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In many retail settings, demand for a certain product is determined not only by its

own attributes but also by the attributes of other products, creating interactions

among the demands for different products. This thesis focuses on settings where

a retailer offers heterogeneous products that can be designated into a number of

different subgroups such that product evaluations, i.e., the utilities that a cus-

tomer assigns to products within a subgroup, are correlated. We focus on positive

correlation among product evaluations within subgroups, meaning that products

within a subgroup are closer substitutes to each other than products from another

subgroup. We use the Nested Logit (NL) model as a tool to capture correlated

product evaluations. In the Nested Logit model, a customer follows a two-stage

choice process where she first selects a product subgroup, followed by a specific

product within that group.

The first part of the thesis focuses on a pricing problem where a firm offers

a product for sales through several distinct sales channels and the utility derived

from purchasing the product in each channel depends on its price. In each sales

channel, there are also competing products not under our firm’s control which

must be taken into consideration. We provide sequential methods for obtaining

maximizers of the revenue function and provide structural properties pertaining to

the markups on optimal prices.

The second part of the thesis focuses on pricing problems in which the prices



of offered products are subject to bound constraints and the utility derived from

each product depends on its price. We give approximation methods that allow

the user to specify a performance guarantee a priori, where the final solutions are

obtained by solving linear programs whose sizes scale gracefully with the specified

performance guarantee. In addition, we develop a linear program that we can use

to quickly obtain upper bounds on optimal expected revenues.

The final part of the thesis focuses on an assortment offering problem in which

operational costs are incorporated in the form of inventory considerations. We pro-

vide theoretical and numerical results concerning the effect of correlation between

product evaluations within a subgroup on optimal assortment sizes, optimal profits

and optimal stocking levels. We give structural properties of optimal assortments

within each subgroup, and provide efficient dynamic-programming based solution

approaches for finding near-optimal assortments.
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CHAPTER 1

INTRODUCTION

This thesis centers on problems in operations management settings involving

customer choice. When a customer walks into a brick-and-mortar store and browses

the products on the shelves, she makes the choice of what to buy. When a search

for a flight is made online, the customer is shown a listing of available options,

and she makes the choice. When booking a reservation at a restaurant with an

online booking system, the customer views the available times, and then makes

a choice. In many retail applications, customers do not finalize their decisions

before entering a store (or a virtual storefront), but rather, their decision depends

heavily on what they see when they arrive: the product offering decisions made

by the retailer. The growing presence of online retailing has given customers an

avenue to view a wide variety of products or services instantaneously. In light

of this, capturing the substitution patterns of customers has become increasingly

important when making product planning decisions.

A customer choice model is described by the following attributes: a customer

arrives and views an available assortment of products S. Upon viewing the as-

sortment, the customer either chooses one of the available products to purchase,

or elects to leave without making a purchase. Associated with each product j in

the set S is a probability that the customer will purchase product j. In practice,

this probability depends on the assortment S as well as the prices p = (pj)j∈S of

all the products in the assortment. As such, the purchase probability of product

j is a function qj(p, S). The managerial decisions studied in this dissertation take

both the prices and the offered assortment into account.

One of the most prominent customer choice models is the Multinomial Logit
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(MNL) model. The MNL model is derived from an underlying probabilistic model

of customer utility, which assumes that a customer associates a random utility with

each offered product, as well as the no-purchase option, and chooses the option

that provides the largest realized utility. The random utilities follow a Gumbel

distribution, and customer utilities are assumed to be independent from product

to product The MNL model’s popularity stems from its clean and attractive ex-

pressions for the customer purchase probabilities. Its major drawback is that it

exhibits the independence of irrelevant alternatives (IIA) property: the ratio of

probabilities of choosing any two alternatives is independent of the presence or

attributes of a third alternative. Another way of saying this is that adding a new

alternative to the assortment has an equal effect on the purchase probabilities of

all other alternatives in the set relative to one another. If the assortment contains

alternatives that can be grouped such that alternatives within a group are more

similar than alternatives outside the group, the MNL model becomes unrealistic,

because adding a new alternative should reduce the probability of choosing similar

alternatives more than dissimilar alternatives.

In the MNL model, the IIA property results from the assumption that a cus-

tomer’s random utilities are assumed to be independent from product to product.

The Nested Logit (NL) model circumvents the IIA property by relaxing the as-

sumption of independence among customer evaluations from product to product,

allowing correlation between a customer’s utilities for products within designated

nests (subsets of the offer set). In particular, the set of potential products is

partitioned into m nests (subsets of the assortment), where there is correlation

between the random utilities of the options in each nest. The NL model is much

more appropriate for capturing settings where a retailer offers a heterogeneous

collection of products that can be designated into a number of different product
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types or subgroups, where the products within a type are closer substitutes to

each other than products from another type. Both the delineation of products into

subgroups and the customer’s perception of how similar products within types are

can impact customer substitution patterns in ways that cannot be adequately cap-

tured by assuming that all products belong to a single category. In the NL model,

the purchase probability qj(p, S) of a product j depends not only on the product

prices and the assortment, but also on the specific degrees of product evaluation

correlation assigned to each of the m nests.

This thesis considers problems in which the product evaluations of customers

are allowed to be correlated, where variants of the NL model are used to capture

customer choice behavior. In these problems, three key decisions for the retailer

are taken into consideration: the assortment of products offered, the prices of the

offered products, and the amount of each offered product stocked.

We first consider a problem where a firm offers a product for sale via multiple

sales channels, where it is assumed that competing products are present in each

channel. We assume that products offered together within a particular sales chan-

nel are viewed as closer substitutes to one another than products in a different

sales channel, motivating use of the NL model to capture customer choice behav-

ior. The firm must choose the optimal price at which to offer its product in each

sales channel. The work on this chapter focuses on sequential methods for find-

ing revenue-maximizing prices and structural properties of optimal prices, which

are shown to differ from properties observed in pricing problems under the MNL

model.

Next, we study a more general pricing problem, where a firm offers a number

of heterogeneous products than can be designated into subgroups based on their
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attributes. The NL model is again used to capture customer choice behavior. Our

goal in this chapter is to set the prices of all the products to maximize revenue,

subject to upper and lower bounds on each price. There are a number of rea-

sons for incorporating price bounds in practice, such as ensuring that prices are

competitive with the market. We also consider a variant of the same problem

in which the firm must choose the assortment of products to offer in addition to

their prices. The work in this chapter is algorithmic in nature, providing efficient

linear-programming based approximation methods for finding near-optimal prices

that allow the user to specify performance guarantees in advance. We also prove

structural properties of optimal assortments for the joint assortment and pricing

problem.

Finally, we consider an assortment offering problem, where we again have a firm

which offers a number of different heterogeneous products that can be designated

in subgroups, and the firm must choose the optimal subset of its products to offer

to customers. In addition, the firm must also choose the amount of inventory of

each offered product to stock. Unlike in the previous chapters, the incorporation

of operational costs in the form of inventory considerations creates tradeoffs in

this model. Offering larger assortments of products will attract more customers

to our firm’s products, but at the cost of a higher level of fragmentation of de-

mand amongst different products, leading to higher safety stocks. Thus, a balance

must be struck between the costs and benefits of product variety. The main fo-

cus of this work is examining relationships between product evaluation correlation

and optimal product assortment variety. We show that fluctuations in the level

of evaluation correlation between products in subgroups can impact optimal as-

sortment variety and optimal inventory levels in ways that mirror trends observed

in practice. In addition, we provide dynamic-programming solution methods for
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obtaining near-optimal assortments in reasonable computation time.

5



CHAPTER 2

PRICING A SINGLE PRODUCT SOLD VIA MULTIPLE SALES

CHANNELS

2.1 Introduction

In this chapter, we are concerned with the problem of maximizing expected profits

when a firm has a product that can be sold through multiple sales channels and

customers follow a nested choice selection process, where they first select one of the

available sales channels through which they can purchase products and then select

a specific product within that sales channel. Of particular interest are the settings

where a product is sold through sales channels in which there are other competing

products present. Examples of such settings are found in online retailing, where a

customer can utilize a number of different aggregator websites (e.g., expedia.com,

kayak.com) where a product or service (e.g., a flight or hotel room) belonging to a

particular firm is listed alongside competing products or services offered by other

firms.

In our setting, the sales channels can either take the form of either individual

retail stores or outside agencies which offer the products of competing firms to-

gether. We consider an oligopolistic pricing problem viewed from the perspective

of one firm, in which each nest contains exactly one of our firm’s products, but

also contains alternative options that we do not control. These alternative options

are assumed to be fixed before the time that our firm makes its pricing decisions,

i.e., they act as no-purchase options from the perspective of our firm. In reality,

they may represent products from other firms whose values are fixed ahead of time.

One particular interpretation of this scenario is that our firm has m versions of
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a particular product and is utilizing m distinct agencies acting as intermediaries

between the firm and the customer, through which it is selling these versions. The

central motivating questions of this work are whether a procedure exists for finding

the individual prices to set in each sales channel to maximize expected revenue,

whether the markup on optimal prices is consistent across sales channels, and how

optimal prices differ depending on the competing options present in each sales

channel.

We utilize the nested logit (NL) model to capture the customer’s selection pro-

cess. The Nested Logit (NL) model, of which the Multinomial Logit (MNL) model

is a special case, is a random utility maximization model which is among the most

popular models to study purchase behavior of customers who must choose amongst

multiple substitutable products. The MNL model has been widely used as a model

of customer choice, but it suffers from limitations and may behave poorly when

alternatives are correlated. This is illustrated by the independence of irrelevant

alternatives property; see [26]. The NL model relaxes the assumption of indepen-

dence between all the alternatives, designating the products into subgroups and

capturing the level of similarity among alternatives in the same subgroup through

correlation on utility components. In our setting, the NL model allows us to accu-

rately reflect the fact that different sales channels are perceived as different product

subgroups by customers and the resulting implications on customer substitution

behavior. It also allows us to capture the fact that the level of perceived similarity

among the products in a particular sales channel may differ from channel to chan-

nel. This is especially important when one takes into account the fact that firms

have products grouped together with products offered by competing firms.

We formulate our problem as a nonlinear optimization problem, where the
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objective function is our firm’s expected profit and the decision variables are the

prices. The resulting problem is a price optimization problem under the NL model

where the price in each sales channel can be viewed as the price of a distinct

product. Our problem is difficult as the objective function is neither concave nor

quasi-concave in its decision variables, the complexity of the purchase probability

expressions under the NL model creating structural challenges.

The contributions of this chapter are as follows: we study the problem under

the setting where there are two sales channels. We first show that revenue can be

efficiently maximized over one price with respect to its complement price. We show

that doing so can be used to define a “response function” which takes a price as an

input and maximizes over the complement price with respect to the input. Despite

the fact that the objective function of our original problem lacks desirable structure

in its joint decision variables, we show that these response functions are unimodal

and that global maximizers of the response functions can be used to construct

a global maximizer of our original problem. Secondly, we provide a sequential

method for maximizing our objective function using structural properties of the

response functions. We also extend these results to the setting where the number of

sales channels is arbitrary, showing that an analogous sequential procedure exists

to find a local maximizer of our objective function, though we cannot guarantee

in this case that such a maximizer is global. Lastly, we show that optimal prices

have a markup (i.e., price minus cost) that corresponds to the channel in which

they are placed, and that more attractive competing options within a channel lead

to a lower optimal price within that channel. This differs from price optimization

problems under the MNL model, where prices have been shown to have a constant

markup (see [4] and [19]).
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This chapter is related to several papers which explore price optimization prob-

lems under the MNL model. [16] shows that the profit function under the MNL

model is not concave with respect to the prices. [36] and [11] show that the profit

function is concave with respect to the purchase probabilities or market shares of

the individual products and show how the optimal solution can be obtained using

this transformation. [4] and [19] examine price optimization under the MNL model

with identical price sensitivity coefficients, and show that the optimal markup is

constant for all products; [3] shows that the profit function is unimodal and the

optimal solution can be obtained by solving first-order equations.

The rest of the chapter is organized as follows. In Section 2.2, we introduce

the two-channel price optimization problem. In Section 2.3, we examine structural

properties that show how one price can be optimized if the second price is fixed. In

Section 2.4, we develop a sequential approach for obtaining the optimal solution.

Section 2.5 extends the problem to an arbitrary number of sales channels and

adapts the sequential approach for finding a local maximizer of the revenue function

in the general case. Section 2.6 gives structural properties of optimal prices. In

Section 2.7, we conclude.

2.2 The Two-Channel Problem

We have a single product that is being sold through two different sales channels.

We use i ∈ {1, 2} to index a sales channel. Each channel includes one copy of our

firm’s product, but also contains alternative options that our firm does not control.

These alternative options, which represent competing products from other firms

as well as the option to purchase nothing, are assumed to be fixed before the time
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that our firm makes its pricing decisions. Since the customer must act within the

confines of the agency he or she has chosen to utilize, our firm has no control over

these alternative purchase options, only the price of the product assigned to that

particular sales channel. At the top level, the customer either selects one of the

two sales channels or chooses to leave the system and purchase nothing. At the

second level, if the customer has chosen a sales channel, she then selects a purchase

option within that channel.

In our analysis, we will use “price i” to refer to the price of our firm’s product

that is set for sales channel i. Let (p1, p2) denote our firm’s price vector. Let ni be

the number of competing products in each channel i = 1, 2, and let ri = (ri1, . . . , r
i
ni

)

be the vector of competing prices. We use use αi and βi to denote the base utility

and price sensitivity associated with channel i, which result in the deterministic

component of the random utility a customer associates with a product purchased

through channel i at price p as αi − βip. Equivalently, we can say that this is

a customer’s expected utility for a product purchased through channel i at price

p. We assume that there is one no-purchase option at the top level carrying

a normalized expected utility of zero. Each sales channel also has a parameter

γi ∈ (0, 1] characterizing the degree of dissimilarity between the available purchase

options in that channel. Under the Nested Logit (NL) model, as shown in [7], the

probability that a customer makes a purchase from channel i is given by

λi(p1, p2) =
(eαi−βipi +

∑ni
k=1 e

αi−βirik)γi

1 +
∑

l=1,2(eαl−βipl +
∑nl

k=1 e
αl−βlrlk)γl

for i = 1, 2. Given that the customer chooses channel i, the probability that a

customer purchases our firm’s product within channel i is given by

λ̄i(pi) =
eαi−βipi

eαi−βipi +
∑ni

k=1 e
αi−βixik

.
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Thus, the probability that a customer purchases our firm’s product in sales channel

i is given by

Λi(p1, p2) = λi(p1, p2)λ̄i(pi).

The probability that a customer leaves the system without selecting a sales channel

is 1−
∑

i=1,2 Λi(p1, p2), while the probability that a customer selects a sales channel

i but chooses not to purchase our firm’s product is given by λi(p1, p2)(1− λ̄i(pi)).

Let δi be the fraction of revenue that is retained from sales through channel i,

i.e., 1 − δi is the fraction of sales that channel i keeps for utilizing its service. If

we offer the prices p, the expected revenue obtained through selling the product

via the two sales channels is given by

Π(p1, p2) =
∑
i=1,2

δipiΛi(p1, p2).

Our firm’s objective is to choose the two prices to maximize the expected revenue.

In other words, we wish to solve the problem

max
p1,p2≥0

Π(p1, p2).

We note that the revenue function is not quasiconcave in the prices (p1, p2), even

under the simpler MNL model as shown in [16]. Under the special case of the

MNL model, [36] and [11] express the revenue function using the individual pur-

chase probabilities as decision variables and show that it is concave under this

transformation, but concavity does not hold for our problem. To circumvent these

challenges, we will work directly with prices as decision variables, and will establish

structural properties that do not require joint concavity in the prices, but never-

theless allow us to find global maximizers of the revenue function. We will start by

showing how revenue can be maximized over a single price decision, and use this

to characterize a response function that computes the maximizer of the revenue

function over one price with respect to its complement price.
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2.3 Optimization Over a Single Price

This section is concerned with maximizing the revenue function over a single price

decision variable. While the revenue function is not quasiconcave in the prices

(p1, p2), we will show that it is possible to maximize the revenue function over one

price while treating the second price as fixed. This is accomplished via a first-

order analysis of the revenue function. Using the subscript −i to denote 1 if i = 2

and 2 if i = 1, we note that the first partial derivatives of the customer selection

probabilities with respect to prices are given by

∂λi
∂pi

(p1, p2) = −βiγiλ̄i(pi)λi(p1, p2)(1− λi(p1, p2)), i = 1, 2 (2.1)

∂λi
∂p−i

(p1, p2) = β−iγ−iλ̄−i(p−i)λ−i(p1, p2)λi(p1, p2), i = 1, 2 (2.2)

dλ̄i
dpi

(pi) = −βiλ̄i(pi)(1− λ̄i(pi)), i = 1, 2. (2.3)

Using the above, it is easily shown that the purchase probability Λi of the option

corresponding to price i is decreasing in its own price pi and increasing in the price

p−i. To express the first partial derivatives of the revenue function Π(·, ·), we note

that

∂Π

∂pi
(p1, p2) = δiΛi(p1, p2) + δipi

∂Λi

∂pi
(p1, p2) + δ−ip−i

∂Λ−i
∂pi

(p1, p2)

= δiΛi(p1, p2) + δipiΛi(p1, p2)βiγi{−λ̄i(pi) + Λi(p1, p2)− 1/γi + (1/γi)λ̄i(pi)}

+ δ−ip−iγiβiΛi(p1, p2)Λ−i(p1, p2).

Letting

Ci(pi) = λ̄i(pi)δipi + (1− λ̄i(pi))
1

γi
δipi,

we can simplify the terms in the above equation to arrive at the expression

∂Π

∂pi
(p1, p2) = Λi(p1, p2)

(
δi + γiβi(Π(p1, p2)− Ci(pi))

)
, i = 1, 2. (2.4)
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We note that Ci(pi) is a convex combination of δipi and 1
γi
δipi, and since γi ∈ (0, 1],

this implies that that Ci(pi) ≥ δipi for all pi. We also note that C ′i(pi) > 0 for

pi > 0 and C ′i(0) = 0, where C ′i(·) denotes the first derivative of Ci(·).

The revenue function is not necessarily quasiconcave in (p1, p2). However, Π is

unimodal in any single price pi when the second price p−i is fixed. Furthermore,

the global maximum of the function Π(·, p−i) can be found by solving its first-order

equation. We prove this in the following lemma:

Lemma 1. For i=1,2, the first-order equation ∂Π
∂pi

(pi, p−i) = 0 has exactly one

solution in pi ≥ 0, and this solution is a global maximizer of Π(·, p−i) on R+.

Proof. Consider the first partial derivative of the revenue function with respect to

pi, as a function of pi:

∂Π

∂pi
(pi, p−i) = Λi(pi, p−i)

(
δi + γiβi(Π(pi, p−i)− Ci(pi))

)
.

We note that ∂Π
∂pi

(0, p−i) > 0, since λi(p1, p2) > 0 for all (p1, p2) and Ci(0) = 0. In

addition, since Λi(p1, p2) < 1 for all (p1, p2), we have Π(p1, p2) ≤ max{δ1p1, δ2p2}.

Since Ci(·) is strictly increasing for pi > 0 and Ci(pi) ≥ δipi, we have

lim
pi→∞

{Π(pi, p−i)− Ci(pi)} = −∞,

which implies that the first-order equation in ∂Π
∂pi

(pi, p−i) = 0 has at least one

solution in pi. Now consider the second derivative with respect to pi,

∂2Π

∂p2
i

(pi, p−i) =
∂Λi

∂pi
(pi, p−i)

(
δi + γiβi(Π(pi, p−i)− Ci(pi))

)
+ Λi(pi, p−i)γiβi

(
∂Π

∂pi
(pi, p−i)− C ′i(pi)

)
=

∂Λi
∂pi

(pi, p−i)

Λi(pi, p−i)

∂Π

∂pi
(pi, p−i) + Λi(pi, p−i)γiβi

(
∂Π

∂pi
(pi, p−i)− C ′i(pi)

)
,

13



which is negative at any pi that satisfies ∂Π
∂pi

((pi, p−i)) = 0. Thus, the function

Π(·, p−i) is strictly quasi-concave. Therefore, the first-order equation has only one

solution pi, and this solution must be a global maximizer of Π(·, p−i).

We define the response function p∗i : R→ R by letting p∗i (p−i) be the solution to

the first order equation ∂Π
∂pi

(pi, p−i) = 0 as a function of p−i. By Lemma 1, p∗i (p−i) =

argmaxpi Π(pi, p−i). In addition, from the first order equation (2.4), we know that,

given p−i, p
∗
i (p−i) is the unique price satisfying

Ci(p
∗
i (p−i)) = Π(p∗i (p−i), p−i) +

δi
γiβi

. (2.5)

Thus, the value of p∗i (p−i) is intrinsically related to the value of the revenue function

at p∗i (p−i). This suggests that we can maximize revenue by maximizing the value of

the function p∗i (·), as opposed to searching for a maximizer of the revenue function

itself. We now show that this is in fact the case, and provide a method for obtaining

the maximizers of these functions in later sections.

Lemma 2. If p̄−i is a global maximizer of p∗i (·), then (p∗i (p̄−i), p̄−i) is a global

maximizer of Π(·, ·).

Proof. Suppose that there exists a price vector (p̂1, p̂2) such that Π(p̂1, p̂2) >

Π(p∗i (p̄−i), p̄−i). Then by the definition of p∗i (·),

Π(p∗i (p̂−i), p̂−i) ≥ Π(p̂1, p̂2) > Π(p∗i (p̄−i), p̄−i).

We know that ∂Π
∂pi

(p∗i (p̂−i), p̂−i) = 0 and ∂Π
∂pi

(p∗i (p̄−i), p̄−i) = 0. Since Λi(·, ·) > 0

for all finite prices, we must have δi + γiβi(Π(p∗i (p̂−i), p̂−i) − Ci(p∗i (p̂−i))) = δi +

γiβi(Π(p∗i (p̄−i), p̄−i)−Ci(p∗i (p̄−i)) = 0. This implies that Ci(p
∗
i (p̂−i))−Ci(p∗i (p̄−i)) =

γiβi(Π(p∗i (p̂−i), p̂−i) − Π(p∗i (p̄−i), p̄−i)) > 0. But since p̄−i is a global maximizer of

p∗i (·) and Ci(·) is increasing, this is a contradiction.
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Our next objective is to show that the response function p∗i (·) in fact admits a

global maximizer. We will later devise an approach for finding this maximizer and

using it to construct a global maximizer of the expected revenue function.

Using the Implicit Function Theorem and equation (2.5), we verify that the first

derivative of p∗i (·), which we denote ∇p∗i (·), exists and is continuous. Again using

the Implicit Function Theorem, ∇p∗i (·) is determined by the implicit relationship

∇p∗i (p−i) =

∂Π
∂p−i

(p∗i (p−i), p−i)

C ′i(p
∗
i (p−i))

∀p−i, i = 1, 2. (2.6)

We note that ∇p∗i (p−i) = 0 if and only if ∂Π
∂p−i

(p∗i (p−i), p−i) = 0, since C ′i(·) > 0.

By the definition of the function p∗i (·), ∂Π
∂p−i

(p∗i (p−i), p−i) = 0 if and only if p−i =

p∗−i(p
∗
i (p−i)), i.e., p−i is the maximizer of the revenue function Π(·, ·) with respect to

the price p∗i (p−i). Thus, if a price p−i satisfies the first-order condition∇p∗i (p−i) = 0

for p∗i (·), expected revenue cannot be improved from the price (p∗i (p−i), p−i) by

maximizing with respect to either price variable, as any such operations will simply

return to the same price vector. This is illustrated in Figure 2.1, which shows that

p∗1(·) is maximized at the maximum value of p∗2(·) and vice-versa.

A natural next question is, if such a point exists, whether or not it defines a

global maximizer of Π(·, ·). We answer this by examining the second derivative

of p∗i (·), which we denote ∇2p∗i (·). To implicitly express the second derivative, we

note that

∇p∗i (p−i) =
Λ−i(p

∗
i (p−i), p−i)

(
δ−i + γ−iβ−i(Π(p∗i (p−i), p−i)− C−i(p−i))

)
C ′i(p

∗
i (p−i))

=
Λ−i(p

∗
i (p−i), p−i)

(
δ−i + γ−iβ−i(Ci(p

∗
i (p−i))− δi

γiβi
− C−i(p−i))

)
C ′i(p

∗
i (p−i))

,

which follows from (2.4) and (2.5). Continuing the differentiation from the above
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Figure 2.1: Example values of p∗1(·) and p∗2(·).

equation, we have

∇2p∗i (p−i)

=
∂Λ−i
∂p−i

(p∗i (p−i), p−i)
δ−i + γ−iβ−i(Ci(p

∗
i (p−i))− δi

γiβi
− C−i(p−i))

C ′i(p
∗
i (p−i))

+ Λ−i(p
∗
i (p−i), p−i) ·

{
γ−iβ−i

C ′i(p
∗
i (p−i))∇p∗i (p−i)− C ′−i(p−i)

C ′i(p
∗
i (p−i))

− C ′′i (p∗i (p−i))∇p∗i (p−i)
δ−i + γ−iβ−i(Ci(p

∗
i (p−i))− δi

γiβi
− C−i(p−i))

C ′i(p
∗
i (p−i))

2

}
.

Using this expression, we can show that the unimodality of the revenue function
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over a single price extends to unimodality of the response function. This is char-

acterized in the following proposition:

Proposition 1. The function p∗i (·) is strictly quasiconcave on R+.

Proof. Suppose that ∇p∗i (p−i) = 0. Then

∇2p∗i (p−i)

=
∂Λ−i
∂p−i

(p∗i (p−i), p−i)
∇p∗i (p−i)

Λ−i(p∗i (p−i), p−i)
− Λ−i(p

∗
i (p−i), p−i)γ−iβ−i

C ′−i(p−i)

C ′i(p
∗
i (p−i))

= −Λ−i(p
∗
i (p−i), p−i)γ−iβ−i

C ′−i(p−i)

C ′i(p
∗
i (p−i))

.

We now claim that p−i > 0. To see this, note that since ∇p∗i (p−i) = 0, we must

have p−i = p∗−i(p
∗
i (p−i)). Therefore, p−i satisfies the relationship C−i(p−i) =

Π(p∗i (p−i), p−i) + δ−i
γ−iβ−i

, so C−i(p−i) must be positive, implying that p−i is pos-

itive. Thus, C ′−i(p−i) > 0 and we have ∇2p∗i (p−i) < 0. Since p−i is an arbitrary

price satisfying ∇p∗i (p−i) = 0, this implies that p∗i (·) is strictly quasiconcave.

Since p∗i (·) is strictly quasiconcave, any price p−i that satisfies the first-order

condition for p∗i (·) must be a global maximizer of p∗i (·). Thus, by Lemma 2, if we can

find a price satisfying the first order equation ∇p∗i (p−i) = 0 for either i = 1, 2, this

price defines a global maximizer (p∗i (p−i), p−i) of Π(·, ·). In the following section,

we will describe a sequential approach to find this global maximizer.

2.4 A Sequential Approach To Maximizing Revenue

In this section, we present a sequential method for maximizing Π(p1, p2). This

method involves successively maximizing Π with respect to p1 and subsequently
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maximizing Π with respect to p2 in sequence. We will use properties of the function

p∗i (·) to prove that maximizing over individual prices successively in this manner

leads to finding a critical point of the function p∗i (·) for i = 1, 2, which defines a

global maximizer of Π(·, ·).

Theorem 1. Let (p0
1, p

0
2) be an arbitrary price vector. For all k = 1, 2, . . . , let

pk2 = p∗2(pk−1
1 ) and pk1 = p∗1(pk2). Then the sequence {(pk1, pk2)}k=1,2,... converges to a

global maximizer of Π(·, ·).

Proof. We know that the function p∗i (·) is defined for i = 1, 2. Since pk2 =

p∗2(pk−1
1 ) and pk+1

2 = p∗2(pk1), it follows that Π(pk−1
1 , pk2) = C1(pk2) − δ2

γ2β2
and

Π(pk1, p
k+1
2 ) = C2(pk+1

2 ) − δ2
γ2β2

. Since the operation p∗i (·) improves revenue, we

have Π(pk−1
1 , pk2) ≤ Π(pk1, p

k
2) ≤ Π(pk1, p

k+1
2 ), so C2(pk2) − δ2

γ2β2
≤ C2(pk+1

2 ) − δ2
γ2β2

.

Since C2(·) is increasing, the sequence {pk2}k≥1 is increasing; we can similarly prove

that {pk1}k≥1 is increasing as well. Let p̄1 = supk≥1{pk1} and p̄2 = supk≥1{pk2}. Since

Π(·, ·) has a global maximizer, the functions p∗1(·) and p∗2(·) are bounded. This fol-

lows from equation (2.5) and the fact that Π(·, ·) is bounded. Therefore, {pk1} and

{pk2} are bounded and we have lim{pk1} = p̄1 < ∞ and lim{pk2} = p̄2 < ∞ by the

monotone convergence theorem. In addition, {Π(pk1, p
k
2)} is bounded, monotone

and convergent, and we have limk→∞Π(pk1, p
k
2) = Π(p̄1, p̄2). But also,

lim
k→∞

Π(pk1, p
k
2) = lim

k→∞
Π(pk1, p

k+1
2 ) = lim

k→∞

{
C2(pk+1

2 )− δ2

γ2β2

}
= C2(p̄2)− δ2

γ2β2

,

where the last equality follows from the fact that C2(·) is increasing. Thus, we

have C2(p̄2) = Π(p̄1, p̄2) + δ2
γ2β2

, which implies that p̄2 = p∗2(p̄1). Similarly, we can

show that p̄1 = p∗1(p̄2). Thus, ∇p∗2(p̄1) = 0 and it follows that (p̄1, p̄2) is a global

maximizer of Π(·, ·).

Thus, despite the fact that Π(p1, p2) is not quasi-concave in (p1, p2) in general,
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there exists an iterative method for finding a global maximizer of Π. We note that

this sequential method differs from a tâtonnement scheme (e.g.,, in [1]), in which

both prices are simultaneously optimized with respect to their complement prices in

the previous iteration, i.e., pk+1
1 = argmaxp1

Π(p1, p
k
2), pk+1

2 = argmaxp2
Π(pk1, p2).

Defining the sequence as in Theorem 1 is key to maintaining increasing revenue

values and monotonicity of the sequences {pk1} and {pk2}.

In the next section, we extend this iterative procedure to an arbitrary number

of sales channels and show that it can be used to obtain a local maximizer of the

revenue function.

2.5 Pricing with m Channels

Assume now that there are an arbitrary number of sales channels m, and let M =

{1, . . . ,m}. We continue to use i ∈M to index sales channels. Let p = (p1, . . . , pm)

denote our firm’s vector of prices to be determined across all channels. We continue

to use ni to denote the number of competing products in each channel i and xik

to denote the price of competing product k in channel i. Under the NL model,

a customer purchases our firm’s product from channel i ∈ M with probability

Λi(p) = λi(p)λ̄i(pi), where

λi(p) =
(eαi−βipi +

∑ni
k=1 e

αi−βixik)γi

1 +
∑

l∈M(eαl−βipl +
∑nl

k=1 e
αl−βlxlk)γl

,

and λ̄i(pi) is the same as defined for the two-price problem. Our objective is to

maximize the expected revenue

Π(p) =
∑
i∈M

δipiΛi(p)
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over Rm
+ . It is easily verified that the analogue of equation (2.4) is true in general,

i.e.,

∂Π

∂pi
(p) = Λi(p)

(
δi + γiβi(Π(p)− Ci(pi))

)
, i ∈M. (2.7)

Analogous to the two-price setting, it is possible to maximize the function

Π(·) over a single price. Namely, letting p−i denote (p1, . . . , pi−1, pi+1, . . . , pm), the

first-order equation ∂Π
∂pi

(pi,p−i) = 0 has exactly one solution, which is a global

maximizer of Π(·,p−i). The proof is the same as that of Lemma 1. As such, we

define the response functions p∗i : Rm−1 → R by letting p∗i (p−i) be the solution to

the first order equation ∂Π
∂pi

(pi,p−i) = 0, i.e.,

Ci(p
∗
i (p−i)) = Π(p∗i (p−i),p−i) +

δi
γiβi

.

In addition, the proof of Lemma 2 can be adapted to show that if p̄−i is a local

maximizer of p∗i (·), then (p∗i (p̄−i), p̄−i) is a local maximizer of Π(·).

Let ∇p∗i (·) denote the gradient of p∗i (·) and let ∇2p∗i (·) denote its Hessian ma-

trix. The first and second partial derivatives of p∗i (·) are given by

∂p∗i
∂pj

(p−i) = Λj(p
∗
i (p−i),p−i)

δj + γjβj[Ci(p
∗
i (p−i))− δi

αi
− Cj(pj)]

C ′i(p
∗
i (p−i))

, j 6= i,

and

∂2p∗i
∂pj∂pk

(p−i) =

∂Λj
∂pk

(p∗i (p−i),p−i)

Λj(p∗i (p−i),p−i)

∂p∗i
∂pj

(p−i)

+ Λj(p
∗
i (p−i),p−i) ·

{
γjβj

αjC
′(p∗i (p−i))

∂p∗i
∂pk

(p−i)− C ′j(pj)1(k = j)

C ′i(p
∗
i (p−i))

− C ′′i (p∗i (p−i))
∂p∗i
∂pk

(p−i)
δj + γjβj(Ci(p

∗
i (p−i))− δi

αi
− Cj(pj))

(C ′i(p
∗
i (p−i)))

2

}
, j, k 6= i,

respectively. We observe that if the gradient ∇p∗i (p−i) is zero, then
∂p∗i
∂pj

(p−i) = 0
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for all j 6= i, so the entries of the Hessian at p−i are given by

∂2p∗i
∂pj∂pk

(p−i) =


−Λj(p

∗
i (p−i),p−i)γjβj

C′j(pj)

C′i(p
∗
i (p−i))

, k = j

0, k 6= j.

Thus, the Hessian at p−i is diagonal with negative entries, and is therefore negative

definite at any vector p−i satisfying ∇p∗i (p−i) = 0. While this is not strong enough

to prove that p∗i (·) is a quasiconcave function as in the two-price setting, it does

imply that any p−i satisfying ∇p∗i (p−i) = 0 is a local maximizer of p∗i (·). We will

use this fact to formulate an analogue of our approach from the two-price setting

to find a local maximizer of Π(·).

Define the families of operators {Ti}i∈M : Rm → Rm and{T̄i}i∈M∪{0} : Rm →

Rm as follows: T̄0(p) = p, Ti(p) = T̄i−1(p∗i (p−i),p−i) and T̄i(p) = limk→∞Tk
i (p),

where

Tk
i (p) = Ti(Ti(· · · (Ti︸ ︷︷ ︸

k

(p)))).

Our sequential procedure for the m-channel problem involves evaluating Tm(p0)

from any initial price vector p. We observe that if m = 2, this corresponds exactly

to the sequential procedure that we formulated for the 2-channel problem. The

following theorem demonstrates that T̄i(p) is defined for all i ∈M and that T̄m(p)

is a local maximizer of the revenue function.

Theorem 2. For all p ∈ Rm
+ , {Tk

i (p)}k≥1 converges for all i ∈ M , and T̄m(p) is

a local maximizer of Π(·).

Proof. The proof is by induction. For notational brevity, let T kij(p) denote the

jth component of Tk
i (p) and T̄ij(p) denote the jth component of T̄i(p); also let

T̄i,−j(p) denote the vector of all components of T̄i(p) besides the jth component.
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Base case: We note that T1(p) = (p∗1(p−1),p−1). Thus, since T̄0 is the identity,

T1(T1(p)) = (p∗1(p−1),p−1) as well, and it follows that T̄1(p) = (p∗1(p−1),p−1).

We have

T2(p) = T̄1(p∗2(p−2),p−2) = (p∗1(p∗2(p−2)), p∗2(p−2), p3, . . . , pm).

From Theorem 1, we know that for any p, limk→∞Tk
2(p) = T̄2(p) exists and that

T̄22(p) = p∗2(T̄21(p), p3, . . . , pm) and T̄21(p) = p∗1(T̄22(p), p3, . . . , pm). We can show

this by considering Π(·, p3, . . . , pm) as a two-price revenue function and following

the sequential approach over the first two prices from Theorem 1, which is exactly

the procedure involved in finding limk→∞Tk
2(p).

Inductive step: Now suppose that for some 2 ≤ i ≤ m − 1, T̄i(p) exists and

T̄ij(p) = p∗j(T̄i,−j(p)) for all j = 1, . . . , i. Then for all k ≥ 1,

T ki+1,i+1(p) = p∗i+1(T k−1
i+1,1(p), . . . , T k−1

i+1,i(p), pi+2, . . . , pm)

and

T ki+1,j(p) = T̄ij(T
k−1
i+1,1(p), . . . , T k−1

i+1,i(p), T ki+1,i+1(p), pi+2, . . . , pm)∀j = 1, . . . , i.

Thus, since Π(T k−1
i+1,1(p), . . . , T k−1

i+1,i(p), T ki+1,i+1(p), pi+2, . . . , pm) = Ci(T
k
i+1,i+1(p))−

δi
γiβi

and Π(Tk
i (p)) = Cj(T

k
i+1,j(p))− δj

γjβj
∀j = 1, . . . , i−1 are increasing in k, both

{T ki+1,i+1(p)} and {T ki+1,j(p)}, j = 1, . . . , i − 1 are increasing in k, bounded and

convergent. Thus, T̄i+1(p) exists. We have

Π(T̄i+1(p)) = lim
k→∞

Π(Tk
i+1(p))

= lim
k→∞

Π(T k−1
i+1,1(p), . . . , T k−1

i+1,i(p), T ki+1,i+1(p), pi+2, . . . , pm)

= lim
k→∞

{
Ci(T

k
i+1,i+1(p))− δi

γiβi

}
= Ci(T̄i+1,i+1(p))− δi

γiβi
,

so T̄i+1,i+1(p) = p∗i+1(T̄i+1,−(i+1)(p)). We can similarly show that T̄i+1,j(p) =

p∗j(T̄i+1,−j(p)) for all j = 1, . . . , i.
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Thus, by induction, for all i ∈M , {Tk
i (p)}k≥1 converges and T̄ij(p) = p∗j(T̄i,−j(p))

for all j = 1, . . . , i. So T̄m(p) exists and we have T̄mj(p) = p∗j(T̄m,−j(p)) for all j ∈

M. This implies that
∂p∗i
∂pj

(T̄m,−i(p)) =
∂Π
∂pj

(p∗i (T̄m,−i(p)),T̄m,−i(p))

C′i(p
∗
i (T̄m,−i(p)))

=
∂Π
∂pj

(T̄m(p))

C′i(p
∗
i (T̄m,−i(p)))

= 0

for all j ∈ M . Thus, T̄m,−i(p) is a local maximizer of p∗i (·), which implies that

T̄m(p) is a local maximizer of Π(·).

2.6 Properties of Optimal Prices

If a price vector p is globally optimal, then we must have p∗i (p−i) = pi for all

i ∈ M. Thus, we have Ci(pi) = Π(p) + δi
γiβi

for all i ∈ M. [4] and [19] show that

in price optimization problems under the MNL model, all optimal prices have a

constant markup, i.e., price minus cost. In our case, we express the markup of

price i as δipi, as the percentage δi encompasses the costs incurred from offering

our firm’s product in channel i. If δi = 1, the markup of price i is simply its price,

and in the MNL model when all costs are zero, a constant price among all products

is optimal. In our case, we note that

Ci(pi) =
eαi−βipi

Ai + eαi−βipi
δipi +

Ai
Ai + eαi−βipi

1

γi
δipi,

where Ai =
∑ni

k=1 e
αi−βirik is the aggregate attractiveness of the competitor prices

and the no-purchase option within channel i. Therefore, if Π∗ denotes the optimal

revenue, every optimal price pi must satisfy

δipi =
γi(Ai + eαi−βipi)

Ai + γieαi−βipi

(
Π∗ +

δi
γiβi

)
. (2.8)

We make two key observations from equation (2.8). The first is that optimal

markups are not constant. We note that even if Ai = 0 (i.e., there are no competing

purchase options within channel i), the optimal channel markup is equal to the
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optimal revenue plus the constant δi
γiβi

, which is unique to the channel i. If Ai > 0,

then the optimal channel markup is a channel-specific function of the optimal

revenue. Second, we note that the right-hand side of equation (2.8) is a decreasing

function in pi, and thus equation (2.8) has a unique solution. But in addition,

the right-hand side of (2.8) is decreasing in Ai for any fixed pi and the optimal

revenue Π∗ is decreasing with Ai, where the latter can be shown by noting that all

of the purchase probabilities Λj(p)j∈M are decreasing in Ai for any fixed p. Thus,

as Ai gets larger, the value of pi where the left and right-hand sides of equation

(2.8) intersects gets smaller. This implies that more attractive competing products

within a channel lead to a lower channel price.

2.7 Conclusions

We formulated a pricing problem where a firm prices a single product through mul-

tiple sales channels and competing products are present in each channel. We used

the nested logit model to capture the customer’s selection process. In the setting

where there are two sales channels, we showed that while the expected revenue

function is not quasi concave in the prices, maximizing prices individually with

respect to one another yields useful structural properties. We used this knowledge

to formulate a sequential procedure that can be used to find a global maximizer of

the expected revenue function by maximizing over individual prices successively.

We extended this result to a setting with an arbitrary number of sales channels

and showed that an analogous procedure can be used to find a local maximum

of the revenue function. In both settings, we show that the markups of optimal

prices are determined by channel-specific parameters and that the optimal price in

a particular channel is decreasing in the aggregate attractiveness of the competing
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products present in that channel.

It still remains to be shown whether a tractable method exists for solving more

general problems under the nested logit model, e.g., by relaxing the assumption

that our firm only controls one product in each sales channel or product subgroup

or by incorporating constraints on the prices of products our firm controls. These

questions are addressed later in the thesis.
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CHAPTER 3

APPROXIMATION METHODS FOR MULTI-PRODUCT PRICING

PROBLEMS WITH PRICE BOUNDS

3.1 Introduction

When faced with product variety, most customers make their purchase decisions

by comparing the offered products through attributes such as price, richness of

features and durability. In this type of a situation, the demand for a certain

product is determined not only by its own attributes but also by the attributes of

other products, creating interactions among the demands for different products.

Discrete choice models are particularly suitable to study such demand interactions,

as they model the demand for a certain product as a function of the attributes

of all products offered to customers. However, optimization models that try to

find the right set of products to offer or the right prices to charge may quickly

become intractable when one works with complex discrete choice models and tries

to incorporate operational constraints.

In this chapter, we consider pricing problems where the interactions between the

demands for the different products are captured through the nested logit model and

there are bounds on the prices that can be charged for the products. We consider

two problem variants. In the first variant, the set of products offered to customers

is fixed and we want to determine the prices for these products. In the second

variant, we jointly determine the products that should be offered to customers

and their corresponding prices. Once the products to be offered and their prices

are determined, customers choose among the offered products according to the

nested logit model. In both variants, the objective is to maximize the expected
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revenue obtained from each customer. We give approximation methods for both

variants of the problem. In particular, for any ρ > 0, our approximation methods

obtain a solution with an expected revenue deviating from the optimal by at most

a factor of 1 + ρ. To obtain this solution, the approximation methods solve linear

programs whose sizes grow linearly with 1/ log(1 + ρ). Noting that 1/ log(1 + ρ)

grows at the same rate as 1/ρ for small values of ρ, the computational work for our

approximation methods grows polynomially with the approximation factor. Our

approximation methods give a performance guarantee over all problem instances,

but we also develop a linear program that we can use to quickly obtain an upper

bound on the optimal expected revenue for an individual problem instance. In our

computational experiments, we compare the expected revenues from the solutions

obtained by our approximation methods with the upper bounds on the optimal

expected revenues and demonstrate that our approximation methods can quickly

obtain solutions whose expected revenues differ from the optimal by less than a

percent. Thus, our approximation methods have favorable theoretical performance

guarantees and they are useful to obtain high quality solutions in practice.

The first problem variant we consider is a pricing problem where customers

choose according to the nested logit model and there are bounds on the prices

of the offered products. For the first variant, assuming that there are m nests

in the nested logit model and each nest includes n products to offer, we show

that for any ρ > 0, we can solve a linear program with O(m) decision variables

and O(mn + mn log(nσ)/ log(1 + ρ)) constraints to obtain a set of prices with

an expected revenue deviating from the optimal expected revenue by at most a

factor of 1 + ρ. In this result, σ depends on the deviation between the upper

and lower price bounds of the products. The second problem variant we consider

is a joint assortment offering and pricing problem, where we need to choose the
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products to offer and their corresponding prices. For this variant, we establish a

useful property for the optimal subsets of products to offer. In particular, ordering

the products according to their price upper bounds, we show that it is optimal

to offer a certain number of products with the largest price upper bounds. Using

this result, we show that for any ρ > 0, we can solve a linear program with O(m)

decision variables and O(mn2 +mn2 log(nσ)/ log(1 + ρ)) constraints to find a set

of products to offer and their corresponding prices such that the expected revenue

obtained by this solution deviates from the optimal expected revenue by at most

a factor of 1 + ρ. Comparing our results for the two variants, we observe that

the extra computational burden of jointly finding a set of products to offer and

pricing the offered products boils down to increasing the number of constraints in

the linear program by a factor of n.

Pricing under the nested logit model has recently received attention, starting

with the work of [24] and [14]. [24] considers pricing problems without upper or

lower bound constraints on the prices. Assuming that the products in the same

nest share the same price sensitivity parameter and the so called dissimilarity pa-

rameters of the nested logit model are less than one, the authors cleanly show

that the pricing problem can be reduced to the problem of maximizing a scalar

function. This scalar function turns out to be unimodal so that maximizing it is

tractable. [14] also studies pricing problems under the nested logit model without

price bounds, but they allow the products in the same nest to have different price

sensitivities and the dissimilarity parameters of the nested logit model to take

on arbitrary values. Surprisingly, their elegant argument shows that the optimal

prices can still be found by maximizing a scalar function, but this scalar function

is not unimodal in general and evaluating this scalar function at any point requires

solving a separate high-dimensional optimization problem involving implicitly de-
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fined functions. This chapter fills a number of gaps in this area. The earlier work

shows that the problem of finding the optimal prices can be reduced to maximiz-

ing a scalar function, which is the expected revenue as the function of an adjusted

markup parameter. However, this function is not unimodal and maximizing it

can be intractable for two reasons. First, a natural approach to maximizing this

scalar function is to evaluate it at a finite number of grid points and pick the best

solution, but it is not clear how to place these grid points to obtain a performance

guarantee. Second, given that computing the scalar function at any point requires

solving a nontrivial optimization problem, it is computationally prohibitive to sim-

ply follow a brute force approach and use a large number of grid points. Thus,

while the earlier work shows how to reduce the pricing problem to a problem of

maximizing a scalar function, as far as we can see, it does not yet yield a computa-

tionally viable and theoretically sound algorithm to compute near-optimal prices

in general. Our work provides practical algorithms that deliver a desired perfor-

mance guarantee of 1 + ρ for any ρ > 0. To obtain our approximation methods,

we transform the pricing problem into a knapsack problem with a separable and

concave objective function, which ultimately allows us to use different arguments

from [24] and [14].

Beside providing computationally viable algorithms to find prices with a certain

performance guarantee, a unique feature of our work is that it allows imposing

bounds on the prices that can be chosen by the decision maker. Such price bounds

do not appear in the earlier pricing work under the nested logit model and there

are a number of theoretical and practical reasons for studying such bounds. On

the theoretical side, if we impose price bounds, then even in the simplest case when

the price sensitivities of all products are equal to each other, the scalar functions

in the works of [24] and [14] are no longer unimodal. In such cases, we emphasize
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that the lack of unimodality is purely due to the presence of the price bounds,

as the work of [24] shows that the scalar functions that they work are indeed

unimodal when the price sensitivities of the products are equal to each other. Thus,

price bounds can significantly complicate the structural properties of the pricing

problem. Furthermore, naive approaches for satisfying price bound constraints

may yield poor results. For example, a first cut approach for dealing with price

bounds is to use the work of [24] or [14] to find the optimal prices for the products

under the assumption that there are no price bounds. If these unconstrained prices

are outside the price bound constraints, then we can round them up or down to

their corresponding lower or upper bounds. This naive approach does not perform

well and we can come up with problem instances where this naive approach can

result in revenue losses of over 20%, when compared with approaches that explicitly

incorporate price bounds.

There are also practical reasons for studying price bounds. Customers may

have expectations for sensible price ranges and it is useful to incorporate these price

ranges explicitly into the pricing model. Furthermore, lack of data may prevent us

from fitting an accurate choice model to capture customer choices, in which case we

can guide the model by limiting the range of possible prices through price bounds.

When we solve the pricing model without price bounds, we essentially rely on the

choice model to find a set of reasonable prices for the products, but depending on

the parameters of the choice model, the prices may not come out to be practical.

Thus, incorporating price bounds into the pricing problem is a nontrivial task

from a theoretical perspective and it has important practical implications. It is

also worth mentioning that if there are no price bounds, then finding the right set

of products to offer is not an issue as [14] show that it is always optimal to offer

all products at some finite price level. This result does not hold in the presence of
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price bounds and our second variant, which jointly determines the set of products

to offer and their corresponding prices, becomes particularly useful.

Our approximation methods allow us to obtain prices with a certain perfor-

mance guarantee. In addition to these approximation methods, we give a simple

approach to compute an upper bound on the optimal expected revenue. This up-

per bound is obtained by solving a linear program and we can progressively refine

the upper bound by increasing the number of constraints in the linear program. By

comparing the expected revenue from the solution obtained by our approximation

methods with the upper bound on the optimal expected revenue, we can bound

the optimality gap of the solutions obtained by our approximation methods for

each individual problem instance. Admittedly, our approximation methods pro-

vide a performance guarantee of 1 + ρ for a given ρ > 0, but this is the worst case

performance guarantee over all problem instances and it turns out that we can

use the linear program to obtain a tighter performance guarantee for an individual

problem instance. The linear program we use to obtain an upper bound on the

optimal expected revenue can be useful even if we do not work with our approxi-

mation methods to obtain a good solution to the pricing problem. In particular,

we can use an arbitrary heuristic or an approximation method to obtain a set of

prices and check the gap between the expected revenue obtained by charging these

prices and the upper bound on the optimal expected revenue. If the gap turns out

to be small, then there is no need to look for better prices.

There is a long history on building discrete choice models to capture customer

preferences. Some of these models are based on axioms describing a sensible be-

havior of customer choice, as in the basic attraction model of [26]. On the other

hand, some others use a utility maximization principle, where an arriving customer
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associates random utilities with the products and chooses the product providing

the largest utility. Such a utility based approach is followed by [28], resulting in the

celebrated multinomial logit model. The nested logit model, which plays a central

role in this chapter, goes back to the work of [42]. Extensions for the nested logit

model are provided by [29] and [7]. An important feature of the nested logit model

is that it avoids the independence of irrelevant alternatives property suffered by

the multinomial logit model. A discussion of this property can be found in [6].

There is a body of work on assortment optimization problems under various

discrete choice models. In the assortment optimization setting, the prices of the

products are fixed and we choose the set of products to offer given that customers

choose among the offered products according to a particular choice model. [37]

studies assortment problems when customers choose under the multinomial logit

model and show that the optimal assortment includes a certain number of products

with the largest revenues. As a result, the optimal assortment can efficiently be

found by checking the performance of every assortment that includes a certain

number of products with the largest revenues. [34] considers the same problem with

a constraint on the number of products in the offered assortment and show that the

problem can be solved in a tractable fashion. [40] extends this work to more general

versions of the multinomial logit model. In [8], [31] and [35], there are multiple

types of customers, each choosing according to the multinomial logit model with

different parameters. The authors show that the assortment problem becomes

NP-hard in the weak and strong sense, propose approximation methods and study

integer programming formulations. [20] work on how to obtain good assortments

with only limited computations of the expected revenue from different assortments.

The work mentioned so far in this paragraph uses the multinomial logit model,

but there are extensions to the nested logit model. [33] develop an approximation
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scheme for assortment problems when customers choose under the nested logit

model and there is a shelf space constraint for the offered assortment. [10] studies

the same problem without the shelf space constraint and give a tractable method

to obtain the optimal assortment under the nested logit model. [13] show that

it is tractable to obtain the optimal assortment when customers choose according

to the nested logit model and there is a cardinality constraint on the number of

products offered in each nest. They extend their result to the situation where each

product can be offered at a finite number of price levels and one needs to jointly

choose the assortment of products to offer and their corresponding price levels.

Their approach does not work when the set of products to be offered is fixed and

not under the control of the decision maker.

Pricing problems within the context of different discrete choice models is also

an active research area. Under the multinomial logit model, [16] note that the

expected revenue function is not concave in prices. However, [36] and [11] make

progress by formulating the problem in terms of market shares, as this formula-

tion yields a concave expected revenue function. [24] extend the concavity result

to the nested logit model by assuming that the price sensitivities of the products

are constant within each nest and the dissimilarity parameters are less than one.

[14] relax both of the assumptions in [24] and extend the analysis to more gen-

eral forms of the nested logit model. [41] considers a joint assortment and price

optimization problem to choose the offered products and their prices. The author

imposes cardinality constraints on the offered assortment, but the customer choices

are captured by using the multinomial logit model, which is more restrictive than

the nested logit model. Recently, there has been interest in modeling large scale

revenue management problems by incorporating the fact that customers make a

choice depending on the assortment of available itinerary products and their prices.
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The main approach in these models is to formulate deterministic approximations

under the assumption that customer arrivals and choices are deterministic. Such

deterministic approximations have a large number of decision variables and they

are usually solved by using column generation. The assortment and pricing prob-

lems described in this and the paragraph above become instrumental when solving

the column generation subproblems. Deterministic approximations for large-scale

revenue management problems can be found in [12], [25], [23], [43], [44] and [30].

In Section 3.2, we formulate the first variant of the problem, where the set

of products to be offered is fixed and we choose the prices for these products. In

Section 3.3, we show that this problem can be visualized as finding the fixed point

of a scalar function. In Section 3.4, we develop an approximation framework by

using the fixed point representation and computing a scalar function at a finite

number of grid points. In Section 3.5, we show how to construct an appropriate

grid with a performance guarantee and give our approximation method. In Section

3.6, we extend the work in the earlier sections to the second variant of the problem,

where we jointly choose the products to offer and their corresponding prices. In

Section 3.7, we show how to obtain an upper bound on the optimal expected

revenue and give computational experiments to compare the performance of our

approximation methods with the upper bounds on the optimal expected revenues.

In Section 3.8, we conclude.

3.2 Problem Formulation

In this section, we describe the nested logit model and formulate the pricing prob-

lem. There are m nests indexed by M = {1, . . . ,m}. Depending on the application
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setting, nests may correspond to different retail stores, different product categories

or different sales channels. In each nest there are n products and we index the prod-

ucts by N = {1, . . . , n}. We use pij to denote the price of product j in nest i. The

price of product j in nest i has to satisfy the price bound constraint pij ∈ [lij, uij],

for the upper and lower bound parameters lij, uij ∈ [0,∞). We use wij to denote the

preference weight of product j in nest i. Under the nested logit model, if we choose

the price of product j in nest i as pij, then the preference weight of this product

is wij = exp(αij − βij pij), where αij ∈ (−∞,∞) and βij ∈ [0,∞) are parameters

capturing the effect of the price on the preference weight. Since there is a one to

one correspondence between the price and preference weight of a product, through-

out the chapter, we assume that we choose the preference weight of a product, in

which case, there is a price corresponding to the chosen preference weight. In par-

ticular, if we choose the preference weight of product j in nest i as wij, then the

corresponding price of this product is pij = (αij− logwij)/βij, which is obtained by

setting wij = exp(αij −βij pij) and solving for pij. For brevity, we let κij = αij/βij

and ηij = 1/βij and write the relationship between price and preference weight as

pij = κij − ηij logwij. Noting the upper and lower bound constraint on prices, the

preference weight of product j in nest i has to satisfy the constraint wij ∈ [Lij, Uij]

with Lij = exp(αij−βij uij) and Uij = exp(αij−βij lij). We usewi = (wi1, . . . , win)

to denote the vector of preference weights of the products in nest i. Under the

nested logit model, if we choose the preference weights of the products in nest i

as wi and a customer decides to make a purchase in this nest, then this customer

purchases product j in nest i with probability wij/
∑

k∈N wik. Thus, if we choose

the preference weights of the products in nest i as wi and a customer decides to

make a purchase in this nest, then we obtain an expected revenue of

Ri(wi) =
∑
j∈N

wij∑
k∈N wik

(κij − ηij logwij) =

∑
j∈N wij (κij − ηij logwij)∑

j∈N wij
,
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where the term wij/
∑

k∈N wik on the left side above is the probability that a cus-

tomer purchases product j in nest i given this customer decides to make a purchase

in this nest, whereas the term κij−ηij logwij captures the revenue associated with

product j in nest i.

Each nest i has a parameter γi ∈ (0, 1], characterizing the degree of dissimilarity

between the products in this nest. In this case, if we choose the preference weights

of the products in all nests as (w1, . . . ,wm), then a customer decides to make a

purchase in nest i with probability

Qi(w1, . . . ,wm) =

(∑
j∈N wij

)γi
1 +

∑
l∈M

(∑
j∈N wlj

)γl .
Depending on the interpretation of a nest as a retail store, a product category or

a sales channel, the expression above computes the probability that a customer

chooses a particular retail store, product category or sales channel as a function of

the preference weights of all products. With probability 1−
∑

i∈M Qi(w1, . . . ,wm),

a customer leaves without making a purchase. McFadden (1984) demonstrates that

the choice probabilities above can be derived from a utility maximization principle,

where a customer associates a random utility with each product and purchases the

product that provides the largest utility. Thus, if we choose the preference weights

as (w1, . . . ,wm) over all nests, then we obtain an expected revenue of

Π(w1, . . . ,wm) =
∑
i∈M

Qi(w1, . . . ,wm)Ri(wi)

=

∑
i∈M

(∑
j∈N wij

)γi ∑
j∈N wij (κij−ηij logwij)∑

j∈N wij

1 +
∑

i∈M
(∑

j∈N wij
)γi , (3.1)

where the second equality is by the definitions of Ri(wi) and Qi(w1, . . . ,wm). Our

goal is to choose the preference weights to maximize the expected revenue, yielding

the problem

Z∗ = max
{

Π(w1, . . . ,wm) : wi ∈ [Li,Ui] ∀ i ∈M
}
, (3.2)
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where we use Li and Ui to respectively denote the vectors (Li1, . . . , Lin) and

(Ui1, . . . , Uin) and interpret the constraint wi ∈ [Li,Ui] componentwise as wij ∈

[Lij, Uij] for all j ∈ N .

3.3 Fixed Point Representation

In this section, we show that problem (3.2) can alternatively be represented as the

problem of computing the fixed point of an appropriately defined scalar function.

This alternative fixed point representation allows us to work with a single decision

variable for each nest i, rather than n decision variables wi = (wi1, . . . , win) and

it becomes crucial when developing our approximation methods. To that end,

assume that we compute the value of z that satisfies

z =
∑
i∈M

max
wi∈[Li,Ui]

{(∑
j∈N

wij

)γi ∑j∈N wij (κij − ηij logwij)∑
j∈N wij

−
(∑
j∈N

wij

)γi
z

}
.

(3.3)

Viewing the right side of (3.3) as a function of z, finding the value of z satisfying

(3.3) is equivalent to computing the fixed point of this scalar function. There

always exists such a unique value of z since the left side above is strictly increasing

and the right side above is decreasing in z. Letting ẑ be the value of z satisfying

(3.3), we claim that ẑ is the optimal objective value of problem (3.2). To see this

claim, note that if (w∗1, . . . ,w
∗
m) is an optimal solution to problem (3.2), then we

have

ẑ ≥
∑
i∈M

{(∑
j∈N

w∗ij

)γi ∑j∈N w
∗
ij (κij − ηij logw∗ij)∑

j∈N w
∗
ij

−
(∑
j∈N

w∗ij

)γi
ẑ

}
,

where we use the fact that ẑ is the value of z satisfying (3.3) andw∗i is a feasible but

not necessarily an optimal solution to the maximization problem on the right side of
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(3.3) when we solve this problem with z = ẑ. In the inequality above, if we collect

all terms that involve ẑ on the left side of the inequality, solve for ẑ and use the

definition of Π(w1, . . . ,wm) in (3.1), then it follows that ẑ ≥ Π(w∗1, . . . ,w
∗
m) = Z∗.

On the other hand, if we let ŵi be an optimal solution to the maximization problem

on the right side of (3.3) when we solve this problem with z = ẑ, then we observe

that (ŵ1, . . . , ŵm) is a feasible solution to problem (3.2). Furthermore, since ẑ is

the value of z that satisfies (3.3), the definition of ŵi implies that

ẑ =
∑
i∈M

{(∑
j∈N

ŵij

)γi ∑j∈N ŵij (κij − ηij log ŵij)∑
j∈N ŵij

−
(∑
j∈N

ŵij

)γi
ẑ

}
. (3.4)

If we solve for ẑ in the equality above and use the definition of Π(w1, . . . ,wm) in

(3.1) once more, then we get ẑ = Π(ŵ1, . . . , ŵm) ≤ Z∗, where the last inequality

uses the fact that (ŵ1, . . . , ŵm) is a feasible but not necessarily an optimal solution

to problem (3.2). So, we obtain ẑ = Z∗, establishing the claim. Thus, we can obtain

the optimal objective value of problem (3.2) by finding the value of z that satisfies

(3.3). Furthermore, if we use ẑ to denote such a value of z and ŵi to denote an

optimal solution to the maximization problem on the right side of (3.3) when this

problem is solved with z = ẑ, then the discussion in this paragraph establishes that

(ŵ1, . . . , ŵm) is an optimal solution to problem (3.2). Since the left and right sides

of (3.3) are respectively increasing and decreasing in z, we can find the value of z

satisfying (3.3) by using bisection search. However, one drawback of using bisection

search is that we need to solve the maximization problem on the right side of (3.3)

for each value of z visited during the course of the search. This maximization

problem involves a high-dimensional objective function. Also, it is not difficult to

generate counterexamples to show that this objective is not necessarily concave.

To get around the necessity of dealing with high-dimensional and nonconcave

objective functions, we give an alternative approach for finding the value of z

38



satisfying (3.3). We define gi(yi) as the optimal objective value of the nonlinear

knapsack problem

gi(yi) = max

{∑
j∈N

wij (κij − ηij logwij) :
∑
j∈N

wij ≤ yi, wij ∈ [Lij, Uij] ∀j ∈ N

}
.

(3.5)

We make a number of observations regarding problem (3.5). We can verify that

the objective function of this problem is concave. Also, if we do not have the

first constraint in the problem above, then by using the first order condition for

the objective function of this problem, we can check that the optimal value of the

decision variable wij is given by min{max{exp(κij/ηij−1), Lij}, Uij} for all j ∈ N .

Thus, letting Ūi =
∑

j∈N min{max{exp(κij/ηij − 1), Lij}, Uij}, if we have yi > Ūi,

then the first constraint in problem (3.5) is not tight at the optimal solution. On

the other hand, letting L̄i =
∑

j∈N Lij, if we have yi < L̄i, then problem (3.5) is

infeasible. Finally, if we have yi ∈ [L̄i, Ūi], then it follows that the first constraint

in problem (3.5) is always tight at the optimal solution. Thus, intuitively speaking,

the interesting values for yi take values in the interval [L̄i, Ūi]. In this case, noting

that problem (3.5) finds the maximum value of the numerator of the fraction in

(3.3) while keeping the denominator of this fraction below yi, instead of finding

the value of z satisfying (3.3), we propose finding the value of z that satisfies

z =
∑
i∈M

max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii z

}
. (3.6)

The value of z satisfying (3.6) is unique since the left side above is strictly increasing

and the right side above is decreasing in z. The maximization problem on the right

side above involves a scalar decision variable and the computation of gi(yi) requires

solving a convex optimization problem. In the next proposition, we show that (3.6)

can be used to find the value of z satisfying (3.3).
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Proposition 2. The value of z that satisfies (3.3) and (3.6) are the same, corre-

sponding to the optimal objective value of problem (3.2).

Proof. The value of z that satisfies (3.3) or (3.6) has to be positive. Otherwise, the

left sides of these expressions evaluate to a negative number, but the right sides

evaluate to a positive number. In this case, comparing (3.3) and (3.6), if we can

show that

max
wi∈[Li,Ui]

{(∑
j∈N

wij

)γi ∑j∈N wij (κij − ηij logwij)∑
j∈N wij

−
(∑
j∈N

wij

)γi
z

}

= max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii z

}

for any z > 0, then the value of z that satisfies (3.3) and (3.6) are the same. The

equality above can be established by showing that we can use the optimal solution

to one of the problems above to construct a feasible solution to the other. We

defer the details to the appendix.

The proposition above provides a tempting approach for solving problem (3.2).

In particular, we can find the value of z that satisfies (3.6) by using bisection search.

We observe that the maximization problem on the right side of (3.6) involves a

scalar decision variable and the computation of gi(·) requires solving a convex

optimization problem. Thus, the optimization problems that we solve during the

course of the bisection search may be tractable. We use ẑ to denote the value

of z that satisfies (3.6) and ŷi to denote an optimal solution to the maximization

problem on the right side of (3.6) when we solve this problem with z = ẑ. In this

case, we can solve problem (3.5) with yi = ŷi to obtain an optimal solution ŵi.

Once we solve problem (3.5) with yi = ŷi for all i ∈M , it follows that (ŵ1, . . . , ŵm)

is an optimal solution to problem (3.2).
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3.4 Approximation Framework

As mentioned at the end of the previous section, the maximization problem on

the right side of (3.6) involves a scalar decision variable and it is tempting to

try to solve problem (3.2) by finding the value of z satisfying (3.6). Unfortu-

nately, it turns out that the objective function of this maximization problem

is not unimodal and it can be intractable to solve the maximization problem

on the right side of (3.6). To give an example where the objective function of

the maximization problem on the right side of (3.6) is not unimodal, consider a

case with a single nest and seven products. The problem parameters are given

by γ1 = 0.4, (α11, . . . , α17) = (2.1, 1.0, 1.7, 1.4, 1.0, 12.0, 13.0), (β11, . . . , β17) =

(0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07), (l11, . . . , l17) = (30, 30, 30, 30, 30, 251, 330)

and (u11, . . . , u17) = (200, 200, 200, 200, 200, 368, 383). For this problem instance,

Figure 3.1 plots the objective function of the maximization problem on the right

side of (3.6) as a function of y1, fixing z at 24.74 and shows that this objective

function is not necessarily unimodal. We note that the value of z that we use in

this figure is sensible as the optimal objective value of problem (3.2) is close to

24.74 for this problem instance. So, we do not have unimodality even with sensible

values of z. Interestingly, [14] considers the case where there are no lower or upper

bounds on the prices. The authors show that if the dissimilarity parameters of the

nests satisfy γi ≥ 1−minj∈N βij/maxj∈N βij for all i ∈M , then the objective func-

tion of the maximization problem on the right side of (3.6) is always unimodal. In

the example above, we indeed have γi ≥ 1−minj∈N βij/maxj∈N βij for all i ∈M ,

indicating that this example satisfies the condition in [14]. However, due to the

presence of the lower and upper bounds on the prices, we lose the unimodality

property.
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Figure 3.1: The function yγ1

1 (g1(y1)/y1)− yγ1

1 z as a function of y1.

The objective function of the maximization problem on the right side of (3.6)

is not necessarily unimodal, but since this objective function is scalar, a possible

strategy is to construct a grid over the interval [L̄i, Ūi] and check the values of the

objective function only at the grid points. To pursue this line of thought, we use

{ỹti : t = 1, . . . , Ti} to denote a collection of grid points such that ỹti ≤ ỹt+1
i for all

t = 1, . . . , Ti − 1. Furthermore, the collection of grid points should satisfy ỹ1
i = L̄i

and ỹTii = Ūi to make sure that the grid points cover the interval [L̄i, Ūi]. In this

case, instead of considering all values of yi over the interval [L̄i, Ūi] as we do in

(3.6), we can focus only on the grid points and find the value of z that satisfies

z =
∑
i∈M

max
yi∈{ỹti : t= 1,...,Ti}

{
yγii

gi(yi)

yi
− yγii z

}
. (3.7)

The important question is that what properties the grid should possess so that the

solution obtained by limiting our attention only to the grid points has a quantifiable

performance guarantee. In the next theorem, we show that if the optimal objective

value gi(yi) of the knapsack problem in (3.5) does not change too much at the

successive grid points, then we can build on the value of z satisfying (3.7) to

construct a solution to problem (3.2) with a certain performance guarantee.
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Theorem 3. For some ρ ≥ 0, assume that the collection of grid points {ỹti : t =

1, . . . , Ti} satisfy gi(ỹ
t+1
i ) ≤ (1 + ρ) gi(ỹ

t
i) for all t = 1, . . . , Ti − 1, i ∈ M . If

ẑ denotes the value of z that satisfies (3.7) and Z∗ denotes the optimal objective

value of problem (3.2), then we have (1 + ρ) ẑ ≥ Z∗.

Proof. To get a contradiction, assume that (1 + ρ) ẑ < Z∗. For all i ∈ M , we let

y∗i be an optimal solution to the maximization problem on the right side of (3.6)

when this problem is solved with z = Z∗. Furthermore, we let ti ∈ {1, . . . , Ti − 1}

be such that y∗i ∈ [ỹtit , ỹ
ti+1
i ]. We have

1

1 + ρ
Z∗ > ẑ ≥

∑
i∈M

{(
ỹtii
)γi gi(ỹtii )

ỹtii
−
(
ỹtii
)γi ẑ}

≥
∑
i∈M

{
1

1 + ρ

(
ỹtii
)γi gi(y∗i )

ỹtii
−
(
ỹtii
)γi ẑ},

where the second inequality follows from the fact that ẑ corresponds to the

value of z that satisfies (3.7) and ỹtii is a feasible but not necessarily an opti-

mal solution to the maximization problem on the right side of (3.7) when this

problem is solved with z = ẑ. To see that the third inequality holds, we ob-

serve that gi(·) is increasing, in which case, since y∗i ∈ [ỹtii , ỹ
ti+1
i ], we obtain

gi(y
∗
i ) ≤ gi(ỹ

ti+1
i ) ≤ (1 + ρ) gi(ỹ

ti
i ). In this case, noting that γi ≤ 1 and ỹtii ≤ y∗i so

that (ỹtii )1−γi ≤ (y∗i )
1−γi , we continue the chain of inequalities above as

∑
i∈M

{
1

1 + ρ

(
ỹtii
)γi gi(y∗i )

ỹtii
−
(
ỹtii
)γi ẑ} ≥∑

i∈M

{
1

1 + ρ

(
y∗i
)γi gi(y∗i )

y∗i
−
(
y∗i
)γi ẑ}

≥ 1

1 + ρ

∑
i∈M

{(
y∗i
)γi gi(y∗i )

y∗i
−
(
y∗i
)γi Z∗},

where the second inequality uses the assumption that (1 +ρ) ẑ < Z∗. By using the

last two displayed chains of inequalities and noting the definition of y∗i , it follows
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that

Z∗ >
∑
i∈M

{(
y∗i
)γi gi(y∗i )

y∗i
−
(
y∗i
)γi Z∗} =

∑
i∈M

max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii Z∗

}
.

By Proposition 2, Z∗ corresponds to the value of z that satisfies (3.6), but the

last chain of inequalities above shows that Z∗ does not satisfy (3.6), which is a

contradiction.

When we work with grid points that satisfy the assumption of Theorem 3, this

theorem allows us to obtain a (1 +ρ)-approximate solution to problem (3.2) in the

following fashion. We find the value of z that satisfies (3.7) and use ẑ to denote

this value. We let ŷi be an optimal solution to the maximization problem on the

right side of (3.7) when this problem is solved with z = ẑ. For all i ∈ M , we

solve problem (3.5) with yi = ŷi and use ŵi to denote an optimal solution to this

problem. In this case, it is possible to show that the solution (ŵ1, . . . , ŵm) provides

an expected revenue that deviates from the optimal expected revenue by at most

a factor of 1 + ρ, satisfying (1 + ρ) Π(ŵ1, . . . , ŵm) ≥ Z∗. To see this result, we

note that since ẑ is the value of z that satisfies (3.7) and ŷi is an optimal solution

to the maximization problem on the right side of (3.7) when this problem is solved

with z = ẑ, we have

ẑ =
∑
i∈M

{
ŷγii

gi(ŷi)

ŷi
− ŷγii ẑ

}
. (3.8)

Also, since ŷi ∈ [L̄i, Ūi], the discussion right after the formulation of problem

(3.5) shows that the first constraint in this problem must be tight at the optimal

solution when this problem is solved with yi = ŷi. Therefore, noting that ŵi is

an optimal solution to problem (3.5) when we solve this problem with yi = ŷi,

we obtain ŷi =
∑

j∈N ŵij and gi(ŷi) =
∑

j∈N ŵij (κij − ηij log ŵij) for all i ∈

M . Replacing ŷi and gi(ŷi) in (3.8) by their equivalents given by the last two

equalities, we observe that ẑ and (ŵ1, . . . , ŵm) satisfy the equality in (3.4). So,
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if we collect all terms that involve ẑ on the left side of (3.4), solve for ẑ and use

the definition of Π(w1, . . . ,wm), then we get ẑ = Π(ŵ1, . . . , ŵm). When the grid

points satisfy the assumption of Theorem 3, we also have (1 + ρ) ẑ ≥ Z∗. So, we

obtain (1 + ρ) Π(ŵ1, . . . , ŵm) ≥ Z∗, showing that the expected revenue from the

solution (ŵ1, . . . , ŵm) deviates from the optimal by at most a factor of 1 + ρ.

The preceding discussion, along with Theorem 3, gives a framework for obtain-

ing approximate solutions to problem (3.2) with a performance guarantee. The

crucial point is that the collection of grid points {ỹti : t = 1, . . . , Ti} has to satisfy

the assumption of Theorem 3. Also, the number of grid points in this collection

should be reasonably small to be able to solve the maximization problem on the

right side of (3.7) quickly. In the next section, we show that it is indeed possible to

construct a reasonably small collection of grid points that satisfies the assumption

of Theorem 3. Before doing so, however, we make a brief remark on how to find the

value of z that satisfies (3.7). Thus far, we propose bisection search as a possible

method to obtain this value of z. One shortcoming of bisection search is that it

may not terminate in finite time. To get around the fact that bisection search may

not terminate in finite time, we demonstrate that it is possible to obtain the value

of z satisfying (3.7) by solving a linear program.

To formulate the linear program, we note that the left side of the equality

in (3.7) is increasing in z, whereas the right side is decreasing. Therefore, the

value of z that satisfies (3.7) corresponds to the smallest value of z such that the

left side of the equality in (3.7) is still greater than or equal to the right side.

This observation immediately implies that finding the value of z satisfying (3.7) is

equivalent to solving the problem

min

{
z : z ≥

∑
i∈M

max
yi∈{ỹti : t= 1,...,Ti}

{
yγii

gi(yi)

yi
− yγii z

}}
.
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If we define the additional decision variables (x1, . . . , xm) so that xi represents the

optimal objective value of the maximization problem in the ith term of the sum

on the right side of the constraint above, then the problem above can be written

as

min

{
z : z ≥

∑
i∈M

xi, xi ≥ yγii
gi(yi)

yi
− yγii z ∀ yi ∈ {ỹti : t = 1, . . . , Ti}, i ∈M

}
,

(3.9)

where the decision variables are z and (x1, . . . , xm). The problem above is a linear

program with 1 +m decision variables and 1 +
∑

i∈M Ti constraints. So, as long as

the number of grid points is not too large, we can solve a tractable linear program

to obtain the value of z satisfying (3.7).

3.5 Grid Construction

In this section, our goal is to show how we can construct a reasonably small col-

lection of grid points {ỹti : t = 1, . . . , Ti} that satisfies the assumption of Theorem

3. By noting the discussion that follows Theorem 3 in the previous section, such

a collection of grid points allows us to obtain a solution to problem (3.2) with

a given approximation guarantee. To construct the collection of grid points, we

begin by giving a number of fundamental properties of the knapsack problem in

(3.5). After we give these properties, we proceed to showing how we can build on

these properties to construct the collection of grid points.
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3.5.1 Properties of Knapsack Problems

The first property that we have for problem (3.5) is that the optimal values of

the decision variables in this problem are monotonically increasing in yi as long

as yi ∈ [L̄i, Ūi]. To see this property, we associate the Lagrange multiplier λi

with the first constraint in problem (3.5) and write the Lagrangian as Li(wi, λi) =∑
j∈N wij (κij−ηij logwij−λi)+λi yi, which is a concave function ofwi. Maximizing

the Lagrangian Li(wi, λi) subject to the constraints that wij ∈ [Lij, Uij] for all

j ∈ N , the optimal solution to problem (3.5) can be obtained by setting

wij = min

{
max

{
exp

(
κij
ηij
− 1− λi

ηij

)
, Lij

}
, Uij

}
(3.10)

for all j ∈ N . We observe that the expression on the right side above is decreasing

in λi, showing that the optimal value of the decision variable wij is decreasing in

the optimal value of the Lagrange multiplier. On the other hand, since we have

yi ∈ [L̄i, Ūi], by the discussion that follows the formulation of problem (3.5), the

first constraint in this problem must be tight at the optimal solution. Therefore,

noting (3.10), the optimal value of the Lagrange multiplier λi satisfies the equality∑
j∈N min{max{exp(κij/ηij − 1 − λi/ηij), Lij}, Uij} = yi. The expression on the

left side of this equality is decreasing in λi, which implies that the optimal value

of the Lagrange multiplier is decreasing in the right side of the first constraint in

problem (3.5). To sum up, if we use λ∗i (yi) to denote the optimal value of the

Lagrange multiplier for the first constraint in problem (3.5) as a function of the

right side of this constraint, then λ∗i (yi) satisfies

∑
j∈N

min

{
max

{
exp

(
κij
ηij
− 1− λ∗i (yi)

ηij

)
, Lij

}
, Uij

}
= yi. (3.11)

Furthermore, λ∗i (yi) is decreasing in yi. Since the optimal value of the decision

variable wij in problem (3.5) is decreasing in the optimal value of the Lagrange
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multiplier and λ∗i (yi) is decreasing in yi, it follows that the optimal value of the

decision variable wij in problem (3.5) is increasing in yi, as desired. Therefore, we

can let ζij and ξij be such that

exp

(
κij
ηij
− 1− λ∗i (ζij)

ηij

)
= Lij and exp

(
κij
ηij
− 1− λ∗i (ξij)

ηij

)
= Uij, (3.12)

in which case, (3.10) implies that if yi = ζij, then we have wij = Lij in the optimal

solution to problem (3.5), whereas if yi = ξij, then we have wij = Uij. Also, since

the optimal value of the decision variable wij is increasing in yi, the optimal value

of the decision variable wij in problem (3.5) satisfies wij = Lij for all yi ≤ ζij,

whereas wij = Uij for all yi ≥ ξij. In this way, ζij and ξij correspond to the two

threshold values of the right side of the first constraint in problem (3.5) such that

if yi ≤ ζij, then the optimal value of the decision variable wij is always Lij, whereas

if yi ≥ ξij, then the optimal value of the decision variable wij is always Uij.

We note that there may not exist a value of ζij or ξij satisfying (3.12). If this

is the case, then we set ζij = −∞ or ξij = ∞. Building on the discussion above,

we obtain the next lemma.

Lemma 3. For any j ∈ N , there exists an interval [ζij, ξij] such that the optimal

value of the decision variable wij in problem (3.5) satisfies wij = Lij when we have

yi ≤ ζij, whereas wij = Uij when we have yi ≥ ξij. Furthermore, if yi ∈ [ζij, ξij],

then we can drop the constraint wij ∈ [Lij, Uij] in problem (3.5) without changing

the optimal solution to this problem.

Proof. We let ζij and ξij be as defined in (3.12), in which case, the

first part follows from the discussion right before the lemma. To show

the second part, we let w∗i be the optimal solution to problem (3.5)

and λ∗i (yi) be the corresponding Lagrange multiplier for the first con-

straint. Since yi ∈ [ζij, ξij] and λ∗i (yi) is decreasing in yi, (3.12) implies that
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exp(κij/ηij − 1− λ∗i (yi)/ηij) ≥ Lij and exp(κij/ηij − 1− λ∗i (yi)/ηij) ≤ Uij. By

the last two inequalities and (3.10), the optimal value of the decision variable

wij in problem (3.5) is w∗ij = min{max{exp(κij/ηij − 1− λ∗i (yi)/ηij), Lij}, Uij} =

exp(κij/ηij − 1− λ∗i (yi)/ηij). Also, the last two inequalities imply that the max

and min operators for product j can be dropped from the sum in (3.11) with-

out disturbing the equality, showing that λ∗i (yi) is still the optimal value of the

Lagrange multiplier for the first constraint in problem (3.5) when we drop the con-

straint wij ∈ [Lij, Uij]. In this case, we let ŵi be the optimal solution to problem

(3.5) when we drop the constraint wij ∈ [Lij, Uij], together with the corresponding

Lagrange multiplier λ∗i (yi) for the first constraint. When we drop the constraint

wij ∈ [Lij, Uij], setting Lij = −∞ and Uij =∞ in (3.10) implies that the optimal

value of the decision variable wij is given by ŵij = exp(κij/ηij−1−λ∗i (yi)/ηij). Thus,

it follows that w∗ij = ŵij, as desired.

The second property that we have for problem (3.5) is that we can partition the

extended real line [−∞,∞] into a number of intervals {[νki , νk+1
i ] : k = 1, . . . , Ki}

such that if we solve problem (3.5) for any yi ∈ [νki , ν
k+1
i ], then we can immediately

fix the values of some of the decision variables at their upper or lower bounds and

not impose the upper and lower bound constraints at all on the remaining decision

variables. To see this property, we note that if we plot the 2n points in the set

{ζij : j ∈ N}∪{ξij : j ∈ N} on the extended real line [−∞,∞], then they partition

the extended real line into at most 2n+ 1 intervals. We denote these intervals by

{[νki , νk+1
i ] : k = 1, . . . , Ki} with ν1

i = −∞ and νKi+1
i = ∞. Since the intervals

{[νki , νk+1
i ] : k = 1, . . . , Ki} are obtained by partitioning the real line with the

points {ζij : j ∈ N}∪{ξij : j ∈ N}, it follows that for any k = 1, . . . , Ki and j ∈ N ,

we must have [νki , ν
k+1
i ] ⊂ [ζij, ξij], or [νki , ν

k+1
i ] ⊂ [−∞, ζij], or [νki , ν

k+1
i ] ⊂ [ξij,∞].
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In this case, we define the sets of products Lki , Uki and Fki as

Lki = {j ∈ N : [νki , ν
k+1
i ] ⊂ [−∞, ζij]} Uki = {j ∈ N : [νki , ν

k+1
i ] ⊂ [ξij,∞]}

Fki = {j ∈ N : [νki , ν
k+1
i ] ⊂ [ζij, ξij]}.

Consider problem (3.5) with a value of yi satisfying yi ∈ [νki , ν
k+1
i ] for some k =

1, . . . , Ki. If product j is in the set Lki , then we have [νki , ν
k+1
i ] ⊂ [−∞, ζij]. Since

yi ∈ [νki , ν
k+1
i ], we obtain yi ≤ ζij, in which case, Lemma 3 implies that the optimal

value of the decision variable wij in problem (3.5) is Lij. By following the same

reasoning, if product j is in the set Uki , then the optimal value of the decision

variable wij in problem (3.5) is Uij. Finally, if product j is in the set Fki , then

we have [νki , ν
k+1
i ] ⊂ [ζij, ξij], but since yi ∈ [νki , ν

k+1
i ], we obtain yi ∈ [ζij, ξij], in

which case, by Lemma 3, we can drop the constraint wij ∈ [Lij, Uij] in problem

(3.5) without changing the optimal solution. Therefore, whenever we solve problem

(3.5) with a value of yi ∈ [νki , ν
k+1
i ], we can fix the values of the decision variables

in the sets Lki and Uki respectively at their lower and upper bounds and not impose

the upper and lower bound constraints on the decision variables in the set Fki . The

observations in this paragraph yield the next lemma.

Lemma 4. There exist intervals {[νki , νk+1
i ] : k = 1, . . . , Ki} partitioning [L̄i, Ūi]

such that for any yi ∈ [νki , ν
k+1
i ], the optimal solution to problem (3.5) can be

obtained by solving

max

{∑
j∈N

wij (κij − ηij logwij) :

∑
j∈N

wij ≤ yi, wij = Lij ∀ j ∈ Lki , wij = Uij ∀ j ∈ Uki

}
(3.13)

for some subsets of products Lki , Uki ⊂ N that depend on the interval k containing

yi but not on the specific value of yi. Furthermore, we have Ki = O(n).
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Proof. Constructing the intervals {[νki , νk+1
i ] : k = 1, . . . , Ki} as defined in the

discussion right before the lemma, the first part follows by this discussion, as long

as we take the intersection of each one of these intervals with [L̄i, Ūi]. To see that

the second part holds, since the points {ζij : j ∈ N} ∪ {ξij : j ∈ N} partition the

extended real line into at most 2n + 1 intervals and these intervals correspond to

{[νki , νk+1
i ] : k = 1, . . . , Ki}, Ki is at most 2n+ 1 = O(n).

Lemma 4 becomes useful when constructing a collection of grid points that

satisfies the assumption of Theorem 3. We focus on this task in the next section.

3.5.2 Properties of Grid Points

In this section, we turn our attention to constructing a collection of grid points

{ỹti : t = 1, . . . , Ti} that satisfies the assumption of Theorem 3. To that end, we

choose a fixed value of ρ > 0 and consider the grid points that are obtained by

Ỹ kq
i =

∑
j∈Lki

Lij +
∑
j∈Uki

Uij + (1 + ρ)q (3.14)

for k = 1, . . . , Ki and q = . . . ,−1, 0, 1, . . .. In the expression above, Lki , Uki and

Ki are such that they satisfy Lemma 4. In problem (3.5), once we fix the decision

variables in Lki at their lower bounds and the decision variables in Uki at their upper

bounds, the sum of the remaining decision variables is at least
∑

j∈N\(Lki ∪Uki ) Lij and

at most
∑

j∈N\(Lki ∪Uki ) Uij. Therefore, we choose the possible values for q in (3.14)

such that the smallest value of (1 + ρ)q does not stay above
∑

j∈N\(Lki ∪Uki ) Lij and

the largest value of (1+ρ)q does not stay below
∑

j∈N\(Lki ∪Uki ) Uij. If Lki ∪ Uki = N ,

then using a single value of q = −∞ suffices. Otherwise, using b·c and d·e to

denote the round down and round up functions, we can choose the smallest value

of q as qLi = blog(minj∈N Lij)/ log(1 + ρ)c and the largest value of q as qUi =
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dlog(nmaxj∈N Uij)/ log(1 + ρ)e. In this case, letting σi = maxj∈N Uij/minj∈N Lij,

we have qUi − qLi = O(log(nσi)/ log(1 + ρ)).

To construct a collection of grid points that satisfies the assumption of Theo-

rem 3, we augment the set of points {Ỹ kq
i : k = 1, . . . , Ki, q = qLi , . . . , q

U
i } defined

above with the set of points {νki : k = 1, . . . , Ki + 1}, where the last set of points

are obtained from the set of intervals {[νki , νk+1
i ] : k = 1, . . . , Ki} given in Lemma

4. We obtain our set of grid points {ỹti : t = 1, . . . , Ti} by ordering the points in

{Ỹ kq
i : k = 1, . . . , Ki, q = qLi , . . . , q

U
i }∪{νki : k = 1, . . . , Ki + 1} in increasing order

and dropping the ones that are not included in the interval [L̄i, Ūi]. Also, we add

the two points L̄i and Ūi into the collection of grid points to ensure that the small-

est and the largest one of the grid points {ỹti : t = 1, . . . , Ti} are respectively equal

to L̄i and Ūi. Thus, the collection of grid points constructed in this fashion satisfies

ỹti ≤ ỹt+1
i for all t = 1, . . . , Ti − 1, ỹ1

i = L̄i and ỹTii = Ūi. Since |Ki| = O(n) and

qUi − qLi = O(log(nσi)/ log(1 + ρ)), the number of grid points in the collection is

|Ti| = O(n+ n log(nσi)/ log(1 + ρ)).

There are two useful properties for the grid points {ỹti : t = 1, . . . , Ti} con-

structed by using the approach above. The first property is that if ỹti and ỹt+1
i

are two consecutive grid points, then they satisfy ỹti , ỹ
t+1
i ∈ [νki , ν

k+1
i ] for some

k = 1, . . . , Ki. To see this property, if this property does not hold, then we have

ỹti ≤ νki ≤ ỹt+1
i for some k = 1, . . . , Ki with one of the two inequalities holding

as a strict inequality. If this chain of inequalities holds, then since νki is a grid

point itself, we get a contradiction to the fact that ỹti and ỹt+1
i are two consecu-

tive grid points, establishing the first property. The second property is that if ỹti

and ỹt+1
i are two consecutive grid points satisfying ỹti , ỹ

t+1
i ∈ [νki , ν

k+1
i ] for some

k = 1, . . . , Ki, then we have Ỹ kq
i ≤ ỹti ≤ ỹt+1

i ≤ Ỹ k,q+1
i for some q = qLi , . . . , q

U
i − 1.

52



The idea behind the second property is similar to the one used for the first prop-

erty. In particular, if the second property does not hold, then either we have

ỹti ≤ Ỹ kq
i ≤ ỹt+1

i for some q = qLi , . . . , q
U
i − 1 or we have ỹti ≤ Ỹ k,q+1

i ≤ ỹt+1
i for

some q = qLi , . . . , q
U
i − 1 with one of the last four inequalities holding as a strict

inequality. If either one of the last two chains of inequalities holds, then since

Ỹ kq
i and Ỹ k,q+1

i are grid points themselves, we get a contradiction to the fact that

ỹti and ỹt+1
i are two consecutive grid points, establishing the second property. In

the next theorem, we use these properties along with Lemma 4 to show that the

collection of grid points {ỹti : t = 1, . . . , Ti} satisfies the assumption of Theorem 3.

Theorem 4. Assume that the collection of grid points {ỹti : t = 1, . . . , Ti} are

obtained by ordering the points in {Ỹ kq
i : k = 1, . . . , Ki, q = qLi , . . . , q

U
i } ∪ {νki :

k = 1, . . . , Ki+1} in increasing order. In this case, we have gi(ỹ
t+1
i ) ≤ (1+ρ) gi(ỹ

t
i)

for all t = 1, . . . , Ti − 1.

Proof. If ỹti and ỹt+1
i are two consecutive grid points, then the first property right

before the statement of the theorem implies that there exists k = 1, . . . , Ki such

that ỹti , ỹ
t+1
i ∈ [νki , ν

k+1
i ], in which case, by the second property, it follows that

there exists q = qLi , . . . , q
U
i − 1 such that Ỹ kq

i ≤ ỹti ≤ ỹt+1
i ≤ Ỹ k,q+1

i . Subtracting∑
j∈Lki

Lij +
∑

j∈Uki
Uij from the last chain of inequalities and noting the definition

of Ỹ kq
i in (3.14), we obtain

(1 + ρ)q ≤ ỹti −
∑
j∈Lki

Lij −
∑
j∈Uki

Uij ≤ ỹt+1
i −

∑
j∈Lki

Lij −
∑
j∈Uki

Uij ≤ (1 + ρ)q+1.

Using the chain of inequalities above, it follows that ỹt+1
i −

∑
j∈Lki

Lij−
∑

j∈Uki
Uij ≤

(1+ρ)q+1 ≤ (1+ρ) (ỹti−
∑

j∈Lki
Lij−

∑
j∈Uki

Uij). Since ỹti , ỹ
t+1
i ∈ [νki , ν

k+1
i ], Lemma

4 implies that the optimal solution to problem (3.5) with yi = ỹti or yi = ỹt+1
i can

be obtained by solving problem (3.13) respectively with yi = ỹti or yi = ỹt+1
i . We

let w∗i be the optimal solution to problem (3.13) when we solve this problem with

53



yi = ỹt+1
i . Note that w∗ij = Lij for all j ∈ Lki and w∗ij = Uij for all j ∈ Uki . We

define the solution ŵi as ŵij = w∗ij/(1 + ρ) for all j ∈ N \ (Lki ∪ Uki ), ŵij = Lij for

all j ∈ Lki and ŵij = Uij for all j ∈ Uki . In this case, we have

∑
j∈N\(Lki ∪Uki )

ŵij =
1

1 + ρ

∑
j∈N\(Lki ∪Uki )

w∗ij

≤ 1

1 + ρ

{
ỹt+1
i −

∑
j∈Lki

Lij −
∑
j∈Uki

Uij

}
≤ ỹti −

∑
j∈Lki

Lij −
∑
j∈Uki

Uij,

where the first inequality is by the fact that w∗i is a feasible solution to problem

(3.13) when we solve this problem with yi = ỹt+1
i and the second inequality follows

from the fact that ỹt+1
i −

∑
j∈Lki

Lij −
∑

j∈Uki
Uij ≤ (1 + ρ) (ỹti −

∑
j∈Lki

Lij −∑
j∈Uki

Uij), which is shown at the beginning of the proof. Therefore, the chain

of equalities above shows that ŵi is a feasible solution to problem (3.13) when we

solve this problem with yi = ỹti , in which case, we obtain

gi(ỹ
t
i) ≥

∑
j∈N

ŵij (κij − ηij log ŵij)

=
∑

j∈N\(Lki ∪Uki )

w∗ij
1 + ρ

(κij − ηij logw∗ij + ηij log(1 + ρ))

+
∑
j∈Lki

(κij − ηij logLij)Lij +
∑
j∈Uki

(κij − ηij logUij)Uij

≥ 1

1 + ρ

{ ∑
j∈N\(Lki ∪Uki )

w∗ij (κij − ηij logw∗ij)

+
∑
j∈Lki

(κij − ηij logLij)Lij +
∑
j∈Uki

(κij − ηij logUij)Uij

}
=

1

1 + ρ
gi(ỹ

t+1
i ),

where the first inequality uses the fact that ŵi is a feasible solution to problem

(3.13) when solved with yi = ỹti and this problem yields the optimal solution to

problem (3.5) with yi = ỹti and the second equality follows from the fact that w∗i

is the optimal solution to problem (3.13) when solved with yi = ỹt+1
i . The chain

of inequalities above establishes the desired result.
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Therefore, the theorem above shows that the grid that we construct by using

the set of points {Ỹ kq
i : k = 1, . . . , Ki, q = qLi , . . . , q

U
i } ∪ {νki : k = 1, . . . , Ki + 1}

satisfies the assumption of Theorem 3. It is also useful to note that all of the

discussion in this section continues to hold when we use the no purchase preference

weight wi0 to allow a customer to leave nest i without purchasing anything. To

accommodate this extension, all we need to do is to add wi0 to the left side of

(3.11) when defining λ∗i (yi) and add wi0 to the right side of (3.14) when defining

Ỹ kq
i .

3.5.3 Approximation Method

In this section, we put together all of our results so far to give the following

algorithm that finds a (1 + ρ)-approximate solution to problem (3.2).

Step 1. For all i ∈M , j ∈ N , we compute ζij and ξij such that exp(κij/ηij − 1−

λ∗i (ζij)/ηij) = Lij and exp(κij/ηij−1−λ∗i (ξij)/ηij) = Uij, where λ∗i (yi) is as defined

in (3.11). For each i ∈ M , the collection of points {ζij : j ∈ N} ∪ {ξij : j ∈ N}

partition the extended real line into O(n) intervals. We denote these intervals by

{[νki , νk+1
i ] : k = 1, . . . , Ki}.

Step 2. For all i ∈ M , k = 1, . . . , Ki, we compute the sets Lki = {j ∈ N :

[νki , ν
k+1
i ] ⊂ [−∞, ζij]} and Uki = {j ∈ N : [νki , ν

k+1
i ] ⊂ [ξij,∞]}. We choose a fixed

value of ρ > 0 and compute the points Ỹ kq
i =

∑
j∈Lki

Lij +
∑

j∈Uki
Uij + (1 + ρ)q for

all i ∈M , k = 1, . . . , Ki, q = qLi , . . . , q
U
i , where qLi = blog(minj∈N Lij)/ log(1 + ρ)c

and qUi = dlog(nmaxj∈N Uij)/ log(1 + ρ)e.

Step 3. For each i ∈M , we order the points in the set {Ỹ kq
i : k = 1, . . . , Ki, q =

qLi , . . . , q
U
i } ∪ {νki : k = 1, . . . , Ki + 1} in increasing order to obtain a collection of

55



grid points. We drop the points that are outside the interval [L̄i, Ūi] and add the

points L̄i and Ūi so that the smallest and the largest one of the grid points are

respectively equal to L̄i and Ūi. We use {ỹti : t = 1, . . . , Ti} to denote the collection

of grid points obtained in this fashion.

Step 4. By using the grid points {ỹti : t = 1, . . . , Ti} for all i ∈ M , we solve the

linear program in (3.9) and use ẑ to denote its optimal objective value. For all

i ∈ M , we solve the maximization problem on the right side of (3.7) with z = ẑ

and use ŷi to denote its optimal solution.

Step 5. For all i ∈M , we solve the knapsack problem in (3.5) with yi = ŷi and use

ŵi to denote its optimal solution. We return (ŵ1, . . . , ŵm) as a (1+ρ)-approximate

solution to problem (3.2).

In Steps 1, 2 and 3, we compute the collection of grid points {ỹti : t = 1, . . . , Ti}.

Noting Theorem 4, it follows that this collection of grid points satisfies the assump-

tion of Theorem 3. In Step 4, the value of ẑ that we compute by solving the linear

program in (3.9) corresponds to the value of z satisfying (3.7). In Step 5, we com-

pute the solution (ŵ1, . . . , ŵm) to problem (3.2). By the discussion that follows the

proof of Theorem 3, the expected revenue provided by the solution (ŵ1, . . . , ŵm)

deviates from the optimal expected revenue by at most a factor of 1 +ρ, satisfying

(1 + ρ) Π(ŵ1, . . . , ŵm) ≥ Z∗. Letting σ = max{maxj∈N Uij/minj∈N Lij : i ∈ M},

we observe that there are O(n + n log(nσ)/ log(1 + ρ)) points in the collection of

grid points {ỹti : t = 1, . . . , Ti}. Therefore, noting the linear program in (3.9), the

main computational effort in obtaining a (1 + ρ)-approximate solution to prob-

lem (3.2) involves solving a linear program with 1 + m decision variables and

O(mn+mn log(nσ)/ log(1 + ρ)) constraints.
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3.6 Joint Assortment Offering and Pricing

Our development so far assumes that the choice of the products offered to cus-

tomers are beyond our control and all n products have to be offered in all m nests.

In this section, we consider a model that jointly decides which set of products to

offer in each nest, along with the prices of the offered products. Similar to our

problem formulation in Section 3.2, we assume that the price of each product has to

satisfy the constraint pij ∈ [lij, uij] with lij, uij ∈ [0,∞). If we set the price of prod-

uct j in nest i as pij, then its preference weight is given by wij = exp(αij −βij pij).

We continue viewing the preference weights as decision variables, so that the pref-

erence weight wij of product j in nest i has to satisfy the constraint wij ∈ [Lij, Uij]

with Lij = exp(αij−βij uij) and Uij = exp(αij−βij lij). In this case, using Si ⊂ N

to denote the set of products that we offer in nest i, if we offer the assortments, or

subsets of products, (S1, . . . , Sm) over all nests and choose the preference weights

over all nests as (w1, . . . ,wm), then we obtain an expected revenue of

Θ(S1, . . . , Sm,w1, . . . ,wm)

=
1

1 +
∑

i∈M
(∑

j∈Si wij
)γi ∑

i∈M

(∑
j∈Si

wij

)γi ∑j∈Si wij (κij − ηij logwij)∑
j∈Si wij

. (3.15)

The definition of the expected revenue function Θ(S1, . . . , Sm,w1, . . . ,wm) is sim-

ilar to the definition of Π(w1, . . . ,wm) in (3.1) and it can be derived by using

an argument similar to the one in Section 3.2, but the expected revenue function

above only uses the preference weights of the products in the offered assortment.

The second fraction above evaluates to 0/0 when Si = ∅ and we treat 0/0 as zero

throughout this section. Our goal is to solve the problem

ζ∗ = max
{

Θ(S1, . . . , Sm,w1, . . . ,wm) :

Si ⊂ N ∀ i ∈M, wi ∈ [Li,Ui] ∀ i ∈M
}
. (3.16)
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The idea that we use to solve the joint assortment offering and pricing problem

above is similar to the one used for solving our earlier pricing problem. We view

the problem above as computing the fixed point of an appropriately defined scalar

function and this visualization allows us to relate our problem to a knapsack prob-

lem. However, one crucial difference is that we need to characterize the structure

of the subsets of products to be offered in the optimal solution to problem (3.16).

3.6.1 Fixed Point Representation

We begin by giving a fixed point representation of problem (3.16). Our discussion

closely follows the one for our earlier pricing problem. So, while we present our

discussion in full, we omit the proofs whenever they resemble the earlier ones.

Assume that we compute the value of z satisfying

z =
∑
i∈M

max
Si⊂N,wi∈[Li,Ui]

{(∑
j∈Si

wij

)γi ∑j∈Si wij (κij − ηij logwij)∑
j∈Si wij

−
(∑
j∈Si

wij

)γi
z

}
.

(3.17)

Following the same argument at the beginning of Section 3.3, one can check that

if the value of z satisfying (3.17) is given by ẑ, then we have ẑ = ζ∗, where ζ∗

is the optimal objective value of problem (3.16). Furthermore, if the value of z

satisfying (3.17) is ẑ and we use (Ŝi, ŵi) to denote an optimal solution to the

maximization problem on the right side of (3.17) when we solve this problem with

z = ẑ, then it follows that (Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) is an optimal solution to

problem (3.16). One crucial difficulty associated with solving the maximization

problem on the right side of (3.17) is that the decision variable Si in this problem

can take 2n possible values, which can be too many to enumerate when we have a

reasonably large number of products. However, it turns out that we can limit the
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number of possible values for Si in the optimal solution to only 1 +n. In this case,

we can enumerate all possible 1 + n values for the decision variable Si.

To limit the possible values for the decision variable Si, we assume that the

products in each nest are indexed in the order of decreasing price upper bounds

so that ui1 ≥ ui2 ≥ . . . ≥ uin. We use Nij to denote the subset of products

that includes the first j products with the largest price upper bounds in nest i.

That is, Nij = {1, . . . , j}. We refer to such a subset as a nested by price bound

assortment. Using the convention that Ni0 = ∅, we let Ni = {Nij : j ∈ N ∪{0}} to

capture all nested by price bound assortments in nest i. In the next theorem, we

show that a nested by price bound assortment solves the maximization problem

on the right side of (3.17).

Theorem 5. For any z > 0, there exists an assortment S∗i ∈ Ni that solves the

maximization problem on the right side of (3.17).

Proof. For brevity, we let Ri(Si,wi) =
∑

j∈Si wij (κij − ηij logwij)/
∑

j∈Si wij and

Wi(Si,wi) =
∑

j∈Si wij, in which case, we can write the objective function of the

maximization problem on the right side of (3.17) as Wi(Si,wi)
γi(Ri(Si,wi) − z).

To get a contradiction, we let (S∗i ,w
∗
i ) be an optimal solution to the maximization

problem on the right side of (3.17) and assume that there exist products k and

l such that k < l, k 6∈ S∗i and l ∈ S∗i . We show that if we add product k

into the assortment S∗i with price uik, then we obtain a better solution for the

maximization problem on the right side of (3.17), establishing the desired result.

In particular, consider the solution (Ŝi, ŵi) obtained by setting Ŝi = S∗i ∪ {k},

ŵik = exp(αik − βik uik) and ŵij = w∗ij for all j ∈ N \ {k}, which is equivalent

to setting the price of product k as uik and not changing the prices of the other
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products in the solution w∗i . In this case, we have

Wi(Ŝi, ŵi)
γi(Ri(Ŝi, ŵi)− z) =

∑
j∈Ŝi ŵij (κij − ηij log ŵij − z)

Wi(Ŝi, ŵi)1−γi

=

∑
j∈S∗i

w∗ij (κij − ηij logw∗ij − z) + ŵik (κik − ηik log ŵik − z)

Wi(Ŝi, ŵi)1−γi
, (3.18)

where the first equality follows by using the definitions of Ri(Si,wi) and Wi(Si,wi)

and rearranging the terms and the second equality uses the fact that Ŝi = S∗i ∪{k}

and the products in S∗i have the same preference weights in solutions w∗i and ŵi.

We proceed to lower bounding the last fraction above. It is possible to show

that if product l is included in the optimal solution to the maximization problem

on the right side of (3.17), then the preference weight of product l must satisfy

κil−ηil logw∗il ≥ (1−γi)Ri(S
∗
i ,w

∗
i )+γi z. We defer the proof of this fact to Lemma

9 in the appendix. Since (S∗i ,w
∗
i ) is feasible to the maximization problem on the

right side of (3.17), we have w∗il ≥ Lil = exp(αil−βil uil). Taking logarithms in this

inequality and noting κij = αij/βij and ηij = 1/βij, we get κil− ηil logw∗il ≤ uil. In

this case, noting k < l so that uik ≥ uil, we obtain κik − ηik log ŵik = κik −

ηik log(exp(αik−βik uik)) = uik ≥ uil ≥ κil−ηil logw∗il ≥ (1−γi)Ri(S
∗
i ,w

∗
i )+γi z. To

lower bound to numerator of the last fraction in (3.18), we use the last chain of

inequalities to get κik − ηik log ŵik − z ≥ (1 − γi)(Ri(S
∗
i ,w

∗
i ) − z). Thus, we can

lower bound the numerator of the right side of (3.18) by the expression

∑
j∈S∗i

w∗ij (κij − ηij logw∗ij − z) + ŵik (1− γi)(Ri(S
∗
i ,w

∗
i )− z)

= (Ri(S
∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i ) + ŵik (1− γi)),

where the equality follows by using the definitions of Ri(Si,wi) and Wi(Si,wi).

To upper bound the denominator of the last fraction in (3.18), we note that u1−γi

is a concave function of u, satisfying the subgradient inequality û1−γi ≤ (u∗)1−γi +

60



(1 − γi) (u∗)−γi (û − u∗) for two points û and u∗. Thus, we get Wi(Ŝi, ŵi)
1−γi ≤

Wi(S
∗
i ,w

∗
i )

1−γi + (1 − γi)Wi(S
∗
i ,w

∗
i )
−γi (Wi(Ŝi, ŵi) − Wi(S

∗
i ,w

∗
i )). Using these

lower and upper bounds in (3.18), it follows that∑
j∈S∗i

w∗ij (κij − ηij logw∗ij − z) + ŵik (κik − ηik log ŵik − z)

Wi(Ŝi, ŵi)1−γi

≥ (Ri(S
∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i ) + ŵik (1− γi))

Wi(S∗i ,w
∗
i )

1−γi + (1− γi)Wi(S∗i ,w
∗
i )
−γi (Wi(Ŝi, ŵi)−Wi(S∗i ,w

∗
i ))

. (3.19)

Noting that Wi(Ŝi, ŵi) − Wi(S
∗
i ,w

∗
i ) = ŵik and factoring out Wi(S

∗
i ,w

∗
i )
−γi

in the denominator of the last fraction in (3.19), the last fraction above is

equal to Wi(S
∗
i ,w

∗
i )
γi(Ri(S

∗
i ,w

∗
i ) − z). Thus, (3.18) and (3.19) show that

Wi(Ŝi,w
∗
i )
γi(Ri(Ŝi, ŵi)− z) ≥ Wi(S

∗
i ,w

∗
i )
γi(Ri(S

∗
i ,w

∗
i )− z), establishing that the

solution (Ŝi, ŵi) provides an objective value for the maximization problem on the

right side of (3.17) that is at least as large as the one provided by the solution

(S∗i ,w
∗
i ).

The theorem above shows that we can replace the constraint Si ⊂ N on the

right side of (3.17) with Si ∈ Ni. Noting that |Ni| = O(n), we can deal with the

decision variable Si in the maximization problem on the right side of (3.17) simply

by enumerating all of its possible values in a brute force fashion. To deal with the

high-dimensionality of the decision variable wi, we define gi(Si, yi) as the optimal

objective value of the knapsack problem

gi(Si, yi) = max

{∑
j∈Si

wij (κij − ηij logwij) :

∑
j∈Si

wij ≤ yi, wij ∈ [Lij, Uij] ∀j ∈ N

}
, (3.20)

which is the analogue of problem (3.5), but we focus only on the products

in Si. Similar to the discussion that follows problem (3.5), letting Ūi(Si) =∑
j∈Si min{max{exp(κij/ηij − 1), Lij}, Uij}, if we have yi > Ūi(Si), then the first
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constraint in the problem above is not tight at the optimal solution. On the other

hand, letting L̄i(Si) =
∑

j∈Si Lij, if we have yi < L̄i(Si), then the problem above is

infeasible. Finally, if yi ∈ [L̄i(Si), Ūi(Si)], then the first constraint above is tight at

the optimal solution. Therefore, the solution to the problem above can potentially

change only as yi takes values in the interval [L̄i(Si), Ūi(Si)]. So, instead of finding

the value of z satisfying (3.17), we propose finding the value of z satisfying

z =
∑
i∈M

max
Si∈Ni, yi∈[L̄i(Si),Ūi(Si)]

{
yγii

gi(Si, yi)

yi
− yγii z

}
. (3.21)

By following the outline of the proof of Proposition 2, it is possible to show that

the values of z that satisfy (3.17) and (3.21) are identical to each other and this

common value corresponds to the optimal objective value of problem (3.16).

The decision variable Si on the right side of (3.21) does not create a complica-

tion since |Ni| = O(n) and we can simply check each possible value of this decision

variable one by one. However, the decision variable yi on the right side of (3.21)

can be problematic since the objective function of the maximization problem is

not necessarily a unimodal function of yi for a fixed Si. As described in the next

section, we deal with this complication by constructing a grid.

3.6.2 Approximation Framework and Grid Construction

In this section, we construct a grid to deal with the nonunimodal nature of the

objective function of the maximization problem on the right side of (3.21) and

show that we can obtain solutions with a certain performance guarantee by using

this grid. For each Si ∈ Ni, we propose constructing a separate grid {ỹti(Si) : t =

1, . . . , Ti(Si)}. These grid points are in increasing order such that ỹti(Si) ≤ ỹt+1
i (Si)

for all t = 1, . . . , Ti(Si)− 1. Also, we ensure that the smallest and the largest one
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of the grid points satisfy ỹ1
i (Si) = L̄i(Si) and ỹ

Ti(Si)
i (Si) = Ūi(Si) so that the grid

points cover the interval [L̄i(Si), Ūi(Si)]. In this case, instead of finding the value

of z satisfying (3.21), we propose checking the values of yi only at the grid points

and finding the value of z satisfying

z =
∑
i∈M

max
Si∈Ni, yi∈{ỹti(Si) : t= 1,...,Ti(Si)}

{
yγii

gi(Si, yi)

yi
− yγii z

}
. (3.22)

There are
∑

Si∈Ni Ti(Si) possible values for the decision variable (Si, yi) in the

maximization problem on the right side above. Thus, solving this maximization

problem is not too difficult when the number of grid points is not large. The next

theorem gives a sufficient condition under which we can use the value of z satisfying

(3.22) to obtain a good solution for problem (3.16).

Theorem 6. For some ρ ≥ 0, assume that the collection of grid points {ỹti(Si) :

t = 1, . . . , Ti(Si)} satisfy gi(Si, ỹ
t+1
i (Si)) ≤ (1 + ρ) gi(Si, ỹ

t
i(Si)) for all t =

1, . . . , Ti(Si) − 1, Si ∈ Ni. If ẑ denotes the value of z that satisfies (3.22) and ζ∗

denotes the optimal objective value of problem (3.16), then we have (1 + ρ) ẑ ≥ ζ∗.

The theorem above is analogous to Theorem 3 and it can be shown by following

the same reasoning in the proof of Theorem 3. By building on this theorem, we can

construct an approximate solution to problem (3.16) with a certain performance

guarantee. In particular, we find the value of z satisfying (3.22) and denote this

value by ẑ. We let (Ŝi, ŷi) be an optimal solution to the maximization problem on

the right side of (3.22) when this problem is solved with z = ẑ. For all i ∈ M ,

we solve the knapsack problem in (3.20) with (Si, yi) = (Ŝi, ŷi) and let ŵi be an

optimal solution to this knapsack problem. In this case, it is possible to show that

the solution (Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) is a (1 +ρ)-approximate solution to problem

(3.16). To see this result, since ẑ is the value of z satisfying (3.22) and (Ŝi, ŷi) is

an optimal solution to the maximization problem on the right side of (3.22) when
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this problem is solved with z = ẑ, we have

ẑ =
∑
i∈M

{
ŷγii

gi(Ŝi, ŷi)

ŷi
− ŷγii ẑ

}
. (3.23)

Furthermore, since ŵi is an optimal solution to problem (3.20) when this problem

is solved with (Si, yi) = (Ŝi, ŷi), we have gi(Ŝi, ŷi) =
∑

j∈Ŝi ŵij (κij − ηij log ŵij).

Also, by the discussion that follows the formulation of problem (3.20), since

ŷi ∈ [L̄i(Ŝi), Ūi(Ŝi)], the first constraint in problem (3.20) is tight at the opti-

mal solution, yielding
∑

j∈Ŝi ŵij = ŷi. In this case, using the last two equalities in

(3.23), we obtain

ẑ =
∑
i∈M

{(∑
j∈Ŝi

ŵij

)γi ∑j∈Ŝi ŵij (κij − ηij log ŵij)∑
j∈Ŝi ŵij

−
(∑
j∈Ŝi

ŵij

)γi
ẑ

}
.

If we collect all terms that involve ẑ in the equality above on the left side, solve

for ẑ and use the definition of Θ(S1, . . . , Sm,w1, . . . ,wm) in (3.15), then we ob-

tain ẑ = Θ(Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm). As long as the grid points satisfy the as-

sumption of Theorem 6, we also have (1 + ρ) ẑ ≥ ζ∗, in which case, we obtain

(1 + ρ) Θ(Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) = (1 + ρ) ẑ ≥ ζ∗. Therefore, it follows that if

the collection of grid points satisfies the assumption of Theorem 6, then the ex-

pected revenue provided by the solution (Ŝ1, . . . , Ŝm, ŵ1, . . . , ŵm) deviates from

the optimal expected revenue ζ∗ by no more than a factor of 1 + ρ, as desired.

The key question is how we can construct a collection of grid points {ỹti(Si) :

t = 1, . . . , Ti(Si)} that satisfies gi(Si, ỹ
t+1
i (Si)) ≤ (1 + ρ) gi(Si, ỹ

t
i(Si)) for all t =

1, . . . , Ti(Si)−1 so that the assumption of Theorem 6 is satisfied. It turns out that

the answer to this question is already given in Section 3.5. In particular, the only

difference between problems (3.5) and (3.20) is that the former problem focuses

on the full set of products N , whereas the latter problem focuses on the products

that are in Si. Therefore, for a fixed set of products Si, we can repeat the same
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argument in Section 3.5, but restrict our attention only to the products in the set

Si to construct the collection of grid points {ỹti(Si) : t = 1, . . . , Ti(Si)} that satisfies

gi(Si, ỹ
t+1
i (Si)) ≤ (1 + ρ) gi(Si, ỹ

t
i(Si)) for all t = 1, . . . , Ti(Si). In this case, the

number of grid points in this collection is Ti(Si) = O(n + n log(nσi(Si))/ log(1 +

ρ)) = O(n+ n log(nσ)/ log(1 + ρ)), where we let σi(Si) = maxj∈Si Uij/minj∈Si Lij

and σ = max{maxj∈N Uij/minj∈N Lij : i ∈M}.

Finally, we note that we can find the value of z satisfying (3.22) by solving a

linear program similar to the one in (3.9). The only difference is that the second set

of constraints in this linear program has to be replaced with xi ≥ yγii gi(Si, yi)/yi−

yγii z for all Si ∈ Ni, yi ∈ {ỹti(Si) : t = 1, . . . , Ti(Si)}, i ∈ M . Noting that

|Ni| = O(n) and Ti(Si) = O(n + n log(nσ)/ log(1 + ρ)), this linear program has

1 + m decision variables and O(mn2 + mn2 log(nσ)/ log(1 + ρ)) constraints. The

optimal objective value of the linear program provides the value of z that satisfies

(3.22). Once we have the value of z that satisfies (3.22), we can follow the approach

described right after Theorem 6 to find a (1 + ρ)-approximate solution to problem

(3.16).

3.7 Computational Experiments

In this section, we test the quality of the solutions obtained by the approximation

method that we propose in this chapter. For economy of space, we present compu-

tational results for the first problem variant where the set of products offered to

customers is fixed and we determine the prices for these products. The qualitative

findings from our computational experiments do not change when we consider the

second problem variant, where we jointly determine the products that should be
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offered to customers and their corresponding prices.

3.7.1 Experimental Setup

Throughout this section, we refer to our approximation method as APP. In par-

ticular, APP uses the algorithm in Section 3.5.3 to find a (1 + ρ)-approximate

solution to problem (3.2). In our computational experiments, we set ρ = 0.005

so that APP obtains a solution to problem (3.2) whose expected revenue deviates

from the optimal expected revenue by at most a factor of 1.005, corresponding to a

worst case optimality gap of 0.5%. We emphasize that APP ensures a performance

guarantee of 1 + ρ, but this performance guarantee is in worst case sense and the

solution obtained by APP for a particular problem instance can perform signifi-

cantly better than what is predicted by the worst case performance guarantee of

1 + ρ. So, a natural question is whether we can come up with a more refined ap-

proach to assess the performance of the solution obtained by APP for a particular

problem instance. It turns out that we can solve a linear program to obtain an

upper bound on the optimal expected revenue in problem (3.2). To formulate this

linear program, we let {ȳti : t = 1, . . . , τi} be any collection of grid points such that

ȳti ≤ ȳt+1
i for all t = 1, . . . , τi − 1. Also, we assume that ȳ1

i = L̄i and ȳτii = Ūi so

that the grid points cover the interval [L̄i, Ūi]. In this case, it is possible to show

that the optimal objective value of the linear program

min

{
z : z ≥

∑
i∈M

xi, xi ≥
(
ȳti
)γi gi(ȳt+1

i )

ȳti
−
(
ȳti
)γi z ∀ t = 1, . . . , τi − 1, i ∈M

}
(3.24)

provides an upper bound on the optimal expected revenue Z∗ in problem (3.2). In

the linear program above, the decision variables are z and (x1, . . . , xm). Theorem 10
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in the appendix shows that the optimal objective value of the linear program above

is indeed an upper bound on the optimal expected revenue Z∗. It is worthwhile to

note that the optimal objective value of problem (3.24) is always an upper bound

on the optimal expected revenue, irrespective of the number and placement of the

grid points. However, if the grid points satisfy gi(ȳ
t+1
i ) ≤ (1 + ρ) gi(ȳ

t
i) for all t =

1, . . . , τi−1 and i ∈M , then Theorem 10 also shows that the upper bound provided

the linear program above deviates from the optimal expected revenue Z∗ by at most

a factor of 1 + ρ. Thus, if we choose the grid points in the linear program above

carefully, then this linear program approximates the optimal expected revenue

with a factor of 1 + ρ accuracy. For example, we can plug the grid points given

in Theorem 4 into problem (3.24) to approximate the optimal expected revenue

with a factor of 1 +ρ accuracy. Once we solve problem (3.24) with a particular set

of grid points, we can compare the optimal objective value of this linear program

with the expected revenue from the solution obtained by APP to get a feel for the

optimality gap of the solution obtained by APP.

In our computational experiments, we generate a large number of problem

instances. For each problem instance, we compute the solution obtained by APP.

Also, we solve the linear program in (3.24) to obtain an upper bound on the

optimal expected revenue. By comparing the expected revenue from the solution

obtained by APP with the upper bound on the optimal expected revenue, we

assess the optimality gap of APP. We use the following strategy to generate our

problem instances. In all of our test problems, the number of nests is equal to the

number of products in each nest so that m = n. To come up with the dissimilarity

parameters of the nests, we generate γi from the uniform distribution over [γL, γU ]

for all i ∈ M . We use [γL, γU ] = [0.05, 0.35], [γL, γU ] = [0.35, 0.65] or [γL, γU ] =

[0.65, 1]. For all i ∈M , j ∈ N , we generate αij from the uniform distribution over
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[−2, 2] and βij from the uniform distribution over [0.5, 1.5]. To come up with the

bounds on the prices, after generating the parameters γi, αij and βij for all i ∈M ,

j ∈ N , we solve problem (3.2) under the assumption that there are no bounds on

the prices of the products. We use p∗ij to denote the optimal price of product j

in nest i when there are no price bounds. In this case, we generate the bounds

lij and uij on the price of product j in nest i such that we either have p∗ij < lij

or p∗ij > uij. In this way, if we solve problem (3.2) without any price bounds,

then the unconstrained price of product j in nest i does not lie in the interval

[lij, uij]. Our hope is that this approach allows us to generate problem instances

where the price bounds are binding at the optimal solution. To be specific, after

computing p∗ij for all i ∈M , j ∈ N , we set either [lij, uij] = [p∗ij +∆, 1.75×p∗ij +∆]

or [lij, uij] = [0.25× p∗ij −∆, p∗ij −∆], each case occurring with equal probability.

If one of the end points of the interval [0.25 × p∗ij − ∆, p∗ij − ∆] turns out to be

negative, then we round it up to zero. When we generate the price bounds in this

fashion, the unconstrained price p∗ij of product j in nest i violates one of the price

bounds lij or uij by about ∆. Furthermore, the width of the interval [lij, uij] is

about 75% of the unconstrained price of product j in nest i. Thus, products that

tend to have larger prices also tend to have wider price bound intervals.

In our computational experiments, we vary the common value of m and n

over {5, 10, 15}, corresponding to three different numbers of nests and numbers of

products in each nest. We can view the common value of m and n as the scale of the

problem instance, measuring the number of decision variables. We vary [γL, γU ]

over {[0.05, 0.35], [0.35, 0.65], [0.65, 1]}, yielding low, medium and high levels of

dissimilarity parameters. Finally, we vary ∆ over {1, 2, 3}, corresponding to three

different levels of violation of the price upper and lower bounds when we solve

problem (3.2) without any price bounds. Varying three parameters over three
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levels, we obtain 27 parameter combinations. For each parameter combination, we

generate 100 individual problem instances by using the approach described in the

paragraph above. For each individual problem instance, we compute the solution

obtained by APP. Also, we solve the linear program in (3.24) to obtain an upper

bound on the optimal expected revenue. The grid points {ȳti : t = 1, . . . , τi} that

we use in this linear program are identical to the grid points {ỹti : t = 1, . . . , Ti}

that we use for APP. Thus, by Theorem 4, the grid points {ȳti : t = 1, . . . , τi} satisfy

gi(ȳ
t+1
i ) ≤ (1 + ρ) gi(ȳ

t
i) for all t = 1, . . . , τi− 1, in which case, Theorem 10 implies

that the upper bound provided by the linear program in (3.24) approximates the

optimal expected revenue with a factor of 1 + ρ accuracy. By comparing the

expected revenue from the solution obtained by APP with the upper bound on the

optimal expected revenue, we assess the optimality gap of the solution obtained

by APP.

3.7.2 Computational Results

We give our main computational results in Table 3.1. In this table, the first three

columns show the parameter combination for our test problems by using the tu-

ple (m, [γL, γU ],∆), where the first component gives the common value for the

number of nests and the number of products in each nest, the second component

corresponds to the interval over which we generate the dissimilarity parameters

and the third component characterizes how much the unconstrained prices vio-

late the price bounds. The fourth and fifth columns respectively show the aver-

age lower and upper price bounds when we generate our test problems by using

the approach described in the previous section. The average is computed over

all products in all nests and over all problem instances in a particular param-
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eter combination. We recall that we generate 100 individual problem instances

in each parameter combination. Our goal in these two columns is to give a feel

for the magnitude of the prices and their bounds. The sixth column shows the

percent gap between the upper bound on the optimal expected revenue and the

expected revenue from the solution obtained by APP, averaged over all problem in-

stances in a particular parameter combination. In particular, for problem instance

k, we let UBk be the upper bound on the optimal expected revenue provided

by the optimal objective value of the linear program in (3.24) and RAPPk be

the expected revenue from the solution obtained by APP. In this case, the sixth

column shows 1
100

∑100
k=1 100 × (UBk − RAPPk)/UBk. The seventh column shows

the maximum percent gap between the upper bound on the optimal expected

revenue and the expected revenue from the solution obtained by APP over all

problem instances in a parameter combination. That is, the seventh column shows

max{100× (UBk − RAPPk)/UBk : k = 1, . . . , 100}. The eighth column shows the

average CPU seconds for APP to obtain a solution for one problem instance. Fi-

nally, the ninth column shows the average number of points in the grid used by

APP, where the average is computed over all nests and over all problem instances

in a parameter combination.

Our results indicate that the solutions obtained by APP perform remarkably

well. Over all of our test problems, the average optimality gap of these solutions is

no larger than 0.117%, which is significantly better than the worst case optimality

gap of 0.5% that we ensure by choosing ρ = 0.005. The optimality gaps are par-

ticularly small when [γL, γU ] is close to one so that the dissimilarity parameters of

the nests tend to be close to one. For example, if we focus only on the problem

instances with [γL, γU ] = [0.65, 1], then the average optimality gap comes out to

be 0.085%, whereas the average optimality gap comes out to be 0.206% when we
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Avg. Price % Gap with No. of
Param. Comb. Bounds Upp. Bnd. CPU Grid

m [γL, γU ] ∆ Low. Upp. Avg. Max. Secs. Points

5 [0.05, 0.35] 1 6.83 15.09 0.289% 0.430% 14.79 3,550
5 [0.05, 0.35] 2 7.05 15.08 0.254% 0.402% 14.88 3,550
5 [0.05, 0.35] 3 7.64 16.04 0.232% 0.412% 15.71 3,694
5 [0.35, 0.65] 1 1.92 3.85 0.114% 0.213% 1.67 500
5 [0.35, 0.65] 2 2.32 3.74 0.032% 0.142% 1.44 396
5 [0.35, 0.65] 3 2.92 4.07 0.022% 0.200% 1.39 367
5 [0.65, 1.00] 1 2.03 4.17 0.153% 0.214% 1.94 583
5 [0.65, 1.00] 2 2.50 4.16 0.029% 0.126% 1.59 430
5 [0.65, 1.00] 3 3.01 4.27 0.008% 0.101% 1.57 409
10 [0.05, 0.35] 1 8.38 18.59 0.224% 0.375% 41.17 4,762
10 [0.05, 0.35] 2 8.11 17.66 0.185% 0.367% 40.03 4,668
10 [0.05, 0.35] 3 8.87 18.92 0.173% 0.370% 43.95 5,072
10 [0.35, 0.65] 1 2.22 4.66 0.133% 0.180% 4.74 701
10 [0.35, 0.65] 2 2.71 4.63 0.030% 0.062% 3.83 515
10 [0.35, 0.65] 3 3.21 4.73 0.007% 0.052% 3.51 444
10 [0.65, 1.00] 1 2.60 5.78 0.191% 0.258% 6.80 996
10 [0.65, 1.00] 2 3.15 5.91 0.123% 0.203% 5.89 821
10 [0.65, 1.00] 3 3.61 5.82 0.014% 0.060% 4.72 596
15 [0.05, 0.35] 1 8.77 19.26 0.186% 0.342% 64.73 4,926
15 [0.05, 0.35] 2 8.93 19.40 0.157% 0.335% 67.03 5,116
15 [0.05, 0.35] 3 9.37 19.97 0.150% 0.305% 72.82 5,544
15 [0.35, 0.65] 1 2.48 5.38 0.148% 0.210% 8.88 866
15 [0.35, 0.65] 2 2.97 5.41 0.045% 0.086% 7.45 676
15 [0.35, 0.65] 3 3.48 5.40 0.009% 0.038% 6.29 528
15 [0.65, 1.00] 1 3.21 7.08 0.125% 0.209% 15.43 1,425
15 [0.65, 1.00] 2 3.59 7.11 0.083% 0.183% 14.21 1,293
15 [0.65, 1.00] 3 4.08 7.11 0.041% 0.075% 12.96 1,140

Average 0.117%

Table 3.1: Performance of APP.

focus only on the problem instances with [γL, γU ] = [0.05, 0.35]. If the dissimilarity

parameters are all equal to one, then the objective function of the maximization

problem on the right side of (3.6) is gi(yi)− yi z, in which case, noting that gi(yi)

is a concave function of yi, the objective value of this maximization problem is a

concave function of yi as well. Thus, intuitively speaking, the objective function

of the maximization problem on the right side of (3.6) behaves well when we have

γi = 1, avoiding the pathological cases such as the one shown in Figure 3.1. When

[γL, γU ] = [0.65, 1] so that the dissimilarity parameters of the nests take on values

closer to one, the performance of APP also turns out to be substantially better
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than what is predicted by the worst case performance guarantee of 0.5%. Never-

theless, even when [γL, γU ] = [0.05, 0.35] so that the dissimilarity parameters can

be far from one, APP can effectively find solutions with the desired performance

guarantee. Over all of our test problems, the maximum optimality gap of the

solutions obtained by APP is 0.43%. Similar to our observations for the average

optimality gaps, the parameter combinations for which we obtain maximum opti-

mality gaps that are close to 0.5% correspond to the parameter combinations with

[γL, γU ] = [0.05, 0.35], yielding dissimilarity parameters further from one.

The CPU seconds for APP are reasonable for practical implementation. In

our largest problem instances with m = 15, noting that n = m, there are a

total of 225 products and we can obtain solutions for these problem instances in

about one minute. Furthermore, the CPU seconds for APP scale in a graceful

fashion. For example, if we double m, then the total number of products increases

by a factor of four and the CPU seconds increase by no more than a factor of four.

In Table 3.2, we show the CPU seconds for APP as a function of the performance

guarantee ρ. The left portion of the table focuses on a problem instance with

m = n = 5, [γL, γU ] = [0.65, 1] and ∆ = 1, whereas the right portion focuses

on a problem instance with m = n = 15, [γL, γU ] = [0.05, 0.35] and ∆ = 3.

The parameter combination for the second problem instance corresponds to the

parameter combination with the largest CPU seconds in Table 3.1. In each portion

of Table 3.2, the first column shows the performance guarantee ρ and the second

column shows the CPU seconds for APP. The results indicate that we can obtain

a solution with a worst case optimality gap of 0.05% in about six minutes, even

for a problem instance with 225 products. If we are content with a worst case

optimality gap of 1%, then we can obtain solutions in about 10 seconds.
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Param. Comb.
(5, [0.65, 1], 1)

CPU
ρ Secs.

0.01 0.93
0.005 2.13
0.001 8.78

0.0005 19.40

Param. Comb.
(15, [0.05, 0.35], 3)

CPU
ρ Secs.

0.01 12.81
0.005 60.76
0.001 124.58

0.0005 398.21

Table 3.2: CPU seconds for APP as a function of the performance guarantee ρ.

It is useful to note that naive approaches for finding solutions to problem (3.2)

can yield poor results. For example, a first cut approach for finding a solution

to problem (3.2) is to solve this problem under the assumption that there are no

bounds on the prices of the products. If the unconstrained prices obtained in this

fashion are outside the price bound constraints, then we can round them up or

down to their corresponding lower or upper bounds. In Table 3.3, we show the

performance of this approach for the test problems in our experimental setup.

The first three columns in this table show the parameter combination for our test

problems. The fourth column shows the average percent gap between the upper

bound on the optimal expected revenue and the expected revenue from the solu-

tion that we obtain by rounding the unconstrained prices up or down to the price

bounds, whereas the fifth column shows the maximum percent gap between the

upper bound on the optimal expected revenue and the expected revenue obtained

by rounding the unconstrained prices. The average and maximum percent gaps are

computed over the same 100 problem instances in Table 3.1. The results in Table

3.3 indicate that rounding the unconstrained prices up or down to the price bounds

can perform poorly. There are parameter combinations where this approach re-

sults in average optimality gaps of about 40%. Over all parameter combinations,

the average optimality gap of this approach is over 4%. The dramatically high

maximum optimality gaps also indicate that we can generate test problems where
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% Gap with
Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ Avg. Max.

5 [0.05, 0.35] 1 0.658% 3.798%
5 [0.05, 0.35] 2 0.645% 4.285%
5 [0.05, 0.35] 3 1.154% 7.765%
5 [0.35, 0.65] 1 0.114% 0.213%
5 [0.35, 0.65] 2 1.930% 14.749%
5 [0.35, 0.65] 3 8.267% 32.248%
5 [0.65, 1.00] 1 0.153% 0.214%
5 [0.65, 1.00] 2 6.928% 37.986%
5 [0.65, 1.00] 3 39.667% 83.798%

Average 6.613%

% Gap with
Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ Avg. Max.

10 [0.05, 0.35] 1 1.373% 7.347%
10 [0.05, 0.35] 2 1.587% 6.777%
10 [0.05, 0.35] 3 2.569% 7.360%
10 [0.35, 0.65] 1 0.133% 0.180%
10 [0.35, 0.65] 2 1.126% 15.492%
10 [0.35, 0.65] 3 17.466% 42.090%
10 [0.65, 1.00] 1 0.213% 0.845%
10 [0.65, 1.00] 2 0.445% 8.797%
10 [0.65, 1.00] 3 10.869% 64.471%

Average 3.978%

% Gap with
Param. Comb. Upp. Bnd.
m [γL, γU ] ∆ Avg. Max.

15 [0.05, 0.35] 1 1.483% 3.613%
15 [0.05, 0.35] 2 2.069% 4.575%
15 [0.05, 0.35] 3 3.439% 9.326%
15 [0.35, 0.65] 1 0.148% 0.210%
15 [0.35, 0.65] 2 0.050% 0.512%
15 [0.35, 0.65] 3 14.519% 34.727%
15 [0.65, 1.00] 1 0.630% 38.811%
15 [0.65, 1.00] 2 0.337% 2.133%
15 [0.65, 1.00] 3 2.402% 20.070%

Average 2.768%

Table 3.3: Performance of the prices obtained by rounding the unconstrained prices up or
down to the price bounds.

the unconstrained prices give essentially no indication of the optimal prices under

price bounds.

3.8 Conclusions

We developed approximation methods for pricing problems where customers choose

under the nested logit model and there are bounds on the prices that can be

charged for the products. We considered two problem variants. In the first variant,

the set of products offered to customers is fixed and we want to determine the

prices for these products. In the second variant, we jointly determine the products
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to be offered and their corresponding prices. For both problem variants, given

any ρ > 0, we showed how to obtain a solution whose expected revenue deviates

from the optimal expected revenue by no more than a factor of 1 + ρ. To obtain

this solution, we solved a linear program and the number of constraints in this

linear program grew at rate 1/ρ. Our computational experiments demonstrated

that our approximation methods can obtain solutions to practical problems within

reasonable computation time.
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CHAPTER 4

A JOINT ASSORTMENT AND STOCKING PROBLEM:

CORRELATION-VARIETY RELATIONSHIPS AND

APPROXIMATION METHODS

4.1 Introduction

Making effective assortment planning decisions in the face of customer choice re-

quires a strong understanding of customer substitution patterns as well as the

benefits and costs of product variety. Of particular interest are settings where a

retailer offers a heterogeneous collection of products that can be designated into a

number of different product types or subgroups, where the products within a type

are closer substitutes to each other than products from another type. Both the de-

lineation of products into subgroups and the customers’ perception of how similar

products within types are can impact customer substation patterns in ways that

cannot be adequately captured by assuming that all products belong to a single

category. An important question is how the level of similarity of products within a

particular type (or multiple types) affects optimal assortment planning and stock-

ing decisions. A retailer offering a single category of highly similar products (in a

high-end specialty store, for example) may see benefit by reducing its product line

to include only the most popular product variant in this category. On the other

hand, massive big-box retailers carrying many different variants of many differ-

ent product types tend to maintain large levels of product variety and stock large

quantities of their offered products. An interesting question is whether observed

retail practices of this nature can be supported by analysis of a joint stocking and

assortment problem under customer choice.
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We study a joint stocking and product offer problem in order to address the

questions outlined above. We have access to a set of products that are designated

into product types, with individual degrees of product similarity within each type,

to satisfy the demand from customers that arrive over a finite selling horizon.

Products within a particular type have the same selling price and unit cost. We

need to decide which sets of products to offer and how many units of each product

to stock. Product demand in our model arises from a stochastic choice process

in which individual purchase decisions are made according to a random utility

maximization model. The objective is to determine a set of products to offer

over the entire selling horizon and how many units of each offered product to

stock so as to maximize the expected profit. Our model is static in the sense

that customers make their choice from the given assortment without knowledge of

product availability and customer do not substitute in the event of a stock-out.

Our chosen random utility maximization model is the nested logit (NL) model.

The NL model allows us to accurately reflect that products are designated into

subgroups and the resulting implications on customer substitution behavior. Un-

der this model, customers follow a hierarchical choice process, choosing first among

subgroups and then a product in the chosen subgroup. A related advantageous

feature of the NL model is that its purchase probability expressions contain param-

eters corresponding to the degree of similarity among products within a particular

subgroup, allowing us to examine how varying these parameters impacts the key

decisions in our problem.

We formulate our problem as a combinatorial optimization problem, where

the objective function is the retailer’s expected profit and the decision variables

correspond to the subset of products within each type to offer and the stocking
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quantity for each product. This optimization problem is difficult to work with for

a number of reasons. First, the number of decision variables is on the order of

the number of subsets of products, which grows exponentially with the number of

products. Second, the objective function is not separable by the products and is

not concave. Lastly, though a previously-used tactic when dealing with assortment

problems under the NL model is to separate the problem by product subgroups,

our problem is not separable in this manner.

The contributions of our study are threefold. First, we circumvent the above

difficulties by exploiting the structure of the NL model and proving a convenient

structural property of optimal assortment offering decisions, using a nonlinear

programming relaxation of the original problem. Using this property along with

additional structural properties of the nonlinear program, we are able to show

that there exist optimal assortments within every product type that correspond

to the most popular products in each type. As a result, in each product type, we

only need to consider a collection of possible assortments whose size grows linearly

with the number of products in each type. To our knowledge, we are the first to

provide such a property for a general problem with an arbitrary number of product

subgroup designations.

Secondly, we make use of these structural properties of optimal assortments and

the nonlinear programming relaxation to examine how the perception of product

similarity levels within product types impacts optimal expected profit, assortment

offering and product stocking decisions. In particular, we use the relaxation to

show that a decrease in product similarity within any one of the offered product

types leads to an increase in optimal expected profit. This is a result that we

achieve solely through use of the relaxation and its proof does not require any

78



specific characterization of optimal assortments. In addition, we show that as the

selection of products within a type becomes increasingly similar, it is optimal to

offer very small assortment of that product type. In our numerical experiments,

we investigate whether the reverse is true - that optimal offered product variety

increases as the selection of products within types become increasingly dissimilar.

We also prove that if the assortment of offered products is fixed, a decrease in

similarity among products of a particular type leads to higher inventory levels

of product stocked within that type. Our numerical experiments suggest that

decreasing product similarity also leads to an increase in optimal stocking levels

as well as optimal assortment variety.

Lastly, we devise efficient solution approaches for our problem that generate

well-performing approximate solutions. We show that our problem can be ex-

pressed as a dynamic program with a three-dimensional state variable. We show

that we can obtain approximate solutions to our original problem in a tractable

fashion via a state space discretization technique, and show that solving an approx-

imate dynamic program provides upper and lower bounds on the optimal expected

profit. In addition, we examine a suitably-calibrated deterministic approximation

to our original problem, whose analogous dynamic programming formulation has

only two state variables and provides a constant-factor approximation to our orig-

inal problem. Using a similar discretization technique, we are able to use this

approximate problem to produce high-quality solutions with a further reduction in

computational effort. Our numerical experiments show that solutions generated by

the approximate problem tend to perform significantly better than the worst-case

performance guarantee.

The aims of this chapter are related to issues examined in consumer psychology
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regarding product assortment variety. [17] showed that while higher product vari-

ety within categories can entice customers to buy from those categories, increasing

product variety within a category can provide diminishing returns for the retailer,

as many customers who were initially lured in by the product variety would nev-

ertheless decide not to make a purchase, especially when dealing with product

categories in which the products were perceived as being very similar or unfamil-

iar to the customers. [32] show that in unfamiliar product categories, congruency

between a customer’s shopping goals and the retailer’s assortment can lead to

lower perceptions of product variety but increased satisfaction with the retailer’s

assortment, suggesting that customers who choose to buy from a specialty product

category with which they are not very familiar may view the products as being

highly similar but, should they decide to make a purchase, will gravitate toward a

high-utility product within that category.

The NL model, as described by [29] and [7], is a generalization of the multino-

mial logit (MNL) choice model, providing closed-form expressions for a customer’s

purchase probability of any offered product, and has been widely used to model

customer choice behavior (see [5], [9]). Our work is most strongly related to two

other papers on assortment planning and stocking decisions under customer choice.

In the first, [39] studies a static assortment and stocking problem where all prod-

ucts belong to a single homogeneous product category, using the MNL model to

capture customer substitution behavior. They obtain the optimal solution, show-

ing that it consists of the most popular products from the set of products that can

potentially be offered. In order to obtain this result, the authors assume that all

of the products have the same unit price to cost ratios. We are able to extend the

work of [39] in two crucial areas: the first being that we are allowed to consider

the case where we have heterogeneous products that can be designated into an
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arbitrary number of subgroups with varying levels of subgroup similarity, and the

second being that we allow each subgroup to have its own associated price to cost

ratio.

In the second, [22] examine a joint assortment planning and pricing problem

utilizing a generalized cost function. The authors allow heterogenous products,

using the NL model to capture customer choice behavior. The authors consider

two arrangements of the customer choice hierarchy. Under the first, a customer

selects one of two products brands and then selects a particular product within

that brand. Under the second, a customer first chooses a product type and then

chooses one of the two brands’ variants of that product type. Under the brand-

primary choice model, the authors show that it is optimal to offer some subset

of the most popular products offered by each brand, and show that this is not

necessarily the case under the type-primary choice model. Under the two choice

structures, the optimal assortment can be found in O(n2) and O(2n) operations

respectively, where n is the number of product types. Our work studies a similar

assortment optimization problem and incorporates costs in the form of product

stocking considerations, but uses exogenous prices. We extend the choice structure

to include an arbitrary number of subgroups and products within those subgroups,

i.e., as opposed to requiring that there be only two product brands to choose from,

there can be an arbitrary number of different brands offered. We show that we can

obtain an analogous structural property under this more general framework despite

the fact that prices are exogenous and devise efficient approaches for generating

well-performing assortments even when the number of product types or the number

of subgroup designations is large.

There are a number of other related papers that study product offering
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and stocking decisions under customer substitution behavior. [19] apply the

MNL model to study the joint assortment planning and pricing problem under

assortment-based substitution. They show that the optimal assortment for a risk-

averse retailer is composed of the variants with the highest quality markups, with

price markups being equal to quality markups. [4] apply the MNL model to study

a static joint assortment planning and pricing problem in a single product cat-

egory. They find that the optimal solution is such that all products have equal

price to cost ratios. [3] optimize inventory levels and prices for multiple products

in a given assortment. [27] develop heuristics for joint assortment, inventory, and

price optimization, while [15], [18], and [2] utilize locational choice models to study

assortment planning and stocking decisions. [38] studies a joint assortment plan-

ning and stocking problem under the MNL model where different assortments may

be offered over the course of the selling horizon and gives tractable methods to

obtain near-optimal policies. Other papers that consider assortment optimization

problems utilizing the NL model with exogenous prices include [10], who stud-

ies an unconstrained revenue maximization problem where a single assortment is

shown to customers, and [13], which considers a variant of the same problem with

capacity constraints on the offered assortment. Both of these papers make use of a

structural property that allows the problem to be separated by product subgroups,

which is not possible in our problem.

The rest of the chapter is organized as follows. Section 4.2 formulates our joint

stocking and assortment planning model. Section 4.3 uses a nonlinear program-

ming relaxation of the original problem to show a structural property of optimal

assortments. Section 4.4 gives properties of the optimal solution and examines

effects of varying product similarity within particular product types on optimal

product variety, stocking decisions and expected profit. Section 4.5 gives a dynamic
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programming approach for generating approximate solutions and upper and lower

bounds on the optimal expected profit. Section 4.6 presents an alternative problem

which allows approximate solutions to our original problem to be obtained with

reduced computational effort. Section 4.7 presents computational experiments.

4.2 Problem Formulation

Customers arrive at a rate of λ per unit time. For brevity, we normalize the length

of the selling horizon to one. The firm’s products are designated into m product

types, indexed by M = {1, . . . ,m}. There are n variants of each product type,

indexed by N = {1, . . . , n}. Each variant of a product type i ∈ M is assumed to

have an identical purchasing cost ci and revenue pi, with pi ≥ ci, to reflect the

fact that products within a type are assumed to be similar to some degree. In the

category/brand setting, for instance, we would assume that versions of the same

type of product being offered by different brands should be relatively similar in

price and cost.

We let xij be the number of units of variant j of type i that we stock at the

beginning of the selling horizon. The demand for individual variants is influenced

by choosing the set of products that we offer over the selling horizon. If we offer

the assortment of products S = (S1, . . . , Sm), where Si ⊆ N is the assortment of

variants of type i offered, then the probability that the customer chooses variant

j of type i is denoted by qij(S).

In order to accurately reflect the fact that our firm offers similar products

that are grouped together based on type, we assume that qij(S) is determined

according to the nested logit (NL) model. Under the NL, each customer considers
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the assortment S of products offered by the store. The customer may choose to

purchase a product amongst the set S, or leave without making a purchase. Each

customer assigns a random utility Uij = µij + εij to each variant j ∈ Si, where µij

is a deterministic utility component assigned to each variant j ∈ N and εijt has

a generalized extreme value (GEV) distribution ∀i ∈ M, j ∈ N. Similarly, each

customer assigns a random utility U0 = µ0 +ε0 to the option of purchasing nothing.

The utilities of variants of the same type i are assumed to be correlated. We assume

that all variants of a particular product type have distinct deterministic utilities.

(While it is possible to show that all of the following results also hold under the

case where some variants of the same product type have the same deterministic

utilities, we will concentrate on the case where utilities are distinct to simplify our

analysis.) Without loss of generality, we assume that the variants of each product

type are ordered such that µi1 > µi2 > . . . > µin for all i ∈ M. Each product

type has a parameter γi ∈ (0, 1] associated with it that characterizes the degree

of dissimilarity of products within the type. Equivalently, 1 − γi measures the

correlation between the random utilities (Uij)j∈N of products within type i.

Let Vi(Si) = (
∑

k∈Si e
µik/γi)γi . Under the NL model, as shown in [7], each

customer makes a purchase within product type i with probability Qi(S) =

Vi(Si)
v0+

∑
l∈M Vl(Sl)

, where v0 = eµ0 . Given that the customer chooses product type i,

he chooses variant j with probability

qj|i(Si) =


eµij/γi

Vi(Si)1/γi
, j ∈ Si

0, otherwise.

Putting these expressions together, we have

qij(S) = Qi(S)qj|i(Si).
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We note that
∑

j∈N qij(S) = Qi(S)∀i ∈M. With probability

Q0(S) = 1−
∑
i∈M

∑
j∈N

qij(S) =
v0

v0 +
∑

l∈M Vl(Sl)
,

each customer leaves without purchasing anything. Our assumption that there are

the same number of variants of each product type is without loss of generality,

because if some type i contains fewer than n variants, then we can include addi-

tional variants j in this nest with µij = −∞ and these products would never be

purchased.

We choose a single assortment of products S to offer over the entire selling

horizon. Our static policy assumes that if a customer chooses a product in the

set S for which we do not have any stock, the customer leaves the system without

purchasing anything. One interpretation of this assumption is that a customer’s

initial decision is a store-visit decision. Customers makes the decision to visit our

store based on knowledge of the set S, i.e., the products that they know are being

offered, but customers do not know the inventory status of particular products

until they arrive at the store. If a customer shows up to the store and his most

preferred product is not in stock, the customer will choose to go elsewhere and

look for this product rather than making a different choice from among our store.

As such, we can interpret the no-purchase option as encompassing all possible

purchasing decisions that are outside the control of our firm.

We assume that each customer assigns utilities to the products in the subset

S based on independent samples of the nested logit model described above, that

is, realizations of the random variables εij, j ∈ N, i ∈ M are independent from

customer to customer. Since customers are heterogeneous and independent, the

observation of one customer’s choice reveals no additional information about the

choice of subsequent customers. This results in the following model of aggregate
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demand: the number of customers that request variant j of type i over the sell-

ing horizon has a normal distribution with mean λqij(S) and standard deviation

αλrqij(S)r, where α > 0 and r ∈ [0, 1). This distribution is chosen to ensure that

our problem framework satisfies economies of scale, in the sense that operational

efficiency increases as the customer volume λ gets larger. Particularly, for a fixed

assortment S, we note that the coefficient of variation of the demand for variant

j of type i is α
λ1−rqij(S)1−r , which is decreasing in the customer volume λ, implying

that inventory costs associated with safety stock should decrease as λ gets larger.

A special case of this model is when the total number of customers that arrive over

the selling horizon is Poisson with mean λ. In this case, the number of customers

that request product j in nest i is also Poisson with mean λqij(S), and the normal

approximation to the Poisson distribution yields α = 1 and r = 1/2.

Using N (µ, σ) to denote a normal random variable with mean µ and standard

deviation σ, we can maximize the expected profit by solving the problem

max
S,x

∑
i∈M

∑
j∈N

piE
[

min
{
N (λqij(S), αλrqij(S)r), xij

}]
−
∑
i∈M

∑
j∈N

cixij (4.1)

s.t. S = (S1, . . . , Sm), Si ⊆ N ∀i ∈M (4.2)

xij ≥ 0 ∀j ∈ N, ∀i ∈M, (4.3)

where the first term in the objective is the expected revenue obtained from pur-

chases by customers and the second term is the cost of stocking the products.

We note that given a fixed assortment S of products, the demand distribution is

exogenous and it is well-known that the optimal stocking decisions for problem

(4.1)-(4.3) are given by

x∗ij(S) = λqij(S) + αλrqij(S)rΦ−1(1− ci/pi), (4.4)

where Φ−1(·) is the inverse of the standard normal distribution function. We can
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collapse these expressions back into the objective function, resulting in

piE
[

min
{
N (λqij(S), αλrqij(S)r), x∗ij(S)

}]
− cix∗ij(S)

= (pi − ci)λqij(S)− piαλrφ(Φ−1(1− ci/pi))qij(S)r ∀i ∈M, j ∈ N,

where φ(·) denotes the standard normal density and we use the fact that

E[min{Z,Φ−1(1 − ci/pi)}] = Φ−1(1 − ci/pi)ci/pi − φ(Φ−1(1 − ci/pi)) for a stan-

dard normal random variable Z; see [21]. For notational brevity, let θi =

piαλ
rφ(Φ−1(1− ci/pi)). Then problem (4.1)-(4.3) is equivalent to

max
S

∑
i∈M

∑
j∈N

(pi − ci)λqij(S)−
∑
i∈M

∑
j∈N

θiqij(S)r (4.5)

s.t. S = (S1, . . . , Sm), Si ⊆ N ∀i ∈M. (4.6)

We note that the problem of choosing optimal stocking levels is now embedded into

the objective function, so that the only decision of note is choosing the optimal

assortment of products to offer; the corresponding optimal stock levels can then

be computed using (4.4). However, problem (4.5)-(4.6) is difficult for a number

of reasons. The number of possible choices for each subset Si is 2n, meaning

that there are 2nm possible choices for the assortment S. In addition, interactions

between the assortment decisions Si for different product types i in the terms

qij(S) and qij(S)r prevent the problem from being separable by the product types

i ∈M , which prevents separation-based approaches for assortment problems such

as those studied in [10] and [13].

In the next section, we give a structural property of optimal assortments for

problem (4.5)-(4.6) using a nonlinear programming relaxation of this problem.

This nonlinear programming relaxation will be influential in allowing us to gain

insights on how optimal solutions to our original problem behave with changes in

the utility correlation parameters in later sections.
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4.3 Optimal Assortments

Recall that within each product type, variants are ordered by their deterministic

utility components µij, such that variant 1 has the highest deterministic utility and

variant n has the lowest. If we suppose that the entire set of variants N is offered

within a nest i, then our expressions for the purchase probabilities qij(S) imply

that we will have qi1(S) > qi2(S) . . . > qin(S). Thus, if all variants of type i are

shown to customers, variant 1 will have the highest mean demand and variant n

the lowest mean demand. We can simplify this concept by simply saying that the

variants in each nest are ordered by their expected popularity. Define the popular

set

P =
{
∅, {1}, {1, 2}, . . . , {1, . . . , n}

}
to be the collection of all assortments containing the k most popular variants for

k = 0, . . . , n. We assume that all variants of a particular product type have distinct

deterministic utilities, i.e., µi1 > . . . > µin ∀i ∈ M. We will show that optimal

assortments have the property that assortments of individual product types must

fall in the popular set P . (While it is also possible to show that there exist

optimal assortments in the popular set when some product variants can have the

same deterministic utility, we will focus on the case where utilities are distinct to

simplify our analysis.)

To achieve this result, we will examine a relaxation of problem (4.5)-(4.6).

In the relaxation, we let Yi represent the probability that a customer chooses

a product from type i, yij the probability that a customer chooses variant

j of product type i and Y0 the probability that the customer buys nothing.

These decision variables must satisfy the constraints
∑

j∈N yij = Yi ∀i ∈ M

and Y0 +
∑

i∈M Yi = 1. We note that the probability that a customer pur-
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chases variant j of product type i is qij(S) = Vi(Si)Q0(S)
v0

eµij/γi

Vi(Si)1/γi
whenever j ∈ Si

and zero otherwise. Thus, when j ∈ Si, qij(S)γie−µij = Vi(Si)
γiQ0(S)γi

v
γi
0

1
Vi(Si)

, so

that v0Vi(Si)
1−γi(Q0(S)

v0
)1−γiqij(S)γie−µij = Q0(S) when j ∈ Si and zero other-

wise. Therefore, noting that Vi(Si)
1−γi(Q0(S)

v0
)1−γi = Qi(S)1−γi , we always have

v0Qi(S)1−γiqij(S)γie−µij ≤ Q0(S) for all S, j ∈ Si, i ∈ M and it is reasonable

to impose the constraint v0Y
1−γi
i yγiij e

−µij ≤ Y0 for all i ∈ M, j ∈ N. We propose

maximizing our expected profit by solving the problem

max
(y,Y,Y0)∈F

∑
i∈M

∑
j∈N

(pi − ci)λyij −
∑
i∈M

∑
j∈N

θiy
r
ij, (4.7)

where F is the feasible region defined by the constraints

Y0 +
∑
i∈M

Yi = 1

∑
j∈N

yij = Yi ∀i ∈M

v0Y
1−γi
i yγiij e

−µij ≤ Y0 ∀j ∈ N, i ∈M

yij ≥ 0 ∀j ∈ N, i ∈M.

We emphasize that this is a non-convex optimization problem. While the con-

straints become linear if γi = 1 for all i and are consistent with the linear repre-

sentation of the MNL model studied in [38], this problem lacks desirable structure

for general values of γi. Despite the fact that we cannot easily solve this problem,

we can use it to derive structural properties of optimal assortments.

It is clear that problem (4.7) is a relaxation of problem (4.5)-(4.6), since any

assortment S defines a solution that satisfies all the constraints, as shown above.

However, it is possible to construct feasible solutions to this problem that do not

correspond to actual purchase probabilities under the nested logit model; corre-

spondence can only happen if the last constraint is satisfied with equality for all
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j such that yij is positive and its left side is zero otherwise, for all i ∈ M. We

can equivalently state that the following condition is necessary for a solution to

correspond to purchase probabilities:

Condition 1. v0Y
1−γi
i yγiij e

−µij = Y01(yij > 0)∀i ∈M, j ∈ N.

Remarkably, it turns out that optimal solutions to the relaxation (4.7) actually

satisfy this necessary condition. To show this, we will make use of a linearization

technique. Let (y∗,Y∗, Y ∗0 ) be an optimal solution to problem (4.7) and let S∗i =

{j ∈ N : y∗ij > 0}. Since (·)γi is a concave function, we have

Y 1−γi
i yγiij = Yi(yij/Yi)

γi ≤ Yi

{
(y∗ij/Y

∗
i )γi + γi(y

∗
ij/Y

∗
i )γi−1(yij/Yi − y∗ij/Y ∗i )

}

= (1− γi)(y∗ij/Y ∗i )γiYi + γi(y
∗
ij/Y

∗
i )γi−1yij,

where in the inequality, we have replaced (yij/Yi)
γi with the linear approximation

given by the derivative of (·)γi at the point y∗ij/Y
∗
i (an application of the subgradient

inequality). Letting H(y∗,Y∗, Y ∗0 ) be the region defined by the linear constraints

Y0 +
∑
i∈M

Yi = 1

∑
j∈N

yij = Yi ∀i ∈M

v0e
−µijγi(y

∗
ij/Y

∗
i )γi−1yij + v0(1− γi)e−µij(y∗ij/Y ∗i )γiYi ≤ Y0 ∀j ∈ S∗i , ∀i ∈M

yij = 0 ∀j ∈ N \ S∗i , ∀i ∈M

yij ≥ 0 ∀j ∈ N, i ∈M.

it follows that H(y∗,Y∗, Y ∗0 ) ⊆ F . It also follows that (y∗,Y∗, Y ∗0 ) ∈

H(y∗,Y∗, Y ∗0 ), since the first constraint is satisfied with equality when y = y∗.

Thus, (y∗,Y∗, Y ∗0 ) must be optimal for the problem

max
(y,Y,Y0)∈H(y∗,Y∗,Y ∗0 )

∑
i∈M

∑
j∈N

(pi − ci)λyij −
∑
i∈M

∑
j∈N

θiy
r
ij, (4.8)
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This problem is useful because it involves maximizing a strictly convex objective

function over a set of linear constraints. As such, optimal solutions to this problem

must be extreme points of the feasible region. The following lemma makes use of

this fact to obtain the desired result.

Lemma 5. Any optimal solution (y∗,Y∗, Y ∗0 ) to problem (4.7) must satisfy Con-

dition 1.

Proof. Note that H(y∗,Y∗, Y ∗0 ) is a polyhedron. Since the objective function of

problem 4.8 is strictly convex in y, (y∗,Y∗, Y ∗0 ) must be an extreme point of

H(y∗,Y∗, Y ∗0 ). Consider the optimization problem in (4.8). Letting S∗i = {j ∈

N : y∗ij > 0}, we can disregard the variables yij for j /∈ S∗i , as they have no effect

on the objective function value. Introducing slack variables sij, the constraints of

H(y∗,Y∗, Y ∗0 ) can now be expressed as

v0

{
e−µijγi(y

∗
ij/Y

∗
i )γi−1yij + (1− γi)e−µij(y∗ij/Y ∗i )γiYi

}
− Y0 + sij = 0∑

j∈S∗i

yij − Yi = 0

∑
i∈M

Yi + Y0 = 1

yij, sij ≥ 0

for all j ∈ S∗i , i ∈M. The variables Yi and Y0 are superfluous, so we can eliminate

them and disregard the second and third constraints, provided we simply re-express

Yi and Y0 in the first constraint in terms of the variables y. Among the y variables,

we have
∑

i∈M |S∗i | variables and
∑

i∈M |S∗i | constraints. We know that (y∗, s∗)

must be an extreme point of this polyhedron, where s∗ is the vector of slack

variables corresponding to y∗, taking only the indices j ∈ S∗i into consideration.

We recall that y∗ij > 0 ∀j ∈ S∗i . Thus, the solution (y∗, s∗) must contain at least
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∑
i∈M |S∗i | positive variables. But this implies that none of the slack variables

s∗ can be positive, because there are only
∑

i∈M |S∗i | constraints in the region

above. Thus, we must have v0(1−γi)e−µij(y∗ij/Y ∗i )γiY ∗i +v0e
−µijγi(y

∗
ij/Y

∗
i )γi−1y∗ij−

Y ∗0 = 0 for all j ∈ S∗i , ∀i ∈ M. Since the left side of this equality is equal to

v0(Y ∗i )1−γi(y∗ij)
γie−µij − Y ∗0 , we conclude that (y∗,Y∗, Y ∗0 ) must satisfy Condition

1.

We can now show that optimal solutions to the relaxation (4.7) correspond to

assortments in the popular set. To see this, suppose that we have an optimal solu-

tion (y∗,Y∗, Y ∗0 ) to problem (4.7). Note that since (y∗,Y∗, Y ∗0 ) satisfies Condition

1, we must have

v0(Y ∗i )1−γi(y∗ij)
γie−µij = Y ∗0 ∀j ∈ S∗i

and y∗ij = 0 ∀j ∈ N \ S∗i . Now suppose that S∗i = {j ∈ N : y∗ij > 0} /∈ P for some

i ∈ M . Then ∃ s, t ∈ N, s < t such that µis > µit, s /∈ S∗i and t ∈ S∗i . Thus,

y∗is = 0 and

v0(Y ∗i )1−γi(y∗it)
γie−µit = Y ∗0 .

Now suppose that we construct a new solution ŷ by swapping the variables corre-

sponding to variants s and t, i.e., letting ŷis = y∗it, ŷit = 0 and ŷij = y∗ij ∀j 6= s, t.

This results in Y ∗0 = 1 −
∑

l∈M
∑

k∈N y
∗
lk = 1 −

∑
l∈M

∑
k∈N ŷlk and Y ∗i =∑

k∈N y
∗
ik =

∑
k∈N ŷik ∀i ∈ M, so (ŷ,Y∗, Y ∗0 ) is feasible for problem (4.7) and has

the same objective value as (y∗,Y∗, Y ∗0 ) (implying that it is optimal for problem

(4.7).) However,

v0(Y ∗i )1−γi(ŷis)
γie−µis = Y ∗0 e

µit−µis < Y ∗0 ,

implying that (ŷ,Y∗, Y ∗0 ) fails to satisfy Condition 1. This contradicts Lemma 5.

Thus, S∗i = {j ∈ N : y∗ij > 0} must lie in P for all i ∈ M . Since we have only

shown thus far that optimal solutions to problem (4.7) meet a necessary condition
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for correspondence to purchase probabilities, it still remains to be shown that

we can construct an optimal solution to our original assortment problem using

an optimal solution to the relaxation. This is done in the proof of the following

theorem, which characterizes the main result of this section.

Theorem 7. There exists an optimal assortment S∗ = (S∗1 , . . . , S
∗
m) to problem

(4.5)-(4.6) such that S∗i ∈ P for all i ∈M.

Proof. By the preceding analysis, we know that there exists an optimal solution

(y∗,Y∗, Y ∗0 ) to problem (4.7) such that S∗i = {j ∈ N : y∗ij > 0} ∈ P for all i ∈ M .

Let S∗ = (S∗1 , . . . , S
∗
m). Since (y∗,Y∗, Y ∗0 ) must satisfy Condition 1, we have

Vi(S
∗
i ) =

( ∑
j:y∗ij>0

eµij/γi
)γi

=

( ∑
j:y∗ij>0

y∗ij
v

1/γi
0 (Y ∗i )1/γi−1

(Y ∗0 )1/γi

)γi

=
v0Y

∗
i

Y ∗0
,

giving

qij(S∗) =
eµij/γi

(v0 +
∑

l∈M Vl(S∗l ))Vi(S
∗
i )

1/γi−1
=

eµij/γi

(v0 +
∑

l∈M
v0Y ∗l
Y ∗0

)(
v0Y ∗i
Y ∗0

)1/γi−1

= eµij/γi

(
Y ∗0
v0

)1/γi

(Y ∗i )1−1/γi = y∗ij,

where the second-to-last equality follows from the fact that 1 +
∑

l∈M
Y ∗l
Y ∗0

= 1
Y ∗0

and the last equality follows from the fact that (y∗,Y∗, Y ∗0 ) satisfies Condition

1. Thus, the assortment S∗ provides the same objective value as the solution

(y∗,Y∗, Y ∗0 ). Since (y∗,Y∗, Y ∗0 ) is optimal for the relaxation (4.7), S∗ must be

optimal for problem (4.5)-(4.6).

Theorem 7 implies that there is always an optimal assortment of each product

type i ∈ M which is in the popular set P . A similar structure was shown to be

optimal for a single product category (type) under the MNL model by van [39];

[22] established the optimality of this structure for a problem under the NL model
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with two nests (product types in our case). Our result generalizes this structure

to an arbitrary number of product types.

When trying to construct an assortment S that is optimal for problem (4.5)-

(4.6), we need only consider assortments of each product type that are in the

popular set P . We note that there are only n+ 1 assortments in P , as opposed to

2n possible assortments in total, which greatly reduces the number of candidate

assortments that need to be considered by the firm when n is large. This property

allows us to solve our original problem via a dynamic program, as we will show

in Section 4.5, as well as obtain upper and lower bounds on the optimal expected

profit.

4.4 Properties of the Optimal Solution

In this section, we examine the effects of utility correlation among variants of a

product type, captured in the form of the parameters γi, on the stocking and

assortment offering decisions made by our firm. Throughout this section, in order

to emphasize the dependency of the relevant expressions in our problem on the

parameters γ = (γ1, . . . , γm), we will use Vi(Si, γi) to denote Vi(Si) and x∗ij(S,γ)

to denote x∗ij(S); Qi(S,γ) and qj|i(Si, γi) are defined similarly.

To examine the effects of utility correlation on our expected profit, we revisit

our nonlinear programming relaxation in problem (4.7). We know from theorem

1 that the optimal objective values of problem (4.7) and problem (4.5)-(4.6) are

equivalent. Consider the feasible region of problem (4.7). Emphasizing its depen-

dency on the correlation parameters, let F(γ) denote the feasible region of (4.7).
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We can express the constraints of F(γ) as

Y0 +
∑
i∈M

Yi = 1

∑
j∈N

yij = Yi ∀i ∈M

fij(y,Y, γi) ≤ Y0 ∀j ∈ N, i ∈M

yij ≥ 0 ∀j ∈ N, i ∈M.

where fij(y,Y, γi) = v0Y
1−γi
i yγiij e

−µij ∀i ∈M, j ∈ N. We observe that for any fixed

feasible (y,Y), the derivative of fij with respect to γi is given by

∂fij
∂γi

(y,Y, γi) = v0Y
1−γi
i yγiij e

−µij(log yij − log Yi) ≤ 0.

This implies that, for fixed values of (y,Y), increasing the value of γi decreases

the value of the left side of the constraint. Thus, if (y,Y, Y0) ∈ F(γ−i, γ
′
i) and

γ̄i > γ′i, then fij(y,Y, γ̄i) ≤ fij(y,Y, γ
′
i) ≤ Y0 ∀j ∈ N, implying that (y,Y, Y0) ∈

F(γ−i, γ̄i). Therefore F(γ−i, γ
′
i) ⊆ F(γ−i, γ̄i), and any solution that is feasible to

problem (4.7) with parameters (γ−i, γ
′
i) must be feasible for problem (4.7) with

parameters (γ−i, γ̄i). As a result, we have the following theorem:

Theorem 8. Let Π∗(γ) denote the optimal objective value of problem (4.5)-(4.6)

with correlation parameters γ. For all i ∈ M , if γ̄i > γ′i, then Π∗(γ−i, γ̄i) ≥

Π∗(γ−i, γ
′
i) for all γ−i ∈ (0, 1]m−1.

Proof. Follows from equivalence of the optimal objective values of problem (4.5)-

(4.6) and problem (4.7).

Thus, as the utilities of products within types become less correlated, our firm’s

expected profits increase. We emphasize that, to our knowledge, we are the first

to demonstrate this property for an assortment optimization problem under the
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NL model. We also emphasize that the use of the nonlinear programming rep-

resentation in (4.7) of the original problem is instrumental in achieving this re-

sult. In addition, since our proof relies only on properties of the feasible region of

the nonlinear program, we could replace the objective function in (4.7) with any

other objective function that can be expressed in terms of the decision variables

(y,Y, Y0) (i.e., the purchase probabilities under the NL model) and show that de-

creased correlation among the utilities of products in any particular type leads to

an improvement in optimal performance.

The following proposition characterizes how customers evaluate products within

a particular type i as the degree of correlation between utilities of variants of that

product type becomes very high. This will allow us to obtain some insights on how

optimal stocking levels change with utility correlation under a fixed assortment, as

well as prove an asymptotic property of optimal assortments. The proof is deferred

to the appendix.

Proposition 3. For any fixed assortment Si ⊆ N , limγi→0 Vi(Si, γi) = emaxk∈Si µik

and

limγi→0 qj|i(Si, γi) = 1(j = argmaxk∈Si µik).

Consider the case when the assortment of products S is fixed. We have shown

in Proposition 3 that as products within a type become increasingly correlated,

customers who choose product type i will gravitate toward the highest-utility vari-

ant of that type (and will select product type i based solely on the attractiveness of

the highest-utility variant, ignoring other variants of the type.) If products within

a type become less correlated, we would expect the opposite behavior : customers

would start to take the utilities of additional variants of product type i into ac-

count. We might expect that this wold increase the probability that a customer
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buys a product from type i. In fact, this can be shown mathematically by noting

that

∂

∂γi
Vi(Si, γi) = Vi(Si, γi)

[
log(

∑
k∈Si

eµik/γi)−
∑

k∈Si µike
µik/γi

γi
∑

k∈Si e
µik/γi

]
≥ 0

since

log(
∑
k∈Si

eµik/γi) ≥ maxk∈Si µik
γi

≥
∑

k∈Si µike
µik/γi

γi
∑

k∈Si e
µik/γi

.

This implies that ∂
∂γi
Qi(S,γ) ≥ 0. Raising γi increases the aggregate attractiveness

of product i, but also increases the chance that a customer will choose a variant

of product type i that is not the highest-utility variant. Naturally, we would

expect that this necessitates carrying more total inventory of products in type

i. Meanwhile, the fact that customers find more potential value in lower-utility

variants of product type i will lure some customers who would otherwise choose

other product types to consider type i. This naturally should necessitate carrying

less inventory of products in other types. The following result formalizes these

notions: as products within a type i become less correlated, the optimal total

stock of type i increases while the optimal total stock of all other types l 6= i

decreases. The proof is deferred to the appendix.

Lemma 6. For all i ∈ M , if γ̄i > γ′i, then
∑

j∈N x
∗
ij(S, γ̄i,γ−i) ≥∑

j∈N x
∗
ij(S, γ′i,γ−i) and

∑
j∈N x

∗
lj(S, γ̄i,γ−i) ≤

∑
j∈N x

∗
lj(S, γ′i,γ−i)∀l 6= i, for all

γ−i ∈ (0, 1]m−1.

Lastly, the following asymptotic result characterizes optimal assortments of a

product type i as γi tends to zero (i.e.,, as the utilities of variants of product

type i become increasingly correlated.) The proofs of Proposition 3, Lemma 6 and

Lemma 7 are deferred to the appendix.

97



Lemma 7. As γi approaches zero, there exists an optimal assortment S∗i ∈ {∅, {1}}

of product type i for problem (4.5)-(4.6).

Lemma 7 implies that, as the utilities of variants of a type i become increasingly

correlated, it becomes optimal to either offer no products of type i, or only the most

popular product of type i. This lines up with our observations that as customers

will gravitate toward the highest-utility variant of product type i as γi becomes very

small, and the presence or absence of this highest-utility variant will become the

only factor which influences a customer’s decision to buy from that product type.

As such, when choosing amongst a number of extremely similar product variants

of one type that can potentially be offered, our decision boils down to whether or

not the most popular variant should offered, and all other variants of the product

type can be disregarded. One might expect the opposite to be true, i.e., that

as γi increases, assortment variety in product type i will become a larger factor.

We anticipate that Lemma 7 indicates a general trend in optimal assortments with

changes in γi values, namely that as γi increases, it usually becomes optimal to offer

larger assortments of products of type i. We leave further investigation of effects

of utility correlation on optimal assortment sizes to our numerical experiments.

4.5 Dynamic Program

We can exploit the fact that optimal assortments are popularity-ordered in each

product type to devise a solution approach for problem (4.5)-(4.6). Plugging in

the exact expressions for qij(S), the objective function in (4.5) is equal to

λ

∑
i∈M(pi − ci)Vi(Si)
v0 +

∑
i∈M Vi(Si)

−
∑

i∈M θi(
∑

j∈Si e
rµij/γi)Vi(Si)

r(1−1/γi)

(v0 +
∑

i∈M Vi(Si))r
, (4.9)
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where we use the convention 0/0 := 0. Let Θi(Si) = θi(
∑

j∈Si e
rµij/γi)Vi(Si)

r(1−1/γi).

We can maximize this function over assortments S via a dynamic program with

three state variables, where the decision epochs are the product types i ∈ M

and the action variable in each decision epoch is the assortment Si ∈ P ; we only

need to consider assortments in the popular set for each product type. The profit

(4.9) is computed after the final decision epoch m, with the first, second and

third state variables representing the sums
∑

i∈M(pi − ci)Vi(Si),
∑

i∈M Vi(Si) and∑
i∈M Θi(Si), respectively, corresponding to the assortment decisions made in each

of the previous epochs. The optimality equation is given by

Ji(z1, z2, z3) = max
Si∈P

Ji+1

(
z1 + (pi − ci)Vi(Si), z2 + Vi(Si), z3 + Θi(Si)

)
(4.10)

for all i ∈M ,where the boundary condition is

Jm+1(z1, z2, z3) = λ
z1

v0 + z2

− z3

(v0 + z2)r
.

We can evaluate J1(0, 0, 0) to obtain the optimal objective value of problem (4.5)-

(4.6). We note that the size of the state space grows exponentially with m, which

creates computational challenges as the number of product types increases. To mit-

igate this difficulty, we will consider a modified version of the state space by setting

a fixed integer T ≥ 1 and dividing each dimension of the state space into T inter-

vals of equal length. Let T = {0, . . . , T}. Noting that the maximum values that z1,

z2 and z3 can take are
∑

i∈M(pi− ci)Vi(N),
∑

i∈M Vi(N) and
∑

i∈M Θi(N), respec-

tively, let ∆1 = 1
T

∑
i∈M(pi− ci)Vi(N), ∆2 = 1

T

∑
i∈M Vi(N), ∆3 = 1

T

∑
i∈M Θi(N).

The modified state space that we consider is

Z =
{

(t1∆1, t2∆2, t3∆3) : (t1, t2, t3) ∈ T 3
}
,

which contains (T + 1)3 elements.

We can show that there exists a solution lying in Z that provides an upper

bound on the optimal objective value of problem (4.5)-(4.6). To see this claim,
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suppose that we have an optimal solution S∗ = (S∗1 , . . . , S
∗
m) to problem (4.5)-(4.6).

Let

t∗1 =

⌈∑
i∈M (pi − ci)Vi(S∗i )

∆1

⌉
, t∗2 =

⌊∑
i∈M Vi(S

∗
i )

∆2

⌋
, t∗3 =

⌊∑
i∈M Θi(S

∗
i )

∆3

⌋
.

Then (t∗1∆1, t
∗
2∆2, t

∗
3∆3) ∈ Z and

λ
t∗1∆1

v0 + t∗2∆2
− t∗3∆3

(v0 + t∗2∆2)r
=
λt∗1∆1 − (v0 + t∗2∆2)1−rt∗3∆3

v0 + t∗2∆2

≥
λ
∑

i∈M (pi − ci)Vi(S∗i )− (v0 +
∑

i∈M Vi(S
∗
i ))1−r∑

i∈M Θi(S
∗
i )

v0 +
∑

i∈M Vi(S∗i )

=
∑
i∈M

∑
j∈N

(pi − ci)λqij(S∗)−
∑
i∈M

∑
j∈N

θiqij(S∗)r.

Using this idea, we can define an approximation to our original dynamic program

that provides an upper bound on the optimal objective value of problem (4.5)-(4.6). Let

J̃i(z1, z2, z3) =

max
Si∈P

J̃i+1

(⌈
z1 + (pi − ci)Vi(Si)

∆1

⌉
∆1,

⌊
z2 + Vi(Si)

∆2

⌋
∆2,

⌊
z3 + Θi(Si)

∆3

⌋
∆3

)
(4.11)

for all (z1, z2, z3) ∈ Z, i ∈ M , with J̃m+1(z1, z2, z3) = Jm+1(z1, z2, z3). Then

J̃1(0, 0, 0) ≥ J1(0, 0, 0). We can compute J̃1(0, 0, 0) by evaluating the value func-

tions J̃i(z1, z2, z3) for all i = 1, . . . ,m + 1 and (z1, z2, z3) ∈ Z, which requires

O(mnT 3) operations. We can construct an assortment (S1, . . . , Sm) that provides

a lower bound on the optimal objective value of problem (4.5)-(4.6) by emplying

the greedy policy with respect to the value functions J̃i(z1, z2, z3), i.e., choosing

the assortment Si that achieves the maximum in (4.11) for all i ∈M starting from

J̃1(0, 0, 0).

4.6 An Approximate Model

High-quality solutions to problem (4.5)-(4.6) can also be computed with less com-

putational effort through use of an approximate problem, where we assume that
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for any assortment S, with probability qij(S) all λ customers will by product j

in type i, for all j ∈ N, i ∈ M . In other words, we assume that either exactly

one of the products that we offer will be chosen by the entire arriving customer

population, or that all customers will choose to buy nothing. The optimal stocking

strategy under such a situation is to stock λ units of every product whose purchase

probability qij(S) is at least as large as its cost-to-price ratio. The approximate

problem that we formulate corresponds precisely to the assortment optimization

problem resulting from this scenario, but with price and cost parameters that are

adjusted from their original values in order to provide a good approximation to

problem (4.5)-(4.6). The primary advantage of this approximate problem is that

its analogous dynamic programming formulation has a smaller state space than

that of the dynamic program studied in the previous section.

To formulate the approximate problem, we let hi(q) = (pi − ci)λq − θiq
r, so

that the objective function of problem (4.5)-(4.6) is
∑

i∈M
∑

j∈N hi(qij(S)). The

function hi(·) is convex and satisfies hi(q) = 0 at q = 0 and at q = ηi, where

ηi = (θi/((pi − ci)λ))
1

1−r . For q ∈ [0, ηi], we have hi(q) ≤ 0. We observe that if

S∗ = (S∗1 , . . . , S
∗
m) is an optimal solution for problem (4.5)-(4.6), then hi(qij(S∗)) ≥

0 ∀i ∈ M, j ∈ N. To see this, suppose that hi(qij(S∗)) < 0 for some j ∈ S∗i .

Then we could remove this product from the assortment. This would increase the

purchase probabilities qlk of all products such that fl(qlk(S∗)) ≥ 0, which would in

turn cause hl(qlk) to increase, by the convexity of hl(·). Meanwhile, since hi(0) = 0

but hi(qij(S∗)) < 0, the new solution would provide a strictly better objective value

than S∗, contradicting the optimality of S∗. Since an optimal solution to problem

(4.5)-(4.6) will never have hi(qij(S∗)) < 0, problem (4.5)-(4.6) is equivalent to

maximizing
∑

i∈M
∑

j∈N [hi(qij(S))]+, where [·]+ denotes the positive-part function.

We also note that the derivative of hi(·) at ηi is (1 − r)(pi − ci)λ. Since hi(·) is

101



convex and hi(ηi) = 0, we can lower bound [hi(q)]
+ by (1 − r)(pi − ci)λ[q − ηi]+

(See Figure 4.1.) This suggests maximizing the function

max
S

∑
i∈M

∑
j∈N

(1− r)(pi − ci)λ[qij(S)− ηi]+

as an approximation to problem (4.5)-(4.6). This problem corresponds exactly to

the assortment optimization problem under the scenario described at the beginning

of this section, where the adjusted price and cost parameters are (1 − r)(pi − ci)

and (1 − r)(pi − ci)ηi, respectively, meaning that ηi represents the margin in this

approximation.

Note that if S̄ = (S̄1, . . . , S̄m) maximizes the objective function above and

qij(S̄) < ηi for some j ∈ S̄i, then we could remove this product from the assort-

ment and strictly increase our objective value (using a similar argument as in the

paragraph above), implying that qij(S̄) ≥ ηi for any optimal assortment S̄. Thus,

we can disregard the positive-part operator when solving this problem. Since the

constants (1−r) and λ are also superfluous, we arrive at the approximate problem

max
S

∑
i∈M

∑
j∈N

(pi − ci)qij(S)−
∑
i∈M

(pi − ci)ηi|Si| (4.12)

s.t. S = (S1, . . . , Sm), Si ⊆ N ∀i ∈M. (4.13)

If there is some i ∈ M such that ηi > 1, then since qr ≥ q for all q ∈ [0, 1],

hi(qij(S)) will be non-positive for all j ∈ N , and it will be optimal to offer no

products in nest i. As such, we will assume without loss of generality that ηi ≤ 1

for all i ∈M.

Problem (4.12)-(4.13) retains important structural properties of problem (4.5)-

(4.6), namely that optimal assortments belong to the popular set P . Therefore, as

in the original problem, we need only consider n+ 1 different assortments of each

product type in order to construct an optimal solution.
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Figure 4.1: The functions hi(·) and (1− r)(pi − ci)λ[· − ηi]+.

Theorem 9. There exists an optimal assortment S̄ = (S̄1, . . . , S̄m) for problem

(4.12)-(4.13) such that S̄i ∈ P for all i ∈M.

Proof. Suppose that Ŝ = (Ŝ1, . . . , Ŝm) is optimal for problem (4.12)-(4.13). Let

ki = |Ŝi| for all i ∈ M. Then we have
∑

i∈M
∑

j∈N(pi − ci)qij(Ŝ) −
∑

i∈M ηi|Ŝi| =∑
i∈M (pi−ci)Vi(Ŝi)
v0+

∑
l∈M Vl(Ŝl)

−
∑

i∈M ηiki. Now let S̄i = {1, . . . , ki} for all i ∈ M. We know

that Vi(S̄i) ≥ Vi(Ŝi) for all i ∈ M , since µi1 > . . . > µin and Ŝi contains ki

elements. Since the function
∑
i∈M (pi−ci)yi
v0+

∑
i∈M yi

is increasing in yi ≥ 0 for each i ∈ M ,

it follows that
∑
i∈M (pi−ci)Vi(S̄i)
v0+

∑
l∈M Vl(S̄l)

−
∑

i∈M ηiki ≥
∑
i∈M (pi−ci)Vi(Ŝi)
v0+

∑
l∈M Vl(Ŝl)

−
∑

i∈M ηiki. Thus,

S̄ = (S̄1, . . . , S̄m) must be optimal for problem (4.12)-(4.13).

Noting that the objective function of problem (4.12)-(4.13) is
∑
i∈M (pi−ci)Vi(Si)
v0+

∑
i∈M Vi(Si)

−∑
i∈M(pi − ci)ηi|Si| and using Lemma 9, we can solve problem (4.12)-(4.13) using

a dynamic program with optimality equation

Gi(z1, z2) = max
Si∈P

{
− (pi − ci)ηi|Si|+Gi+1

(
z1 + (pi − ci)Vi(Si), z2 + Vi(Si)

)}
,

(4.14)

where the boundary condition is Gm+1(z1, z2) = z1
v0+z2

. We can evaluate G1(0, 0) to

obtain the optimal objective value of problem (4.12)-(4.13). This dynamic program
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has two states, which is one less than the dynamic program used to obtain the

optimal objective value of our original problem. As such, we can use this dynamic

program to obtain approximate solutions with reduced computational effort. We

can make use of a similar state space modification technique as the one described in

the previous subsection to come up with an upper bound on the optimal objective

value of problem (4.12)-(4.13) and obtain assortments that provide lower bounds

on the optimal objective value of problem (4.5)-(4.6). In particular, if we specify

a number T of grid points in each dimension of the modified state space and carry

over the notation used in the previous section, we accomplish this by evaluating

the value functions

G̃i(z1, z2)

= max
Si∈P

{
−(pi−ci)ηi|Si|+G̃i+1

(⌈
z1 + (pi − ci)Vi(Si)

∆1

⌉
∆1,

⌊
z2 + Vi(Si)

∆2

⌋
∆2

)}
,

for all (z1, z2) ∈ {(t1∆1, t2∆2) : (t1, t2) ∈ T 2}, i ∈ M , with G̃m+1(z1, z2) =

Gm+1(z1, z2). The work required using this approach is O(mnT 2).

Problem (4.12)-(4.13) can obtain quite accurate solutions to problem (4.5)-

(4.6), depending on the value of the distribution parameter r. The accuracy of

solutions is formalized in the following lemma, which shows that if we solve problem

(4.12)-(4.13) and use this solution as a solution to problem (4.5)-(4.6), the loss in

expected profit is at most (r ·100)%. We emphasize that this is an upper bound on

the profit loss, and that our numerical experiments indicate that the loss in profit

tends to be significantly less than this worst-case guarantee.

Lemma 8. Let S∗ be an optimal solution to problem (4.5)-(4.6) and S̄ an

optimal solution to problem (4.12)-(4.13). Then 1
1−r
∑

i∈M
∑

j∈N hi(qij(S̄)) ≥∑
i∈M

∑
j∈N hi(qij(S∗)).
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Proof. The derivative is hi(·) is given by h′i(q) = (pi − ci)λ − rθi
q1−r ≤ (pi − ci)λ −

rθi ∀q ∈ [0, 1]. This implies that ((pi − ci)λ − rθi)[q − ηi]+ ≥ [hi(q)]
+ ∀q ∈ [0, 1],

since hi(q) ≤ 0 for q ∈ [0, ηi]. Thus, we have

∑
i∈M

∑
j∈N

hi(qij(S∗)) = max
S

∑
i∈M

∑
j∈N

hi(qij(S)) = max
S

∑
i∈M

∑
j∈N

[hi(qij(S))]+

≤ max
S

∑
i∈M

∑
j∈N

((pi − ci)λ− rθi)[qij(S)− ηi]+

= max
S

∑
i∈M

∑
j∈N

1− rη1−r
i

1− r
(pi − ci)λ(1− r)[qij(S)− ηi]+

≤ 1

1− r
max
S

∑
i∈M

∑
j∈N

(pi − ci)λ(1− r)[qij(S)− ηi]+

=
1

1− r
∑
i∈M

∑
j∈N

(pi − ci)λ(1− r)[qij(S̄)− ηi]+ ≤
1

1− r
∑
i∈M

∑
j∈N

[hi(qij(S̄))]+

=
1

1− r
∑
i∈M

∑
j∈N

hi(qij(S̄)),

where the second inequality follows from ηi ≤ 1 and the last equality follows from

the fact that qij(S̄) ≥ ηi ∀j ∈ S̄i, ∀i ∈M.

4.7 Numerical Experiments

In this section, we test the performance of the assortment and stocking decisions

obtained by solving approximations to problem (4.5)-(4.6) and examine how these

assortment and stocking decisions behave with changes in the utility correlation

parameters γi. We make use of the three-state dynamic program from Section 4.5

to obtain upper and lower bounds on the optimal objective value of problem (4.5)-

(4.6) and assortments and stocking decisions corresponding to lower bounds. In or-

der to address our central questions, we examine how the assortment and inventory

decisions obtained by the policy corresponding to the three state dynamic program
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change with the values of the parameters γi when all other problem parameters

are fixed. In addition, we use the two-state dynamic program from Section 4.6 to

obtain lower bounds on the optimal objective value and assortments and stocking

decisions corresponding to lower bounds, and compare the performance of these

assortments to the upper bound obtained by the three-state dynamic program.

4.7.1 Experimental Setup

In our test problems, we generate a number of problem instances. For each prob-

lem instance, we compute the value functions J̃i(·, ·, ·) for all i ∈M and record the

upper bound J̃1(0, 0, 0) on the optimal objective value of problem (4.5)-(4.6). We

also compute the assortment S3 = (S3
1 , . . . , S

3
m) corresponding to the greedy policy

with respect to the value functions J̃i(·, ·, ·) and compute
∑

i∈M
∑

j∈N hi(qij(S3))

to obtain a lower bound on the optimal objective value of problem (4.5)-(4.6) cor-

responding to the three-state policy (3-SP). In addition, we compute the value

functions G̃i(·, ·) for all i ∈ M and the assortment S2 = (S2
1 , . . . , S

2
m) corre-

sponding to the greedy policy with respect to these value functions. We compute∑
i∈M

∑
j∈N hi(qij(S2)) to obtain a lower bound on the optimal objective value of

problem (4.5)-(4.6) corresponding to the two-state policy (2-SP).

In each problem instance, we have m = 15 product types and n = 4 variants

of each product type, from which we need to come up with assortments to offer to

customers. Letting Wij be a sample from the uniform distribution over [0, 1], we

set the deterministic utility component of variant j of type i as µij = log(1+9Wij),

so that eµij is uniformly distributed over the interval [1, 10]. To generate the no-

purchase preference, we set v0 =
∑

i∈M
∑

j∈N e
µij/9, so that the probability of

non-purchase is 0.1 when all products are offered (Si = N) and γi = 1 for all i.
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To come up with the prices and costs of the product types, we sample the price

pi from the uniform distribution over [200, 500], the margin δi from the uniform

distribution over [0.3, 0.7] and set ci = δipi. We use r = 0.5 and α = 1 in all of our

experiments. We vary the customer volume λ over the values 1000, 2000 and 4000.

For each value of λ, we generate 60 individual problem instances.

For each problem instance, we generate a set of correlation parameters

(γ1, . . . , γm) from the uniform distribution over [γL, γH ] for [γL, γH ] =

[0.05, 0.15], [0.15, 0.25], . . . , [0.75, 0.85], [0.85, 1]. For each generated (γ1, . . . , γm)

vector for each problem instance, we compute the approximate value functions

J̃i(·, ·, ·) and G̃i(·, ·) using a fixed size of T = 200 intervals and record the assort-

ments and stocking decisions obtained by 3-SP. For each [γL, γH ] range, we test the

average performance of 3-SP and 2-SP against the upper bound obtained by 3-SP

over all problem instances and compute the average assortment sizes and average

inventory levels given by 3-SP over all problem instances.

4.7.2 Computational Results

Table 1 compares the expected profit bounds obtained by the dynamic program-

ming approximations with λ = 1000.. The first two columns in this table show the

range of values [γL, γH ] from which the parameters γi were generated. The third

column shows the average lower bound on the optimal expected profit obtained by

3-SP, where the average is taken over all 60 problem instances that we generate.

That is, using S3
k = (S3

1k, . . . , S
3
nk) to denote the assortment generated by 3-SP

for problem instance k, the third column gives 1
60

∑60
k=1

∑
i∈M

∑
j∈M hi(qij(S3

k)) for

each [γL, γH ] range. The fourth column gives the average lower bound on the

optimal expected profit obtained by 2-SP in a similar manner. The fifth column
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gives the average upper bound obtained by 3-SP, i.e., 1
60

∑60
k=1 J̃1k, where J̃1k is the

value of J̃1(0, 0, 0) obtained in problem instance k. The sixth and seventh columns

show 1
60

∑60
k=1 100

J̃1k−
∑
i∈M

∑
j∈N hi(qij(S3

k))

J̃1k
and 1

60

∑60
k=1 100

J̃1k−
∑
i∈M

∑
j∈N hi(qij(S2

k))

J̃1k
,

respectively, which are the average percentage gaps between the upper bound and

the lower bounds obtained by 3-SP and 2-SP. Tables 2 and 3 follow the same format

as Table 1 for λ = 2000 and λ = 4000 respectively. The columns of Table 4 from

column three onward show 1
60

∑60
k=1 |S3

ik|, the average number of products of type i

offered by 3-SP, for each [γL, γH ] range, for all i = 1, . . . , 15. Similarly, the columns

of Table 5 from three onward show 1
60

∑60
k=1

∑
j∈N x

∗
ij(S3

k), the average inventory

stocked of product type i by 3-SP, for each [γL, γH ] range, for all i = 1, . . . , 15.

The results in Tables 1,2, and 3 show that 3-SP can achieve lower-to-upper

bound gaps of under 2 percent, suggesting that assortments computed by 3-SP

perform very well relative to true optimal assortments on average for sufficiently

high values of T . We note that the upper and lower bounds on the optimal expected

profit obtained by 3-SP are both increasing as γL and γH increase, as one would

expect given that Theorem 8 indicates that the optimal objective value of problem

(4.5)-(4.6) is nondecreasing in γi. We also note that 2-SP generally performs better

for smaller values of γi.

Table 4 also indicates that the averages size of assortments offered by 3-SP are

increasing as γL and γH increase. While between zero and one product is offered

on average when γi values lie in the interval [0.05, 0.15], upwards of three out of a

potential four products are offered on average when γi values are generated from

[0.85, 1]. The results are consistent not only with Lemma 7, which indicates that

either ∅ or {1} is an optimal assortment for product type i as γi becomes small,

but also our hypothesis in Section 4.4 that optimal assortment sizes increase with
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γi. These properties are also illustrated in Figure 2, which shows a plot of the

average total number of products offered by 3-SP as a function of γH .

Table 5 indicates that the average inventory levels of products stocked in each

product type by 3-SP also tend to become larger as γL and γH increase. While we

know from Lemma 6 that total inventory stocked in a product type i increases as γi

increases for a fixed assortment S, it was not clear whether this result also applied

to optimal assortments, i.e., accounting for the fact that the optimal assortment

is not fixed and is also changing with the values of γi. The results in Table 3 show

that, while this may not be true, there is a general upward trend observable in the

sizes of assortments offered by 3-SP as the utilities of products in all types become

increasingly less correlated with one another. This is also illustrated in Figure 2,

which shows a plot of the average total number of products stocked by 3-SP as a

function of γH .

Our results also indicate that 2-SP generates assortments that can perform well

relative to upper bounds on optimal expected profits. In particular, the assort-

ments generated by 2-SP perform significantly better than the worst-case guarantee

of a 50% profit loss from solving problem (4.12)-(4.13) on average, attaining a worst

observed average percentage gap of 12.63% in our experiments. Examining Tables

2 and 3, we note that while the performance of 3-SP appears relatively insensitive

to changes in λ, the performance of 2-SP is much more sensitive, attaining a worst

observed average percentage gap of only 4.19% when λ = 4000. This suggests

that the number of grid points T in each dimension is the most significant driver

of performance in 3-SP, and that 2-SP may be more useful for problems with a

large customer volume due to its reduced computational effort and relatively good

performance.
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γL γH
Avg. Expected Profit Bounds (×105) Avg. Gap with Upper Bound
Lower (3-SP) Lower (2-SP) Upper 3-SP 2-SP

0.05 0.15 1.272 1.241 1.287 1.17 % 3.56 %
0.15 0.25 1.277 1.243 1.301 1.83 % 4.40 %
0.25 0.35 1.291 1.244 1.316 1.99 % 5.46 %
0.35 0.45 1.310 1.242 1.335 1.92 % 6.87 %
0.45 0.55 1.332 1.243 1.357 1.87 % 8.30 %
0.55 0.65 1.355 1.245 1.379 1.76 % 9.64 %
0.65 0.75 1.379 1.247 1.401 1.64 % 10.89 %
0.75 0.85 1.402 1.251 1.423 1.55 % 11.93 %
0.85 1.00 1.429 1.263 1.449 1.41 % 12.63 %

Table 4.1: Performance of 3-SP and 2-SP (λ = 1000)

γL γH
Avg. Expected Profit Bounds (×105) Avg. Gap with Upper Bound
Lower (3-SP) Lower (2-SP) Upper 3-SP 2-SP

0.05 0.15 2.867 2.854 2.895 1.01 % 1.41 %
0.15 0.25 2.881 2.869 2.929 1.65 % 2.03 %
0.25 0.35 2.917 2.869 2.971 1.82 % 3.43 %
0.35 0.45 2.967 2.876 3.018 1.70 % 4.60 %
0.45 0.55 3.021 2.888 3.073 1.69 % 5.80 %
0.55 0.65 3.077 2.916 3.125 1.55 % 6.48 %
0.65 0.75 3.134 2.945 3.179 1.41 % 7.14 %
0.75 0.85 3.187 2.987 3.228 1.30 % 7.27 %
0.85 1.00 3.249 3.033 3.286 1.16 % 7.48 %

Table 4.2: Performance of 3-SP and 2-SP (λ = 2000)

4.8 Conclusions

We formulated a joint assortment offering and stocking problem where a firm offers

a number of heterogeneous products that can be designated into subgroups, where

customers’ product evaluations are correlated. Through analysis of our problem,

we demonstrated relationships between product evaluation correlation and optimal

product variety, optimal inventory levels and optimal profits. The relationships

demonstrated align with trends observed in practice. In addition, we provided

structural properties of optimal assortments and developed dynamic-programming

based solution methods to obtain upper bounds on the optimal expected profit and

near-optimal solutions. Our numerical experiments demonstrated that our approx-
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γL γH
Avg. Expected Profit Bounds (×105) Avg. Gap with Upper Bound
Lower (3-SP) Lower (2-SP) Upper 3-SP 2-SP

0.05 0.15 5.171 5.170 5.217 0.92 % 0.93 %
0.15 0.25 5.196 5.182 5.283 1.65 % 1.90 %
0.25 0.35 5.270 5.202 5.360 1.68 % 2.89 %
0.35 0.45 5.359 5.248 5.450 1.68 % 3.65 %
0.45 0.55 5.462 5.323 5.548 1.56 % 4.03 %
0.55 0.65 5.567 5.403 5.646 1.42 % 4.19 %
0.65 0.75 5.673 5.507 5.746 1.29 % 4.10 %
0.75 0.85 5.763 5.591 5.833 1.21 % 4.06 %
0.85 1.00 5.875 5.703 5.936 1.05 % 3.84 %

Table 4.3: Performance of 3-SP and 2-SP (λ = 4000)

imation methods can obtain well-performing solutions in reasonable computation

time.
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Figure 4.2: Average total products offered (top) and total inventory (bottom)
stocked by 3-SP as a function of γH (λ = 1000)
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Table 4.4: Average assortment sizes offered by 3-SP by product type (λ =
1000)
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Table 4.5: Average inventory stocked by 3-SP by product type (λ = 1000)
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CHAPTER 5

CONCLUSIONS

In this thesis, we considered three problems arising from scenarios in which

customers choose among a number of substitutable products that can be designated

into subgroups, such that products within a subgroup are more similar to one

another than to products within a different subgroup. In each problem, we used

the Nested Logit (NL) model to capture the customer’s choice process, in which

product evaluations for different products are allowed to be correlated. The central

decisions for the retailer considered in this thesis were the prices of the offered

products and the subset of products to offer, with some consideration also given

to the amount of each offered product to stock in the fourth chapter.

In Chapter 2, we studied a pricing problem that arose from a scenario in which

a firm offers a product through multiple sales channels where it is grouped together

with competing products, and must choose the price to offer in each channel. We

provided structural properties of the objective function and developed a sequential

procedure for obtaining optimal prices. We also showed that the structure of opti-

mal prices differs from that which is obtained when using the simpler Multinomial

Logit (MNL) model, a special case of the NL model, highlighting the impact of

taking product evaluation correlation into account when making pricing decisions.

In Chapter 3, we considered a more general pricing problem under the NL model,

where a firm controls multiple products categories with multiple products in each

category, with the added constraint that each product’s price must satisfy a lower

and upper bound. We also considered an extension of this problem where the

optimal assortment to offer must be chosen in addition to the prices of the offered

products. We provided efficient approximation methods that allow the user to
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specific performance guarantees in advance, where the final solutions are obtained

via solving linear programs. Through computational experiments, we show that

our methods can vastly outperform naive heuristics for solving constrained pricing

problems under the NL model. In Chapter 4, we studied a joint assortment offer-

ing and stocking problem, motivated by a desire to explain relationships between

product evaluation correlation and offered product variety that tend to appear in

practice. We provided structural properties of optimal assortments for our prob-

lem, and used these properties to establish results concerning relationships between

evaluation correlation and optimal product variety, inventory levels and profit that

aligned with trends observed in practice. In addition, while our original problem

is difficult, we developed multiple strategies for efficiently obtaining near-optimal

solutions and upper bounds on optimal expected profits.

There are several extensions of the work in this thesis that may be pursued in

future research. In the pricing setting of Chapters 2 and 3, it would be interesting

to consider more general constraints on prices, such as polyhedral constraints. An

example of this is price laddering. Generally, high-end products should be priced

above lower-end products in order to stay consistent with quality expectations,

but low-end products with low customer price sensitivities may be priced higher as

a result of optimizing prices without constraints. Price ladder constraints ensure

that lower-end products must be priced below their high-end counterparts.

Considering extensions to Chapter 4, while optimal product variety within a

product type does not always increase with independence among product evalua-

tions within that type, our numerical experiments suggest that this tends to be true

in practice, and it may be possible to identify certain conditions under which this

is the case. The question of whether a constant-factor approximation algorithm
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for our original problem exists remains open. While we developed an approximate

problem that provides a 2-approximation to the original problem, we still needed

to use a dynamic programming-based method to solve this approximate problem.

In addition, it may be interesting to consider instances of our problem where there

are constraints on the offered assortment, e.g., cardinality or capacity constraints.

Another extension in both pricing and assortment problems is to remove the as-

sumption that a customer can purchase only one item, allowing multiple purchases

by one customer. This inherently changes the way that utilities are assigned to

items. For instance, a customer may come into a grocery store looking for a specific

combination of ingredients in order to make a recipe, but may elect to leave with-

out buying anything if one of those ingredients is missing from the store’s offered

assortment. With some modifications, there may be room within the framework

of the MNL and NL models to capture these behaviors.
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APPENDIX A

OMITTED RESULTS

A.1 Proof of Proposition 2

In this section, we complete the proof of Proposition 2. As mentioned in the proof

of Proposition 2 in the main text, the result follows if we can show that

max
wi∈[Li,Ui]

{(∑
j∈N

wij

)γi ∑j∈N wij (κij − ηij logwij)∑
j∈N wij

−
(∑
j∈N

wij

)γi
z

}

= max
yi∈[L̄i,Ūi]

{
yγii

gi(yi)

yi
− yγii z

}
.

We let ζ∗L and ζ∗R respectively be the optimal objective values of the problems

on the left and right side above. First, we show that ζ∗L ≤ ζ∗R. We let w∗i be an

optimal solution to the problem on the left side above. Since w∗i ∈ [Li,Ui], we have∑
j∈N w

∗
ij ≥

∑
j∈N Lij = L̄i. We proceed under the assumption that we also have∑

j∈N w
∗
ij ≤ Ūi and we carefully address this assumption later on. The solution w∗i

is feasible to problem (3.5) when this problem is solved with yi =
∑

j∈N w
∗
ij. Thus,

letting ŷi =
∑

j∈N w
∗
ij, we have gi(ŷi) ≥

∑
j∈N w

∗
ij (κij − ηij logw∗ij). Furthermore,

since
∑

j∈N w
∗
ij ∈ [L̄i, Ūi], the solution ŷi is feasible to the problem on the right side

above. In this case, noting the last inequality and the fact that ŷi =
∑

j∈N w
∗
ij, the

solution ŷi is feasible to the problem on the right side above providing an objective

value for this problem that is larger than the one provided by the solution w∗i for

the problem on the left side. So, we get ζ∗R ≥ ζ∗L. To address the assumption

that
∑

j∈N w
∗
ij ≤ Ūi, assume on the contrary that

∑
j∈N w

∗
ij > Ūi. In this case,

if we solve problem (3.5) with yi =
∑

j∈N w
∗
ij > Ūi and use ŵi to denote an

optimal solution, then the discussion right after problem (3.5) implies that the first

constraint in this problem is not tight at the optimal solution, yielding
∑

j∈N ŵij <
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yi =
∑

j∈N w
∗
ij. Furthermore, if we solve problem (3.5) with yi =

∑
j∈N w

∗
ij, then

w∗i is a feasible solution to this problem, indicating that we have
∑

j∈N w
∗
ij (κij −

ηij logw∗ij) ≤
∑

j∈N ŵij (κij − ηij log ŵij). Therefore, we obtain

(∑
j∈N

w∗ij

)γi ∑j∈N w
∗
ij (κij − ηij logw∗ij)∑

j∈N w
∗
ij

−
(∑
j∈N

w∗ij

)γi
z

<
(∑
j∈N

ŵij

)γi ∑j∈N ŵij (κij − ηij log ŵij)∑
j∈N ŵij

−
(∑
j∈N

ŵij

)γi
z,

where we use the fact that
∑

j∈N w
∗
ij (κij−ηij logw∗ij) ≤

∑
j∈N ŵij (κij−ηij log ŵij),

γi ≤ 1,
∑

j∈N ŵij <
∑

j∈N w
∗
ij and z > 0. The inequality above contradicts the

fact that w∗i is an optimal solution to the problem on the left side above. So, we

must have
∑

j∈N w
∗
ij ≤ Ūi.

Second, we show that ζ∗L ≥ ζ∗R. Using y∗i to denote an optimal solution to the

problem on the right side above, we let ŵi be an optimal solution to problem (3.5)

when this problem is solved with yi = y∗i , in which case, gi(y
∗
i ) =

∑
j∈N ŵij (κij −

ηij log ŵij). Furthermore, since y∗i ∈ [L̄i, Ūi], the discussion right after problem

(3.5) indicates that the first constraint in problem (3.5) has to be satisfied as

equality, yielding
∑

j∈N ŵij = y∗i . Thus, the last two equalities imply that ŵi is a

feasible solution to the problem on the left side above yielding the same objective

value provided by the solution y∗i for the problem on the right side. So, we get

ζ∗L ≥ ζ∗R.

A.2 Lemma 9

Lemma 9. Letting (S∗i ,w
∗
i ) be an optimal solution to the maximization problem on

the right side of (3.17), if l ∈ S∗i , then we have κil−ηil logw∗il ≥ (1−γi)Ri(S
∗
i ,w

∗
i )+

γi z.
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Proof. To get a contradiction, assume that κil−ηil logw∗il < (1−γi)Ri(S
∗
i ,w

∗
i )+γi z.

We let Ŝi be the assortment obtained by taking product l out of S∗i . In this case,

we get

Wi(Ŝi,w
∗
i )
γi(Ri(Ŝi,w

∗
i )− z) =

∑
j∈Ŝi w

∗
ij (κij − ηij logw∗ij − z)

Wi(Ŝi,w∗i )
1−γi

=

∑
j∈S∗i

w∗ij (κij − ηij logw∗ij − z)− w∗il (κil − ηil logw∗il − z)

Wi(Ŝi,w∗i )
1−γi

, (A.1)

where the first equality uses the definitions of Ri(Si,wi) and Wi(Si,wi) and the

second equality uses the fact that S∗i = Ŝi ∪ {l}. To lower bound to numerator of

the last fraction in (A.1), we note that κil−ηil logw∗il−z < (1−γi)(Ri(S
∗
i ,w

∗
i )−z).

In this case, we can lower bound the numerator of the last fraction in (A.1) by

∑
j∈S∗i

w∗ij (κij − ηij logw∗ij − z)− (1− γi)w∗il (Ri(S
∗
i ,w

∗
i )− z)

= (Ri(S
∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i )− (1− γi)w∗il) ≥ 0,

where the equality follows by using the definitions of Ri(Si,wi) and Wi(Si,wi)

and rearranging the terms. To see that the inequality above holds, we observe

that we must have Ri(S
∗
i ,w

∗
i )−z ≥ 0, otherwise the optimal objective value of the

maximization problem on the right side of (3.17) is negative and we can set S∗i = ∅

to get a better objective value of zero. Furthermore, Wi(S
∗
i ,w

∗
i ) ≥ w∗il and γi ≤ 1 so

that Wi(S
∗
i ,w

∗
i )−(1−γi)w∗il ≥ 0, in which case, the inequality above indeed holds.

We can upper bound the denominator of the last fraction in (A.1) by observing the

fact that Wi(Ŝi,w
∗
i )

1−γi ≤ Wi(S
∗
i ,w

∗
i )

1−γi + (1 − γi)Wi(S
∗
i ,w

∗
i )
−γi (Wi(Ŝi,w

∗
i ) −

Wi(S
∗
i ,w

∗
i )), which follows by recalling u1−γi is a concave function of u and using

the subgradient inequality. Therefore, we can lower bound the last fraction in
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(A.1) as∑
j∈S∗i

w∗ij (κij − ηij logw∗ij − z)− w∗il (κil − ηil logw∗il − z)

Wi(Ŝi,w∗i )
1−γi

>
(Ri(S

∗
i ,w

∗
i )− z) (Wi(S

∗
i ,w

∗
i )− (1− γi)w∗il)

Wi(S∗i ,w
∗
i )

1−γi + (1− γi)Wi(S∗i ,w
∗
i )
−γi (Wi(Ŝi,w∗i )−Wi(S∗i ,w

∗
i ))

. (A.2)

Noting that Wi(Ŝi,w
∗
i )−Wi(S

∗
i ,w

∗
i ) = −w∗il and rearranging the terms in the last

fraction, we observe that the last fraction is equal to Wi(S
∗
i ,w

∗
i )
γi(Ri(S

∗
i ,w

∗
i ) −

z). Thus, (A.1) and (A.2) show that Wi(Ŝi,w
∗
i )
γi(Ri(Ŝi,w

∗
i ) − z) >

Wi(S
∗
i ,w

∗
i )
γi(Ri(S

∗
i ,w

∗
i ) − z), contradicting the fact that (S∗i ,w

∗
i ) is an optimal

solution to the maximization problem on the right side of (3.17). So, our claim

holds and we must have κil − ηil logw∗il ≥ (1− γi)Ri(S
∗
i ,w

∗
i ) + γi z.

A.3 Theorem 10

Theorem 10. Letting Z∗ and ẑ respectively be the optimal objective values of

problems (3.2) and (3.24), we have ẑ ≥ Z∗. Furthermore, for some ρ ≥ 0, if the

grid points in problem (3.24) satisfy gi(ȳ
t+1
i ) ≤ (1+ρ) gi(ȳ

t
i) for all t = 1, . . . , τi−1,

i ∈M , then we have (1 + ρ)Z∗ ≥ ẑ.

Proof. First, we show that ẑ ≥ Z∗. To get a contradiction, assume that ẑ < Z∗.

Noting that ẑ is the optimal objective value of problem (3.24), we use ẑ and

(x̂1, . . . , x̂m) to denote an optimal solution to this problem. By Proposition 2, Z∗

corresponds to the value of z that satisfies (3.6), in which case, if we let x∗i be

the optimal objective value of the maximization problem on the right side of (3.6)

when this problem is solved with z = Z∗, then we get Z∗ =
∑

i∈M x∗i . For all

i ∈M , we let y∗i be an optimal solution to the maximization problem on the right

side of (3.6) when this problem is solved with z = Z∗. We let ti ∈ {1, . . . , τi − 1}

121



be such that y∗i ∈ [ȳtit , ȳ
ti+1
i ], where the points {ȳti : t = 1, . . . , τi} are the collection

of grid points in problem (3.24). Since gi(·) is increasing and y∗i ≤ ȳti+1
i , we have

gi(y
∗
i ) ≤ gi(ȳ

ti+1
i ). Also, since γi ≤ 1 and y∗i ≥ ȳtii , we have (y∗i )

1−γi ≥ (ȳtii )1−γi . In

this case, using the last two observations, we obtain

x̂i ≥ (ȳtii )γi
gi(ȳ

ti+1
i )

ȳtii
− (ȳtii )γi ẑ ≥ (y∗i )

γi
gi(y

∗
i )

y∗i
− (y∗i )

γi ẑ

≥ (y∗i )
γi
gi(y

∗
i )

y∗i
− (y∗i )

γi Z∗ = x∗i ,

where the first inequality is by the fact that ẑ and (x̂1, . . . , x̂m) form a feasible

solution to problem (3.24), the third inequality follows from the fact that ẑ < Z∗

and the equality follows from the definitions of x∗i and y∗i . Since ẑ and (x̂1, . . . , x̂m)

form a feasible solution to problem (3.24), we have ẑ ≥
∑

i∈M x̂i, whereas we

have Z∗ =
∑

i∈M x∗i by the discussion at the beginning of the proof. In this case,

adding the chain of inequalities above over all i ∈ M , we obtain ẑ ≥
∑

i∈M x̂i ≥∑
i∈M x∗i = Z∗, which contradicts the fact that ẑ < Z∗. Therefore, we must have

ẑ ≥ Z∗.

Second, we show that (1+ρ)Z∗ ≥ ẑ. If we let x∗i be as defined in the paragraph

above, then we can follow the same line of reasoning that we follow above to see

that Z∗ =
∑

i∈M x∗i . For any t = 1, . . . , τi − 1, we note that ȳti is a feasible

but not necessarily an optimal solution to the maximization problem on the right

side of (3.6) when this problem is solved with z = Z∗. Therefore, it follows that

x∗i ≥ (ȳti)
γi gi(ȳ

t
i)/ȳ

t
i − (ȳti)

γi Z∗ for all t = 1, . . . , τi − 1. If we multiply the last

inequality by 1 + ρ, then we obtain

(1 + ρ)x∗i ≥ (ȳti)
γi

(1 + ρ) gi(ȳ
t
i)

ȳti
− (ȳti)

γi (1 + ρ)Z∗

≥ (ȳti)
γi
gi(ȳ

t+1
i )

ȳti
− (ȳti)

γi (1 + ρ)Z∗,

where the second inequality follows by noting the fact that gi(ȳ
t+1
i ) ≤ (1+ρ) gi(ȳ

t
i)

122



for all t = 1, . . . , τi − 1. Focusing on the first and last expressions in the chain

of inequalities above and noting that Z∗ =
∑

i∈M x∗i , the solution (1 + ρ)Z∗ and

((1 + ρ)x∗1, . . . , (1 + ρ)x∗m) is feasible to problem (3.24). Thus, the objective value

provided by this solution for problem (3.24) is at least as large as the optimal

objective value. Since the solution (1+ρ)Z∗ and ((1+ρ)x∗1, . . . , (1+ρ)x∗m) provides

an objective value of (1 + ρ)Z∗ for problem (3.24), we get (1 + ρ)Z∗ ≥ ẑ.

A.4 Proof of Proposition 3

We first note that limγi→0 e
(µik−µij)/γi is equal to 1 if µik = µij, 0 if µik < µij and

∞ if µik > µij. To show the first part, note that Vi(Si, γi) = eγi log(
∑
j∈Si

eµij/γi ).

Using L’Hospital’s rule, we note that

lim
γi→0

γi log(
∑
j∈Si

eµij/γi) = lim
γi→0

log(
∑

j∈Si e
µij/γi)

1/γi

= lim
γi→0

∑
j∈Si

{
µij∑

k∈Si e
(µik−µij)/γi

}
= argmax

k∈Si
µik

and the result follows. To show the second part, we have

lim
γi→0

eµij/γi

Vi(Si, γi)1/γi
= lim

γi→0

1∑
k∈N e

(µik−µij)/γi
,

which is equal to 1 if µij = maxk∈Si µik and 0 otherwise.

A.5 Proof of Lemma 6

We have∑
j∈N

x∗ij(S,γ) = λQi(S,γ) + αλrΦ−1(1− ci/pi)Qi(S,γ)r
∑
j∈Si

qj|i(Si, γi)
r
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and

∂

∂γi

[∑
j∈Si

qj|i(Si, γi)
r

]

=
∑
j∈Si

r

(
eµij/γi

Vi(Si, γi)1/γi

)r−1
1

γ2
i

(
− µij +

∑
k∈Si µike

µik/γi∑
k∈Si e

µik/γi

)
eµij/γi∑
k∈Si e

µik/γi

=
r

γ2
i

{
−
∑

j∈Si µije
rµij/γi

(
∑

k∈Si e
µik/γi)r

+

∑
k∈Si µike

µik/γi∑
k∈Si e

µik/γi

∑
j∈Si e

rµij/γi

(
∑

k∈Si e
µik/γi)r

}

=
r

γ2
i

∑
j∈Si e

rµij/γi

(
∑

j∈Si e
µij/γi)r

{
−
∑

j∈Si µije
rµij/γi∑

j∈Si e
rµij/γi

+

∑
j∈Si µije

µij/γi∑
j∈Si e

µij/γi

}
.

The derivative of
∑
j∈Si

µije
rµij/γi∑

j∈Si
erµij/γi

with respect to r is

1

γi

[∑
j∈Si µ

2
ije

rµij/γi∑
j∈Si e

rµij/γi
−

(∑
j∈Si µije

rµij/γi∑
j∈Si e

rµij/γi

)2]
,

and the bracketed term is nonnegative by Jensen’s Inequality. Thus,
∑
j∈Si

µije
rµij/γi∑

j∈Si
µije

rµij/γi

is increasing in r and is equal to
∑
j∈Si

µije
µij/γi∑

j∈Si
eµij/γi

when r = 1, so

∑
j∈Si µije

rµij/γi∑
j∈Si e

rµij/γi
≤
∑

j∈Si µije
µij/γi∑

j∈Si e
µij/γi

∀r ∈ [0, 1).

Thus, ∂
∂γi

[∑
j∈Si qj|i(Si, γi)

r
]
≥ 0. Since ∂

∂γi
Qi(S,γ) ≥ 0 also, we have

∂
∂γi

∑
j∈N x

∗
ij(S,γ) ≥ 0. To show that ∂

∂γi

∑
j∈N x

∗
lj(S,γ) ≤ 0 for all l 6= i, note

that

∑
j∈N

x∗lj(S,γ) = λQl(S,γ) + αλrΦ−1(1− cl/pl)Ql(S,γ)r
∑
j∈Si

qj|l(Sl, γl)
r

and qj|l(Sl, γl)
r does not depend on γi, and we have ∂

∂γi
Ql(S,γ) ≤ 0 since

∂
∂γi
Vi(Si, γi) ≥ 0, so the result follows.
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A.6 Proof of Lemma 7

By Proposition 3, the limit of the expected profit as γi → 0 for a given assortment

S = (S1, . . . , Sm) and parameters γ−i ∈ (0, 1]m−1 is

λ
(pi − ci)emaxk∈Si µik +

∑
l 6=i(pl − cl)Vl(Sl, γl)

v0 + emaxk∈Si µik +
∑

t6=i Vl(Sl, γl)

− θi

(
emaxk∈Si µik

v0 + emaxk∈Si µik +
∑

l 6=i Vl(Sl, γl)

)r∑
j∈N

1
(
j = argmax

k∈Si
µik

)r
−
∑
l 6=i

θl

(
Vl(Sl, γl)

v0 + emaxk∈Si µik +
∑

t6=i Vt(St, γt)

)r∑
j∈Sl

(
eµlj/γl

Vl(Sl, γl)1/γl

)r
.

Suppose that Si ∈ P and Si is nonempty, so that 1 ∈ Si. Then maxk∈S∗i µik = µi1.

In addition, since we are assuming that the deterministic utilities of products within

each type are distinct, the sum
∑

j∈N 1(j = argmaxk∈Si µik)
r is simply equal to 1

and does not depend on the choice of Si. Thus, as γi approaches zero, either ∅ or

{1} must be an optimal assortment for product type i.

125



BIBLIOGRAPHY

[1] G. Allon, A. Federgruen, and M. Pierson. Price competition under multino-
mial logit demand functions with random coefficients. Management Science,
2011. To appear.

[2] A. Alptekinoglu and C. J. Corbett. Mass customization vs. mass production:
Variety and price competition. Manufacturing & Service Operations Manage-
ment, 10(2):204–207, 2008.

[3] G. Aydin and E. L. Porteus. Joint inventory and pricing decisions for an
assortment. Operations Research, 56(5):1247–1255, 2008.

[4] G. Aydin and J. K. Ryan. Product line selection and pricing under the multi-
nomial logit choice model. Technical report, Stanford University, Stanford,
CA, 2000.

[5] D. R. Bell and J. M. Lattin. Shopping behavior and consumer preference
for store price format: Why large basket shoppers prefer EDLP. Marketing
Science, 17(1):66–68, 1998.

[6] M. Ben-Akiva and S. Lerman. Discrete Choice Analysis: Theory and Appli-
cation to Travel Demand. MIT Press in Transportation Studies, Cambridge,
MA, 1994.

[7] A. Borsch-Supan. On the compatibility of nested logit models with utility
maximization. Journal of Econometrics, 43:373–388, 1990.

[8] J. J. M. Bront, I. Mendez-Diaz, and G. Vulcano. A column generation algo-
rithm for choice-based network revenue management. Operations Research,
57(3):769–784, 2009.

[9] R. E. Bucklin and S. Gupta. Brand choice, purchase incidence, and segmen-
tation: An integrated modeling approach. Journal of Marketing Research,
29(2):201–215, 1992.

[10] J.M. Davis, G. Gallego, and H. Topaloglu. Assortment optimization under
variants of the nested logit model. Operations Research, 2013. To appear.

[11] L. Dong, P. Kouvelis, and Z. Tian. Dynamic pricing and inventory control
of substitute products. Manufacturing & Service Operations Management,
11(2):317–339, 2009.

126



[12] G. Gallego, G. Iyengar, R. Phillips, and A. Dubey. Managing flexible products
on a network. Computational Optimization Research Center Technical Report
TR-2004-01, Columbia University, 2004.

[13] G. Gallego and H. Topaloglu. Constrained assortment optimization for the
nested logit model. Management Science, 2012. To appear.

[14] G. Gallego and R. Wang. Multi-product price optimization and competition
under the nested attraction model. Technical report, Columbia University,
2011.

[15] V. Gaur and D. Honhon. Assortment planning and inventory decisions under
a locational choice model. Management Science, 52(10):1528–1543, 2006.

[16] W. Hanson and K. Martin. Optimizing multinomial logit profit functions.
Management Science, 42(7):992–1003, 1996.

[17] C. P. Haugtvedt, P. M. Herr, and F. R. Kardes, editors. Handbook of Con-
sumer Psychology. Psychology Press, New York, NY, 2008.

[18] D. Honhon, V. Gaur, and S. Seshadri. Assortment planning and inventory de-
cisions under stock-out based substitution. Operations Research, 58(5):1364–
1379, 2010.

[19] W. J. Hopp and Y. Xu. Product line selection and pricing with modularity
in design. Manufacturing & Service Operations Management, 7(3):172–187,
2005.

[20] S. Jagabathula, V. Farias, and D. Shah. Assortment optimization under gen-
eral choice. In INFORMS Conference, Charlotte, NC, 2011.

[21] L. A. Johnson and D. C. Montgomery. Operations Research in Production
Planning, Scheduling and Inventory Control. Wiley, New York, NY, 1974.

[22] A. Kok and Y. Xu. Optimal and competitive assortments with endogenous
pricing under hierarchical consumer choice models. Management Science,
57(9):1546–1563, 2011.

[23] S. Kunnumkal and H. Topaloglu. A refined deterministic linear program for
the network revenue management problem with customer choice behavior.
Naval Research Logistics Quarterly, 55(6):563–580, 2008.

127



[24] H. Li and W. T. Huh. Pricing multiple products with the multinomial logit
and nested models: Concavity and implications. Manufacturing & Service
Operations Management, 2011. To appear.

[25] Q. Liu and G. van Ryzin. On the choice-based linear programming model for
network revenue management. Manufacturing & Service Operations Manage-
ment, 10(2):288–310, 2008.

[26] R. D. Luce. Individual Choice Behavior: A Theoretical Analysis. Wiley, New
York, NY, 1959.

[27] B. Maddah and E. K. Bish. Joint pricing, assortment, and inventory decisions
for a retailers product line. Naval Research Logistics, 54(3):315–330, 2007.

[28] D. McFadden. Conditional logit analysis of qualitative choice behavior. In
P. Zarembka, editor, Frontiers in Economics, pages 105–142. Academic Press,
1974.

[29] D. McFadden. Econometric models for probabilistic choice among products.
The Journal of Business, 53(3):S13–29, 1980.

[30] J. Meissner, A. Strauss, and K. Talluri. An enhanced concave program re-
laxation for choice network revenue management. Production and Operations
Management, 2012. To appear.

[31] I. Mendez-Diaz, J. J. M. Bront, G. Vulcano, and P. Zabala. A branch-and-
cut algorithm for the latent-class logit assortment problem. Discrete Applied
Mathematics, 2010. To appear.

[32] A. Morales, B. E. Kahn, L. McAllister, and S. M. Broniarczyk. Perceptions
of assortment variety: The effects of congruency between consumers’ internal
and retailers’ external organization. Journal of Retailing, 81(2):159–169, 2005.

[33] P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. A PTAS for capaci-
tated sum-of-ratios optimization. Operations Research Letters, 37(4):230–238,
2009.

[34] P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. Dynamic assortment
optimization with a multinomial logit choice model and capacity constraint.
Operations Research, 58(6):1666–1680, 2010.

[35] P. Rusmevichientong, D. B. Shmoys, C. Tong, and H. Topaloglu. Assortment

128



optimization under the multinomial logit model with random choice parame-
ters. Technical report, Cornell University, School of Operations Research and
Information Engineering, 2013.

[36] J.-S. Song and Z. Xue. Demand management and inventory control for sub-
stitutable products. Technical report, Duke University, Durham, NC, 2007.

[37] K. Talluri and G. van Ryzin. Revenue management under a general discrete
choice model of consumer behavior. Management Science, 50(1):15–33, 2004.

[38] H. Topaloglu. Joint stocking and product offer decisions under the multinomial
logit model. Production and Operations Management, 2012. To appear.

[39] G. van Ryzin and S. Mahajan. On the relationship between inventory costs
and variety benefits in retail assortments. Management Science, 45(11):1496–
1509, 1999.

[40] R. Wang. Assortment management under the generalized attraction model
with a capacity constraint. Technical report, HP Labs, Palo Alto, CA, 2012.

[41] R. Wang. Capacitated assortment and price optimization under the multino-
mial logit model. Operations Research Letters, 2012. To appear.

[42] H. C. W. L. Williams. On the formation of travel demand models and
economic evaluation measures of user benefit. Environment and Planning,
9(3):285–344, 1977.

[43] D. Zhang and D. Adelman. An approximate dynamic programming approach
to network revenue management with customer choice. Transportation Sci-
ence, 42(3):381–394, 2009.

[44] D. Zhang and Z. Lu. Assessing the value of dynamic pricing in network revenue
management. INFORMS Journal on Computing, 2011. To appear.

129


