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1. Introduction 

In a previous paper (Federer (1975)), the sampling and population structures, 

considerations involved in blocking, form of treatment response, and some practical 

considerations were presented for unblocked and blocked experiment designs. These 

same topics will now be considered for r-row by c-column experiment designs in-

eluding the Latin square, Youden, and other designs for two-way elimination of 

heterogeneity. The same definitions and symbolism presented in the previous paper 

will be used herein, and hence will not be repeated. 

We first consider the population and subpopulation distributional and sampling 

structures for an r-row by c-column experiment design prior to application of the 

v treatments. Then, the additive and multiplicative form of treatment responses are 

considered. An alternative sampling structure is discussed; this structure simu-

lates many experiments in practice but the resulting statistical inferences may be 

in question. 

In the third section, several forms of r-row by c-column designs are presented; 

examples of the Latin square, the Youden, F-squares, simple change-over, and several 

other types of experiment designs are given to demonstrate the wide range of such 

designs. A wide variety of uses to which these designs have been put is presented 

in the fourth section. 

Statistical texts are prone to presenting a single statistical analysis for 

all Latin square and Youden designs. Depending upon the form of treatment response 
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and model, many statistical analyses should be considered for experiments as diverse 

as those presented in section four. It is highly unlikely that all experiments can 

be analyzed in the same cookbook manner. It is essential to obtain the appropriate 

statistical analysis for each experiment if the statistical and subject matter 

inferences are to have any validity. 

2. The sazrq>ling structure for row-column experiment designs and forms of response 

Suppose that a population of experimental units exists such that there are RC 

subpopulations of the following nature: 

"rows" = "columns" = 2n4 source of variation 
lit source 

of variation l' 2 3 ••• i . .. c 

1 

2 

3 . . . 
h 
• • • 
R 

R and C could be finite or infinite. The hith subpopulation consists of a 

large number (infinite) of experimental units. Denote the arithmetic average over 

all subpopulations of experimental units as J.L 1 the arithmetic average of the i th .. 
"column" over all "rows" as IJ•i' and the arithmetic average of the htll "row" over 

all "columns" as ~.. Then, for additive effects and non-interactive "rows" and 

11columns", the arithmetic average of the hth "row" and itt. "column" is 

(2.1) ~. + J.L·i· - ll •• = ll •• + <~. - J.L •• ) + (J.L.i- IJ) = ll •• + Pn + yi • 
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A randomly selected observation from the hith subpopulation could be describe~ as 

having the following response and parametric structure: 

(2.2) yhi = ~ + P:h + "'{ i + ~i I 

where ~i = Yhi- ~- ~- yi and~ •• = ~· 

Further 1 suppose that the randomly distributed ~i are independently and 

identically distributed with zero mean and common variance a~. Then, IF a treat· 

ment, say j 1 effect is denoted as T. and is additive irrespective of which "row" 
J 

and "column" has been selected, then the model equation for the observation, yield, 

or response obtained from applying treatment j to a randomly selected experimental 

unit from subpopulation hi is 

where the subscript on ~ij denotes that treatment j has been applied to a randomly 

selected experimental unit from subpopulation hi. Note that the ~ij have zero 

mean and variance a2 • The addition of a treatment has done nothing but raise or 
E 

lower the value of Yhi by T j. ~ •• j is the average value resulting from applying 

treatment j to every individual in every one of the RC subpopulations. 

One of many possible alternate models would be to have the treatment effects 

affect the experimental units multiplicatively as follows: 

where ~.(j) is the arithmetic average obtained by applying treatment j to every 

individual of all subpopulations in "row" h, ~~ i(j) is the mean of every individual 

receiving treatment j in all subpopulations in 11column" i, and ~* . is the mean 
••J 

obtained from applying treatment j to every experimental unit in the RC subpopu-
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lations. Then · T* = Ji:~ .ill· , j •• J This is the situation presumed when treatment means 

are reported in percent of a standard or control treatment. Note also that the 

~ij have zero mean and variance a~*j = (T"j)2a~. 

The terms "rows" and "columns" are generic symbols denoting two sources of 

variation and need not refer to rows and columns of a lattice or of a rectangle. 

Hereafter we shall drop the quotes but not the general meaning. To obtain an 

r-row by c-column design of rc experimental units (e.u. 's) for an upcoming experi-

ment, ve should 

(i) select the v treatments for the experiment, 

( ii) obtain a sil:JU:Il~ random sample ot r rows, 

(iii) obtain a simple random sample of c columns, 

(iv) randomly select one experimental unit (or set of k units) from each 

selected subpopulation, and 

(v) randomly assign the v treatments to the rc experimental units using 

the constraints of the particular experimental design selected. 

An alternate sampling structure and distribution is to conceive of units of 

size r e.u. 's by c e.u. 's, and to consider these units of rc e.u. 's as coming from 

a single population composed of such groupings into units. This population has a 

mean ll and a constant variance o2 among such units of size rc e.u. 's. The experi-

menter randomly selects ~ of these units, say the g~h one, and lays out an r-row 

by c-column design on this unit. The variational model is then considered to be 

(2.5) 

prior to the addition of treatment j; let the £ghi be independently and identically 

distributed with mean zero and variance o~. SUppose that equation (2.3) and 100del 

is appropriate after applying the jth treatment to the ghi'~ unit from the popu-

lation. Note that even though only a single element has been obtained from the 
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population, differences between estimated treatment effects are validly estimated 

because the difference is independent of the gth unit. 

The above sampling situation is more nearly akin to what actually happens in 

experimentation. A geographically connected or spatially connected set of rc e.u. 's 

is obtained and an experiment is conducted. For example, a piece of land is 

selected and the rows and columns are set up to account for suspected or known 

gradients in the experimental area; the area is divided into r rows and c columns 

and conforms to the description above rather than the one in the first part of this 

section. 

It should be noted that if this latter situation prevails, serious consider­

ation should be given to the analyses described by Kempthorne (1952) as random-

ization tests. Also, the variance more than likely will depend upon the units of 

rc e.u. 's and will be o2 rather than o2 • The effect on interval estimation should 
€8 € 

be noted here. In addition, if model (2.4) holds, the experimenter is faced with 

making inferences from a sa~le of size one. All such items as the above should be 

considered prior to conducting an experiment to ascertain how it should be designed 

in order to make valid inferences. 

3· Some row-column designs 

We shall discuss ani¥ experimental designs in which the row, column, and 

treatment effects are orthogonal and which have responses of the form of equation 

(2.3). This means that arithmetic means are used to summarize the data when the 

linear, additive m::>del holds. One of the simplest and most used r-row by c-column 

designs for v treatments replicated b times is the Le.tin square design. Here 

r = c = v = b = n is the order of the Latin square and n2 observations are obtained. 

Each of the n treatments occurs once in each row and once in each column. For 

n = 2, 3, 4, and 5, the following are systemmatically arranged Latin squares: 



n = 2 

n u 

n u 

n = 3 

A B C 

C A B 

B C A 

A B C 

B C A 

C A B 
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n = 4 

A B c D 

D A B c 
c D A B 

B c D A 

A B C D 

B A C D 
C D A B 
D C B A 

n = 5 

A B c D E 

E A B c D 

D E A B c 
c D E A B 

B c D E A 

A B c D E 

B A D E c 
E c A B D 

D E B c A 

c D E A B 

The treatments are denoted by Latin letters, and the array of letters is square. 

Hence, the term Latin square. If one had used Greek letters, we could have used 

the term Greek square instead. 

One possible randomization procedure frequently used is described on page 

117 of Federer (1973) and page 2CJ7 of Cox (1958). (See also Federer (1955) and 

Kempthorne (1952).) Another randomization procedure useful for any r-row by c-column 

design is: 

(i) randoml.¥ allot the treatments to the v letters, 

(ii) randomly allot the v treatment letters to the experimental units in 

the c columns in row 1 of the experiment, 

(iii) randomly allot the v treatments to columns in row 2 of the experiment, 

except to make certain that the number of times any treatment letter 

occurs in a column does not exceed the number of times allowed (once 

for a Latin square), 

(iv) randoml.¥ allot the v treatments except for the proviso in (11) 1 and 

( v) continue the process until all rows are allotted. 

This procedure allows any possible plan to be selected equal~ frequent. 
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Consider another class of row-column designs for 'Hhich t~ere are v rows, 

v treatments, and vs = c columns. These are the simple change-over designs. 

Examples for v = 2, c = 6, and v = 31 c = 6 are: 

v=2 v=3 

column column 

row 1 2 3 4 5 6 ron 1 2 3 4 5 6 

1 A A B A B B 1 A A B c B c 

2 B B A B A A 2 B c A B c A 

3 c B c A A B 

An example of another class of designs is: 

Blocks (columns) 

row 1 2 3 

1 A B c G H I D E F 

2 D E F A B c G H I 

3 G H I D E F A B c 

Note that all treatments occur once in each row and all treatments occur once in 

each column or block; the row-column intersection contains more than one experi-

mental unit. 

Another class of orthogonal row-column designs is one in uhich the proportion 

of times any treatment occurs in a row or a column is constant. Thus, treatment j 

occurs Arj times in each row and Acj times in each column; if r = c, then AcJ = Arj" 

If Arj = Acj = A for all j, then designs similar to the simple-change-over result. 

If A = 1, then the Latin square results. Designs with differing ArJ = ). . 
CJ 

are called F-squares. Some examples for r = c = 4 are: 
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A B c A A B A B 

A A B c B A B A 

c A A B A B A B 

B c A A B A B A 

Examples for r = c = 5 are: 

A B c A A A A B B c A A A A B 

A A B c A c A A B B B A A A A 

A A A B c B c A A B A B A A A 

c A A A B B B c A A A A B A A 

B c A A A A B B c A A A A B A 

F(A3 ,B,C) 

Many nonorthogonal n-row by n-column designs for v treatments with not too 

difficult statistical analyses are available. For example, consider the following 

two: 

v = 9 treatments v = 4 treatments 

column column 

rm1 1 2 3 4 5 6 row 1 2 3 4 5 6 

1 A B D E G H 1 A B c D A 'C 

2 B c E F H I 2 D A B c B D 

3 c A F D I G 3 c D A B D A 

4 G H A B D E 4 B c D A B c 
5 H I B c E F 5 A B D c A B 

6 I G c A F D 6 B c A D c D 

Thus, ue may put 9 treatments replicated 4 times- each in a 6 X 6 square, or we may 
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put 4 treatments replicated 9 times in a 6 X 6 square. Another design for 9 treat-

ments in a 6-row by 9-column rectangle would be: 

column 

row 1 2 3 4 5 6 7 8 9 

1 A B c D E F G H I 

2 B c A E F D H I G 

3 c A B F D E I G H 

4 D E F G H I A B c 
5 E F D H I G B c A 

6 F D E I G H c A B 

Many other variations are possible. One such variation with a relatively simple 

statistical analysis is the so-called Youden design (sometimes called a Youden 

square even though it is a rectangular array). A Youden design may be made by 

adding or by deleting a row to an ordinary Latin square. Other Youden designs are 

possible. For example, Youden designs for v = 7 and 13 treatments are: 

v = 7 treatments v = 7 treatments 

column column 

rou 1 2 3 4 5 6 7 row 1 2 3 4 5 6 7 

1 A B c D E F G 1 c D E F G A B 

2 B c D E F G A 2 E F G A B c D 

3 D E F G A B c 3 G F A B c D E 

4 G A B c D E F 

v = 13 treatments 

co:+umn. ··.-. 
row 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 A B c D E F G H I J K L M 

2 c D E F G H I J K L M A B 

3 I J K L M A B c D E F G H 

4 M A B c D E F G H I J K L 
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Youden designs have the property that all treatments occur in each row and tha.t 

every pair of treatments occurs together in the column an equal number, ~, of times. 

A = 1 for the first and third designs above, and ~ = 2 for the 4-row by 7-column 

design above. 

Many other designs with two-way elimination of heterogeneity are possible. 

Some of these are listed in sections XIII-3, XIV-1, XIV-2, and XV-2 of Federer 

(1955). Some additional designs are presented by Federer and Raghavarao (1975) 

and Federer ~ !!· (1975). These designs are for use in varietal and drug screening 

trials. 

4. Some practical applications of two-way blocked designs 

An experiment (Bliss and Rose (1940)) designed as a 4 X 4 Latin square, was 

one in which the treatments were 4 preparations of a dosage of an extract of para­

thyroid, the rows were different dogs, and the columns were different days. The 

treatments were labeled u1 , u2, s1 , and s2• The dosages were given to 4 dogs at 

4 different times as follows: 

Day (column) 

Dog {row) 1 2 3 4 

1 sl 82 u2 ul 

2 u2 ul sl 82 

3 82 81 ul u2 

4 ul u2 82 sl 

The outcome or measurement was in terms of mg. -percent serum calcium in the blood. 

As a second example {Thomson (1941)) 1 4 groups of children (columns), 4 dif­

ferent word lists (rows), and 4 methods of testing spelling (treatments): multiple 
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choice (MC), second dictation (SD), wrongly spelled words (vlS), and skeleton words 

(SK), were designed in a Latin square as follows: 

Groups of Children 

Word List (column) 

(row) I II III Dl 

1 MC SD ws SIC 

2 SK MC SD ws 
3 ws SIC MC SD 

4 SD ~lS SK MC 

with the response being percentage of correctly spelled words. 

As a third example (Maxwell (1958)), three forms (AA, AB, and B) of the 

Nufferno speed test with three students and three times of day in a Latin square 

arrangement were used as follows: 

Student (female, 20 years old) 

Time of day 1 2 3 

morning AA 0.76 AB 0.86 B 1.12 

afternoon AB 0.82 B 1.16 AA 0.74 

evening B 0.98 AA 0.83 AB 0.83 

The responses (test scores) are given above for this experiment. The mean responses 

for the three treatments were: AA - 0.78, AB - 0.84, and B - 1.09. 

Another use for the Latin square design is in bridge games or other tournaments 

where each couple plays every other couple (round robin tournaments). For three 

evenings of bridge, three games per evening, and four couples (two tables), the 

following illustrates the design: 
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Game number Evening 

row 1 2 3 

12 13 14 
1st game 

34 24 23 

14 12 13 
2nd game 

23 34 24 

24 14 12 
3rd game 

13 23 34 

For example, for the first game on evening 1, couple 1 plays couple 2 and couple 3 

plays couple 4; then, for the second game on evening 1, couple 1 plays couple 4 and 

couple 2 plays couple 3; and for the third game on evening 1, couple 1 plays couple 

3 and couple 2 plays couple 4. Each couple plays every other couple on each evening. 

Likewise, each couple plays every other couple in the first game of an evening, etc. 

The couples are randomly numbered and the particular rows in the above Latin square 

are randomly assigned to the order of games. (Also, see Cochran (1971)). 

The results of an agricultural trial described in the 1932 Report of Rothamsted 

Experimental Station COIIPrises still another example of a Latin square design. The 

six treatments represent different quantities of nitrogeneous and phosphatic ferti­

lizers applied to young potato plants. The response or measurement is in pounds of 

potatoes harvested from a plot of ground. A rectangular area of land was selected. 

Since soil gradients in two directions were suspected, the following layout in a 

6 X 6 La.tin square design was utilized: 
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column 
rmi 1 2 3 4 5 6 

1 E-633 B-527 F-652 A-390 C-5o4 D-416 

2 B-489 c-475 D-415 E-488 F-571 A-282 

3 A-384 E-481 c-483 B-422 D-334 F-646 
4 F-620 D-448 E-505 c-439 A-323 B-384 

5 D-452 A-432 B-4ll F-617 E-594 c-466 

6 C-500 F-505 A-259 D-366 B-436 E-420 

(The data and statistical analysis for the above experiment are discussed in Fisher 

(1966), Tables 9, 30, 31, and 32.) 

Some examples of other types of situations in which Latin square or Latin 

rectangle designs have been used are: 

rm-1 column treatment response 

day of vreek operator inserting team mixing an proportion of 
primer in explo- explosive defective shells 
sives 

turnip plant size of leaf storage time of m:>isture content in 
lea! percent 

grocery store day of week method of pack- sales in pounds per 
aging apples 100 customers 

hour of day day of 1-1eek light intensity bioelectric potential 
difference between 
two points on a plant 

segment of a order within pruning method total yield of grapes 
planted row segment in pounds 

row of a rectan- column of a rec- cabbage variety total pounds of 
gular area of tangula.r area of marketable heads 
land land per area 

cow 6-v1eek period nutritional diet pounds of butterfat 
per 6-week period 

rabbit date of injection level of insulin blood sugar content 



_(continued) 

row 

traffic level 
and load 

automobile 

target 

day of week 

thermometer 

time period 

plant 

pen 

set of numbers 

column 

order of treatment 
on road 

rlheel location 

order of bomber 
group over target 

strain of pigeon 

battery cell 

order of measure-
ment on electro-
plated panel 

position of leaf 

size of pig litter 

order of calcu­
lation 

area of rlheat order of estimate 
of 80 plants 

time of day plus day of week 
observer 

machine lot of material 

method of curing date of harvest 
tea leaves 

color of light order of presenta-
tion to subjects 
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treatment response 

material for a hard deterioration of road 
surfaced road 

brand of tire tread measurement 

bomber group proportion of bombs 
on target 

drug and day length amount of sexual 
activity 

day of measurement temperature 

unknown or a radioactivity relative 
standard to a standard 

virus solution number of lesions 

diet supplement weight at 54 days 
of age 

calculating machine time in seconds to 
compute a sum of 
squares 

an inspector 

poisonous injection 
in femoral vein of 
cat 

method of weaving 
cotton cloth 

manurial treatment 

level of illumina­
tion 

mean height of 8 
"representative" 
shoots of wheat 

length of time to 
death 

length of wear of 
cloth 

score by a panel of 
tea tasters 

number of eye blinks 
per minute 

The above represents but a small sample of uses of Latin square and Latin 

rectangle designs, but these should be sufficient to indicate the diversity of 

usage. In all situations the experimenter should become familiar "'vi th the sampling 
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structure of his population prior to conducting an experiment and applying a treat-

ment; the nature of the response when treatments are applied must also be knmm in 

order to make correct statistical summarizations and statistical inferences. (See, 

e.g., Cox (1958), Federer (1955, 1975), Fisher (1966), and many other texts for 

examples of experiments in a row-column design.) 

5· Statistical analyses 

From the diverse list of applications presented in the previous section, it 

is illogical to believe that one model, namely (2.3), would hold for all of them. 

However, this is what was assumed for the analyses of the data, and of course, this 

was the only analysis most experimenters had ever been taught in a statistics course. 

One exception to the following standard analysis of variance table on either trans-

formed or untransformed data for a Latin square design: 

Source of variation 

Total 

Correction tor the mean 

Among rows 

Among columns 

Among treatments 

Remainder which is 
equated to error 

Degrees of freedom 

n2 

1 

n-1 

n-1 

n-1 

(n-l){n-2) 

is a one degree-of-freedom sum of squares for nonadditivity as developed by TUkey 

(1955). (See also section 11.20 in Snedecor and Cochran (1967) for a discussion 

and application of the procedure.) Fbr this situation it is postulated that 

and that the alternate hypothesis for additivity is 

(5.1) 
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where the symbols are as defined in equation (2.3). Note that one could have added 

the term c2~ y iT j to the above expectation, but c2 is assumed to be zero for the 

test. Alternatively, one could consider four different hypotheses for the four 

different types of nonadditivity involved. Note that 

Nair (1975) has discussed this problem and has given separate tests for each type 

of nonadditivity. 

Another nonstandard statistical analysis for data from an experiment designed 

as a latin square is the one given by COx (1956) wherein different gradients are 

considered for either the rows or the columns. A generalization of this would 

consider differential gradients in both rows and columns. Still another statistical 

analysis would involve the use of a covariate rather than a bloCking variable to 

eliminate the heterogeneity present for that source of variation; this could be 

used when the value of the covariate was present such as ~1as, for example, for the 

data given in Example VI-1 of Federer (1955). All of these analyses for Latin 

square designs could be extended to the general roorow by c-column designs. Sta­

tistical analyses under the model given in equation (2.4) have been presented by 

Nair (1975). These are but a few of the possible models and statistical analyses 

for r-row by c-colw:nn designs. Two problems that require resolution are the 

determination of the correct error structure and the estimation of estimable 

functions under models other than (2.3}. It appears that considerable work is 

required to resolve all such problems associated with the statistical analysis of 

these designs. 
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In much the same manner as for blocked designs (Federer (1975)), a test of 

model (2.3) ·uith model (2.4) as the alternative hypothesis, could be obtained by 

computing the treatment means adjusted for any nonorthogonality from rows and 

columns and the sums of squares r.. (~ij )2 of residuals for each treatment j, by 
h, l. 

ranking the means and sums of squares, and by computing Spearman's rank order 

correlation. 

6. Summary 

Two different sampling structures, prior to the addition of treatments, for 

experiments designed as r-row by c-column designs are discussed. Their relations 

to actual applications are considered together with additive and multiplicative 

treatment responses. Many types of experiments in which the latin square design 

has been used are presented. Types of available statistical analyses are briefly 

discussed. 
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