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This thesis defines and analyzes a navigation concept that relies on passive one-

way ranging using pseudorange and beat carrier phase measurements of High-

Frequency (HF) beacon signals that travel along non-line-of-sight paths via ionosphere 

refraction. The concept is being considered as a possible alternative to GNSS 

positioning and timing services.  

 The proposed system uses an array of ground stations that are placed at known, 

predetermined locations. HF signals are simultaneously transmitted from these 

ground-based beacons, and received at an unknown single receiver location. If the set 

of signals that reaches the user equipment receiver has sufficient geometric diversity, 

then the position and the clock offset of the receiver can be determined uniquely.  

A significant challenge arises from ionospheric modeling uncertainties that cause 

errors in the determination of signal ray paths. Erroneous signal paths result in errors 

in the estimated user equipment position and clock offset. This challenge is addressed 

by estimating corrections to a parametric model of the ionosphere as part of the 

navigation solution. The coupled estimation problem is solved with a batch filter that 



 

 

simultaneously estimates the user equipment position, the clock offset, and corrections 

to an a priori ionosphere model.  

The first part of this dissertation includes a theoretical background review, 

derivation of mathematical models, and descriptions of the structures of the developed 

batch filters. It considers two filter versions of this study that rely on two different 

physical models for the propagating HF signals.  

The second part of the dissertation is dedicated to a system performance analysis 

and an assessment of algorithm functionality. This analysis is based on using data 

from a truth-model simulation. This is followed by a discussion that assesses 

performance sensitivities to setup characteristics.  

A follow-on effort to this study is proposed, one in which algorithm functionality 

and performance would be examined with actual recorded data for input and signal 

processing. This proposed work is beyond the scope of this dissertation. 
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INTRODUCTION 

The use of High Frequency (HF) signals propagating in the atmosphere has been 

widely discussed in the literature for communications and over-the-horizon radar.  

Signals with frequencies in the range 2-10 MHz can bounce successively off the 

ionosphere and the Earth to arrive at a receiver along a Non-Line-Of-Sight (NLOS) path.  

Such signals have been proposed for geolocation purposes, as in Ref. [1].  The present 

study represents a further effort to examine the potential use of such signals for radio 

navigation. 

Given perfect knowledge of the ionosphere and of the number of bounces between a 

transmitter and a receiver, it is possible to develop a model of the measured pseudorange, 

which is the difference between a signal’s reception and transmission times multiplied by 

the speed of light.  The pseudorange depends on the unknown user receiver location and 

the receiver’s unknown clock offset.  Given four or more such pseudoranges from four or 

more independent transmitters with an appropriately diverse geometry, it should be 

possible to solve for the unknown user position and clock offset, similar to GPS.   

The problem with such an approach is that the ionosphere’s HF signal 

propagation/refraction/reflection properties are highly uncertain due to the variability of 

its three-dimensional electron density distribution, Ne(r).  The approach of Ref. [1] and 
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Ref. [2] is to use ionosonde data [3] in order to refine a local model of Ne(r).  This local 

model is then used to estimate the unknown location of a transmitter.  The present 

approach seeks to estimate simultaneously the location of an unknown receiver, its clock 

offset, and corrections to relevant portions of the Ne(r) distribution.  Its fundamental input 

data are the measured pseudoranges, also known in literature as group delays, between an 

array of transmitters at known locations and the user receiver. These measurements may 

include multiple pseudoranges from a single transmitter for ray-paths with differing 

numbers of bounces or for signals with differing frequencies. A second type of 

measurement, known as beat carrier phase, counts carrier cycles over an arbitrary time 

interval and differences the resulting count with the expected nominal count for the 

transmitted signal waveform [4]. In the scope of this work, these measurements are used 

to refine the receiver’s position solution once a solution that is based on pseudoranges has 

converged. 

The approach taken in this study involves several elements.  They are 1) a nominal 

ionosphere model, 2) estimated corrections to that model, 3) raytracing calculations for 

the paths of the HF signals from the transmitters to the receiver through the corrected 

model, and 4) model inversion calculations to estimate the user receiver position and 

clock offset along with the corrections to the ionosphere model.  These model inversion 

calculations are carried out using a modified nonlinear batch least-squares solution 

technique. 

A key question for such an approach concerns observability.  Given a limited number 

of transmitters and a limited number of measured pseudoranges, can such a system 
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accurately estimate the many unknowns? The infinite-dimensional nature of ionospheric 

corrections, which exist in Ne(r) function space, theoretically dooms such an approach to 

failure.  In practice, however, it may be possible to combine a priori information about 

Ne(r) with measured pseudoranges and beat carrier phases in order to arrive at a 

reasonable result.  This dissertation represents a study of whether this might be 

practically possible.  

The present study follows the initial study of Ref. [5] but differs in two significant 

ways. The ray-path computations in Ref. [5] rely on a simplistic segmented ray-path 

model that is physically realistic.  Second, system performance is evaluated through a 

series of statistical analyses that rely on a mixture of Monte Carlo calculations and 

computation of the theoretical linearized a posteriori solution covariance. This 

performance analysis assesses sensitivities to various setup parameters. In the early study, 

in contrast, only a limited number of test cases were examined. 

As with the study presented in Ref. [5], the current study utilizes a Chapman vertical 

profile with horizontal variations of the three parameters that it uses to model the electron 

density vertical profile Ne(halt).  This model form has known limitations that are discussed 

later.  

The basic question of the present study concerns whether, and to what extent, the joint 

estimation of position, receiver clock offset, and corrections to ionosphere parameters is 

possible.  It is well known that positioning is possible with a minimal number of received 

signals for the simpler satellite-based GPS problem.  For the present problem, however, 

the increase in the number of unknowns and their complicated relationship to the 
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processed measurements makes performance hard to predict based on simple analysis.  

Instead, performance must be studied using a truth-model simulation and a corresponding 

batch estimator. 

This study makes three contributions to the area of radio navigation based on bouncing 

HF signals.  First, it develops a measurement model of the pseudorange and beat carrier 

phase measurements of multi-hop HF signal paths from known beacon transmitter 

locations to an unknown user receiver location.  This model includes techniques for 

solving its nonlinear bounce conditions and for computing first-partial derivative 

sensitivities of the bounces and the range measurements with respect to the unknown user 

location and the unknown ionosphere parameters. Second, this study develops a batch 

nonlinear least-squares estimation algorithm for determining the unknown user receiver 

position, user receiver clock offset, and ionospheric parameter corrections. This 

algorithm incorporates a priori information about the ionosphere parameters in order to 

compensate for the lack of strict simultaneous observability of the location, clock offset, 

and ionosphere corrections.  Third, the potential performance of the proposed HF 

navigation scheme is evaluated using data from a truth-model simulation and using 

covariance analysis. 

The remainder of the dissertation is divided into two parts and eight chapters. Part 1, 

consisting of Chapters II to V, includes theoretical background, mathematical models, a 

thorough description of the batch estimator, and a review of past work. Part 2, consisting 

of Chapters VI to VIII, presents the studies that have been performed in an effort to 

characterize the potential performance of the proposed system.    
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Chapter II presents the physical and mathematical models of Earth, the ionosphere and 

the traversing HF signals.  

Chapter III covers definitions and derivation of bounce points and their equations, ray-

hops, and ray-paths. It also discusses two measurement error models.  

Chapter IV develops the batch filter that estimates the quantities of interest.  It starts 

with formulating the governing problem and develops three different iterative solution 

strategies that apply in three different cases. This chapter also describes a modified 

Gauss-Newton method that is utilized in this study. An error analysis, including 

derivation of the expected estimation error, is discussed next. Chapter IV concludes with 

the derivation of the filter’s theoretical a posteriori mean square error and covariance 

matrices for several different cases. 

In Chapter V, past work that considered a simplified ray-path model is reviewed. This 

work originally indicated feasibility for the HF navigation concept, and it established the 

starting point for the current phase of this study. Moreover, models which have been 

developed during that early work are used by the current effort. This chapter concludes 

the first part of the dissertation.   

The second part of the dissertation begins with Chapter VI, which presents various 

aspects of algorithm functionality and validation. It describes the truth-model simulation 

that has been developed to evaluate this concept, and it discusses observed batch-filtering 

algorithm behavior during the optimization process. Finally, it presents several analyses 

that concern solution convergence and covariance computations.  
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 Chapter VII presents methodology concepts and results for a study that considers a 

variety of test cases. These test cases are split into four classes, where each class consists 

of several groups of test cases that differ in their scenario setups. An ensemble of 21 test 

cases has been designed to provide an understanding of the performance that can be 

expected for a real system given different conditions of operation. This chapter includes 

tables that summarize the properties and results for most categories of test cases that have 

been studied and for both batch filter configurations. 

Chapter VIII analyses the results that have been presented in Chapter VII. It discusses 

trends, observations, and findings for the collection of test cases described in the previous 

chapter, and it examines performance sensitivities to the various setup parameters. This 

analysis involves positioning accuracy, as well as the merit of the a posteriori ionosphere 

model. Suggestions for follow-on studies are outlined in this chapter and conclude the 

analytical part of this document.  

Finally, Chapter IX summarizes this study’s developments, and it draws conclusions 

about the proposed new system.  

The nine chapters of this work are followed by three appendices. These consist of 

information that is not essential for acquiring an understanding of this project.  They 

cover aspects of this study that certain readers may find useful. Appendix A describes the 

procedure of one-dimensional interpolation for a bivariate function that is used in this 

study. Appendix B elaborates on filter procedures and calculations that apply for the 

simplified ray-path model. Appendix C covers various aspects of code design and 

implementation.   
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PHYSICAL MODELS 

2.1 High Frequency Signals  

2.1.1 Signal structure and ranging accuracy 

This study considers transmitted RF signals with sinusoidal carriers in the range 

2MHz – 8MHz. Signals are assumed to either maintain a constant carrier frequency, or to 

utilize a smoothed stepping pattern for altering their carrier frequencies. In the latter case, 

each signal beat carrier phase is measured after a given step is complete and the signal is 

oscillating with a different frequency, and consequently, traversing a perturbed ray path.  

The basic ranging procedure relies on Binary Phase-Shift Keying (BPSK) modulated 

codes or some similar spread-spectrum technique. The resulting accuracy for this sort of 

ranging in terms of measurement noise 1-sigma is about one kilometer assuming a signal 

bandwidth of 100 KHz. Carrier phase measurements are assumed to be derived using an 

accurate internal oscillator and phase-lock loop so that the expected accuracy for a beat 

carrier phase measurement is one meter based on extrapolation of the fraction of a cycle 

of phase that can be resolved for L-band signals using standard GPS signal-processing 

techniques.  It remains an open question whether such results can be achieved for HF 

signals.    
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2.1.2 Physical characteristics of wave propagation in the ionosphere 

A crucial component in the process of solving the governing positioning/timing 

estimation problem is the ability to accurately determine and reconstruct trajectories for 

the HF signals that traverse a modeled ionosphere. These trajectories are characterized 

not only by their curved shape, but also by the frequency- and path-dependent 

propagation speeds of their BPSK modulated code and carrier wave. Propagation speed 

dependence on wave frequency is known as dispersive wave propagation and is typical of 

propagation in the ionosphere [3], [6] and [7].  

The long-term propagation mechanism that is utilized in this study relies on 

ionospheric refraction that bends skyward-propagating radio waves back towards the 

Earth in a way that somewhat resembles reflection.  This effect can occur for signals in 

the frequency range of up to 40 MHz [8]. Long distance propagation during daytime 

cannot be sustained for wave frequencies less than 2 MHz due to strong absorption in the 

D layer [9]. 

When neutral atoms and molecules in the upper atmosphere are subjected to strong 

ultraviolet radiation, they may be ionoized into plasma - a state of matter consisting of a 

varying concentration of electrons and ions due to ultra-violet radiation from the Sun. 

Plasmas are electrically conductive and hence respond strongly to electromagnetic fields. 

Conductivity modifies the index of refraction of the medium, causing RF waves to reflect 

and refract. An important property of the resulting ionized substance is known as the 

plasma frequency and is denoted ωp. The plasma frequency corresponds to a natural 
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oscillation frequency of free electrons. For an electron density of Ne(r), the plasma 

frequency is given by 

( ) 2
0p e e eN r q mω ε=                                                (1) 

where qe, me and ε0 are, respectively, the electron charge, the electron mass and the free 

space dielectric constant.  

Let ω denote the wave frequency and let k≡2π/λw (= ω/c) denote the wave number. 

The phase velocity is in the direction of the wave vector k which is normal to the 

direction of the electric displacement. Group velocity is in the direction of the Poynting 

flux, which is normal to the direction of the electric field [10]. 

A precise analysis of the behavior of electromagnetic waves as they traverse through 

plasma is conducted through the combining of Faraday’s law and Ampere’s law in 

macroscopic form, where the wave solution takes the form  

( )( )0 expA j t k rω − ⋅
                                                     (2) 

with the wave vector k being perpendicular to both magnetic field and electric 

displacement field but not necessarily to the electric field, E. Combining Maxwell’s 

equations yields the wave equation 

( ) 2 2
0 0k k E k E Eω µ ε⋅ − + ⋅ =                                                (3) 
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where μ0 is the free space permeability and ε is a 3x3 permittivity matrix that consists of 

terms dependent on ω, ωp and the electron gyrofrequency Ωe, which is dependent on 

Earth’s magnetic field B through 

 e
e

e B
m

Ω =       (4) 

Eq. (3) can be written as the linear homogeneous system 

( ) 0K k E =                                                          (5) 

in the unknown k and where K(k) is a 3x3 matrix. Desired solutions in a form relating k 

and the direction of E are obtained by setting K’s determinant equal zero. These solutions 

correspond to the different polarization modes. Typically, one should expect two 

independent solutions for any given wave frequency and propagation direction. The two 

modes will have distinct, close to orthogonal polarization and will be governed by 

different dispersion relations.    

It is common practice to formulate the wave normal equation in terms of θ, the angle 

between the magnetic field B and the wave vector k, and in terms of the index of 

refraction, n. One such formulation is known as Astrom’s Equation. It is given by 

( ) ( )
2 22 2

201 1
2 2 2 2 2 2

1 1 0

2 2 2

sin
cos 0

2

1 ; ' 1,0,1 ; ;
1 ' p e

nn n
n n n n n n

Xn X Y
Yα

θ
θ

α ω ω ω
α

−

−

 
+ + = − − − 

≡ − = − ≡ ≡ Ω
−

              (6) 

The Booker Quartic formulation is equivalent to Astrom’s Equation. It takes the form 
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( ) ( ) ( ) ( )( ) ( )
2

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 0 1 1

sin
cos 0

2
n n n n n n n n n n n

θ
θ− − −

 − + − + − − =    (7) 

Eq. (7) can be factored as a closed form solution for n2. This formula is known as the 

Appleton-Hartree formula 

( ) ( )
( ) ( )

2

2 4
2

2

1
1

2 1 4 1

sin ; cos

T T
L

T L

Xn
Y Y Y

X X

Y Y Y Yθ θ

= −

− ± +
− −

= =

                                    (8) 

Waves propagate when n2>0. Eqs. (6), (7) and (8) can be used to determine wave 

frequencies at which wave propagation ceases. These frequencies, known as cutoff 

frequencies, are determined by setting n2=0. The two solutions, ω1 and ω2, obey the 

equations ω1
2=ωp

2 and ωp
2= ω2(ω2-Ωe). These are the cutoff frequencies for the ordinary 

(O) and extraordinary (X) wave modes, respectively. The characteristic polarizations for 

the two modes are generally elliptical. However, when propagating in a direction that is 

close to perpendicular to the magnetic field, the O mode is characterized by linear 

polarization with its electric field parallel to the axis of the background magnetic field. 

The electric field of the extraordinary wave mode is approximately perpendicular to 

background magnetic field when propagating in a direction that is perpendicular to the 

magnetic field. The manner in which polarization changes throughout signal propagation 

is beyond the scope of this discussion. See Ref. [11] for a discussion of polarization. 
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2.1.3 Raytracing  

Raytracing calculations lie at the core of this study. The ability to accurately model 

signal trajectories is essential to the success of the estimation process. Calculations are 

based on a numerical solution to the wave equations. This subsection discusses the basics 

of these computations.  

Ray tracing is carried out through numerical propagation of Hamilton’s equations that 

apply for a propagating RF signal in an ionized medium. The fundamental set of 

equations is provided by Ref. [12] in the form of non-linear ordinary differential 

equations (Eqs. 9 through 15 of that paper) that can be written as: 

( )

( )

1

2

,
'

,
'

T
w

w

T

w
w

dr dH dHc f r k
dk ddP

dk dH dHc f r k
dr ddP

 
= − = 

 

 
= = 

 

ω

ω

                                                            (9) 

H is the Hamiltonian and the independent variable P’≡ctg is the range-equivalent 

group delay parameter that takes the value P’0 at the beginning of the trajectory and P’f at 

its end. The same Hamiltonian can be used to develop a differential equation for the 

range-equivalent carrier phase P=ϕ/k0 with ϕ being the carrier phase in radians. This 

differential equation takes the form 

 0
0'

dP dH dHk k
dk dkdP

= −       (10) 

where k0=ω/c is the free-space wave number with ω being the transmission frequency.  
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Reference [12], which combines the work of Ref. [13] and Ref. [14], gives several 

Hamiltonians that can be used in Eq. (9).  They are generally based on the Appleton-

Hartree formula of Eq. (8) or on a closely related derivation. The following formulation 

for the Hamiltonian is used with most sub-routines that are utilized in that paper. 

( )
2

2 2 2 2
2

1
2 x y z

cH real k k k n
ω

   = + + −  
   

                                   (11) 

where kx, ky, and kz are the three Cartesian components of the wave vector k. This wave 

vector notation will be used hereafter for Hamiltonian formulation. A second 

Hamiltonian that is based on Ref. [15]. It takes the form 

( ) ( ){ }
( ) ( ) ( ){ }

( ) ( ){ }

22 2 4 4 4 2

2 22 2 2 2 2 2

2 2 4

2 2

H real U X U Y U c k X k Y c k

real U U X Y U X c k X k Y c

real U X Y U X

ω ω

ω

 = − − + ⋅ 

 + − − + − − ⋅ 

 + − − − 

         (12) 

where U≡1-jZ, Z≡νm/ω and νm is the mean electron/neutral collision frequency. The 

Hamiltonian of Eq. (11) is not appropriate high up in the ionosphere near any possible 

spitze of the ray path because it can become singular in this region. This is the region 

were Ref. [12] suggests the use of the Hamiltonian of (12) instead. The latter 

Hamiltonian, however, would function poorly when in or near free space, where all of its 

derivatives become very close to zeroes.  

Alternative Hamiltonian formulations are presented in Ref. [16]. These are the 

Hamiltonians that are utilized with the current implementation of this study. The first 

Hamiltonian, which is used where the electron density is relatively small, is given by 
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( ) ( )

2
02

0

2 2

1 , , ,
2

1 1 s

T

AH w
k k kH real n r k p
k k

jZ Y jZ

    = −            
 × − − −   

    (13) 

where p is a vector of parameters that characterizes the ionosphere electron density 

profile. nAH is the lossy Appleton-Hartree index of refraction of Ref. [17].  

A different Hamiltonian is used near a reflection point/spitze. It does not experience 

any singularities in this vicinity. This Hamiltonian takes the form 

 { }1
2

H real λ=         (14) 

where λ̃ is an eigenvalue of the 3x3 matrix D̂ that is given by 

( ) ( )

( ) ( ){ }

2 2
2 2

0 0

2 2
0 0 0

1 1 1

ˆ ˆ ˆ1 1

T T

T

k k kkD I jZ Y jZ
k k

X jZ I Y B B j jZ Y B

    = − − × − − −      

 + − − − − × 



    (15) 

B̂0 is a unit vector that points in the direction of the ambient geomagnetic filed vector, B. 

A state space system of equations is defined for the unknown wave-front position and 

wave-vector : 

( )
( )
( )

1

2

; w

X f X

f X r
f X

kf X

=

    = =      




 








                                                                (16) 



15 

 

This state vector consists of the three Cartesian coordinates of the propagating wave 

front’s position rw and the three components of the wave vector k. For practical reasons, 

the state vector that is used with the current numerical implementation is defined in the 

normalized form:  

0

'w fr P
X

k k
 

=  
 

                                                          (17) 

Normalization of the first term by P’f and of the second term by k0≡ω/c results in a 

unitless state vector, whose derivative with respect to the parameter τ≡P’/P’f is given by: 

( )' , , '
'f f

dX dXP f X p P
d dPτ

= =                                        (18) 

f can be numerically propagated from the initial τ=0 to the final τ=1.  The terminal value 

P’f  is unknown and must be determined as part of a two-point boundary value problem 

solution. Integration is performed using a 4th/5th order Runge-Kutta method, and its 

Runge-Kuta grid points are revised until a sufficient level of accuracy is achieved 

through a process of step size adaptation. Further details on the raytracing process 

implementation are given in Section III of Ref. [16]. 

2.2 The Earth Model 

Models of the Earth and the ionosphere are used to define the physical environment 

for the propagating signals. These models have been chosen so that they combine the 

need for a reasonably realistic representation of physical phenomena with the need to 
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limit the complexity of the models and the resulting computational effort for purposes of 

the present study.  Models with increased fidelity and increased complexity would be 

required for the processing of actual HF signal data to produce accurate navigation 

solutions. 

2.2.1 Earth geometry model 

An Earth surface geometry model is needed for two reasons.  The first use is to define 

the bounce conditions of HF ray paths at the Earth’s surface.  The second use is to define 

altitude within the calculations of this study’s ionosphere model. 

The Earth is modeled as a closed, continuous and smooth surface that is known as the 

WGS-84 ellipsoid [18]. The implicit equation for the ellipsoid in Cartesian Earth 

Centered Earth Fixed (ECEF) coordinates is 

22 2
31 2

2 2 2 1 ; 6378137 ; 6356752.31425c P
c c P

rr r R R
R R R

+ + = = =         (19) 

Where r1, r2 and r3 are coordinates in meters.  

The function halt(r) =hWGS84(r1,r2,r3) computes the altitude of a Cartesian ECEF point 

(r1,r2,r3) above the WGS-84 ellipsoid, as in Ref. [19]. All points of the form (r1k,r2 k,r3 k) 

on the ellipsoid therefore satisfy halt(rk)=0. The gradient of halt(rk) is of interest, as will be 

presented later in the context of bounce points. 

This approach for modeling the Earth has been chosen for its relative simplicity and 

the fact that it does not rely on availability of additional data. A more realistic method for 
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modeling the shape of the Earth would use an existing digital representations of the 

Earth. A commonly used form of representation is a Digital Terrain Model (DTM) or 

Digitial Elevation Map (DEM). Such a model could be used to develop a bi-quintic spline 

for describing the latitude/longitude dependent altitude. The data required for 

DTM/DEM-based modeling is available for national agencies and institutes – see Ref. 

[20].  

A DTM/DEM model would provide a higher fidelity calculation of the bounce 

conditions for reflection of HF waves off of the ground.  For purposes of the truth-model 

simulation study, however, a DTM/DEM model does not provide a significant advantage 

over a simple WGS-84 ellipsoid because the nature of the signal bounces off of the Earth 

does not change markedly between the two models except in very mountainous regions.   

The WGS-84 model has the advantage of simpler calculations.  That is why it is used in 

the present simulation-based study.  A DTM/DEM-based model should be used for any 

proposed application of this dissertation’s methods to real data. 

2.2.2 Earth magnetic field model 

Raytracing computations for propagating HF signals require knowledge of the Earth’s 

magnetic flux vector field at any desired location. This study uses the 11th generation 

model for the International Geomagnetic Reference Field (IGRF), known as IGRF-11, for 

which the magnetic flux is modeled as the gradient of a time-varying spatial potential 

function. Additional information on this model can be found in Ref. [21]. 
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2.3 The Ionosphere Model 

This region of Earth’s upper atmosphere is characterized by ionization that is caused 

by ultraviolet solar radiation. The majority of the ions in the ionosphere are 

photoionization dislodged dinitrogen and dioxygen molecules. A roughly equal number 

of free electrons is assumed to lie in close proximity to the ionized molecules so that the 

total charge of the medium is assumed nearly neutral. 

A three-parameter Chapman beta model is used to model the location-dependent 

electron density distribution of the ionosphere. This model regards the ionosphere as a 

medium with an altitude-dependent electron density whose altitude density distribution is 

characterized by parameters that vary with latitude and longitude. For a given time of 

interest t, electron density is given by 
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 (20) 

where ϕ(r), λ(r) and halt(r) are, respectively, the latitude, longitude, and altitude above the 

WGS-84 ellipsoid of the ECEF position r.  Ne(r,t) is given in units of electrons/m3. The 

quantity hmax[ϕ(r),λ(r),t] is the altitude of the maximum electron density of the Chapman 

profile.  The quantity VTEC[ϕ(r),λ(r) ,t] is the vertical total electron content – the integral 

of the electron density along a vertical path.  The quantity hsf[ϕ(r),λ(r) ,t] is the Chapman 

profile’s altitude scale height. 
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It should be noted that the three Chapman parameters are time dependent.  They 

usually vary slowly in time due to the daily variations of the amount of solar radiation 

and other effects. While the rate of change is small enough for these parameters to be 

regarded as constants during the short duration of signal propagation in the context of this 

project, the differences in their values for time intervals that are in the order of an hour or 

more are significant. In particular, diurnal, seasonal, and solar effects make the resulting 

time variations very significant.     

The simplistic Chapman model ignores the possibility of distinct D and E layers, 

including a sporadic E layer.  This level of simplification would likely produce 

unsatisfactory results if working with daytime real data, but it is reasonable to use a 

Chapman profile at this stage of simulation-based study of the proposed system’s 

potential accuracy. 

The natural logarithm of the latitude/longitude variations of the three Chapman 

vertical profile parameters are modeled using bi-quintic splines as described in 

Subsection 2.3.1.  The spline nodes are placed at predefined latitudes and longitudes with 

subsets of nodes grouped into common small circles of constant latitude. Figure 1 

illustrates the placement of the grid nodes, where each grid node is identified by a unique 

number, starting at one for the node that is located at the south pole and ending at 424 for 

the node that is located at the north pole. The set of grid nodes that is used with this study 

has been defined in a way that gives a sufficient number of nodes over North America, 

the simulated region of interest. The number of nodes used outside this region is 
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somewhat arbitrary and is probably larger than it needs to be. In general, other node point 

selections are possible.   

The set of parameters for each grid node are the given function’s value and eight 

partial derivatives with respect to latitude ϕ and longitude λ. Thus, a vector of nine 

parameters pa,i is associated with the ith node and the splined scalar function a(ϕ,λ) as 

follows: 

 
2 2 2 3 3 4

, 2 2 2 2 2 2, , , , , , ,,a i

T
a a a a a a ap aa

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 =              ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ λ φ λ λ φ φ λ φ λ φ λ φ

 (21) 

Given the latitude ϕ0 and the longitude λ0 of a point at which one wants to compute the 

value of the natural logarithm of a Chapman parameter, a, (and possibly various of its 

partial derivatives), the needed calculations use the nearest four bi-quintic spline nodes 

that lie northwest, northeast, southwest, and southeast of (ϕ0,λ0).  Stated differently, these 

four points lie on the two small circles of latitude which bracket ϕ0.  On each of these two 

small circles, the two chosen node points are those whose longitudes bracket λ0. 

Three sets of vectors pa,1 to pa,424, each set computed for a different Chapman 

parameter, can be used to fit the International Reference Ionosphere (IRI) model. First a 

Chapman vertical profile is fit to the IRI vertical profile at each spline node point to give 

hmax, hsf, and VTEC. Next, the natural logarithms of these three quantities are computed at 

each node point. Finally, a smoothness criterion is employed to determine the various 

partial derivatives of these quantities for inclusion in pa,i of Eq. (21) using a spline 



21 

 

initialization method found in Ref. [22]. Further details on this procedure are given in 

Subsection 6.1.2. 

 
Figure 1: The 424 grid nodes placement map for an example latitude/longitude bi-quintic 

spline.  

2.3.1 Ionosphere parameter errors and the M covariance matrix 

An error model is considered for the a priori ionosphere parameters. These errors 

reflect a Chapman based representation of imperfect knowledge of the true spatial 

electron distribution in the ionosphere. For the general case, the error vector εp is defined 

through  

true pp p ε= +                                                               (22) 

where ptrue is the vector of parameters that define the true ionosphere and p̅ contains a 

priori estimates of the ionosphere parameters. Both vectors are stacked versions of the 

elementary vectors pa,i so that 
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The nature of the a priori model error vector εp is determined by the case. It is 

modeled as either a vector of constants or as a sample from a multivariable Gaussian 

distribution, as discussed later in the context of navigation accuracy analysis.  

In order to model the likely correlations between the various terms of p̅, the IRI model 

was used to compute the best-fit Chapman parameter values four times a day throughout 

the calendar year 2009, where the first sampling time in hours is a uniformly distributed 

random variable in the range [0,6] and the following three times are spaced six hours 

apart. See Ref. [23] and Ref. [24] on current IRI modeling, and Ref. [25] on further 

improvement efforts. Reference [26] describes the Chapman parameter fitting procedure. 

This method of sampling was chosen in order to minimize possible effects of an hourly-

scale periodicity. The resulting 1460 parameter vectors were used to compute an 

empirical covariance matrix for the natural logarithm of all Chapman model based 

ionospheric parameters of Eq. (21). This matrix is defined as the ionospheric parameters’ 

a priori covariance matrix, designated M0 throughout this dissertation.  



23 

 

2.3.2 The Ionosphere Errors Index 

It will be useful later in this dissertation to have a quantitative measure for the 

deviation of a given set of ionosphere parameters, such as the a-priori ionosphere model, 

from their “true” values within a truth-model simulation. The unitless Ionosphere Errors 

Index (IEI) is a scalar quantity that is defined as follows.  

1
10

1log
2

T
p p

p

M
N

ξ ε ε−
 

=   
 

                                              (24) 

where Np is the number of ionosphere parameters that are associated with applicable grid 

nodes, i.e., grid nodes that define grid cells through which propagating rays travel, and 

where M is a covariance matrix that was constructed from the M0 matrix by considering 

rows and columns that are associated with this same set of parameters.  

An understanding of how ξ is statistically distributed is desirable when assessing 

receiver/transmitters/ionospheric model setups. As an example, a test case is considered 

that has characteristics similar to those of Test Case A0 that later takes a role in the 

results presentation of Chapter 7, with the same receiver/transmitters setup and the same 

true time of 10-23-2009 at 14:22 UTC. This setup results in 13 active grid nodes and 

consequently, in a set of 13x3x9=351 applicable ionosphere parameters. ξ was computed 

for this subset of ionosphere parameters for all 1460 time instances spread over a year 

that are mentioned in the previous subsection. The above time was used as the reference 

time in this computation. It should be noted that none of the 1460 time instances is 

identical to the reference time. The resulting 1460 values of ξ are distributed in a way that 

is illustrated in Fig. 2. 
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The top panel of Fig. 2 plots computed ξ values versus the time difference in days 

between the 1460 sample times and the reference time. The red curve is a smoothed 

variant of the blue curve. Unsurprisingly, smaller values were computed near zero time 

difference. However, an important observation is that larger time discrepancies do not 

necessarily result in larger IEI values. This was the motivation for abandoning the 

absolute seasonal discrepancy criterion of Ref. [5]. 

 

Figure 2: IEI values vs. time difference (top); IEI histogram (bottom). 

The bottom panel of Fig. 2 plots a histogram of all 1460 computed values of ξ. Since 

the ionosphere parameters’ error vector is normalized by its covariance matrix inverse 

and the number of parameters, it can be expected that ξ will have a mean value close to 

log10(1/2)=-0.3 (see Eq. (24)). In practice, the mean value is about -0.25. In the later 

discussion that follows, ξ values that lie to the left of this mean will be regarded as 

‘small’ ξ. For such values, the truth and the a priori ionosphere are somewhat consistent. 

At the same time, ξ values that lie to the right of this mean will be regarded as ‘large’ ξ. 
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For these cases, the a priori ionosphere model’s differences from the ‘truth’ ionosphere 

are considered to be large in a statistical sense. 

2.4 Bi-quintic spline calculations 

This project utilizes bi-quintic spline modeling and calculations for two purposes:  

a) Representation of the natural logarithm of the latitude/longitude dependent hmax, 

hsf and VTEC Chapman parameters, as discussed previously. 

b) Representation of the 80% electron density height surface, as discussed in 

Subsection 3.4.2. 

Figure 3 illustrates the setup for the bi-quintic spline calculation for an unknown 

quantity of interest, a, at point C0 of latitude ϕ0 and longitude λ0. 

 

 

 

 

The a(ϕ0,λ0) bi-quintic spline calculations proceed as follows: Suppose that 

CSW(ϕS,λSW) and CSE(ϕS,λSE) are the neighboring southwest and southeast biquintic spline 

nodes and that CNW(ϕN,λNW) and CNE(ϕN,λNE) are the neighboring northwest and northeast 

C0(ϕ0, λ0) 

ϕN 

ϕS 
CSW(ϕS,λSW) CSE(ϕS,λSE) 

CNW(ϕN,λNW) CNE(ϕN,λNE) CN(ϕN,λ0) 

CS(ϕS,λ0) 

Figure 3: The bi-quintic spline calculation latitude/longitude grid example. 
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nodes.  Then ϕS ≤ ϕ0 ≤ ϕN, λSW ≤ λ0 ≤ λSE, and λNW ≤ λ0 ≤ λNE. The values for a and two of 

its derivatives at point CN(ϕN,λ0) are obtained with the three-term-output function ο 

through 

( ) ( ) ( )
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( ) ( )
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           (25) 

where ο is a three-term-output function whose description is given in Appendix A. 

Similarly, the values for ∂a/∂ϕ and ∂2a/∂ϕ2 and their first and second partial derivatives 

with respect to λ are obtained through 
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and 
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Similar calculations are carried out to obtain a(CS), ∂a/∂λ(CS), ∂2a/∂λ2(CS), ∂a/∂ϕ (CS), 

∂2a/∂ϕ∂λ(CS), ∂3a/∂ϕ∂λ2(CS), ∂2a/∂ϕ2(CS), ∂3a/∂ϕ2∂λ (CS) and ∂4a/∂ϕ2∂λ2 (CS) using the 

spline node parameters at points CSW and CSE. This set of computed values and partial 

derivatives for points CN and CS can now be used to compute the desired values at C0 as 

follows: 
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  These calculations are facilitated by the fact that any one-dimensional quintic spline is 

completely defined by the function, first-derivative, and second-derivative values at the 

spline interval’s two end points. Additional descriptions of bi-quintic splines that include 

many more details are available in Refs. [22] and [26].   
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BOUNCE POINTS, RAY-HOPS, AND RAY-PATHS 

3.1 Definitions 

A bounce point is the geometric location of a traversing signal’s incidence upon and 

reflection from the Earth. The position of the kth bounce point in Cartesian coordinates is 

denoted ηk. The unit vector that is perpendicular to the Earth’s surface at bounce point k 

is called the bounce point normal vector and is denoted by uk. The ray-path direction 

from which a signal approaches bounce point k is vf,k. The direction of the reflected signal 

at bounce point k is v0,k. 

The curved signal trajectory between the transmitter and the first bounce point, 

between two sequential bounce points, or between a bounce point and the receiver is 

regarded as a ray-hop. Ray-hops are denoted s. An ordered sequence of ray-hops that 

starts at a transmitter and ends at the location of the receiver, rR, constitutes a ray-path. It 

should be noted that the possibility of multiple reflection-like refractions off of the 

ionosphere between a pair of reflections off the Earth, as described in Ref. [27], is not 

considered in the scope of this work. 

Figure 4 illustrates these definitions, showing three sequential bounce points, the 

receiver location, the ray hops connecting them, and other terms. The associated vector p̑j 

consists of all ionosphere parameters that apply in the vicinity of the jth ray-path that is 

illustrated in that figure. This means that once the position of all points along the signal’s 
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trajectory have been determined by a set of numerical raytracing computations, it is 

required to determine for each of those points the grid cell at which they lie. These points 

include points on the illustrated ray-hops sk, sk+1, …,sm, along with additional ray-hops 

that belong to the ray-path that are not shown in Fig. 4. All P’x,x and Px,x terms refer to 

range-equivalent group delays / beat carrier phases that will be considered in a later 

discussion.  

 

 

 

 

3.2 Bounce Points 

3.2.1 Bounce point properties and representation 

In the scope of this study, it is assumed that waves are perfectly reflected from the 

Earth’s surface in a specular reflection manner, although Ref. [27] suggests that ground 

reflections consist of superimposed specular and non-specular, randomly distributed 

components.  

Reflectivity - the power of the reflected signal to that of the incident wave in an 

anisotropic medium is determined by Fresnel’s equations as discussed in Ref. [28]. An 

Figure 4: The ray-path definitions and notation. 
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additional important property of propagating signals that tends to change significantly 

during signal reflection is polarization. The current model does not account for the impact 

of reflectivity and the varying polarization. However, an extension for this study is 

planned to incorporate these effects.   

Three equations are used to implicitly define each bounce point. The set of three 

equations that defines the kth bounce point of a given ray-path can be written in the 

following shorthand form 

( ), 0,0 , , ,k k f k k k kg g v v uη= =                                       (29) 

An explicit formulation of Eq. (29), split into three scalar components - components of 

types A, B, and C - takes the form  

 

( )
( )
( )

, , 0,

, , 0,

, , 0,

, , ,

0 , , ,

, , ,

A k f k k k k

k B k f k k k k

C k f k k k k

g v v u

g g v v u

g v v u

 
 
 =
 
 
 





η

η

η

      (30) 

Recognizing that a signal’s trajectory within a single ray hop, and in particular its 

directional vectors v0 and vf, depend on the location of the hop’s start and end points and 

on the values taken by the ionosphere parameters that apply in the vicinity of that hop, 

Eq. (29) can be rewritten as     
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or, in a shorthand form 

  ( )0 , ,k j R jg r p=  

 η       (32) 

where p̑j is as defined before, m is the total number of ray-hops constituting the jth ray-

path, and where η̑j denotes the set of bounce points of the jth ray-path. 

The formulation of Eqs. (31) and (32) is used with the ray-paths solver that is 

described in Section 3.4, as well as with the alternative batch filter of Chapter 5. The 

formulation of Eqs. (29) and (30) has been favored for most Gauss-Newton process 

related calculations for practical reasons that will become clear in the next subsection.   

3.2.2 Bounce point equations 

The kth Type-A constraint equation requires that the kth bounce point lies on the Earth 

surface. This surface is represented by the WGS-84 ellipsoid in the present study, 

although it should be represented by some sort of topographic map when dealing with 

real data. 

Type-B constraint equations enforce co-planarity between the directional vector of the 

incoming ray-hop signal as it approaches the receiver, the directional vector of the 

reflected ray hop, and the normal vector to Earth’s surface at the bounce point. For the kth 

bounce point, which links the kth ray hop and the (k+1)st ray hop, the following equation 

definition for gB,k applies: 

 , 0,, , 0,0 ( , , , ) ( )k f k kB k f k k j kg v v u u v v= = ⋅ ×η                  (33) 
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where uk is an outward unit vector normal to the Earth’s surface at the kth bounce point. 

Let hDTM(ϕ0,λ0) be the scalar function that computes Earth surface’s height above the 

WGS-84 ellipsoid at latitude ϕ0 and longitude λ0. Let rECEF(ϕ0,λ0,h0) be the function that 

computes Cartesian ECEF coordinates from geographic latitude/longitude/altitude 

coordinates. Define: rsurf(ϕ0, λ0)= rECEF(ϕ0, λ0, hDTM[ϕ0,λ0]) and note that hDTM(ϕ0,λ0)=0 in 

the present study. Then uk is given by 

( ) ( )

( ) ( )

0 0 0 0

0 0 0 0

, ,

, ,

surf surf

k

surf surf

r r

u
r r

φ λ φ λ

φ λ φ λ

λ φ

λ φ

   ∂ ∂
   ×
   ∂ ∂   =
   ∂ ∂
   ×
   ∂ ∂   

      (34) 

Type-C equations constrain the normal vector to the Earth at the bounce point to bisect 

the angle between the incoming and reflected ray hops.  It can be written in the form 

 , 0, , 0, 0, ,,0 ( , , , ) ( )f k k k f k k k f kC k kj
g v v u u v v v v= = ⋅ +η  (35) 

The + sign in this formula results from vf,k pointing towards the reflection point while v0,k 

points away from it. It should be noted that this formulation of the bounce-point 

conditions could potentially accept the case of an out-going ray-path direction equaling 

the exact negative of the in-coming ray-path direction, which is unacceptable.  This can 

be addressed with a careful choice of first guesses to the ray-path-determination 

calculations, and by applying a feasibility test to computed pseudoranges. This test relies 

on the assumption that non-physically-feasible computed ray-paths will result in group-

delays that are significantly different from the measured group delays.  
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3.3 Single-Hop Calculations 

3.3.1 The fundamental nonlinear two point boundary value problem  

Given the signal trajectory’s known start and end location, and given a set of 

applicable ionosphere parameters, one can determine the ray-hop by determining the 

initial state X0 of the raytracing differential equation in Eq. (16) that applies at the 

beginning of the hop’s trajectory and the total signal range-equivalent group delay P’f for 

which the signal ultimately arrives at the known end location. This Two-Point Boundary 

Value Problem (TPBVP) is thoroughly discussed in Ref. [16].  Therefore, only a brief 

description is given here. It should be noted that this study relies on the work that is 

described in that source.  

Without loss of generality, the Hamiltonian at the beginning of the trajectory (and 

everywhere else along the ray’s path) is assumed zero. The initial boundary conditions 

are therefore 

[ ]
( )

0 0

0 0

' 0

0 ,
fP I X

H X p H

 =


= = 

η
                                            (36) 

 and the final boundary condition is 

[ ]' 0f f fP I Xη =                                                        (37) 

where p̃ is a general vector of ionosphere model parameters that apply at a region of 

interest. Ƞ0 and Ƞf denote a single-hop trajectory’s start and end points, respectively. For 

instance, for ray-hop sk+1 that is shown in Fig. 4, Ƞ0 refers to Ƞk and Ƞf refers to Ƞk+1. The 
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notation X0 corresponds to the state vector at the beginning of a hop, and similarly, Xf 

corresponds to the value that the state vector takes at the end of a hop. This set of seven 

scalar equations is solved for the six elements of the state vector X0 and the final 

propagation range-equivalent group delay P’f.  The solution algorithm involves 

calculating the sensitivity matrices ∂Xf/∂X0 and ∂Xf/∂P’f which are required for the 

implementation of Newton’s method in order to iteratively solve this nonlinear TPBVP. 1 

3.3.2 Sensitivities to inputs 

As discussed earlier in the context of ray-path solution and in the broader perspective 

of the fundamental estimation problem, it is necessary to obtain the partial derivatives of 

the TPBVP problem with respect to some of its inputs. For the sake of simplicity, the 

concept for obtaining these sensitivities is demonstrated here with an unnormalized 

problem formulation as in Eqs. (9) and (16), with P’ as the independent variable. An 

alternative implementation is presented in Ref. [16] that is slightly different, as it is 

aligned with a normalized formulation.  

Let α be X̃0, p̃ or P’f, then by differentiating Eq. (16) with respect to α: 

                                                 

 

1 Subsections 3.3.1 - 3.3.5 are based on the information provided in the electronically submitted 
supplementary file notes_on_sensitivities.pdf, with slight modifications and some notational 
adaptation. 
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This last equation is of immense importance, as it enables relating partial derivatives of X̃ 

with respect to various parameters at different times through numerical integration.  This 

equation reduces to the familiar linearized state-transition matrix differential equation in 

the case where α is X̃0.  It is a sensitivity matrix or vector equation if α is, respectively, p̃ 

or P’f. 

3.3.3 Computation of ∂vfj/∂p̃ and ∂v0j-1/∂p̃ 

The short notation that utilizes subscripts 0 and f is used here as before. For the sake of 

simplicity, the hop index notation is omitted for the rest of this subsection as this 

subsection only considers a single ray-hop - sj, and so v0 ≡ v0j-1 , vf ≡ vfj , P’o ≡ P’oj-1 and 

P’f ≡ P’fj. The same compact notation will be used for the vectors rw, k and X̃. It should be 

noted that ∂v0j-1/∂p̃ is the same as ∂v0/∂p̃ or [0,1/k0∙I](∂X̃0/∂p̃) evaluated at the beginning 

of the jth hop, i.e. at P’oj-1. Similarly, ∂vfj/∂p̃ is the same as ∂vf/∂p̃ or [0,1/k0∙I](∂X̃f/∂p̃) 

evaluated at the end of the jth hop, i.e. at P’fj. The last statement is true since all bounce 

points are located well below the ionosphere where the wave number takes on its nominal 

value: k=k0. 

For this computation, the initial and final locations of the signal’s trajectory are 

assumed known and fixed. From Eq. (38) with α≡p̃, a P’-dependent ODE is obtained: 
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                                          (39) 

The first set of boundary condition equations considers the known location of the 

trajectory’s start point which is independent of ionospheric parameters  

[ ] [ ]
0

0

'

0 0 0
P

XXI I
p p

∂∂
= =

∂ ∂



 

                                                    (40) 

This yields 3xNp equations where Np is the number of ionosphere parameters in p̃. An 

additional set of Np equations derives from the independence of the Hamiltonian initial 

(and constant) value from the ionosphere parameters: 

[ ] [ ]
0 00 0 0

0 0

' '' ' '

0 0 0
P PP P P

X HdH H X H HI I
dp k p p k p p

∂ ∂∂ ∂ ∂ ∂
= = + = +

∂ ∂ ∂ ∂ ∂ ∂



    

        (41) 

The final boundary condition is 

[ ]

[ ]
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0
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Pdr X dXI
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 ∂∂ = = +
 ∂ ∂
 
 ∂ ∂
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                          (42) 

This is a set of 3xNp equations, bringing the total number of equations to 7xNp. The 

equations are solved for ∂X̃0/∂p̃ (6xNp unknowns) and ∂P’f/∂p̃ (Np unknowns). The 

matrices ∂X̃f/∂p̃ and ∂X̃f/∂P’f are related to their values at P’0 through dynamic 

propagation of the state influence matrix differential Eq. (39). It should also be noted 

that: 
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                                                                 (43) 

Then the full derivative of v0 with respect to p̃ is 

[ ]
0 0

0 0

, ,

0
X p X p

f fdv XI
dp X p p

 ∂ ∂∂ = +
 ∂ ∂ ∂
  

 

 





  

                      (44) 

and for vf: 
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          (45) 

where the solution for the two unknowns ∂X̃0/∂p̃ and ∂P’f/∂p̃ that was obtained from Eqs. 

(41) and (42) is substituted in, and the two partial derivatives of X̃ that are evaluated at 

P’f are obtained through propagation of the state transition matrix equation. 

3.3.4 Computation of ∂vfj/∂η0 and ∂v0j-1/∂η0 

In this subsection sensitivities of the direction of the wave vector at the signal’s start 

and end points to variations in the initial ray-hop location are computed. The ionosphere 

parameters set p̃ is consequently assumed fixed.  

Eq. (38) takes the form 
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The first initial boundary condition is straightforward and yields three equations 

[ ] [ ]
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                                          (47) 

The second initial boundary condition derives from the independence of the Hamiltonian 

and the initial location of the hop and it takes the form (the term in brackets is a 1x6 

vector) 

00
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0,,

0
w X pX p

XH H
r k

  ∂∂ ∂ =
∂ ∂ ∂  









η
                                        (48) 

For the final boundary condition, the independence of the signal’s front position at the 

start and end times is considered 

[ ] [ ]
0 0 0 0 0'' '
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  (49) 

Eqs. (47), (48) and (49) can be solved for ∂X̃0/∂Ƞ0 and ∂P’f/∂Ƞ0 where once again the 

sensitivities at different times can be related by numerically integrating the ODE for 

sensitivities. The two quantities can be substituted back into the v0 and vf partial 

derivative formulas to obtain the full derivatives of interest: 
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3.3.5 Computation of ∂vfj/∂ηf and ∂v0j-1/∂ηf 

Similar to the previous derivation: 
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                                                 (52) 

The first initial boundary condition is straightforward and yields three equations 
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                                                  (53) 

The second initial boundary condition derives from the independence of the Hamiltonian 

and the final location of the hop and it takes the form (the term in brackets is a 1x6 

vector) 
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                                                          (54) 

For the final boundary condition, the obvious coinciding of rw and ηf is considered 
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The last three equations can be solved for ∂X̃0/∂ηf and ∂P’f/∂ηf with the sensitivities at 

different times related through numerically integrating the ODE for sensitivities. Finally, 

the two quantities can be substituted back into the v0 and vf partial derivative formulas to 

obtain the full derivatives: 
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3.4 Multiple-Hop Calculations: The Ray-Path Solver  

The work that is presented in this section utilizes the products of the past effort of Ref. 

[16] that was reviewed in the previous section. In the following discussion, single-hop 

calculations are extended to multiple-hop calculations that include determination of 

bounce points locations and their sensitivities to parameters, group delay and range-

equivalent beat carrier phase measurement models, and measurements’ sensitivities to 

input parameters.   

3.4.1 Solving for the bounce points η 

Determination of the ray-path for an HF signal that is traversing from a transmitter 

beacon to a receiver involves solution of coupled, nonlinear equations that define the 

physical characteristics of its trajectory. Suppose that one is given the following 

information: the locations of the receiver and the transmitter, the number of ray-path hops 

connecting them, and a model for the ionosphere.  The goal of this section is to solve for 

the position of the ground bounce points that satisfy the governing reflection equations. 

In other words, this subsection develops a means of solving for the vector η as a function 

of the transmitter location, the receiver location, and the ionosphere model.  

An algorithm for determining the nonlinear functions η̑j(rR,p̑j) from their implicit 

equations, or simply - a ray-path solver, has been developed. The ray-path solver 

assumes fixed known locations for the signal’s start and end points, fixed ionosphere 

parameters, and a known number of sequenced ray-hops that constitute the ray-path. The 

ray-path solver’s outputs are the locations of the bounce points.  Auxiliary outputs are the 

partial derivatives of these locations with respect to the ionosphere parameters and their 
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partial derivatives with respect to the location of the ray-path’s end point. An additional 

output is a set of directional vectors for the incoming and reflected signals at the locations 

of the transmitter, the bounce points, and the receiver.  

The solution is obtained using Newton’s iterative method to solve:  

 ( )0 , ,m j R jg r p=  

 η       (57) 

through a minimization of  

( ) ( )1( ) , , , ,
2

T

RP j m j R j m j R jJ g r p g r p=   

 η η η                                              (58) 

with respect to η̑j. Here, g̃m denotes the Eq. (32)-type formulation of the set of 3xm 

equations that apply at the m bounce points of ray-path j that has m+1 connected hops. η̑j 

is the stacked vector of 3xm coordinates of the ray-path's bounce points. The iterative 

solution process uses linearization about a current guess to compute a solution increment.  

It takes a step along the resulting search direction with a step-length scaling in the η̑j 

space that is chosen to ensure that the Eq. (58) new cost at the new guess of the solution 

is lower than the cost at the previous guess.  A line search is essential in order to 

guarantee a decrease in cost and convergence to a solution. It starts by determining the 

Newton step through linearization of Eq. (57) with respect η̑j, where all terms are 

evaluated at a current guess η̑j,guess 
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j m j guess R j

j
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      (59) 
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and where D denotes the total derivative operator. The solution for Δη̑j,g, that constitutes 

the Gauss-Newton step (or correction vector), is computed by matrix inversion. The cost 

function of Eq. (58) is evaluated next with a series of improved guesses for η̑j that are 

obtained using 

, , ; 0.5 0,1,2,3,...i
j i j i j guess i i= + ⋅∆ = =  η η α η α      (60) 

The new guess for η̑j, η̑j,new, equals the value of η̑j,i for the smallest value of i that yields a 

reduction in the cost function.   

For bounce point k, the required set of sensitivities that are included in the left most 

term of Eq. (59) is obtained through computation of the total derivative 

, 0,

, 0,

k k k kf k k

l f k l k l l

Dg g g gv v
D v vη η η η

∂ ∂ ∂∂ ∂
= + +

∂ ∂ ∂ ∂ ∂

   

                                     (61) 

where g̃k is the subset of the elements of g̃m, consisting of the three equations that apply at 

bounce point ηk, and where ηl is the lth bounce point of η̑j. vf,k is the direction of the signal 

that is arriving at point ηk, and v0,k is the direction of the reflected signal that is bouncing 

off at that point. The complete set of sensitivities Dg̃m/Dη̑j is obtained by performing the 

above calculation for all bounce points of that ray-path. 

Computations of ∂g̃k/∂vf,k, ∂g̃k/∂vf,k and ∂g̃k/∂ηk are analytical and therefore immediate, 

as noted earlier. However, computation of ∂vf,k/∂ηk-1, ∂vf,k/∂ηk, ∂v0,k/∂ηk and ∂v0,k/∂ηk+1 is 

implemented as an auxiliary of numerical raytracing, as described in the previous section. 

Note that these are the only ηl partial derivatives of vf,k and v0,k that are non-zero in Eq. 

(61).  



44 

 

3.4.2 Ray-path solver robustness 

In order to maximize reliability and robustness of the ray-path solver, the algorithm 

attempts to solve the minimization problem with several sets of initial guesses. Priority is 

given to initial guesses that are input to the algorithm. The input of an initial guess is 

optional. An initial guess might be input in the situation where the ray-path solution is 

known to be close to a previously determined solution. When such a solution is not 

available, the algorithm will use the output of a ray-path solver that is based on a 

simplified ionosphere model as its first guess. This simplified solver has been used with 

earlier work that has been described in Ref. [5] as its primary ray-path solver. It has been 

observed that it yields an approximate solution for η that is typically close to the actual 

solution, and therefore, it is beneficial to use that solution as an initial guess for the full-

model solver. Furthermore, it has been shown that the ray-hop segments that are obtained 

with the simplified solver can be successfully used as initial guesses for the direction of 

both incoming and reflected signals. This simple solver is discussed in Chapter 5. 

Although uncommon, in some cases, use of the approximate solution as the first guess 

will fail to yield convergence, making it necessary to obtain additional initial guesses. A 

third type of initial guess is generated based on a thin-shell, latitude/longitude height 

dependent ionosphere model. The height for this bi-quintic spline modeled thin-shell is 

the height for which electron density reaches 80% of its maximal density. This method is 

also discussed briefly in Chapter 5. A fourth type of initial guess is generated using a 

constant-height thin-shell ionosphere model, with various heights considered.       
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3.4.3 Ray-paths’ setup feasibility, solution existence and uniqueness 

Every ray-path setup is evaluated for physical feasibility. With simulated test cases, 

this evaluation is performed by trying to compute a raytracing solution using the true 

ionosphere model. The answer for the feasibility question is often not straightforward as 

it consists of two complementary questions: a) Does a solution for the considered setup 

exist? b) Can the solution be found with the ray-path solver? In the absence of an ability 

to distinguish between a negative answer for (a) and a negative answer for (b) during this 

phase of assessment, failures in obtaining a solution for η during this stage of assessment 

are regarded as an indication for the setup being physically unfeasible. This approach 

may raise the question of how many of the ray-paths that were declared unfeasible are in 

fact feasible, meaning that an incorrect determination originated from a ray-path solver 

failure. This is hard to determine given that the ray-path solver is currently the only tool 

available for feasibility assessment. However, based on comparison between results 

obtained with the current ray-path solver and results obtained with the simplified model 

ray-path solver that was used in the work of Ref. [5] for identical setups, the author tends 

to believe that most declared failures are due to physical infeasibility. 

Ray-path solution uniqueness is a second matter that should be addressed. Multiple 

solutions are theoretically possible if the cost function (58) has multiple minima that are 

zero, as demonstrated in Ref. [29].  

In the early work that utilized a simplified ray-path model, a given set of parameters 

that includes transmitter and receiver position, an ionosphere model, and the number of 

ray-hops sometimes yielded more than one possible solution. Such observations have not 
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been made so far with the full, raytracing based model. This could be attributed to either 

genuine uniqueness of solution with the advanced model, or to the fact that the set of 

initial guesses for a given setup consists of vectors that are typically close to each other 

and converge to the same solution because of their closeness. The current algorithm, 

meanwhile, does not consider the possibility of having more than one solution for η.  

A future version of the algorithm may need to possess the capability to address such 

ambiguities. A possible strategy might rely on tests where ray-path solutions are assessed 

through a comparison between the magnitudes of several ray-paths’ residual terms (i.e., 

the differences between computed and measured group delays). Such a test is described 

later where a modified Gauss-Newton method is presented.           
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3.5 Measurement Models 

3.5.1 The group delay measurement model 

A typical signal runs from the transmitter, traverses through the ionosphere in a 

refraction-based curved trajectory, bounces off of Earth and eventually arrives at the 

receiver. Let ρg,j=P’f,m(j) be the true total range-equivalent group delay of the jth ray-path, 

which equals the true signal propagation time multiplied by the speed of light c.  Let yg,j 

be the measured range-equivalent group delay of that ray-path, which equals the speed of 

light multiplied by the difference between the measured reception time according to the 

erroneous receiver clock and the true transmission time according to a calibrated beacon 

transmitter clock. Let δ be the receiver clock’s offset. Then the jth group delay 

measurement equation can be written as 
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is the vector of unknown receiver position components and the range-equivalent clock-

offset, as in GPS, and where the computed functions h̆g,j and hg̃,j both model the true 

range-equivalent group delay of the jth ray-path - ρg,j. The vector p̑j contains the 

ionosphere model parameters that apply in the vicinity of that ray-path, and νg,j is the 

measurement noise term. ηm is an explicit function representation of the elements of η̑j 
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that contains the ordered set of ECEF X-Y-Z coordinate functions of the jth ray-path’s m-

1 unknown bounce points in the following form: 
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The above non-linear functions use the geometric location for the receiver and the local 

ionosphere model to calculate the scalar pseudorange value.  

The measurement model in Eq. (62) applies for a total of N measured pseudoranges in 

a given navigation/ionosphere-correction problem.  For convenience in batch estimation, 

this model is stacked into an N-dimensional vector equation model of all the 

measurements. Let p̑ equal the union of all p̑j vectors applying for all N ray-paths.  The 

stacked measurement model vector equation takes the form 
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or 

 ( , )gg g gy h x p v= +        (66) 
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The random noise vector, νg, is characterized by its mean and covariance: 

 0 ; T
g g g gE v E v v R   = =          (67) 

where the noise covariance matrix, Rg, is typically a diagonal matrix. This 

characterization of νg is due to the fact that the effect of signals propagating at less than 

the speed of light is accounted for and incorporated into the model, and therefore it is 

reasonable to model the remaining ranging errors as zero-mean Gaussian errors. The 

magnitude of the entries of Rg is discussed later in the context of performance analysis 

3.5.2 The range-equivalent beat carrier phase model 

Beat carrier phase measurements are based on a comparison between measured 

changes in the received signal’s phase and changes in the phase of a receiver-generated 

nominal replica signal.  In effect, the beat carrier phase is the negative of the time integral 

of the received carrier Doppler shift [30]. This measurement involves an unknown bias 

term that originates from its integral nature.  

The left panel of Fig. 5 illustrates the nature of the nominal signal frequency fs(t) as it 

is transmitted at a ground station (blue). It is characterized by a stair-stepping pattern that 

has short, smooth transition phases. The same pattern is generated at the receiver for its 

nominal replica signal. The frequency curve for the received signal (dashed green) is 

shifted rightward due to finite propagation time delay. Received frequencies are 

additionally slightly different due to Doppler shift that typically arises from the time-

varying spatial distribution of electron density in the ionosphere. Integration of the 

signal’s frequency over time yields a quantity that is regarded as the signal’s phase, Φ(t), 
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which is continuously computed for both the self-generated nominal replica signal and 

the received signal. The results, illustrated in the right panel of Fig. 5, take the form of 

similar, yet not identical, monotonically increasing curves.  

 

Figure 5: An example of the time-dependent signal frequency and the corresponding phase. The 
nominal transmitted frequency is shown in blue in the left-hand panel. The received 
frequency is shown as the dashed green curve in the same plot. The corresponding 
phases are shown in the right-hand panel. 

The beat carrier phase is the difference between the two graphs at a given time. In the 

example above, this difference has been measured at some instance in time between times 

t4 and t5 at which frequency shifts occur for the nominal transmitted signal. The range-

equivalent beat carrier phase equals the product of this beat carrier phase measurement 

and the signal’s wavelength for the nominal transmission frequency that applies between 

times t4 and t5. 

Let ρc,j=Pf,m(j) be the total true range-equivalent beat carrier phase of the jth ray-path, 

and let yc,j be the measured range-equivalent beat carrier phase of that ray-path. Recall 

that P is computed by integrating the differential equation in Eq. (10). Let λw,j be the 

corresponding signal’s wavelength and let βi(j) be an unknown bias term in units of wave 

cycles. Then the jth beat carrier phase measurement equation can be written as 
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and where the computed functions h̆c,j and h̃c,j both model the ionosphere-refraction-

induced range-equivalent carrier phase change of the jth ray-path – ρc,j. The vector β 

consists of all unknown bias terms that apply for all N measurements. It should be noted 

that only one element of β is associated with a single measurement equation, but in most 

cases a single element of β will be common for several ray-paths, as discussed later. This 

fact will cause β to have fewer elements than the total number of ray-paths. The integer 

function i(j) in the index of β in Eq. (68) maps measurement ray-path indices j to indices 

of their corresponding terms in β. 

As with group delay measurements, carrier phase measurement equations are stacked 

as an N-dimensional vector equation that takes the form 
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or, equivalently 
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The last equation can be written in shorthand notation as   

 ( , ) 1c c R cy h r p c v= + + Λ +


 δ β       (72) 

where Λ is a NxNβ matrix and Nβ is the dimension of β. The random noise vector, νc, is 

characterized by its mean and covariance  

 [ ] 0 ; T
c c c cE v E v v R = =        (73) 

Finally, both groups of vector measurement equations, the first for the range-

equivalent group delays and the second for the range-equivalent beat carrier phases, can 

be grouped into a single 2N-dimensional vector equation. The same can be performed 

with the vector functions hg and hc and with the noise vectors νg and νc: 
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Note that xg⊂xc so that h is conveniently defined as a function of xc. The resulting 

measurement model takes the form  

 ( ),c zy h x p= + ν        (75) 

3.5.3 Measurement model sensitivity matrices 

Nonlinear gradient-based estimation algorithms, such as batch least-squares, require 

partial derivatives of the measurement model with respect to the unknown estimated 

quantities.  These sensitivities must be computed at a succession of improved guesses of 

the optimal estimates of the unknowns.  In the present context, the required partial 

derivatives are those of each hj measurement model function with respect to the elements 

of the unknown x and p̑ vectors. The partial derivative with respect to the cδ element of x 

is 1, consistent with Eq. (62).  Other derivatives, those with respect to the elements of rR 

and p̑, require special calculations. 

Throughout the following derivation ηm is the stacked vector of coordinate functions 

for all bounce points of the jth ray-path, and p̑j is the vector of applicable ionosphere 

parameters, both have been defined earlier. Consistent with Fig. 4, the two vectors vf,j and 

v0,j are stacked vectors that hold the components of the Cartesian representation of the 

unit direction vectors for the incoming and reflected rays of all bounce points of that ray-

path. 

The sensitivity of the jth range measurement to the input variables rR and p̑j is obtained 

by differentiating Eq. (62): 
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Note how Eq. (76) differs from the equivalent Eq. (14) in Ref. [5] because it includes a 

direct dependence of hj̃ on p̑j that does not exist with the simplified ray-path model of the 

earlier work. 

Some of the terms on the right hand side of this set of two equations require a 

complicated evaluation procedure. Recalling the variable dependencies in the model, the 

gj system of equations for the jth
 ray-path can be written as 
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η η
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               (77) 

Differentiating Eq. (77) with respect to rR and p̑j using the chain rule yields linear 

equations for the unknown partial derivatives ∂ηm/∂rR and ∂ηm/∂p̑j. Solution of these 

equations yields the formulas: 
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These expressions are substituted into the right-hand side of Eq. (76) to complete the 

formulas for the required sensitivity matrices ∂hj/∂rR and ∂hj/∂p̑j 

Of the terms on the right hand side of Eq. (78), the following terms can be evaluated 

analytically through differentiation of the bounce point equations: ∂gj/∂vf,j, ∂gj/∂v0,j and 

∂gj/∂uj. Ease in computing these sensitivity Jacobians is essentially the motivation for 

using the reflection formulation of Eqs. (30)-(35). 

The following terms, however, can only be evaluated in tandem with the raytracing 

calculations that determine single ray hops: ∂vf,j/∂p̑j, ∂v0,j/∂p̑j, ∂vf,j/∂ηm, ∂v0,j/∂ηm and 

∂v0,j/∂rR. The computation of these terms has been described in Section 4.2.6 that 

presented single ray-hop numerical computations. That section also discussed the 

computation of the terms ∂hj/∂ηm, ∂hj/∂rR and ∂hj/∂p̑j that appear on the right hand side of 

Eq. (76). Computation of ∂gj/∂ηm has been shown in Subsection 3.4.1 in the context of 

solving for the implicit functions η. Finally, the term ∂uj/∂ηm is derived from the Earth’s 

surface model.  
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BATCH ESTIMATION OF RECEIVER POSITION, 

RECEIVER CLOCK OFFSET, AND IONOSPHERE 

PARAMETERS 

4.1 Batch Filter Problem and Solution 

4.1.1 The nominal case 

A batch filter has been developed.  It estimates xc (or xg when only considering group-

delay measurements) and p by minimizing a cost function that includes weighted squared 

differences between the measurements and their modeled values, and between the 

estimated p elements and their a priori estimates. In the general case, the batch filtering 

problem seeks the values that jointly minimize the cost function 

 T 1 T 11 1
1 2 2( , ) [ ( , )] [ ( , )] ( ) ( )c c cJ x p y h x p R y h x p p p M p pζ− −= − − + − −  (79) 

where y is the 2Nx1 stacked vector of the N measured pseudoranges and N measured 

range-equivalent beat carrier phases for the given N ray-paths. R is the square, symmetric, 

2N-by-2N, positive definite measurement error covariance matrix (typically a diagonal 

matrix), p̅ is the a priori estimate of the ionosphere parameter vector, and M is the square, 

symmetric, positive definite covariance matrix that models the uncertainty in the a priori 

ionosphere parameter vector p̅.  The elements of p consist of ionosphere parameters 

which apply in the vicinity of the unknown, true signal ray-paths. The M matrix has row 
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and column dimensions equal to the dimension of p̅. The role of the positive scalar valued 

weighting coefficient ζ will be discussed later. 

The batch least-squares cost function of Eq. (79) does not include a priori values of 

the elements of xc with penalties for differences between those values and the estimated 

xc.  This means that no prior knowledge about these terms is assumed, just as in standard 

GPS point navigation solutions. 

The minimizing solution to the estimation problem in Eq. (79) is equivalent to the 

optimal least-squares solution to the following over-determined system of nonlinear 

equations: 

 
1/2 1/2

11/2 1/2

( , )cR y R h x p

M p M p
ν

ζ ζ

− −

− −

   
   = +
      

 (80) 

where R-1/2 and M-1/2 are the inverses of the Cholesky factor square roots of, respectively, 

the matrices R and M, and where ν1 is a zero-mean, identity-covariance Gaussian random 

error vector whose norm squared is minimized by the batch solution. 

The problem is solved with a modified version of the gradient-based Gauss-Newton 

method that is described in the next section.  

4.1.2 The case of a known receiver position and clock error 

In some cases it is desirable to solve for the unknown ionosphere model (and, 

potentially, for the unknown carrier bias terms) while the receiver location and clock 
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offset are assumed known and fixed (or, at least, closely monitored and corrected). In 

such cases, the optimization problem takes the general form  

T 1 T 11 1
4 2 2( , ) [ ( , )] [ ( , )] ( ) ( )fJ x p y h p R y h p p p M p pβ β ζ− −= − − + − −    (81) 

If carrier phase measurements are not processed, the problem will reduce to estimation of 

ionosphere parameters only. 

4.2 A Modified Gauss-Newton Method 

The Gauss-Newton method has been used to solve this estimation problem. This 

method is described in Refs. [31] and [32]. It is additionally discussed in the context of 

convex function optimization through nonlinear programing in Ref. [33]. It is a gradient-

based iterative method. Some adaptations to this method have been made in order to 

address the special characteristics of the minimization problem, as described in the 

following subsections.    

4.2.1 The top-level procedure 

Each iteration starts with guesses of the optimizing values of xc and p.  First, it 

linearizes Eq. (80) about these guessed values.  Next, it solves the resulting over-

determined linear least-squares problem to get candidates for improved solution guesses 

of xc and p.  Finally, it searches along the line in [xc;p] space from the old guess to the 

candidate new guess in order to find a new guess that reduces the cost J1(xc,p).  
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Linearization of Eq. (80) about the current guess for the unknowns xc and p, xc,guess and 

pguess, takes the form 

( ) ( )

( )

1 2

1/2

1 2
,

1/2

, ,

, ,
0

0
0

,0

0

guess

c c
c

c

c guess guess

c guessx p

h x p h x p
xR

x p pM
I

y h x pR

M p p

−

−

−

−

 ∂ ∂
  ∆  

=  ∂ ∂    ∆      
 

   −
  

−     

ζ

ζ

  (82) 

This over-determined system of equations is solved through a short series of 

operations. Starting with a QR factorization, as in Ref. [31]: 
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Let  
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then the vectors zb and zr are computed as follows: 

 b T
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r

z
Q z

z
 

= 
 

       (85) 

such that the dimension of zb is the same as the row/column dimension of Rb. The initial 

Gauss-Newton step is obtained by computing  
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       (86) 

New candidates for the optimal solution are computed using 

 , ,c guess c guess c

guess guessnew

x x x
p p p

∆     
= +     ∆     

α        (87) 

where α=0.5nGN, nGN=0,1,2,… is a scaling factor that is used to guarantee actual reduction 

in the cost function J1(xc,p).  

The processes of determining α and a resulting new guess for the unknown parameters 

is performed in an auxiliary loop as follows. First, the corrected state vector is evaluated 

using Eq. (87), substituting 0 for nGN in the expression for α. The resulting vector is then 

used to reevaluate the cost function and compare it with the cost function’s current value, 

i.e., the value that has been computed at the end of the previous Gauss-Newton step. If 

cost decrease is achieved, then the processes is terminated and the new state vector that 

has been computed for nGN=0 becomes the new guess for the unknown parameters. 

Otherwise, α, the resulting new guess for the unknowns, and J1 are evaluated for nGN=1. 

The cost function is again compared with its current value. This process will terminate 

once cost reduction is achieved. This line search between the old guess and the new 

candidate guess ensures convergence to a local minimum of J1(xc,p) as the theory of the 

Gauss-Newton method guaranties the existence of an nGN for which J1 is reduced – see 

Refs. [32] and [34].  
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The top-level procedure is repeated iteratively until the cost function is minimized. 

The Gauss-Newton method with step-size halving is guaranteed to converge to a local 

minimum, but the minimum is not guaranteed to be global.  Testing experience indicates 

that convergence to local minimum that is different from the global minimum occurs 

rarely, if ever. Therefore, the algorithm seems to be insensitive to the initial guess and the 

corresponding magnitude of the initial error and is nearly guaranteed to converge to its 

global minimum. Validity of the latter statement is further demonstrated in the discussion 

of Section 6.4. 

4.2.2 Measurements exclusion 

This is the first place where the algorithm deviates from the classic Gauss-Newton 

method. The modified method uses an ad hoc approach that allows the sets of considered 

measurements to change during the iterative process. This requires modifications to the 

way cost function reduction is approached.   

In the context of this study, the Gauss-Newton process is performed only once the 

considered transmitters/receiver/ionosphere-model setup has proven to be physically 

feasible, meaning that valid ray-paths have been successfully computed for all 

transmitted signals. This means that failures in algorithm attempts to solve for the 

location of the bounce points η̑j of the jth ray-path during the iterative process cannot be 

attributed to physical non-feasibility. As earlier shown, solution for η̑j is obtained with 

the ray-path solver. Occasionally, the ray-path solver may fail to solve for η̑j when called 

by the primary, top-level Gauss-Newton process. This it is typically due to either a poor 

estimate for the location of the receiver and the ionospheric parameters, or difficulties in 
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the numerical raytracing computation for one or more of that ray-path’s ray-hops. In less 

common cases the ray-path solver might fail due a poorly chosen initial guess for the 

inner Gauss-Newton process of the solver. 

 Regardless of the cause, in such cases the particular measurements that failed to be 

computable in the filter’s model are temporarily excluded from the set of measurements 

that are considered. Such exclusions apply only at the current optimal step-size 

determination step of the current Gauss-Newton iteration, where a particular value of α is 

considered to evaluate a guess for the unknown parameters and the resulting cost 

function. This means that an excluded measurement may be re-included in the next step-

size determination step where a different value for α is used, and will necessarily be 

included in the next top-level Gauss-Newton iteration, where measurement models and 

their sensitivity matrices are reevaluated.  

Measurement exclusion means that cost function computations may take different 

forms at different iterations, as different subsets of measurements are considered. The 

consequent process of comparing evaluated cost functions at different iterations and 

different step-size determination steps is as follows.  

Suppose that the (b-1)st Gauss-Newton iteration has been completed. The bth Gauss-

Newton iteration then begins with calculations that include an attempt to solve for all ray-

paths’ bounce-points η̑j, j=1, …, N for all N available ray-path measurements. This 

attempt is processed with estimates for x and p that have been obtained at the end of the 

(b-1)st iteration, designated  xb-1,final and  pb-1,final. Let yb,0 be the subset of the full set of the 

available N measurements, y, which consists of measurements that were determined valid 
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in this attempt by the success of the algorithm at solving for their bounce points. yb,0 has 

Nb,0≤N elements, and the associated cost function that is computed for this subset with xb-

1,final and pb-1,final is denoted J(b,0). A series of computations for the current bth iteration is 

performed next, resulting in a preliminary set of two proposed correction vectors that 

could potentially become the new estimates: xb,0 and pb,0. Next, an inner loop is executed 

to determine this iteration’s optimal step size, i.e., a positive scaling factor α≤1 for these 

correction vectors. This is the same sub-process that was briefly described earlier in 

Subsection 4.2.1, omitting the details of how the cost function is evaluated.  In the first 

iteration of that inner loop, the step size factor α is taken as 1, and computations for all 

ray-paths corresponding with yb,0 are then carried out. Those measurements that were 

determined valid constitute a new subset, yb,1, that has Nb,1 elements where Nb,1≤ Nb,0 and 

yb,1⊆yb,0. J(b,1) is the computed value for the cost function that is now evaluated for yb,1 

with xb,1 and pb,1 - the new estimates for x and p that have been computed with α=1. Still 

in the first iteration of the inner loop, it is required to determine whether a reduction in 

the cost function has been achieved, by comparing J(b,1) with the cost function that has 

been evaluated for the previous Gauss-Newton iteration. However, comparison can only 

be performed when the two cost functions are evaluated with the same sets of 

measurements, and therefore the cost function must be reevaluated with xb-1,final and pb-

1,final as state estimates and yb,1 as  the set of applicable measurements. The result, denoted 

Jreeval(b-1,1), is now compared with J(b,1). If J(b,1) is less than Jreeval (b-1,1), then the 

inner loop is terminated and xb,1 and pb,1 become the updated estimates for the state 

vectors, designated xb,final and pb,final. Otherwise, α is halved, and the process for the inner 

loop is repeated with α=0.5. This second iteration of the inner loop includes: (a) 
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determination of valid ray-paths and the resulting Nb,2 and yb,2 where yb,2⊆yb,0, (b) 

evaluation of the cost function J(b,2) with xb,2 and pb,2 – corrected state vectors that were 

computed with α=0.5, (c) a second reevaluation of the cost function Jreeval (b-1,2) with xb-

1,final, pb-1,final and yb,2, and finally (d) a comparison between J(b,2) and Jreeval (b-1,2). If 

J(b,2) is less than Jreeval (b-1,2), the inner loop is terminated and xb,2 and pb,2 become the 

updated estimates for the state vectors. Otherwise, the process will repeat itself until 

J(b,k) is less than Jreeval (b-1,k) for some k. Once reduction in the cost function has been 

achieved, the algorithm will proceed to the next Gauss-Newton iteration.       

By design  this method is guaranteed to ensure a decrease in the cost function for two 

sequential Gauss-Newton steps for a subset of measurements, but it is theoretically 

possible that later steps would result in a higher computed cost function value because 

different subsets of measurements may be used to enforce a cost decrease during different 

steps. Theoretically, this optimization strategy removes the guarantees of convergence for 

a Gauss-Newton method with step size halving, but it has not been observed to result in 

significant convergence issues. The scope of validity for this assumption is examined in 

Sections 6.2 and 6.3 that discuss algorithm functionality.  

An alternative, more stringent approach to dealing with unsolvable ray-paths would be 

excluding measurements, as with the current approach, except here measurements that 

have been excluded in previous Gauss-Newton iterations would not be considered in later 

iterations, until solution convergence has been reached. An obvious drawback for this 

approach is the possibility that exclusion of too many measurements may negatively 
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affect the iterative optimization process by degrading system observability and 

potentially prevent convergence.      

4.2.3 Measurement rejection 

Measurement rejection mechanisms are common practice in sensor-based systems. 

The potential of significant, un-modeled measurement errors that affect sensor readings is 

typically handled with likelihood tests that are designed to detect and reject outliers as 

bad data. Likelihood tests rely on measurement error models, where abnormal 

measurements take values that are very improbable based on those models and, therefore, 

are rejected. 

While un-modeled sensor errors are not considered within the scope of this study, it 

has been observed that due to known algorithm limitations, significant discrepancies 

between computed and measured group delays / phase advances may arise, resulting in 

sub-optimal corrections to the unknowns that occasionally cause solution divergence (see 

Subsection 6.3.2). Unlike with the case of anomalous sensor reading errors, these 

discrepancies originate from erroneous ranging predictions that are computed by the 

algorithm.  

Regardless of the cause, it is crucial that the algorithm will be able to detect any such 

occurrences and handle them in a manner that is similar to the procedure that has been 

discussed in Subsection 4.2.2. The most significant difficulty in detecting erroneous 

computed pseudoranges is the fact that, due to their nature, these errors cannot be reliably 

modeled or predicted. Let the jth measurement’s residual be defined as 
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 ( ),j j j c jy h x p= − ν        (88) 

While the magnitude of valid νj terms will generally decrease in the iterative process, 

it has been observed that the magnitude of invalid νj terms, for which hj is miscalculated, 

varies in a manner that is not aligned with apparent trends in the way valid terms change. 

Therefore, a procedure designed to detect erroneous computed ranges cannot rely on their 

absolute magnitudes. Instead, the algorithm uses a relative criterion where the normalized 

magnitudes of all residual terms are compared.     

Consistent with the notation of Subsection 4.2.2, let yb,d be the set of measurements 

applying at the dth inner loop of the bth Gauss-Newton iteration. yb,d has Nb,d elements, 

corresponding to measurements that have been determined to be valid in a procedure of 

the kind that has been described in the previous subsection. Next, residual terms for yb,d 

are computed and stored as a vector – νb,d. The element exclusion operator \ is used to 

define a new set of vectors so that the vector νb,dj=(νb,d\νb,dj) includes all elements of νb,d 

except for its jth element - νb,dj. The mean of the vector νb,dj is a scalar that is designated 

ν̅b,dj. The jth term of an auxiliary set of positive elements is computed by 
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where νb,dj(i) is νb,dj’s ith element. On a more intuitive note, κb,dj measures the magnitude of 

the jth measurement’s residual, normalized by the standard deviation that is computed for 

all other residual terms.  

Measurements whose corresponding κ values are larger than 6 are excluded from yb,d 

for the remaining procedure of the dth inner loop step. This method has proven useful 

with many, yet not all, cases where excessive residual terms prevented the solution from 

converging.  

4.2.4 Calculation of the M Matrix 

As briefly mentioned earlier in Subsection 2.3.2, the M matrix is constructed from the 

M0 matrix that was introduced in that subsection by considering only the rows and 

columns of M0 that correspond with active grid nodes’ parameters. Consequently, M may 

take different forms in different top-level Gauss-Newton iterations since ray-path 

trajectories are re-computed at the beginning of each iteration. This should be accounted 

for when cost function values are compared as discussed in Subsection 4.2.2.  

An alternative approach would be to pre-determine the active grid nodes that may be 

used throughout the entire process. This would result in static definitions of the p vectors 

and M matrices.  

4.2.5 The varying cost function 

The motivation for including the right-most term in Eq. (79) is to ensure that 

corrections that are applied to the ionospheric Chapman parameters (and their latitude 

and longitude partial derivatives) are reasonable. Recognizing the potentially limited 
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observability for some of the parameters, one would like to limit the magnitude of 

corrections by including this terms that panelizes for big differences between the a priori 

and the current estimates for these parameters.  

In the previous, simplified version of the model that was used in Ref. [5], the ζ term in 

Eq. (79) was equal to 1. Experiments carried out for the current model indicated, 

however, that the significant nonlinearity which characterizes the model, along with the 

fact that the ionosphere model terms in the state vector are natural logarithms of physical 

quantities, could result in unreasonable corrections being applied to those parameters, 

ultimately causing frequent algorithm divergence. It has been observed that excessive 

corrections are mostly applied right after the algorithm step where the search switches 

from the limited-corrections mode of Case 2, as in Subsection 4.2.7, into the full-

corrections mode of Case 1, as in Section 4.1. These findings indicated a useful ad hoc 

modification for the ζ term. Many experiments were conducted in order to determine a 

reasonable formulation for ζ. With the formula 

 1 10 kiχζ −= +                                                               (90) 

where χ=5 and ki is the index of the Gauss-Newton iterations that is initialized to 1 at the 

first full-corrections mode iteration, a high convergence rate for the whole algorithm has 

been achieved. It should be noted that the use of this term should not have any impact on 

the optimal solution, in comparison to the case of ζ=1, as it converges quickly to 1 as ki 

increases. For the initial steps with small ki, this modification to ζ has the effect of 

limiting the magnitudes of the ionosphere parameter corrections during the initial phases 

of the algorithm. 
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4.2.6 Varying sets of carrier bias terms  

It is possible that due to either measurement exclusion, as in Section 4.2.2, or 

measurements rejection, as in Section 4.2.3, for a given Gauss Newton iteration none of 

the measurements that are related to a particular bias term βe are used. This would make 

βe temporarily unobservable and therefore the algorithm will exclude that term from that 

iteration’s states vector. 

4.2.7 Iterating when position solution is far from convergence  

Recognizing the limitations of the first-order Gauss-Newton method when it comes to 

arriving at a solution starting from a guess that is far from the receiver’s true location, the 

algorithm distinguishes between two cases. In the nominal Case 1 that has been described 

above, the position solution is assumed to be close to convergence. In this case, the 

algorithm will consider variations in the three components of the ECEF representation of 

the receiver’s location rR, variations in the range-equivalent receiver clock offset cδ, 

variations in the carrier phase measurement biases β, and variations in the ionosphere 

parameters of all bi-quintic spline nodes that affect the ray-paths. In Case 2, the position 

solution is assumed to be far from convergence. Consequently, only group-delay 

measurements will be processed. In addition, the algorithm will only consider variations 

in the receiver position’s latitude and longitude and in its clock bias. Variations of 

altitude and of ionospheric model parameters are excluded.  Experience has demonstrated 

that this modification tends to ensure convergence when starting far from the solution.  

The simplified cost function for this simplified search takes the following form: 
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 T 11
2 2( ) [ ( , )] [ ( , )]g g g g gg g

J x y h x p R y h x p−= − −  (91) 

The corresponding over-determined system of equations in linearized latitude/longitude 

form is 
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x
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δ

− −

∂ ∂   
∂   ∂ ∂− = +  ∂

     

 (92) 

where xg,guess = [rR(ϕguess,λguess,lguess);(cδ)guess] is the guessed solution vector for the 

receiver Cartesian position and clock offset, with the position being dictated by the 

guessed WGS-84 latitude ϕguess, longitude λguess, and altitude lguess. The latter quantity 

remains fixed during this initial part of the optimization, but ϕguess and λguess get updated, 

as does (cδ)guess. Their updates are the increments that are solved for in the over-

determined linearized system of equations in Eq. (92). As with the nominal case, scaled-

down increments are used, if necessary, in order to ensure that J2 from Eq. (91) decreases 

for each solution increment. 

4.3 Predicted Estimation Errors 

The unknown vector x consists of a combination of (i) the unknown receiver position 

(ii) the receiver clock error and (iii) carrier phase bias terms. Two forms for x that 

correspond with two different sub-cases have been defined in Eqs. (63) and (69). 

Regardless of the exact form that x takes, this vector, along with the vector of unknown 

ionospheric parameters, p, is used to define a combined error vector ∆ as follows: 
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∆ 
∆  ∆ 
∆ = − ∆ = −



                                                   (93) 

The computed set of group delays and beat carrier phase equivalent ranges, h(x,p), is 

evaluated at the erroneous estimates x and p.2 It can be evaluated and related to 

h(xtrue,ptrue) through a first order approximation that is performed around the true values 

xtrue and ptrue: 

( ) ( )

, ,

, ,

;

true true x p

x p

true true true truex p x p

h x p h x p H x H p

h hH H
x p

≈ + ∆ + ∆

∂ ∂
= =

∂ ∂

                                  (94) 

The full cost function that was introduced in Eq. (79) can now be written as: 

( ) ( )
( ) ( )
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 ≈ − − − − 

 ⋅ − − − − 

   + − − − −   

          (95) 

Minimization of J1 is obtained by setting all of its partial derivatives with respect the 

unknowns x and p to zero.  

                                                 

 

2 For the remainder of this chapter, a general vector x is considered. It may take the form of xc or of xg, 
depending on the case. The particular form chosen has no influence on any of the presented 
derivations.  
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The solution is  

1
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1 1 1
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ˆ
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where 

1 1

1 1 1 1
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x x x p
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                                                         (98) 

and the resulting predicted estimation error takes the form 

1 1 1
1 1 1

ˆ 0
Δ ˆ

x p

T
N xNtrue x

P z pT
true p

x x H
S R ν S ε

p p H M
− − −

−

−     
= +    −       

                                    (99) 

where Nx is the number of elements in x . The separate, independent contributions of the 

two different sets of errors, νz and εp, are distinctly evident. It is worth noting that for the 

case of a zero mean Gaussian distributed εp, the estimation error ΔP is unbiased according 

to the linearized model of Eq. (99). 
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4.4 The Mean Square Error Matrix and the A Posteriori Covariance 

Two tools for evaluating the performance for the proposed system are the mean square 

error matrix and the a posteriori covariance matrix for the errors in the estimates of the 

vectors x and p. Two different cases are considered. The first case assumes uncertainty 

for both x and p. In the second case, ionospheric modeling errors are modeled as 

constants rather than random samples.     

4.4.1 The case of random ionosphere parameters errors 

The associated estimation mean square error matrix can be computed based on the 

computed linearized approximate error.  If εp is sampled from a Gaussian distribution that 

satisfies E[εp]=0 and E[εp εp
T]=M, then the estimation error covariance matrix is given by 

the standard form 

1

1 1 1
1 1 11

ˆ ˆ
ˆ ˆ

0 0
0

T
true true

true true

T
x T

x pT
p

x x x x
E

p p p p

H
S R H H S S

H M
− − − −

−

 − −   
 Σ =   − −     

    
 = + =           



    (100) 

While this sort of computation may provide a certain understanding of the system’s 

anticipated performance, its most distinct weakness is the limited information that such 

analysis would provide about how errors are affected by particular a priori ionospheric 

model errors, or, more precisely, how positioning and timing errors might be related to 

the magnitude of ξ, as defined in Eq. (24). Such observations can be made with test cases 

of different ξ values that are kept constant. This is the case of a constant εp. The analysis 
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given in Eq. (100) only gives an approximation of the expected statistical impact of errors 

in the a priori ionosphere. 

4.4.2 The case of constant a priori ionosphere parameters errors 

An important case for error analysis is the case of constant εp. The scenarios included 

in this analysis consist of cases for which the errors in the a priori ionosphere model are 

kept constant, with different characterizing ξ values that are significant to the discussion 

that follows.  The mean square error matrix in this case takes the form 

1 1
1 12 1 1

0 0
0

T
x T

Tx pT
p pp

H
S R H H S

M MH ε ε
− − −

− −

    
 Σ = +          

               (101) 

The right-most term in brackets embodies the contribution of the error bias that arises 

from the constant a priori ionosphere model error. This term should be omitted when one 

is interested in evaluating the distribution of position errors about their mean. The result 

constitutes the covariance matrix for the errors in the estimates of the vectors x and p 

about this mean: 

1 1
2 1 1

ˆ ˆ
ˆ ˆ

T T
true true x T

x pT
true true p

x x x x H
E S R H H S

p p p p H
− − −

   − −     
   Σ =        − −           

   (102) 

4.4.3 Ionosphere model covariance mismatch 

This subsection considers the case where the matrix that is used in the optimization 

process computation, Mc, is different from the matrix M that truly represents the 
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correlation between the various ionosphere parameters.  The cost function of equation 

(95) takes the following form in this case:   

( ) ( )
( ) ( )
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The estimation error is 
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                    (104) 

and the corresponding mean square error matrix becomes 

3
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1, 1,1 1
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                  (105) 

4.4.4 Measurement noise covariance mismatch 

When the measurement noise covariance matrix that is used in computations, Rc, is 

different from the R matrix that holds values for true measurement noise, the cost 

function that is used with the algorithm takes the form 



76 

 

( ) ( )
( ) ( )

T 1 T 11 1
1, 2 2

1

1

( , ) [ ( , )] [ ( , )] ( ) ( )

1
2

1
2

R c

T

z x true p true

c z x true p true

T

p ptrue true

J x p P h x p R P h x p p p M p p

H x x H p p

R H x x H p p

p p M p p

υ

υ

ε ε

− −

−

−

= − − + − −

 ≈ − − − − 

 ⋅ − − − − 

   + − − − −   

           (106) 

The predicted estimate error becomes 
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Assuming a constant εp as in Subsection 4.4.2, the corresponding mean square error 

matrix is 

4

1 1
1 11, 1,
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ˆ ˆ
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ε ε

       (108) 

4.4.5 The horizontal and vertical position error ellipses 

A useful tool in positioning performance analysis is the error ellipse that is a two-

dimensional confidence region. Let ΔE and ΔN denote the position error random variables 

in an east-north reference frame (EN). The combined horizontal error covariance matrix 

is given by 
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EN
N N N N

E
    ∆ − ∆ ∆ − ∆
 Σ    ∆ − ∆ ∆ − ∆     

      (109) 

where ∆�E and ∆�N designate the position error variables’ expected values. Let d1 and d2 

denote ΣEN’s eigenvalues and let v1 and v2 denote ΣEN’s corresponding eigenvectors. A 

new reference frame Ƒ is defined such that its origin is located at (∆�E, ∆�N) and whose axes 

are aligned with v1 and v2. A corresponding coordinates system (Δ1, Δ2) where distances 

are measured along Ƒ’s axes is defined as well. The random variable  

 
2 2

1 2

1 2

s
d d
∆ ∆

= +       (110) 

has Chi Square distribution of degree 2, then p(s<4.605)=0.90 defines an ellipse that is 

guaranteed to contain 90% of the plotted errors [35]. This ellipse’s major and minor axes 

are aligned with Ƒ and their lengths are 2�4.605𝑑𝑑1 and 2�4.605𝑑𝑑2. The vertical 90% 

error ellipse that considers errors in the east-up (EU) plane is computed in the same way. 

Figure 6 illustrates the two reference frames and the 90% error ellipse for an arbitrary 

set of position east/north error pairs.  

 

Figure 6: Illustration of: the NE or EU reference frame, the f reference frame, the 90% error ellipse 
and its two axes. 
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A SIMPLIFIED MODEL-BASED ESTIMATOR 

Previous chapters presented the most recent phase of this study that includes an 

advanced physical model for propagating signals and an optimal batch filter that has been 

developed to solve the resulting optimization problem. Later chapters will present 

analyses of filter algorithm performance and behavior. It is presumed that the use of 

advanced models for propagating signals gives a reasonable level of fidelity to that 

analysis that cannot be achieved with very simplified models. 

However, the discussion will not be complete without a review of a second, simplified 

model that has been used in earlier phases of this study. The simplified signal 

propagation model, and an associated batch filter that addresses its unique characteristics, 

were first introduced and discussed in Ref. [5]. That paper presented preliminary results 

for the HF navigation concept. Moreover, it should be noted that the simplified model, 

along with many of the associated filter’s components that have been developed, are 

practically used with the current algorithm’s ray-path solver, as described in Subsection 

3.4.2.   

This chapter will cover the simplified models’ physical and mathematical components. 

It will highlight the differences between the simplified filter and the filter that is the main 

subject of this dissertation, and it will list unique characteristics for the former.  
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5.1 Physical and Mathematical Models 

5.1.1 Earth and the ionosphere 

The simplified model shares the same Earth and ionosphere models that are used in 

the advanced model, except the effect of Earth’s magnetic field is not considered. The 

most significant difference between the two models lies in the manner at which signals 

travel through the ionosphere, and in particular, in the nature of signals’ trajectories and 

ionospheric bounces. In the simplified model, HF signals are assumed to reflect off of the 

ionosphere in a specular manner. A reflection is assumed to occur when the angle of 

incidence and the local index of refraction nsimp satisfy a condition of total internal 

reflection.  Using Snell’s law, the internal reflection condition is satisfied when the angle 

of a refracted signal would be 90o.  The condition used here incorporates an 

approximation for the vertical variations of nsimp that assumes it to equal 1 below the 

reflection point and to transition abruptly to its value dictated by Ne(r) at the reflection 

point.  Let ψ0 be the angle of incidence as measured relative to the local unit normal 

vector of the local constant electron density surface 

 ( ) ( )simp e eu N r N r= −∇       (111) 

Then these assumptions lead to the following version of Snell’s law for the reflection 

condition: 

 ( ) ( )0
01 sin sin 90simp simpn nψ⋅ = ⋅ =       (112) 

At a reflection point, the phase index of refraction depends on electron density Ne(r) 

and on the signal’s frequency ω.  This dependency takes the form: 
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( ) ( ) 2
1 11 , 3182.73849408628simp en r C N r Cω= − =     (113) 

where Ne(r) is given in units of electrons/m3 and ω is given in units of radians/sec.  This 

simplified refractive index model ignores the effects of the Earth’s magnetic field. 

5.1.2 Bounce points, ray-paths, and the measurement model 

Unlike with the full model for which signals’ speeds vary, ray-hops are curved, and 

ionospheric refractions/reflections are calculated with a raytracing engine, the ray-paths 

of this simplified model are ordered sequences of straight line segments. Each line 

segment is defined by its two end points. For a connected ray path of m line segments, 

m+1 points are defined as follows: The first point is the known location of the 

transmitter, q. The second point is a bounce point located on the ionosphere surface. All 

other bounce points are alternately located on the Earth and the ionosphere. The last point 

is the position of the receiver, rR. As with the full model, bounce points are defined in the 

ECEF Cartesian coordinate system. The vector of unknown ECEF X-Y-Z coordinates for 

the jth ray path’s bounce points, takes the form 

[ ], 1 2 1 1 2 1 1 2 1, ,..., , , ,..., , , ,..., T
simp j m m mX X X Y Y Y Z Z Zη − − −=     (114) 

and consists of coordinates for two types of bounce points. Odd-indexed X-Y-Z trios 

describe the position of ionosphere bounce points, while even-indexed X-Y-Z trios 

describe the position of Earth bounce points. Note that the former type of bounce point 

does not exist with the advanced signal propagation model. 
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    Let ρsimp,j be the true length of the jth ray-path. Let ysimp,j be the measured 

pseudorange of that ray-path, which equals the speed of light c multiplied by the 

difference between the measured reception time according to the erroneous receiver clock 

and the true transmission time according to a calibrated beacon transmitter clock. The jth 

measurement equation can be written as 

( ) ( )
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, , , , ,

, , ,

, ,

, ,

simp j simp j g j g j simp j R j g j

simp j R simp j R j g j

y h x p h r p c

h r r p c

= + = + +

 = + + 



 





ν δ ν

η δ ν
    (115) 

where h̆simp,j and h̃simp,j are alternate forms of the model for ρsimp,j. 

Equations (62) and (115) that describe the group delay measurement equations for the 

advanced and simplified models, respectively, may appear similar. However, the two 

equations differ in significant ways. The scalar function h̃g,j computes the range 

equivalent group delay for a propagating dispersive signal, that depends on p̑j directly, as 

well as indirectly through ηsimp,j. In contrast, h̃simp,j returns the total Euclidian length of a 

segmented ray-path, that does not depend directly on p̑j. Moreover, the implicit functions 

η̑j(rR,p̑j) and ηsimp,j(rR,p̑j) take different forms for the two models. 

5.1.3 Bounce point equations 

As described in the previous Subsection, the simplified ray-path model assumes 

bounce points on both the Earth’s and the ionosphere’s “surfaces”. For Earth surface 

bounce points, the same set of equations holds true as is given in Subsection 3.2.2 for the 

advanced model.  
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For ionosphere bounce points, Type-B and Type-C equations take the same form as 

Earth bounce points, except the surface normal vector defined in Eq. (111) must be used 

in place of the surface normal defined in Eq. (34). However, Type-A equations take a 

different form that originates from the different reflection condition that is considered for 

the simplified model. Namely, for the kth bounce point, the modified Type-A reflection 

condition equation can be written as 

( ) ( ) ( )( )

, , 0, , ,

2 ,
, , ,, 1 , ,2

0 ( , , , )A k f k k simp k simp k

e simp k TT T
simp k simp k simp kf k f k f k

simp
g v v u

N
v u C v v u u

η

η

ω

=

= −
   (116) 

The direction vector vf is computed by differencing line segment end points that are 

found in rR, q, or ηsimp,j. Reference [5] demonstrates how this equation is derived from 

Eqs. (112) and (113) of this dissertation. 

5.1.4 Solving for the bounce points ηsimp 

A solution for the unknown location of Earth and ionospheric bounce points is 

obtained through a minimization of the cost function 

( ) ( ), , , , , ,
1( ) , , , ,
2

T

RP simp simp m simp m simp m R simp m simp m RJ g r p g r pη η η=      (117) 

using a process which is similar to that of the full-model which was described in Section 

3.4.1. The minimization is with respect to ηsimp,m. g̃simp,m denotes the Eq. (32)-type 

formulation of the simplified-model bounce points equations. Minimization is performed 

using a method that is similar to that of the full-model, except that with the simplified 
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model, the sensitivities of bounce points equations with respect to their position are 

obtained analytically.  

An initial guess for ηsimp,m is generated using a thin-shell, latitude/longitude height-

dependent ionosphere model. The height for this bi-quintic splined modeled thin-shell is 

the height for which electron density reaches 80% of its maximal density. This initial 

guess is generated based on the assumptions that: 

a) The set of a ray-path’s bounce points (both Earth and ionospheric) lies in a 

plane that contains the great circle that is defined by that ray-path’s start and 

end points  

b) The distance between adjacent Earth bounce points is proportional to the 

height of the thin shell, measured at the mean-point between the two bounce 

points  

Additional initial guesses are generated in a similar way, where shells with fixed 

heights above the WGS-84 are considered instead of the 80% shell that has been defined 

above.  
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5.2 A Batch Filter for the Simplified Model  

Since the fundamental optimization problem that is addressed with the different batch 

filters that are used in this study is independent of ray-path models, the earlier form of the 

batch estimation cost function is very similar to that of Eq. (79). It takes the form 

T 11
1, 2

T 11
2

( , ) [ ( , )] [ ( , )]

( ) ( )

g simp g simp gsimp simp
J x p y h x p R y h x p

p p M p p

−

−

= − −

+ − −
   (118) 

It omits the ζ scaling factor which is used with the advanced estimator. ysimp consists of 

group delay measurements exclusively. Therefore it is an Nx1 stacked vector, and R is an 

NxN measurement error covariance matrix. As with the advanced filter, a modification of 

the cost function is used when the position solution appears to be far from convergence. It 

takes the same form of Eq. (91) except that the hg terms in that equation are replaced by 

hsimp, and only the latitude, longitude, and clock offset of the user receiver are optimized.  

The altitude and the ionosphere parameters are held constant. 

5.2.1 The Modified Gauss-Newton Method 

The top-level procedure for the Gauss-Newton method that solves the optimization 

problem for the simplified ray-path problem is similar to the procedure that has been 

described in Subsection 4.2.1. Namely, it consists of the same sequence of steps: 

linearization, determination of a descent direction using matrix methods, and 

determination of a step size scaling parameter that yields reduction in the cost function. It 

also includes the measurements exclusion feature. It does not, however, include a 

measurements rejection mechanism.  
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5.2.2 Measurement Model Sensitivity Matrices 

The simplified model signal propagation directions are determined directly by the 

location of the bounce points.  The bounce point locations are dependent on the position 

of the receiver and on the values that the ionosphere parameters take in the vicinity of a 

ray-path.  Therefore, the variant of Eq. (32) that applies to the simplified filter takes the 

form:     

 ( ), ,0 , , ,simp k simp j R j R jg r p r p =  
 

 η       (119) 

Differentiation of this equation with respect rR yields and solution for the bounce point 

partial derivatives with respect to rR yields: 
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where g̃simp,j consists of all bounce point equations that apply for the jth ray-path. The 

matrix of partial derivative sensitivities of the jth measurement model pseudorange to 

changes in the estimate of the receiver’s position can be written as: 
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    (121) 

Similarly, taking the partial derivative of the gs̃imp equation with respect to p̑j and 

solving the bounce point partial derivatives with respect to p̑j yields: 
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The partial derivative the jth modeled pseudorange with respect to changes in the 

estimates of the ionospheric parameters is 
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It should be noted how the above sets of measurement sensitivity matrices are very 

different from their advanced-model equivalents, whose formulation and derivation are 

presented in Subsection 3.5.3.  

5.2.3 Calculation of Jacobian matrices 

The sensitivity matrices computing procedure for the simplified model’s batch filter 

shows some resemblance to the procedure that is performed for the full model. The 

partial derivatives of hsimp with respect ηj and rR are straightforward due to the simplistic 

nature of hsimp. The manner in which the g̃simp bounce-points equations depend on rR 

makes the computation of ∂g̃simp/∂rR somewhat more involved. However, computation of 

∂g̃simp/∂p̑j is complicated and tends to be demanding in computation time. Finally, special 

care should be taken with the Jacobian ∂g̃simp/∂ηsimp,j. The details of this computation are 

presented in Appendix B. 
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5.3 Performance 

A complete description of a limited performance analysis that has been conducted 

with the simplified ray-paths model was presented in Ref. [5]. This analysis’s highlights 

are additionally reviewed later in Section 7.1.     
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ALGORITHM OPERATION AND VALIDATION 

This chapter discusses various aspects of implementing the concepts and mathematical 

derivations that have been presented in the previous chapters, in the form of a digital 

simulation that is used to assess the developed batch filtering algorithm. This truth-model 

simulation is presented next, in the first section. Batch filtering algorithm functionality 

and limitations, including solution convergence, is the subject of following sections. The 

chapter concludes with a simulation-based validation for the different forms of filter 

statistical analyses that have been derived.  

6.1 Truth-Model Simulation and Batch Filter Monitoring 

A MATLAB® truth-model simulation has been developed for algorithm validation, 

algorithm assessment, and performance analysis. General comments on implementation, 

coding concepts, and hardware are included in Appendix C.   

The simulation enables testing of any desired combination of ground station array, 

ray-path characteristics, measurement error models, ionosphere error models, and other 

parameters. As discussed earlier, it has been shown that not all such combinations are 

physically feasible. Feasibility of a given configuration is tested during the first stage of 

simulation execution.  
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Figure 7 illustrates a typical simulation setup, showing the different curved signals’ 

ray-paths, starting from ground stations and eventually arriving at the UE. Different ray-

paths which are transmitted from the same ground station are shown in different shades 

of green, with gray circles denoting their ground bounce-points. The blue circles in the 

figure denote ground stations, with the corresponding broadcast signals’ identifying 

indices shown next to the circles. The magenta diamonds with adjacent three digit 

numbers denote ionosphere model bi-quintic spline grid nodes, with their identifying 

numbers next to them. The North American coastline is shown as a thin blue line. The 

dashed red line illustrates the Gauss-Newton algorithm’s convergence performance.  It 

plots a history of successive receiver position solution guesses. The receiver’s true 

location is marked with a black, thin X. 

 

Figure 7: A typical test case setup used with the truth-model simulation. 
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The duration of the batch filter execution for a single test case in an execution mode 

known as Nominal Scenario Mode is usually on the order of hours. Consequently, filter 

performance simulations are closely monitored during their execution. The monitoring 

screen, shown in Fig. 8, presents data about progress of the solution process. The upper 

screen presents the results for the sub-processes that are conducted for every ray-hop of 

all ray-paths at all process steps. These steps include all top-level Gauss-Newton 

iterations and their intermediate step-size factor α determination sub-processes. Table 

rows designated <GN> are associated with Gauss-Newton iterations. The number on the 

right indicates iteration number. Table rows designated alpha are associated with step-

size determination steps for those Gauss-Newton iterations. The numbers on the right 

indicate halving-counts, so that alpha 1 indicates no halving at all, alpha 2 indicates one 

halving, and so on. Each row in this plot, either a Gauss-Newton iteration or one of its 

halving steps, is regarded as a numbered process step. Columns are associated with ray-

paths and ray-hops. For instance, the column labeled 9.3 presents ray-hop computation 

results for the third ray-hop of the ninth ray-path. A green cell with a ‘0’ indicates a 

success in a ray-hop solving attempt. A red cell indicates a failure, where the 

accompanying number provides information on the nature of that failure. Gray cells 

indicate unprocessed ray-hops. This may be the case when preceding ray-hop solving 

attempts for that ray-path have failed. It should be noted that this table does not provide 

detailed information on ray-path solving inner processes expect for their final outcome 

which is reported using color/number code as mentioned above. 
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The circular plot in the bottom left corner of the screen presents the sequence of 

horizontal position errors in a plane that has an east/west axis and a south/north axis. This 

sequence starts at the point that is marked ‘1’, which is the error for the position a priori 

guess. The radial scaling for this polar-type plot is logarithmic. Other panels provide 

information on how clock offset estimation, the Ionosphere Error Index - ξ, carrier bias 

estimates, and the cost function evolve throughout the batch-filter algorithm execution. 

This is discussed later in the context of algorithm functionality and robustness.       

 

Figure 8: An example process monitoring screen for test case E0 in Nominal Scenario mode. 
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6.1.1 Execution modes 

In Nominal Mode, a single simulation execution is performed. No random 

measurement noise is added to the simulated pseudorange or beat carrier phase 

measurements. Errors are potentially enabled, however, for the a-priori ionosphere 

model. This means that the user can choose to use an erroneous ionosphere model for the 

a-priori ionosphere model that is input to the main solver algorithm.  That is, the a-priori 

ionosphere model parameters that are input to the batch filter differ from the truth-model 

parameters that have been used to generate the pseudorange and range-equivalent beat 

carrier phase measurements using raytracing calculations.  

This execution mode has proven essential for algorithm validation. It is also used with 

preliminary feasibility tests and algorithm assessments that evaluate the batch filter’s 

behavior, particularly in the context of robustness. Another important use of this mode is 

the proximate prediction for the batch filter algorithm’s performance in the presence of 

measurement errors that has been described in Section 4.3.    

Performance Analysis Mode is usually used with Monte Carlo analysis. In this type of 

study, multiple sub-case executions that originate from a single nominal scenario are 

conducted. These sub-case executions are regarded as runs. Each batch filter run is 

executed with a unique set of pseudorange measurements that are generated by adding 

measurement noise errors to the pseudoranges and beat carrier phases from the 

corresponding nominal scenario. The nature of the applied errors is discussed later in the 

context of performance analysis. Ionosphere model errors are typically kept constant 

throughout a single Monte Carlo test case execution for reasons that are discussed in the 
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performance analysis section. An exception is the process of full covariance analysis and 

validation that is presented in Section 6.5.1, for which random a-priori errors are 

generated such that each sub-case is given a unique set of a-priori ionosphere parameter 

errors. 

6.1.2 Data generation 

Computation for an Ne(r) truth model utilizes a Chapman profile that is fit to an IRI 

model for a particular time. The model used in the simulation utilizes the release 2012 

IRI Fortran code available on the official NASA website [36]. Settings for the binary 

options variable jf are ‘true’ values for all of its entries except for entries 2-6, 21, 23, 28-

30 and 33-35.  Among other things, these settings choose the URSI model rather than the 

CCIR model for the quantity foF2, and they turn off the auroral boundary and the auroral 

E-storm model. Additional details about these settings can be found at the NASA website 

that provides the IRI model. 

 A Chapman vertical electron density profile is fit to the IRI data, and this Chapman 

profile is the assumed truth profile at a given latitude and longitude.  The fit is performed 

with a nonlinear least squares technique that minimizes the sum of (a) the squared 

difference between known and modeled electron densities at specific heights, and (b) the 

squared difference between known and modeled integrated electron density, which is also 

known as the Vertical Total Electron Content (VTEC). These two different contributions 

are weighted.  This fitting procedure is carried out at each bi-quintic spline grid point to 

compute the log(hmax), log(hsf), and log(VTEC) values at each of these points.  

Afterwards, the needed 8 partial derivatives of each of these quantities are computed at 
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the grid points by applying smoothness criteria to the resultant maps of log(hmax), log(hsf), 

and log(VTEC). The details of the fitting procedure and the spline derivative calculations 

are given in Section IV of Ref. [26].   

This manner of generating a truth electron density model is thought to be reasonably 

representative of a possible real spatial electron density distribution. The most significant 

limitation of this approach arises with cases where the considered electron density 

distribution is characterized by abrupt changes in the height-dependent electron density 

profile. In such cases, the Chapman-based model fitting process is expected to exhibit 

significant residuals, indicating a subpar fitting.  

The truth-model simulation and all of this dissertation’s models take no account of HF 

radio wave absorption in the daytime D layer of the ionosphere.  During the day, D-layer 

absorption could render some of the modeled ray paths unusable, as discussed in Ref. 

[37]. This does not occur at night, when the D-layer’s electron density diminishes to a 

negligible value. The impact of D-layer absorption is left for a future study.  

The simulation uses truth values of the x and p vectors in the vector pseudorange 

measurement model of Eq. (65) and in the vector beat carrier phase measurement model 

of Eq. (70).  These measurement values are input directly into the main batch filtering 

algorithm with or without errors added, as mention above.  

The simulation also generates an a priori estimate of the ionosphere parameter vector 

for use in the cost function of Eq. (79).  This a priori p̅ vector differs from the truth p 

vector in significant ways.  The method of generating appropriate differences, perhaps 
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differences that are even a bit larger than one would expect in a real situation, is to use 

the IRI model with a significant time difference to generate p̅ via Chapman-profile fitting 

at a different date than the date used to generate the truth p by the same fitting technique.  

Such a choice ensures that the truth-model simulation is not using an unreasonably 

optimistic model of how well the filter’s known p̅ would approximate the truth 

ionosphere.   

6.2 Normal Batch Filtering Algorithm Operation and Functionality 

A key question is whether, given a setup that has been examined and proven 

physically feasible, the algorithm is capable of causing its estimates of the unknowns to 

converge to the setup cost function’s theoretical global minimum. In the early study of 

Ref. [5], it has been demonstrated that the estimation problem’s significant nonlinearities 

do not pose a hurdle that prevents the solution from converging. Hundreds of test cases 

that have been studied in the scope of the current study have shown that, when a setup is 

physically feasible, the batch filtering algorithm will be able to reach solution 

convergence in the vast majority of cases.  

6.2.1 Ray-path solving attempts 

The iterative top-level Gauss Newton process will typically exhibit the characteristics 

of the process that is documented in Fig. 8. This figure shows the process monitoring 

screen for a Nominal Scenario Mode execution of Test Case E0. Complete descriptions 
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of the setup for this test case and other cases that are discussed in this subsection are 

provided in the results presentation of Chapter 7.  

Computations for the different ray-paths, monitored in the top window of Fig. 8, might 

occasionally fail during batch estimation due to causes that will be discussed later. Yet, as 

the process progresses, the number of failing ray-path computations will decrease, so that 

for Gauss-Newton steps which are near the final step, at which convergence is achieved, 

the vast majority of ray-path computations are expected to succeed. Position error 

(plotted in the polar, logarithmic-scaled bottom left panel), may start as large as 

thousands of kilometers. The error decreases with each iteration of the Gauss-Newton 

process, until it eventually reaches its final value. Similarly, clock errors will generally 

converge to values that are very close to zero.  

At the Gauss-Newton iteration level, proper algorithm functionality is first and 

foremost the ability to successfully compute trajectories for a sufficient number of ray-

paths with the same fundamental attributes of the true ray-paths. Fulfillment of this 

requirement may be challenging, especially when the initial guess for the various 

unknowns is poor. Figure 9 shows four of Test Case 3411’s twelve ray-paths. The other 

eight ray-paths are not shown for the sake of clarity. Ray-path 1 is shown in blue, ray-

path 6 is shown in green, ray-path 9 is shown in red, and ray-path 11 is shown in cyan. 

The thick lines indicate true ray-paths, all of which end at the true location of the 

receiver, i.e., at the center of the black square. The thin lines show the trajectories of 

these four ray-paths as computed by the ray-path solver during an early Gauss-Newton 

iteration. These curves end at the erroneous location of the receiver that is marked with a 
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black X. By design, the computed ray-paths, albeit different from the true ones, have the 

same basic characteristics as the true ray-paths in terms of number of ray-hops and the 

direction of arrival at the receiver at a qualitative level, i.e., whether signals arrive from 

below or above the horizon. A closer look at the last segment of all ray-paths confirms 

that for the blue and green ray-paths, the signal arrives at the receiver from above for 

both true and computed trajectories, while for the red and cyan ray-paths it arrives from 

below.  Thus, for this iteration of this batch filter case and for these four ray paths, the 

batch-filter functions as expected and needed.  

 

Figure 9: Proper algorithm functionality is evident in successfully computed ray-paths (not all 
presented) that have the same characteristics as their true ray-path equivalents. This 
figure plots true (thick lines) versus estimated (thin lines) ray-paths for an early iteration 
of the Gauss-Newton process for Test Case 3411. 

The process monitor screen for Test Case 3811 is shown in Fig. 10. For this test case, 

the location of the ground stations, some of which are very far from the receiver, resulted 

in several failures while attempting to solve for the ray-paths. These failures, occurring 
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mainly in the early iterations of the batch filter calculations, usually do not constitute a 

significant challenge to the algorithm’s ability to ultimately bring the solution to 

convergence. This means that later Gauss-Newton iterations, which are not shown in the 

upper plot of Fig. 10, have an increasing number of green cells, until ultimately all cells 

are green for the last Gauss-Newton iteration.   

 

Figure 10: Process monitoring screen for Test Case 3811 in Nominal Scenario mode, 
demonstrating occasional failures in attempts to solve for ray-hops and ray-paths during 
execution of the batch filter. 

Even with many more failures in early ray-path solving attempts, as in Test Case 3531 

(Fig. 11), the unknown parameters’ estimates were successfully driven to their optimal 

values. With an initial IEI value of -0.0660, this test case is characterized by significantly 

larger errors in the a priori ionospheric model than for the previous example. The upper 
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panel of this figure shows ray-hop calculation results for ray-paths 1-12 and process steps 

8-22. It is evident that, for these early process steps, many ray-hop computations, and 

consequently, ray-path computations, have failed.  

At step 20 the algorithm changed its mode to Case 1, meaning that, starting at this 

process step, corrections to the ionosphere model were enabled as part of the solution 

procedure. The immediate impact of mode switching is a major degradation in the quality 

of estimates for the ionosphere model, evident in extreme ξ values that are not typical. 

 
Figure 11: Process monitoring screen for Test Case 3531 in Nominal Scenario mode, 

demonstrating massive ray-paths solver failures at the early stages of the iterative batch 
filtering process due to a very poor a priori ionosphere model. Both final position error 
and final IEI ξ are small. 
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This is most likely the cause for the excessive amount of failures in the attempts to solve 

for ray-paths during process steps 21-29, where the algorithm was seeking a proper 

scaling factor, α, that would yield a decrease in its cost function. Starting at step 30, 

however, where a decrease in the cost function was achieved for a small value of α, the 

solver was able to solve an increasing number of ray-paths, so that all ray-path and ray-

hop computations succeeded at process steps 38 through 47 (not shown). As with the vast 

majority of cases, the ξ value at the end of the process, -0.965, is lower than its initial 

value. 

6.2.2 Cost function evolution 

Cost function values are displayed on a logarithmic scale in the top panel of the 

second-from-right column of the bottom two rows of each monitoring screen. The blue 

line marks the total cost while the dots mark the values for the measurement residuals 

cost terms and the a priori ionosphere cost terms of Eq. (79). The measurement residuals 

terms and the a priori ionosphere terms are denoted in this plot by red and green, 

respectively. Considering Fig. 11 again, it can be observed that the general trend for the 

cost curve is a decrease, but for some Gauss-Newton iterations the total cost appears 

bigger than for their preceding iterations. In many cases, this is due to the strategy of 

using variable subsets of measurements that has been discussed earlier in subsection 

4.2.2. Thus, in spite of appearance, a decrease in the cost function does occur for an 

appropriate subset of measurements. Cost function curves may additionally include 

sequences of process steps with what might appear to be a sudden increase in the cost 

function followed by a monotonic decrease. This is caused by the sub-process where the 
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algorithm seeks the step scaling factor that yields a reduction in the cost function. These 

intermediate values should not be confused with the major Gauss-Newton iterations’ final 

values, for which monotonic decrease is guaranteed. As mentioned before, the latter are 

designated <nn>GN in the upper panels of the monitor screen, where nn is the process 

step number. Finally, with the combined code/carrier ranging algorithm, there will always 

be a single significant increase in the cost function when carrier-phase measurements are 

eventually incorporated into the filter (e.g., at step 21 in Fig. 8).  

An additional trend in the cost function plot is the constant decrease in the magnitude 

of the ionosphere-related term (green dots). This is a counter-intuitive result.  One would 

expect this cost to start at zero when the estimated p equals its a priori value.  It should 

increase from there as it finds a better ionosphere parameter to fit the measurements by 

estimating a non-zero deviation from the a priori value that is also its initial guess. This 

counter-intuitive result can be attributed in part to the variable scaling method that is used 

with this term.  

Finally, the decreasing measurement-related cost term eventually converges to very 

small values, thus indicating that the algorithm has succeeded in bringing the differences 

between measured and computed range-equivalent group delays and beat carrier phases 

very close to zero.    

6.2.3 IEI evolution  

Recall that the Ionosphere Errors Index, ξ, can be regarded as an error metric for the 

corresponding estimate for the ionospheric model. The final value for the IEI normally 

exhibits a decrease from its initial value (except in rare cases). Nevertheless, a significant 



102 

 

temporary increase in its value, as in Figs. 11 and 12, is common. In the latter example, 

the initial IEI value is -0.1440. At step 8, which is the first Gauss-Newton iteration where 

the algorithm utilizes the full cost function formulation of Section 4.1, this value 

increases to 0.1507. In the following steps, the IEI exhibits constant decreasing towards 

its final value of -0.1499.  

 

Figure 12: Process monitoring screen (partial view) for Test Case 3431 in Nominal Scenario 
mode. Note the behavior of the IEI parameter ξ. 

6.3 Process failure patterns and solution divergence 

6.3.1 Failure types 

Most test cases exhibit proper batch filtering algorithm functionality that results in 

valid a posteriori position, timing, and ionospheric model estimates. It has been 
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(86), designated dx, that is used to detect convergence: it does not decrease below a 

predefined threshold. Figure 13 shows the process monitoring screen for run 0002 of a 

limited Monte Carlo analysis that was performed with Test Case 3411A. Clearly, at none 

of the 104 steps performed prior to filter algorithm termination was the combined 

position/time/ionosphere model estimate close to its optimal value and hence, to 

convergence. This is evident in the position error pattern, as well as in the values that the 

cost function takes throughout the iterative process.   

Convergence failure is also evidenced by the log10(dx) plot in Fig. 13, which is the 

second-from-right bottom panel of the figure. The value of log10(dx) never falls below 2, 

and it oscillates up and down during the entire process. In the preceding examples of 

process monitoring screens in Figs. 10, 11, and 12, this metric starts near 5, it exhibits a 

general downward trend, and it ends near 0. 

A second type of process failure is demonstrated with the Nominal Scenario mode 

execution of Test Case 3522, shown in Fig. 14. Unlike with the previous example, where 

the IEI appears steady at a value of about -0.2 (the reader should ignore the peaks that are 

artifacts caused by the step-size halving sub-process), in this test case the IEI reaches 

very large values of more than 8.  This indicates a divergence for the Chapman parameter 

estimates. Position errors are consistently very large. 
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Figure 13: Process monitoring screen for run 0002 of a Monte Carlo Analysis conducted for Test 
Case 3411A. With more than 100 process steps, the algorithm failed to drive the 
unknown position solution closer to its optimal value, yet ξ values remain fairly steady. 

 

Figure 14: A partial view of the process monitoring screen for a Nominal Scenario simulation of 
Test Case 3522. Magnitude of errors for all unknowns indicates process divergence. 

With a third type of algorithm failure, estimates for position, clock error and 
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Monte Carlo analysis for Test Case 3911. For process steps 20 and later, position error 

remains bounded within a limit of a 100 meter radius circle that is denoted 102 in the 

polar position error plot. At the same time, the IEI exhibits stability near a value of 

-0.2463, and the receiver clock error is steady at -581.3 microseconds. Yet, the algorithm 

fails to drive the unknowns to their optimal values when running in Nominal Scenario 

Mode. Recall that the optimal solution can be closely predicted using the linear 

approximation of Eq. (99) and the known receiver location and true ionosphere 

parameters. 

 

Figure 15: Process monitoring screen for run 0087 of a Monte Carlo Analysis conducted for Test 
Case 3911. Estimates remain close to their optimal values, yet the algorithm fails to 
bring them to convergence. 

6.3.2 Causes of algorithm failure to converge and known algorithm limitations  

A study of several test cases, including the above run 0087 for Test Case 3911, 

revealed a weakness in the optimization process. When the ray-path solver makes an 

attempt to solve for the bounce points, as in Section 4.2.6, with a signal ray-path that 

eventually arrives at the receiver from below, a second, valid solution that satisfies Eq. 

(29) may be obtained instead of the desired solution. Figure 16 illustrated the nature of 
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this ambiguity. The top panel plots the trajectories for the true (blue) and estimated 

(green) ray-path 33. Both trajectories start at the known position of a ground station that 

is denoted with a blue circle and end at two points that are roughly 100 meters apart. The 

closer-view bottom panel plot shows parts of the two trajectories in the vicinity of the 

true and estimated receiver locations. It can be observed that the last segment of the 

estimated ray-path is in a direction that is nearly opposite to the direction of the previous 

hop as it hits the ground.  

Further study has shown that the cost function that is used when solving for the 

bounce points in this case converges to a local minimum that is non-zero. This physically 

infeasible solution is most likely due to a poor choice of an initial guess for this ray-

path’s bounce points. Worse, it results in computed range equivalent group delay and 

carrier phase measurements that are significantly different from the true ones. It has been 

examined and shown that this discrepancy prevented the process from converging to the 

optimal estimates in this case.    

 

 

Figure 16: True (blue) and computed (green) trajectories for ray-path 33 of run 0087 of a Monte 
Carlo analysis for Test Case 3911. Top: the full ray-paths; Bottom: a closer look near 
the true (blue) and estimated (green) trajectory end points.  
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A second, more commonly encountered cause for ranging discrepancies arises from 

the ambiguity of the direction at which a signal will eventually approach the receiver. 

This is demonstrated in Fig. 17 which shows the true (blue) and estimated (green) ray-

path trajectories for ray-path 9 of Monte Carlo run 0002 of Test Case 3411A. Both 

trajectories originate at the same known location of the transmitter that is denoted by a 

blue circle. While the true signal arrived at the true location of the receiver from above, 

the computed direction of arrival at the (erroneous) location of the receiver is from 

below. As both trajectories have the same number of hops and bounce off points on the 

Earth’s surface (labeled in the plot), they constitute two legitimate solutions for very 

similar setups that only differ in the slightly different locations for the receiver.   The 

difference is that, after the last bounce, one path travels directly up to the receiver (the 

estimated path), while the other path, the true blue path, refracts off of the ionosphere and 

comes back down to the receiver.   

 

Figure 17: The true trajectory for ray-path 9 (blue) and the estimated trajectory (green) for that ray 
path, calculated for Monte Carlo run 0002 of Test Case 3411A. Inconsistency in signal 
direction of arrival yields significant, unaccounted for measurement errors. 
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6.3.3 Used and suggested solutions 

The measurements rejection mechanism that has been described in Subsection 4.2.3 

has been proven somewhat effective in addressing the issues that have been presented in 

the previous subsection. In most cases, selective measurements rejection resulted in 

elimination of undesired algorithm behaviors such as those described in Subsection 6.3.1.    

An additional means for overcoming ranging discrepancies would be rejecting 

measurements for which measured and computed trajectories consider different number 

of ionospheric reflections, and consequently, result in one trajectory approaching the 

receiver from below, while the second approaches from above. With a real system, the 

actual direction of arrival might be roughly determined by considering the signal power 

and the antenna gain pattern.  

6.4 Solution Convergence to the Problem’s Optimal Solution 

A key event in the execution of the main solver algorithm is identifying solution 

convergence. As shown earlier, the step magnitude criterion, dx, is utilized in determining 

whether convergence has been reached, so that the batch filtering algorithm measures the 

magnitude of a vector whose first three entries are the three components of the ECEF 

representation of the corrections to the estimated receiver position, and the fourth entry is 

the product of the speed of light and the change in the estimated receiver clock offset.   
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6.4.1 Cost function characterization through 3D mapping 

An inherited drawback in using the Gauss-Newton algorithm is the potential hazard of 

converging to a local cost function minimum that is not the global minimum, but to 

believe that it is the global minimum. In hundreds of test cases and tens of thousands of 

Monte-Carlo runs studied, none of the iterative processes resulted in convergence to 

minima different than the global minimum which can be approximately determined based 

on Eq. (97), as mentioned earlier. In a further effort to assess the likelihood of such 

occurrence, the following analysis has been performed.  

A test case has been considered with a receiver located at latitude/longitude/altitude 

(LLA) [40.10,-95.10,10000m] that has been assumed to receive signals along 12 ray-paths 

transmitted from different ground stations. The position solution that has been obtained 

by solving the standard minimization problem is located at coordinates [-72m,-925m,-

212m] in a Vertical-East-North (VEN) local-level reference frame whose origin is 

located at the receiver’s true location. This optimal solution is marked by the magenta X 

in Fig. 18. A three dimensional grid has been defined in a volume region of 

500x3000x3000 m3 in which the optimal solution for position lies. Each point of this grid 

has been used to define a unique related optimization problem for which position is 

known and fixed, while corrections are allowed to clock error and to the ionosphere 

model, as in Subsection 4.1.2 and Eq. (81). Each of these 1859 optimization problems has 

been solved, and all resulting final cost functions have been computed. The result, in the 

form of a 3-dimensional spatial cost function map, is presented in Fig. 18. Plotted values 

are base-10 logarithms of the computed cost function values. 
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The most significant pieces of information in this plot are that (a) the minimum is 

unique in the limited region studied, and (b) in the vicinity of the optimal solution, the 

cost function has its closest spacing of contours of constant cost nearly in the vertical 

direction. The first result partially addresses the non-uniqueness concern discussed above, 

although it is clear that a bigger region should be studied in order to strengthen this result.  

 

Figure 18: A spatial cost function map for a 12-ray-paths test case. Base-10 logarithm of cost 
function values, shown by color coding, have been computed in the vicinity of the 
optimal solution for the receiver location.   

An attempt to perform a similar analysis for a much larger region was unsuccessful 
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rR’s optimal solution. The second result indicates that vertical position accuracy will be 

the best, which is consistent with results that will be presented in the performance 

analysis chapter. 

6.4.2 Convergence validation 

As a measure of validation for the convergence criterion, numerical computations 

have been examined and compared to their expected, theoretical values. Writing the first-

order optimality necessary condition for the cost function of Eq. (79) yields   
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  (124) 

  

One should expect the right-most term to be non-zero in the general case, as the term 

p-ptrue-εp is zero only in the improbable case where the estimated ionosphere parameters 

equal the a-priori ionosphere parameters. This also means that the left-most term of the 

right-hand-side of the equation equals the negative of that term once minimization has 

been achieved. 

This convergence condition has been studied with the same test case setup used in the 

above cost function mapping analysis. It has been observed that, while the two vector 

terms of the right-hand side of Eq. (124) consist of values whose magnitudes are in the 

order of 10-5 to 1, the sum of the two is a vector whose entries have orders of 10-10 to 10-5. 
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Similar results were obtained with additional test cases.  This result demonstrates that the 

Gauss-Newton iterations converge at least to a local minimum that satisfies the first-order 

optimality necessary condition. 

6.4.3 Rate of convergence 

A distinct advantage of the Gauss-Newton method over the plain Newton’s method is 

in saving the need for computing the second derivative Hessian matrices of the 

measurement model components. In the scope of this study, these computations would be 

extremely costly in terms of computational effort and therefore undesired. A significant 

amount of computation time is expected to be saved as long as the solution’s 

convergences rate does not become significantly inferior to that of an equivalent higher-

order nonlinear least-squares method.  

Reference [32] shows that the Gauss-Newton method will generally exhibit a 

convergence rate that is guaranteed to be similar to that of Newton’s method as long as 

the first-order term in the explicit formulation of the Hessian, which is given in Eq. (10.5) 

of that book, dominates the second-order term. With several test cases studied, it has been 

examined and shown that as long as the current guesses for the unknowns x and p are in a 

small region about their optimal values, the convergence is indeed fast. The latter 

statement is based on a number-of-unchanged-digits criterion, meaning that for the 

estimates of the receiver location coordinates, the number of significant digits that remain 

unchanged at a given Gauss-Newton iteration compared to the previous iteration almost 

doubles with each iteration. This means that for most of the iterative process, that 
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typically takes place with the unknowns close to their optimal values, the convergence 

rate is presumably only slightly lower than that of a potential higher-order solver, and 

therefore, given the saving in computational time per process iteration, it is reasonable to 

assume that the total process time is less than a full Newton’s method algorithm, making 

the Gauss-Newton method a reasonable choice in this case.      

6.5 Covariance Analysis Validation  

6.5.1 The case of random ionosphere parameters errors 

The result given in Eq. (100) has been validated using the truth-model simulation with 

two test cases. Each test case of 200 randomly generated runs (sub-cases) constitutes a 

limited Monte Carlo analysis that considers variations to both group delay measurements 

and ionosphere parameters. Independent errors with a standard deviation of 1 meter were 

considered for ranging measurements. Random errors for the a priori ionosphere 

parameters were generated using a matrix that is based on a scaled variant of the 

covariance matrix M that was described in Section 4.2.4, where the matrix has been 

scaled down by a factor of 10 in order to ensure that the majority of the resulting sub-

cases are physically feasible and can be solved with the existing batch filtering algorithm. 

This results in typical small IEI values of about -1 for the different sub-cases. A scaling 

factor of 0.1 was additionally applied to ζ so that the generated errors are consistent with 

the matrix that is considered by the batch filtering algorithm.  
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Figure 19 shows a layout of position errors that were obtained with a 200 runs Monte-

Carlo analysis and 90% error ellipses that have been generated based on the theoretically 

computed covariance matrix. With 17 points in the North-East errors plot falling outside 

the ellipse and 22 points falling outside the ellipse in the Up-East plot, it can be 

concluded that the computed a posteriori error covariance and the Monte-Carlo-based 

analysis are consistent. It is also evident that the estimates are unbiased, as discussed 

earlier. The setup for this test case, marked 5511, includes 21 ray-paths that reach the 

receiver.  

 

Figure 19: Monte Carlo and theoretical position error distributions for Test Case 5511. 17 out of 
200 points fall outside the horizontal 90% error ellipse and 22 points fall outside the 
vertical 90% error ellipse. 

Similar results have been obtained for test case 5611, which has a different ground-

station setup and 33 ray-paths. Twenty two dots fall outside the horizontal 90% error 
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ellipse, and 21 dots fall outside the vertical Up-East 90% error ellipse. As with the first 

case, the results, shown in Fig. 20, demonstrate consistency between the analytically 

computed and Monte Carlo generated error distributions. This second analysis for the 

case of random ionosphere parameter errors completes the theoretical covariance analysis 

validation for the case of random errors in the ionospheric model.  

 

Figure 20: Monte Carlo and theoretical position error distributions for Test Case 5611. Twenty 
two dots out of 200 fall outside the horizontal 90% error ellipse, and 21, dots fall outside 
the vertical Up-East 90% error ellipse. 
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6.5.2 The case of constant a priori ionosphere parameter errors 

In this subsection, a fixed, non-zero εp vector is considered. This case of constant a 

priori ionosphere parameters errors is of importance for system performance analysis of 

the next chapter. The goal is, therefore, to verify that the position error distribution is 

consistent with the theoretical covariance matrix that is given by Eq. (102), and with the 

bias term that equals the right most term of Eq. (99). The latter computed term is marked 

with a green X in the following figures, and the covariance matrix is used to compute 

theoretical 90% error ellipses that are plotted around the corresponding theoretical mean 

values. Its location can be compared with the actual mean of the Monte-Carlo position 

locations that is shown as a red + mark. 

Nineteen of 200 points fall outside of the horizontal 90% error ellipse shown in Fig. 

21. This agreement between theoretical and practical error distribution patterns validates 

both the error bias and covariance analyses that are described in Section 4.4.2, as the 

plotted 90% ellipses are centered (red cross) close to the predicted mean error (or bias) 

which is marked as a green X. The presented data are based on test case 3511 that is 

characterized by 21 received ray-paths and an a priori IEI of -0.2276.   

Agreement with Eqs. (99) and (102) is demonstrated by two additional test cases that 

are characterized by different setup properties. These test cases are used to further study 

the scope of validity for the results of these equations. Based on Eqs. (99) and (102), the 

test case with a high a priori IEI is expected to demonstrate a larger position error bias, 

while larger measurement errors are expected to result in a larger 90% error ellipse. 
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Figure 21: Empirical and theoretical position error distributions for Test Case 3511. This plot 
demonstrates mean error and error covariance consistency for the important case of 
constant a priori errors in the parametric ionosphere model. 

Test Case 3531 (Fig. 22) has a high a priori IEI value of -0.0660 which lies within the 

95th percentile of the IEI values distribution for the given a priori ionosphere parameter 

error covariance matrix M. For this test case, the predicted mean error (green X) and the 

mean of the Monte Carlo generated errors (red cross) are 10 meters apart. It is worth 

noting that such differences between predicted and Monte-Carlo-generated mean error 

values have only been observed with very large IEI values, as with this test case. This 

fact suggests that the most challenging nonlinearities are those of the ionosphere model 

and the ray-path solver that uses the model. Fifty one out of 200 points fall outside the 

theoretical 90% error ellipse for the horizontal plot, and 60 out of 200 points fall outside 

the 90% error ellipse for the vertical plot. These large numbers demonstrate that the 

linearized covariance analysis is less reliable when large ionosphere model uncertainties 
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lead to significant nonlinearities in the measurement model. Note, however, that the 

extent of the point spread about the Monte-Carlo mean is well modeled by the theoretical 

90% error ellipse. The statistical mis-match is caused almost entirely by the mis-

modeling of the mean value due to ionosphere/ray-tracing model nonlinearities.    

 

Figure 22: Empirical and theoretical position error distributions for Test Case 3531. Agreement 
between the two analyses is demonstrated for this setup that is characterized with a very 
significant error in the a priori parameterized ionosphere model. In this plot, the 90% 
error ellipses are centered about the theoretical mean. 

For Test Case 3611B (Fig. 23), a 10-meter standard deviation for the measurement 

errors has been used, but the a priori IEI is as small as for Test Case 3511. Eighteen of 

200 points fall outside the relatively large horizontal error ellipse, and 16 out of 200 

points fall outside the vertical error ellipse. These numbers demonstrate consistency for 

this test case as well. 
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Figure 23: Empirical and theoretical position error distributions for Test Case 3611B for which 
much larger measurement errors were assumed. With 18 of 200 points falling outside 
the horizontal error ellipse and 16 out of 200 points falling outside the vertical error 
ellipse, consistency is demonstrated for this test case.    
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RESULTS FOR BATCH-FILTERING TEST CASES 

7.1 Previous Results 

The study of Ref. [5] considered the simplified, straight-segments, ionosphere-thin-

sheet-reflections ray-path model that has been described in Section 5.1. Nine test cases 

were studied in that work. These test cases were characterized with setups that differed in 

number of ray-paths, true and a priori ionosphere models, and ground station placement. 

The study was carried out in the scope of a limited number of executions. Preliminary 

results suggested that the simplified-model problem presented in that paper is sufficiently 

observable to make such a system a candidate for navigation.  

Position errors, ranging from tens to thousands of meters, appeared to be consistent 

with the corresponding computed Cramér-Rao bounds. At the same time, the filtered 

estimates of the ionosphere electron density profile parameters tended to have 

significantly reduced errors in comparison to the a priori models. It was concluded, 

therefore, that the method discussed may also be useful for remote-sensing-based 

ionosphere characterization in cases where the receiver location is known a priori. 

Improved results were typically observed when more measurements were available.  

Improved results also tended to occur when the uncertainties of the a priori ionosphere 

model decreased. With only a limited number of test cases analyzed, the apparent trends 

in simulated errors were less significant than trends in the computed Cramer-Rao bounds.  
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It was concluded that the number of received signals (ray-paths) is expected to have a 

significant impact on the system’s performance. At the same time, it was also observed 

that positioning accuracy is sensitive to the exact setup used for a particular test case, and 

it became harder to make general predictions about accuracy as the number of received 

ray-paths decreased.  

The beneficial impact of having a wide range of signal frequencies was also evident 

when variations of the test cases were tested with a limited range of signal frequencies. It 

was also observed that the errors in the final positioning estimates were only loosely 

related to the errors in the a priori ionosphere model.   

Further investigations have shown that in all cases the solutions for the simplified 

minimization problem appeared to have converged to their global minimum.  Thus, the 

presence of nonlinearities in the model does not seem to pose a significant challenge to 

solving the underlying batch estimation problem. 
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7.2 An Overview of Methodology 

Previous chapters introduced the various aspects of an HF navigation system that 

relies on signals transmitted from ground stations. A significant part of the assessment of 

this project’s feasibility consists of an evaluation of its performances in terms of 

positioning accuracy, as well as in its ability to effectively apply corrections to an 

erroneous a priori model of the ionosphere.  

Assessment is performed through a comprehensive analysis of a series of test cases 

that differ in the sets of parameters that define them. These parameters include the 

following: type of available measurements, number of ground stations and their 

placement, number of ray-paths, ray-path geometry, the number of hops for each ray-

path, signal frequencies, true and a priori ionospheric models, receiver clock error, and 

the true location of the receiver.   

7.2.1 Simulation-based analysis 

The primary portion of this analysis is based on four classes of test cases. The first 

two, Classes 1 and 2, consist of well-defined test cases which are characterized by 

constant true and a priori ionosphere models. Input parameters or sets of parameters are 

altered one at a time, thus yielding an ensemble of variations of a base test case. Results 

for these test cases are assessed through examination of executions of the batch-filtering 

algorithm on the simulated data in either Nominal Mode or Performance Analysis Mode. 

In the latter case, statistics are generally obtained by processing the outcome of sets of 

Monte-Carlo runs. This approach is useful in assessing the batch-filtering algorithm’s 



123 

 

performance given particular setups and IEI values, and as such, it provides in-depth, yet 

somewhat narrow-scope information. 

As demonstrated before, the likelihood for encountering the particular IEI values that 

are considered with a given test case can be evaluated based on the histogram of Fig. 2. 

However, it is important to recognize that this methodology does not make any 

assumptions on how a priori ionospheric model errors are distributed and therefore it is 

expected to deliver insightful results within its scope.  

The drawback with this method is its relatively narrow scope in terms of ionosphere 

modeling, as only several different erroneous a priori ionosphere models are considered 

with each class of test cases.  

7.2.2 The statistical analysis for a random-ionosphere model 

The drawback of considering only a few error models in the a priori ionosphere model 

provides the motivation for conducting a study of a second type that relies on statistics 

which are obtained for a random-ionospheric-errors model, so that ionosphere model 

errors’ randomness is accounted for.  This second type of analysis assumes that the 

difference between the true and a priori ionosphere parameter vectors is a random vector 

sampled from a zero-mean Gaussian distribution. While a Gaussian model for these 

errors may seem an obvious choice, two important aspects of this approach should be 

recognized. Examining the bottom plot of Fig. 2, it can be inferred that the random 

variable 10ξ is not Chi-Square distributed and therefore εp is not a sample from a 

multivariable Gaussian distribution. It has been left to a future study to determine to what 
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fidelity can ionospheric errors be modeled with a Gaussian model. Even if the 

distribution is not Gaussian, its second moment, its covariance, is still properly analyzed 

by the techniques of this statistical analysis if the effects of the measurements and the 

batch estimation are well approximated by a linearized model.  

A second potential pitfall of the Gaussian ionosphere error assumption concerns the 

feasibility of setups that have been generated with random errors that are added to the 

Chapman ionosphere parameters. It has been observed with simulated executions of the 

batch-filtering algorithm, that, depending on the covariance matrix that has been used to 

generate the errors for the ionospheric model, ionosphere setups are prone to physical 

non-feasibility. For the test case used in Subsection 6.5.1 that describes covariance 

analysis validation for the case of random ionosphere errors, with M0 factored by 0.1, two 

percent of the Monte Carlo runs failed the physical feasibility test and consequently 

declared non-feasible. For a non-scaled-down M0, however, 92 percent of the Monte 

Carlo runs failed the test. These results imply that a linearized model of the effects of 

ionosphere errors on the batch filter errors, as in Eq. (99), breaks down for M=M0, but 

that it is reasonable for M=0.1M0. Despite this limitation, this analysis will be used 

because it is the simplest way to get a handle on the likely effects of an entire statistical 

ensemble of possible ionosphere errors. At the same time, one must keep in mind that the 

predicted filter errors for the largest levels of ionosphere modeling error covariance are 

probably not modeled very well by this analysis technique.   

Therefore, it is presumed that modeling εp with a Gaussian model is an approximation 

that, under certain assumptions on M, will yield reasonably reliable results for the 
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purpose of statistical analysis. A model is considered where εp is assumed to be a sample 

from a Gaussian distribution which is represented by a scaled covariance matrix M0. This 

matrix, which was first introduced in Section 2.3.1, can be regarded as a measure of the 

diversity of the a priori ionosphere spatial electron density profile. When scaled by the 

constant γ, the resulting covariance matrix, γM0, can be used to generate scenarios of low 

(small γ) and high (large γ) uncertainties for the a priori ionosphere model.  

The procedure for the statistical analysis of the a posteriori ionosphere estimation 

errors is as follows. First, 1000 random error vectors are generated based on M and R, 

such that each set of error terms contains the appropriate number of parameters for the 

ionosphere model, which depends on the number of applicable grid nodes, and the 

appropriate number of measurement errors, which depends on the number of considered 

ray-paths. Next, the a posteriori estimation errors are computed for each set of error 

terms using the linear approximation of Eq. (99). The a priori and a posteriori 

ionospheric parameter vector estimation errors are then added to ptrue to produce the a 

priori and a posteriori ionosphere estimates. In the next step, all 1000 sets of a priori and 

a posteriori estimates for the ionosphere model are used to generate six Chapman 

parameter maps of the kind that will be presented later, starting with Fig. 25. 

Differencing these maps from maps of the three true Chapman parameters of the same 

kind yields 1000 error maps for each a priori Chapman parameter and similarly, 1000 

error maps for each a posteriori Chapman parameter. These maps are statistically 

processed to generate six maps for 80th percentile values of the 1000 maps. The 

procedure is repeated for five different values of γ, bringing the total number of 80th-
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percentile-values maps for each test case to 30. The five γ values are 1, 0.5, 0.1, 0.001, 

10-9. The case of γ=1 corresponds to a very significant uncertainty for the a priori 

ionosphere model, whereas γ=10-9 implies an almost perfect a priori model for the 

ionosphere.  

A second procedure is carried out to produce position error plots of the type that is 

presented starting Fig. 57. The dimensions of the horizontal 90% error ellipse and of the 

vertical 90% error ellipse are calculated based on a covariance matrix which is calculated 

using Eq. (100). As with the calculations for the ionosphere parameters, this procedure 

considers the five different scaling factors γ that multiply M in Eq. (100).   

7.2.3 Test case groups and test case classes  

Several classes of test cases are considered. Class 1 consists of fixed-ionosphere 

scenarios where only group delay measurements are processed. These test cases are 

grouped into three groups - A, B and C - that have setups with 21, 33 and 128 available 

measurements, respectively.  

The second class of test cases studied in this analysis, Class 2, considers fixed-

ionosphere scenarios where both group delays and beat carrier phase measurements are 

processed. These test cases are grouped into two groups - D and E - that have setups with 

17 and 33 ray-paths, respectively. It should be noted that for dual-measurement-type test 

cases of Class 2, each ray-path is assumed to be sampled at four different times that are 

very close to each other, so that each ray-path is sampled with four different carrier 

frequencies in a way that yields beat carrier phases with a common bias as measured in 
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carrier cycles. This brings the total number of processed measurements for these test 

cases to 8 times the number of ray-paths. 

Class 3’s test cases of Group F are identical to Those of Class 1’s Group C except that, 

consistent with the statistical methodology, they consider a random ionosphere error 

model rather than a fixed error model. The included test cases are therefore studied with 

the statistics-based method only. As with Class 1’s test cases, analysis is performed under 

the assumption that only group delay measurements are processed.  

Similarly, Class 4’s Groups G and H are the statistical analysis equivalents to Class 

2’s Groups D and F. With these test cases, both group delays and beat carrier phase 

measurements are processed 

7.2.4 Chapter scope 

This chapter presents the results that have been obtained for the many different test 

cases that have been studied. It additionally provides the required tools for comparing 

different types of data that have been obtained, observed, or computed for the various test 

cases. The presented results will be reviewed and further analyzed in the next chapter.  

As the previous subsection implies, the following four sections - 7.3-7.6 - contain a 

significant amount of information. As a user’s roadmap, both test cases’ setups and 

primary results are summarized in the form of tables at the beginning and the end of each 

section, for the sake of convenience. However, the reader should bear in mind that these 

tables do not include all information presented in the text.  
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7.3 Test Cases Using Group Delay Only, Fixed Ionosphere Model (Class 1) 

The purpose of this section is to present the performance of the system for the case 

where only group delay measurements are processed. Table 1, which can be regarded as a 

roadmap to this section, summarizes the primary characteristics for all eight test cases 

analyzed in this section and its subsections, the cases designated A0, B0 – B4, C0, and 

C4.  The table summarizes their measurement noise’s standard deviation, number of ray-

paths, initial IEI, direction of signals as they arrive at the receiver (above  the horizon or 

both above and below) and the placement pattern for the ground stations from which 

received signals are broadcasted. The three groups of test cases of Class 1 correspond 

with three scenarios of low, medium, and high numbers of available 

signals/measurements, designated as groups A, B, and C, respectively.   

 
 

 base 
case   

ray-paths 
from 

above only 
 high 

initial ξ  
alternative 

stations 
placement 

 
reduced 

measurement 
noise 

            

Low 
number of 
available 
signals 

scenario 
(Group A) 

 test case #  A0         
 meas. noise σ [m] 1000         
 ray-paths 21         
 ξ -0.2016         
 wave arrival 

direction both         

 stations placement grid         
            

Medium 
number of 
available 
signals 

scenario 
(Group B) 

 test case # B0  B1  B2  B3  B4 
 meas. noise σ [m] 1000  1000  1000  1000  10 
 ray-paths 33  33  33  33  33 
 ξ -0.2276  -0.2276  0.0661  -0.2165  -0.2276 
 wave arrival 

direction both  above only  both  both  both 

 stations placement grid  grid  grid  perimeter  grid 
            

High 
number of 
available 
signals 

scenario 
(Group C) 

 test case # C0        C4 
 meas. noise σ [m] 1000        10 
 ray-paths 33x4        33x4 
 ξ -0.2276        -0.2276 
 wave arrival 

direction both        both 

 stations placement grid        grid 

Table 1: Setup configuration for Class 1’s three groups and eight test cases. 
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For each group, a base test case is evaluated first. These are Test cases A0, B0, and 

C0. Sensitivities to the setup’s parameters are examined next through an analysis of 

variants of those base test cases. These variants include test cases with altered ray-paths 

geometry (the column labeled ray-paths from above only), test cases that are 

characterized with significantly higher ξ values, i.e., larger differences between the truth 

and a priori ionosphere models (column labeled high initial ξ), test cases with an 

alternative placement of ground stations (column labeled alternative stations placement), 

and test cases with reduced measurements noise (right-most column). In order to 

maximize comparability, all test cases have the same true parameterized ionosphere 

model.  

Each test case is evaluated by two methods: (a) Its performance as obtained for its 

execution in Nominal Mode, as defined in Subsection 6.1.1, and (b) An evaluation of its 

performance through a Monte Carlo analysis, using the Performance Analysis Mode.  

The first method is useful for testing cases’ feasibility, assessing the filter’s 

performance in correcting the ionosphere model through latitude/longitude mapping of 

both a priori and a posteriori ionosphere parameter error maps, and for obtaining 

theoretical errors and error distribution assessments. The second method is performed in 

a manner that is aligned with the setup described in Subsection 4.4.2, which considers 

constant a priori ionosphere errors and random ranging measurements errors. This 

approach is useful when analyzing the impact on performance of altering the different 

setup parameters. 
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These analyses will additionally enable a later discussion about batch filtering 

performance given ‘easy’ and ‘hard’ scenarios that differ in their a priori IEI values. 

‘Easy’ scenarios have IEI values that lie on the left side of the histogram that is presented 

in the bottom panel of Fig. 2. Similarly, ‘hard’ scenarios have IEI values that lie on the 

right side of that plot. An assessment on occurrence likelihood associated with particular 

a priori IEI values can be obtained based on the data presented on that histogram. 

Measurement errors were generated using a Gaussian, zero mean distribution with a 1-

sigma value of 1000 meters (except for reduced-measurement-noise test cases). This level 

of accuracy is about the best that can be achieved with code-based measurements due to 

the signal’s limited bandwidth, as mentioned in Subsection 2.1.1. A second model with a 

standard deviation of 10 meters was used in order to assess the sensitivity to ranging 

precision. 

7.3.1 Test cases with a medium number of available ray-paths (Group B) 

All test cases of Group B consider a set of eleven ground station transmitters at 

various locations across the Contiguous United States (CONUS). This set of ground 

transmitter stations is a subset of an array of ground station transmitters that is based on a 

grid of small circles of constant latitude, spaced 5 degrees apart. The longitudinal 

difference between two neighboring stations that lie on the same small circle is 10 

degrees. The longitudes of stations that lie on two neighboring small circles are offset by 

5 degrees. Note that a typical test case will consider signals that are received from only a 

subset of this set of ground station transmitters, hence the missing transmitters from this 

regular grid in the example shown in Fig. 24. The user receiver is located at 
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latitude/longitude/altitude (LLA) [40.10,-95.10,10000m], i.e., at the center of the green, 

spider-like object in Fig. 24. Note that the symbol definitions for ground stations, ray 

paths, etc. used in Fig. 24 are the same as have already been discussed in connection with 

Fig. 7. The user receiver receives three signals from each ground station, which results in 

a total of 33 ray-paths. The figure’s curved trajectories of the true ray-hops in green 

reflect their refractive nature. These trajectories have been computed by the raytracing 

engine. The reader may want to compare this plot with the equivalent plot on Fig. 1 of 

Ref. [5] in which the segmented nature of ray-paths that corresponds to the simplified 

signal propagation model is evident.  

Test Case B0 is regarded as the base test case for the medium number of available ray-

paths scenario. All other test cases in Group B are variants on this test case that are used 

to assess performance sensitivity to the various parameter sets that define the scenarios. 

For this test case, the truth ionosphere electron density profile is based on the IRI model 

computed for October 23, 2009, at UTC 14:22.  The a priori model is based on the model 

computed for September 23, 2009, at the same hour, such that the total seasonal 

discrepancy is one month, and the corresponding Ionosphere Error Index ξ is -0.2276 for 

the a priori model.  The statistical analysis in Section 2.3.1, indicates that this ξ value lies 

within the 65th percentile of the IEI values distribution for the given a priori ionosphere 

parameter error covariance matrix M. The HF signals for this test case have frequencies 

in the range 4.2-5.8 MHz. The number of hops for each ray-path is 1-4, with a mixture of 

signals arriving from above the user equipment (UE) and from below. 
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This test case was first run in a Nominal Scenario Mode, i.e., with pseudorange 

measurements that are identical to the true range-equivalent group delays. A close look at 

the estimated values indicates that the final position error in this case is -197 meters in the 

local north direction, -104 meters in the local east direction, and -24 meters in the vertical 

direction. The error in the estimate of the receiver clock bias is equivalent to 15 meters. 

This result is consistent with the analytically predicted position error of -199 meters in 

the north direction and -101 meters in the local east direction, where predication is 

performed using the right-most term of Eq. (99). 

 
Figure 24: Setup for test cases of Group B, ground stations (blue circles), true ray-path trajectories 

(green curves), and position solution convergence trajectory (red curve) for Test Case 
B0. 

Figure 25 plots errors from truth for the a priori (top) and the a posteriori (bottom) 

estimates of the ionospheric peak electron density altitude parameter hmax. These errors 
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have been computed and plotted for a region that contains all active grid nodes for this 

test case. In other words, this is the region where the ionosphere has been probed by the 

propagating signals. Other regions of the plot have been left blank/white. The red square 

at latitude/longitude (40.10,-95.10) indicates the true position of the receiver. Blue circles 

with white edges denote the locations of the ground stations. Magenta diamonds denote 

the locations of the bi-quintic spline grid nodes. The small green squares mark computed 

truth Earth bounce-points. North America’s coastline is shown in white with the borders 

of the states shown in gray. It is evident that the initial errors in hmax have been reduced 

dramatically above the vast majority of CONUS. For the a priori data, 80% of errors 

above CONUS are below 14.1 km and 95% are below 20.2 km. For the a posteriori (or 

estimated) model, 80% of errors are below 2.1 km and 95% are below 3.6 km. At the 

same time, significant errors for the ionospheric scale height parameter hsf of 6.7 km and 

7.7 km have been reduced to 1.2 km and 2.8 km for the 80th and 95th percentiles, 

respectively, as demonstrated in Fig. 26. 

A significant reduction in errors for the VTEC parameter has also been achieved, as 

shown on Fig. 27, from 1.24 TECU to 0.16 TECU for the 80th percentile and from 1.92 

TECU to 0.21 TECU for the 95th percentile. Note, however, that for the given length-

equivalent group delay measurements, electron density errors are observable only at 

heights that are less than the height for which maximal electron density is obtained, i.e. 

hmax. In other words, the observable part of VTEC is only that part of the electron density 

integral up to the altitude of peak density. This caveat holds true for all of the VTEC 

accuracy results discussed in this dissertation. 
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Figure 25: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density 

height parameter hmax for a Nominal Scenario Mode run of Test Case B0. 

 
Figure 26: A priori (top) and a posteriori (bottom) errors for the ionospheric scale height 

parameter hsf for a Nominal Scenario Mode run of Test Case B0. 
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For the statistical analysis, Test Case B0 was next executed in Performance Analysis 

Mode with a 100-run Monte Carlo simulation and a 1-sigma measurement noise of 1000 

meters that is aligned with the discussion of Subsection 7.2.  Here, and throughout the 

rest of this chapter, each Monte Carlo run is characterized by a unique set of 

measurement errors. 

The outcome of the execution is presented in Fig. 28 in the form of a scatter plot. The 

blue dots mark final estimation errors for the receiver’s position, with a red cross marking 

their mean. The reference frame used in this plot is a local-level frame whose origin is 

located at the true location of the receiver. The magenta ellipse in the top plot is the 90% 

horizontal error ellipse that was obtained from the analytical error prediction. It can be 

verified that 9 dots lie outside this ellipse. The lengths of the ellipse’s semi-major and 

semi-minor axes are approximately 1765 and 1347 meters, respectively. The standard 

deviation for the vertical position error is 311 meters. The green ellipse in the bottom plot 

is the 90% error ellipse in the east-vertical plane that is also given by analysis. Twelve 

blue dots fall outside this ellipse. Having nearly 10 of the 100 cases that fall outside the 

two 90% error ellipses in Fig. 28 demonstrate that the linearized error analysis associated 

with Eqs. (99) and (102) is reasonably accurate. Recall that this analysis assumes a 

constant ionosphere parameter error, which induces a bias via the final term on the right-

hand side of Eq.(99), and that the statistical variations of the navigation solutions about 

this bias are caused by random pseudorange measurement noise and are modeled by the 

covariance analysis in Eq. (102). 
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Figure 27: A priori (top) and a posteriori (bottom) errors for the ionospheric vertical total electron 

content parameter VTEC for a Nominal Scenario Mode run of Test Case B0. 

 
Figure 28:  Position error pattern for Test Case B0; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green). 
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The statistical properties of the a posteriori ionosphere model errors are shown in Fig. 

29. This figure should be interpreted as follows: The top panel includes two histograms 

for the hmax parameter’s residuals. These histograms reflect the statistical distribution of 

the a posteriori hmax errors’ 80th and 95th percentiles values. The two sets of values have 

been calculated for all 100 Monte Carlo runs. For example, by considering the 80th 

percentile histogram in the top panel of Fig. 29, one can infer that in 36+8=44 of 100 

Monte Carlo runs, a posteriori hmax errors had values of 2.66 km or less over at least 80% 

of the area above CONUS, and in 96 out of 100 cases a posteriori hmax errors had values 

of 7.66 or less over at least 80% of the area above CONUS.  

 

Figure 29:  The statistical characteristics of the a posteriori ionosphere model errors for Test Case 
B0. The top three panels show histograms of the 80th and 95th CONUS area percentile 
error limits for the three Chapman parameters. The bottom panel is a histogram of ξ 
values. Dashed lines mark the 80th and 95th percentile values of these quantities for the a 
priori ionosphere parameter error vector, except in the bottom panel the dashed line 
marks the a priori error's mean. 
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Similarly for the 95th percentile, in 59 of 100 runs, hmax errors had values of 6.66 or less 

over at least 95% of the area above CONUS. In 97 of 100 runs, hmax errors had values of 

8.66 or less over at least 95% of the area above CONUS. 

The blue dashed line and the gray dotted line mark the a priori ionosphere model error 

values for the 80th and 95th percentiles, respectively. These reference values, applying for 

all 100 runs, were discussed earlier in the context of results obtained in Nominal Scenario 

Mode execution. These lines lie well to the right of their corresponding histograms in the 

top panel of Fig. 29, which indicates that the a posteriori estimates of the hmax map are 

much better than the a priori estimate. 

The second and third panels of Fig. 29 plot the same type of information for the hSF 

and VTEC Chapman model parameters. It can be inferred that the estimates for these two 

parameter maps have been improved for all 100 Monte Carlo runs by the fact that both 

plots have a posteriori histograms that lie well to the left of their corresponding a priori 

vertical lines. The bottom panel plots the distribution histogram for the a posteriori 

values of the IEI parameter ξ. The mean value equals -0.2340 which is smaller than the a 

priori value of -0.2276 that is depicted by the vertical dashed green line (recall the 

logarithmic nature of this parameter). It can be also concluded that for two Monte Carlo 

runs, the a posteriori ionosphere model is in fact inferior to the a priori model. This does 

not constitute a discrepancy between the bottom plot and the top three plots because the 

IEI parameter that is considered in the bottom plot is computed from 27 parameters. It 

has been tested and shown that the three prime Chapman parameters may exhibit slightly 

different trends than the IEI.  
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Test Case B1 is a variant on Test Case B0 that differs in its ray-path geometry. Here, 

ray-paths are configured such that all signals approach the receiver from above, i.e., the 

direction vectors of the incoming signals as they arrive at the UE have positive elevation 

above the horizon as viewed from the UE antenna. Minor modifications to the signals’ 

frequencies were made in order to maintain the test case’s physical feasibility. All other 

parameters were kept identical to those of the base configuration. 

The positioning mean error for the nominal case (i.e., an execution in Nominal 

Scenario Mode) is 218 meters in the local north direction, -180 meters in the local east 

direction, and 73 meters in the vertical direction. This result is consistent to a 0.5 meters 

difference with the predicted error that was computed using Eq. (99). Results very similar 

to those obtained for the base Test Case B0 were obtained for the a posteriori estimates 

of the ionospheric parameters (plots are not shown). The Monte Carlo position errors plot 

of Fig. 30 reveals significant differences between test cases B0 and B1 in the geometric 

dispersion of the final errors. While the distribution of the scattered dots in the horizontal 

plane and its corresponding 90% error ellipses have similar characteristics for the two test 

cases, errors in the vertical direction are substantially bigger for Test Case B1. For this 

test case, the major axis of the east-vertical 90% error ellipse that points almost vertically 

is 3875 meters in length compared to about 700 meters for the base test case of Fig. 28. 

Interestingly, estimates for all three Chapman ionosphere parameters (Fig. 31) are 

slightly better for Test Case B1 in comparison to those of the base test case, B0. The 

average 80th percentile  values are about 3 km, 2 km  and 0.35 TECU for Test Case B0’s  
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Figure 30: Position error pattern for Test Case B1; Monte Carlo analysis scatter plot (blue); 
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green). 

 

Figure 31: The statistical characteristics of the a posteriori ionosphere model errors for Test Case 
B1. The top three panels contain histograms of the 80th and 95th percentile error values 
for the three Chapman parameters. The bottom panel is a histogram of ξ values. Dashed 
lines mark the 80th and 95th percentile values of these quantities for the a priori 
ionosphere parameter error vector, except in the bottom panel the dashed line marks the 
a priori error's mean. 
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hmax, hsf and VTEC parameters, respectively, whereas their Test Case B1’s equivalent 

values are roughly 2 km, 1.5 km, and 0.25 TECU.   

Test Case B2 is a second variant on the base Test Case B0 that differs in its a priori 

ionospheric model. While the one month seasonal discrepancy of the base test case 

results in a computed a priori ξ value of -0.2276 that lies in the 65th percentile, the 

seasonal discrepancy of Test Case B2 was increased to three months, so that the truth 

ionosphere electron density profile is based on the IRI model computed for October 23, 

2009, at UTC 14:22, and the a priori model is based on the model computed for July 23, 

2009, at the same hour. The resulting a priori ξ value is -0.0661 and is located in the 95th 

percentile of the IEI distribution histogram, as shown in the bottom panel of Fig. 2. All 

other parameters for this test case are identical to those of Test Case B0. 

Equation (99) implies that bigger ξ values are expected to result in bigger estimation 

errors for the nominal case, or equivalently, a bigger mean error for the full stochastic 

analysis that considers measurement errors. The position errors that have been computed 

for the nominal B2 case are 597, -269 and -50 meters in the local north, east, and vertical 

directions, respectively. Indeed, these errors are greater than the errors that have been 

computed for Test Case B0. 

Results for the a posteriori estimation errors of the parameter hmax (Fig. 32) are 

consistent with the trend that is evident in inferior position errors. From a priori errors of 

27.2 km and 46.3 km for the 80th and 95th percentiles of CONUS area, respectively, final 

estimation errors are 10.3 km for the 80th percentile and 17.4 km for the 95th percentile. 

These error statistics are significantly bigger than those for base Test Case B0. Similarly 
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for the parameter hsf errors that are shown in Fig. 33, the 80th and 95th a posteriori 

estimates of 2.9 km and 3.5 km are worse than those obtained for Test Case B0. Still, 

errors have been reduced dramatically compared to the a priori values of 19.8 km and 

21.1 km at the 80th and 95th percentiles of CONUS area.  

Finally, VTEC values have been reduced from 1.71 TECU to 1.02 TECU for the 80th 

percentile and from 2.69 TECU to 1.43 TECU for the 95th percentile (data not shown). 

These a posteriori error metrics are still significantly larger than their Test Case B0 

counterparts. 

Monte Carlo position error analysis results, shown in Fig. 34, exhibit characteristics 

that are very similar to those of Test Case B0 in terms of position error distribution about 

the mean. The main difference is in the magnitude of the mean error which is 

significantly further from zero for Test Case B2.  Note how the Test Case B0’s 90% error 

ellipses are re-plotted in Fig. 34 and how their sizes are similar to those of Test Case B2 

while their centers are closer to the origin than those for Test Case B2.  

The impact of having significantly bigger a priori errors for the ionosphere parameters 

on the parameters’ final estimates can be assessed by comparing the results shown in Fig. 

35 with those of Fig. 29. In both cases, 80th and 95th error percentiles for the a posteriori 

ionosphere model have been reduced significantly from their a priori values.  The a 

posteriori estimates, however, are clearly superior for Test Case B0, for which errors are 

2-4 times smaller than their Test Case B2 equivalents. This observation is based mainly 

on the computed means of the three Chapman parameters’ histograms. However, for the 
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Figure 32: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density 

height parameter hmax for Test Case B2. 

 
Figure 33: A priori (top) and a posteriori (bottom) errors for the ionospheric scale height 

parameter hsf for Test Case B2. 
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Figure 34: Position error pattern for Test Case B2; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses plot the 90% errors ellipses for base Test Case B0 
and are shown here for comparison purposes. 

 
Figure 35: The statistical characteristics of the a posteriori ionosphere model errors for Test Case 

B2. The top three panels contain histograms of the 80th and 95th percentile error values 
for the three Chapman parameters. The bottom panel is a histogram of ξ values. Dashed 
lines mark the 80th and 95th percentile values of these quantities for the a priori 
ionosphere parameter error vector, except in the bottom panel the dashed line marks the 
a priori error's mean. 
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ξ parameter it should be noted that while its mean value is significantly lower for the base 

test case, a reduction has also been observed for all 100 runs of Test Case B2’s Monte 

Carlo analysis. Thus, Test Case B2 has the "advantage" of starting with such a poor a 

priori ionosphere model that it cannot help but deduce an improved model in all 100 of 

its Monte-Carlo trials. 

A posteriori estimation error sensitivity to ground station placement has been studied 

with Test Case B3. Unlike the grid-like array of ground stations considered with the test 

cases that have been discussed so far, the setup for Test Case B3 consists of a network of 

ground stations that are located along the coasts and land borders of the United States. 

Figure 36 illustrates the setup for this test case. It also shows the simulated true multi-hop 

ray-paths. 

 

Figure 36: Setup for Test Case B3 with ground stations (blue circles) placed along the coastal and 
land borders of the US, true ray-paths trajectories (green), and convergence of position 
solution (red).   
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As with previous test cases, each ground station is assumed to transmit three signals 

that are received at the UE located at latitude/longitude/altitude (LLA) [40.10,-

95.10,10000m]. All ionospheric parameters are identical to those of Test Case B0. The 

different ground station placement results in a different subset of applicable grid nodes 

and consequently an IEI of -0.2165 that is slightly larger than the value that has been 

computed for Test Case B0. 

A run in Nominal Scenario Mode yielded position errors of -399, 394 and 159 meters 

in the local north, east, and vertical directions, respectively. The error in the estimate of 

the receiver clock bias is equivalent to -665 meters. This result is inferior to that of Test 

Case B0. With the same a priori ionosphere model, the final estimation errors for the 

electron density altitude parameter hmax (Fig. 37), are similarly worse than those obtained 

for Test Case B0, with 80% of CONUS having errors below 5.2 km and 95% of CONUS 

having errors below 6.6 km. Estimates for the hsf scale height factor and for the VTEC 

parameter (Fig. 38) exhibit similar degraded levels of accuracy in the region that is 

common to the two test cases. 

Test Case B3 was next executed in Performance Analysis Mode with 100 Monte Carlo 

runs and a 1-sigma measurement noise of 1000 meters. Results for position errors exhibit 

an accuracy level that is inferior to that of Test Case B0 in terms of the position of the 

mean error that is significantly further from zero for Test Case B3 as discussed above. 

However, this test case’s horizontal 90% error ellipse is smaller (Fig. 39). The lengths of 

the horizontal ellipse’s  semi-major  and  semi-minor  axes are  approximately 1575  and  
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Figure 37: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density 

height parameter hmax for a Nominal Scenario Mode run of Test Case B3. 

 
Figure 38: A priori (top) and a posteriori (bottom) errors for the ionospheric vertical total electron 

content parameter VTEC for a Nominal Scenario Mode run of Test Case B3. 
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Figure 39: Position error pattern for Test Case B3; Monte Carlo analysis scatter plot (blue); 
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses plot the 90% error ellipses for base Test Case B0 
and are shown here for comparison purposes. 

1203 meters compared to 1765 and 1347 meters for Test Case B0 ellipse’s semi-major 

and semi-minor axes, respectively. For ionosphere modeling (data not shown), 

performance for this test case is slightly degraded, especially for estimating the vertical 

total electron content parameter. 

The last variation from the base test case for group B is Test Case B4, for which the 

measurement noise 1-sigma value is reduced from 1000 meters to 10 meters. This, of 

course, is an unrealistic value that cannot be achieved based on code ranging solely with 
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make it possible to achieve better ranging accuracy, though not necessarily as good as 10 

meters. 

Position errors for this test case, shown in Fig. 40, reflect dramatically enhanced 

horizontal-plane accuracy in comparison to that of Test Case B0, as shown in Fig. 28. 

Still, this reduced amount of error is not quite at a level considered to be navigation grade 

for many applications. Vertical accuracy, however, is significantly better, with a root 

mean square value of 6.5 meters. At the same time, a posteriori errors for the ionosphere 

model’s three parameters are roughly 50%-70% of the errors obtained for the base test 

case. 

 
Figure 40: Position error pattern for Test Case B4; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green). 
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7.3.2 Test cases with a low number of available ray-paths (Group A) 

A scenario of limited signal availability is considered in this group of test cases. These 

test cases are characterized with as few as 21 received signals that are transmitted from 7 

ground stations. The set of test cases in this group, therefore, constitutes a study of 

performance sensitivity to the number of available ray-paths. 

The base test case for this group, Test Case A0, has the same properties as Test Case 

B0, except for the number of available ray-paths. In Nominal Scenario Mode, the total 

horizontal error for this test case is about 50% larger than that of Test Case B0, and the 

vertical error is about twice as large (data not shown). Monte Carlo position errors (Fig. 

41) are roughly twice as large as for Test Case B0, both in the horizontal plane and 

vertically, as is evident by comparison with Test Case B0’s ellipses that are also shown in 

this figure. Errors for the a posteriori ionosphere model in terms of the Chapman 

parameters’ 80th and 95th CONUS area percentiles are consistently bigger for the limited 

signal availability test case. 

It can be concluded that the error computation of Eq. (99), which is based on a linear 

approximation and from which the 90% error ellipses are derived, becomes less accurate 

as fewer measurements are available. In this case, 17 dots fall outside the ellipse when 

only about 10 should have fallen outside it for the 100-case Monte-Carlo analysis that has 

produced the results in Fig. 41. This observation is consistent with many tests examined 

throughout this study, and in particular with the results that have been obtained for Test 

Case D0 that is discussed later. 
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Figure 41: Position error pattern for Test Case A0; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% error ellipse (top plot, magenta); Vertical 90% error ellipse (bottom 
plot, green). The dashed gray ellipses plot the 90% error ellipses for base Test Case B0 
and are shown here for comparison purposes. 

7.3.3 Test cases with a high number of available ray-paths (Group C) 

The multiple frequencies strategy that has been introduced in Subsection 2.1.1 can be 
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of measurements for these test cases is 128, as demonstrated in the setup and solution plot 

of Fig. 42. 

Test Case C0 has the same characteristics as the medium-number-of-available-

measurements scenario’s base test case, Test Case B0, except for the increased number of 

measurements. Execution in Nominal Scenario Mode yields a mean position error of 104, 

-74 and -12.36 meters in the north, east, and vertical directions, respectively. This error is 

about half the magnitude of the position error observed for Test Case B0. It should also 

be noted that for this test case, actual a posteriori position errors and predicted errors 

agree to within 0.4 meters, as per Eq. (99).  Thus, the linearized error model is a good 

approximation. 

 
Figure 42: Setup for test cases of Groups C and E, transmitters (blue circles), true ray-path 

trajectories (green curves), and convergence of position solution for Test Case C0 (red 
curve). 
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For ionosphere characterization, the nominal execution yielded an 80th percentile of 

CONUS area upper bound of 3.1 km for the parameter hmax. This value is 20% smaller 

than that of Test Case B0. A reduction of 34% for the hsf parameter’s 80th percentile 

value has been observed as well. For the vertical total electron content parameter, the 80th 

percentile’s mean value decreased from 0.16 TECU to 0.11 TECU. 

The 90% error ellipses obtained with a Monte Carlo analysis, shown in Fig. 43, are 

evidently smaller than those of Test Case B0 (also shown in this figure), with semi-major 

axes that are about half of the value for Test Case B0. Yet, the achieved level of accuracy 

for Test Case C0 is insufficient for navigation.  

However, with the reduced measurement error standard deviation model that is 

considered in Test Case C4 (Fig. 44), position errors exhibit accuracy that could be 

acceptable for navigation in some applications. As earlier noted, the measurement noise 

level that is considered in this last case is currently not achievable with code ranging 

only. 
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Figure 43: Position error pattern for Test Case C0; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses are the 90% error ellipses for Test Case B0, which 
are shown here for comparison purposes. 

 
Figure 44: Position error pattern for Test Case C4; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green).  
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7.3.4 Test cases using only group delay, summary 

Table 2 summarizes the numerical results for the eight test cases presented in this 

section in terms of position accuracy. The location of the computed mean error is given in 

a local level north-east-vertical coordinates system whose origin is located at the true 

location of the receiver. Horizontal position errors are expressed in term of a horizontal 

error ellipse that bounds 90% of the computed east-north errors. The vertical error is 

given by its standard deviation.  

 
 

 base case  
ray-paths 

from 
above only 

 large 
initial  ξ  

alternative 
stations 

placement 
 

reduced 
meas. 
noise 

            

Low 
number of 
available 
signals 

Scenario 
(Group A) 

 test case #  A0         
 90% error ellipse 

semi-major axis [m] 
3359         

 90% error ellipse 
semi-minor axis [m] 1972         

 vertical error STD 
[m] 385         

 mean error NEV 
[m,m,m] 

-13, -367, 
-45         

            

Medium 
number of 
available 
signals 

Scenario 
(Group B) 

 test case #  B0  B1  B2  B3  B4 
 90% error ellipse 

semi-major axis [m] 1765  1973  1817  1575  110 

 90% error ellipse 
semi-minor axis [m] 1347  1249  1330  1203  62 

 vertical error STD 
[m] 311  1885  309  435  5 

 mean error NEV 
[m,m,m] 

-197, -104, 
 -24  218, -180, 

76  597, -269, 
-50  394, -399, 

158  -55, -19, 
4 

            

High 
number of 
available 
signals 

Scenario 
(Group C) 

 test case #  C0        C4 
 90% error ellipse 

semi-major axis [m] 733        29 

 90% error ellipse 
semi-minor axis [m] 677        14 

 vertical error STD 
[m] 116        10 

 mean error NEV 
[m,m,m] 

103, -74, 
-12        -3, 5, 0 

Table 2: Class 1 test cases’ position estimation error characteristics.  
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A summary of results for ionosphere model errors is presented in Table 3. The first 

three rows for each category consist of the a priori (upper pair of cells) and the mean of 

the a posteriori (lower pair of cells) estimation errors for the three Chapman parameters. 

For each pair of values, the left refers to the 80th CONUS area percentile value and the 

right to the 95th percentile value. The fourth row shows the a priori and the mean a 

posteriori IEI values that have been computed for each test case.   

 
  

 base 
case  

ray-paths 
from 

above only 
 large 

initial ξ  
alternative 

stations 
placement 

 
reduced 

meas.  
noise 

             

Low 
number of 
available 
signals 

Scenario 
(Group A) 

 test case #   A0         
 hmax 80th/95th 

percentile [km] 
a priori 

mean a post. 
14.1/20.2 
1.6/2.6         

 hsf 80th/95th 
percentile [km] 

a priori 
mean a post. 

6.7/7.7 
1.1/2.4         

 VTEC 80th/95th 
percentile [TECU] 

a priori 
mean a post. 

1.2/1.9 
0.14/0.22         

 
ξ a priori 

mean a post. 
-0.2276 
-0.2355         

             

Medium 
number of 
available 
signals 

Scenario 
(Group B) 

 test case #   B0  B1  B2  B3  B4 
 hmax 80th/95th 

percentile [km] 
a priori 

mean a post. 
14.1/20.2 
2.1/3.6  14.1/20.2 

1.5/4.1  27.2/46.3 
10.3/17.4  13.1/19.4 

5.2/6.6  14.1/20.2 
4.5/8.5 

 hsf 80th/95th 
percentile [km] 

a priori 
mean a post. 

6.7/7.7 
1.2/2.8  6.7/7.7 

1.2/2.7  19.8/21.1 
2.9/3.5  7.6/8.2 

2.3/2.8  6.7/7.7 
1.8/3.1 

 VTEC 80th/95th 
percentile [TECU] 

a priori 
mean a post. 

1.2/1.9 
0.16/0.21  1.2/1.9 

0.12/0.21  1.7/2.7 
1.0/1.4  1.6/2.2 

0.55/1.1  1.2/1.9 
0.38/0.61 

 
ξ a priori 

mean a post. 
-0.2276 
-0.2375  -0.2276 

-0.2399  -0.0661 
-0.0955  -0.2165 

-0.2224  -0.2276 
-0.2509 

             

High 
number of 
available 
signals 

Scenario 
(Group C) 

 test case #   C0        C4 
 hmax 80th/95th 

percentile [km] 
a priori 

mean a post. 
14.1/20.2 
1.3/3.0        14.1/20.2 

0.34/0.76 
 hsf 80th/95th 

percentile [km] 
a priori 

mean a post. 
6.7/7.7 
0.87/1.9        6.7/6.6 

0.26/0.73 
 VTEC 80th/95th 

percentile [TECU] 
a priori 

mean a post. 
1.2/1.9 

0.11/0.20        1.2/1.9 
0.03/0.08 

 
ξ a priori 

mean a post. 
-0.2276 
-0.2471        -0.2276 

-0.2915 

Table 3: Class 1 test cases’ ionosphere model estimation error characteristics.  
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7.4 Test Cases Using Combined Code and Carrier Phase Ranging, Fixed 

Ionosphere Model (Class 2)  

The purpose of this section is to study the performance of the system for the combined 

group-delay/beat-carrier-phase batch filter. With the addition of carrier phase 

measurements, the truth-model simulation must receive as input the initial errors for all 

parameters that have been listed for the case of the group-delay-only filter. In addition, it 

must be given truth values of the carrier phase biases for each ray path. The same bias is 

used for each of the four frequencies that are transmitted in succession along a given 

nominal ray path. These extra unknowns are expected to be observable because of the 

availability of beat carrier phase measurements at multiple frequencies that share a 

common bias. It should be additionally noted that no a priori information is assumed for 

these highly observable terms. Each batch filter run has been initialized with zero values 

for the carrier phase bias estimates. In order to ensure that this part of the analysis is not 

carried out with unrealistically small errors for the zero-valued a priori estimates of the 

bias terms, the truth-model simulation has been run with bias values that produced initial 

range-equivalent errors for these terms up to 1600 km. 

Table 4 summarizes the primary characteristics for all seven Class 2 test cases 

analyzed in this section (Test Cases D0, D2, and E0-E4): their standard deviation for both 

group delay and beat carrier phase measurement noise, number of ray-paths, initial IEI, 

direction of signals as they arrive at the receiver, and the placement pattern for the ground 

stations from which received signals were broadcast. Note that the measurement noise 

lists the range-equivalent group delay measurement error standard deviation first, 

followed by the range-equivalent beat carrier phase measurement error standard delay 



158 

 

second.  Thus, the entry 1000/1 [m] indicates a 1000 meters range-equivalent group delay 

measurement error standard deviation and a 1 meter range-equivalent beat carrier phase 

measurement error standard deviation.  

 
 

 base 
case   

ray-paths 
from 

above only 
 large 

initial ξ  
alternative 

stations 
placement 

 increased 
meas. noise 

            

Medium 
number of 
available 
signals 

Scenario 
(Group D) 

 test case # D0    D2     
 meas. noise σ [m] 1000/1    1000/1     
 ray-paths 17x4    17x4     
 ξ -0.2276    0.0848     
 wave arrival 

direction both    both     

 stations placement grid    grid     
            

High 
number of 
available 
signals 

Scenario 
(Group E) 

 test case # E0  E1  E2  E3  E4 
 meas. noise σ [m] 1000/1  1000/1  1000/1  1000/1  1000/10 
 ray-paths 32x4  32x4  32x4  32x4  32x4 
 ξ -0.2276  -0.2276  0.0661  -0.2165  -0.2276 
 wave arrival 

direction both  above only  both  both  both 

 stations placement grid  grid  grid  perimeter  grid 

Table 4: Setup configuration for two groups and seven test cases of Class 2. 

The two groups of test cases cover scenarios of medium and high numbers of available 

measurements. As before, for each group (or availability scenario), a base test case is 

evaluated first. These are Test Cases D0 and E0 for groups D and E, respectively. As 

with Class 1 test cases, sensitivities to the setup’s parameters are examined through 

examining variations from the base test cases. In order to maximize comparability, all test 

cases have the same true parameterized ionosphere model, which is identical to the model 

used with Class 1 test cases.  

Measurement errors were generated using a Gaussian, zero mean distribution with a 1-

sigma value of 1000 meters for group delay measurements and 1 meter for carrier phase 

measurements (except for the increased measurement noise test cases).   
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7.4.1 Test cases with a high number of available ray-paths (Group E) 

Test cases of Group E consider an array of eleven ground station transmitters at 

various locations across the Continental United States (CONUS). This is the same setup 

used with Group C’s test cases that is illustrated in Fig. 42. The total number of ray-paths 

available is 32x4=128, except this time carrier phase measurements are processed as well, 

resulting in a total of 256 available observables.   

Test Case E0 is regarded as the base test case for the high number of ray-paths 

scenario. All other test cases in Group E are variants on this test case that are used to 

assess performance sensitivity to inputs. The truth ionosphere electron density profile is 

based on the IRI model computed for October 23, 2009, at UTC 14:22. The a priori 

model is based on the model computed for September 23, 2009, at the same hour, such 

that the total seasonal discrepancy is one month, and the corresponding Ionosphere Error 

Index (ξ) is -0.2276, as with most test cases that have been discussed so far. The HF 

signals for this test case have frequencies in the range 3.0-6.0 MHz. The number of hops 

for each ray-path is 1-4, with a mixture of signals arriving from above the UE and signals 

arriving at the UE from below. 

Figure 45 plots position errors obtained with a 100-run Monte Carlo analysis. The 

benefits of processing the beat carrier phase measurements are immediately evident when 

the results shown in this plot are compared with the results obtained for the 128 ray-paths 

Test Case C0. The mean position error for Test Case E0 is as small as 5 meters in the 

north direction and less than 30 cm in both the east and vertical directions. The lengths of 

the 90% error ellipse’s semi-major and semi-minor axes are 24 and 13 meters, 
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respectively. The standard deviation for the vertical error is 0.8 meters. Residual 

estimation errors for the three Chapman parameters are remarkably small for all 100 runs 

of the Monte Carlo analysis, as shown in Fig. 46.   

Looking at the mean residual errors for the parameter hsf, as obtained using the 

Nominal Scenario Mode execution of the simulation, (Fig. 47) and the histogram results 

of Fig. 46, one can conclude that the combination of high measurements availability and 

small measurement noise for the carrier phase measurements results in substantially 

enhanced estimates for the three Chapman parameters above much of CONUS.  

 

Figure 45: Position error pattern for Test Case E0; Monte Carlo analysis scatter plot (blue); 
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green). 
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Figure 46: The statistical characteristics of the a posteriori ionosphere model errors for Test Case 

E0. The top three panels contain histograms of the 80th and 95th CONUS area percentile 
error values for the three Chapman parameters. The bottom panel is a histogram of ξ 
values. Dashed lines mark the 80th and 95th percentile values of these quantities for the a 
priori ionosphere parameter error vector, except in the bottom panel the dashed line 
marks the a priori error's mean. 

 
Figure 47: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density 

height hsf parameter for Test Case E0.  
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Test Case E0 has 32 ray-paths, each produced data at four different carrier 

frequencies.  These new measurements added 32 unknown beat carrier phase bias terms. 

With the Monte Carlo simulation, these terms were set such that their initial errors (which 

equal their true values given zero a priori guesses) were in the range [-240,70] in units of 

wavelengths. Given the signals’ frequencies, this range of values is equivalent to ranging 

errors that are up to 1600 kilometers in magnitude. It has been observed that in the first 

Gauss Newton iteration where carrier phase measurements were processed, these a priori 

errors are reduced to errors in the range of [-0.16,0.1] wavelengths.  Their a posteriori 

estimates fall in the range [-0.1,0.1]. These final error values are equivalent to 5-10 

meter-level ranging errors. 

The first variant from the base test case is Test Case E1. It is defined with ray-paths 

that arrive at the receiver from above. Position error performance in terms of horizontal 

errors is evidently superior for this test case.  It is characterized by a significantly smaller 

90% errors ellipse and a mean error that is closer to zero (Fig. 48). The inferior vertical 

accuracy, where the standard deviation is 5.2 meters, is likely acceptable for navigation 

purposes in many applications.  

Statistics for the a posteriori Chapman parameters’ estimates are similar to those of 

the base test case, with slightly smaller residual errors for the case of signals arriving 

from above only.  
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Figure 48: Position error pattern for Test Case E1; Monte Carlo analysis scatter plot (blue); 
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses are the 90% errors ellipses for base Test Case E0, 
shown here for purposes of comparison. 

Test Case E2, a second variant of the base test case, is of special interest due to its 

very poor a priori ionosphere model that is based on an IRI model computed for August 

23, 2009, at UTC 14:22. The resulting a priori IEI value of 0.0848 suggests that this test 

case is characterized by the largest truth/a priori ionosphere models discrepancy among 

all test cases studied. Moreover, the IRI (ξ) distribution shown in Fig. 2 suggests that this 

level of IRI gives this test case’s setup an excessive discrepancy between the truth and a 

priori ionospheres, even though that figure has been generated under slightly different 

conditions. A priori errors for the VTEC Chapman parameter, shown in the top plot of 
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difference is 150% (data not shown). All of the foregoing a priori parameter errors are 

measured in terms of the 80th CONUS area percentile.     

 
Figure 49: A priori (top) and a posteriori (bottom) errors for the ionospheric vertical total electron 

content parameter VTEC for a Nominal Scenario Mode run of Test Case E2. 

Monte Carlo analysis for this test case yielded the position error scatter plot of Fig. 50, 

which has two important properties. The area of the 90% error ellipse is about the same 

as that of Test Case E0’s ellipse, but the mean error, which is the error caused by the 

ionosphere, is located about three times further from zero. The latter outcome could be 

predicted based on Eq. (99).   

The Monte Carlo analysis yields statistics for the a posteriori errors of the three 

Chapman parameters. It can be concluded that the errors are about twice as large for Test 
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mean error of 0.46 km for the parameter hsf, and a mean error of 0.12 TECU for the 

parameter VTEC, all given in terms of their 80th CONUS area percentiles. 

 

Figure 50: Position error pattern for Test Case E2; Monte Carlo analysis scatter plot (blue); 
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case E0 
that are shown here for comparison purposes. 

In an attempt to assess performance sensitivity to ground station placement, Test Case 
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identical to those of Test Case E0 except for minor adjustments in signal frequencies that 

are necessary in order to maintain physical feasibility. The position error plot of Fig. 51 
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well, indicates that the position accuracy for Case E3 is significantly degraded. Errors for 

the a posteriori Chapman model’s parameters are similarly larger for Test Case E3 for 

which the hsf scale height parameter estimation maps are presented in Fig. 52. The results 

are slightly inferior to those of Test Case E0 (Fig. 47). This assertion will be further 

validated in a later section via data in Table 6.   

 

Figure 51: Position error pattern for Test Case E3; Monte Carlo analysis scatter plot (blue); 
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case E0, 
shown here for comparison purposes. 

The last test case studied in this group is Test Case E4, whose 1-sigma noise error is 

increased to 10 meters for the carrier phase measurements and kept unchanged at 1000 

meters, for the range-equivalent group delay pseudoranges. A significant degradation in 

position accuracy in comparison to the base Test Case E0 is indicated by Fig. 53, which  
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Figure 52: A priori (top) and a posteriori (bottom) errors for the ionospheric scale height hsf 

parameter for a Nominal Scenario Mode run of Test Case E3. 

 
Figure 53: Position error pattern for Test Case E4; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case E0, 
shown here for comparison purposes. 
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shows the horizontal 90% error ellipses for both cases. This trend is also evident in the a 

posteriori errors for the ionospheric parameters. 

7.4.2 Test cases with a medium number of available ray-paths (Group D) 

This subsection presents the simulated performance for a scenario with a reduced 

number of available measurements. Test cases of Group D consider a set of ground 

stations that is a subset of the set of ground stations used with the high-availability-

scenario test cases of Group E. Each ground station is assumed to transmit between 1 and 

3 signals with varying frequencies, so that the total number of ray-paths received at the 

receiver is 17 and the total number of measurements processed, including both group 

delay and beat carrier phase measurements, is 136.   

Test Case D0 is the base test case for the scenario with a medium number of available 

ray-paths. It uses the same truth and a priori ionosphere models as Test Case E0 and has 

the same Ionosphere Error Index (ξ) of -0.2276. The HF signals for this test case have 

frequencies in the range 3.0-6.0 MHz. The number of hops for each ray-path is 1-4, with 

a mixture of signals arriving from above and from below at the UE. 

Figure 54 plots position errors obtained for a 100-run Monte Carlo analysis, with the 

usual notation and markings. The additional dashed gray ellipse in the top subplot marks 

the horizontal 90% error ellipse that has been obtained for Test Case E0. The impact of 

processing a smaller number of measurements is evident when the two ellipses are 

compared. The major and minor axes are about three times larger for the present scenario 

with a reduced number of available measurements. The mean horizontal position error for 
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Test Case D0 is about 15 times larger than that of Test Case E0. Vertical accuracy is 

degraded as well, yet errors in the vertical direction are still sufficiently small for many 

navigation applications. 

A comparison of Fig. 55, which shows the performance for the a posteriori estimates 

of the ionospheric parameters, with the equivalent Fig. 46 for Test Case E0 shows that 

residual VTEC estimation errors for the present case are about twice as large as for the 

high-number-of-available-signals test case. Even so, the a posteriori errors for all three 

sets of Chapman parameters have been reduced dramatically in comparison to their a 

priori values for this case. 

 

Figure 54: Position error pattern for Test Case D0; Monte Carlo analysis scatter plot (blue); 
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses are the 90% error ellipse for the base test case of 
Group E (Test Case E0), shown here for comparison purposes. 
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Figure 55: The statistical characteristics of the a posteriori ionosphere model errors for Test Case 

D0, including histograms of the 80th and 95th CONUS area percentile error values for the 
three Chapman parameters. The bottom panel is a histogram of ξ values. Dashed lines 
mark the 80th and 95th percentile values of these quantities for the a priori ionosphere 
parameter error vector, except in the bottom panel the dashed line marks the a priori 
error's mean. 

As with other test cases of significant IEI, the large-IEI variant, Test Case D2, is 

characterized by a mean horizontal position error that is significantly larger than that of 

the group’s base test case. Note how the center of the 90% position error ellipse (Fig. 56) 

is located much further from zero compared to Test Case D0’s that is also shown in this 

figure in the form of a (cropped) gray dashed ellipse. The centers of the two vertical 90% 

error ellipses that are shown in the bottom panel, however, are comparably close to zero 

in the local vertical direction.  
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Figure 56: Position error pattern for Test Case D2; Monte Carlo analysis scatter plot (blue); 

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom 
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case D0 
and are included here for comparison purposes.  
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7.4.3 Summary of test cases using combined code and carrier ranging 

Table 5 summarizes the numerical results for the seven test cases presented in this 

section in terms of positioning accuracy. As before, location of the computed mean error 

is given in a local level north-east-vertical coordinate system whose origin is at the true 

location of the receiver. Horizontal position errors are expressed in term of a horizontal 

errors ellipse that bounds 90% of the computed east-north coordinates. The vertical error 

is characterized by its standard deviation.  

 
 

 base 
case  

ray-paths 
from 

above only 
 large 

initial  ξ  
alternative 

stations 
placement 

 
increased 

meas. 
noise 

            

Medium 
number of 
available 
signals 

Scenario 
(Group D) 

 test case #  D0    D2     
 90% errors ellipse 

semi-major axis [m] 71    75     

 90% errors ellipse 
semi-minor axis [m] 44    40     

 vertical error STD 
[m] 2    2     

 mean error NEV 
[m,m,m] -57,50,0    -134,-28,-1     

            

High 
number of 
available 
signals 

Scenario 
(Group E) 

 test case #  E0  E1  E2  E3  E4 
 90% errors ellipse 

semi-major axis [m] 25  18  24  35  80 

 90% errors ellipse 
semi-minor axis [m] 13  9  14  30  44 

 vertical error STD 
[m] 1  5  1  5  6 

 mean error NEV 
[m,m,m] 5,0,0  -2,2,-1  -15,-4,0  -5,12,8  -2,7,0 

Table 5: Class 2 test cases’ primary position error characteristics. 

A summary of performance for ionosphere model correction is presented in Table 6. 

The first three rows for each category consist of the a priori (upper the pair in a given 

cell) and the mean of the a posteriori (lower of the pair in a given cell) estimation errors 

of the three Chapman parameters. For each pair of values on a line of a cell, the left refers 
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to the 80th CONUS area percentile value, and the right to the 95th percentile value. The 

fourth row shows the a priori and the mean a posteriori IEI values that were computed 

for each test case.   

 
  

 base 
case  

ray-paths 
from 

above only 
 large 

initial ξ  
alternative 

stations 
placement 

 
increased 

meas.  
noise 

Medium 
number of 
available 
signals 

Scenario 
(Group D) 

 test case #   D0    D2     
 hmax 80th/95th 

percentile [km] 
a priori 

mean a post. 
14.1/20.2 
0.84/1.93    20.4/34.9 

1.53/3.62     

 hsf 80th/95th 
percentile [km] 

a priori 
mean a post. 

6.7/7.7 
0.29/0.62    16.5/18.3 

0.38/0.67     

 VTEC 80th/95th 
percentile [TECU] 

a priori 
mean a post. 

1.25/1.93 
0.05/0.13    1.75/3.02 

0.10/0.31     

 
ξ a priori 

mean a post. 
-0.2276 
-0.2691    0.0848 

0.0277     

             

High 
number of 
available 
signals 

Scenario 
(Group E) 

 test case #   E0  E1  E2  E3  E4 
 hmax 80th/95th 

percentile [km] 
a priori 

mean a post. 
14.1/20.2 
0.42/0.88  14.1/20.2 

0.28/0.63  20.4/35.0 
0.88/1.72  13.1/19.5 

0.33/1.96  14.1/20.2 
0.85/1.53 

 hsf 80th/95th 
percentile [km] 

a priori 
mean a post. 

6.7/7.7 
0.30/0.77  6.7/7.7 

0.17/0.68  16.5/18.3 
0.43/1.39  7.6/8.2 

0.35/1.78  6.7/7.7 
0.39/0.85 

 VTEC 80th/95th 
percentile [TECU] 

a priori 
mean a post. 

1.25/1.93 
0.04/0.09  1.25/1.93 

0.02/0.09  1.7/3.0 
0.11/0.33  1.56/2.22 

0.07/0.36  1.25/1.93 
0.06/0.13 

 
ξ a priori 

mean a post. 
-0.2276 
-0.2901  -0.2276 

-0.2997  0.0848 
0.0009  -0.2165 

-0.2764  -0.2276 
-0.2698 

Table 6: Class 2 test cases’ primary ionosphere model errors characteristics. 
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7.5 Test Cases Using Group Delay Only, Random Ionosphere Model (Class 3)  

The various test cases that have been presented in the previous sections provide data 

for well-defined scenarios which are characterized by constant true and a priori 

ionosphere models that have a constant difference between them. The analysis is 

expanded here and in the next section. The test cases used here are very similar to the test 

cases that have been presented so far, except they use a statistical approach to analyze the 

expected effects of random errors between the a priori and true ionosphere models.  

7.5.1 Test cases with a high number of available ray-paths (Group F) 

Test Case C0 which was presented in Section 7.3.3 exhibited the highest level of 

positioning accuracy of all test cases for which only group delay measurements are used 

and measurement noise of 1km is assumed (See Table 2). With an initial IEI parameter of 

-0.2276 that is close to the IEI’s distribution mean (-0.25), its a priori ionosphere model 

errors can be regarded as ‘average’ in the sense that the likelihood of encountering errors 

of such magnitude is high. A broader perspective on performance is obtained by 

expending the scope of this test case such that it’s a priori ionospheric model errors are 

taken as a random vector rather than a constant one. This setup, that constitutes Test Case 

F0, is characterized with the same combination of parameters as that of Test Case C0 

except for its ionospheric model. The considered a priori error model utilizes a 

covariance matrix of the form γM0. The scaling factor γ takes five different values: 1,0.5, 

0.1,0.001 and 1e-9. The first case for which γ=1 is a worst case scenario where the 

uncertainty of the ionosphere model is assumed as big as the ionospheric diversity matrix 
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M0. The last case can be regarded as the case of extremely good knowledge of the 

ionosphere. 

Figure 57 plots the horizontal and vertical 90% error ellipses for Test Case F0. These 

have been generated with the procedure described in Subsection 7.2.2. The two sets of 

five ellipses correspond with the different values of γ. For the case of γ=10-9, the resulting 

position errors are solely due to ranging errors. It is evident that vertical accuracy is only 

somewhat sensitive to γ.  

Position error results can now be compared to the results that have been obtained for 

the fixed-ionosphere-model base Test Case C0. The position error pattern in that case is 

characterized by a fixed-ionosphere-induced mean error that is relatively small compared 

to the effect of measurement-noise-induced errors. The resulting position error pattern 

shown in Fig. 43 is similar to that of Test Case F0, and in particular, to the case of γ=0.1 

in Fig. 57. 

 
Figure 57: Horizontal and vertical 90% error ellipses for Test Case F0 with different values of γ. 
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Figure 58 presents the ten 80th percentile value maps above CONUS for the 

ionospheric peak electron density height parameter hmax for Test Case F0. Note that the 

information which is presented in these plots (and in those to follow) is very different 

from the information which has been presented in figures such as Fig. 25. The left 

column shows 80th percentile maps for the a priori estimates of this parameter while the 

right column consists of plot for its a posteriori estimates. Each row is associated with a 

different value of γ, so that the top row is associated with γ =1 (i.e., high uncertainty for 

the ionosphere model) and the bottom row is associated with γ =10-9 which is the case of 

a very accurate a priori ionosphere model. Note the different color-code scales for the ten 

maps of Fig. 58. This approach has been favored over using the same color-code scales 

for neighboring panels in an effort to keep the map plots as informative as possible. The 

reader should notice that in all cases, for a given row, the right-hand plot of the a 

posteriori difference map is characterized by values that are significantly smaller than 

those of the left-hand plot that presents the a priori difference map. 

As expected, smaller 80th percentile values for the hmax parameter have been computed 

for smaller values of γ, as shown in Fig. 58 that presents all ten 80th percentile error maps 

for that parameter. For the first four cases of γ, a significant reduction in the 80th 

percentile values for the a posteriori estimates is evident. For γ=0.5, values in the range 

30-35 km have been reduced to about 2-4 km. For the case of γ=10-9, however, the initial 

80th percentile value are very small and so is the difference between a priori and a 

posteriori values.  
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Figure 58: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric peak electron density height parameter 
hmax for Test Case F0. Each row corresponds to a different value of γ. 

Similar trends have been observed for the ionospheric scale height parameter hsf, 

shown in Fig. 59. It is also notable that the smallest a posteriori 80th percentile values are 

obtained in the region that is close to the location of the receiver, especially in the cases 

of large γ’s.  
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Figure 59: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric scale height parameter hsf for Test Case 
F0. Each row corresponds to a different value of γ. 

However, the trend to have the lowest error nearest to the receiver is not as prominent 

with the results for the VTEC parameter, as it can be inferred from the maps shown in 

Fig. 60. Regardless, a significant reduction in 80th percentile values is evident for all 

cases of γ for this parameter as well. 
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Figure 60: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric vertical total electron content parameter 
VTEC for Test Case F0. Each row corresponds to a different value of γ. 
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7.6 Test Cases Using Combined Code and Carrier Phase Ranging, Random 

Ionosphere Model (Class 4) 

This section presents the performance for the batch-filtering algorithm that utilizes a 

combined group-delay/beat-carrier-phase configuration, in the presence of random 

ionosphere model errors. The studied test cases in this group are in fact the statistical-

analysis variants of Class 2’s test cases that have been presented in Section 7.4. 

Table 7 summarizes the primary characteristics for all five Class 4 test cases analyzed 

in this section: their standard deviation for both group delay and beat carrier phase 

measurement noise, number of ray-paths, direction of signals as they arrive at the 

receiver, and the placement pattern for the ground stations from which received signals 

were broadcast. As in the previous section, each test case is studied with five different 

values for the covariance matrix scaling factor γ. 

 
 

 base 
case   

ray-paths 
from 

above only 
 

alternative 
stations 

placement 
 increased 

meas. noise 
          

Medium 
number of 
available 
signals 

Scenario 
(Group G) 

 test case # G0       
 meas. noise σ [m] 1000/1       
 ray-paths 17x4       
 wave arrival 

direction both       

 stations placement grid       
          

High 
number of 
available 
signals 

Scenario 
(Group H) 

 test case # H0  H1  H3  H4 
 meas. noise σ [m] 1000/1  1000/1  1000/1  1000/10 
 ray-paths 32x4  32x4  32x4  32x4 
 wave arrival 

direction both  above only  both  both 

 stations placement grid  grid  perimeter  grid 

Table 7: Setup configuration for two groups and five test cases of Class 4. 
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7.6.1 Test cases with a high number of available ray-paths (Group H) 

The base Test Case H0 is the random-ionosphere equivalent of Test Case E0. It 

considerers the same array of ground stations, ray-paths and receiver location. Group 

delay and beat carrier phase measurement noise are similarly identical to those of Test 

Case E0. 

Figure 61 plots the horizontal and vertical 90% error ellipses for this test case. As 

before, the two sets of five ellipses correspond with the different values of γ, where for 

the case of γ=10-9, the resulting position errors are solely due to ranging errors. Vertical 

accuracy appears almost indifferent to γ. The horizontal 90% error ellipses are 

significantly smaller than their Test Case F0 equivalents. In particular, for γ=0.001 and 

smaller, the remarkably small errors indicate that if there were some sort of ionosphere 

monitoring network, then this system might be very accurate. 

Position error results can be compared to the results that have been obtained for the 

fixed-ionosphere-model base Test Case E0. The position error pattern in that case is 

characterized by a fixed-ionosphere-induced mean error that is relatively small compared 

to measurement-noise-induced errors. The resulting pattern is very similar to that of the 

present Test Case H0 for the case of γ=0.1 to γ=0.5 – see Fig. 45. 
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Figure 61: Horizontal and vertical 90% error ellipses for Test Case H0 with different values of γ. 

Eightieth percentile error maps for the three Chapman parameters are shown in the 

next three figures. For the peak electron density height hmax parameter map, shown in Fig. 

62, residual errors are about half of those computed for the group-delay-measurements-

only base test case, Test Case F0. Residual errors for the scale height parameter hsf 

parameter (Fig. 63) exhibit similar characteristics in terms of the relative reduction in 

magnitude when compared to their a priori values and in comparison with Test Case F0.  
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Figure 62: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric peak electron density height parameter 
hmax for Test Case H0. Each row corresponds to a different value of γ. 
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Figure 63: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric scale height parameter hsf for Test Case 
H0. Each row corresponds to a different value of γ. 

Consistent with these results, a significant reduction in the magnitude of the residual 

errors has been observed for the ionospheric vertical total electron content parameter 

VTEC (Fig. 64). In the worst case scenario of γ=1, residual errors, in terms of the 80th 

percentile, are bounded by a value of 0.15 TECU. 
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Figure 64: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric vertical total electron content parameter 
VTEC for Test Case H0. Each row corresponds to a different value of γ. 

Test Case H1 is a variant of Test Case H0 that differs in its ray-path geometry. Here, 

ray-paths are configured such that all signals approach the receiver from above, 

consistent with similar test cases that have been discussed before. Minor modifications to 

the signals’ frequencies were made in order to maintain the test case’s physical 

feasibility. All other parameters were kept identical to those of the base configuration. 
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Figure 65 plots the horizontal and vertical 90% error ellipses for Test Case H1 using 

Eq. (100) for the five different M values that result from the five different γ values, as 

discussed in Section 7.2.2. The dashed gray ellipses are the 90% percentile ellipses for 

Test Case H0 in the case of γ=1, shown here for reference. As with the fixed-ionosphere 

test cases of Class 2, horizontal positioning accuracy has improved, while significant 

degradation in vertical accuracy is apparent. Comparing the results for Test Case H1 with 

the equivalent fixed-ionosphere-model test case, Test Case E1, it can be inferred that 

errors for the latter test case have a position error distribution similar to that of the former 

with a value of γ between 0.1 and 0.5. 

 
Figure 65: Horizontal and vertical 90% error ellipses for Test Case H1 with different values of γ. 

The dashed ellipses in gray are the 90% error ellipses for Test Case H0 with γ=1. 

Eightieth percentile error maps for the three Chapman parameters are shown in the 

next three figures. Consistent with the improved positioning accuracy, for the peak 

electron density height hmax parameter map, shown in Fig. 66, residual errors are between  
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Figure 66: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric peak electron density height parameter 
hmax for Test Case H1. Each row corresponds to a different value of γ. 

1/2 and 3/4 of those computed for the base Test Case H0. Residual errors for the scale 

height parameter hsf parameter (Fig. 67) exhibit similar characteristics in terms of the 

relative reduction in magnitude when compared to their a priori values and in 

comparison with the residual errors that have been recorded for Test Case H0. As shown 

in Fig. 68, residual errors for the ionospheric vertical total electron content parameter 

VTEC are similarly smaller than with Test Case H0, by roughly 30%. In the worst case 
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scenario of γ=1, residual errors above CONUS, in terms of the 80th percentile, are 

bounded by a value of 0.1 TECU. 

 
Figure 67: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric scale height parameter hsf for Test Case 
H1. Each row corresponds to a different value of γ. 

As with fixed-ionosphere-model test cases, a variation of the base test case is used to 

assess performance sensitivity to ground stations placement. Test Case H3 is 

characterized with a ground stations setup similar to that of Test Case E3, i.e., with an 
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array of ground stations that are located along the US coastal and land borders. All other 

parameters are identical to those of Test Case H0 except for minor adjustments in signal 

frequencies that were necessary in order to maintain physical feasibility.  

 
Figure 68: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric vertical total electron content parameter 
VTEC for Test Case H1. Each row corresponds to a different value of γ. 

Figure 69 plots the horizontal and vertical 90% error ellipses for Test Case H3. For 

this test case, the horizontal 90% error ellipse’s semi-major axis is slightly longer than 
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that of the base Test Case H0, while the ellipse’s semi-minor axis is about twice as long 

as its Test Case H0 equivalent. Degradation in vertical accuracy by a factor of 6 has been 

observed as well. The horizontal 90% error ellipse that has been obtained for γ=0.5 

covers the equivalent 90% error ellipse that has been computed for the fixed-ionosphere-

model Test Case E3 (Fig. 51).     

 
Figure 69: Horizontal and vertical 90% error ellipses for Test Case H3 with different values of γ. 

The dashed ellipses in gray are the 90% error ellipses for Test Case H0 with γ=1. 

Eightieth percentile error maps for the three Chapman parameters are shown in the 

next three figures. Residual errors for the peak electron density height hmax parameter, 

shown in Fig. 70, appear comparable to those of Test Case H0 in the region that is above 

CONUS, with typical values below 1 km. Some degradation has been observed for the 

ionospheric scale height parameter hsf, for which data are presented in Fig. 71, as a 

posteriori errors for this test case are roughly 40% increased in comparison to the base 

test case. Eightieth percentile error values for the ionospheric vertical total electron 
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content parameter VTEC, whose maps are shown in Fig. 72, are about 20% larger than 

with Test Case H0. 

 

 
Figure 70: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric peak electron density height parameter 
hmax for Test Case H3. Each row corresponds to a different value of γ. 
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Figure 71: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric scale height parameter hsf for Test Case 
H3. Each row corresponds to a different value of γ. 
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Figure 72: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric vertical total electron content parameter 
VTEC for Test Case H3. Each row corresponds to a different value of γ. 

The last test case studied in this group is Test Case H4, whose 1-sigma noise error was 

increased to 10 meters for the carrier phase measurements and kept unchanged at 1000 

meters for the range-equivalent group delay pseudoranges. The significant degradation in 

positioning accuracy in comparison to the base Test Case H0 is well conveyed in Fig. 73 

which shows the horizontal 90% error ellipses for both cases. 
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Figure 73: Horizontal and vertical 90% error ellipses for Test Case H4 with different values of γ. 
The dashed ellipses in gray are the 90% error ellipses for Test Case H0 with γ=1. 
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7.6.2 Test cases with a medium number of available ray-paths (Group G) 

This subsection presents the performance for a scenario with a reduced number of 

available measurements. Test cases of Group G consider a set of ground stations that is a 

subset of the set of ground stations used with the high-availability-scenario test cases of 

Group H. Each ground station is assumed to transmit between 1 and 3 signals with 

varying frequencies, so that the total number of ray-paths received at the receiver is 17 

and the total number of measurements processed, including both group delay and beat 

carrier phase measurements, is 136.   

Test Case G0 is the base test case for this scenario with a medium number of available 

ray-paths. The HF signals for this test case have frequencies in the range 3.0-6.0 MHz. 

The number of hops for each ray-path is 1-4, with a mixture of signals arriving from 

above and from below at the UE.  

The impact of utilizing significantly less measurements than in Test Case H0 is 

immediately evident (Fig. 74), as the 90% error ellipse for Test Case G0 is larger by a 

factor of about 4 in both length and width for the case of γ=1. Comparing the results 

plotted in Fig. 74 with the results plotted in Fig. 54, it can be inferred that the horizontal 

90% error ellipse computed for γ=0.5 will contain the horizontal 90% error ellipse of Test 

Case D0. However, note that the former ellipse is significantly larger, and the latter has a 

mean that is significantly further from zero.   
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Figure 74: Horizontal and vertical 90% error ellipses for Test Case G0 with different values of γ. 

The dashed ellipses in gray are the 90% error ellipses for Test Case H0 with γ=1. 

Eightieth percentile error maps for the three Chapman parameters are shown in the 

next three figures. Consistent with the inferior positioning accuracy observed, the peak 

electron density height hmax parameter map, shown in Fig. 75, residual errors are about 

25% bigger than those computed for the high measurement availability Test Case H0. 

Residual errors for the scale height parameter hsf parameter (Fig. 76) similarly exhibit 

degraded performance in the form of 20% larger residual errors.  
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Figure 75: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric peak electron density height parameter 
hmax for Test Case  G0. Each row corresponds to a different value of γ. 
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Figure 76: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric scale height parameter hsf for Test Case 
G0. Each row corresponds to a different value of γ. 

For residual VTEC errors, shown in Fig. 77, some degradation from the results 

obtained for Test Cade H0 is evident. However, the relative errors reduction from the a 

priori errors is significant.  
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Figure 77: Eightieth percentile value maps for the a priori (left column) and a posteriori (right 

column) estimates’ errors for the ionospheric vertical total electron content parameter 
VTEC for Test Case G0. Each row corresponds to a different value of γ. 
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SYSTEM PERFORMANCE ANALYSIS, DISCUSSION, 

AND FUTURE DIRECTIONS 

Results for the twenty one test cases presented in this study suggest that the problem is 

sufficiently observable to make this system a candidate for navigation in GNSS-denied 

situations. That is, a position solution can be obtained to a reasonable level of accuracy 

despite uncertainty about the ionosphere. At the same time, the filtered estimates of the 

ionosphere electron density profile parameters tend to have significantly reduced errors in 

comparison to their a priori estimates. Therefore, this method may also be useful for 

remote-sensing-based ionosphere characterization in cases where the receiver location is 

known a priori.  

This chapter discusses the findings for the performance analysis of Chapter 7. The 

discussion is structured such that conclusions are drawn at the level of individual test 

cases, groups of test cases, or even classes. A significant part of this discussion will be 

dedicated to the manner in which the various configuration parameters influence system 

performance. This is done through highlighting apparent behavioral trends that have been 

observed with the various test case executions.  
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8.1 Positioning Characteristics 

Positioning accuracy for Group E’s base test case, Test Case E0, is navigation grade, 

meaning that with a sufficient number of signals received and dual group-delay/beat-

carrier-phase measurement processing, the achieved accuracy is adequate for the purpose 

of navigation and guidance with most applications.  

As shown earlier, this test case has a fixed-ionosphere error model with an associated 

IEI value of -0.2276. This value of the Ionosphere Error Index places it at the 65th 

percentile, and therefore makes it reasonable to regard Test Case E0 as a ‘typical’ 

scenario under the assumption that the true uncertainty for the ionosphere can be reliably 

modeled by M0. The fixed ionosphere model error induces a mean error of 5 meters. With 

a 25 meters horizontal 90% errors ellipse semi-major axis, and a vertical error standard 

deviation of less than one meter, the obtained position solution can be used to determine 

the location of a vehicle as an independent source or as input to an integrated Inertial 

Navigation System (INS). The same conclusion holds for Test Case E1. Performance for 

other test cases of Group E may be adequate for navigation, depending on the application. 

When a random error model for the ionosphere was considered in Test Case H0, with 

the same ground transmitters/ray-paths setup of Test Case E0, a similar level of accuracy 

has been observed for γ values of near 0.1. Based on the plots of Fig. 61 of Test Case H0, 

it can be concluded that navigation grade positioning can be achieved with γ values that 

are smaller than 0.2. In other words, based on this analysis, navigation grade accuracy 

can be achieved if the true uncertainty for the ionosphere error model can be reliably 

modeled as γM0 where γ<0.2.  
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With significantly fewer ray-paths used, Test Case G0’s positioning accuracy has been 

proven inferior to that of Test Case H0. In this case, navigation grade accuracy with a 

90% horizontal error ellipse semi-major axis of less than 25 meters can only be achieved 

when the ionospheric uncertainty can be reliably modeled with γ values that are less than 

0.01. Vertical positioning, on the other hand, is very accurate for all values of γ. This may 

be significant for specific applications that are required to maintain position within a 

corridor that is limited in its altitude range.   

An important result is the level of accuracy that can be obtained with the setup of Test 

Case H1, for which all signals approach the receiver from above. It has been observed 

that navigation grade accuracy can be achieved for very large values of γ. In fact, in spite 

of the relative degradation in vertical accuracy, positioning accuracy for this test case is 

navigation grade even with an extreme value of γ=1. 

Class 3’s Test Case F0 for which only group delay measurements are processed, 

exhibits characteristics that are unacceptable for navigation. Consistently, none of the 

fixed-ionosphere test cases of Classes 1 demonstrated navigation grade accuracy when 

realistic measurement noise standard deviation was considered. The test case in this class 

which exhibits greatest accuracy is Test Case C0 that is characterized by an ionosphere-

induces mean horizontal error of 127 meters and a 733 meters semi-major axis. It should 

be concluded therefore that sufficient accuracy for navigation purpose cannot be achieved 

when group delay measurements are used exclusively.     
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8.1.1 Sensitivity to the available number of measurements 

As noted before, positioning performance for the setup of Test Case G0, that has fewer 

ray-paths than Test Case H0, is inferior to the performance of Test Case H0. Both semi-

major and semi-minor axes of the horizontal 90% error ellipse for this test case are about 

three times as big as those of Test Case H0. This was not the case for extremely small 

values of γ, however. Comparing Fig. 61 for Test Case H0 and Fig. 74 for Test Case G0, 

it can be concluded that positioning accuracy for the two test cases is comparable for a 

small value for γ of about 0.001. Put differently, as the ionosphere model errors get 

smaller, performance becomes less dependent on the number of received ray-paths. 

Consistent with the above findings, the impact of having different numbers of 

available measurements on positioning accuracy for fixed-ionosphere test cases is clear, 

as it can be concluded from Tables 2 and 5. Scenarios with low and medium numbers of 

available signals, as for the test cases of Groups A, B and D, exhibit notably inferior 

accuracy, evident in the dimensions of their horizontal 90% error ellipses, and, to some 

extent, in their vertical accuracy. With group delay processing only (Class 1 test cases), 

the base test case for the medium number of available signals, Test Case B0, has a 90% 

error ellipse that is 2.5 times bigger in length and twice as big in width as that of the base 

test case for the scenario with a high number of available signals, Test Case C0. Similarly 

for Class 2’s test cases, the high number of measurements Test Case E0 yielded a 90% 

horizontal error ellipse that is 1/3 the length and 1/3 the width of the ellipse that was 

computed for the case with a medium number of available measurements, base Test Case 

D0. 
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Having a limited number of available measurements, therefore, sets a clear bound on 

positioning accuracy. It is clear that navigation grade accuracy cannot be achieved with 

only 17 ray-paths available that are sampled at four different frequencies, as with Group 

D’s and G’s test cases, unless the system is given a very good model for the ionosphere. 

8.1.2 Sensitivity to signals’ vertical direction of arrival 

The signals’ directional geometry as they arrive at the receiver has also been proven to 

impact accuracy. With fixed-ionosphere model test cases, when signals arrive at the 

receiver from above the horizon only, as in Test Cases B1 and E1, a significant increase 

in the vertical direction error by a factor of more than 5 was observed. However, with the 

dual group delay/carrier phase measurements processing of Class 2 test cases, even the 

somewhat degraded accuracy in the vertical direction is still adequate for navigation. 

This observation is supported by the statistical analyses that have been performed for 

the random-ionosphere model Test Case H0 and Test Case H1. From the plot in Fig. 65 it 

is clear that while horizontal accuracy is improved by a factor of 2 for both axes of the 

horizontal 90% error ellipse when all signals arrived from above, vertical accuracy 

degrades by a factor of about 8. Even with the relatively degraded accuracy in the vertical 

direction, errors are expected to provide navigation grade accuracy.    

This result may be relevant to antennas with limited Field Of View (FOV). It is also 

relevant to applications where the vehicle’s fuselage is expected to block a significant 

portion of the antenna’s FOV.  
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8.1.3 Sensitivity to a priori ionosphere model error 

While the statistical analysis of the test cases of Groups 3 and 4 cannot provide 

information for specific a priori ionospheric setups, the impact of the ionosphere model 

characteristics of specific setups can be studied through examination of fixed-ionosphere 

model test cases. 

Equation (99) predicts that large initial errors in the a priori Chapman model 

parameters will result in a significant mean error for position and clock offset. Results for 

test cases B2 and E2 confirm that with a poor a priori ionosphere model, the positioning 

mean error (or positioning ionosphere-induced bias) is indeed further from zero than with 

the base test cases that have smaller initial ξ values.  

With the combined group-delay and beat-carrier-phase measurement processing of 

Class 2’s test cases, where position errors are typically close to their means (i.e., where 

error ellipses are relatively small), the extent of degradation in the accuracy of the a 

priori-ionosphere-error-induced mean position error will mostly determine whether the 

system is capable of providing the required level of accuracy for navigation. For Test 

Case E2 that is characterized by a very significant ionosphere models discrepancy, the 

mean horizontal position error of 15 meters is still acceptable for navigation with some 

applications. This is not true, however, with Test Case D2 for which the enlarged mean 

error is most likely too large for navigation. 

For the random-ionosphere-model test cases of Classes 3 and 4, it is assumed that the 

actual ionosphere parameters’ error covariance equals the above M matrix that is 

considered with the batch filtering algorithm. That is to say, actual errors in the 
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ionosphere model are distributed in a way that is consistent with their assumed 

distribution. With this in mind, the results shown in Fig. 57 for Test Case F0 demonstrate 

how position accuracy is closely related to the magnitude of the a priori errors in the 

ionosphere model. With a very good a priori model of the ionosphere, i.e., the case of 

γ=10-9, position errors are primarily due to measurement noise. It is evident that as γ 

increases, the horizontal position error increases, until it reaches a maximum where γ=1, 

for which the dimensions of the horizontal error ellipse are roughly doubled. 

Interestingly, the impact of increasing γ on errors in the local vertical direction is very 

limited for this test case.  

Similar observations have been made for other test cases of Classes 3 and 4. For Class 

4’s high-ray-paths-availability/combined-code-and-carrier-phase-ranging base test case, 

Test Case H0, however, the impact of increasing γ has proven limited. Even in the worst 

case scenario of γ=1, the horizontal 90% error ellipse has a fairly small semi-major axis 

of 40 meters (Fig. 61). This is an important observation that suggests that the anticipated 

negative impact of very poor a priori ionosphere models may be alleviated when using 

the combined measurement types processing and given a sufficiently large number of 

available ray-paths.  

With Test Case H1, where signals arrive at the receiver from above, increasing γ 

results in a relatively significant increase in vertical position error (Fig. 65). For the case 

of  γ=1 vertical errors are bounded by 15 meters. Although larger than those of Test Case 

H0, these vertical errors are still adequate for navigation. Similar results have been 
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observed for Test Case H3, which is characterized by an alternative ground stations 

placement. 

 Figure 73, which shows position errors for Test Case H4, demonstrates how 

increasing γ might not only increase the size of the 90% error ellipses, but also change 

their shape. For this test case, positioning becomes relatively more prone to errors in the 

south-north direction as γ increases.   

An important result concerns the combined group delay/beat carrier phase processing 

Test Case G0 that is characterized by limited ray-paths availability. As shown in Fig. 74, 

vertical accuracy remains very good even for the case of γ=1, for which vertical position 

errors are less than 7 meters. This observed property of the position error distribution 

suggests that the proposed system may be suitable for certain types of application.  

8.1.4 Sensitivity to ground stations placement 

Test Case B3 for Class 1, Test Case E3 for Class 2, and Test Case H3 for group 4 are 

considered in this subsection. These are the alterative-ground-station-placement variants 

from the base Test Cases of Groups B, E and H, in which ground stations are located 

along the land and sea borders of the United States. 

For the fixed-ionosphere model test cases, i.e., Test Cases B3 and E3, it has been 

observed that ground station placement impacts positioning accuracy. However, results 

are somewhat inconclusive.  The horizontal error ellipse for Test Case B3 is smaller than 

that of the base Test Case B0, yet Test Case E3’s ellipse is about five times bigger than 

that of Group E’s base test case, case E0. 
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Comparing the results obtained for the random-ionosphere Test Case H3 with those of 

the base Test Case H0, it is evident that with the former, accuracy has degraded 

significantly both in the horizontal plane and in the vertical direction.  

8.1.5 Sensitivity to measurement noise covariance matrix and actual noise 

magnitude 

The measurement noise covariance matrix, R, that is used with the batch filter, affects 

both the a-priori-ionosphere-error-induced mean error and the way errors are distributed 

about their mean value. This result could be anticipated by inspecting both terms of the 

right hand side of Eq. (99). While R enters the two right-hand-side terms through the S1
-1 

term (and additionally explicitly for the left term), the actual noise term, νz, affects only 

the left term of the equation, meaning that it only affects how errors are distributed about 

the mean error.  

Looking at Figs. 28 and 43 that describe position errors for the fixed-ionosphere base 

Test Cases B0 and C0, and comparing them with Figs. 40 and 44 that plot errors for these 

test cases’ reduced-measurement-noise variants, one can conclude that significantly 

different mean errors have been observed when scaled-down R matrices were considered 

by the batch-filtering algorithm. This result is consistent with the observations of the 

previous paragraph.  

The manner in which measurement error standard deviation affects positioning 

accuracy can be studied through a comparative investigation of the 90% error ellipses 

that have been obtained for test cases B0 and B4, the 90% error ellipses that have been 

obtained for test cases C0 and C4, and the 90% error ellipses that have been obtained for 
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test cases H0 and H4. Each of these pairs of test cases consists of a base test case and an 

altered-measurement-noise variant. Test Case B4’s horizontal 90% error ellipse has semi-

major and semi-minor axes that are about 16 and 21 times smaller than those of Test Case 

B0’s semi-major and semi-minor axes, respectively. Similarly, Test Case C4’s horizontal 

90% error ellipse has semi-major and semi-minor axes that are roughly 25 and 48 times 

smaller than those of Test Case C0’s semi-major and semi-minor axis, respectively. 

Accuracy degradation for Test Case H4 is somewhat moderate in terms of changes in the 

dimensions of the 90% error ellipses in comparison to Test Case H0. For an increase by a 

factor of 10 for the presumed beat carrier phase measurement noise, an increase by a 

factor of 3 has been observed for the dimensions of the 90% error ellipse’s semi-major 

and semi-minor axis, which is primarily oriented in the north-south direction -- compare 

Figs. 61 and 73.  The minor axis of the north-south/east-west ellipse and the vertical error 

extent, however, show larger increase with the increased beat carrier phase measurement 

error of Test Case H4. 

These comparisons lead to the somewhat straightforward conclusion that both the 

magnitude of the mean error (to some extent) and the error distribution about that mean 

(in terms of the 90% error ellipses) are affected by the magnitude of the considered 

measurement noise.  
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8.1.6 Sensitivity to additional parameters 

The beneficial impact of having a wide range of signal frequencies on positioning 

accuracy was also evident when variations of the test cases shown here were tested with a 

limited range of signal frequencies. These characteristics of the method have been 

observed in many sub-cases that have not been presented in this dissertation for the sake 

of brevity.  
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8.2 A Posteriori Ionosphere Model Accuracy 

The algorithm has proven successful in reducing errors for the a priori ionosphere 

model parameters in all studied test cases. As one might expect, smaller errors in terms of 

the latitude/longitude dependent 80th percentile have been observed near the areas where 

ray-paths travel through the ionosphere. These regions where electron density is probed 

can be identified in the different a priori / a posteriori Chapman-parameters-estimates 

plots by the green points that designate ground bounce off points, as in Fig. 25 and all 

similar figures that plot ionosphere parameter errors using a color contour map.   

8.2.1 Scenarios with a High Number of Available Signals 

For the Class 1 scenario’s base test case with a high number of signals, Test Case C0, 

the 80th percentile CONUS area mean a posteriori error of the parameter hmax was 1.3 km 

and the mean a posteriori error for the parameter hsf was 0.87 km. At the same time, the 

mean a posteriori error for the parameter VTEC was 0.11 TECU. Smaller residual errors 

were obtained for the Class 2 scenario’s base test case with a high number of signals, 

Test Case E0. Its CONUS area 80th percentile mean a posteriori error for the parameter 

hmax was 0.42 km and the mean a posteriori error for the parameter hsf was 0.30 km. The 

mean a posteriori error for the parameter VTEC was as small as 0.04 TECU. Clearly, 

these values, roughly three times smaller than their Class 1 equivalents, benefit from the 

accuracy of the carrier phase measurements. 

Additionally for Class 2’s test cases, worse results in terms of Chapman parameters 

residual errors were obtained for the large a priori ξ test case – Test Case E2. These 

errors, typically on the order of 0.1 km for hmax and hsf and 0.1 TECU for VTEC, are still 
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at a level that makes the output of the dual measurements process a useful tool in 

ionosphere characterization.   

In contrast, the smallest estimation errors were obtained for Test Case E1, where 

signals arrive at the receiver from above only. In fact, errors for this case are about 50% 

smaller than their Test Case E0’s equivalents. The mean 80th CONUS area percentile a 

posteriori error for the VTEC parameter was 0.02 TECU. 

For all fixed-ionosphere model test cases in this category, the final value for the ξ 

parameter that was computed at the end of the optimization process was smaller than its 

initial value. It should be noted that since the ξ parameter is defined in terms of the base 

10 logarithm of normalized errors in p, and since the elements of p are defined as natural 

logarithms of the Chapman parameters and their partial derivatives, changes in ξ may not 

appear as dramatic as the observed reduction in Chapman parameters errors.  

With random-ionosphere model test cases, performance is evaluated through 

determination of an upper bound for the a posteriori error’s 80th percentile in the region 

that is above the CONUS. Test case H0 a priori error’s 80th percentile for the ionosphere 

peak electron density height parameter hmax take values between 45 and 50 TECU when 

γ=1. A dramatic reduction in errors yields an upper bound of about 1 TECU for the 

corresponding a posteriori errors map. Consistent results are apparent for the cases of 

γ=0.5, γ=0.1, γ=0.001 and γ=10-9. A significant error reduction has been observed for 

both the ionospheric scale height parameter hsf for which an a priori upper bound of 

about 18 km has been reduced to 0.5 km. Similarly for the ionospheric vertical total 
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electron density content parameter VTEC,  an upper bound of 13 TECU for the a priori 

estimates has been reduced to less than 0.2 TECU for the a posteriori estimates.     

The three Chapman parameters errors 80th percentile maps for Test Case H1 exhibit 

results that are similar to those of the base test case. For the hsf parameter and for the 

VTEC parameter, residual 80th percentile values which are roughly 15% lower than those 

of Test Case H0 were recorded. This result is qualitatively consistent with the result 

shown above for the equivalent fixed-ionosphere model test cases with signals arrive 

from above the horizon only. 

The alternative ground stations placement along the land and sea borders of the 

CONUS has been shown to provide slightly inferior performance for Class 4’s Test Case 

H3 in terms of applying corrections to the ionospheric model. With the hmax parameter 

80th percentile maps, the a posteriori estimation errors’ upper bounds for the different 

values of γ are roughly 30%-50% larger than their Test Case H0 equivalents. This is also 

the case for the hsf parameter, and to a lesser extent, for the VTEC parameter. It should be 

noted, however, that even with the relative degradation in performance that has been 

observed, the magnitude of reduction in Chapman parameter errors from their 

corresponding a priori values is still very significant. For the VTEC parameter, for 

instance, an upper bound for the a priori 80th percentile error map of 16 TECU has been 

reduced to about 0.2 TECU. It can be concluded, therefore, that the wider-spread array of 

ground stations of Test Case H3 seemed to have performed only slightly worse than that 

of the base Test Case H0.     
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8.2.2 Scenarios with Medium and Low Numbers of Available Signals 

Analyzing Class 2 test cases, it can be concluded that reducing the number of available 

measurements affected mostly the observability of the Chapman hmax parameter, for 

which residual a posteriori errors are about twice as big for test cases D0 and D2 of 

Group D in comparison to their Group E equivalents – Test Cases E0 and E2. Still, a 

posteriori residual errors for this parameter are less than one tenth of their a priori values. 

A posteriori errors for the hsf and VTEC parameters remained fairly small (Table 6), with 

a mean 80th CONUS area percentile value of 0.05 TECU for the base Test Case D0 and a 

mean 80th percentile value of 0.10 TECU for the high-IEI Test Case D2. This suggests 

that for the purpose of ionosphere characterization, a relatively small number of received 

signals may be sufficient.   

Similarly for group-delay-measurements-only test cases, comparing the medium 

number of available measurements Test Cases B0 and B4 with the equivalent high 

number of available measurements Test Cases C0 and C4, some degradation in 

performance has been noted for the test cases of Group B. In particular, residual errors 

for the hmax parameter increased by a whole order of magnitude for Test Case B4. With 

even fewer ray-paths considered as with Test case A0, however, no further degradation in 

performance has been recorded. 

Remarkably for Class 1 test cases, medium and low numbers of available 

measurements base test cases B0 and A0 exhibit only slightly worse results than the 

equivalent Class 2 base test cases. For instance, for Test Case A0 with 21 ray-paths, the 

mean 80th CONUS area percentile residual a posteriori error was 0.14 TECU. However, 
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performance appears considerably more sensitive to initial IEI. Therefore, the a 

posteriori errors for Test Case B2 are roughly five times bigger than for Test Case B0.  

Two random-ionosphere model test cases were considered that differ in their number 

of available measurements. Inferior accuracy for all three Chapman parameters is evident 

for the medium number of available measurements test case, G0, in comparison with the 

high number of available measurements test case, H0. With Test Case H0, for the hmax 

parameter, the 80th percentile errors are bounded by 1.5 km and 0.8 km for γ=1 and γ=0.5, 

respectively, whereas with Test Case G0, the bounds are 2 km 1.5 km for the same values 

of γ. For the hsf parameter and the same values of γ, bound values increased from 0.5 km 

and 0.4 km to 0.8 km and 0.9 km, respectively. For the VTEC parameter and the same 

values of γ, bound values increased from 0.25 TECU and 0.15 TECU to 0.35 TECU and 

0.12 TECU, respectively. 
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8.3 Batch-Filtering Algorithm Functionality 

For the vast majority of cases, solutions for the minimization problem converged to 

what appears to be their global minimum. Thus, the presence of nonlinearities in the 

model does not pose a significant challenge to solving the underlying batch estimation 

problem. It appears that the occurrence of convergence to a solution that is different from 

the optimal solution was never encountered for any of the many thousands of simulation 

cases carried out throughout this study. This is evident in the fact that the batch-filtering 

algorithm has never driven the position solution to a solution that is different from the 

solutions that have been computed using the linear approximation of Eq. (97).    

Some test cases failed to converge, as in Subsection 6.3.1. A further investigation of 

such cases showed that, in almost all of them, the cause was one of the two potential 

weaknesses that originate from bounce-point equation and ray-hop solution ambiguities, 

discussed in Subsection 6.3.2. For only a handful of simulation executions, the author 

was unable to determine the cause for what appears to be a failure in driving the solution 

to its optimal set of values. 

The benefit of allowing selective use of available measurement is also evident. Many 

batch filter executions started by considering only a small subset of the available 

measurements in the early Gauss Newton iterations, but ended up using all measurements 

for later iterations as the algorithm drove the solution closer to its optimal set of values. 

This sort of behavior, typical for test cases with significant errors in their a priori 

ionospheric model, usually resulted in longer batch filter execution run times.    
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A practical result concerns the importance of processing both group delay and beat 

carrier phase measurements. While the contribution of the latter to positioning accuracy 

has been widely discussed in this chapter, it has been observed that the use of 

pseudorange measurements is crucial for the robustness of the iterative process when 

estimated position and ionosphere parameters are still far from their optimal values. In 

fact, in most cases the solution is doomed to diverge unless pseudorange measurements 

are incorporated and processed in the early steps of the Gauss-Newton algorithm.   

8.4 Future Research 

An extension is planned for this study that supplements truth-model simulation tests 

with tests involving actual data from a network of HF beacons and receivers.  Such a 

network is being deployed in South America [38]. It is reasonable to assume that the 

problem that will be addressed with the true data experiment will somewhat differ from 

the fundamental problem that was studied in this work due to limited availability of 

received signals. This may include the case where receiver location and receiver clock 

error are known a priori, so that the problem is essentially defined as an ionosphere 

estimation problem.  

A second extension should consider enhanced ionosphere modeling. As already 

mentioned, the current ionosphere parameterization does not allow modeling of distinct D 

and E layers. A greater physical fidelity will be achievable by incorporating increased 

complexity in the ionospheric model parameterization. Therefore, one useful extension 

for this work would be to employ a more realistic ionosphere model that would enable 
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representation of the D and E layers. On the disadvantage side, an increased complexity 

of the 3-dimensional Ne(r) distribution will increase the number of estimated ionosphere 

parameters that will be needed in order to characterize Ne(r). This increased number of 

parameters will complicate the filter task of simultaneously estimating receiver position, 

receiver clock offset, and ionosphere parameter corrections.   

A useful variant of this work would be to consider the case where the estimator lacks a 

priori knowledge of the number of bounces for any given signal. This is the case where m 

is unknown and must be estimated for each received signal while estimating the receiver 

position and clock error along with the ionosphere corrections.  Such an estimator would 

solve a mixed real/integer batch filtering problem. The navigation community already has 

experience with such problems because they are used for precise Carrier-Phase 

Differential GPS (CDGPS) [39]. 

Another possible extension would be to augment the estimation problem with 

additional types of fused data.  For example, ionogram data or GPS slant TEC data from 

a network of receivers might help to improve the estimates of the ionosphere model 

corrections. A different approach might be to use data obtained from a space weather data 

assimilation system such as GAIM, as described in Ref. [40]. Any improvements to the 

ability to estimate the ionosphere or to characterize it a priori should also improve the 

receiver position and clock offset estimates. Of course, such a system would need a 

method of communicating the independent ionosphere data to the user receiver, which 

would complicate its infrastructure. 
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Finally, a study that considers the case of a known receiver location is expected to be 

beneficial to the field of ionosphere remote sensing. It has been observed that elimination 

of the uncertainty that is associated with the receiver location results in enhanced 

accuracy for the unknown ionosphere parameters.   
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SUMMARY AND CONCLUSION 

A batch filter algorithm has been developed that utilizes group-delay/pseudorange and 

beat carrier phase measurements from HF signals propagating in the ionosphere to solve 

a combined positioning/ionosphere-corrections problem. These HF signals are 

transmitted from stationary ground-based beacons at known locations. They propagate to 

an over-the-horizon user receiver at an unknown location via multiple bounces off of the 

ionosphere and the Earth.  

The navigation filter estimates user position, user clock error, beat carrier phase 

measurement bias and corrections to parameters that characterize the ionosphere’s three-

dimensional electron density profile. The latter parameters consist of information that is 

required to generate latitude/longitude dependent maps for three Chapman model 

parameters: height of the peak electron density, altitude scale factor, and vertical total 

electron content. As previously mentioned, a more realistic model would likely be needed 

for working with real data.  The filter starts with a priori estimates of its parameter maps 

that are based on fits to the IRI model. It estimates corrections to these parameter maps as 

part of its navigation solution.  

The nonlinear batch least-squares estimation problem is solved using a modified 

Gauss-Newton method. This method has a high rate of achieving successful convergence 
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to the optimal value of the underlying cost function, despite the challenge of physical 

infeasibility of some signal ray paths at intermediate guesses of the problem solution. 

System performance has been investigated using a truth-model simulation. The 

simulation and the corresponding batch-filter use an advanced model of HF signals that 

propagate in the ionosphere. Twenty one simulated test cases that consider various 

combinations of parameters’ characteristics have been considered. Limited Monte-Carlo 

simulations have been performed to investigate the performance of the navigation filter.  

Theoretical covariance analysis has also been performed to investigate its performance.  

The Monte-Carlo simulation results and the covariance analysis results indicate 

feasibility for the combined HF navigation/ionosphere-correction concept. It has been 

shown that with sufficient availability of received signals, navigation grade accuracy for 

positioning, where the 90% horizontal error ellipse’s semi-major and semi-minor axes are 

both less than 20 meters and the vertical 90% error bound is less than 5 meters, may be 

achievable. A posteriori ionosphere models are consistently improved for these cases in 

comparison to their a priori counterparts. Computed a posteriori error 80th percentiles 

upper bounds for a representative random-ionosphere model test case were less than 0.75 

km for the hmax parameter, 0.35 km for the hsf parameter, and 0.1 TECU for the VTEC 

parameter, whereas the corresponding a priori upper bounds were 30 km for hmax, 10 km 

for hsf, and 5 TECU for VTEC.  

The important contribution of beat carrier phase measurements to position solution 

accuracy is clearly evident. Beat carrier phase is useable by the navigation filter if a given 

signal path from a transmitter to the receiver carries signals with a continuously varying 
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succession of different frequencies so that the common-mode carrier phase bias can be 

estimated and effectively removed from the problem. For a representative test case that 

relies on group delay measurements only, the computed 90% horizontal error ellipse’s 

semi-major and semi-minor axes were 100 meters and 70 meters, respectively. When beat 

carrier phase measurements were added to the batch-filter, the 90% horizontal error 

ellipse’s semi-major and semi-minor axes decreased to 35 meters and 20 meters, 

respectively.   

It has been demonstrated how performance is affected by various characteristics of the 

estimation problem. Positioning accuracy is influenced by the level of uncertainty of the 

a priori ionosphere model, by the number of available measurements, and receiver 

ranging error standard deviation, both group-delay errors and beat carrier phase errors. A 

decrease in the a priori ionosphere modeling error tends to decrease the horizontal and 

vertical position error. A decreased number of available measurements, however, will 

have the opposite effect on positioning accuracy, although this trend becomes less 

distinct as the a priori ionosphere modeling errors become smaller. The magnitude of the 

ranging error standard deviation has been shown to directly impact the size of the 

horizontal and vertical position 90% error ellipses, with a relatively moderate impact for 

the random-ionosphere-model test cases compared to the fixed-ionosphere-model test 

case. With test cases where signals approach the receiver from above, an enhanced 

horizontal accuracy has been observed while vertical position accuracy has degraded. 

Inconclusive results have been obtained for an attempt to assess the impact of ground 

stations placement on positioning performance.  
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APPENDIX A  

AUXILIARY CALCULATIONS FOR PHYSICAL AND 

MATHEMATHICAL MODELS 

A.1 The ο Function 

An auxiliary three-term-output vector function ο performs a one-dimensional 

interpolation of the bivariate function f(x,w) at an arbitrary point (x0,w0) given boundary 

conditions at two points – (x1,w0)  and (x2,w0). The required input arguments for this 

function includes a set of partial derivatives of f(x,w) with respect x evaluated at (x1,w0)  

and at (x2,w0). In the context of this study, y is used with bi-quintic splines computations. 

It takes the general form: 
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   (125) 

The three-term output of y is computed as follows. Define: 

 2 1x x x∆ = −        (126) 

and compute 
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Then: 
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APPENDIX B  

TECHNICAL NOTES FOR THE SIMPLIFIED RAY-

PATH MODEL FILTER 

B.1 Computing Sensitivity of Bounce-Points Equations to Bounce-Points 

Location 

With the simplified ray-path model, special care must be taken with the Jacobian 

∂g/∂η of the relationship between the bounce-point equation outputs that are set equal to 

zero and bounce-points’ locations.  

Since some terms of gs̃imp contain terms defined in Cartesian ECEF coordinates, 

geographic LLA coordinates, and in terms of the partial derivatives of the geographic 

LLA coordinates with respect to the Cartesian ECEF coordinates, it is necessary to deal 

carefully with some entries of the Jacobian matrix. Additional complexity arises from the 

manner in which the g̃simp functions depend on the unknown pj parameters, which are 

used to compute the three Chapman profile parameters via a bi-quintic latitude/longitude 

spline.  

Let e={xk,yk,zk} be the set of ECEF coordinates representing the kth bounce-point, and 

let l={ϕk,λk,altk} be the equivalent set of this point’s LLA coordinates. Then, for a Type-

A equation that applies at an ionospheric bounce point k, the desired sensitivity 1x3 

vector is given by 
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 , ,A k A kg g
e l

∂ ∂
= Λ

∂ ∂
      (129) 

where the right most Jacobian, Λ=∂l/∂e, is that of the standard Cartesian-to-lat/long/alt 

transformation for WGS-84 coordinates. 

For ionosphere bounce-points’ Type-B equations, recall that these equations were 

derived using the normal vector that applies at an ionosphere reflection point. The vector 

is defined as the negative gradient of the electron density field with respect to Cartesian 

ECEF coordinates. The electron density model is modeled using latitude/longitude 

dependence.  Consequently, these equations are defined in terms of both geographic LLA 

coordinates and their partial derivatives with respect to Cartesian ECEF coordinates. 

Therefore, when one takes odd numbered Type-B equations’ derivatives with respect to a 

set of Cartesian coordinates, three groups of terms, corresponding with three types of 

dependencies, should be evaluated. The total derivative of the kth Type-B equation with 

respect to the jth term of e takes the form 
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    (130) 

Computation of term (i) is immediate. The single-index summation (ii) includes the 

partial derivatives of the equation with respect to geographic LLA coordinates and terms 
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of Λ. The double-indices summation (iii) considers the partial derivatives of the equations 

with respect Λ - term (iiia). These terms are multiplied by terms of the ECIF to LLA 

coordinates-conversion Hessian (iiib). This unconventional formulation is needed since 

the entries of Λ cannot be represented analytically in an explicit form and therefore 

cannot be differentiated. Instead they are known numerically, together with their partial 

derivatives with respect to the desired quantities of e. Finally, it should be recognized that 

Eq. (130) applies for Type-C equations as well. 

B.2 Setting up the ∂g/∂η Sensitivity Matrix 

The procedure of populating the entries of the Jacobian ∂g/∂η that was discussed in the 

previous subsection is technical, although somewhat complicated, with a variety of 

different types of terms. Computations for the various terms depend on equation type, 

bounce-point index, and the total number of bounce-points in the considered ray-path. 

This subsection briefly lists these subcases, yet it does not provide the explicit formulas 

that require additional derivation which goes beyond the scope of this text.  

As an example, consider a ray-path with four bounce points. The structure of its 12x12 

Jacobian sensitivity matrix is illustrated in Fig. 78, where non-zero terms are highlighted 

in gray. Matrix rows correspond with Type-A/B/C equations and matrix columns 

correspond with ECEF x/y/z coordinates, as labelled in the figure. The 1-4 numbering 

corresponds to the four bounce points.  
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  x y z 
  1 2 3 4 1 2 3 4 1 2 3 4 

Type A 

1 a1,1    a1,5    a1,9    
2  a2,2    a2,6    a2,10   
3   a3,3    a3,7    a3,11  
4    a4,4    a4,8    a4,12 

Type B 

1 a5,1 a5,2   a5,5 a5,6   a5,9 a5,10   
2 a6,1 a6,2 a6,3  a6,5 a6,6 a6,7  a6,9 a6,10 a6,11  
3  a7,2 a7,3 a7,4  a7,6 a7,7 a7,8  a7,10 a7,11 a7,12 
4   a8,3 a8,4   a8,7 a8,8   a8,11 a8,12 

Type C 

1 a9,1 a9,2   a9,5 a9,6   a9,9 a9,10   
2 a10,1 a10,2 a10,3  a10,5 a10,6 a10,7  a10,9 a10,10 a10,11  
3  a11,2 a11,3 a11,4  a11,6 a11,7 a11,8  a11,10 a11,11 a11,12 
4   a12,3 a12,4   a12,7 a12,8   a12,11 a12,12 

Figure 78: The form of a 4 bounce-points ray-path’s Jacobian sensitivity matrix. 

For Type-A equations, an,n terms that relate g equations with the x/y/z coordinates of 

the four bounce-points have a certain form for odd n and a different form for even n. this 

is a consequence of the former defined with Cartesian coordinates and the latter defined 

with geographic coordinates.  The same holds for an,n+m and an,n+2m terms where m is the 

number of bounce points. 

For Type B equations, row 5 (or m+1) has a certain form, where only six entries are 

non-zero and the top left entries of each sub-block (i.e. a5,1, a5,5 and a5,9) include 

coordinate terms of the transmitter’s position. Other rows related to Type B equations, 

except for the last row (row 8 (or 2m) of the whole matrix), have nine non-zero entries 

and their forms depend on whether their index is odd or even. Additionally, these rows do 

not consider the location of either the transmitter or the receiver. The last row (2m) has 

six non-zero terms, where the bottom right entry of each sub-block (i.e. a8,4, a8,8 and a8,12) 

include terms of the position of the receiver. In this example with an even number of 

bounce points, this row will be utilizing Cartesian coordinates since the index of the last 

row is four (row eight of the whole matrix). Had there been a fifth bounce-point, these 
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terms would have had a different form that originates from the geographic coordinates 

used with ionosphere bounce-points. 

Type-C equations are similar to Type-B equations in terms of their structure, and thus 

the same observations which were made for Type-B related sub-blocks apply. 

In summary, when setting up this Jacobian matrix, twelve subcases of the matrix’s 

entries forms should be considered:  

1. Type-A equations (two subcases) 

 Rows with odd index 
 Rows with even index 

2. Type-B equations (five subcases) 

 First row 
 Rows whose odd index is greater than one and less than the number of 

bounce points  
 Row whose even index is greater than one and less than the number of 

bounce points  
 Last row with odd index 
 Last row with even index 

3. Type-C equations (five subcases) – same as with Type-B equations 
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APPENDIX C  

IMPLEMENTATION AND PRACTICALITIES  

MATLAB® CODE is used with this study to construct the different components of the 

truth-model simulation and the batch nonlinear least-squares filter. 

C.1 Software Concepts 

 The code is characterized with a clear distinction between different software 

component types, as described in the next subsection.  

 Intensive use of MATLAB® symbolic toolbox for generating objects that are used 

to obtain needed terms and formulas using embedded symbolic mathematical 

operators. This design in meant to provide flexibility when changes to physical 

models are to be performed. 

 Flexibility in combining and connecting components from different sources: code 

generated for different phases of this study, code provided by Prof. Mark Psiaki, 

and code that was obtained from various websites (free use license only). 

  Use of code that is generated automatically by auxiliary MATLAB® functions in 

order to minimize potential coding errors.  

  The use of an auto-testing code array to validate functionality of functions and 

algorithms. 
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C.2 Code components 

The code used is fundamentally split into five groups of components. 

 Functions that contain batch-estimation code that would potentially run on a 

receiver are considered Real Time Code (though, not ‘real time’ in its formal 

meaning as these modules’ run time is usually hard to predict). Real time code 

can be generated either manually or automatically, i.e., generated by other 

functions. 

 Simulation Code, including scripts, functions and GUIDE® objects that are used 

to generate the simulation environment, compute truth-model data, run the batch-

filtering algorithm by calling Real Time Code, monitor its progress and to present 

simulation output results. 

 Derivation Code. This set of scripts and functions is used to generate additional 

code, including: (a) Construction of symbolic MATLAB® objects (b) derivation of 

needed objects such as equations, formulas and Jacobians, and (c) Automatic 

generation of code using the derived symbolic objects. 

 Core Code. Generic functions that are used by different types of functions. 

Raytracing code, for instance, falls under this category as it is used by both truth-

model real time code and the simulation code. 

 Test Code. These scripts are used in testing functions and code segments, 

including finite differencing tests. 
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C.3 Hardware and Process Runtime 

The extensive computations that are involved in the solution process were mostly 

carried out on an Intel® Xeon® model E7-8867-V4 based workstation with four central 

processing units and a total of 72 cores.  

Typical runtime for a single ray-path solving procedure is 30 seconds to 4 minutes. 

Typical runtime for a single test case of the batch nonlinear least-square filter, excluding 

truth-model calculations, is in the order of hours. The author conjectures that, with the 

combination of (a) a dedicated hardware, (b) more efficient process parallelization, and 

(c) use of low-level coding language, batch filter execution times could be reduced to an 

order of a few minutes.   3 

 

                                                 

 

3 I thank Cornell University Prof. Dmitry Savransky for exceptional technical advice on both software 
and hardware. 
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