII of Jacod and Shiryaev (1987) applies,
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which gives the desired convergence. The specific forms of Cω′

t in the Non-

Followers and Followers cases follow directly from Lemma 4.2.3.

�

We are now ready to prove our Main Theorem in Section 4.2.2.

Proof of Theorem 4.2.1 Let B̌ = (Ω̌, F̌ , F̌, P̌) be a stochastic basis endowed with

a standard Wiener process W. Let B∗ be the tensor product of B′ and B̌ as usual.

In addition, define V∗t := WCt , where Ct is a stochastic process on the basis B′

such that for each ω′ ∈ Ω′, Ct(ω′) ≡ Cω′

t as defined in Lemma 4.2.5. Thus, V∗ is a

stochastic time-changed Wiener process on the basis B∗, with [V∗,V∗]t = Ct.

Recall that given a sequence of stochastic processes Xn and an additional

process X, in order to show that Xn L

=⇒ X, it is necessary and sufficient to check

the following two conditions3:

(1)
(
Xn

t1 , . . . , X
n
tk

) L

=⇒
(
Xt1 , . . . , Xtk

)
for all ti ∈ D, k ∈ N+,

(2)
(
Xn) is tight.

By Lemma 4.2.4, the sequence (V
N

) is tight. Thus, to prove V
N L

=⇒ V∗, we must

show that V
N

converges in finite-dimensional distribution to V∗ as N → ∞. For

any t ∈ [0,T ] and Borel set A ⊂ R,

P̃(V
N
t ∈ A) =

∫
Ω′×Ω̂

1{
V

N
t (ω′,ω̂)∈A

}P′(dω′)P̂(dω̂)

=

∫
Ω′

(∫
Ω̂

1{
V

N
t (ω′,ω̂)∈A

}P̂(dω̂)
)
P′(dω′)

=

∫
Ω′
P̂
(
V

N
t (ω′, ·) ∈ A

)
P′(dω′).

3See Chapter VI 3.20 in Jacod and Shiryaev (1987).
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Similarly,

P∗(V∗t ∈ A) =

∫
Ω′
P̌
(
V∗t (ω′, ·) ∈ A

)
P′(dω′).

By construction of the process V∗ and Lemma 4.2.5, we know that

P̂
(
V

N
t (ω′, ·) ∈ A

)
−→ P̌

(
V∗t (ω′, ·) ∈ A

)
as N → ∞, ∀ ω′ ∈ Ω′.

Thus,

lim
N→∞
P̃(V

N
t ∈ A) = lim

N→∞

∫
Ω′
P̂
(
V

N
t (ω′, ·) ∈ A

)
P′(dω′)

=

∫
Ω′

lim
N→∞
P̂
(
V

N
t (ω′, ·) ∈ A

)
P′(dω′)

=

∫
Ω′
P̌
(
V∗t (ω′, ·) ∈ A

)
P′(dω′)

= P∗(V∗t ∈ A),

where the interchanging of limit and integration is justified by Dominated Con-

vergence Theorem as P̂
(
V

N
t (ω′, ·) ∈ A

)
∈ [0, 1]. Finally, a direct extension of the

above proof shows that for any k ∈ N+, 0 ≤ t1 < . . . < tk and A1, . . . , Ak ∈ R, we

have

P̃
(
V

N
t1 ∈ A1, . . . ,V

N
tk ∈ Ak

)
−→N P

∗
(
V∗t1 ∈ A1, . . . ,V∗tk ∈ Ak

)
,

i.e. V
N

converges to V∗ in finite-dimensional distribution as N → ∞. This com-

pletes the proof of Theorem 4.2.1.

�

4.3 Numerical Analysis

Let N be the total number of agents participating in the market throughout some

finite time horizon [0,T ]. For some ρ ∈ [0, 1], let N f = [ρN] traders be Followers
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and the rest Nn = N − N f traders be Non-Followers. Recall that the process Y

represent signals given by an independent central authority. If agent i is a Non-

Follower, her speculative demand process Vn,i evolves according to the following

SDE

dVn,i
t = αn

(
Yt − Vn,i

t

)
dBi

t Vn,i
0 = 0, (4.5)

where αn > 0 is some constant and Bi
t is a standard Brownian motion. On the

other hand, for each Follower j, the corresponding process V f , j is governed by

dV f , j
t = α f

(
Yt − V f , j

t−

)
d
(
N j

t − λt
)

V f , j
0 = 0, (4.6)

α f < 0 is again some constant while N j
t is a homogeneous Poisson process with

instantaneous arrival intensity λ > 0. As discussed in Section 4.2.1, all processes

Yt, {Vn,i
t : i = 1, . . . ,Nn} and {V f , j

t : j = 1, . . . ,N f } are assumed to be mutually

independent.

In order to simulate the above model, we discretize equations (4.5) and (4.6)

via the following simple Euler-type scheme, which allows the incorporation of

jumps:

Step 1: Create a basic discretization time grid by partitioning the interval

[0,T ] into K ∈ N+ equidistant steps {0 = t0 < t1 < . . . < tK = T }, where tk = k T
K for

all k = 0, . . . ,K.

Step 2: Simulate the jump times of each Poisson process N j, j = 1, . . . ,N f in

the interval [0,T ], denoted by

{τ
j
1, . . . , τ

j

N j
T

}, j ∈ {1, . . . ,N f }.

The superscripts serve as a reminder that the simulated number of jumps N j
T as

well as the set of corresponding jump times vary from agent to agent.
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Step 3: Combine the basic time grid {tk : k = 0, . . . ,K} in Step 1 and the

simulated jump times
{
{τ

j
1, . . . , τ

j

N j
T

} : j = 1, . . . ,N f

}
in Step 2 to create a final dis-

cretization time grid {0 = t′0 < t′1, . . . , < t′M = T }, where M = K + 1 +
∑N f

j=1 N j
T .

Step 4: Simulate processes Y , {Vn,i : i = 1, . . . ,Nn} and {V f , j : j = 1, . . . ,N f }

over the final time grid. More specifically, for each k ∈ {1, . . . ,M},

• Central Authority:

Yt′k
= Yt′k−1

+

√(
t′k − t′k−1

)
× Z,

where Z ∼ N(0, 1). In this case, the corresponding continuous-time process

Y is assume to be a standard Brownian motion.

• Non-Followers:

Vn,i
t′k

= Vn,i
t′k−1

+ αn

(
Yt′k−1
− Vn,i

t′k−1

)
·

√(
t′k − t′k−1

)
× Zi

for all i = 1, . . . ,Nn, where Zi are i.i.d. N(0, 1) random variables.

• Followers:

If t′k is NOT a simulated jump time of the Poisson process N j,

V f , j
t′k

= V f , j
t′k−1

+ α f

(
Yt′k−1
− V f , j

t′k−1

)
· (−λ)

(
t′k − t′k−1

)
.

Otherwise, if t′k is a simulated jump time of the Poisson process N j,

V f , j
t′k

= U f , j
t′k

+ α f

(
Yt′k
− U f , j

t′k

)
,

where U f , j
t′k

is given by

U f , j
t′k

= V f , j
t′k−1

+ α f

(
Yt′k−1
− V f , j

t′k−1

)
· (−λ)

(
t′k − t′k−1

)
.
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4.3.1 Statistical Properties of Simulated Data

To investigated statistical properties of the normalized total speculative demand

V
N

as defined in Section 4.1, we simulate the discretized model with the follow-

ing parameter values:

• T = 5 is the length of the entire time horizon.

• K = 500 is the number of time steps in the equidistant partition of [0,T ].

• N = 1000 is the total number of agents participating in the market.

• ρ = 0.5, i.e. we have N f = 500 Followers and Nn = 500 Non-Followers.

• αn = 2 and α f = −2.

• λ = 1 is the instantaneous arrival rate of a Follower’s private information.

As shown in Figure 4.1, the simulated sample path of V
N

contains distinct

”quiet” and ”turbulent” periods, which are similar to those observed in the time

series of the S&P 500 index level.

Next, we follow the same methodology as used in Section 3.4.1 to check

the model’s ability to capture empirically observed stylized facts of logarithmic

asset returns. In particular, we examine the set of values{(
V

N
tk − V

N
tk−1

)
: k = 1, . . . ,K

}
,

which can be viewed as the logarithmic asset returns generated by the normal-

ized total speculative demand over each time step tk, k = 1, . . . ,K. The histogram

and kernel density estimation in Figure 4.2, as well as the Q-Q plot in Figure 4.3

show that the ”distribution” of the set of 1-step logarithmic returns generated

by an arbitrary sample path of V
N

is indeed Heavy-tailed.
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Figure 4.1: (Upper panel) Simulated sample paths of V
N

; (Lower panel) time se-
ries of the S&P 500 index level between January 1, 2005 and Decem-
ber 31, 2010.

In addition, various descriptive statistics and Hill estimators are calculated for

the ”distribution” of simulated 1-step returns, and compared with those com-

puted for the ”distribution” of daily logarithmic returns of the S&P 500 index

between January 1, 2005 and December 31, 2010. The corresponding results,

reported in Table 4.1 and Table 4.2, confirm that the tail behavior of the simu-

lated data is in close accordance with empirical observations made in financial

markets.

Aggregational Gaussianity, as discussed in Sections 1.1 and 3.4.1, is another

stylized fact of empirical financial returns that is well captured by our simulated
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Figure 4.2: Histogram generated by the set of values
{(

V
N
tk − V

N
tk−1

)
: k = 1, . . . ,K

}
associated with the simulated sample path of V

N
shown in Figure 4.1.

The Kernel density estimation (blue) and a Normal density (red) with
mean and variance matching the simulated data are also plotted.

Figure 4.3: Q-Q plot of the set of values
{(

V
N
tk − V

N
tk−1

)
: k = 1, . . . ,K

}
given by the

simulated sample path of V
N

shown in Figure 4.1.
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Table 4.1: (Top) Mean, Variance, Skewness and Kurtosis are repeatedly calcu-
lated for each of the 300 sets of 1-step logarithmic returns associated
with 300 simulated paths of V

N
. The resulting values are then aver-

aged and reported along with the corresponding standard deviation;
(Bottom) Mean, Variance, Skewness and Kurtosis are calculated for
daily logarithmic returns of the S&P 500 index between January 1, 2005
and December 31, 2010.

Mean Variance Skewness Kurtosis

Average Value
(over 300 sample sets)

-1.02×10−2 31.5 8.14×10−2 34.2

Standard Deviation
(over 300 sample sets)

0.198 135 4.07 54.2

Mean Variance Skewness Kurtosis

-3×10−5 2.13×10−4 0.247 9.99

Table 4.2: (Top) Hill Estimators for 10%−, 5%− and 2.5%−tails are repeatedly cal-
culated for each of the 300 sets of 1-step returns associated with 300
simulated paths of V

N
. The resulting values are then averaged and

reported along with the corresponding standard deviations; (Bottom)
Hill Estimators for 10%−, 5%− and 2.5%−tails are calculated for daily
logarithmic returns of the S&P 500 index between January 1, 2005 and
December 31, 2010.

10% 5% 2.5%

Average Value
(over 300 sample sets)

1.69 2.16 3.25

Standard Deviation
(over 300 sample sets)

0.533 0.736 1.31

10% 5% 2.5%

1.73 2.47 2.87
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data. Not only can we easily visualized it in Figure 4.4, relevant sample statistics

are calculated using both the simulated data and the S&P 500 index time series

to provide additional quantitative support. The corresponding results can be

found in Table 4.3.

Figure 4.4: Histograms generated by 1-, 7-, 21-, and 63-step returns given by the
simulated sample path of V

N
shown in Figure 4.1. The correspond-

ing Kernel density estimation (blue) and a Normal density (red) with
mean and variance matching the simulated data are also plotted.

Finally, we point out that when the set of values
{(

V
N
tk − V

N
tk−1

)
: k = 1, . . . ,K

}
given by a simulated path of V

N
are plotted against the time steps {tk :
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Table 4.3: (Top) The sample kurtosis is repeatedly calculated for each of the 300
sets of 1-, 7-, 21- and 63-step returns associated with 300 simulated
paths of V

N
. The resulting values are then averaged and reported

along with the corresponding standard deviations; (Bottom) sample
kurtosis calculated for the 1-, 7-, 21- and 63-day logarithmic returns of
the S&P 500 index between January 1, 2005 and December 31, 2010.

1-step 7-step 21-step 63-step

Average Value
(over 300 sample sets)

34.2 8.93 4.39 2.35

Standard Deviation
(over 300 sample sets)

54.2 9.08 5.12 3.78

1-day 7-day 21-day 63-day

9.99 8.26 6.52 4.20

Figure 4.5: (Upper panel) The set of 1-step returns given by the simulated path
of V

N
shown in Figure 4.1 is plotted against the time grid

{
tk : k =

1, . . . ,K
}
; (Lower panel) daily logarithmic returns of the S&P 500

index between January 1, 2005 and December 31, 2010 are plotted
against time.

78



Figure 4.6: Autocorrelation functions of: (1) 1-step returns given by the simu-
lated path of V

N
shown in Figure 4.1; (2) their corresponding absolute

values; (3) daily logarithmic returns of the S&P 500 index between
January 1, 2005 and December 31, 2010; (4) their absolute values.
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k = 1, . . . ,K} in Figure 4.5, we observe clear Volatility Clustering, which again

matches empirical findings in financial asset returns. As discussed in Section

3.4.1, the autocorrelation function plots in Figure 4.6 provide a more quantita-

tive manifestation of this phenomenon.
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CHAPTER 5

SUMMARY AND FUTURE RESEARCH

The modeling of asset price dynamics has long been an integral part of mathe-

matical finance literature. As a former benchmark, the Geometric Brownian mo-

tion possesses intuitive economic interpretation and great analytical tractabil-

ity, but fails to capture many important stylized facts of asset returns observed

across financial markets. Subsequent developments in this area include Lévy

Jump-diffusions and Stochastic Volatility models, which are often mathemat-

ically engineered to encompass empirical properties of asset returns and lack

motivation from a fundamental economic point of view. In this dissertation, we

construct a heterogeneous agent-based price model that overcomes some of the

aforementioned limitations. We show that one possible explanation for various

stylized facts observed in financial asset returns, such as heavy tails, aggrega-

tional Gaussianity and volatility clustering, lies within the interaction among

traders participating in the market1. In particular, such interaction generates

certain speculative demands for the traded asset in addition to its fundamen-

tal economic demand, which in turn causes the price to fluctuate. All com-

munication models presented in this dissertation are inspired by the Cucker-

Smale flocking idea summarized in Section 2.1. A slow price adjustment ap-

proach is discussed in Section 2.2, which allows us to incorporate the total

communication-caused speculative demand into the final asset price formation.

In Chapter 3, we study interaction among individual market participants un-

der a discrete-time setting. The constant sequential communication scheme in

1Other possible explanations for various stylized facts of asset returns have also been pro-
posed in the literature. For example, Grabchak and Samorodnitsky (2010) argue that financial
returns may demonstrate heavy tails and aggregational Gaussianity when modeled as i.i.d. ran-
dom variables with tempered heavy tails.
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Section 3.2 describes a well-documented phenomenon known as ”herding” in

the literature, while the stochastic communication scheme introduced in Section

3.3 models interaction among noise traders. Both Theorem 3.2.2 and Theorem

3.3.2 fall under the framework of the Central Limit Theorem for m-dependent

random variables with unbounded m given by Berk (1973). Numerical analy-

sis in Section 3.4 demonstrates our model’s ability to capture several stylized

empirical facts of financial asset returns simultaneously and provides insights

to the convergence rate of Theorem 3.3.2. In Chapter 4, we investigate under

a continuous-time setting how the presence of a central authority, such as an

equity analyst’s report, may influence individual agents’ trading behaviors and

in turn the price dynamics of the traded asset. The model focuses on two dis-

tinct types of agents, namely the Followers, also known as Fundamentalists, and

the Non-Followers, also known as Noise Traders. While a Follower forms her spec-

ulative demand by constantly mimicking the opinion of the central authority,

except when she receives opposite private trading signals, a Non-Follower may

choose to follow or act against the central authority’s advice purely at random.

We show in Theorem 4.2.1 that the normalized total speculative demand of a

large number of market participants, as a result of their interaction with the

central authority, turns out to be a stochastic time-changed Wiener process in

both cases. Numerical analysis of the model is carried out in Section 4.3 by dis-

cretizing relevant stochastic differential equations using an Euler-type scheme.

To the best of our knowledge, agent-based models introduced in this disser-

tation are among the first in the literature to study the impact of trader inter-

action on price dynamics using limit theorems and the Cucker-Smale flocking

idea. While initial results show great promise, many extensions to the mod-

els should be considered in future research. For example, the communication
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scheme described in Section 3.1 is far more general than those analyzed in Sec-

tions 3.2 and 3.3. Several assumptions made on communication patterns and

communication rates will need to be relaxed before our model can fully capture

the increasingly complex interaction among traders participating in today’s fi-

nancial markets. Also, since models introduced in this dissertation consider

only one risky asset, a natural generalization would be to include multiple as-

sets in the market so that individual traders can decide which asset they would

like to invest in by communicating with others. Another research idea we would

like to pursue is to calibrate our price model to different financial markets so it

can be used in practice to capture the real dynamics of asset price revolution.

Not only does our model possess great analytical tractability, it is also very natu-

ral to simulate, as the agent-based framework allows us to first motivate various

assumptions at a micro-level and then examine the subsequent macro-effect via

proper aggregation and normalization. This type of bottom-up approach, cou-

pled with the increasingly available computational power, has become more

and more popular among practitioners in fields such as option pricing and risk

management.
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