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Abstract 

Hidden Markov models (HMMs) are a class of stochastic models that have 

proven to be powerful tools for the analysis of molecular sequence data. A 

hidden Markov model can be viewed as a black box that generates sequences 

of observations. The unobservable internal state of the box is stochastic and is 

determined by a finite state Markov chain. The observable output is stochastic 

with distribution determined by the state of the hidden Markov chain. We 

present a Bayesian solution to the problem of restoring the sequence of states 

visited by the hidden Markov chain from a given sequence of observed outputs. 

Our approach is based on a Monte Carlo Markov chain algorithm that allows us 

to draw samples from the full posterior distribution of the hidden Markov chain 

paths. The problem of estimating the probability of individual paths and the 

associated Monte Carlo error of these estimates is addressed. The method is 

illustrated by considering a problem of DNA sequence multiple alignment. The 

special structure for the hidden Markov model used in the sequence alignment 

problem is considered in detail. In conclusion we discuss certain interesting 

aspects of biological sequence alignments that become accessable through the 

Bayesian approach to HMM restoration. 
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1 Introduction 

1.1 Hidden Markov Models 

Hidden Markov models (HMMs) are a class of stochastic models that have proven 

to be useful in a wide range of applications for modeling highly structured sequences 

of data. Applications of HMMs to the problem of machine speech recognition have 

been reviewed by Juang and Rabiner (1991). Models for ion channel kinetics have 

been developed by Fredkin and Rice (1992). This paper will focus on HMMs that 

have proven to be useful in molecular biology applications. We introduce a Bayesian 

approach to problem of restoring the hidden states. 

A hidden Markov model can be viewed as a black box that generates sequences 

of observations. The unobservable internal state of the box is stochastic and is 

determined by a finite state Markov chain. The observable outputs of the black 

box are stochastic with distribution determined by the current state of the hidden 

Markov chain. Let { St, t = 0, 1, 2, ... } be an unobserved Markov chain on the state 

space {1, 2, ... , L} and let {Yt, t = 0, 1, 2, ... } be an observed process that takes 

values in the set {1, 2, ... , K}. 

The restriction to discrete observations is not essential but it is adequate for 

the applications considered here. The observed data will be either DNA or protein 

sequences. A DNA sequence can be represented as a string of characters on the 

alphabet {A, C, G, T}, K = 4. The individual letters represent the different bases in 

the linear DNA molecule. In our example, we extend this alphabet to include the 

letter N and thus K = 5. A protein sequence can be represented as a string over a 

K = 20 letter alphabet in which letters represent the different amino acid types. 

In more detail, an HMM with L hidden states and K observable outputs is 

specified by three sets of distributions. First is the initial distribution of the hidden 

Markov chain 

Pr(so = i), i E {1, ... , L}. (1) 
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Second is the transition distribution of the hidden Markov chain as represented by 

the L x L matrix A = [ Aij] with elements 

Aij = Pr (st+l =jISt= i), i E {1, ... , L}, j E {1, ... , L}. (2) 

Third is the set of output distributions of the hidden states as represented by the 

L x K matrix II= [7rij] with elements 

1fij = Pr (Yt = j I St = i), i E {1, ... , L }, j E {1, ... , K}. (3) 

Both matrices A and II are stochastic, i.e., they are formed by nonegative numbers 

and their row sums are equal to one. Thus the parameter(}= (A, IT) takes values in 

a compact set 8 which is a direct product of L £-dimensional and L K-dimensional 

simplexes. 

The number of hidden states and their connectivity, the set of nonzero Aij, 

together define the architecture of an HMM. The choice of an architecture is typically 

driven by an application for which the HMM is intended. It is convenient to consider 

a minor variation on the basic setup, as follows. Along with the states that produce 

outputs, we consider two additional states that do not produce any output. We call 

these begin (B) and end (E). The rest will be referred to as "main" states. Without 

loss of generality we assume that the initial distribution is concentrated in the state 

B. Thus Pr (so= B)= 1. The state transition matrix A, whose dimension becomes 

(L + 2) x (L + 2), is modified as follows 

1. The state B is unattainable from any state including itself, AiB = 0, for all i. 

2. State E is absorbing so that AEE = 1 and is recurrent so there is a stopping 

time n* = min{k: Sk = E,k ~ 0} such that Pr(n* ~ oo) = 1. 

3. The direct transition from state B to state E is not allowed, ABE= 0. 

Introduction of the absorbing state E allows us to deal with finite realizations of the 

HMM up to the stopping time n*. We put n = n* -1 and use the following notation 
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for the sequence of hidden states and the corresponding sequence of outputs 

Y = Yl Y2 • • · Yn· 

The states so = B and Bn+I = E will be supressed in the notation, except where 

they are explicitly needed below. 

Suppose that we observe N independent realizations of an HMM. We will denote 

the set of observed outputs by 

Y= J ~~ 
l YN = 

Y1,1 Y1,2 · · • , Y1,n1 ) 

YN,l YN,2 • • • , YN,nN • 

Table 1 shows an example of six DNA sequences (yi, ... , Y6) that are the data for 

our analysis in section 4. The sequences of paths through the hidden Markov chain 

that produced Y will be denoted by 

S = J :1 = St,l St,2 · · ·, St,n, ) . 

l SN = SN,l SN,2 · · ·, SN,nN 

Our goal in this work is to develop a method of restoring the sequences of the paths 

S given the observed outputs Y. 

Hidden Markov models can have large parameter spaces because there may be 

many possible state transitions and because each state can have its own unique 

output distribution. Depending on the application, it may be desirable to allow all 

non-zero parameter values to vary freely. At the other extreme, we may require 

that some subsets of parameters take identical values. Constraints of this type are 

referred to as "tied" parameterizations. A less extreme form of combining informa­

tion can be achieved by imposing a hierarchical model on the parameters in which 

sets of parameter values are assumed to be drawn from a common distribution. In 
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TAGACAGGNGCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT 

TAGACAGGGNCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT 

TAGANAGGGCCTCCACTGGGGAAATGAAGGTACCNACCAACCTTCAAAACTT 

TAGACCAGGNGCTCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT 

TAGACAGGGCCTCCACTGGAGATNTGAGGTCACCAACCAACCTTCAAAAACTT 

TAGACAGGGGCTCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT 

Table 1: An unaligned set of DNA sequences 

our example, we use both tied parameter constraints and hierarchical modeling to 

reduce the dimensionality of the parameter space. 

1.2 Examples of HMMs 

We present some examples of HMMs that have proven to be useful in molecular 

biology applications. It is worthwhile to consider two classes of architectures. First 

is the recurrent architecture in which any main state may be reached from any 

other main state. Second is the left-to-right architecture, in which the main states 

do not recurr. Of course, arbitrarily complex HMMs can be constructed with both 

recurrent and non-recurrent components. See, for example, White et al. {1994). 

1.2.1 Two-state recurrent architecture 

Consider a hidden Markov chain with two main states denoted by 0 and 1 and binary 

outputs {0, 1 }. This two-state recurrent architecture is illustrated in Figure 1. Its 

transition probability matrix, defined on the extended state space { B, 0, 1, E}, is 

0 ABo ABl 0 

0 Aoo Ao1 AoE 
A= 

0 A10 An AlE 

0 0 0 1 

5 



The output distribution is specified by 

II = [ 1roo 1ro1 ]· 
11"10 11"11 

This HMM generates nonhomogeneous binary sequences that consist of homoge­

neous regions of two types, with distinct frequencies of zeros and ones. This model 

and the more general L-state, K -output recurrent model were applied by Churchill 

(1989, 1992) to identify regions with distinct functions in DNA sequences based on 

differences in local base frequencies. 

1.2.2. ~.eft-to-right architectures 

An example of a left-to-right architecture with a state space {I1, I2, M 11 .•• , Mk} 

is shown in Figure 2. This HMM is analogous to a model proposed by Lawrence et 

al. (1993) for the purpose of locating conserved pattern elements in a set of other­

wise unrelated protein sequences. Notice that there is only one possible transition 

(that occurs with probability one) out of each of the states M1, ... , Mk_ 1 and thus 

a typical HMM path will be of the form (h)i, M1, ... , Mk_1, (I2)i. This model will 

generate a block of k adjacent amino acids with a characteristic pattern as defined 

by the output distributions of the states Mi. The pattern is located in a random 

sequence background with amino acid frequencies determined by the output distri­

butions of the states h and l2. The output parameters of the [-states are tied to 

produce identical background distributions before and after occurrence of the pat­

tern. In Lawrence et al., the prior distribution of the pattern location is explicit. 

In the HMM, the a priori lengths of the sequences before and after the pattern are 

geometric with parameters AfiM1 and Al2f2 respectively. Variations on this model 

can easily be developed to allow for multiple occurences (or absence) of the pattern 

in some of the sequences. A Gibbs sampling algorithm for the model of Lawrence 

et al. (1993) has been described by Liu et al. (1995b). A similar algorithm could be 

based on the methods described in this paper. 
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1.2.3 Mutation-Deletion-Insertion Models 

A more elaborate example of a left-to-right HMM, the Mutation-Deletion-Insertion 

(MDI) architecture, is shown in Figure 3. This model has become a very popular 

tool for the problem of aligning multiple protein sequences (Krogh et al., 1994; Baldi 

et al., 1994; Eddy, 1996). The MDI hidden Markov chain has three types of main 

states. The backbone of the chain consists of mutation states { M1, M2 , •.. , ML}. 

Each mutation state Mi has a corresponding deletion state Di. Following the state 

B there is an insertion state Io and following each of the mutation states Mi there 

is an insertion state h When the Markov chain visits any of the states Mi or h it 

produces. an output y according to Pr (y I Mi) or Pr (y I Ii). The states Di are silent 

and do not produce any output. 

The presence of silent states in the MDI introduces a minor complication into our 

description of these HMMs. It was implicit in our earlier definition of an HMM that 

there is a one-to-one correspondence between outputs and hidden states. However 

in the MDI model, as it is typically implemented, there may be hidden states (D­

states) that are visited but have no corresponding output. We note that the output 

of an MDI model can viewed as the output of a standard HMM consisting of only 

M-states and [-states. This MI chain is embedded within the MDI chain and can 

be constructed by simply removing the D-states. The architecture of the MI chain 

includes additional transitions to replace the removed D-states. Unfortunately the 

additional transition parameters must be constrained in a rather complicated fashion 

to recover exactly the original MDI model. The output distributions of the MI model 

are identical to those of the MDI model. It follows that results derived for standard 

HMMs apply equally to MDI models. 

1.3 Overview 

The paper deals with the problem of restoring the hidden state sequences S for given 

data Y from Bayesian prospective. We consider a Gibbs sampler that samples from 
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the joint a posteriori distribution of S and 0. The non-trivial part of it, the con­

ditional sampling of S given the parameter and data, was suggested in Churchill 

(1995). The data augmentation step (Tanner and Wong, 1987), i.e., samplingS im­

mediately from its conditional distribution, distinguishes our algorithm from that 

suggested by Robert et al. (1993) in which S is sampled componentwise. Related 

sampling algorithms are described in Eddy (1995} and in Liu et al. (1995a}. An­

other approach (not HMM based} to studying the posterior distribution on multiple 

alignments is given by Allison et al. (1994}. 

The remainder of this paper is organized as follows. We first consider the prob­

lems of parameter estimation and state restoration for general HMMs. In section 

2 we briefly review the maximum likelihood approach and present a Bayesian ap­

proach to these problems. A Monte Carlo Markov chain algorithm for restoring 

hidden state sequences is described in section 2.2.2. In section 3, we consider the 

special structure of the MDI model and use this to derive a more effecient sampling 

procedure. In section 4 we consider an example using DNA sequence data. We close 

with a brief discussion of the practicality of the Bayesian restoration method. 

2 HMM restoration 

2.1 Maximum Likelihood Approach 

In the maximum likelihood approach to HMM restoration, no prior information on 

the parameter 0 is assumed and the inference problems of parameter estimation and 

state restoration are addressed by first finding an MLE for 0 and then restoring S 

conditionally given the estimated value. 

The likelihood for (} takes the form 

N 

Pr (Y I 0) = II Pr(yi I 0) 
i=l 
N 

= II l:Pr (Yi I Si, II}Pr (si I A) 
i=l Sj 
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where 

(5) 

and 

Pr (si I A) = ABs; 1 ·As; 1 s; 2 ···As; n·E· 
j ' ' ' 1 

(6) 

In general the likelihood is intractable for direct maximization and the problem of 

maximum likelihood estimation is solved by the Baum- Welch algorithm (Baum and 

Petrie, 1966; Rabiner, 1989) which is an EM algorithm ( Dempster et al., 1977) for 

HMMs. This algorithm is known to converge to a local maximum of the likelihood 

function (Baum et al., 1970; Leroux, 1992). Many applications (e.g., Krogh et al., 

1994) use a segmental k-means algorithm (Juang et al., 1990) also known as "Viterbi 

training" in which Pr (Y' s I e) is maximized with respect to s and e simultaneously. 

The two estimators of e are generally rather close (Merkav et.al, 1991) however the 

segmental k-means algorithm is less computationally demanding. 

Having obtained some parameter estimate 0, we can restoreS by independently 

restoring each Si· A global restoration finds a most probable path under Pr (-1 Yi, e) 
using the Viterbi algorithm (Viterbi, 1967). Local restoration methods find the most 

probable state at each moment t. Both approaches to the path restoration problem 

have a certain weakness: the final solution is based on the point estimator of e 
and fails to take into account other "reasonable" values of e. Furthermore, it may 

be of interest to find not only an optimal multiple path but also to have access 

to reasonable alternative restorations. These concerns motivate our choice of the 

Bayesian paradigm for multiple path restoration. 

2.2 Bayesian approach 

We assume a prior distribution Pr (e) for the parameter e 

posterior distribution of the pair (S, e) is 

N 

Pr (S, e I Y) ex: Pr (e) II Pr(yi I Si, II) Pr (si I A) 
i=l 
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where the last two terms are defined in (5) and (6), respectively. Integrating out 

the parameter () in (7) we obtain the marginal posterior Pr ( S I Y) that will be our 

primary interest. Similarly, summing over all multiple paths, we obtain the marginal 

posterior of Pr ( () I Y). These marginal posterior distributions are not practically 

computable, in part because of unassessable normalizing constants. 

2.2.1 An MCMC algorithm 

The following lemma, which gives a way to sample from the joint distribution 

Pr (S, ()I Y), is a trivial consequence of a Gibbs algorithm (Geman and Geman, 

1984; Gelfand and Smith, 1990). 

Lemma The following iterative procedure generates a Markov chain 

with stationary distribution Pr (S, ()I Y) as m ~ oo. Starting from an initial value 

()0 , iterate the two steps 

1. For each i = 1, ... , N independently sample sr+l "'Pr (·I Yi, om) and 

2. sample om+l "' Pr (·I y' sm+l) . 

Corollary One can estimate the posterior expectation of any function f(S, 0) 

by taking the sample mean JM = ~ E~1 f(Si,()i). In particular, choosing f(S,O) 

to be an indicator function of the multiple path R we can estimate the posterior 

probability Pr (R I Y). 

Notation. In the next two subsections we will describe algorithms that accomplish 

steps 1 and 2. First we introduce some notation. Let x = (x1, ... ,xv)T and z = 

(z11 ... , zv)T be any two vectors then x * z = (x1 · z1, X2 · z2, ... , Xv · zv)T and xz = 
xf1 x22 ... x~". Let lxl = lx1l + lx2l + ... + lxvl denote h-norm of vector x and A.w = 
(a1w, a2w, ... , auw)T and Aw. = (awl, aw2, ... , awv) denote, respectively, the column 
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and the row of a u x v matrix A corresponding to index w. We write Z[s,t) = 
ZsZs+I .. ·Zt-lZt, for any 1 ~ s ~ t to denote a subsequence of a sequence z. Finally, 

the notation MN 1 (p) is used to denote the multinomial distribution with parameters 

P = (p1,p2, ... ,pv). 

2.2.2 Path sampler 

Within this subsection the parameter () = (II, A) is fixed. We consider only a single 

sequence of observations y = Yl, y2, ... , Yn generated by a path s = s1, s 2, ... , sn 

because multiple paths can be sampled independently. 

The optimal nonlinear filter f(t) = UB(t), fr(t), h(t), .... JL(t), !E(t))), where 

fi(t) = -Pr (st = i I Y[l,tJ), t = 0, 1, ... , n is given by the recursion (Stratanovich, 

1960; Churchill 1989) 

(8) 

with initial condition f(O)= (1,0,0, .... 0). A non-normalized linear filtration is given 

by (Elliot et al., 1994) 

(9) 

with initial condition f*(O) = (1, 0, 0, .... 0). Comparison of (8) and (9) shows that 

f*(t) = c(t)f(t) for 

In the following theorem, the filtration in (8) or (9) is used to obtain samples from 

the distribution Pr (S I Y,O). A proof is provided in Appendix A. 

Theorem Let s* = (si, si, ... , s~) be defined by the following recursion. Set 

s~+l = E, then for t = n, n - 1, ... , 1 

* (F(t-1)*A.s;) 
St-1 rv MNl IF(t -1) *A.s;l (11) 

where F(t) is either of f(t) or f*(t). Then s* ""Pr (·I Y, 0). 
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Thus to sample a path, we first solve the forward equations (8) or (9) and then 

sample backwards. This algorithm is analogous to the Viterbi algorithm in that it 

samples a single path on the backward pass. However the path is stochastic and 

thus in repeated iteration will explore more of the space of possible restorations than 

the determinstic Viterbi algorithm. It is interesting to compare the two algorithms. 

The forward equation for Viterbi algorithm takes the form 

(12) 

with initial condition f(O) = (1, 0, 0, .... 0). The backward Viterbi procedure is de­

fined by the following recursion. Set Sn+ 1 = E. Then for t = n - 1, ... , 1 

(13) 

In our algorithm, the forward pass operation sums over all possible paths, whereas 

the Viterbi algorithm seeks an optimal path. On the reverse pass, our algorithm 

samples the next state whereas the Viterbi algorithm chooses the path that gen­

erated the optima on its forward pass. Thus the sampling algorithm retains the 

computational efficiency of the Viterbi algorithm but it explores a wider range of 

paths. 

2.2.3 Parameter sampler 

The u-dimensional Dirichlet distribution D(a) with parameter a= (a1 , a 2 , •.. ,au), 

ai ~ 0 is defined on the u-dimensional simplex {x = (x1, x2, ... ,xu) : lxl = 1, Xi ~ 0} 

and has density d(x; a) = A(a)-lxa-I, where A(·) is the normalizing constant. 

If every row of matrices A and II is distributed a priori according to Dirichlet 

distribution with certain parameters, the posterior distribution of the rows will 

also be Dirichlet but with shifted parameters. This follows from the conjugacy of 

Dirichlet and multinomial distributions (Robert, 1994, p. 103). A similar conjugacy 

property holds when the prior distribution is a Dirichlet mixture. 
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The following lemma describes a method for sampling from the conditional 

posterior distribution Pr (0 I Y, S}. It involves augmented data sufficient statistics 

for (), namely, matrices CA := (~) and CIT := [cfl), where cfj is the number of 

transitions to j state from i state and cfl is the number of outputs j from state i. 

When some parameter values are tied, the dimensions of the sufficient statistics can 

be reduced. 

Lemma Let the rows of matrices IT and A be a priori independently distributed 

according to Dirichlet distribution Ai. "' D(~A), i = 0, 1, 2, .. , L and ITi. "" D(~rr}, 

i = 1, 2, ... , L. Then the posterior distribution Pr (0 I Y, S) is a product of indepen­

dent Dirichlet distributions over the rows of the matrices A and IT, where i-th row 

is distrib~ted according to Ai. "'D(af + Cf), or ITi. ""D(~rr + cp). 

3 The MDI Model 

In this section, we develop a detailed specification of an MDI model. This model is 

applied to study the posterior distribution of a DNA sequence alignment in section 

4. We begin with a brief description of the DNA sequencing problem. More detailed 

descriptions can be found in Hunkapillar et al. (1991} and Churchill (1995). 

3.1 DNA sequence alignment 

We have a collection of DNA sequences that are independently copied from a com­

mon prototype sequence, r = r1, ... , r L; r i E {A, C, G, T}, by a process that intro­

duces errors in the form of substitutions, deletions and insertions. Each realiza­

tion, i = 1, ... , N, of the MDI chain will generate a sequence Yi with elements 

Yij E {A,C,G,T,N}. The output character N is sometimes generated by DNA 

sequencing devices to represent ambiguous determination of a base. Each M -state 

in the MDI chain is associated with an element of the prototype sequence, i.e., Mi 

is associated with ri· This association will affect the output distribution of the 

M -state. For example, if the state Mi is associated with ri = A, the most likely 
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output of state Mi is the letter A. A substitution error occurs when the output is 

a letter other than A. A deletion error occurs when the state Di is visited, thus 

bypassing Mi, and no letter is generated as output. An insertion error occurs when 

the state Ii is visited thus generating extraneous letters in the output sequence. To 

summarize, a visit of Di state results in a deletion of ri in the copying process; k 

successive visits of Ii state result in an insertion of k letters after i-th position in the 

prototype; a visit of Mi state results in copying ri with possible substitution error. 

Restoration of Si establishes a correspondence between the elements of Yi and 

the states of the MDI model. Furthermore, the multiple path restoration of S es­

tablishes a correspondence among all elements of all the DNA sequences via their 

correspondence with the M-states. This correspondence is a multiple sequence align­

ment (Waterman, 1995) and our goal here is to study its probability distribution. 

3.2 Parameter Constraints and Prior Distributions 

The dimensionality of the parameter space for an unconstrained MDI model can be 

very high even for models of modest size. We apply two different techniques for 

handling the high dimensionality of the parameter space. The output distributions 

fi will be handled using a hierarchical model and the state transition parameters A 

will be tied. The output parameters of M-states in our models are drawn from a 

common Dirichlet mixture distribution and the output parameters of the [-states 

are drawn from a common Dirichlet distribution. The transition parameters are tied 

in such a way that the probability of a deletion is constant and the probability of an 

insertion is also constant across the entire hidden Markov chain. These constraints 

appear to be reasonable as a first approximation for the DNA sequencing problem. 

In general the form of constraints on the model parameters should be carefully 

considered in the context of the application. Any number of variations on the 

parameter constraints and prior distributions are possible. We have chosen this 

particular combination to illustrate the method. We note that Dirichlet mixture 
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distributions have proven to be effective in protein sequence applications (Sjolander 

et al., 1996). The choice of a prior distribution and its influence on the alignment 

are discussed in our example. 

The output probabilities that correspond to state Mi form the i-th row of ma­

trix fr. We assume that the prototype sequencer= r 1, r 2 , .•. , n (see Section 1.2.3) 

is i.i.d. with known letter frequencies a8 , s E {A, C, G, T} and that the conditional 

prior distribution of fri. =("TriA, "TriG, ·nw, 1riT, 1riN), given ri, is Dirichlet with param­

eter ar; = (ar;A, ar,c, ar;G, ar;T, ar;N ). However the prototype symbol Ti is unknown 

and the (Uilconditional) prior distribution of fri. is a mixture of four distributions 

Ih....., aAD(aA) + acD(ac) + aaD(aa) + arD(ar), i = 1, ... , L. (14) 

The outpm probabilities that correspond to states Ii are assumed to be identical 

for every i = 0, 1, ... , L and form the 0-th row of matrix fr. Their prior distribution 

is Dirichlet with parameter ar = (arA, aw, aw, arr, aiN ). 

The sto.te transition probabilities are the same from all M states, as well as all 

I and D st.ates, and are summarized in the following stochastic matrix 

l AMM >wv AMI ) 

A = AvM Avv ADI · 

ArM Arv An 

The transiTion probabilities have a Dirichlet prior 

(15) 

Obsen-e that the most informative component in the above parametrization is 

the unknown prototype r. As will be shown later it is convenient to include it in 

the set of parameters and to consider()= (r, fr, A). 

3.3 Path sampler in the MDI model 

The special structure of the MDI model allows for a computationally efficient varia­

tion of the filtration and resampling algorithms. In this section, we consider a single 
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observation y and will supress the double subscript. 

First, we note that there is a one-to-one correspondence between the paths 

of the HMM that could have generated an observation y = Yb Y2, ... , Yn and the 

paths from (0, 0) to (L, n) on the directed graph showed in Figure 4. Indeed, let 

(B, s1, s2, ... , sq, E) be any such path. Notice that the total number of M and I states 

in this path equals n, while the total number of M and D states equals L. We define a 

sequence of binary vectors e = {ell e2, ... , eq), ei E 0-= (1, 0), ~= (1, 1), -+= {0, 1)}, 

such that, for i = 1, ... , q, 

~=! 
~ if Si is an M-state, 

+ if Si is a D-state 

-+ if Si is an I-state. 

This sequence of binary vectors naturally defines a path on the graph, where the 

k-th vertex is given by L:f=o ei. It is clear that this correspondence is one-to-one and 

that the graph path terminates in (L, n), i.e., L:{=o ei = (L, n). Thus the problem 

of sampling s can be substituted by the problem of sampling e. 

The path sampler can be formulated in terms of [Pij] = [(pf1,pfl,p{j)],i = 

0, 1, .. n; j = 0, 1, ... , L, where Pf,j, s E {M, D, I} is the probability that the chain 

visits a total of i M -states plus D-states with the last visited state being s and 

generates output y1, ···,Yi· It is easy to verify that the matrix [Pij] can be obtained 

by the following recursion for i > 0 and j > 0 

M -
Pi,j = ?TiyiPi-l,j-lA.M, 

D -
Pi,j = Pi-l,jA.n, 

P{,j = ?ToyiPi,j-lA.I, 

with boundary conditions 

j 

Po,o = (1,0,0);Pi,o = (0,(>-nn)i,O);Po,j = (0,0,(>-u)i II ?ToyJ· 
k=l 

The following lemma is the analogue of the theorem in 2.2.2 and can be found 

in Churchill (1995). 
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Lemma4.1. Lete* = (e~,e~_1 , ... ,ei), e:n E {\..,-!.,-+}. be defined by the fol­

lowing recursion. Initialize (i,j) 0 = (L,n) and m = 1. Then iterate the steps 

1. e:n ""' MN 1 ( 1 :(::~~= I) , where the components of p correspond to {\.., .j.., -+}, 

2. (i,j)m = (i,j)m-1- e:n 

form= 1, 2, ... until (i,j)m = (0, 0). Then e* "'Pr (·I y, 0). 

3.4 Parameter sampler 

Given Y and S, sufficient statistics for 0 = (r, ft, A) form matrices (jA = lest], s E 

{M,D,I},t E {M,D,I} and err:= [Ciy], i = 0,1, ... ,£, y E {A,C,G,T,N}, where 

Cst, is the total number of transitions from state s to state t; co,y is the total number 

of outputs of letter y from all !-states; Ciy is the total number of outputs of letter y 

from Mi-state, i = 1, 2, ... , L. Thus 

Pr(OIY,S) <X II (Ast)bst+cst IT (rroy)aoy+coy 

s,tE{M,D,I} yE{A,C,G,T,N} 

tr (ar(i) II (rriy)Ur(i)y+c;y) . (16) 
~-1 yE{A,C,G,T,N} 

We obtain the analogue of the lemma in 2.2.3. 

Lemma Let the parameter 0 = (r, A, fi) be distributed in accordance to {14) and 

{15}, where 5. := {aA,ac,ac,ar} is known. Then the following two-stage sampling 

will generate samples from the Dirichlet mixture distribution Pr (0 I Y, S) 

1. Sample the prototype sequencer= rr, r2, ... , TL independently according to 

(17) 

where Ai = (A(aA + Ci-),A(ac + Ci-), A(ac + Ci-), A(ar + Ci-)) and A(·) is 

the Dirichlet normalizing constant. 
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2. Then sample 

-rr . 
D(a.,.i + Ci. ), ~ = 1, ... , L, 

where r0 = I handles insertion states. 

3.5 Multimodality 

The Gibbs sampler guarantees convergence to the target distribution. However, 

in practice the time to convergence may be unreasonably long. This can occur, 

for example, when the Gibbs sampler is stuck in one of several modes of the tar­

get distribution. The problem of monitoring convergence to a multimodal target 

distribution is addressed in the paper of Gelman and Rubin (1992). They give a 

profound discussion of the problem and suggest a general method to monitor conver­

gence. However, the problem that arises in HMM restoration has two features that 

preclude direct application of this approach. First, the distribution is continuous 

in the parameter (), and is discrete in the missing data component S. Second, the 

posterior distribution, for MDI models in particular, can have a tremendous number 

of modes. Furthermore, it appears that once the Gibbs sampler finds a mode, it is 

often impossible in a practical sense for it leave. The source of the multimodality for 

MDI models is easily understood. For every prototype sequence r that differs form 

the "true" prototype sequence by a small number of insertions and/ or deletions, 

there exist alignments that fit the data reasonably well. Once the sampler finds 

such an alignment, it will remain in a region of the alignment space corresponding 

to prototype sequences that differ from r only by substitutions. The total proba­

bility mass concentrated in this region is the probability that the true prototype 

sequence is in this set and may be rather small. In our experience with DNA data, 

we have found that only one or at most a few modes have any significant mass. 
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We are interested in identifying these massive modes and the corresponding set of 

prototype sequences. An ideal practical solution for the DNA problem (as detailed 

in the following paragraphs) would be to identify all of the massive modes, estimate 

their relative probabilities and find distributions of prototypes within those modes. 

Of course one cannot guarantee that all massive modes have been identified and it 

will be prudent to make many runs of the Gibbs sampler using different starting 

points. 

First, note that the marginal posterior distribution on multiple alignments has 

support ·on a finite set. Furthermore the Gibbs sampler splits this set into disjoint 

subsets corresponding to modes of the distribution. It is helpful that the marginal 

distribution of alignments can be found explicitly up to a constant. Indeed, if the 

initial distribution is Dirichlet we can sum over all rand integrate out (A, fi) in (16) 

to obtain 

L -rr 
-A -rr II "' A(a.,. +c. ) Pr(SIY) <X IT A(bs+G8 .)A(ar+Co.). 6 Ctr A(a.,.) z· , (18) 

sE{M,D,I} t=l rE{A,C,G,T} 

where A(·) is a normalizing constant of the Dirichlet distribution. When the Gibbs 

sampler is stuck in a subset of alignments, the probability of th,is subset can be 

determined up to a constant by summing (18) over all alignments in the set. In 

this way, the relative mass of different modes can be determined. This approach 

can be also used to discriminate between two models with different number of main 

states. Indeed, in this case the posterior distribution is defined on two disjoint spaces 

but one can still use (18) to evaluate Pr (S I Y) and then to compare modes across 

different models. 

The Bayesian restoration procedure is computationally intensive. The primary 

computational burden being the storage of many realizations of the multiple align­

ments. In practice one is often interested only in the, say 100, most probable 

alignments. By using formula (18) one can identify and store the best alignments 

and their relative probabilities. The efficiency of this approach is discussed further 
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in the Example. However, when the total probability of a mode is of interest, the 

storage problem cannot be avoided. 

When s~veral distinct prototypes are sampled, it will be desirable to evaluate 

their probabilities. Rao-Blackwellized estimates are known to have smaller asymp­

totic variance than estimates obtained directly from relative frequencies (Casella 

and Robert, 1996a). For any prototype, one can obtain an estimated probability as 

(19) 

where the numerator and denominator in the fraction can be evaluated up to the 

same constant via (18). 

4 Example 

A collection of DNA sequences described by Seto et al. (1993) was assembled using 

the program CAP (Huang, 1992). A small segment of this assembly was chosen 

to illustrate the Bayesian restoration method. Table 1 shows six DNA sequences 

(Yl! ... ,Ya) that form the raw data for our analysis. 

The posterior distribution on alignments proved to be particularly sensitive to 

the prior distribution on the output parameters of the M-states. This happens 

because the total number of outputs from each M-state is small (at most six) 

and because the alignments are sensitive to substitution rates. The overall rate of 

substitution was chosen to be 0.008 based on other data (Lazareva et al., 1997) 

and the weight of the prior distribution was taken to be about six. Thus for a state 

associated with prototype letter A we set aA = (6, .012, .012, .012, .012) and similarly 

for C, G and T states. The prior distribution on the letters of the prototype was 

taken to be uniform, O!i = 1/4. The prior distribution for the output of an I-state 

was uniform a1 = (1, 1,1,1,1). Finally, because the posterior was less sensititive to 

the prior distribution on the (tied) state transition parameters, a uniform prior was 

chosen. 
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We note here that under the proposed model, certain classes of alignments have 

exactly the same probabilities. In particular, the placement of insertions within a run 

of identical bases is arbitrary. To minimize storage, we save only one representative 

of each insertion equivalence class. The number of members of each class is recorded 

as the multiplicity in table 2. Hereafter, the term alignment refers to an equivalence 

class of alignments. 

The first task in the analysis was to determine the number of M -states needed 

in the model. The CAP alignment suggested a prototype with 54 states. However 

when compared with a model based on prototypes of length 53, the most massive 

mode of the 54 state model appears to be 107 times less likely. Figure 5 shows the 

accumuiation (over Monte Carlo iterations) of probability mass for the two largest 

modes in each of the 53 and 54 state models. The remainder of our analysis assumes 

a model with 53 M -states and is focused on the single dominant mode. Within this 

mode, a Monte Carlo run of 5000 steps suggested that the alignment shown in Figure 

6a would make a good regeneration point (see Appendix B). In a subsequent run 

of 100,000 steps, 30790 distinct multiple alignments were explored resulting in 352 

tours. Only two prototypes were sampled with substantial frequency. They are 

distinguished from one another by having either Cor G in the 10-th position. We 

will refer to these as the C-prototype and the G-prototype, respectively. The Rao­

Blackwellized estimate (19) of the C-prototype probability is 0.699. For comparison, 

the relative frequency estimate is 0.713 with an estimated standard error of 0.012. 

The confidence interval was calculated using regeneration as described in Appendix 

B. We conclude that the most probable prototype sequence has C in the 10-th 

position. We note that the C-prototype agrees with the sequence (positions 10125-

10174) reported by Seta et al. (1993). 

Posterior probabilites for the top 100 multiple alignments within the mode are 

summarized in Figure 7a. The alignments are ordered with respect to their relative 

probabilities obtained from (18). The figure shows these probabilities (scaled by an 
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appropriate constant) and their Monte Carlo estimates. The most frequent variants 

of the multiple alignment are summarized in Figure 6b and table 2 identifies which 

variants correspond to the top 100 alignments. After 10,000 steps the Gibbs sampler 

had identified all of the top 100 alignments. Thus the inference about the shape 

of posterior distribution of alignments does not require much time. On the other 

hand the Monte Carlo probability estimates appear to be biased even after 50,000 

steps. The combination of Monte Carlo with analytic results was most effective in 

developing a clear picture of the posterior distribution on alignments. 

Alignments Multiplicity Region 

1 2 3 4 5 

1-10 12 a a, b,c,d,e a a a,b 

11-20 12 a a, b,c,d,e a a c,d 

21-30 12 b a, b,c,d,e a b a,b 

31-40 12 b a, b,c,d,e a a a,b 

41-50 12 b a, b,c,d,e a c ab 

51-60 60 c a, b,c,d,e a a a,b 

61-70 60 c a, b,c,d,e a a c,d 

71-80 12 b a, b,c,d,e a a c,d 

81-100(120) 24 b a, b,c,d,e b, c b a, b 

Table 2: Configuration of the alignments (the last group comprises 40 alignments). 

The conditional probability of the C-prototype given an alignment is shown for 

the top 100 alignments in fig 7b. Theoretical probabilities were obtained according 

to (19). Monte Carlo estimates are also shown. It is interesting to note that, 

although the marginal (over alignments) posterior favors the C-prototype, the top 

20 alignments all favor the G-prototype. The main point of our example is that 

failure to account for uncertainty in an alignment can lead to an incorrect inference. 
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In conclusion, this analysis demonstrates that Bayesian restoration methods 

can be used to assess the quality of DNA sequence alignments. Furthermore, the 

method can be used to make inferences that do not depend on choosing a single 

fixed alignment or a fixed set of error rate parameters. Perhaps surprisingly, we have 

demonstrated that inferences based on the conditional distribution of a prototype 

given the "best" alignment can be misleading. 

5 Discussion 

The example provided in section 4 deals with only a small segment of a much larger 

multiple sequence alignment. This was neccessary in part because the Bayesian 

restoration procedure is computationally intensive. The primary computational 

burden being the storage of many realization of the multiple alignment. We believe 

that with some creative bookkeeping, perhaps taking advantage of the fact that 

large blocks of alignments never move, larger problems could be tackled. We note, 

however, that there are many applications of MDI hidden Markov models where 

storage would not present such a significant problem. For example, protein sequence 

alignments (Krogh et al., 1994; Baldi et al., 1994) use MDI models with at most 

a few hundred main states. In typical DNA sequencing data, there will be a small 

number of DNA sequences that are all highly similar to one another. In protein 

sequence applications, it is more typical to have a large number of highly divergent 

sequences. A discussion of the protein analysis problems can be found in Krogh et 

al. (1994). Methods described here could be applied with some modifications to 

the protein alignment problem. In the DNA example, the assumed independence 

of the multiple realizations of the HMM is at least plausible. However in studies 

of naturally occurring sequences, evolutionary relationships will induce correlations 

among the sequences. Thus there are some challenging problems to be addressed. 

We have tested the Bayesian restoration technique on other HMM architec­

tures, including two-state recurrent and 3-state left-to-right models. We find that 
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multimodality of the posterior and consequent "sticking" of the Gibbs chain can 

occasionally present problems. Methods are available to improve the mixing behav­

ior MCMC algorithms (e.g. Geyer and Thompson, 1994) and we are continuing to 

experiment with these methods. 

The main advantage of the Bayesian approach is that it enables one to study 

the reliablity of the estimation of a complex discrete structure such as an HMM 

restoration. Our ability to summarize and visualize these distributions is limited, 

but with careful attention to particular examples, innovative and effective summaries 

of uncertainty can be developed. The algorithmic complexity of our approach is 

comparable to the Viterbi training (Merkav and Ephraim, 1991) but the Gibbs 

sampling approach has verifiable convergence properties. Furthermore, it allows for 

exploration of the full posterior distribution which can reveal interesting features 

that the Viterbi and maximum likelihood approaches to HMM restoration would 

miss. 
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Appendix A: Proof of Theorem 3.1 

First, we observe that 

Pr ( B, S[1,n)• E I y, 8) = Pr (sn I y,8). Pr (sn-11 Sn,y,8) ... Pr (s11 S[2,n]•Y· 8)' 

where y = Y1 1 y2, ... , Yn· The proof follows from the observation that the conditional 

distribution Pr (st-1IS[t,n]•Y•8) depends only on St, Y[1,t-1] and 8. Looking at a 

general term in the expansion, 

Pr ( St-1 = i I S[t,n)•Y· 8) ex Pr ( St-1 = i, S[t,n],Y I e) 
= Pr (st-1 = i, Y[1,t-1JI St, 8)Pr ( S[t+1,n)• Y[t,nJI St, 8 )Pr (st 18) 

ex Pr ( St-1 = i, St I Y[1,t-1)' e) 
= Pr(st-1 =iiY[1,t-1J,e) ·Pr(stlst-1 =i} 

= fi(t- 1}Aisp 

where the first equality holds because of conditional independence of Y[1,t_ 11 and 

Y[t,n] given St. Thus Pr (st-11 S[t,n] 1 y,O) is a multinomial distribution with prob­

abilities proportional to fi(t- 1}Aist and the "backward" sampling scheme follows 

from this. 

It remains to notice that due to (10} 

f(t - 1} * A.8 t f*(t- 1) * A.st 
-

· lf(t -1} * A.stl lf*(t -1) * A.stl 1 

which completes the proof. 
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Appendix B: Monte Carlo Error 

To assess the asymptotic variance of an estimator fM = i£ 'Lf'!:1 f(Si,Bi) one can 

use the regenerative property of the chain ( gm, em). (Ripley, 1987, Geyer and 

Thompson, 1994)). Consider the chain {Sm; m = 1, 2, .. }. Choose one of its states 

R, and define the sequence (to, tt, .. . ) such that ti is the time of the (i + 1)-th visit 

to the state R. In practice, the state R should be chosen after some preliminary 

investigation to be one of the most frequently visited states. The Markov property 

of the chain implies that the interarrival times { Tk = tk - tk-1} for k = 1, 2, ... form 

an i.i.d. sequence with ETk < oo. Moreover, due to Gibbs sampler the tours 

and hence the random variables 
tk-1 

Fk = I~ J(Si, Bi) 
i=tk-1 

are i.i.d . . It follows that the sample mean converges to the desired expectation, 

J(S)) = (1/ K)(F1 + F2 + ... + FK) ~ EF1 = Ej. 
(1/K)(Tl + T2 + ... + TK) ET1 

(20) 

Finally, we introduce the centered random variables Fk = Fk - TkEf . When both 

var(F1 ) and var(T1 ) are finite, var(Fi) < oo. It then follows, from the central limit 

theorem, that 

The asymptotic variance of J(X) can estimated by substituting the estimates 

and 

into the right-hand side of (21), where~ denotes the sample mean over k = 1, 2, .. , K. 

We note that the above estimates can be updated as the Gibbs chain progresses. 
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Figure Captions 

Figure 1 Two-state recurrent HMM architecture. 

Figure 2 Left-to-right architecture for locating a pattern of size k embedded in 

a longer sequence. 

Figure 3 Mutation-deletion-insertion (MDI) architecture with three M-states. 

Figure 4 Pathgraph representation of all paths through an MDI model with three 

M-states that could have produced an output sequence with four elements. Diagonal 

transition correspond toM-states, horizontal transitions correspond to D-states and 

vertical transitions correspond to !-states. 

Figure 5 The accumulation of probability mass for the two largest modes in each 

of the 53 state (thick lines) and 54 state (thin lines) models is shown as a function 

of Monte Carlo iterations on a log-log scale. 

Figure 6 A multiple sequence alignment (6a) of the 6 six DNA sequences from 

table 1. Letters shown below the sequences are insertions and "-" show locations 

of deletions. This basic alignment served as the regeneration point for the Monte 

Carlo analysis. Variants of the multiple alignment are shown below the alignment 

(6b) and are referred to in table 2. 

Figure 7 The unconditional posterior probability of alignments is shown for the 

top 100 alignments (7a). Analytic and Monte Carlo estimates are shown. Bars 

indicate 96% confidence intervals for the Monte Carlo estimates (see Appendix B). 

Analytically derived relative probabilities were normalized to have the same total 

mass as the 100 Monte Carlo estimated probabilities. The conditional probabilities 
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of the 0-prototype given an alignment is also shown for the top 100 alignments 

{7b). 
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