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This thesis defines and analyzes a navigation concept that relies on passive one-
way ranging using pseudorange and beat carrier phase measurements of High-
Frequency (HF) beacon signals that travel along non-line-of-sight paths via ionosphere
refraction. The concept is being considered as a possible alternative to GNSS

positioning and timing services.

The proposed system uses an array of ground stations that are placed at known,
predetermined locations. HF signals are simultaneously transmitted from these
ground-based beacons, and received at an unknown single receiver location. If the set
of signals that reaches the user equipment receiver has sufficient geometric diversity,

then the position and the clock offset of the receiver can be determined uniquely.

A significant challenge arises from ionospheric modeling uncertainties that cause
errors in the determination of signal ray paths. Erroneous signal paths result in errors
in the estimated user equipment position and clock offset. This challenge is addressed
by estimating corrections to a parametric model of the ionosphere as part of the

navigation solution. The coupled estimation problem is solved with a batch filter that



simultaneously estimates the user equipment position, the clock offset, and corrections

to an a priori ionosphere model.

The first part of this dissertation includes a theoretical background review,
derivation of mathematical models, and descriptions of the structures of the developed
batch filters. It considers two filter versions of this study that rely on two different

physical models for the propagating HF signals.

The second part of the dissertation is dedicated to a system performance analysis
and an assessment of algorithm functionality. This analysis is based on using data
from a truth-model simulation. This is followed by a discussion that assesses

performance sensitivities to setup characteristics.

A follow-on effort to this study is proposed, one in which algorithm functionality
and performance would be examined with actual recorded data for input and signal

processing. This proposed work is beyond the scope of this dissertation.
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CHAPTER 1
INTRODUCTION

The use of High Frequency (HF) signals propagating in the atmosphere has been
widely discussed in the literature for communications and over-the-horizon radar.
Signals with frequencies in the range 2-10 MHz can bounce successively off the
ionosphere and the Earth to arrive at a receiver along a Non-Line-Of-Sight (NLOS) path.
Such signals have been proposed for geolocation purposes, as in Ref. [1]. The present
study represents a further effort to examine the potential use of such signals for radio

navigation.

Given perfect knowledge of the ionosphere and of the number of bounces between a
transmitter and a receiver, it is possible to develop a model of the measured pseudorange,
which is the difference between a signal’s reception and transmission times multiplied by
the speed of light. The pseudorange depends on the unknown user receiver location and
the receiver’s unknown clock offset. Given four or more such pseudoranges from four or
more independent transmitters with an appropriately diverse geometry, it should be

possible to solve for the unknown user position and clock offset, similar to GPS.

The problem with such an approach is that the ionosphere’s HF signal
propagation/refraction/reflection properties are highly uncertain due to the variability of

its three-dimensional electron density distribution, N.(r). The approach of Ref. [1] and



Ref. [2] is to use ionosonde data [3] in order to refine a local model of Ne(r). This local
model is then used to estimate the unknown location of a transmitter. The present
approach seeks to estimate simultaneously the location of an unknown receiver, its clock
offset, and corrections to relevant portions of the N.(r) distribution. Its fundamental input
data are the measured pseudoranges, also known in literature as group delays, between an
array of transmitters at known locations and the user receiver. These measurements may
include multiple pseudoranges from a single transmitter for ray-paths with differing
numbers of bounces or for signals with differing frequencies. A second type of
measurement, known as beat carrier phase, counts carrier cycles over an arbitrary time
interval and differences the resulting count with the expected nominal count for the
transmitted signal waveform [4]. In the scope of this work, these measurements are used
to refine the receiver’s position solution once a solution that is based on pseudoranges has

converged.

The approach taken in this study involves several elements. They are 1) a nominal
ionosphere model, 2) estimated corrections to that model, 3) raytracing calculations for
the paths of the HF signals from the transmitters to the receiver through the corrected
model, and 4) model inversion calculations to estimate the user receiver position and
clock offset along with the corrections to the ionosphere model. These model inversion
calculations are carried out using a modified nonlinear batch least-squares solution

technique.

A key question for such an approach concerns observability. Given a limited number

of transmitters and a limited number of measured pseudoranges, can such a system



accurately estimate the many unknowns? The infinite-dimensional nature of ionospheric
corrections, which exist in N(r) function space, theoretically dooms such an approach to
failure. In practice, however, it may be possible to combine a priori information about
Ne(r) with measured pseudoranges and beat carrier phases in order to arrive at a
reasonable result. This dissertation represents a study of whether this might be

practically possible.

The present study follows the initial study of Ref. [5] but differs in two significant
ways. The ray-path computations in Ref. [5] rely on a simplistic segmented ray-path
model that is physically realistic. Second, system performance is evaluated through a
series of statistical analyses that rely on a mixture of Monte Carlo calculations and
computation of the theoretical linearized a posteriori solution covariance. This
performance analysis assesses sensitivities to various setup parameters. In the early study,

in contrast, only a limited number of test cases were examined.

As with the study presented in Ref. [5], the current study utilizes a Chapman vertical
profile with horizontal variations of the three parameters that it uses to model the electron
density vertical profile Ne(fai/). This model form has known limitations that are discussed

later.

The basic question of the present study concerns whether, and to what extent, the joint
estimation of position, receiver clock offset, and corrections to ionosphere parameters is
possible. It is well known that positioning is possible with a minimal number of received
signals for the simpler satellite-based GPS problem. For the present problem, however,

the increase in the number of unknowns and their complicated relationship to the



processed measurements makes performance hard to predict based on simple analysis.
Instead, performance must be studied using a truth-model simulation and a corresponding

batch estimator.

This study makes three contributions to the area of radio navigation based on bouncing
HF signals. First, it develops a measurement model of the pseudorange and beat carrier
phase measurements of multi-hop HF signal paths from known beacon transmitter
locations to an unknown user receiver location. This model includes techniques for
solving its nonlinear bounce conditions and for computing first-partial derivative
sensitivities of the bounces and the range measurements with respect to the unknown user
location and the unknown ionosphere parameters. Second, this study develops a batch
nonlinear least-squares estimation algorithm for determining the unknown user receiver
position, user receiver clock offset, and ionospheric parameter corrections. This
algorithm incorporates a priori information about the ionosphere parameters in order to
compensate for the lack of strict simultaneous observability of the location, clock offset,
and ionosphere corrections. Third, the potential performance of the proposed HF
navigation scheme is evaluated using data from a truth-model simulation and using

covariance analysis.

The remainder of the dissertation is divided into two parts and eight chapters. Part 1,
consisting of Chapters II to V, includes theoretical background, mathematical models, a
thorough description of the batch estimator, and a review of past work. Part 2, consisting
of Chapters VI to VIII, presents the studies that have been performed in an effort to

characterize the potential performance of the proposed system.



Chapter II presents the physical and mathematical models of Earth, the ionosphere and

the traversing HF signals.

Chapter III covers definitions and derivation of bounce points and their equations, ray-

hops, and ray-paths. It also discusses two measurement error models.

Chapter IV develops the batch filter that estimates the quantities of interest. It starts
with formulating the governing problem and develops three different iterative solution
strategies that apply in three different cases. This chapter also describes a modified
Gauss-Newton method that is utilized in this study. An error analysis, including
derivation of the expected estimation error, is discussed next. Chapter IV concludes with
the derivation of the filter’s theoretical a posteriori mean square error and covariance

matrices for several different cases.

In Chapter V, past work that considered a simplified ray-path model is reviewed. This
work originally indicated feasibility for the HF navigation concept, and it established the
starting point for the current phase of this study. Moreover, models which have been
developed during that early work are used by the current effort. This chapter concludes

the first part of the dissertation.

The second part of the dissertation begins with Chapter VI, which presents various
aspects of algorithm functionality and validation. It describes the truth-model simulation
that has been developed to evaluate this concept, and it discusses observed batch-filtering
algorithm behavior during the optimization process. Finally, it presents several analyses

that concern solution convergence and covariance computations.



Chapter VII presents methodology concepts and results for a study that considers a
variety of test cases. These test cases are split into four classes, where each class consists
of several groups of test cases that differ in their scenario setups. An ensemble of 21 test
cases has been designed to provide an understanding of the performance that can be
expected for a real system given different conditions of operation. This chapter includes
tables that summarize the properties and results for most categories of test cases that have

been studied and for both batch filter configurations.

Chapter VIII analyses the results that have been presented in Chapter VIL. It discusses
trends, observations, and findings for the collection of test cases described in the previous
chapter, and it examines performance sensitivities to the various setup parameters. This
analysis involves positioning accuracy, as well as the merit of the a posteriori ionosphere
model. Suggestions for follow-on studies are outlined in this chapter and conclude the

analytical part of this document.

Finally, Chapter IX summarizes this study’s developments, and it draws conclusions

about the proposed new system.

The nine chapters of this work are followed by three appendices. These consist of
information that is not essential for acquiring an understanding of this project. They
cover aspects of this study that certain readers may find useful. Appendix A describes the
procedure of one-dimensional interpolation for a bivariate function that is used in this
study. Appendix B elaborates on filter procedures and calculations that apply for the
simplified ray-path model. Appendix C covers various aspects of code design and

implementation.



CHAPTER 2
PHYSICAL MODELS

2.1 High Frequency Signals

2.1.1 Signal structure and ranging accuracy

This study considers transmitted RF signals with sinusoidal carriers in the range
2MHz — 8MHz. Signals are assumed to either maintain a constant carrier frequency, or to
utilize a smoothed stepping pattern for altering their carrier frequencies. In the latter case,
each signal beat carrier phase is measured after a given step is complete and the signal is

oscillating with a different frequency, and consequently, traversing a perturbed ray path.

The basic ranging procedure relies on Binary Phase-Shift Keying (BPSK) modulated
codes or some similar spread-spectrum technique. The resulting accuracy for this sort of
ranging in terms of measurement noise 1-sigma is about one kilometer assuming a signal
bandwidth of 100 KHz. Carrier phase measurements are assumed to be derived using an
accurate internal oscillator and phase-lock loop so that the expected accuracy for a beat
carrier phase measurement is one meter based on extrapolation of the fraction of a cycle
of phase that can be resolved for L-band signals using standard GPS signal-processing
techniques. It remains an open question whether such results can be achieved for HF

signals.



2.1.2 Physical characteristics of wave propagation in the ionosphere

A crucial component in the process of solving the governing positioning/timing
estimation problem is the ability to accurately determine and reconstruct trajectories for
the HF signals that traverse a modeled ionosphere. These trajectories are characterized
not only by their curved shape, but also by the frequency- and path-dependent
propagation speeds of their BPSK modulated code and carrier wave. Propagation speed
dependence on wave frequency is known as dispersive wave propagation and is typical of

propagation in the ionosphere [3], [6] and [7].

The long-term propagation mechanism that is utilized in this study relies on
ionospheric refraction that bends skyward-propagating radio waves back towards the
Earth in a way that somewhat resembles reflection. This effect can occur for signals in
the frequency range of up to 40 MHz [8]. Long distance propagation during daytime
cannot be sustained for wave frequencies less than 2 MHz due to strong absorption in the

D layer [9].

When neutral atoms and molecules in the upper atmosphere are subjected to strong
ultraviolet radiation, they may be ionoized into plasma - a state of matter consisting of a
varying concentration of electrons and ions due to ultra-violet radiation from the Sun.
Plasmas are electrically conductive and hence respond strongly to electromagnetic fields.
Conductivity modifies the index of refraction of the medium, causing RF waves to reflect
and refract. An important property of the resulting ionized substance is known as the

plasma frequency and is denoted w,. The plasma frequency corresponds to a natural



oscillation frequency of free electrons. For an electron density of N(r), the plasma

frequency is given by

@, =N, (r)q} [mz, (1)

where g., m. and &y are, respectively, the electron charge, the electron mass and the free

space dielectric constant.

Let w denote the wave frequency and let k=27/4, (= w/c) denote the wave number.
The phase velocity is in the direction of the wave vector £ which is normal to the
direction of the electric displacement. Group velocity is in the direction of the Poynting

flux, which is normal to the direction of the electric field [10].

A precise analysis of the behavior of electromagnetic waves as they traverse through
plasma is conducted through the combining of Faraday’s law and Ampere’s law in

macroscopic form, where the wave solution takes the form
Ayexp(j(ot—k-7)) (2)

with the wave vector k& being perpendicular to both magnetic field and electric
displacement field but not necessarily to the electric field, £. Combining Maxwell’s

equations yields the wave equation

k(k-E)-kKE+o’ e E=0 3)



where uo is the free space permeability and ¢ is a 3x3 permittivity matrix that consists of
terms dependent on w, @, and the electron gyrofrequency 2., which is dependent on

Earth’s magnetic field B through

e (4)

Eq. (3) can be written as the linear homogeneous system
K(k)E=0 )

in the unknown k and where K(k) is a 3x3 matrix. Desired solutions in a form relating k
and the direction of £ are obtained by setting K’s determinant equal zero. These solutions
correspond to the different polarization modes. Typically, one should expect two
independent solutions for any given wave frequency and propagation direction. The two
modes will have distinct, close to orthogonal polarization and will be governed by

different dispersion relations.

It is common practice to formulate the wave normal equation in terms of 6, the angle
between the magnetic field B and the wave vector k, and in terms of the index of

refraction, n. One such formulation is known as Astrom’s Equation. It is given by

2

n-n’ n-n 2 n’ —n, ©6)
ni=l-—X . a=_101 ; X=o0'/0" ; Y=0,/o
a l—a'Y s s Vs s D s e

The Booker Quartic formulation is equivalent to Astrom’s Equation. It takes the form

10



in”(0)

[nlz (n2 — n_12)+ n,’ (n2 -n’ )]%jt n,’ (n2 - nlz)(n2 — n_f)cos2 (6)=0 (7)

Eq. (7) can be factored as a closed form solution for n?. This formula is known as the
Appleton-Hartree formula

X

Y,’ Y,
l-—T—+ : Y,?
2(1-X) \/4(1—)()2+ g ®)

Y, =Ysin(8) ; Y, =Ycos(6)

n=1-

Waves propagate when #°>0. Eqgs. (6), (7) and (8) can be used to determine wave
frequencies at which wave propagation ceases. These frequencies, known as cutoff
frequencies, are determined by setting #n°=0. The two solutions, w: and w2, obey the
equations w1’=w,’> and wy’= w2(w2-2.). These are the cutoff frequencies for the ordinary
(O) and extraordinary (X) wave modes, respectively. The characteristic polarizations for
the two modes are generally elliptical. However, when propagating in a direction that is
close to perpendicular to the magnetic field, the O mode is characterized by linear
polarization with its electric field parallel to the axis of the background magnetic field.
The electric field of the extraordinary wave mode is approximately perpendicular to
background magnetic field when propagating in a direction that is perpendicular to the
magnetic field. The manner in which polarization changes throughout signal propagation

is beyond the scope of this discussion. See Ref. [11] for a discussion of polarization.
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2.1.3 Raytracing

Raytracing calculations lie at the core of this study. The ability to accurately model
signal trajectories is essential to the success of the estimation process. Calculations are
based on a numerical solution to the wave equations. This subsection discusses the basics

of these computations.

Ray tracing is carried out through numerical propagation of Hamilton’s equations that
apply for a propagating RF signal in an ionized medium. The fundamental set of
equations is provided by Ref. [12] in the form of non-linear ordinary differential

equations (Eqgs. 9 through 15 of that paper) that can be written as:

T
dr, [an7 | an
= = —_— = ,k
dp’ {dk}/cda} Si(z.k)

dk [au] | au ©
d_;':[d_rj /de=f2(rw,k)

H is the Hamiltonian and the independent variable P’=ct, is the range-equivalent
group delay parameter that takes the value P’ at the beginning of the trajectory and P’r at
its end. The same Hamiltonian can be used to develop a differential equation for the
range-equivalent carrier phase P=¢/ko with ¢ being the carrier phase in radians. This

differential equation takes the form

di:_dﬂk d—HkO (10)
dpP' dk | dk,

where ko=w/c is the free-space wave number with @ being the transmission frequency.

12



Reference [12], which combines the work of Ref. [13] and Ref. [14], gives several
Hamiltonians that can be used in Eq. (9). They are generally based on the Appleton-
Hartree formula of Eq. (8) or on a closely related derivation. The following formulation

for the Hamiltonian is used with most sub-routines that are utilized in that paper.

2
H:real{%[%(kx2+ky2 +kz2)_n2J} (11)

where kx, k,, and k. are the three Cartesian components of the wave vector k. This wave
vector notation will be used hereafter for Hamiltonian formulation. A second

Hamiltonian that is based on Ref. [15]. It takes the form

H = real{{(U-X)U* =Y’U ]e'k* + X (k-Y) '’
+real{ 2UU X) +Y2(2U—X)]c2k2w2—X(k-Y)zcza)z} (12)

+real{ }(U X) }

where U=1-jZ, Z=v,/o and v, is the mean electron/neutral collision frequency. The
Hamiltonian of Eq. (11) is not appropriate high up in the ionosphere near any possible
spitze of the ray path because it can become singular in this region. This is the region
were Ref. [12] suggests the use of the Hamiltonian of (12) instead. The latter
Hamiltonian, however, would function poorly when in or near free space, where all of its

derivatives become very close to zeroes.

Alternative Hamiltonian formulations are presented in Ref. [16]. These are the
Hamiltonians that are utilized with the current implementation of this study. The first

Hamiltonian, which is used where the electron density is relatively small, is given by

13



(13)

where p is a vector of parameters that characterizes the ionosphere electron density

profile. nan is the lossy Appleton-Hartree index of refraction of Ref. [17].

A different Hamiltonian is used near a reflection point/spitze. It does not experience

any singularities in this vicinity. This Hamiltonian takes the form
H=lreal{ﬂ:} (14)
2

where 1 is an eigenvalue of the 3x3 matrix D that is given by

0

EZH%_IJL%H“‘WZ‘YZJ(l‘fZ) (15)
+X{(1—jz)21—Y21§01§0T - j(1-jZ)¥[ B, x]}

Bo is a unit vector that points in the direction of the ambient geomagnetic filed vector, B.

A state space system of equations is defined for the unknown wave-front position and

wave-vector :

X=7(%)
@ LT (16)
L ,{(()_()) | sz
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This state vector consists of the three Cartesian coordinates of the propagating wave
front’s position 7, and the three components of the wave vector k. For practical reasons,
the state vector that is used with the current numerical implementation is defined in the
normalized form:

k/k,

Normalization of the first term by P’r and of the second term by ko=w/c results in a

unitless state vector, whose derivative with respect to the parameter t=P /P ’ris given by:

dX _ . dX

=Py = (Xp.P) (18)

[ can be numerically propagated from the initial 7=0 to the final =1. The terminal value
P’y is unknown and must be determined as part of a two-point boundary value problem
solution. Integration is performed using a 4"/5™ order Runge-Kutta method, and its
Runge-Kuta grid points are revised until a sufficient level of accuracy is achieved
through a process of step size adaptation. Further details on the raytracing process

implementation are given in Section III of Ref. [16].

2.2 The Earth Model

Models of the Earth and the ionosphere are used to define the physical environment
for the propagating signals. These models have been chosen so that they combine the

need for a reasonably realistic representation of physical phenomena with the need to
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limit the complexity of the models and the resulting computational effort for purposes of
the present study. Models with increased fidelity and increased complexity would be
required for the processing of actual HF signal data to produce accurate navigation

solutions.

2.2.1 Earth geometry model

An Earth surface geometry model is needed for two reasons. The first use is to define
the bounce conditions of HF ray paths at the Earth’s surface. The second use is to define

altitude within the calculations of this study’s ionosphere model.

The Earth is modeled as a closed, continuous and smooth surface that is known as the
WGS-84 ellipsoid [18]. The implicit equation for the ellipsoid in Cartesian Earth

Centered Earth Fixed (ECEF) coordinates is

—+—=5+——5=1; R =6378137 ; R, =6356752.31425 (19)

Where r;, r2 and r3 are coordinates in meters.

The function haudr) =hwass4(r1,r2,r3) computes the altitude of a Cartesian ECEF point

(r1,r2,r3) above the WGS-84 ellipsoid, as in Ref. [19]. All points of the form (r;,,72 3 ,)
on the ellipsoid therefore satisfy Aai(r,)=0. The gradient of ha(r,) is of interest, as will be

presented later in the context of bounce points.

This approach for modeling the Earth has been chosen for its relative simplicity and

the fact that it does not rely on availability of additional data. A more realistic method for
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modeling the shape of the Earth would use an existing digital representations of the
Earth. A commonly used form of representation is a Digital Terrain Model (DTM) or
Digitial Elevation Map (DEM). Such a model could be used to develop a bi-quintic spline
for describing the latitude/longitude dependent altitude. The data required for
DTM/DEM-based modeling is available for national agencies and institutes — see Ref.

[20].

A DTM/DEM model would provide a higher fidelity calculation of the bounce
conditions for reflection of HF waves off of the ground. For purposes of the truth-model
simulation study, however, a DTM/DEM model does not provide a significant advantage
over a simple WGS-84 ellipsoid because the nature of the signal bounces off of the Earth
does not change markedly between the two models except in very mountainous regions.
The WGS-84 model has the advantage of simpler calculations. That is why it is used in
the present simulation-based study. A DTM/DEM-based model should be used for any

proposed application of this dissertation’s methods to real data.

2.2.2 Earth magnetic field model
Raytracing computations for propagating HF signals require knowledge of the Earth’s
magnetic flux vector field at any desired location. This study uses the 11" generation
model for the International Geomagnetic Reference Field (IGRF), known as IGRF-11, for
which the magnetic flux is modeled as the gradient of a time-varying spatial potential

function. Additional information on this model can be found in Ref. [21].
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2.3 The Ionosphere Model

This region of Earth’s upper atmosphere is characterized by ionization that is caused
by ultraviolet solar radiation. The majority of the ions in the ionosphere are
photoionization dislodged dinitrogen and dioxygen molecules. A roughly equal number
of free electrons is assumed to lie in close proximity to the ionized molecules so that the

total charge of the medium is assumed nearly neutral.

A three-parameter Chapman beta model is used to model the location-dependent
electron density distribution of the ionosphere. This model regards the ionosphere as a
medium with an altitude-dependent electron density whose altitude density distribution is
characterized by parameters that vary with latitude and longitude. For a given time of

interest ¢, electron density is given by

o VTEC[4(r) A(r). ]
e-hy [¢(£)’/1(£),t]

exp(l —z(r,t)- GXP(_Z(L t)))

(20)

(rot) = (E) P [ 9(2), A(2) 1]

where @(r), A(r) and ha(r) are, respectively, the latitude, longitude, and altitude above the
WGS-84 ellipsoid of the ECEF position r. N.(r.?) is given in units of electrons/m* The
quantity imax[@(7),A(r),f] is the altitude of the maximum electron density of the Chapman
profile. The quantity VTEC[¢(r),A(r) ,f] is the vertical total electron content — the integral
of the electron density along a vertical path. The quantity Ay ¢(r),A(r) .f] is the Chapman

profile’s altitude scale height.
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It should be noted that the three Chapman parameters are time dependent. They
usually vary slowly in time due to the daily variations of the amount of solar radiation
and other effects. While the rate of change is small enough for these parameters to be
regarded as constants during the short duration of signal propagation in the context of this
project, the differences in their values for time intervals that are in the order of an hour or
more are significant. In particular, diurnal, seasonal, and solar effects make the resulting

time variations very significant.

The simplistic Chapman model ignores the possibility of distinct D and E layers,
including a sporadic E layer. This level of simplification would likely produce
unsatisfactory results if working with daytime real data, but it is reasonable to use a
Chapman profile at this stage of simulation-based study of the proposed system’s

potential accuracy.

The natural logarithm of the latitude/longitude variations of the three Chapman
vertical profile parameters are modeled using bi-quintic splines as described in
Subsection 2.3.1. The spline nodes are placed at predefined latitudes and longitudes with
subsets of nodes grouped into common small circles of constant latitude. Figure 1
illustrates the placement of the grid nodes, where each grid node is identified by a unique
number, starting at one for the node that is located at the south pole and ending at 424 for
the node that is located at the north pole. The set of grid nodes that is used with this study
has been defined in a way that gives a sufficient number of nodes over North America,

the simulated region of interest. The number of nodes used outside this region is
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somewhat arbitrary and is probably larger than it needs to be. In general, other node point

selections are possible.

The set of parameters for each grid node are the given function’s value and eight
partial derivatives with respect to latitude ¢ and longitude A. Thus, a vector of nine
parameters p,; is associated with the i node and the splined scalar function a(¢,1) as

follows:

T
6a Oa 0*a &*a 0*a Oa 0’a o'a
DPui = } (21)

T Y0004 047 0404 0F  0A0p 0A0F 04204

Given the latitude ¢o and the longitude 4o of a point at which one wants to compute the
value of the natural logarithm of a Chapman parameter, a, (and possibly various of its
partial derivatives), the needed calculations use the nearest four bi-quintic spline nodes
that lie northwest, northeast, southwest, and southeast of (¢o,40). Stated differently, these
four points lie on the two small circles of latitude which bracket ¢o. On each of these two

small circles, the two chosen node points are those whose longitudes bracket Ao.

Three sets of vectors pu1 to pa424, each set computed for a different Chapman
parameter, can be used to fit the International Reference Ionosphere (IRI) model. First a
Chapman vertical profile is fit to the IRI vertical profile at each spline node point to give
hmax, hst, and VTEC. Next, the natural logarithms of these three quantities are computed at
each node point. Finally, a smoothness criterion is employed to determine the various

partial derivatives of these quantities for inclusion in p.; of Eq. (21) using a spline
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initialization method found in Ref. [22]. Further details on this procedure are given in

Subsection 6.1.2.
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Figure 1: The 424 grid nodes placement map for an example latitude/longitude bi-quintic
spline.

2.3.1 Ionosphere parameter errors and the M covariance matrix
An error model is considered for the a priori ionosphere parameters. These errors
reflect a Chapman based representation of imperfect knowledge of the true spatial

electron distribution in the ionosphere. For the general case, the error vector ¢, is defined

through

P=DuetE, (22)

where puue 1s the vector of parameters that define the true ionosphere and p contains a
priori estimates of the ionosphere parameters. Both vectors are stacked versions of the

elementary vectors pa, so that

21



I ﬁhmax 1 ] E"‘“e hmax,]
P Prrue 5
Prrec, Pue yrge,
1_9 = s B true = : (23)
maax,424 Etrue Jimax 424
Dy 424
Lhsf, Pirue hsf 424
Prrec,a2a p
N - | &€ yTEC 424 |

The nature of the a priori model error vector ¢, is determined by the case. It is
modeled as either a vector of constants or as a sample from a multivariable Gaussian

distribution, as discussed later in the context of navigation accuracy analysis.

In order to model the likely correlations between the various terms of p, the IRI model
was used to compute the best-fit Chapman parameter values four times a day throughout
the calendar year 2009, where the first sampling time in hours is a uniformly distributed
random variable in the range [0,6] and the following three times are spaced six hours
apart. See Ref. [23] and Ref. [24] on current IRI modeling, and Ref. [25] on further
improvement efforts. Reference [26] describes the Chapman parameter fitting procedure.
This method of sampling was chosen in order to minimize possible effects of an hourly-
scale periodicity. The resulting 1460 parameter vectors were used to compute an
empirical covariance matrix for the natural logarithm of all Chapman model based
ionospheric parameters of Eq. (21). This matrix is defined as the ionospheric parameters’

a priori covariance matrix, designated My throughout this dissertation.

22



2.3.2 The lonosphere Errors Index

It will be useful later in this dissertation to have a quantitative measure for the
deviation of a given set of ionosphere parameters, such as the a-priori ionosphere model,
from their “true” values within a truth-model simulation. The unitless lonosphere Errors

Index (IEI) is a scalar quantity that is defined as follows.

1 _
&= 1Oglo (WQPTM IEPJ (24)

P

where N, is the number of ionosphere parameters that are associated with applicable grid
nodes, i.e., grid nodes that define grid cells through which propagating rays travel, and
where M is a covariance matrix that was constructed from the My matrix by considering

rows and columns that are associated with this same set of parameters.

An understanding of how ¢ is statistically distributed is desirable when assessing
receiver/transmitters/ionospheric model setups. As an example, a test case is considered
that has characteristics similar to those of Test Case A0 that later takes a role in the
results presentation of Chapter 7, with the same receiver/transmitters setup and the same
true time of 10-23-2009 at 14:22 UTC. This setup results in 13 active grid nodes and
consequently, in a set of 13x3x9=351 applicable ionosphere parameters. ¢ was computed
for this subset of ionosphere parameters for all 1460 time instances spread over a year
that are mentioned in the previous subsection. The above time was used as the reference
time in this computation. It should be noted that none of the 1460 time instances is
identical to the reference time. The resulting 1460 values of ¢ are distributed in a way that

is illustrated in Fig. 2.
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The top panel of Fig. 2 plots computed ¢ values versus the time difference in days
between the 1460 sample times and the reference time. The red curve is a smoothed
variant of the blue curve. Unsurprisingly, smaller values were computed near zero time
difference. However, an important observation is that larger time discrepancies do not
necessarily result in larger IEI values. This was the motivation for abandoning the

absolute seasonal discrepancy criterion of Ref. [5].

0.1
0 i
-0.1 il B it

wr 0.2 | 4 o AR R 1L L L. TSRS [N | — ]
-0.3 - .. Bl .. 1 WAIIT | § - -
0.4 ; ;
-0.5 M I 1
-300 -250 -200 -150 -100 -50 0 50 100
Seasonal Discrepancy [days]
40
12]
5 20 L
Q
o
0 mam
0.8 -07 -06 0.5 -04 -0.3 0.2 0.1 0 0.1 0.2

Figure 2: IEI values vs. time difference (top); IEI histogram (bottom).

The bottom panel of Fig. 2 plots a histogram of all 1460 computed values of £. Since
the ionosphere parameters’ error vector is normalized by its covariance matrix inverse
and the number of parameters, it can be expected that £ will have a mean value close to
logio(1/2)=-0.3 (see Eq. (24)). In practice, the mean value is about -0.25. In the later
discussion that follows, ¢ values that lie to the left of this mean will be regarded as
‘small’ £. For such values, the truth and the a priori ionosphere are somewhat consistent.

At the same time, ¢ values that lie to the right of this mean will be regarded as ‘large’ ¢.
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For these cases, the a priori ionosphere model’s differences from the ‘truth’ ionosphere

are considered to be large in a statistical sense.

2.4 Bi-quintic spline calculations

This project utilizes bi-quintic spline modeling and calculations for two purposes:

a) Representation of the natural logarithm of the latitude/longitude dependent /ax,
hgrand VTEC Chapman parameters, as discussed previously.
b) Representation of the 80% electron density height surface, as discussed in

Subsection 3.4.2.

Figure 3 illustrates the setup for the bi-quintic spline calculation for an unknown

quantity of interest, a, at point Cy of latitude ¢o and longitude Ao.

Craw(dn,ANw) Cn(dn,do)  Cne(dn,ANE)
o 4 °® ¢N
Co(go, 40)
° s o ¢5
Csw(ds,Asw) Cs(ds,ho) Cse(0s,AsE)

Figure 3: The bi-quintic spline calculation latitude/longitude grid example.

The a(do,h0) bi-quintic spline calculations proceed as follows: Suppose that
Csw(¢s,Asw) and Csge(¢s,Asg) are the neighboring southwest and southeast biquintic spline

nodes and that Cxw(én,Anw) and Cne(fn,4ANE) are the neighboring northwest and northeast
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nodes. Then ¢s < ¢o < @n, Asw < Ao < Ask, and Anw < Ao < Ang. The values for @ and two of
its derivatives at point Cn(@n,l0) are obtained with the three-term-output function o

through

atc) &e) Zoc] -

0 0*
(;LNWsa(CNW)aa_z(CNW)aa_;(CNW)’ﬂNEaa(CNE) (25)

oa 0a
’a(CNE)’W(CNE)’/IOJ

where o is a three-term-output function whose description is given in Appendix A.
Similarly, the values for da/0¢ and 6*a/0¢* and their first and second partial derivatives

with respect to A are obtained through

oa 0’a o’a !
oa 0*a o’a oa
o ﬂ’NW’%(CNW)’w(CNW)’W(CNW)’A’NE’%(CNE) (26)

0’ 0’
L (Cop )y =2 (Co ) A
DgoA dgoA

and

Tac) e )] -

op’ 0P 0
0a 0a 0'a 0’a
o NW’W(Cw)sw(CNW)aw(cw)a;ﬂwsa—qu(cm) 27)
0a 0'a
2 8¢262’ (CNE)’ a¢2812 (CNE)’AOJ
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Similar calculations are carried out to obtain a(Cs), 6a/0A(Cs), &*a/0A*(Cs), 0aldg (Cs),
*alogoA(Cs), 0°alopoAX(Cs), &*alog*(Cs), °alog*0 (Cs) and 0*a/0g*0A* (Cs) using the
spline node parameters at points Csw and Csg. This set of computed values and partial
derivatives for points Cx and Cs can now be used to compute the desired values at Cy as

follows:

() Bic) o)) -

oa 0’a oa 0’a
g[@,a(cs>,a—¢<cs>,672<cs>,¢N,a(cN),%(CN),W(%%]

Oa 0’a O’a !
oa 0a 0a oa
Q(%’%(CS)’ aza¢(CS)’ 008 (C)-#w 57 (Cv)

d’a d’a
e

0’a d’a o'a '
206) Sola) o] -

ol 4. 24(¢,). 2% (). 52 ()0 24 )
“ea N T ar%eg P oategt BT oY

3 4
o’a c 0'a c ¢O]

(28)

(€ s (€),

These calculations are facilitated by the fact that any one-dimensional quintic spline is
completely defined by the function, first-derivative, and second-derivative values at the
spline interval’s two end points. Additional descriptions of bi-quintic splines that include

many more details are available in Refs. [22] and [26].
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CHAPTER 3
BOUNCE POINTS, RAY-HOPS, AND RAY-PATHS

3.1 Definitions

A bounce point is the geometric location of a traversing signal’s incidence upon and
reflection from the Earth. The position of the A bounce point in Cartesian coordinates is
denoted 7. The unit vector that is perpendicular to the Earth’s surface at bounce point &
is called the bounce point normal vector and is denoted by ux. The ray-path direction
from which a signal approaches bounce point & is v¢x. The direction of the reflected signal

at bounce point £ is Vo k.

The curved signal trajectory between the transmitter and the first bounce point,
between two sequential bounce points, or between a bounce point and the receiver is
regarded as a ray-hop. Ray-hops are denoted s. An ordered sequence of ray-hops that
starts at a transmitter and ends at the location of the receiver, rr, constitutes a ray-path. It
should be noted that the possibility of multiple reflection-like refractions off of the
ionosphere between a pair of reflections off the Earth, as described in Ref. [27], is not

considered in the scope of this work.

Figure 4 illustrates these definitions, showing three sequential bounce points, the
receiver location, the ray hops connecting them, and other terms. The associated vector p;
consists of all ionosphere parameters that apply in the vicinity of the j ray-path that is

illustrated in that figure. This means that once the position of all points along the signal’s
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trajectory have been determined by a set of numerical raytracing computations, it is
required to determine for each of those points the grid cell at which they lie. These points
include points on the illustrated ray-hops sk, sk+1, ...,sm, along with additional ray-hops
that belong to the ray-path that are not shown in Fig. 4. All P’ and Py terms refer to

range-equivalent group delays / beat carrier phases that will be considered in a later

discussion.
Sk P QJ Skp] e, . Sm .
yf,k-f\ /7I Vo k-1 Zf,kxl f Yok Zf,kHX! / Yo k+1 Xf,mxl
(o] (o] o (o]
k-1 /A% N k+1 rr
P ox-1, Pox-1 P’tx, P'ox, Prx, Pox Pt x+1, P oxst, Prxet, Pojrt Pt m, Pt m

Figure 4: The ray-path definitions and notation.

3.2 Bounce Points

3.2.1 Bounce point properties and representation

In the scope of this study, it is assumed that waves are perfectly reflected from the
Earth’s surface in a specular reflection manner, although Ref. [27] suggests that ground
reflections consist of superimposed specular and non-specular, randomly distributed

components.

Reflectivity - the power of the reflected signal to that of the incident wave in an

anisotropic medium is determined by Fresnel’s equations as discussed in Ref. [28]. An
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additional important property of propagating signals that tends to change significantly
during signal reflection is polarization. The current model does not account for the impact
of reflectivity and the varying polarization. However, an extension for this study is

planned to incorporate these effects.

Three equations are used to implicitly define each bounce point. The set of three
equations that defines the ™ bounce point of a given ray-path can be written in the

following shorthand form
0=g=& (Xf,kal’o,k:ﬂk:ﬂk) (29)

An explicit formulation of Eq. (29), split into three scalar components - components of

types A, B, and C - takes the form

QZ& = 85k (Xf,k’l}(),k’zlvzk) (30)

i\ YrioYou>Mi> Uy

Recognizing that a signal’s trajectory within a single ray hop, and in particular its
directional vectors vy and vr, depend on the location of the hop’s start and end points and
on the values taken by the ionosphere parameters that apply in the vicinity of that hop,

Eq. (29) can be rewritten as

Q:gk(zf‘,k[zk—l’gkﬁp }’_Okl:nk’nkﬂ P, ] ,_k[ﬂk]),k<m—l an
U

u[n]) keno

0=g (v ( [771613771(’19]}_0/{[ 1_3]
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or, in a shorthand form

0= (7,5 ,) (32)

I:c>

where p; is as defined before, m is the total number of ray-hops constituting the ;™ ray-

path, and where 7j; denotes the set of bounce points of the j* ray-path.

The formulation of Egs. (31) and (32) is used with the ray-paths solver that is
described in Section 3.4, as well as with the alternative batch filter of Chapter 5. The
formulation of Egs. (29) and (30) has been favored for most Gauss-Newton process

related calculations for practical reasons that will become clear in the next subsection.

3.2.2 Bounce point equations

The k™ Type-A constraint equation requires that the k™ bounce point lies on the Earth
surface. This surface is represented by the WGS-84 ellipsoid in the present study,
although it should be represented by some sort of topographic map when dealing with

real data.

Type-B constraint equations enforce co-planarity between the directional vector of the
incoming ray-hop signal as it approaches the receiver, the directional vector of the
reflected ray hop, and the normal vector to Earth’s surface at the bounce point. For the A™
bounce point, which links the k™ ray hop and the (k+1)* ray hop, the following equation

definition for gz« applies:

0= 8ri (Xf,kal’o,kaﬁjaﬂk) =U; '(Xf,k XYo,k) (33)
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where ux is an outward unit vector normal to the Earth’s surface at the & bounce point.
Let Aptm(¢o,A0) be the scalar function that computes Earth surface’s height above the
WGS-84 ellipsoid at latitude @o and longitude Ao. Let recer(do,40,h0) be the function that
computes Cartesian ECEF coordinates from geographic latitude/longitude/altitude
coordinates. Define: ru(@o, 40)= recer(do, Ao, ApTM[P0,40]) and note that Aptm(do,A0)=0 in

the present study. Then ui is given by

[ aZ'.r;urf ~ arsuif
o1 o
[ 61;1"_’/ x 6—7;14;_’}"

o4 (¢0:%0) 8¢ (¢0:%)

Type-C equations constrain the normal vector to the Earth at the bounce point to bisect

the angle between the incoming and reflected ray hops. It can be written in the form
0= Eck (X_f‘,kaﬁo,kajjaﬂk) =Uy '(”Zf,k”ZO,k + ||20,k||zf,k) (35)

The + sign in this formula results from vz pointing towards the reflection point while vo
points away from it. It should be noted that this formulation of the bounce-point
conditions could potentially accept the case of an out-going ray-path direction equaling
the exact negative of the in-coming ray-path direction, which is unacceptable. This can
be addressed with a careful choice of first guesses to the ray-path-determination
calculations, and by applying a feasibility test to computed pseudoranges. This test relies
on the assumption that non-physically-feasible computed ray-paths will result in group-

delays that are significantly different from the measured group delays.
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3.3 Single-Hop Calculations

3.3.1 The fundamental nonlinear two point boundary value problem

Given the signal trajectory’s known start and end location, and given a set of
applicable ionosphere parameters, one can determine the ray-hop by determining the
initial state Xo of the raytracing differential equation in Eq. (16) that applies at the
beginning of the hop’s trajectory and the total signal range-equivalent group delay Pt for
which the signal ultimately arrives at the known end location. This Two-Point Boundary
Value Problem (TPBVP) is thoroughly discussed in Ref. [16]. Therefore, only a brief
description is given here. It should be noted that this study relies on the work that is

described in that source.

Without loss of generality, the Hamiltonian at the beginning of the trajectory (and
everywhere else along the ray’s path) is assumed zero. The initial boundary conditions

are therefore

n,=P'"[I 0]X,

0=H(X,.p)=H, (0

and the final boundary condition is
n, =P, [1 0]X, (37)

where p is a general vector of ionosphere model parameters that apply at a region of
interest. [Jo and []r denote a single-hop trajectory’s start and end points, respectively. For

instance, for ray-hop sk+1 that is shown in Fig. 4, [Jo refers to [Jx and []f refers to IJx+1. The
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notation Xy corresponds to the state vector at the beginning of a hop, and similarly, X
corresponds to the value that the state vector takes at the end of a hop. This set of seven
scalar equations is solved for the six elements of the state vector Xo and the final
propagation range-equivalent group delay P’r.  The solution algorithm involves
calculating the sensitivity matrices 0X¢#/0Xo and O0X¢#/OP’¢r which are required for the

implementation of Newton’s method in order to iteratively solve this nonlinear TPBVP. !

3.3.2 Sensitivities to inputs

As discussed earlier in the context of ray-path solution and in the broader perspective
of the fundamental estimation problem, it is necessary to obtain the partial derivatives of
the TPBVP problem with respect to some of its inputs. For the sake of simplicity, the
concept for obtaining these sensitivities is demonstrated here with an unnormalized
problem formulation as in Egs. (9) and (16), with P’ as the independent variable. An
alternative implementation is presented in Ref. [16] that is slightly different, as it is

aligned with a normalized formulation.

Let o be Xo, p or P, then by differentiating Eq. (16) with respect to a:

! Subsections 3.3.1 - 3.3.5 are based on the information provided in the electronically submitted
supplementary file notes on_sensitivities.pdf, with slight modifications and some notational
adaptation.
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o (dX) 0 -
At
|} (38)
d ek | &k I P
dP'\da ) 0X| da p| O«
Xp'-é _XP'J’

This last equation is of immense importance, as it enables relating partial derivatives of X
with respect to various parameters at different times through numerical integration. This
equation reduces to the familiar linearized state-transition matrix differential equation in
the case where « is Xo. It is a sensitivity matrix or vector equation if a is, respectively, p

or P’.

3.3.3 Computation of 6gfi /0p and azoi_l /0p

The short notation that utilizes subscripts 0 and f'is used here as before. For the sake of
simplicity, the hop index notation is omitted for the rest of this subsection as this
subsection only considers a single ray-hop - sj, and so vo = Yo,y 5 VIS VE Py = P’Oj_ ; and
Py =P fj The same compact notation will be used for the vectors ry, k£ and X. It should be
noted that 61_/oj_1/6é is the same as Avo/dp or [0,1/ko'1](0Xo/0p) evaluated at the beginning
of the /™ hop, i.e. at P . Similarly, ayfj/@é is the same as dvi/dp or [0,1/ko1](0XHEP)
evaluated at the end of the j hop, i.e. at P The last statement is true since all bounce

points are located well below the ionosphere where the wave number takes on its nominal

value: k=ko.

For this computation, the initial and final locations of the signal’s trajectory are

assumed known and fixed. From Eq. (38) with a=p, a P’-dependent ODE is obtained:

35



ox of
+ —_—

39
_ 0p Op (39)
Xpp — -

d(ax)_ &
dp'\ op | oX

Xpp

The first set of boundary condition equations considers the known location of the

trajectory’s start point which is independent of ionospheric parameters

0=/ 0]% =[1 0]

oX,
op

(40)

'
0

This yields 3xN, equations where N, is the number of ionosphere parameters in p. An
additional set of N, equations derives from the independence of the Hamiltonian initial

(and constant) value from the ionosphere parameters:

():d_I:[ :a_H [() I]af| +81~{| :6H| [0 ]]a_)—{OJra_]{O (41)
dp o ok P, op o op o ok P, o op
The final boundary condition is
X X| oP'
] v ol %
B P, [_7 P, P, E (42)
oX, dX, op,
=N s
dp dP', 0p

This is a set of 3xN, equations, bringing the total number of equations to 7xN,. The
equations are solved for 0Xo/0p (6xN, unknowns) and OP’¢/6p (N, unknowns). The
matrices 0X¢/6p and OXy/OP’r are related to their values at P’ through dynamic
propagation of the state influence matrix differential Eq. (39). It should also be noted

that:
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w=[1 0]f(X,.p) )
v, =[1 O]Z(Xfé)
Then the full derivative of vo with respect to p is
of v, of
6;_%)=[1 0] a—]—j aa)—fo +a—]—j (44)
and for v
d_%f:[l 0] 6J_i| ox, X, | 0X, 5P~'f +a_J_j
dp oX| |(oX, op oP', 0Op op|.
= X,.p = S —Xy.p
| (45)

=[1 0] 6_~| (6)_9 aX°+Z()_~( jrB)aP—'fj+z

where the solution for the two unknowns dXo/6p and &P '#/0p that was obtained from Egs.
(41) and (42) is substituted in, and the two partial derivatives of X that are evaluated at

P’rare obtained through propagation of the state transition matrix equation.

3.3.4 Computation of 6gfi /0no and agoi_l /010

In this subsection sensitivities of the direction of the wave vector at the signal’s start
and end points to variations in the initial ray-hop location are computed. The ionosphere

parameters set p is consequently assumed fixed.

Eq. (38) takes the form
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~ 5 -
L[ﬁ_)_f] ¥l ax 46)
dP'\ on, » oX Zo on, fop
The first initial boundary condition is straightforward and yields three equations
1=[r o2& —pp 0% 47)
6Q0 . 620

The second initial boundary condition derives from the independence of the Hamiltonian
and the initial location of the hop and it takes the form (the term in brackets is a 1x6

vector)

o
Ok

or,

0- oH oX,
8Q0

X0.b

X,.p

For the final boundary condition, the independence of the signal’s front position at the

start and end times is considered

¥ Y| opr', X, dX, opP',
0= =[1 0] ox +d)—('| o =[1 0] e +d—f o (49)
dn, om|,,  dP'l,, oy on, ~ dP'; omy

Egs. (47), (48) and (49) can be solved for 6Xo/dl]o and &P’¢/6l]o where once again the
sensitivities at different times can be related by numerically integrating the ODE for
sensitivities. The two quantities can be substituted back into the vo and vr partial

derivative formulas to obtain the full derivatives of interest:
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a~ ~
D1 oo L) e (50)
dm, 0X - on,
dv, of ox, . _\oP',
i:[[ 0] _]—j —/ +f()_(f,13) ! (51
dm, oX . on, = =7 0n,
3.3.5 Computation of 6yfi /0nsand agoj_l /0N
Similar to the previous derivation:
~ 6~ ~
d.[é)_(] 3 = (52)
dpr'\ on, oX s on,
The first initial boundary condition is straightforward and yields three equations
o=[1 o} & -1 % (53)
on,|, on,

The second initial boundary condition derives from the independence of the Hamiltonian
and the final location of the hop and it takes the form (the term in brackets is a 1x6

vector)

o_|om| em| |k, 54)
p Xo.p

For the final boundary condition, the obvious coinciding of rw and 7y is considered
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on, dpP', on,

The last three equations can be solved for 6Xo/0nr and 6P’y with the sensitivities at
different times related through numerically integrating the ODE for sensitivities. Finally,
the two quantities can be substituted back into the vo and vr partial derivative formulas to

obtain the full derivatives:

v, of oX
T Y a°]
y 2 1x,.5 My
- S (56)
2o L [—”—% (:f,ﬁ)ap""]
di, X \on, T T om,
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3.4 Multiple-Hop Calculations: The Ray-Path Solver

The work that is presented in this section utilizes the products of the past effort of Ref.
[16] that was reviewed in the previous section. In the following discussion, single-hop
calculations are extended to multiple-hop calculations that include determination of
bounce points locations and their sensitivities to parameters, group delay and range-
equivalent beat carrier phase measurement models, and measurements’ sensitivities to

input parameters.

3.4.1 Solving for the bounce points n

Determination of the ray-path for an HF signal that is traversing from a transmitter
beacon to a receiver involves solution of coupled, nonlinear equations that define the
physical characteristics of its trajectory. Suppose that one is given the following
information: the locations of the receiver and the transmitter, the number of ray-path hops
connecting them, and a model for the ionosphere. The goal of this section is to solve for
the position of the ground bounce points that satisfy the governing reflection equations.
In other words, this subsection develops a means of solving for the vector # as a function

of the transmitter location, the receiver location, and the ionosphere model.

An algorithm for determining the nonlinear functions #j(rr,pj) from their implicit
equations, or simply - a ray-path solver, has been developed. The ray-path solver
assumes fixed known locations for the signal’s start and end points, fixed ionosphere
parameters, and a known number of sequenced ray-hops that constitute the ray-path. The
ray-path solver’s outputs are the locations of the bounce points. Auxiliary outputs are the

partial derivatives of these locations with respect to the ionosphere parameters and their
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partial derivatives with respect to the location of the ray-path’s end point. An additional
output is a set of directional vectors for the incoming and reflected signals at the locations

of the transmitter, the bounce points, and the receiver.

The solution is obtained using Newton’s iterative method to solve:

0=g,(7,2:p,) (57)

@) =28, (710 5,) & (700D (58)

with respect to 7jj. Here, gm denotes the Eq. (32)-type formulation of the set of 3xm
equations that apply at the m bounce points of ray-path j that has m+1 connected hops. 7
is the stacked vector of 3xm coordinates of the ray-path's bounce points. The iterative
solution process uses linearization about a current guess to compute a solution increment.
It takes a step along the resulting search direction with a step-length scaling in the 7;
space that is chosen to ensure that the Eq. (58) new cost at the new guess of the solution
is lower than the cost at the previous guess. A line search is essential in order to
guarantee a decrease in cost and convergence to a solution. It starts by determining the
Newton step through linearization of Eq. (57) with respect 7jj, where all terms are

evaluated at a current guess 7j guess

- A=, (1) s 20 B ) (59)
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and where D denotes the total derivative operator. The solution for A7 ¢, that constitutes
the Gauss-Newton step (or correction vector), is computed by matrix inversion. The cost
function of Eq. (58) is evaluated next with a series of improved guesses for 7 that are

obtained using

L= AAR, L s @, =05 i=0,1,2,3,... (60)

=

The new guess for 7, 1jnew, €quals the value of 7jj; for the smallest value of i that yields a

reduction in the cost function.

For bounce point £, the required set of sensitivities that are included in the left most

term of Eq. (59) is obtained through computation of the total derivative

ng _ 5& aif,k + ng al’o,k +5§k 61)
Dn, aXf,k aﬂl OV aﬂz aﬂl

where g is the subset of the elements of gm, consisting of the three equations that apply at
bounce point 7, and where 7 is the /™ bounce point of 7. vex is the direction of the signal
that is arriving at point 7k, and vox is the direction of the reflected signal that is bouncing
off at that point. The complete set of sensitivities Dgm/Dij;j is obtained by performing the

above calculation for all bounce points of that ray-path.

Computations of 0gx/Ovek, 0Zk/Ovex and 0gk/Onx are analytical and therefore immediate,
as noted earlier. However, computation of Ovix/Onk-1, Ovex/Onx, Ovox/Onk and Ovox/Onk+1 18
implemented as an auxiliary of numerical raytracing, as described in the previous section.
Note that these are the only 71 partial derivatives of vgx and vox that are non-zero in Eq.

(61).
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3.4.2 Ray-path solver robustness

In order to maximize reliability and robustness of the ray-path solver, the algorithm
attempts to solve the minimization problem with several sets of initial guesses. Priority is
given to initial guesses that are input to the algorithm. The input of an initial guess is
optional. An initial guess might be input in the situation where the ray-path solution is
known to be close to a previously determined solution. When such a solution is not
available, the algorithm will use the output of a ray-path solver that is based on a
simplified ionosphere model as its first guess. This simplified solver has been used with
earlier work that has been described in Ref. [5] as its primary ray-path solver. It has been
observed that it yields an approximate solution for z that is typically close to the actual
solution, and therefore, it 1s beneficial to use that solution as an initial guess for the full-
model solver. Furthermore, it has been shown that the ray-hop segments that are obtained
with the simplified solver can be successfully used as initial guesses for the direction of

both incoming and reflected signals. This simple solver is discussed in Chapter 5.

Although uncommon, in some cases, use of the approximate solution as the first guess
will fail to yield convergence, making it necessary to obtain additional initial guesses. A
third type of initial guess is generated based on a thin-shell, latitude/longitude height
dependent ionosphere model. The height for this bi-quintic spline modeled thin-shell is
the height for which electron density reaches 80% of its maximal density. This method is
also discussed briefly in Chapter 5. A fourth type of initial guess is generated using a

constant-height thin-shell ionosphere model, with various heights considered.
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3.4.3 Ray-paths’ setup feasibility, solution existence and uniqueness

Every ray-path setup is evaluated for physical feasibility. With simulated test cases,
this evaluation is performed by trying to compute a raytracing solution using the true
ionosphere model. The answer for the feasibility question is often not straightforward as
it consists of two complementary questions: a) Does a solution for the considered setup
exist? b) Can the solution be found with the ray-path solver? In the absence of an ability
to distinguish between a negative answer for (a) and a negative answer for (b) during this
phase of assessment, failures in obtaining a solution for z# during this stage of assessment
are regarded as an indication for the setup being physically unfeasible. This approach
may raise the question of how many of the ray-paths that were declared unfeasible are in
fact feasible, meaning that an incorrect determination originated from a ray-path solver
failure. This is hard to determine given that the ray-path solver is currently the only tool
available for feasibility assessment. However, based on comparison between results
obtained with the current ray-path solver and results obtained with the simplified model
ray-path solver that was used in the work of Ref. [5] for identical setups, the author tends

to believe that most declared failures are due to physical infeasibility.

Ray-path solution uniqueness is a second matter that should be addressed. Multiple
solutions are theoretically possible if the cost function (58) has multiple minima that are

zero, as demonstrated in Ref. [29].

In the early work that utilized a simplified ray-path model, a given set of parameters
that includes transmitter and receiver position, an ionosphere model, and the number of

ray-hops sometimes yielded more than one possible solution. Such observations have not
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been made so far with the full, raytracing based model. This could be attributed to either
genuine uniqueness of solution with the advanced model, or to the fact that the set of
initial guesses for a given setup consists of vectors that are typically close to each other
and converge to the same solution because of their closeness. The current algorithm,

meanwhile, does not consider the possibility of having more than one solution for 7.

A future version of the algorithm may need to possess the capability to address such
ambiguities. A possible strategy might rely on tests where ray-path solutions are assessed
through a comparison between the magnitudes of several ray-paths’ residual terms (i.e.,
the differences between computed and measured group delays). Such a test is described

later where a modified Gauss-Newton method is presented.
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3.5 Measurement Models

3.5.1 The group delay measurement model

A typical signal runs from the transmitter, traverses through the ionosphere in a
refraction-based curved trajectory, bounces off of Earth and eventually arrives at the
receiver. Let pg/=P 'tm¢) be the true total range-equivalent group delay of the j ray-path,
which equals the true signal propagation time multiplied by the speed of light c. Let yg;
be the measured range-equivalent group delay of that ray-path, which equals the speed of
light multiplied by the difference between the measured reception time according to the
erroneous receiver clock and the true transmission time according to a calibrated beacon
transmitter clock. Let & be the receiver clock’s offset. Then the ;M group delay

measurement equation can be written as

(62)
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where

2| & 63
zg_cé‘ (63)

is the vector of unknown receiver position components and the range-equivalent clock-
offset, as in GPS, and where the computed functions /gj and /gj both model the true
range-equivalent group delay of the ;™ ray-path - pg;. The vector p; contains the
ionosphere model parameters that apply in the vicinity of that ray-path, and vy is the

measurement noise term. #, is an explicit function representation of the elements of 7j;
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that contains the ordered set of ECEF X-Y-Z coordinate functions of the /" ray-path’s m-

1 unknown bounce points in the following form:

The above non-linear functions use the geometric location for the receiver and the local

ionosphere model to calculate the scalar pseudorange value.

The measurement model in Eq. (62) applies for a total of N measured pseudoranges in
a given navigation/ionosphere-correction problem. For convenience in batch estimation,
this model is stacked into an N-dimensional vector equation model of all the
measurements. Let p equal the union of all p; vectors applying for all N ray-paths. The

stacked measurement model vector equation takes the form

T h,,(x,, %) ]
Vo hyo(x,,D,) Ve,
Vo3 hg,3 (Eg > 23) Vo3
- : +| (65)

Voo | | oy Gb ) | | Ve

=T e _hg,N(igaéN)_ L &N ]
or

Ve =h(x,,p)+Y, (66)
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The random noise vector, vg, is characterized by its mean and covariance:
Elx]=0: E[yy"]=F, (67)

where the noise covariance matrix, Ry, 1s typically a diagonal matrix. This
characterization of v is due to the fact that the effect of signals propagating at less than
the speed of light is accounted for and incorporated into the model, and therefore it is
reasonable to model the remaining ranging errors as zero-mean Gaussian errors. The

magnitude of the entries of R is discussed later in the context of performance analysis

3.5.2 The range-equivalent beat carrier phase model

Beat carrier phase measurements are based on a comparison between measured
changes in the received signal’s phase and changes in the phase of a receiver-generated
nominal replica signal. In effect, the beat carrier phase is the negative of the time integral
of the received carrier Doppler shift [30]. This measurement involves an unknown bias

term that originates from its integral nature.

The left panel of Fig. 5 illustrates the nature of the nominal signal frequency f(?) as it
is transmitted at a ground station (blue). It is characterized by a stair-stepping pattern that
has short, smooth transition phases. The same pattern is generated at the receiver for its
nominal replica signal. The frequency curve for the received signal (dashed green) is
shifted rightward due to finite propagation time delay. Received frequencies are
additionally slightly different due to Doppler shift that typically arises from the time-
varying spatial distribution of electron density in the ionosphere. Integration of the

signal’s frequency over time yields a quantity that is regarded as the signal’s phase, @(¢),
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which is continuously computed for both the self-generated nominal replica signal and
the received signal. The results, illustrated in the right panel of Fig. 5, take the form of

similar, yet not identical, monotonically increasing curves.
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Figure 5: An example of the time-dependent signal frequency and the corresponding phase. The
nominal transmitted frequency is shown in blue in the left-hand panel. The received
frequency is shown as the dashed green curve in the same plot. The corresponding
phases are shown in the right-hand panel.

The beat carrier phase is the difference between the two graphs at a given time. In the
example above, this difference has been measured at some instance in time between times
t4 and ts at which frequency shifts occur for the nominal transmitted signal. The range-
equivalent beat carrier phase equals the product of this beat carrier phase measurement

and the signal’s wavelength for the nominal transmission frequency that applies between

times #4 and #s.

Let p.;/=Pim() be the total true range-equivalent beat carrier phase of the j™ ray-path,
and let y.; be the measured range-equivalent beat carrier phase of that ray-path. Recall
that P is computed by integrating the differential equation in Eq. (10). Let Aw; be the
corresponding signal’s wavelength and let fij be an unknown bias term in units of wave

cycles. Then the j™ beat carrier phase measurement equation can be written as
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and where the computed functions /cj and /c; both model the ionosphere-refraction-
induced range-equivalent carrier phase change of the /™ ray-path — p.;. The vector S
consists of all unknown bias terms that apply for all N measurements. It should be noted
that only one element of £ is associated with a single measurement equation, but in most
cases a single element of § will be common for several ray-paths, as discussed later. This
fact will cause f to have fewer elements than the total number of ray-paths. The integer
function i(j) in the index of £ in Eq. (68) maps measurement ray-path indices j to indices

of their corresponding terms in £.

As with group delay measurements, carrier phase measurement equations are stacked

as an N-dimensional vector equation that takes the form

_yc,l 11 bz p) I
yc,Z hc,Z (EC’BZ) v
yc,3 hcs3 (EC ? 23) vc,3
e : | (70)

yc,j hc,j (Ec s 21) vc,j

- — _hc,N(zc’éN)_ - C’N_
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or, equivalently

(

. Tos D T , L
Ve o (. 2,) co 4B v,
yc’z c,2 (fR’Ez) 05 lzﬁl(z) Vc,z
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The last equation can be written in shorthand notation as
V. =h (1. p)+ 15+ AB+y, (72)

where A is a Nx/Np matrix and Np is the dimension of f. The random noise vector, v, 1S

characterized by its mean and covariance
E[v]=0 ; E[vx"]=R (73)

Finally, both groups of vector measurement equations, the first for the range-
equivalent group delays and the second for the range-equivalent beat carrier phases, can
be grouped into a single 2N-dimensional vector equation. The same can be performed

with the vector functions /g and 4. and with the noise vectors v; and v:

b
y{zﬂ ; ﬁ(&@{_g(zg E)}

= h.(x.,p
Ve h.(x.,p) (74)
R 0
l}z: l}g : R:E[LLT}: g
Y, 0 R
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Note that x;Cx. so that % is conveniently defined as a function of xc. The resulting

measurement model takes the form

v bz p)er s

3.5.3 Measurement model sensitivity matrices

Nonlinear gradient-based estimation algorithms, such as batch least-squares, require
partial derivatives of the measurement model with respect to the unknown estimated
quantities. These sensitivities must be computed at a succession of improved guesses of
the optimal estimates of the unknowns. In the present context, the required partial
derivatives are those of each /#; measurement model function with respect to the elements
of the unknown x and p vectors. The partial derivative with respect to the co element of x

is 1, consistent with Eq. (62). Other derivatives, those with respect to the elements of ry

and p, require special calculations.

Throughout the following derivation 7, is the stacked vector of coordinate functions
for all bounce points of the j™ ray-path, and p;j is the vector of applicable ionosphere
parameters, both have been defined earlier. Consistent with Fig. 4, the two vectors vrj and
vo,j are stacked vectors that hold the components of the Cartesian representation of the
unit direction vectors for the incoming and reflected rays of all bounce points of that ray-

path.

The sensitivity of the j range measurement to the input variables 7z and pj is obtained

by differentiating Eq. (62):
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Dh; _Oh; om, ok

Dy, o0On, oOr, oOr
R < r _f (76)
Dh,  oh; on, +8ﬁj

Dp, B on, p; p;

Note how Eq. (76) differs from the equivalent Eq. (14) in Ref. [5] because it includes a
direct dependence of EJ on pj that does not exist with the simplified ray-path model of the

earlier work.

Some of the terms on the right hand side of this set of two equations require a
complicated evaluation procedure. Recalling the variable dependencies in the model, the

gj system of equations for the /" ray-path can be written as

(77)

Differentiating Eq. (77) with respect to rx and pj using the chain rule yields linear
equations for the unknown partial derivatives Onm/Orr and Onm/Opj. Solution of these

equations yields the formulas:
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(78)

These expressions are substituted into the right-hand side of Eq. (76) to complete the

formulas for the required sensitivity matrices 0kj/Orr and Oh;/Op;

Of the terms on the right hand side of Eq. (78), the following terms can be evaluated
analytically through differentiation of the bounce point equations: 0gj/0vtj, 0gj/Ovo; and
Ogi/Ouj. Ease in computing these sensitivity Jacobians is essentially the motivation for

using the reflection formulation of Egs. (30)-(35).

The following terms, however, can only be evaluated in tandem with the raytracing
calculations that determine single ray hops: Ovtj/Opj, Ovoj/Op;, Ovt;j/Onm, Ovoj/Onm and
Ovo,j/Orr. The computation of these terms has been described in Section 4.2.6 that
presented single ray-hop numerical computations. That section also discussed the
computation of the terms 0h;j/Onm, Ohj/Orr and Ohj/Op; that appear on the right hand side of
Eq. (76). Computation of 0gj/Onm has been shown in Subsection 3.4.1 in the context of
solving for the implicit functions 7. Finally, the term Ouj/Onm is derived from the Earth’s

surface model.
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CHAPTER 4
BATCH ESTIMATION OF RECEIVER POSITION,
RECEIVER CLOCK OFFSET, AND IONOSPHERE
PARAMETERS

4.1 Batch Filter Problem and Solution

4.1.1 The nominal case

A batch filter has been developed. It estimates xc (or x; when only considering group-
delay measurements) and p by minimizing a cost function that includes weighted squared
differences between the measurements and their modeled values, and between the
estimated p elements and their a priori estimates. In the general case, the batch filtering

problem seeks the values that jointly minimize the cost function
Ji(x,, p) =3y —hx, p)I R '[y=h(x,,p)+3+{(p-p)'M ™ (p-P) (79)

where y is the 2Nx1 stacked vector of the N measured pseudoranges and N measured
range-equivalent beat carrier phases for the given N ray-paths. R is the square, symmetric,
2N-by-2N, positive definite measurement error covariance matrix (typically a diagonal
matrix), p is the a priori estimate of the ionosphere parameter vector, and M is the square,
symmetric, positive definite covariance matrix that models the uncertainty in the a priori
ionosphere parameter vector p. The elements of p consist of ionosphere parameters

which apply in the vicinity of the unknown, true signal ray-paths. The M matrix has row
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and column dimensions equal to the dimension of p. The role of the positive scalar valued

weighting coefficient  will be discussed later.

The batch least-squares cost function of Eq. (79) does not include a priori values of
the elements of x. with penalties for differences between those values and the estimated
Xc. This means that no prior knowledge about these terms is assumed, just as in standard

GPS point navigation solutions.

The minimizing solution to the estimation problem in Eq. (79) is equivalent to the
optimal least-squares solution to the following over-determined system of nonlinear

equations:

Ry R h(x,,p)

= +v, (80)
\/ZM_VZE \/EM—I/ZB

where RV and M2 are the inverses of the Cholesky factor square roots of, respectively,
the matrices R and M, and where vi is a zero-mean, identity-covariance Gaussian random

error vector whose norm squared is minimized by the batch solution.

The problem is solved with a modified version of the gradient-based Gauss-Newton

method that is described in the next section.

4.1.2 The case of a known receiver position and clock error

In some cases it is desirable to solve for the unknown ionosphere model (and,

potentially, for the unknown carrier bias terms) while the receiver location and clock
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offset are assumed known and fixed (or, at least, closely monitored and corrected). In

such cases, the optimization problem takes the general form

Jo(x,p) =1y = h(B, P R [y = h(B, P+ (p—B) M (p-P) (81)

If carrier phase measurements are not processed, the problem will reduce to estimation of

ionosphere parameters only.

4.2 A Modified Gauss-Newton Method

The Gauss-Newton method has been used to solve this estimation problem. This
method is described in Refs. [31] and [32]. It is additionally discussed in the context of
convex function optimization through nonlinear programing in Ref. [33]. It is a gradient-
based iterative method. Some adaptations to this method have been made in order to
address the special characteristics of the minimization problem, as described in the

following subsections.

4.2.1 The top-level procedure

Each iteration starts with guesses of the optimizing values of x. and p. First, it
linearizes Eq. (80) about these guessed values. Next, it solves the resulting over-
determined linear least-squares problem to get candidates for improved solution guesses
of xc and p. Finally, it searches along the line in [xc;p] space from the old guess to the

candidate new guess in order to find a new guess that reduces the cost Ji(xc,p).

58



Linearization of Eq. (80) about the current guess for the unknowns xc and p, xc guess and

Dguess, takes the form

[Rl/z . } Oh(x..p) oh(x.p) Ax
ox, op =
0 \/ZM_VZ Ze r {A_}
0 L P, (82)

R71/2 0 Z - ﬁ (Ic,guess > Bguess )
0 \/ZM—I/Z 1__7 —p

This over-determined system of equations is solved through a short series of

operations. Starting with a QR factorization, as in Ref. [31]:

o1 TR o 1|%(xop) on(x.p)
Q{ b}{ }a o

0x op (83)
0 0 M = =
\/z 0 1

Xe,guess s Pguess

Let

-1/2 _
za — R 0 Z &(L,guess 2 Bguess ) (84)
0 Jem p-p

then the vectors zp and z; are computed as follows:

| _ 1
{ :|:Qb z, (85)
z,

such that the dimension of zy is the same as the row/column dimension of Ry. The initial

Gauss-Newton step is obtained by computing
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s
Ap =R, z, (86)

New candidates for the optimal solution are computed using

Ec guess Ic guess Al(c
= =7 |+« (87)
E guess |, E guess AE
where 0=0.5"N, n;=0,1,2,... is a scaling factor that is used to guarantee actual reduction

in the cost function Ji(xc,p).

The processes of determining a and a resulting new guess for the unknown parameters
is performed in an auxiliary loop as follows. First, the corrected state vector is evaluated
using Eq. (87), substituting 0 for ngy in the expression for a. The resulting vector is then
used to reevaluate the cost function and compare it with the cost function’s current value,
i.e., the value that has been computed at the end of the previous Gauss-Newton step. If
cost decrease is achieved, then the processes is terminated and the new state vector that
has been computed for ng,=0 becomes the new guess for the unknown parameters.
Otherwise, a, the resulting new guess for the unknowns, and J; are evaluated for ng=1.
The cost function is again compared with its current value. This process will terminate
once cost reduction is achieved. This line search between the old guess and the new
candidate guess ensures convergence to a local minimum of Ji(x.,p) as the theory of the
Gauss-Newton method guaranties the existence of an ngy for which Ji is reduced — see

Refs. [32] and [34].
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The top-level procedure is repeated iteratively until the cost function is minimized.
The Gauss-Newton method with step-size halving is guaranteed to converge to a local
minimum, but the minimum is not guaranteed to be global. Testing experience indicates
that convergence to local minimum that is different from the global minimum occurs
rarely, if ever. Therefore, the algorithm seems to be insensitive to the initial guess and the
corresponding magnitude of the initial error and is nearly guaranteed to converge to its
global minimum. Validity of the latter statement is further demonstrated in the discussion

of Section 6.4.

4.2.2 Measurements exclusion

This is the first place where the algorithm deviates from the classic Gauss-Newton
method. The modified method uses an ad hoc approach that allows the sets of considered
measurements to change during the iterative process. This requires modifications to the

way cost function reduction is approached.

In the context of this study, the Gauss-Newton process is performed only once the
considered transmitters/receiver/ionosphere-model setup has proven to be physically
feasible, meaning that valid ray-paths have been successfully computed for all
transmitted signals. This means that failures in algorithm attempts to solve for the
location of the bounce points 7 of the /™ ray-path during the iterative process cannot be
attributed to physical non-feasibility. As earlier shown, solution for f7j; is obtained with
the ray-path solver. Occasionally, the ray-path solver may fail to solve for 7j; when called
by the primary, top-level Gauss-Newton process. This it is typically due to either a poor

estimate for the location of the receiver and the ionospheric parameters, or difficulties in
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the numerical raytracing computation for one or more of that ray-path’s ray-hops. In less
common cases the ray-path solver might fail due a poorly chosen initial guess for the

inner Gauss-Newton process of the solver.

Regardless of the cause, in such cases the particular measurements that failed to be
computable in the filter’s model are temporarily excluded from the set of measurements
that are considered. Such exclusions apply only at the current optimal step-size
determination step of the current Gauss-Newton iteration, where a particular value of a is
considered to evaluate a guess for the unknown parameters and the resulting cost
function. This means that an excluded measurement may be re-included in the next step-
size determination step where a different value for o is used, and will necessarily be
included in the next top-level Gauss-Newton iteration, where measurement models and

their sensitivity matrices are reevaluated.

Measurement exclusion means that cost function computations may take different
forms at different iterations, as different subsets of measurements are considered. The
consequent process of comparing evaluated cost functions at different iterations and

different step-size determination steps is as follows.

Suppose that the (b-1)* Gauss-Newton iteration has been completed. The b™ Gauss-
Newton iteration then begins with calculations that include an attempt to solve for all ray-
paths’ bounce-points #j, j=1, ..., N for all N available ray-path measurements. This
attempt is processed with estimates for x and p that have been obtained at the end of the
(b-1)* iteration, designated xb-1 final and pb-1.final. Let v be the subset of the full set of the

available N measurements, y, which consists of measurements that were determined valid
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in this attempt by the success of the algorithm at solving for their bounce points. yp0 has
Np,o<N elements, and the associated cost function that is computed for this subset with xp-
.final and pu-1.sina1 is denoted J(b,0). A series of computations for the current 5™ iteration is
performed next, resulting in a preliminary set of two proposed correction vectors that
could potentially become the new estimates: xp,0 and pp0. Next, an inner loop is executed
to determine this iteration’s optimal step size, i.e., a positive scaling factor a<l for these
correction vectors. This is the same sub-process that was briefly described earlier in
Subsection 4.2.1, omitting the details of how the cost function is evaluated. In the first
iteration of that inner loop, the step size factor a is taken as 1, and computations for all
ray-paths corresponding with ypo are then carried out. Those measurements that were
determined valid constitute a new subset, 11,1, that has My, elements where Ny 1< Np and
Vb,1SWb,0. J(b,1) is the computed value for the cost function that is now evaluated for yy 1
with xp,1 and py,1 - the new estimates for x and p that have been computed with a=1. Still
in the first iteration of the inner loop, it is required to determine whether a reduction in
the cost function has been achieved, by comparing J(b,1) with the cost function that has
been evaluated for the previous Gauss-Newton iteration. However, comparison can only
be performed when the two cost functions are evaluated with the same sets of
measurements, and therefore the cost function must be reevaluated with xp-1,final and pp-
1,final @S state estimates and yu,1 as the set of applicable measurements. The result, denoted
Jreeval(b-1,1), is now compared with J(b,1). If J(b,1) is less than Jreeval (b-1,1), then the
inner loop is terminated and x»1 and pp,1 become the updated estimates for the state
vectors, designated xp final and py final. Otherwise, a is halved, and the process for the inner

loop is repeated with a=0.5. This second iteration of the inner loop includes: (a)
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determination of valid ray-paths and the resulting Np> and yv,> where yb2Syb0, (b)
evaluation of the cost function J(b,2) with x> and py» — corrected state vectors that were
computed with a=0.5, (c) a second reevaluation of the cost function Jreevar (b-1,2) with xp.
1,final, Pb-1,final and p2, and finally (d) a comparison between J(b,2) and Jreeval (b-1,2). If
J(b,2) is less than Jieeval (b-1,2), the inner loop is terminated and xp» and pp> become the
updated estimates for the state vectors. Otherwise, the process will repeat itself until
J(b.,k) is less than Jreeval (b-1,k) for some k. Once reduction in the cost function has been

achieved, the algorithm will proceed to the next Gauss-Newton iteration.

By design this method is guaranteed to ensure a decrease in the cost function for two
sequential Gauss-Newton steps for a subset of measurements, but it is theoretically
possible that later steps would result in a higher computed cost function value because
different subsets of measurements may be used to enforce a cost decrease during different
steps. Theoretically, this optimization strategy removes the guarantees of convergence for
a Gauss-Newton method with step size halving, but it has not been observed to result in
significant convergence issues. The scope of validity for this assumption is examined in

Sections 6.2 and 6.3 that discuss algorithm functionality.

An alternative, more stringent approach to dealing with unsolvable ray-paths would be
excluding measurements, as with the current approach, except here measurements that
have been excluded in previous Gauss-Newton iterations would not be considered in later
iterations, until solution convergence has been reached. An obvious drawback for this

approach is the possibility that exclusion of too many measurements may negatively
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affect the iterative optimization process by degrading system observability and

potentially prevent convergence.

4.2.3 Measurement rejection

Measurement rejection mechanisms are common practice in sensor-based systems.
The potential of significant, un-modeled measurement errors that affect sensor readings is
typically handled with likelihood tests that are designed to detect and reject outliers as
bad data. Likelihood tests rely on measurement error models, where abnormal
measurements take values that are very improbable based on those models and, therefore,

are rejected.

While un-modeled sensor errors are not considered within the scope of this study, it
has been observed that due to known algorithm limitations, significant discrepancies
between computed and measured group delays / phase advances may arise, resulting in
sub-optimal corrections to the unknowns that occasionally cause solution divergence (see
Subsection 6.3.2). Unlike with the case of anomalous sensor reading errors, these
discrepancies originate from erroneous ranging predictions that are computed by the

algorithm.

Regardless of the cause, it is crucial that the algorithm will be able to detect any such
occurrences and handle them in a manner that is similar to the procedure that has been
discussed in Subsection 4.2.2. The most significant difficulty in detecting erroneous
computed pseudoranges is the fact that, due to their nature, these errors cannot be reliably

modeled or predicted. Let the /™ measurement’s residual be defined as
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Vj:yf_hj<icc’121) (88)

While the magnitude of valid v; terms will generally decrease in the iterative process,
it has been observed that the magnitude of invalid v; terms, for which #; is miscalculated,
varies in a manner that is not aligned with apparent trends in the way valid terms change.
Therefore, a procedure designed to detect erroneous computed ranges cannot rely on their
absolute magnitudes. Instead, the algorithm uses a relative criterion where the normalized

magnitudes of all residual terms are compared.

Consistent with the notation of Subsection 4.2.2, let yp 4 be the set of measurements
applying at the d™ inner loop of the ™ Gauss-Newton iteration. ypq has Nya elements,
corresponding to measurements that have been determined to be valid in a procedure of
the kind that has been described in the previous subsection. Next, residual terms for yp 4
are computed and stored as a vector — v 4. The element exclusion operator \ is used to

define a new set of vectors so that the vector yb,dj=(\_/b,d\vb,dj) includes all elements of vy 4
except for its /" element - Vb ds. The mean of the vector Vb, is a scalar that is designated

vE,dj. The j™ term of an auxiliary set of positive elements is computed by

1%
bd

Kpg = 1 (89)

/ 1 Npa~1 2 A
R
N1 Zl‘, (_b,dj() bd
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where Vb.di(i) is yb,dj’s i" element. On a more intuitive note, Kv,d; measures the magnitude of

the j™ measurement’s residual, normalized by the standard deviation that is computed for

all other residual terms.

Measurements whose corresponding x values are larger than 6 are excluded from ybq
for the remaining procedure of the ¢ inner loop step. This method has proven useful
with many, yet not all, cases where excessive residual terms prevented the solution from

converging.

4.2.4 Calculation of the M Matrix

As briefly mentioned earlier in Subsection 2.3.2, the M matrix is constructed from the
My matrix that was introduced in that subsection by considering only the rows and
columns of M that correspond with active grid nodes’ parameters. Consequently, M may
take different forms in different top-level Gauss-Newton iterations since ray-path
trajectories are re-computed at the beginning of each iteration. This should be accounted

for when cost function values are compared as discussed in Subsection 4.2.2.

An alternative approach would be to pre-determine the active grid nodes that may be
used throughout the entire process. This would result in static definitions of the p vectors

and M matrices.

4.2.5 The varying cost function

The motivation for including the right-most term in Eq. (79) is to ensure that
corrections that are applied to the ionospheric Chapman parameters (and their latitude
and longitude partial derivatives) are reasonable. Recognizing the potentially limited
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observability for some of the parameters, one would like to limit the magnitude of
corrections by including this terms that panelizes for big differences between the a priori

and the current estimates for these parameters.

In the previous, simplified version of the model that was used in Ref. [5], the { term in
Eq. (79) was equal to 1. Experiments carried out for the current model indicated,
however, that the significant nonlinearity which characterizes the model, along with the
fact that the ionosphere model terms in the state vector are natural logarithms of physical
quantities, could result in unreasonable corrections being applied to those parameters,
ultimately causing frequent algorithm divergence. It has been observed that excessive
corrections are mostly applied right after the algorithm step where the search switches
from the limited-corrections mode of Case 2, as in Subsection 4.2.7, into the full-
corrections mode of Case 1, as in Section 4.1. These findings indicated a useful ad hoc
modification for the { term. Many experiments were conducted in order to determine a

reasonable formulation for ¢, With the formula

S =1+107" (90)

where y=5 and ki is the index of the Gauss-Newton iterations that is initialized to 1 at the
first full-corrections mode iteration, a high convergence rate for the whole algorithm has
been achieved. It should be noted that the use of this term should not have any impact on
the optimal solution, in comparison to the case of (=1, as it converges quickly to 1 as ki
increases. For the initial steps with small ki, this modification to { has the effect of
limiting the magnitudes of the ionosphere parameter corrections during the initial phases

of the algorithm.
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4.2.6 Varying sets of carrier bias terms

It is possible that due to either measurement exclusion, as in Section 4.2.2, or
measurements rejection, as in Section 4.2.3, for a given Gauss Newton iteration none of
the measurements that are related to a particular bias term f. are used. This would make
fe temporarily unobservable and therefore the algorithm will exclude that term from that

iteration’s states vector.

4.2.7 Iterating when position solution is far from convergence

Recognizing the limitations of the first-order Gauss-Newton method when it comes to
arriving at a solution starting from a guess that is far from the receiver’s true location, the
algorithm distinguishes between two cases. In the nominal Case 1 that has been described
above, the position solution is assumed to be close to convergence. In this case, the
algorithm will consider variations in the three components of the ECEF representation of
the receiver’s location rr, variations in the range-equivalent receiver clock offset co,
variations in the carrier phase measurement biases £, and variations in the ionosphere
parameters of all bi-quintic spline nodes that affect the ray-paths. In Case 2, the position
solution is assumed to be far from convergence. Consequently, only group-delay
measurements will be processed. In addition, the algorithm will only consider variations
in the receiver position’s latitude and longitude and in its clock bias. Variations of
altitude and of ionospheric model parameters are excluded. Experience has demonstrated
that this modification tends to ensure convergence when starting far from the solution.

The simplified cost function for this simplified search takes the following form:
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Jy(x) =3y, —h (. DI'R [y, ~h(x,.P)] (91)

—&

The corresponding over-determined system of equations in linearized latitude/longitude

form is

or Or 4¢
i Oh ~ =, 0
9 o 04 A4 |+v,  (92)

Rg_l/z [Xg _hg (zg,guess’g)] = Rg X
- (Ig,gueswg) O 0 1 A(Ca)

where Xgguess = [Ir(Pguess,Aguessslguess);(CO)guess] 18 the guessed solution vector for the
receiver Cartesian position and clock offset, with the position being dictated by the
guessed WGS-84 latitude @guess, longitude Aguess, and altitude leuess. The latter quantity
remains fixed during this initial part of the optimization, but @guess and Aguess get updated,
as does (co)guess. Their updates are the increments that are solved for in the over-
determined linearized system of equations in Eq. (92). As with the nominal case, scaled-
down increments are used, if necessary, in order to ensure that /> from Eq. (91) decreases

for each solution increment.

4.3 Predicted Estimation Errors

The unknown vector x consists of a combination of (i) the unknown receiver position
(i1) the receiver clock error and (iii) carrier phase bias terms. Two forms for x that
correspond with two different sub-cases have been defined in Egs. (63) and (69).
Regardless of the exact form that x takes, this vector, along with the vector of unknown

ionospheric parameters, p, is used to define a combined error vector A as follows:
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The computed set of group delays and beat carrier phase equivalent ranges, A(x,p), is
evaluated at the erroneous estimates x and p.> It can be evaluated and related to
h(Xtrue,pirue) through a first order approximation that is performed around the true values

Xtrue and Dtrue:

h(x, )% h( s P )+ H Ax+H Ap

94
HX = % ; Hp — Z_ﬁ ( )
- Jrueagtme B )ftruesgtrue
The full cost function that was introduced in Eq. (79) can now be written as:
Ji(x, p) =3[y =h(x, p)]' R [y —h(x, p)l+5(p—P)' M ' (p-Dp)
1 T
& E[Qz ~H (x-%,.)-H,(p-p,.)]
(95)

‘R [QZ —-H, (ﬁ_ﬂrue)_Hp (E_Etrue)}

1

+5[1—) P ]T M []_) P _gp]

Minimization of J; is obtained by setting all of its partial derivatives with respect the

unknowns x and p to zero.

2 For the remainder of this chapter, a general vector x is considered. It may take the form of x. or of x,,
depending on the case. The particular form chosen has no influence on any of the presented
derivations.
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X
a T
J. _
Q:(a_le - HpTR I[Uz_Hx(E_LW)_HP(B_E’”‘e)} (96)
+M_1|:£_£true £P]
The solution is
i i HXTR_IKZ Lme
A= S1 T p-1 -1 o7
p Hp R KZ+M &, Prrue
where
H'R'H
p (98)

A

{HXTRIHX
T p-1 T p-1 -1
H'R'H, H'R'H +M

and the resulting predicted estimation error takes the form
(99)

~Xe H ! 0 X
= _ Sl—l XT R_IXZ +S1—1 NN,
H, M

!

where N, is the number of elements in x . The separate, independent contributions of the
two different sets of errors, v, and ¢, are distinctly evident. It is worth noting that for the

case of a zero mean Gaussian distributed g,, the estimation error Ap is unbiased according

to the linearized model of Eq. (99).
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4.4 The Mean Square Error Matrix and the A Posteriori Covariance

Two tools for evaluating the performance for the proposed system are the mean square
error matrix and the a posteriori covariance matrix for the errors in the estimates of the
vectors x and p. Two different cases are considered. The first case assumes uncertainty
for both x and p. In the second case, ionospheric modeling errors are modeled as

constants rather than random samples.

4.4.1 The case of random ionosphere parameters errors

The associated estimation mean square error matrix can be computed based on the
computed linearized approximate error. If g, is sampled from a Gaussian distribution that
satisfies E[g,]=0 and E[g,_e," |=M, then the estimation error covariance matrix is given by

the standard form

(100)

While this sort of computation may provide a certain understanding of the system’s
anticipated performance, its most distinct weakness is the limited information that such
analysis would provide about how errors are affected by particular a priori ionospheric
model errors, or, more precisely, how positioning and timing errors might be related to
the magnitude of ¢, as defined in Eq. (24). Such observations can be made with test cases

of different ¢ values that are kept constant. This is the case of a constant g,. The analysis
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given in Eq. (100) only gives an approximation of the expected statistical impact of errors

in the a priori ionosphere.

4.4.2 The case of constant a priori ionosphere parameters errors

An important case for error analysis is the case of constant g,. The scenarios included
in this analysis consist of cases for which the errors in the a priori ionosphere model are
kept constant, with different characterizing ¢ values that are significant to the discussion

that follows. The mean square error matrix in this case takes the form

- -1 HxT -1 0 0 -T
=57, |R [H, H, |+ 0 e |5 (101)
—P—P

p

The right-most term in brackets embodies the contribution of the error bias that arises
from the constant a priori ionosphere model error. This term should be omitted when one
is interested in evaluating the distribution of position errors about their mean. The result
constitutes the covariance matrix for the errors in the estimates of the vectors x and p

about this mean:
-X i-x T HT
—frue :||:—A —rue :| Svl—l |:H,\:T:| R—l I: Frx F[pil Swl—T (102)

4.4.3 Ilonosphere model covariance mismatch

This subsection considers the case where the matrix that is used in the optimization

process computation, M., is different from the matrix M that truly represents the
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correlation between the various ionosphere parameters. The cost function of equation

(95) takes the following form in this case:
Jin (X, p) =3[P =h(x, p)]' R'[P=h(x,p)]+5(p—P)' M, (p-DP)
1 T
~ —[22 -H, (x-x,.)-H, (g—g,,w)}
) (103)
R 0.~ H,(x-x..)-H,(p-p,.)]
1 T
+E[£ _Btrue _ép Mc |:£ _Etme _—p:|
The estimation error is
ﬁ—X, HT %N
Ay 2l T =8, IR S, T e
=M |:£ _Etme:|M 1,M |:HPT:| =z LM |:Mc_1 =p
(104)
H'R'H, }

A N T

X— X—X
23 éE T —rue T —rue

B_Etrue B_Bnuc

(105)
H' 0 0
-1 x -1 -T
=Sy l:l:HpT:IR [Hx Hp:|+[0 MC_IMM_IH LM

4.4.4 Measurement noise covariance mismatch
When the measurement noise covariance matrix that is used in computations, R, is

different from the R matrix that holds values for true measurement noise, the cost

function that is used with the algorithm takes the form
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Jox(x, p) =3[P~ h(x, p)I' R'[P~h(x, p)]+3(p~P)' M (p~D)

~ %[Qz -H, (E_Lrue)_HP (B_BIVW)JT
(106)

‘R [gz -H, (x-x,,)-H, (B‘Bmﬂ

c

Sle-p-e] M [oop, 2]

The predicted estimate error becomes

'ﬁ_xrue HT X
éké{r - } —SIR‘{ }RwS[ “ff}gp
£ by o . (107)
T -1 T -1
o & HIR7H, H'R'H,
YO \HRT'H, HR'H,+M"

Assuming a constant g, as in Subsection 4.4.2, the corresponding mean square error

matrix is
~ ar A T
had A E_L}’M(’ E_Lrue
X, =E|. .
]_)_Etme B_Enue
__ (108)
L HT 0 0 )
:SlR[HT:IRII:Hr Hp}_i_{o Mlee™M I:HSIRT
L™ p p

4.4.5 The horizontal and vertical position error ellipses
A useful tool in positioning performance analysis is the error ellipse that is a two-
dimensional confidence region. Let Ag and An denote the position error random variables

in an east-north reference frame (EN). The combined horizontal error covariance matrix

is given by
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where Ag and An designate the position error variables’ expected values. Let di and d»
denote 2gn’s eigenvalues and let vi and v2 denote 2en’s corresponding eigenvectors. A
new reference frame J is defined such that its origin is located at (A, An) and whose axes
are aligned with vi and v2. A corresponding coordinates system (41, 42) where distances
are measured along F’s axes is defined as well. The random variable

Al A7
dl d2

S =

(110)

has Chi Square distribution of degree 2, then p(s<4.605)=0.90 defines an ellipse that is
guaranteed to contain 90% of the plotted errors [35]. This ellipse’s major and minor axes
are aligned with F* and their lengths are 2,/4.605d; and 2,/4.605d,. The vertical 90%

error ellipse that considers errors in the east-up (EU) plane is computed in the same way.

Figure 6 illustrates the two reference frames and the 90% error ellipse for an arbitrary

set of position east/north error pairs.

North error

EU

East error

Figure 6: Illustration of: the NE or EU reference frame, the f reference frame, the 90% error ellipse
and its two axes.
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CHAPTER 5
A SIMPLIFIED MODEL-BASED ESTIMATOR

Previous chapters presented the most recent phase of this study that includes an
advanced physical model for propagating signals and an optimal batch filter that has been
developed to solve the resulting optimization problem. Later chapters will present
analyses of filter algorithm performance and behavior. It is presumed that the use of
advanced models for propagating signals gives a reasonable level of fidelity to that

analysis that cannot be achieved with very simplified models.

However, the discussion will not be complete without a review of a second, simplified
model that has been used in earlier phases of this study. The simplified signal
propagation model, and an associated batch filter that addresses its unique characteristics,
were first introduced and discussed in Ref. [5]. That paper presented preliminary results
for the HF navigation concept. Moreover, it should be noted that the simplified model,
along with many of the associated filter’s components that have been developed, are
practically used with the current algorithm’s ray-path solver, as described in Subsection

3.4.2.

This chapter will cover the simplified models’ physical and mathematical components.
It will highlight the differences between the simplified filter and the filter that is the main

subject of this dissertation, and it will list unique characteristics for the former.
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5.1 Physical and Mathematical Models

5.1.1 Earth and the ionosphere

The simplified model shares the same Earth and ionosphere models that are used in
the advanced model, except the effect of Earth’s magnetic field is not considered. The
most significant difference between the two models lies in the manner at which signals
travel through the ionosphere, and in particular, in the nature of signals’ trajectories and
ionospheric bounces. In the simplified model, HF signals are assumed to reflect off of the
ionosphere in a specular manner. A reflection is assumed to occur when the angle of
incidence and the local index of refraction ngmp satisfy a condition of total internal
reflection. Using Snell’s law, the internal reflection condition is satisfied when the angle
of a refracted signal would be 90°. The condition used here incorporates an
approximation for the vertical variations of ngm, that assumes it to equal 1 below the
reflection point and to transition abruptly to its value dictated by N(r) at the reflection
point. Let yo be the angle of incidence as measured relative to the local unit normal

vector of the local constant electron density surface
Uy, ==VN,(2)/|N. (2)) (111)

Then these assumptions lead to the following version of Snell’s law for the reflection

condition:

1-sin(y,)=n -sin(90°)=n

simp

(112)

simp

At a reflection point, the phase index of refraction depends on electron density Ne(r)

and on the signal’s frequency w. This dependency takes the form:
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n,, (r)=1-C,N,(r)]@® , C =3182.73849408628 (113)

where N.(r) is given in units of electrons/m> and w is given in units of radians/sec. This

simplified refractive index model ignores the effects of the Earth’s magnetic field.

5.1.2 Bounce points, ray-paths, and the measurement model

Unlike with the full model for which signals’ speeds vary, ray-hops are curved, and
ionospheric refractions/reflections are calculated with a raytracing engine, the ray-paths
of this simplified model are ordered sequences of straight line segments. Each line
segment is defined by its two end points. For a connected ray path of m line segments,
m+1 points are defined as follows: The first point is the known location of the
transmitter, g. The second point is a bounce point located on the ionosphere surface. All
other bounce points are alternately located on the Earth and the ionosphere. The last point
is the position of the receiver, rr. As with the full model, bounce points are defined in the
ECEF Cartesian coordinate system. The vector of unknown ECEF X-Y-Z coordinates for

the j™ ray path’s bounce points, takes the form

T
Qsm’j=[X1,X2,...,X Y.Y, meZper-anfl] (114)

m=1%"12725°°°>

and consists of coordinates for two types of bounce points. Odd-indexed X-Y-Z trios
describe the position of ionosphere bounce points, while even-indexed X-Y-Z trios
describe the position of Earth bounce points. Note that the former type of bounce point

does not exist with the advanced signal propagation model.
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Let psimpj be the true length of the ;M ray-path. Let ysmp; be the measured
pseudorange of that ray-path, which equals the speed of light ¢ multiplied by the
difference between the measured reception time according to the erroneous receiver clock
and the true transmission time according to a calibrated beacon transmitter clock. The j

measurement equation can be written as

Yoimp. = Nsimp. (% P ) Ve = My (_rR P ) +eo+v,

(115)

3

= Ny, [IR > Msimp, j (IR Py )] +teo+v,
where Asimpj and Zsimpj are alternate forms of the model for psimp,j.

Equations (62) and (115) that describe the group delay measurement equations for the
advanced and simplified models, respectively, may appear similar. However, the two
equations differ in significant ways. The scalar function ﬁg,j computes the range
equivalent group delay for a propagating dispersive signal, that depends on pj directly, as
well as indirectly through 7simpj. In contrast, Asimpj returns the total Euclidian length of a
segmented ray-path, that does not depend directly on pj. Moreover, the implicit functions

nj(re,pj) and 7simpj(7r.pj) take different forms for the two models.

5.1.3 Bounce point equations

As described in the previous Subsection, the simplified ray-path model assumes
bounce points on both the Earth’s and the ionosphere’s “surfaces”. For Earth surface
bounce points, the same set of equations holds true as is given in Subsection 3.2.2 for the

advanced model.

81



For ionosphere bounce points, Type-B and Type-C equations take the same form as
Earth bounce points, except the surface normal vector defined in Eq. (111) must be used
in place of the surface normal defined in Eq. (34). However, Type-A equations take a
different form that originates from the different reflection condition that is considered for
the simplified model. Namely, for the & bounce point, the modified Type-A reflection

condition equation can be written as

k (Xf:k ’ l)‘),k > Qsimp,k > E.cimp,k )

0=g,

simp »

ey el

C T T
Xf’,k zsimp,k a)2 1 Xf,k Xf,k Zsimp,k Zsimp,k

(116)

The direction vector vr is computed by differencing line segment end points that are

found in ry, g, or #simp,;. Reference [5] demonstrates how this equation is derived from

Egs. (112) and (113) of this dissertation.

5.1.4 Solving for the bounce points 7y,

A solution for the unknown location of Earth and ionospheric bounce points is
obtained through a minimization of the cost function

T 2t s Wimp ) = %gs,-mp,m (Tanps 2o P) G (M s ) (117)

using a process which is similar to that of the full-model which was described in Section
3.4.1. The minimization is with respect t0 #simp,m. Zsimpm denotes the Eq. (32)-type
formulation of the simplified-model bounce points equations. Minimization is performed

using a method that is similar to that of the full-model, except that with the simplified
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model, the sensitivities of bounce points equations with respect to their position are

obtained analytically.

An initial guess for zsimp,m 1S generated using a thin-shell, latitude/longitude height-
dependent ionosphere model. The height for this bi-quintic splined modeled thin-shell is
the height for which electron density reaches 80% of its maximal density. This initial

guess is generated based on the assumptions that:

a) The set of a ray-path’s bounce points (both Earth and ionospheric) lies in a
plane that contains the great circle that is defined by that ray-path’s start and
end points

b) The distance between adjacent Earth bounce points is proportional to the
height of the thin shell, measured at the mean-point between the two bounce

points

Additional initial guesses are generated in a similar way, where shells with fixed
heights above the WGS-84 are considered instead of the 80% shell that has been defined

above.
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5.2 A Batch Filter for the Simplified Model

Since the fundamental optimization problem that is addressed with the different batch
filters that are used in this study is independent of ray-path models, the earlier form of the

batch estimation cost function is very similar to that of Eq. (79). It takes the form

Jl,simp (Eg > E) = %[Xsimp - ﬁsim‘n (zg b B)]T R_l [X - ﬁximp (Eg > £)] (1 1 8)

+3(p-pP)'M " (p-Pp)
It omits the { scaling factor which is used with the advanced estimator. ysimp consists of
group delay measurements exclusively. Therefore it is an Nx1 stacked vector, and R is an
NxN measurement error covariance matrix. As with the advanced filter, a modification of
the cost function is used when the position solution appears to be far from convergence. It
takes the same form of Eq. (91) except that the /i, terms in that equation are replaced by
hsimp, and only the latitude, longitude, and clock offset of the user receiver are optimized.

The altitude and the ionosphere parameters are held constant.

5.2.1 The Modified Gauss-Newton Method

The top-level procedure for the Gauss-Newton method that solves the optimization
problem for the simplified ray-path problem is similar to the procedure that has been
described in Subsection 4.2.1. Namely, it consists of the same sequence of steps:
linearization, determination of a descent direction using matrix methods, and
determination of a step size scaling parameter that yields reduction in the cost function. It
also includes the measurements exclusion feature. It does not, however, include a

measurements rejection mechanism.
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5.2.2 Measurement Model Sensitivity Matrices

The simplified model signal propagation directions are determined directly by the
location of the bounce points. The bounce point locations are dependent on the position
of the receiver and on the values that the ionosphere parameters take in the vicinity of a
ray-path. Therefore, the variant of Eq. (32) that applies to the simplified filter takes the

form:
Q:gsimp,k(Q;imp,j[fR’éjJafRaﬁj) (119)

Differentiation of this equation with respect rr yields and solution for the bounce point

partial derivatives with respect to rr yields:

~ _l ~
Oy __| By | OBy (120)
o My | O

where Zsimpj consists of all bounce point equations that apply for the j™ ray-path. The
matrix of partial derivative sensitivities of the /™ measurement model pseudorange to

changes in the estimate of the receiver’s position can be written as:

absimpaj — aﬁ”mp’j aQSi’"P,,i + aﬁsimp»j —
O My, O Or
; P N (121)
_ aﬁ“'impﬂf agsimpv.f agfimﬁ,j + aﬁvimp:f
aﬂsirnp,j 0 Nsimp,j 61’3 arR

Similarly, taking the partial derivative of the gsimp equation with respect to pj and

solving the bounce point partial derivatives with respect to p; yields:
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~ -1 ~
Mingy _ | Bongs | Binp (122)
62 ; agsimp, J aEJ

The partial derivative the ;M modeled pseudorange with respect to changes in the

estimates of the ionospheric parameters is

~ ~ ~ - -1 __
absimp,j — ailsimp,j 8Qsimp,j + allsimp,j - _ aﬁlsimp,j |: agsimp,j :| agsimp,j (123)
P Oy P P, OMsinp,; | Oy, P,

0

It should be noted how the above sets of measurement sensitivity matrices are very
different from their advanced-model equivalents, whose formulation and derivation are

presented in Subsection 3.5.3.

5.2.3 Calculation of Jacobian matrices

The sensitivity matrices computing procedure for the simplified model’s batch filter
shows some resemblance to the procedure that is performed for the full model. The
partial derivatives of Asimp With respect 77; and rr are straightforward due to the simplistic
nature of Asimp. The manner in which the gsmp bounce-points equations depend on rx
makes the computation of gsimp/Orr Somewhat more involved. However, computation of
Ogsimp/Op; is complicated and tends to be demanding in computation time. Finally, special
care should be taken with the Jacobian dgsimp/07simpj. The details of this computation are

presented in Appendix B.
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5.3 Performance

A complete description of a limited performance analysis that has been conducted
with the simplified ray-paths model was presented in Ref. [5]. This analysis’s highlights

are additionally reviewed later in Section 7.1.
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CHAPTER 6
ALGORITHM OPERATION AND VALIDATION

This chapter discusses various aspects of implementing the concepts and mathematical
derivations that have been presented in the previous chapters, in the form of a digital
simulation that is used to assess the developed batch filtering algorithm. This truth-model
simulation is presented next, in the first section. Batch filtering algorithm functionality
and limitations, including solution convergence, is the subject of following sections. The
chapter concludes with a simulation-based validation for the different forms of filter

statistical analyses that have been derived.

6.1 Truth-Model Simulation and Batch Filter Monitoring

A MATLAB® truth-model simulation has been developed for algorithm validation,
algorithm assessment, and performance analysis. General comments on implementation,

coding concepts, and hardware are included in Appendix C.

The simulation enables testing of any desired combination of ground station array,
ray-path characteristics, measurement error models, ionosphere error models, and other
parameters. As discussed earlier, it has been shown that not all such combinations are
physically feasible. Feasibility of a given configuration is tested during the first stage of

simulation execution.
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Figure 7 illustrates a typical simulation setup, showing the different curved signals’
ray-paths, starting from ground stations and eventually arriving at the UE. Different ray-
paths which are transmitted from the same ground station are shown in different shades
of green, with gray circles denoting their ground bounce-points. The blue circles in the
figure denote ground stations, with the corresponding broadcast signals’ identifying
indices shown next to the circles. The magenta diamonds with adjacent three digit
numbers denote ionosphere model bi-quintic spline grid nodes, with their identifying
numbers next to them. The North American coastline is shown as a thin blue line. The
dashed red line illustrates the Gauss-Newton algorithm’s convergence performance. It
plots a history of successive receiver position solution guesses. The receiver’s true

location is marked with a black, thin X.

I oge |

— =

Figure 7: A typical test case setup used with the truth-model simulation.
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The duration of the batch filter execution for a single test case in an execution mode
known as Nominal Scenario Mode is usually on the order of hours. Consequently, filter
performance simulations are closely monitored during their execution. The monitoring
screen, shown in Fig. 8, presents data about progress of the solution process. The upper
screen presents the results for the sub-processes that are conducted for every ray-hop of
all ray-paths at all process steps. These steps include all top-level Gauss-Newton
iterations and their intermediate step-size factor a determination sub-processes. Table
rows designated <GN> are associated with Gauss-Newton iterations. The number on the
right indicates iteration number. Table rows designated alpha are associated with step-
size determination steps for those Gauss-Newton iterations. The numbers on the right
indicate halving-counts, so that alpha I indicates no halving at all, alpha 2 indicates one
halving, and so on. Each row in this plot, either a Gauss-Newton iteration or one of its
halving steps, is regarded as a numbered process step. Columns are associated with ray-
paths and ray-hops. For instance, the column labeled 9.3 presents ray-hop computation

2

results for the third ray-hop of the ninth ray-path. A green cell with a ‘0’ indicates a
success in a ray-hop solving attempt. A red cell indicates a failure, where the
accompanying number provides information on the nature of that failure. Gray cells
indicate unprocessed ray-hops. This may be the case when preceding ray-hop solving
attempts for that ray-path have failed. It should be noted that this table does not provide

detailed information on ray-path solving inner processes expect for their final outcome

which is reported using color/number code as mentioned above.
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The circular plot in the bottom left corner of the screen presents the sequence of
horizontal position errors in a plane that has an east/west axis and a south/north axis. This
sequence starts at the point that is marked ‘1’°, which is the error for the position a priori
guess. The radial scaling for this polar-type plot is logarithmic. Other panels provide
information on how clock offset estimation, the lonosphere Error Index - £, carrier bias
estimates, and the cost function evolve throughout the batch-filter algorithm execution.

This is discussed later in the context of algorithm functionality and robustness.
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Figure 8: An example process monitoring screen for test case EO in Nominal Scenario mode.
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6.1.1 Execution modes

In Nominal Mode, a single simulation execution is performed. No random
measurement noise is added to the simulated pseudorange or beat carrier phase
measurements. Errors are potentially enabled, however, for the a-priori ionosphere
model. This means that the user can choose to use an erroneous ionosphere model for the
a-priori ionosphere model that is input to the main solver algorithm. That is, the a-priori
ionosphere model parameters that are input to the batch filter differ from the truth-model
parameters that have been used to generate the pseudorange and range-equivalent beat

carrier phase measurements using raytracing calculations.

This execution mode has proven essential for algorithm validation. It is also used with
preliminary feasibility tests and algorithm assessments that evaluate the batch filter’s
behavior, particularly in the context of robustness. Another important use of this mode is
the proximate prediction for the batch filter algorithm’s performance in the presence of

measurement errors that has been described in Section 4.3.

Performance Analysis Mode is usually used with Monte Carlo analysis. In this type of
study, multiple sub-case executions that originate from a single nominal scenario are
conducted. These sub-case executions are regarded as rums. Each batch filter run is
executed with a unique set of pseudorange measurements that are generated by adding
measurement noise errors to the pseudoranges and beat carrier phases from the
corresponding nominal scenario. The nature of the applied errors is discussed later in the
context of performance analysis. lonosphere model errors are typically kept constant

throughout a single Monte Carlo test case execution for reasons that are discussed in the
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performance analysis section. An exception is the process of full covariance analysis and
validation that is presented in Section 6.5.1, for which random a-priori errors are
generated such that each sub-case is given a unique set of a-priori ionosphere parameter

C1TOorS.

6.1.2 Data generation

Computation for an N(r) truth model utilizes a Chapman profile that is fit to an IRI
model for a particular time. The model used in the simulation utilizes the release 2012
IRI Fortran code available on the official NASA website [36]. Settings for the binary
options variable jf are ‘true’ values for all of its entries except for entries 2-6, 21, 23, 28-
30 and 33-35. Among other things, these settings choose the URSI model rather than the
CCIR model for the quantity foF2, and they turn off the auroral boundary and the auroral
E-storm model. Additional details about these settings can be found at the NASA website

that provides the IRI model.

A Chapman vertical electron density profile is fit to the IRI data, and this Chapman
profile is the assumed truth profile at a given latitude and longitude. The fit is performed
with a nonlinear least squares technique that minimizes the sum of (a) the squared
difference between known and modeled electron densities at specific heights, and (b) the
squared difference between known and modeled integrated electron density, which is also
known as the Vertical Total Electron Content (VTEC). These two different contributions
are weighted. This fitting procedure is carried out at each bi-quintic spline grid point to
compute the log(fmax), log(hs), and log(VTEC) values at each of these points.
Afterwards, the needed 8 partial derivatives of each of these quantities are computed at
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the grid points by applying smoothness criteria to the resultant maps of log(/max), log(/s¢),
and log(VTEC). The details of the fitting procedure and the spline derivative calculations

are given in Section IV of Ref. [26].

This manner of generating a truth electron density model is thought to be reasonably
representative of a possible real spatial electron density distribution. The most significant
limitation of this approach arises with cases where the considered electron density
distribution is characterized by abrupt changes in the height-dependent electron density
profile. In such cases, the Chapman-based model fitting process is expected to exhibit

significant residuals, indicating a subpar fitting.

The truth-model simulation and all of this dissertation’s models take no account of HF
radio wave absorption in the daytime D layer of the ionosphere. During the day, D-layer
absorption could render some of the modeled ray paths unusable, as discussed in Ref.
[37]. This does not occur at night, when the D-layer’s electron density diminishes to a

negligible value. The impact of D-layer absorption is left for a future study.

The simulation uses truth values of the x and p vectors in the vector pseudorange
measurement model of Eq. (65) and in the vector beat carrier phase measurement model
of Eq. (70). These measurement values are input directly into the main batch filtering

algorithm with or without errors added, as mention above.

The simulation also generates an a priori estimate of the ionosphere parameter vector
for use in the cost function of Eq. (79). This a priori p vector differs from the truth p

vector in significant ways. The method of generating appropriate differences, perhaps
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differences that are even a bit larger than one would expect in a real situation, is to use
the IRI model with a significant time difference to generate p via Chapman-profile fitting
at a different date than the date used to generate the truth p by the same fitting technique.
Such a choice ensures that the truth-model simulation is not using an unreasonably
optimistic model of how well the filter’s known p would approximate the truth

ionosphere.

6.2 Normal Batch Filtering Algorithm Operation and Functionality

A key question is whether, given a setup that has been examined and proven
physically feasible, the algorithm is capable of causing its estimates of the unknowns to
converge to the setup cost function’s theoretical global minimum. In the early study of
Ref. [5], it has been demonstrated that the estimation problem’s significant nonlinearities
do not pose a hurdle that prevents the solution from converging. Hundreds of test cases
that have been studied in the scope of the current study have shown that, when a setup is
physically feasible, the batch filtering algorithm will be able to reach solution

convergence in the vast majority of cases.

6.2.1 Ray-path solving attempts

The iterative top-level Gauss Newton process will typically exhibit the characteristics
of the process that is documented in Fig. 8. This figure shows the process monitoring

screen for a Nominal Scenario Mode execution of Test Case EO. Complete descriptions
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of the setup for this test case and other cases that are discussed in this subsection are

provided in the results presentation of Chapter 7.

Computations for the different ray-paths, monitored in the top window of Fig. 8, might
occasionally fail during batch estimation due to causes that will be discussed later. Yet, as
the process progresses, the number of failing ray-path computations will decrease, so that
for Gauss-Newton steps which are near the final step, at which convergence is achieved,
the vast majority of ray-path computations are expected to succeed. Position error
(plotted in the polar, logarithmic-scaled bottom left panel), may start as large as
thousands of kilometers. The error decreases with each iteration of the Gauss-Newton
process, until it eventually reaches its final value. Similarly, clock errors will generally

converge to values that are very close to zero.

At the Gauss-Newton iteration level, proper algorithm functionality is first and
foremost the ability to successfully compute trajectories for a sufficient number of ray-
paths with the same fundamental attributes of the true ray-paths. Fulfillment of this
requirement may be challenging, especially when the initial guess for the various
unknowns is poor. Figure 9 shows four of Test Case 3411°s twelve ray-paths. The other
eight ray-paths are not shown for the sake of clarity. Ray-path 1 is shown in blue, ray-
path 6 is shown in green, ray-path 9 is shown in red, and ray-path 11 is shown in cyan.
The thick lines indicate true ray-paths, all of which end at the true location of the
receiver, i.e., at the center of the black square. The thin lines show the trajectories of
these four ray-paths as computed by the ray-path solver during an early Gauss-Newton

iteration. These curves end at the erroneous location of the receiver that is marked with a
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black X. By design, the computed ray-paths, albeit different from the true ones, have the
same basic characteristics as the true ray-paths in terms of number of ray-hops and the
direction of arrival at the receiver at a qualitative level, i.e., whether signals arrive from
below or above the horizon. A closer look at the last segment of all ray-paths confirms
that for the blue and green ray-paths, the signal arrives at the receiver from above for
both true and computed trajectories, while for the red and cyan ray-paths it arrives from
below. Thus, for this iteration of this batch filter case and for these four ray paths, the

batch-filter functions as expected and needed.
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Figure 9: Proper algorithm functionality is evident in successfully computed ray-paths (not all
presented) that have the same characteristics as their true ray-path equivalents. This
figure plots true (thick lines) versus estimated (thin lines) ray-paths for an early iteration
of the Gauss-Newton process for Test Case 3411.

The process monitor screen for Test Case 3811 is shown in Fig. 10. For this test case,
the location of the ground stations, some of which are very far from the receiver, resulted

in several failures while attempting to solve for the ray-paths. These failures, occurring
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mainly in the early iterations of the batch filter calculations, usually do not constitute a
significant challenge to the algorithm’s ability to ultimately bring the solution to
convergence. This means that later Gauss-Newton iterations, which are not shown in the
upper plot of Fig. 10, have an increasing number of green cells, until ultimately all cells

are green for the last Gauss-Newton iteration.
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Figure 10: Process monitoring screen for Test Case 3811 in Nominal Scenario mode,
demonstrating occasional failures in attempts to solve for ray-hops and ray-paths during
execution of the batch filter.

Even with many more failures in early ray-path solving attempts, as in Test Case 3531
(Fig. 11), the unknown parameters’ estimates were successfully driven to their optimal
values. With an initial IEI value of -0.0660, this test case is characterized by significantly

larger errors in the a priori ionospheric model than for the previous example. The upper
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panel of this figure shows ray-hop calculation results for ray-paths 1-12 and process steps
8-22. It is evident that, for these early process steps, many ray-hop computations, and

consequently, ray-path computations, have failed.

At step 20 the algorithm changed its mode to Case 1, meaning that, starting at this
process step, corrections to the ionosphere model were enabled as part of the solution
procedure. The immediate impact of mode switching is a major degradation in the quality

of estimates for the ionosphere model, evident in extreme ¢ values that are not typical.
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Figure 11: Process monitoring screen for Test Case 3531 in Nominal Scenario mode,
demonstrating massive ray-paths solver failures at the early stages of the iterative batch
filtering process due to a very poor a priori ionosphere model. Both final position error
and final IEI ¢ are small.
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This is most likely the cause for the excessive amount of failures in the attempts to solve
for ray-paths during process steps 21-29, where the algorithm was seeking a proper
scaling factor, a, that would yield a decrease in its cost function. Starting at step 30,
however, where a decrease in the cost function was achieved for a small value of «, the
solver was able to solve an increasing number of ray-paths, so that all ray-path and ray-
hop computations succeeded at process steps 38 through 47 (not shown). As with the vast
majority of cases, the ¢ value at the end of the process, -0.965, is lower than its initial

value.

6.2.2 Cost function evolution

Cost function values are displayed on a logarithmic scale in the top panel of the
second-from-right column of the bottom two rows of each monitoring screen. The blue
line marks the total cost while the dots mark the values for the measurement residuals
cost terms and the a priori ionosphere cost terms of Eq. (79). The measurement residuals
terms and the a priori ionosphere terms are denoted in this plot by red and green,
respectively. Considering Fig. 11 again, it can be observed that the general trend for the
cost curve is a decrease, but for some Gauss-Newton iterations the total cost appears
bigger than for their preceding iterations. In many cases, this is due to the strategy of
using variable subsets of measurements that has been discussed earlier in subsection
4.2.2. Thus, in spite of appearance, a decrease in the cost function does occur for an
appropriate subset of measurements. Cost function curves may additionally include
sequences of process steps with what might appear to be a sudden increase in the cost

function followed by a monotonic decrease. This is caused by the sub-process where the
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algorithm seeks the step scaling factor that yields a reduction in the cost function. These
intermediate values should not be confused with the major Gauss-Newton iterations’ final
values, for which monotonic decrease is guaranteed. As mentioned before, the latter are
designated <nn>GN in the upper panels of the monitor screen, where nn is the process
step number. Finally, with the combined code/carrier ranging algorithm, there will always
be a single significant increase in the cost function when carrier-phase measurements are

eventually incorporated into the filter (e.g., at step 21 in Fig. 8).

An additional trend in the cost function plot is the constant decrease in the magnitude
of the ionosphere-related term (green dots). This is a counter-intuitive result. One would
expect this cost to start at zero when the estimated p equals its a priori value. It should
increase from there as it finds a better ionosphere parameter to fit the measurements by
estimating a non-zero deviation from the a priori value that is also its initial guess. This
counter-intuitive result can be attributed in part to the variable scaling method that is used

with this term.

Finally, the decreasing measurement-related cost term eventually converges to very
small values, thus indicating that the algorithm has succeeded in bringing the differences
between measured and computed range-equivalent group delays and beat carrier phases

very close to zero.

6.2.3 IEl evolution
Recall that the Tonosphere Errors Index, £, can be regarded as an error metric for the
corresponding estimate for the ionospheric model. The final value for the IEI normally

exhibits a decrease from its initial value (except in rare cases). Nevertheless, a significant
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temporary increase in its value, as in Figs. 11 and 12, is common. In the latter example,
the initial IEI value is -0.1440. At step 8, which is the first Gauss-Newton iteration where
the algorithm utilizes the full cost function formulation of Section 4.1, this value
increases to 0.1507. In the following steps, the IEI exhibits constant decreasing towards

its final value of -0.1499.

2 15 c2
= _
% ln o g
- 5 . =i
= o S } ®
g 5 / \-aq-d"',\ = 5 o ‘%
@ x 0 kel oo ©
c 8 0 @
2 O eoo0e 8
E 8 10 10 20 5 10 20 o 10 20
= 0.2 10 . 300
£ =
: A E
s ) . ‘o 200 o
<Ij w0 ‘g:/ \”.“’-“' \\ g ../i'...
\ 2o v B 100 ne®
Tosuce, &
0.2 5 Yoo
s 0 10 20 0 10 20 0 10 20

Figure 12: Process monitoring screen (partial view) for Test Case 3431 in Nominal Scenario
mode. Note the behavior of the IEI parameter ¢.

6.3 Process failure patterns and solution divergence

6.3.1 Failure types

Most test cases exhibit proper batch filtering algorithm functionality that results in
valid a posteriori position, timing, and ionospheric model estimates. It has been
observed, however, that for both Nominal Scenario and Performance Analysis execution
modes, occasional process failures may occur. In such cases, the filtering algorithm will

generally fail to converge. This failure is indicated by the norm of the vector Ax. of Eq.
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(86), designated dx, that is used to detect convergence: it does not decrease below a
predefined threshold. Figure 13 shows the process monitoring screen for run 0002 of a
limited Monte Carlo analysis that was performed with Test Case 3411A. Clearly, at none
of the 104 steps performed prior to filter algorithm termination was the combined
position/time/ionosphere model estimate close to its optimal value and hence, to
convergence. This is evident in the position error pattern, as well as in the values that the

cost function takes throughout the iterative process.

Convergence failure is also evidenced by the logl0(dx) plot in Fig. 13, which is the
second-from-right bottom panel of the figure. The value of log10(dx) never falls below 2,
and it oscillates up and down during the entire process. In the preceding examples of
process monitoring screens in Figs. 10, 11, and 12, this metric starts near 5, it exhibits a

general downward trend, and it ends near 0.

A second type of process failure is demonstrated with the Nominal Scenario mode
execution of Test Case 3522, shown in Fig. 14. Unlike with the previous example, where
the IEI appears steady at a value of about -0.2 (the reader should ignore the peaks that are
artifacts caused by the step-size halving sub-process), in this test case the IEI reaches
very large values of more than 8. This indicates a divergence for the Chapman parameter

estimates. Position errors are consistently very large.

103



1121|3141 |42|51|52|61|62|63|71|7281 82 91|902|93[101]111]121
<97> alpha 5 0o 4 0 44 4 0 0 0 0 0 0000 0 0 0 -1 -1 - "
<98> alpha 6 0o 140 4 40 0 00 000000 0 0 1 -1 A
<99= GN 20 0 400 2 40 0 0 0 0 O O O O O O 0O (500 50
<100 alpha 1 e s s s R A e e B B B B I s s R R
<101> alpha 2 0 -1 0 41 1 241 0 0 8 3 1 0 0 0 0 0 -1 0 A
<102> alpha3 %8 4 0 41 40 0 0 0 0 0 0 0 0 0 0 0 -1 &0 -
<103> alpha 4 0 1 0 - - 0 0 0 0 0 0 O 0 0 0 0 0 -1 [108-
<104> alphas 0 -1 0 41 40 0 0 0 0 0 0 0 0 0 0 0 -1 1084 v
x10°
5 c2
7 8
o, 0 ~ — é
S o
5 5 =
@ 5 -5 [}
s 38 8
= O o
E g 0 50 100 50 50 100 010 50 100
= 05 6 _. 600 ?
£ <
c
<] = /
N < 4 ILT Il o 400
S & L r l-t £
I w0 S - =
2 KL , 2 29 B 200 /
- 8
i )
. -0.5 : 0 Yoo
S 0 50 100 0 50 100 0 50 100

Figure 13: Process monitoring screen for run 0002 of a Monte Carlo Analysis conducted for Test
Case 3411A. With more than 100 process steps, the algorithm failed to drive the
unknown position solution closer to its optimal value, yet ¢ values remain fairly steady.
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Figure 14: A partial view of the process monitoring screen for a Nominal Scenario simulation of
Test Case 3522. Magnitude of errors for all unknowns indicates process divergence.

With a third type of algorithm failure, estimates for position, clock error and
ionospheric model are close to their optimal values, yet the algorithm fails to drive those

values to convergence. Figure 15 shows the process monitoring screen for run 0087 of a
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Monte Carlo analysis for Test Case 3911. For process steps 20 and later, position error
remains bounded within a limit of a 100 meter radius circle that is denoted 10° in the
polar position error plot. At the same time, the IEI exhibits stability near a value of
-0.2463, and the receiver clock error is steady at -581.3 microseconds. Yet, the algorithm
fails to drive the unknowns to their optimal values when running in Nominal Scenario
Mode. Recall that the optimal solution can be closely predicted using the linear
approximation of Eq. (99) and the known receiver location and true ionosphere

parameters.
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Figure 15: Process monitoring screen for run 0087 of a Monte Carlo Analysis conducted for Test
Case 3911. Estimates remain close to their optimal values, yet the algorithm fails to
bring them to convergence.

6.3.2 Causes of algorithm failure to converge and known algorithm limitations

A study of several test cases, including the above run 0087 for Test Case 3911,
revealed a weakness in the optimization process. When the ray-path solver makes an
attempt to solve for the bounce points, as in Section 4.2.6, with a signal ray-path that
eventually arrives at the receiver from below, a second, valid solution that satisfies Eq.

(29) may be obtained instead of the desired solution. Figure 16 illustrated the nature of
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this ambiguity. The top panel plots the trajectories for the true (blue) and estimated
(green) ray-path 33. Both trajectories start at the known position of a ground station that
is denoted with a blue circle and end at two points that are roughly 100 meters apart. The
closer-view bottom panel plot shows parts of the two trajectories in the vicinity of the
true and estimated receiver locations. It can be observed that the last segment of the
estimated ray-path is in a direction that is nearly opposite to the direction of the previous

hop as it hits the ground.

Further study has shown that the cost function that is used when solving for the
bounce points in this case converges to a local minimum that is non-zero. This physically
infeasible solution is most likely due to a poor choice of an initial guess for this ray-
path’s bounce points. Worse, it results in computed range equivalent group delay and
carrier phase measurements that are significantly different from the true ones. It has been
examined and shown that this discrepancy prevented the process from converging to the

optimal estimates in this case.

@——""m\———"\ﬂ

Figure 16: True (blue) and computed (green) trajectories for ray-path 33 of run 0087 of a Monte
Carlo analysis for Test Case 3911. Top: the full ray-paths; Bottom: a closer look near
the true (blue) and estimated (green) trajectory end points.
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A second, more commonly encountered cause for ranging discrepancies arises from
the ambiguity of the direction at which a signal will eventually approach the receiver.
This is demonstrated in Fig. 17 which shows the true (blue) and estimated (green) ray-
path trajectories for ray-path 9 of Monte Carlo run 0002 of Test Case 3411A. Both
trajectories originate at the same known location of the transmitter that is denoted by a
blue circle. While the true signal arrived at the true location of the receiver from above,
the computed direction of arrival at the (erroneous) location of the receiver is from
below. As both trajectories have the same number of hops and bounce off points on the
Earth’s surface (labeled in the plot), they constitute two legitimate solutions for very
similar setups that only differ in the slightly different locations for the receiver. The
difference is that, after the last bounce, one path travels directly up to the receiver (the
estimated path), while the other path, the true blue path, refracts off of the ionosphere and

comes back down to the receiver.

Figure 17: The true trajectory for ray-path 9 (blue) and the estimated trajectory (green) for that ray
path, calculated for Monte Carlo run 0002 of Test Case 3411A. Inconsistency in signal
direction of arrival yields significant, unaccounted for measurement errors.
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6.3.3 Used and suggested solutions

The measurements rejection mechanism that has been described in Subsection 4.2.3
has been proven somewhat effective in addressing the issues that have been presented in
the previous subsection. In most cases, selective measurements rejection resulted in

elimination of undesired algorithm behaviors such as those described in Subsection 6.3.1.

An additional means for overcoming ranging discrepancies would be rejecting
measurements for which measured and computed trajectories consider different number
of ionospheric reflections, and consequently, result in one trajectory approaching the
receiver from below, while the second approaches from above. With a real system, the
actual direction of arrival might be roughly determined by considering the signal power

and the antenna gain pattern.

6.4 Solution Convergence to the Problem’s Optimal Solution

A key event in the execution of the main solver algorithm is identifying solution
convergence. As shown earlier, the step magnitude criterion, dx, is utilized in determining
whether convergence has been reached, so that the batch filtering algorithm measures the
magnitude of a vector whose first three entries are the three components of the ECEF
representation of the corrections to the estimated receiver position, and the fourth entry is

the product of the speed of light and the change in the estimated receiver clock offset.
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6.4.1 Cost function characterization through 3D mapping

An inherited drawback in using the Gauss-Newton algorithm is the potential hazard of
converging to a local cost function minimum that is not the global minimum, but to
believe that it is the global minimum. In hundreds of test cases and tens of thousands of
Monte-Carlo runs studied, none of the iterative processes resulted in convergence to
minima different than the global minimum which can be approximately determined based
on Eq. (97), as mentioned earlier. In a further effort to assess the likelihood of such

occurrence, the following analysis has been performed.

A test case has been considered with a receiver located at latitude/longitude/altitude
(LLA) [40.1°,-95.1°,10000m] that has been assumed to receive signals along 12 ray-paths
transmitted from different ground stations. The position solution that has been obtained
by solving the standard minimization problem is located at coordinates [-72m,-925m,-
212m] in a Vertical-East-North (VEN) local-level reference frame whose origin is
located at the receiver’s true location. This optimal solution is marked by the magenta X
in Fig. 18. A three dimensional grid has been defined in a volume region of
500x3000x3000 m? in which the optimal solution for position lies. Each point of this grid
has been used to define a unique related optimization problem for which position is
known and fixed, while corrections are allowed to clock error and to the ionosphere
model, as in Subsection 4.1.2 and Eq. (81). Each of these 1859 optimization problems has
been solved, and all resulting final cost functions have been computed. The result, in the
form of a 3-dimensional spatial cost function map, is presented in Fig. 18. Plotted values

are base-10 logarithms of the computed cost function values.
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The most significant pieces of information in this plot are that (a) the minimum is
unique in the limited region studied, and (b) in the vicinity of the optimal solution, the
cost function has its closest spacing of contours of constant cost nearly in the vertical
direction. The first result partially addresses the non-uniqueness concern discussed above,

although it is clear that a bigger region should be studied in order to strengthen this result.

1000

500

North [m]

-500

Figure 18: A spatial cost function map for a 12-ray-paths test case. Base-10 logarithm of cost
function values, shown by color coding, have been computed in the vicinity of the
optimal solution for the receiver location.

An attempt to perform a similar analysis for a much larger region was unsuccessful

mostly due to a high rate of failed solving attempts for tested grid points that are far from
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rg’s optimal solution. The second result indicates that vertical position accuracy will be

the best, which is consistent with results that will be presented in the performance

analysis chapter.

6.4.2 Convergence validation

As a measure of validation for the convergence criterion, numerical computations
have been examined and compared to their expected, theoretical values. Writing the first-

order optimality necessary condition for the cost function of Eq. (79) yields
T
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One should expect the right-most term to be non-zero in the general case, as the term
D-Duue-gp 18 zero only in the improbable case where the estimated ionosphere parameters
equal the a-priori ionosphere parameters. This also means that the left-most term of the
right-hand-side of the equation equals the negative of that term once minimization has

been achieved.

This convergence condition has been studied with the same test case setup used in the
above cost function mapping analysis. It has been observed that, while the two vector
terms of the right-hand side of Eq. (124) consist of values whose magnitudes are in the
order of 107 to 1, the sum of the two is a vector whose entries have orders of 10'° to 107.
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Similar results were obtained with additional test cases. This result demonstrates that the
Gauss-Newton iterations converge at least to a local minimum that satisfies the first-order

optimality necessary condition.

6.4.3 Rate of convergence

A distinct advantage of the Gauss-Newton method over the plain Newton’s method is
in saving the need for computing the second derivative Hessian matrices of the
measurement model components. In the scope of this study, these computations would be
extremely costly in terms of computational effort and therefore undesired. A significant
amount of computation time is expected to be saved as long as the solution’s
convergences rate does not become significantly inferior to that of an equivalent higher-

order nonlinear least-squares method.

Reference [32] shows that the Gauss-Newton method will generally exhibit a
convergence rate that is guaranteed to be similar to that of Newton’s method as long as
the first-order term in the explicit formulation of the Hessian, which is given in Eq. (10.5)
of that book, dominates the second-order term. With several test cases studied, it has been
examined and shown that as long as the current guesses for the unknowns x and p are in a
small region about their optimal values, the convergence is indeed fast. The latter
statement is based on a number-of-unchanged-digits criterion, meaning that for the
estimates of the receiver location coordinates, the number of significant digits that remain
unchanged at a given Gauss-Newton iteration compared to the previous iteration almost

doubles with each iteration. This means that for most of the iterative process, that
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typically takes place with the unknowns close to their optimal values, the convergence
rate is presumably only slightly lower than that of a potential higher-order solver, and
therefore, given the saving in computational time per process iteration, it is reasonable to
assume that the total process time is less than a full Newton’s method algorithm, making

the Gauss-Newton method a reasonable choice in this case.

6.5 Covariance Analysis Validation

6.5.1 The case of random ionosphere parameters errors

The result given in Eq. (100) has been validated using the truth-model simulation with
two test cases. Each test case of 200 randomly generated runs (sub-cases) constitutes a
limited Monte Carlo analysis that considers variations to both group delay measurements
and ionosphere parameters. Independent errors with a standard deviation of 1 meter were
considered for ranging measurements. Random errors for the a priori ionosphere
parameters were generated using a matrix that is based on a scaled variant of the
covariance matrix M that was described in Section 4.2.4, where the matrix has been
scaled down by a factor of 10 in order to ensure that the majority of the resulting sub-
cases are physically feasible and can be solved with the existing batch filtering algorithm.
This results in typical small IEI values of about -1 for the different sub-cases. A scaling
factor of 0.1 was additionally applied to { so that the generated errors are consistent with

the matrix that is considered by the batch filtering algorithm.
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Figure 19 shows a layout of position errors that were obtained with a 200 runs Monte-
Carlo analysis and 90% error ellipses that have been generated based on the theoretically
computed covariance matrix. With 17 points in the North-East errors plot falling outside
the ellipse and 22 points falling outside the ellipse in the Up-East plot, it can be
concluded that the computed a posteriori error covariance and the Monte-Carlo-based
analysis are consistent. It is also evident that the estimates are unbiased, as discussed
earlier. The setup for this test case, marked 5511, includes 21 ray-paths that reach the

receiver.
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Figure 19: Monte Carlo and theoretical position error distributions for Test Case 5511. 17 out of
200 points fall outside the horizontal 90% error ellipse and 22 points fall outside the
vertical 90% error ellipse.

Similar results have been obtained for test case 5611, which has a different ground-

station setup and 33 ray-paths. Twenty two dots fall outside the horizontal 90% error
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ellipse, and 21 dots fall outside the vertical Up-East 90% error ellipse. As with the first
case, the results, shown in Fig. 20, demonstrate consistency between the analytically
computed and Monte Carlo generated error distributions. This second analysis for the
case of random ionosphere parameter errors completes the theoretical covariance analysis

validation for the case of random errors in the ionospheric model.
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Figure 20: Monte Carlo and theoretical position error distributions for Test Case 5611. Twenty
two dots out of 200 fall outside the horizontal 90% error ellipse, and 21, dots fall outside
the vertical Up-East 90% error ellipse.
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6.5.2 The case of constant a priori ionosphere parameter errors

In this subsection, a fixed, non-zero g, vector is considered. This case of constant a
priori ionosphere parameters errors is of importance for system performance analysis of
the next chapter. The goal is, therefore, to verify that the position error distribution is
consistent with the theoretical covariance matrix that is given by Eq. (102), and with the
bias term that equals the right most term of Eq. (99). The latter computed term is marked
with a green X in the following figures, and the covariance matrix is used to compute
theoretical 90% error ellipses that are plotted around the corresponding theoretical mean
values. Its location can be compared with the actual mean of the Monte-Carlo position

locations that is shown as a red + mark.

Nineteen of 200 points fall outside of the horizontal 90% error ellipse shown in Fig.
21. This agreement between theoretical and practical error distribution patterns validates
both the error bias and covariance analyses that are described in Section 4.4.2, as the
plotted 90% ellipses are centered (red cross) close to the predicted mean error (or bias)
which is marked as a green X. The presented data are based on test case 3511 that is

characterized by 21 received ray-paths and an a priori IEI of -0.2276.

Agreement with Egs. (99) and (102) is demonstrated by two additional test cases that
are characterized by different setup properties. These test cases are used to further study
the scope of validity for the results of these equations. Based on Egs. (99) and (102), the
test case with a high a priori IEI is expected to demonstrate a larger position error bias,

while larger measurement errors are expected to result in a larger 90% error ellipse.
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Figure 21: Empirical and theoretical position error distributions for Test Case 3511. This plot
demonstrates mean error and error covariance consistency for the important case of
constant a priori errors in the parametric ionosphere model.

Test Case 3531 (Fig. 22) has a high a priori IEI value of -0.0660 which lies within the
95" percentile of the IEI values distribution for the given a priori ionosphere parameter
error covariance matrix M. For this test case, the predicted mean error (green X) and the
mean of the Monte Carlo generated errors (red cross) are 10 meters apart. It is worth
noting that such differences between predicted and Monte-Carlo-generated mean error
values have only been observed with very large IEI values, as with this test case. This
fact suggests that the most challenging nonlinearities are those of the ionosphere model
and the ray-path solver that uses the model. Fifty one out of 200 points fall outside the
theoretical 90% error ellipse for the horizontal plot, and 60 out of 200 points fall outside
the 90% error ellipse for the vertical plot. These large numbers demonstrate that the

linearized covariance analysis is less reliable when large ionosphere model uncertainties
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lead to significant nonlinearities in the measurement model. Note, however, that the
extent of the point spread about the Monte-Carlo mean is well modeled by the theoretical
90% error ellipse. The statistical mis-match is caused almost entirely by the mis-

modeling of the mean value due to ionosphere/ray-tracing model nonlinearities.
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Figure 22: Empirical and theoretical position error distributions for Test Case 3531. Agreement
between the two analyses is demonstrated for this setup that is characterized with a very
significant error in the a priori parameterized ionosphere model. In this plot, the 90%
error ellipses are centered about the theoretical mean.

For Test Case 3611B (Fig. 23), a 10-meter standard deviation for the measurement
errors has been used, but the a priori IEI is as small as for Test Case 3511. Eighteen of
200 points fall outside the relatively large horizontal error ellipse, and 16 out of 200
points fall outside the vertical error ellipse. These numbers demonstrate consistency for

this test case as well.
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Figure 23: Empirical and theoretical position error distributions for Test Case 3611B for which
much larger measurement errors were assumed. With 18 of 200 points falling outside
the horizontal error ellipse and 16 out of 200 points falling outside the vertical error
ellipse, consistency is demonstrated for this test case.
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CHAPTER 7
RESULTS FOR BATCH-FILTERING TEST CASES

7.1 Previous Results

The study of Ref. [5] considered the simplified, straight-segments, ionosphere-thin-
sheet-reflections ray-path model that has been described in Section 5.1. Nine test cases
were studied in that work. These test cases were characterized with setups that differed in
number of ray-paths, true and a priori ionosphere models, and ground station placement.
The study was carried out in the scope of a limited number of executions. Preliminary
results suggested that the simplified-model problem presented in that paper is sufficiently

observable to make such a system a candidate for navigation.

Position errors, ranging from tens to thousands of meters, appeared to be consistent
with the corresponding computed Cramér-Rao bounds. At the same time, the filtered
estimates of the ionosphere electron density profile parameters tended to have
significantly reduced errors in comparison to the a priori models. It was concluded,
therefore, that the method discussed may also be useful for remote-sensing-based

ionosphere characterization in cases where the receiver location is known a priori.

Improved results were typically observed when more measurements were available.
Improved results also tended to occur when the uncertainties of the a priori ionosphere
model decreased. With only a limited number of test cases analyzed, the apparent trends

in simulated errors were less significant than trends in the computed Cramer-Rao bounds.
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It was concluded that the number of received signals (ray-paths) is expected to have a
significant impact on the system’s performance. At the same time, it was also observed
that positioning accuracy is sensitive to the exact setup used for a particular test case, and
it became harder to make general predictions about accuracy as the number of received

ray-paths decreased.

The beneficial impact of having a wide range of signal frequencies was also evident
when variations of the test cases were tested with a limited range of signal frequencies. It
was also observed that the errors in the final positioning estimates were only loosely

related to the errors in the a priori ionosphere model.

Further investigations have shown that in all cases the solutions for the simplified
minimization problem appeared to have converged to their global minimum. Thus, the
presence of nonlinearities in the model does not seem to pose a significant challenge to

solving the underlying batch estimation problem.
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7.2 An Overview of Methodology

Previous chapters introduced the various aspects of an HF navigation system that
relies on signals transmitted from ground stations. A significant part of the assessment of
this project’s feasibility consists of an evaluation of its performances in terms of
positioning accuracy, as well as in its ability to effectively apply corrections to an

erroneous a priori model of the ionosphere.

Assessment is performed through a comprehensive analysis of a series of test cases
that differ in the sets of parameters that define them. These parameters include the
following: type of available measurements, number of ground stations and their
placement, number of ray-paths, ray-path geometry, the number of hops for each ray-
path, signal frequencies, true and a priori ionospheric models, receiver clock error, and

the true location of the receiver.

7.2.1 Simulation-based analysis

The primary portion of this analysis is based on four classes of test cases. The first
two, Classes 1 and 2, consist of well-defined test cases which are characterized by
constant true and a priori ionosphere models. Input parameters or sets of parameters are
altered one at a time, thus yielding an ensemble of variations of a base test case. Results
for these test cases are assessed through examination of executions of the batch-filtering
algorithm on the simulated data in either Nominal Mode or Performance Analysis Mode.
In the latter case, statistics are generally obtained by processing the outcome of sets of

Monte-Carlo runs. This approach is useful in assessing the batch-filtering algorithm’s
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performance given particular setups and IEI values, and as such, it provides in-depth, yet

somewhat narrow-scope information.

As demonstrated before, the likelihood for encountering the particular IEI values that
are considered with a given test case can be evaluated based on the histogram of Fig. 2.
However, it is important to recognize that this methodology does not make any
assumptions on how a priori ionospheric model errors are distributed and therefore it is

expected to deliver insightful results within its scope.

The drawback with this method is its relatively narrow scope in terms of ionosphere
modeling, as only several different erroneous a priori ionosphere models are considered

with each class of test cases.

7.2.2 The statistical analysis for a random-ionosphere model

The drawback of considering only a few error models in the a priori ionosphere model
provides the motivation for conducting a study of a second type that relies on statistics
which are obtained for a random-ionospheric-errors model, so that ionosphere model
errors’ randomness is accounted for. This second type of analysis assumes that the
difference between the true and a priori ionosphere parameter vectors is a random vector
sampled from a zero-mean Gaussian distribution. While a Gaussian model for these
errors may seem an obvious choice, two important aspects of this approach should be

recognized. Examining the bottom plot of Fig. 2, it can be inferred that the random
variable 10° is not Chi-Square distributed and therefore g, is not a sample from a

multivariable Gaussian distribution. It has been left to a future study to determine to what
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fidelity can ionospheric errors be modeled with a Gaussian model. Even if the
distribution is not Gaussian, its second moment, its covariance, is still properly analyzed
by the techniques of this statistical analysis if the effects of the measurements and the

batch estimation are well approximated by a linearized model.

A second potential pitfall of the Gaussian ionosphere error assumption concerns the
feasibility of setups that have been generated with random errors that are added to the
Chapman ionosphere parameters. It has been observed with simulated executions of the
batch-filtering algorithm, that, depending on the covariance matrix that has been used to
generate the errors for the ionospheric model, ionosphere setups are prone to physical
non-feasibility. For the test case used in Subsection 6.5.1 that describes covariance
analysis validation for the case of random ionosphere errors, with My factored by 0.1, two
percent of the Monte Carlo runs failed the physical feasibility test and consequently
declared non-feasible. For a non-scaled-down My, however, 92 percent of the Monte
Carlo runs failed the test. These results imply that a linearized model of the effects of
ionosphere errors on the batch filter errors, as in Eq. (99), breaks down for M=M,, but
that it is reasonable for M=0.1M,. Despite this limitation, this analysis will be used
because it is the simplest way to get a handle on the likely effects of an entire statistical
ensemble of possible ionosphere errors. At the same time, one must keep in mind that the
predicted filter errors for the largest levels of ionosphere modeling error covariance are

probably not modeled very well by this analysis technique.

Therefore, it is presumed that modeling g, with a Gaussian model is an approximation

that, under certain assumptions on M, will yield reasonably reliable results for the
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purpose of statistical analysis. A model is considered where g, is assumed to be a sample
from a Gaussian distribution which is represented by a scaled covariance matrix Mo. This
matrix, which was first introduced in Section 2.3.1, can be regarded as a measure of the
diversity of the a priori ionosphere spatial electron density profile. When scaled by the
constant y, the resulting covariance matrix, yMo, can be used to generate scenarios of low

(small y) and high (large y) uncertainties for the a priori ionosphere model.

The procedure for the statistical analysis of the a posteriori ionosphere estimation
errors is as follows. First, 1000 random error vectors are generated based on M and R,
such that each set of error terms contains the appropriate number of parameters for the
ionosphere model, which depends on the number of applicable grid nodes, and the
appropriate number of measurement errors, which depends on the number of considered
ray-paths. Next, the a posteriori estimation errors are computed for each set of error
terms using the linear approximation of Eq. (99). The a priori and a posteriori
ionospheric parameter vector estimation errors are then added to puue to produce the a
priori and a posteriori ionosphere estimates. In the next step, all 1000 sets of a priori and
a posteriori estimates for the ionosphere model are used to generate six Chapman
parameter maps of the kind that will be presented later, starting with Fig. 25.
Differencing these maps from maps of the three true Chapman parameters of the same
kind yields 1000 error maps for each a priori Chapman parameter and similarly, 1000
error maps for each a posteriori Chapman parameter. These maps are statistically
processed to generate six maps for 80" percentile values of the 1000 maps. The

procedure is repeated for five different values of y, bringing the total number of 80%-
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percentile-values maps for each test case to 30. The five y values are 1, 0.5, 0.1, 0.001,
10°. The case of y=1 corresponds to a very significant uncertainty for the a priori
ionosphere model, whereas y=10" implies an almost perfect a priori model for the

ionosphere.

A second procedure is carried out to produce position error plots of the type that is
presented starting Fig. 57. The dimensions of the horizontal 90% error ellipse and of the
vertical 90% error ellipse are calculated based on a covariance matrix which is calculated
using Eq. (100). As with the calculations for the ionosphere parameters, this procedure

considers the five different scaling factors y that multiply M in Eq. (100).

7.2.3 Test case groups and test case classes

Several classes of test cases are considered. Class 1 consists of fixed-ionosphere
scenarios where only group delay measurements are processed. These test cases are
grouped into three groups - A, B and C - that have setups with 21, 33 and 128 available

measurements, respectively.

The second class of test cases studied in this analysis, Class 2, considers fixed-
ionosphere scenarios where both group delays and beat carrier phase measurements are
processed. These test cases are grouped into two groups - D and E - that have setups with
17 and 33 ray-paths, respectively. It should be noted that for dual-measurement-type test
cases of Class 2, each ray-path is assumed to be sampled at four different times that are
very close to each other, so that each ray-path is sampled with four different carrier

frequencies in a way that yields beat carrier phases with a common bias as measured in
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carrier cycles. This brings the total number of processed measurements for these test

cases to 8 times the number of ray-paths.

Class 3’s test cases of Group F are identical to Those of Class 1’s Group C except that,
consistent with the statistical methodology, they consider a random ionosphere error
model rather than a fixed error model. The included test cases are therefore studied with
the statistics-based method only. As with Class 1’s test cases, analysis is performed under

the assumption that only group delay measurements are processed.

Similarly, Class 4’s Groups G and H are the statistical analysis equivalents to Class
2’s Groups D and F. With these test cases, both group delays and beat carrier phase

measurements are pI'OCCSSCd

7.2.4 Chapter scope

This chapter presents the results that have been obtained for the many different test
cases that have been studied. It additionally provides the required tools for comparing
different types of data that have been obtained, observed, or computed for the various test

cases. The presented results will be reviewed and further analyzed in the next chapter.

As the previous subsection implies, the following four sections - 7.3-7.6 - contain a
significant amount of information. As a user’s roadmap, both test cases’ setups and
primary results are summarized in the form of tables at the beginning and the end of each
section, for the sake of convenience. However, the reader should bear in mind that these

tables do not include all information presented in the text.
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7.3 Test Cases Using Group Delay Only, Fixed Ionosphere Model (Class 1)

The purpose of this section is to present the performance of the system for the case

where only group delay measurements are processed. Table 1, which can be regarded as a

roadmap to this section, summarizes the primary characteristics for all eight test cases

analyzed in this section and its subsections, the cases designated A0, BO — B4, C0O, and

C4. The table summarizes their measurement noise’s standard deviation, number of ray-

paths, initial IEI, direction of signals as they arrive at the receiver (above the horizon or

both above and below) and the placement pattern for the ground stations from which

received signals are broadcasted. The three groups of test cases of Class 1 correspond

with three

scenarios of

low, medium,

and high numbers

signals/measurements, designated as groups A, B, and C, respectively.

Low
number of
available
signals
scenario

(Group A)

Medium
number of
available
signals
scenario

(Group B)

High
number of
available
signals
scenario

(Group C)

test case #
meas. noise ¢ [m]
ray-paths

v

S

wave arrival
direction

stations placement

test case #
meas. noise ¢ [m]
ray-paths

v

S

wave arrival
direction

stations placement

test case #
meas. noise ¢ [m]
ray-paths

v

9

wave arrival
direction

stations placement

base
case

A0
1000
21
-0.2016

both

grid

B0
1000
33
-0.2276

both

grid

Co
1000
33x4

-0.2276

both

grid

ray-paths
from
above only

Bl
1000
33
-0.2276

above only

grid

128

high
initial &

B2
1000
33
0.0661

both

grid

alternative
stations
placement

B3
1000
33
-0.2165

both

perimeter

of available

reduced
measurement
noise

B4
10
33

0.2276

both

grid

C4
10
33x4
-0.2276

both

grid

Table 1: Setup configuration for Class 1’s three groups and eight test cases.



For each group, a base test case is evaluated first. These are Test cases A0, B0, and
CO0. Sensitivities to the setup’s parameters are examined next through an analysis of
variants of those base test cases. These variants include test cases with altered ray-paths
geometry (the column labeled ray-paths from above only), test cases that are
characterized with significantly higher ¢ values, i.e., larger differences between the truth
and a priori ionosphere models (column labeled high initial ), test cases with an
alternative placement of ground stations (column labeled alternative stations placement),
and test cases with reduced measurements noise (right-most column). In order to
maximize comparability, all test cases have the same true parameterized ionosphere

model.

Each test case is evaluated by two methods: (a) Its performance as obtained for its
execution in Nominal Mode, as defined in Subsection 6.1.1, and (b) An evaluation of its

performance through a Monte Carlo analysis, using the Performance Analysis Mode.

The first method is useful for testing cases’ feasibility, assessing the filter’s
performance in correcting the ionosphere model through latitude/longitude mapping of
both a priori and a posteriori ionosphere parameter error maps, and for obtaining
theoretical errors and error distribution assessments. The second method is performed in
a manner that is aligned with the setup described in Subsection 4.4.2, which considers
constant a priori ionosphere errors and random ranging measurements errors. This
approach is useful when analyzing the impact on performance of altering the different

setup parameters.
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These analyses will additionally enable a later discussion about batch filtering
performance given ‘easy’ and ‘hard’ scenarios that differ in their a priori IEI values.
‘Easy’ scenarios have IEI values that lie on the left side of the histogram that is presented
in the bottom panel of Fig. 2. Similarly, ‘hard’ scenarios have IEI values that lie on the
right side of that plot. An assessment on occurrence likelihood associated with particular

a priori IEI values can be obtained based on the data presented on that histogram.

Measurement errors were generated using a Gaussian, zero mean distribution with a 1-
sigma value of 1000 meters (except for reduced-measurement-noise test cases). This level
of accuracy is about the best that can be achieved with code-based measurements due to
the signal’s limited bandwidth, as mentioned in Subsection 2.1.1. A second model with a
standard deviation of 10 meters was used in order to assess the sensitivity to ranging

precision.

7.3.1 Test cases with a medium number of available ray-paths (Group B)

All test cases of Group B consider a set of eleven ground station transmitters at
various locations across the Contiguous United States (CONUS). This set of ground
transmitter stations is a subset of an array of ground station transmitters that is based on a
grid of small circles of constant latitude, spaced 5 degrees apart. The longitudinal
difference between two neighboring stations that lie on the same small circle is 10
degrees. The longitudes of stations that lie on two neighboring small circles are offset by
5 degrees. Note that a typical test case will consider signals that are received from only a
subset of this set of ground station transmitters, hence the missing transmitters from this

regular grid in the example shown in Fig. 24. The user receiver is located at
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latitude/longitude/altitude (LLA) [40.1°,-95.1°,10000m], i.e., at the center of the green,
spider-like object in Fig. 24. Note that the symbol definitions for ground stations, ray
paths, etc. used in Fig. 24 are the same as have already been discussed in connection with
Fig. 7. The user receiver receives three signals from each ground station, which results in
a total of 33 ray-paths. The figure’s curved trajectories of the true ray-hops in green
reflect their refractive nature. These trajectories have been computed by the raytracing
engine. The reader may want to compare this plot with the equivalent plot on Fig. 1 of
Ref. [5] in which the segmented nature of ray-paths that corresponds to the simplified

signal propagation model is evident.

Test Case BO is regarded as the base test case for the medium number of available ray-
paths scenario. All other test cases in Group B are variants on this test case that are used
to assess performance sensitivity to the various parameter sets that define the scenarios.
For this test case, the truth ionosphere electron density profile is based on the IRI model
computed for October 23, 2009, at UTC 14:22. The a priori model is based on the model
computed for September 23, 2009, at the same hour, such that the total seasonal
discrepancy is one month, and the corresponding lonosphere Error Index ¢ is -0.2276 for
the a priori model. The statistical analysis in Section 2.3.1, indicates that this ¢ value lies
within the 65" percentile of the IEI values distribution for the given a priori ionosphere
parameter error covariance matrix M. The HF signals for this test case have frequencies
in the range 4.2-5.8 MHz. The number of hops for each ray-path is 1-4, with a mixture of

signals arriving from above the user equipment (UE) and from below.
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This test case was first run in a Nominal Scenario Mode, i.e., with pseudorange
measurements that are identical to the true range-equivalent group delays. A close look at
the estimated values indicates that the final position error in this case is -197 meters in the
local north direction, -104 meters in the local east direction, and -24 meters in the vertical
direction. The error in the estimate of the receiver clock bias is equivalent to 15 meters.
This result is consistent with the analytically predicted position error of -199 meters in
the north direction and -101 meters in the local east direction, where predication is

performed using the right-most term of Eq. (99).

A

T e

E‘_ e 6 s‘\“‘

L, £\
o P
SaRall |
v g

y

TR

2

Figure 24: Setup for test cases of Group B, ground stations (blue circles), true ray-path trajectories
(green curves), and position solution convergence trajectory (red curve) for Test Case
BO.

Figure 25 plots errors from truth for the a priori (top) and the a posteriori (bottom)

estimates of the ionospheric peak electron density altitude parameter /Amax. These errors
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have been computed and plotted for a region that contains all active grid nodes for this
test case. In other words, this is the region where the ionosphere has been probed by the
propagating signals. Other regions of the plot have been left blank/white. The red square
at latitude/longitude (40.1°,-95.1°) indicates the true position of the receiver. Blue circles
with white edges denote the locations of the ground stations. Magenta diamonds denote
the locations of the bi-quintic spline grid nodes. The small green squares mark computed
truth Earth bounce-points. North America’s coastline is shown in white with the borders
of the states shown in gray. It is evident that the initial errors in /Zmax have been reduced
dramatically above the vast majority of CONUS. For the a priori data, 80% of errors
above CONUS are below 14.1 km and 95% are below 20.2 km. For the a posteriori (or
estimated) model, 80% of errors are below 2.1 km and 95% are below 3.6 km. At the
same time, significant errors for the ionospheric scale height parameter /s of 6.7 km and
7.7 km have been reduced to 1.2 km and 2.8 km for the 80" and 95" percentiles,

respectively, as demonstrated in Fig. 26.

A significant reduction in errors for the VTEC parameter has also been achieved, as
shown on Fig. 27, from 1.24 TECU to 0.16 TECU for the 80" percentile and from 1.92
TECU to 0.21 TECU for the 95" percentile. Note, however, that for the given length-
equivalent group delay measurements, electron density errors are observable only at
heights that are less than the height for which maximal electron density is obtained, i.e.
hmax. In other words, the observable part of V'TEC is only that part of the electron density
integral up to the altitude of peak density. This caveat holds true for all of the VTEC

accuracy results discussed in this dissertation.
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Figure 25: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density
height parameter /max for a Nominal Scenario Mode run of Test Case BO.
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Figure 26:
parameter /i for a Nominal Scenario Mode run of Test Case BO.
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For the statistical analysis, Test Case BO was next executed in Performance Analysis
Mode with a 100-run Monte Carlo simulation and a 1-sigma measurement noise of 1000
meters that is aligned with the discussion of Subsection 7.2. Here, and throughout the
rest of this chapter, each Monte Carlo run is characterized by a unique set of

measurement errors.

The outcome of the execution is presented in Fig. 28 in the form of a scatter plot. The
blue dots mark final estimation errors for the receiver’s position, with a red cross marking
their mean. The reference frame used in this plot is a local-level frame whose origin is
located at the true location of the receiver. The magenta ellipse in the top plot is the 90%
horizontal error ellipse that was obtained from the analytical error prediction. It can be
verified that 9 dots lie outside this ellipse. The lengths of the ellipse’s semi-major and
semi-minor axes are approximately 1765 and 1347 meters, respectively. The standard
deviation for the vertical position error is 311 meters. The green ellipse in the bottom plot
is the 90% error ellipse in the east-vertical plane that is also given by analysis. Twelve
blue dots fall outside this ellipse. Having nearly 10 of the 100 cases that fall outside the
two 90% error ellipses in Fig. 28 demonstrate that the linearized error analysis associated
with Eqgs. (99) and (102) is reasonably accurate. Recall that this analysis assumes a
constant ionosphere parameter error, which induces a bias via the final term on the right-
hand side of Eq.(99), and that the statistical variations of the navigation solutions about
this bias are caused by random pseudorange measurement noise and are modeled by the

covariance analysis in Eq. (102).
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Absolute Value of A Priori lonosphere VTEC Errors [TECU]
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Figure 27: A priori (top) and a posteriori (bottom) errors for the ionospheric vertical total electron
content parameter V7TEC for a Nominal Scenario Mode run of Test Case BO.
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Figure 28: Position error pattern for Test Case BO; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom

plot, green).
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The statistical properties of the a posteriori ionosphere model errors are shown in Fig.
29. This figure should be interpreted as follows: The top panel includes two histograms
for the /max parameter’s residuals. These histograms reflect the statistical distribution of
the a posteriori hmax errors’ 80™ and 95™ percentiles values. The two sets of values have
been calculated for all 100 Monte Carlo runs. For example, by considering the 80"
percentile histogram in the top panel of Fig. 29, one can infer that in 36+8=44 of 100
Monte Carlo runs, a posteriori hmax errors had values of 2.66 km or less over at least 80%
of the area above CONUS, and in 96 out of 100 cases a posteriori hmax errors had values

of 7.66 or less over at least 80% of the area above CONUS.
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Figure 29: The statistical characteristics of the a posteriori ionosphere model errors for Test Case
BO. The top three panels show histograms of the 80™ and 95" CONUS area percentile
error limits for the three Chapman parameters. The bottom panel is a histogram of &
values. Dashed lines mark the 80™ and 95™ percentile values of these quantities for the a
priori ionosphere parameter error vector, except in the bottom panel the dashed line
marks the a priori error's mean.
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Similarly for the 95" percentile, in 59 of 100 runs, /max errors had values of 6.66 or less
over at least 95% of the area above CONUS. In 97 of 100 runs, /Amax errors had values of

8.66 or less over at least 95% of the area above CONUS.

The blue dashed line and the gray dotted line mark the a priori ionosphere model error
values for the 80" and 95" percentiles, respectively. These reference values, applying for
all 100 runs, were discussed earlier in the context of results obtained in Nominal Scenario
Mode execution. These lines lie well to the right of their corresponding histograms in the
top panel of Fig. 29, which indicates that the a posteriori estimates of the smax map are

much better than the a priori estimate.

The second and third panels of Fig. 29 plot the same type of information for the Asr
and VTEC Chapman model parameters. It can be inferred that the estimates for these two
parameter maps have been improved for all 100 Monte Carlo runs by the fact that both
plots have a posteriori histograms that lie well to the left of their corresponding a priori
vertical lines. The bottom panel plots the distribution histogram for the a posteriori
values of the IEI parameter ¢. The mean value equals -0.2340 which is smaller than the a
priori value of -0.2276 that is depicted by the vertical dashed green line (recall the
logarithmic nature of this parameter). It can be also concluded that for two Monte Carlo
runs, the a posteriori ionosphere model is in fact inferior to the a priori model. This does
not constitute a discrepancy between the bottom plot and the top three plots because the
IEI parameter that is considered in the bottom plot is computed from 27 parameters. It
has been tested and shown that the three prime Chapman parameters may exhibit slightly

different trends than the IEI.
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Test Case Bl is a variant on Test Case B0 that differs in its ray-path geometry. Here,
ray-paths are configured such that all signals approach the receiver from above, i.e., the
direction vectors of the incoming signals as they arrive at the UE have positive elevation
above the horizon as viewed from the UE antenna. Minor modifications to the signals’
frequencies were made in order to maintain the test case’s physical feasibility. All other

parameters were kept identical to those of the base configuration.

The positioning mean error for the nominal case (i.e., an execution in Nominal
Scenario Mode) is 218 meters in the local north direction, -180 meters in the local east
direction, and 73 meters in the vertical direction. This result is consistent to a 0.5 meters
difference with the predicted error that was computed using Eq. (99). Results very similar
to those obtained for the base Test Case BO were obtained for the a posteriori estimates
of the ionospheric parameters (plots are not shown). The Monte Carlo position errors plot
of Fig. 30 reveals significant differences between test cases B0 and Bl in the geometric
dispersion of the final errors. While the distribution of the scattered dots in the horizontal
plane and its corresponding 90% error ellipses have similar characteristics for the two test
cases, errors in the vertical direction are substantially bigger for Test Case B1. For this
test case, the major axis of the east-vertical 90% error ellipse that points almost vertically
is 3875 meters in length compared to about 700 meters for the base test case of Fig. 28.
Interestingly, estimates for all three Chapman ionosphere parameters (Fig. 31) are
slightly better for Test Case Bl in comparison to those of the base test case, BO. The

average 80™ percentile values are about 3 km, 2 km and 0.35 TECU for Test Case BO’s
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Figure 30: Position error pattern for Test Case B1l; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green).
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Figure 31: The statistical characteristics of the a posteriori ionosphere model errors for Test Case
B1. The top three panels contain histograms of the 80" and 95" percentile error values
for the three Chapman parameters. The bottom panel is a histogram of & values. Dashed
lines mark the 80" and 95™ percentile values of these quantities for the a priori
ionosphere parameter error vector, except in the bottom panel the dashed line marks the
a priori error's mean.
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hmax, hst and VTEC parameters, respectively, whereas their Test Case B1’s equivalent

values are roughly 2 km, 1.5 km, and 0.25 TECU.

Test Case B2 is a second variant on the base Test Case B0 that differs in its a priori
ionospheric model. While the one month seasonal discrepancy of the base test case
results in a computed a priori ¢ value of -0.2276 that lies in the 65" percentile, the
seasonal discrepancy of Test Case B2 was increased to three months, so that the truth
ionosphere electron density profile is based on the IRI model computed for October 23,
2009, at UTC 14:22, and the a priori model is based on the model computed for July 23,
2009, at the same hour. The resulting a priori & value is -0.0661 and is located in the 95
percentile of the IEI distribution histogram, as shown in the bottom panel of Fig. 2. All

other parameters for this test case are identical to those of Test Case BO.

Equation (99) implies that bigger £ values are expected to result in bigger estimation
errors for the nominal case, or equivalently, a bigger mean error for the full stochastic
analysis that considers measurement errors. The position errors that have been computed
for the nominal B2 case are 597, -269 and -50 meters in the local north, east, and vertical
directions, respectively. Indeed, these errors are greater than the errors that have been

computed for Test Case BO.

Results for the a posteriori estimation errors of the parameter Amax (Fig. 32) are
consistent with the trend that is evident in inferior position errors. From a priori errors of
27.2 km and 46.3 km for the 80" and 95" percentiles of CONUS area, respectively, final
estimation errors are 10.3 km for the 80" percentile and 17.4 km for the 95" percentile.

These error statistics are significantly bigger than those for base Test Case BO. Similarly
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for the parameter At errors that are shown in Fig. 33, the 80" and 95" a posteriori
estimates of 2.9 km and 3.5 km are worse than those obtained for Test Case B0. Still,
errors have been reduced dramatically compared to the a priori values of 19.8 km and

21.1 km at the 80" and 95" percentiles of CONUS area.

Finally, V¥TEC values have been reduced from 1.71 TECU to 1.02 TECU for the 80"
percentile and from 2.69 TECU to 1.43 TECU for the 95" percentile (data not shown).
These a posteriori error metrics are still significantly larger than their Test Case B0

counterparts.

Monte Carlo position error analysis results, shown in Fig. 34, exhibit characteristics
that are very similar to those of Test Case B0 in terms of position error distribution about
the mean. The main difference is in the magnitude of the mean error which is
significantly further from zero for Test Case B2. Note how the Test Case B0’s 90% error
ellipses are re-plotted in Fig. 34 and how their sizes are similar to those of Test Case B2

while their centers are closer to the origin than those for Test Case B2.

The impact of having significantly bigger a priori errors for the ionosphere parameters
on the parameters’ final estimates can be assessed by comparing the results shown in Fig.
35 with those of Fig. 29. In both cases, 80" and 95™ error percentiles for the a posteriori
ionosphere model have been reduced significantly from their a priori values. The a
posteriori estimates, however, are clearly superior for Test Case B0, for which errors are
2-4 times smaller than their Test Case B2 equivalents. This observation is based mainly

on the computed means of the three Chapman parameters’ histograms. However, for the
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Figure 32: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density
height parameter smax for Test Case B2.
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Figure 33: A4 priori (top) and a posteriori (bottom) errors for the ionospheric scale height
parameter /¢ for Test Case B2.
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Position Error
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Figure 34: Position error pattern for Test Case B2; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses plot the 90% errors ellipses for base Test Case BO
and are shown here for comparison purposes.
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Figure 35: The statistical characteristics of the a posteriori ionosphere model errors for Test Case
B2. The top three panels contain histograms of the 80" and 95™ percentile error values
for the three Chapman parameters. The bottom panel is a histogram of ¢ values. Dashed
lines mark the 80" and 95™ percentile values of these quantities for the a priori
ionosphere parameter error vector, except in the bottom panel the dashed line marks the
a priori error's mean.
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¢ parameter it should be noted that while its mean value is significantly lower for the base
test case, a reduction has also been observed for all 100 runs of Test Case B2’s Monte
Carlo analysis. Thus, Test Case B2 has the "advantage" of starting with such a poor a
priori ionosphere model that it cannot help but deduce an improved model in all 100 of

its Monte-Carlo trials.

A posteriori estimation error sensitivity to ground station placement has been studied
with Test Case B3. Unlike the grid-like array of ground stations considered with the test
cases that have been discussed so far, the setup for Test Case B3 consists of a network of
ground stations that are located along the coasts and land borders of the United States.
Figure 36 illustrates the setup for this test case. It also shows the simulated true multi-hop

ray-paths.
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Figure 36: Setup for Test Case B3 with ground stations (blue circles) placed along the coastal and

land borders of the US, true ray-paths trajectories (green), and convergence of position
solution (red).
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As with previous test cases, each ground station is assumed to transmit three signals
that are received at the UE located at latitude/longitude/altitude (LLA) [40.1°-
95.19,10000m]. All ionospheric parameters are identical to those of Test Case BO. The
different ground station placement results in a different subset of applicable grid nodes
and consequently an IEI of -0.2165 that is slightly larger than the value that has been

computed for Test Case BO.

A run in Nominal Scenario Mode yielded position errors of -399, 394 and 159 meters
in the local north, east, and vertical directions, respectively. The error in the estimate of
the receiver clock bias is equivalent to -665 meters. This result is inferior to that of Test
Case B0. With the same a priori ionosphere model, the final estimation errors for the
electron density altitude parameter /max (Fig. 37), are similarly worse than those obtained
for Test Case B0, with 80% of CONUS having errors below 5.2 km and 95% of CONUS
having errors below 6.6 km. Estimates for the Asr scale height factor and for the VTEC
parameter (Fig. 38) exhibit similar degraded levels of accuracy in the region that is

common to the two test cases.

Test Case B3 was next executed in Performance Analysis Mode with 100 Monte Carlo
runs and a 1-sigma measurement noise of 1000 meters. Results for position errors exhibit
an accuracy level that is inferior to that of Test Case B0 in terms of the position of the
mean error that is significantly further from zero for Test Case B3 as discussed above.
However, this test case’s horizontal 90% error ellipse is smaller (Fig. 39). The lengths of

the horizontal ellipse’s semi-major and semi-minor axes are approximately 1575 and
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Figure 37: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density
height parameter /max for a Nominal Scenario Mode run of Test Case B3.
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Figure 38: A priori (top) and a posteriori (bottom) errors for the ionospheric vertical total electron
content parameter VTEC for a Nominal Scenario Mode run of Test Case B3.
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Figure 39: Position error pattern for Test Case B3; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses plot the 90% error ellipses for base Test Case BO
and are shown here for comparison purposes.

1203 meters compared to 1765 and 1347 meters for Test Case B0 ellipse’s semi-major
and semi-minor axes, respectively. For ionosphere modeling (data not shown),
performance for this test case is slightly degraded, especially for estimating the vertical

total electron content parameter.

The last variation from the base test case for group B is Test Case B4, for which the
measurement noise 1-sigma value is reduced from 1000 meters to 10 meters. This, of
course, is an unrealistic value that cannot be achieved based on code ranging solely with
current technology. However, this test case is used to examine the performance

sensitivity to ranging errors, with the underlying assumption that better technology may
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make it possible to achieve better ranging accuracy, though not necessarily as good as 10

meters.

Position errors for this test case, shown in Fig. 40, reflect dramatically enhanced
horizontal-plane accuracy in comparison to that of Test Case B0, as shown in Fig. 28.
Still, this reduced amount of error is not quite at a level considered to be navigation grade
for many applications. Vertical accuracy, however, is significantly better, with a root
mean square value of 6.5 meters. At the same time, a posteriori errors for the ionosphere
model’s three parameters are roughly 50%-70% of the errors obtained for the base test

casc.
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Figure 40: Position error pattern for Test Case B4; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green).
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7.3.2 Test cases with alow number of available ray-paths (Group A)

A scenario of limited signal availability is considered in this group of test cases. These
test cases are characterized with as few as 21 received signals that are transmitted from 7
ground stations. The set of test cases in this group, therefore, constitutes a study of

performance sensitivity to the number of available ray-paths.

The base test case for this group, Test Case A0, has the same properties as Test Case
B0, except for the number of available ray-paths. In Nominal Scenario Mode, the total
horizontal error for this test case is about 50% larger than that of Test Case B0, and the
vertical error is about twice as large (data not shown). Monte Carlo position errors (Fig.
41) are roughly twice as large as for Test Case B0, both in the horizontal plane and
vertically, as is evident by comparison with Test Case BO’s ellipses that are also shown in
this figure. Errors for the a posteriori ionosphere model in terms of the Chapman
parameters’ 80" and 95" CONUS area percentiles are consistently bigger for the limited

signal availability test case.

It can be concluded that the error computation of Eq. (99), which is based on a linear
approximation and from which the 90% error ellipses are derived, becomes less accurate
as fewer measurements are available. In this case, 17 dots fall outside the ellipse when
only about 10 should have fallen outside it for the 100-case Monte-Carlo analysis that has
produced the results in Fig. 41. This observation is consistent with many tests examined
throughout this study, and in particular with the results that have been obtained for Test

Case DO that is discussed later.
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Figure 41: Position error pattern for Test Case AQ; Monte Carlo analysis scatter plot (blue);
Horizontal 90% error ellipse (top plot, magenta); Vertical 90% error ellipse (bottom
plot, green). The dashed gray ellipses plot the 90% error ellipses for base Test Case BO
and are shown here for comparison purposes.

7.3.3 Test cases with a high number of available ray-paths (Group C)

The multiple frequencies strategy that has been introduced in Subsection 2.1.1 can be
used not only with beat carrier phase measurements as described, but also as a means of
increasing the number of available measurements when only code ranging measurements
are processed. Test cases in this category differ from test cases of Group B in the number
of unique signal frequencies that are used with each ray-path. Unlike with the medium
number of available ray-paths test cases, in test cases of Group C each ray-path,
characterized by a distinct number of ray-hops, is assumed to be sampled four times as its
signal’s frequency changes. This means that four measurements are obtained for each

combination of transmitter and number of ray-hops. With 32 ray-paths, the total number
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of measurements for these test cases 1s 128, as demonstrated in the setup and solution plot

of Fig. 42.

Test Case CO has the same characteristics as the medium-number-of-available-
measurements scenario’s base test case, Test Case B0, except for the increased number of
measurements. Execution in Nominal Scenario Mode yields a mean position error of 104,
-74 and -12.36 meters in the north, east, and vertical directions, respectively. This error is
about half the magnitude of the position error observed for Test Case BO. It should also
be noted that for this test case, actual a posteriori position errors and predicted errors
agree to within 0.4 meters, as per Eq. (99). Thus, the linearized error model is a good

approximation.

Figure 42: Setup for test cases of Groups C and E, transmitters (blue circles), true ray-path
trajectories (green curves), and convergence of position solution for Test Case CO (red
curve).
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For ionosphere characterization, the nominal execution yielded an 80" percentile of
CONUS area upper bound of 3.1 km for the parameter /max. This value is 20% smaller
than that of Test Case BO. A reduction of 34% for the s parameter’s 80" percentile
value has been observed as well. For the vertical total electron content parameter, the 80™

percentile’s mean value decreased from 0.16 TECU to 0.11 TECU.

The 90% error ellipses obtained with a Monte Carlo analysis, shown in Fig. 43, are
evidently smaller than those of Test Case BO (also shown in this figure), with semi-major
axes that are about half of the value for Test Case B0. Yet, the achieved level of accuracy

for Test Case CO is insufficient for navigation.

However, with the reduced measurement error standard deviation model that is
considered in Test Case C4 (Fig. 44), position errors exhibit accuracy that could be
acceptable for navigation in some applications. As earlier noted, the measurement noise
level that is considered in this last case is currently not achievable with code ranging

only.
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Figure 43: Position error pattern for Test Case C0O; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom

plot, green); The dashed gray ellipses are the 90% error ellipses for Test Case B0, which
are shown here for comparison purposes.

Position Error

20

North error [m]

-20

-30

’- L) L4
R 1 % o)

|
:
.z

-50 -40 -30 -20 -10 0 10 20 30 40 50
East error [m]

Figure 44: Position error pattern for Test Case C4; Monte Carlo analysis scatter plot (blue);

Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green).

154



7.3.4 Test cases using only group delay, summary

Table 2 summarizes the numerical results for the eight test cases presented in this
section in terms of position accuracy. The location of the computed mean error is given in
a local level north-east-vertical coordinates system whose origin is located at the true
location of the receiver. Horizontal position errors are expressed in term of a horizontal

error ellipse that bounds 90% of the computed east-north errors. The vertical error is

given by its standard deviation.

ray-paths alternative reduced
large .
base case from A stations meas.
initial ¢ .
above only placement noise
test case # A0
Low 90% error elhpse 3359
number of semi-major axis [m]
o .
available 90A>_ error elllpse 1972
signals semi-minor axis [m]
Scenario vertical error STD 185
(Group A) [m]
mean error NEV -13, -367,
[m,m,m] -45
test case # B0 BI B2 B3 B4
N .
Medium 90% error cllipse 1765 1973 1817 1575 110
number of semi-major axis [m]
N .
available 90% error cllipse 1347 1249 1330 1203 62
signals semi-minor axis [m]
S . vertical error STD
cenario 311 1885 309 435 5
(Group B) [m]
mean error NEV -197, -104, 218, -180, 597, -269, 394, -399, -55, -19,
[m,m,m] -24 76 -50 158 4
test case # (o] C4
N .
High 90A>_ error elllpse 733 29
number of semi-major axis [m]
o .
available 90/0. error elhpse 677 14
signals semi-minor axis [m]
Scenario vertical error STD 116 10
(Group C) [m]
mean error NEV 103, -74,
-3,5,0
[m,m,m] -12

Table 2: Class 1 test cases’ position estimation error characteristics.
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A summary of results for ionosphere model errors is presented in Table 3. The first

three rows for each category consist of the a priori (upper pair of cells) and the mean of

the a posteriori (lower pair of cells) estimation errors for the three Chapman parameters.

For each pair of values, the left refers to the 80" CONUS area percentile value and the

right to the 95" percentile value. The fourth row shows the a priori and the mean a

posteriori IEI values that have been computed for each test case.

Low
number of
available
signals
Scenario
(Group A)

Medium
number of
available
signals
Scenario
(Group B)

High
number of
available
signals
Scenario
(Group C)

test case #

hmax 80(11/95 th
percentile [km]

hsf 8 0111/95 th
percentile [km]

VTEC 80"/95"
percentile [TECU]

¢

test case #

Hinax 801795
percentile [km]

hyt 801/95
percentile [km]

VTEC 80%/95"
percentile [TECU]

¢

test case #

hmax 80(11/95 th
percentile [km]

hyt 801/95
percentile [km]

VTEC 80%/95"
percentile [TECU]

¢

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

a priori

mean a post.

base
case

A0

14.1/20.2
1.6/2.6

6.7/1.7
1.1/2.4

1.2/1.9
0.14/0.22

-0.2276
-0.2355

B0

14.1/20.2
2.1/3.6

6.7/1.7
1.2/2.8

1.2/1.9
0.16/0.21

-0.2276
-0.2375

Cco

14.1/20.2
1.3/3.0

6.7/1.7
0.87/1.9

1.2/1.9
0.11/0.20

-0.2276
-0.2471

ray-paths
from
above only

Bl

14.1/20.2
1.5/4.1

6.7/1.7
1.2/2.7

1.2/1.9
0.12/0.21

-0.2276
-0.2399

large
initial &

B2

27.2/46.3
10.3/17.4

19.8/21.1
2.9/3.5

1.7/2.7
1.0/1.4

-0.0661
-0.0955

alternative
stations
placement

B3

13.1/19.4
5.2/6.6

7.6/8.2
2.3/2.8

1.6/2.2
0.55/1.1

-0.2165
-0.2224

Table 3: Class 1 test cases’ ionosphere model estimation error characteristics.

156

reduced
meas.
noise

B4

14.1/20.2
4.5/8.5

6.7/7.7
1.8/3.1

1.2/1.9
0.38/0.61

-0.2276
-0.2509

Cc4

14.1/20.2
0.34/0.76

6.7/6.6
0.26/0.73

1.2/1.9
0.03/0.08

-0.2276
-0.2915



7.4 Test Cases Using Combined Code and Carrier Phase Ranging, Fixed
Ionosphere Model (Class 2)

The purpose of this section is to study the performance of the system for the combined
group-delay/beat-carrier-phase batch filter. With the addition of carrier phase
measurements, the truth-model simulation must receive as input the initial errors for all
parameters that have been listed for the case of the group-delay-only filter. In addition, it
must be given truth values of the carrier phase biases for each ray path. The same bias is
used for each of the four frequencies that are transmitted in succession along a given
nominal ray path. These extra unknowns are expected to be observable because of the
availability of beat carrier phase measurements at multiple frequencies that share a
common bias. It should be additionally noted that no a priori information is assumed for
these highly observable terms. Each batch filter run has been initialized with zero values
for the carrier phase bias estimates. In order to ensure that this part of the analysis is not
carried out with unrealistically small errors for the zero-valued a priori estimates of the
bias terms, the truth-model simulation has been run with bias values that produced initial

range-equivalent errors for these terms up to 1600 km.

Table 4 summarizes the primary characteristics for all seven Class 2 test cases
analyzed in this section (Test Cases D0, D2, and E0-E4): their standard deviation for both
group delay and beat carrier phase measurement noise, number of ray-paths, initial IEI,
direction of signals as they arrive at the receiver, and the placement pattern for the ground
stations from which received signals were broadcast. Note that the measurement noise
lists the range-equivalent group delay measurement error standard deviation first,

followed by the range-equivalent beat carrier phase measurement error standard delay
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second. Thus, the entry 1000/1 [m] indicates a 1000 meters range-equivalent group delay
measurement error standard deviation and a 1 meter range-equivalent beat carrier phase

measurement error standard deviation.

ray-paths alternative

base large . increased
from . stations R
case initial & meas. noise
above only placement
test case # DO D2
Me(li)i“mf meas. noise 6 [m] 1000/1 1000/1
number o
available ray-paths 17x4 17x4
signals é -0.2276 0.0848
Scenario wave arrival both both
(Group D) direction
stations placement grid grid
test case # EO El E2 E3 E4
High meas. noise ¢ [m] 1000/1 1000/1 1000/1 1000/1 1000/10
number of ray-paths 32x4 32x4 32x4 32x4 32x4
available
signals é -0.2276 -0.2276 0.0661 -0.2165 -0.2276
Scenario wave arrival both above only both both both
(Group E) direction
stations placement grid grid grid perimeter grid

Table 4: Setup configuration for two groups and seven test cases of Class 2.

The two groups of test cases cover scenarios of medium and high numbers of available
measurements. As before, for each group (or availability scenario), a base test case is
evaluated first. These are Test Cases DO and EO for groups D and E, respectively. As
with Class 1 test cases, sensitivities to the setup’s parameters are examined through
examining variations from the base test cases. In order to maximize comparability, all test
cases have the same true parameterized ionosphere model, which is identical to the model

used with Class 1 test cases.

Measurement errors were generated using a Gaussian, zero mean distribution with a 1-
sigma value of 1000 meters for group delay measurements and 1 meter for carrier phase

measurements (except for the increased measurement noise test cases).
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7.4.1 Test cases with a high number of available ray-paths (Group E)

Test cases of Group E consider an array of eleven ground station transmitters at
various locations across the Continental United States (CONUS). This is the same setup
used with Group C’s test cases that is illustrated in Fig. 42. The total number of ray-paths
available is 32x4=128, except this time carrier phase measurements are processed as well,

resulting in a total of 256 available observables.

Test Case EO is regarded as the base test case for the high number of ray-paths
scenario. All other test cases in Group E are variants on this test case that are used to
assess performance sensitivity to inputs. The truth ionosphere electron density profile is
based on the IRI model computed for October 23, 2009, at UTC 14:22. The a priori
model is based on the model computed for September 23, 2009, at the same hour, such
that the total seasonal discrepancy is one month, and the corresponding lonosphere Error
Index (&) is -0.2276, as with most test cases that have been discussed so far. The HF
signals for this test case have frequencies in the range 3.0-6.0 MHz. The number of hops
for each ray-path is 1-4, with a mixture of signals arriving from above the UE and signals

arriving at the UE from below.

Figure 45 plots position errors obtained with a 100-run Monte Carlo analysis. The
benefits of processing the beat carrier phase measurements are immediately evident when
the results shown in this plot are compared with the results obtained for the 128 ray-paths
Test Case C0O. The mean position error for Test Case EO is as small as 5 meters in the
north direction and less than 30 cm in both the east and vertical directions. The lengths of

the 90% error ellipse’s semi-major and semi-minor axes are 24 and 13 meters,
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respectively. The standard deviation for the vertical error is 0.8 meters. Residual
estimation errors for the three Chapman parameters are remarkably small for all 100 runs

of the Monte Carlo analysis, as shown in Fig. 46.

Looking at the mean residual errors for the parameter A, as obtained using the
Nominal Scenario Mode execution of the simulation, (Fig. 47) and the histogram results
of Fig. 46, one can conclude that the combination of high measurements availability and
small measurement noise for the carrier phase measurements results in substantially

enhanced estimates for the three Chapman parameters above much of CONUS.
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Figure 45: Position error pattern for Test Case E0; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green).
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Figure 46: The statistical characteristics of the a posteriori ionosphere model errors for Test Case
EO. The top three panels contain histograms of the 80" and 95" CONUS area percentile
error values for the three Chapman parameters. The bottom panel is a histogram of &
values. Dashed lines mark the 80" and 95™ percentile values of these quantities for the a
priori ionosphere parameter error vector, except in the bottom panel the dashed line
marks the a priori error's mean.
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Figure 47: A priori (top) and a posteriori (bottom) errors for the ionospheric peak electron density
height A parameter for Test Case EO.
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Test Case EO has 32 ray-paths, each produced data at four different carrier
frequencies. These new measurements added 32 unknown beat carrier phase bias terms.
With the Monte Carlo simulation, these terms were set such that their initial errors (which
equal their true values given zero a priori guesses) were in the range [-240,70] in units of
wavelengths. Given the signals’ frequencies, this range of values is equivalent to ranging
errors that are up to 1600 kilometers in magnitude. It has been observed that in the first
Gauss Newton iteration where carrier phase measurements were processed, these a priori
errors are reduced to errors in the range of [-0.16,0.1] wavelengths. Their a posteriori
estimates fall in the range [-0.1,0.1]. These final error values are equivalent to 5-10

meter-level ranging errors.

The first variant from the base test case is Test Case El. It is defined with ray-paths
that arrive at the receiver from above. Position error performance in terms of horizontal
errors is evidently superior for this test case. It is characterized by a significantly smaller
90% errors ellipse and a mean error that is closer to zero (Fig. 48). The inferior vertical
accuracy, where the standard deviation is 5.2 meters, is likely acceptable for navigation

purposes in many applications.

Statistics for the a posteriori Chapman parameters’ estimates are similar to those of
the base test case, with slightly smaller residual errors for the case of signals arriving

from above only.
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Figure 48: Position error pattern for Test Case E1; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses are the 90% errors ellipses for base Test Case EO,
shown here for purposes of comparison.

Test Case E2, a second variant of the base test case, is of special interest due to its
very poor a priori ionosphere model that is based on an IRI model computed for August
23,2009, at UTC 14:22. The resulting a priori IEI value of 0.0848 suggests that this test
case is characterized by the largest truth/a priori ionosphere models discrepancy among
all test cases studied. Moreover, the IRI (§) distribution shown in Fig. 2 suggests that this
level of IRI gives this test case’s setup an excessive discrepancy between the truth and a
priori ionospheres, even though that figure has been generated under slightly different
conditions. A4 priori errors for the VTEC Chapman parameter, shown in the top plot of
Fig. 49, are about 50% percent larger than those of the base test case. A similar difference

of 50% has been deduced for the parameter /Amax, while for the parameter A the
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difference is 150% (data not shown). All of the foregoing a priori parameter errors are

measured in terms of the 80" CONUS area percentile.
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Figure 49: A priori (top) and a posteriori (bottom) errors for the ionospheric vertical total electron
content parameter V'TEC for a Nominal Scenario Mode run of Test Case E2.

Monte Carlo analysis for this test case yielded the position error scatter plot of Fig. 50,
which has two important properties. The area of the 90% error ellipse is about the same
as that of Test Case EQ’s ellipse, but the mean error, which is the error caused by the
ionosphere, is located about three times further from zero. The latter outcome could be

predicted based on Eq. (99).

The Monte Carlo analysis yields statistics for the a posteriori errors of the three
Chapman parameters. It can be concluded that the errors are about twice as large for Test

Case E2 as for the base test case, with a mean error of 0.91 km for the parameter /max, a
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mean error of 0.46 km for the parameter 4y, and a mean error of 0.12 TECU for the

parameter VTEC, all given in terms of their 80" CONUS area percentiles.
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Figure 50: Position error pattern for Test Case E2; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case EO
that are shown here for comparison purposes.

In an attempt to assess performance sensitivity to ground station placement, Test Case
E3 has a setup similar to that of Test Case B3 (Fig. 36), i.e., with an array of ground
stations that are located along the US coastal and land borders. All other parameters are
identical to those of Test Case EQ except for minor adjustments in signal frequencies that
are necessary in order to maintain physical feasibility. The position error plot of Fig. 51
demonstrates the impact of using the alternative transmitters’ setup on the position error

distribution. Comparison with the Test Case EO ellipses, which are shown in Fig. 51 as
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well, indicates that the position accuracy for Case E3 is significantly degraded. Errors for
the a posteriori Chapman model’s parameters are similarly larger for Test Case E3 for
which the Asr scale height parameter estimation maps are presented in Fig. 52. The results
are slightly inferior to those of Test Case EO (Fig. 47). This assertion will be further

validated in a later section via data in Table 6.
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Figure 51: Position error pattern for Test Case E3; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case EO,
shown here for comparison purposes.

The last test case studied in this group is Test Case E4, whose 1-sigma noise error is
increased to 10 meters for the carrier phase measurements and kept unchanged at 1000
meters, for the range-equivalent group delay pseudoranges. A significant degradation in

position accuracy in comparison to the base Test Case EO is indicated by Fig. 53, which
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Figure 52: A priori (top) and a posteriori (bottom) errors for the ionospheric scale height A¢
parameter for a Nominal Scenario Mode run of Test Case E3.
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Figure 53: Position error pattern for Test Case E4; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case EO,
shown here for comparison purposes.
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shows the horizontal 90% error ellipses for both cases. This trend is also evident in the a

posteriori errors for the ionospheric parameters.

7.4.2 Test cases with a medium number of available ray-paths (Group D)

This subsection presents the simulated performance for a scenario with a reduced
number of available measurements. Test cases of Group D consider a set of ground
stations that is a subset of the set of ground stations used with the high-availability-
scenario test cases of Group E. Each ground station is assumed to transmit between 1 and
3 signals with varying frequencies, so that the total number of ray-paths received at the
receiver is 17 and the total number of measurements processed, including both group

delay and beat carrier phase measurements, is 136.

Test Case DO is the base test case for the scenario with a medium number of available
ray-paths. It uses the same truth and a priori ionosphere models as Test Case EO and has
the same lonosphere Error Index (&) of -0.2276. The HF signals for this test case have
frequencies in the range 3.0-6.0 MHz. The number of hops for each ray-path is 1-4, with

a mixture of signals arriving from above and from below at the UE.

Figure 54 plots position errors obtained for a 100-run Monte Carlo analysis, with the
usual notation and markings. The additional dashed gray ellipse in the top subplot marks
the horizontal 90% error ellipse that has been obtained for Test Case EO. The impact of
processing a smaller number of measurements is evident when the two ellipses are
compared. The major and minor axes are about three times larger for the present scenario

with a reduced number of available measurements. The mean horizontal position error for
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Test Case DO is about 15 times larger than that of Test Case E0. Vertical accuracy is
degraded as well, yet errors in the vertical direction are still sufficiently small for many

navigation applications.

A comparison of Fig. 55, which shows the performance for the a posteriori estimates
of the ionospheric parameters, with the equivalent Fig. 46 for Test Case EO shows that
residual VTEC estimation errors for the present case are about twice as large as for the
high-number-of-available-signals test case. Even so, the a posteriori errors for all three
sets of Chapman parameters have been reduced dramatically in comparison to their a

priori values for this case.
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Figure 54: Position error pattern for Test Case D0; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses are the 90% error ellipse for the base test case of
Group E (Test Case EQ), shown here for comparison purposes.
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Figure 55: The statistical characteristics of the a posteriori ionosphere model errors for Test Case
DO, including histograms of the 80" and 95 CONUS area percentile error values for the
three Chapman parameters. The bottom panel is a histogram of ¢ values. Dashed lines
mark the 80" and 95™ percentile values of these quantities for the a priori ionosphere
parameter error vector, except in the bottom panel the dashed line marks the a priori
error's mean.

As with other test cases of significant IEI, the large-IEI variant, Test Case D2, is
characterized by a mean horizontal position error that is significantly larger than that of
the group’s base test case. Note how the center of the 90% position error ellipse (Fig. 56)
is located much further from zero compared to Test Case DO’s that is also shown in this
figure in the form of a (cropped) gray dashed ellipse. The centers of the two vertical 90%
error ellipses that are shown in the bottom panel, however, are comparably close to zero

in the local vertical direction.
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Figure 56: Position error pattern for Test Case D2; Monte Carlo analysis scatter plot (blue);
Horizontal 90% errors ellipse (top plot, magenta); Vertical 90% errors ellipse (bottom
plot, green); The dashed gray ellipses are the 90% error ellipses for base Test Case DO
and are included here for comparison purposes.
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7.4.3 Summary of test cases using combined code and carrier ranging

Table 5 summarizes the numerical results for the seven test cases presented in this
section in terms of positioning accuracy. As before, location of the computed mean error
is given in a local level north-east-vertical coordinate system whose origin is at the true
location of the receiver. Horizontal position errors are expressed in term of a horizontal
errors ellipse that bounds 90% of the computed east-north coordinates. The vertical error

is characterized by its standard deviation.

base ray-paths large alternative increased
case from ini tiagl ‘ stations meas.
above only placement noise
test case # DO D2
Medium 90% errors ellipse 7 75
number of semi-major axis [m]
available 90% errors ellipse 44 40
signals semi-minor axis [m]
Scenario vertical error STD 2 5
(Group D) [m] NEV
mean error -57,50,0 134,28 -1
[m,m,m]
test case # EO /o)1 52 /55 E4
High 90% errors ellipse 25 18 24 35 30
number of semi-major axis [m]
available 90% errors ellipse 13 9 14 30 44
signals semi-minor axis [m]
Scenario vertical error STD 1 5 1 5 6
(Group E) [m] NEV
mean error 5,00 22,1 -15,-4,0 -5,12,8 2,7,0
[m,m,m]

Table 5: Class 2 test cases’ primary position error characteristics.

A summary of performance for ionosphere model correction is presented in Table 6.
The first three rows for each category consist of the a priori (upper the pair in a given
cell) and the mean of the a posteriori (lower of the pair in a given cell) estimation errors

of the three Chapman parameters. For each pair of values on a line of a cell, the left refers
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to the 80" CONUS area percentile value, and the right to the 95" percentile value. The
fourth row shows the a priori and the mean a posteriori IEI values that were computed

for each test case.

ray-paths alternative increased
base large .
from e stations meas.
case initial & .
above only placement noise
test case # DO D2
hinax 801795 a priori 14.1/20.2 20.4/34.9
Medium percentile [km] mean a post.  0.84/1.93 1.53/3.62
number of gy gsin a priori 6.7/1.7 16.5/18.3
av‘allall)le percentile [km)] mean a post.  0.29/0.62 0.38/0.67
signals
Scenario VTEC 80%/95% a priori 1.25/1.93 1.75/3.02
(Group D) percentile [TECU] mean a post.  0.05/0.13 0.10/0.31
¢ a priori -0.2276 0.0848
< mean a post.  -0.2691 0.0277
test case # EO /o)1 E2 E3 E4
Fimax 801795 a priori 14.1/20.2 14.1/20.2 20.4/35.0 13.1/19.5 14.1/20.2
High percentile [km] mean a post.  0.42/0.88 0.28/0.63 0.88/1.72 0.33/1.96 0.85/1.53
number of hye 807/950 a priori 6.7/1.7 6.7/1.7 16.5/18.3 7.6/8.2 6.7/1.7
av‘allall)le percentile [km] mean a post.  0.30/0.77 0.17/0.68 0.43/1.39 0.35/1.78 0.39/0.85
signals
Scenario VTEC 80™/95% a priori 1.25/1.93 1.25/1.93 1.7/3.0 1.56/2.22 1.25/1.93
(Group E) percentile [TECU]  mean a post.  0.04/0.09 0.02/0.09 0.11/0.33 0.07/0.36 0.06/0.13
’ a priori -0.2276 -0.2276 0.0848 -0.2165 -0.2276
mean a post. -0.2901 -0.2997 0.0009 -0.2764 -0.2698

Table 6: Class 2 test cases’ primary ionosphere model errors characteristics.
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7.5 Test Cases Using Group Delay Only, Random Ionosphere Model (Class 3)

The various test cases that have been presented in the previous sections provide data
for well-defined scenarios which are characterized by constant true and a priori
ionosphere models that have a constant difference between them. The analysis is
expanded here and in the next section. The test cases used here are very similar to the test
cases that have been presented so far, except they use a statistical approach to analyze the

expected effects of random errors between the a priori and true ionosphere models.

7.5.1 Test cases with a high number of available ray-paths (Group F)

Test Case CO which was presented in Section 7.3.3 exhibited the highest level of
positioning accuracy of all test cases for which only group delay measurements are used
and measurement noise of 1km is assumed (See Table 2). With an initial IEI parameter of
-0.2276 that is close to the IEI’s distribution mean (-0.25), its a priori ionosphere model
errors can be regarded as ‘average’ in the sense that the likelihood of encountering errors
of such magnitude is high. A broader perspective on performance is obtained by
expending the scope of this test case such that it’s a priori ionospheric model errors are
taken as a random vector rather than a constant one. This setup, that constitutes Test Case
F0, is characterized with the same combination of parameters as that of Test Case CO
except for its ionospheric model. The considered a priori error model utilizes a
covariance matrix of the form yMo. The scaling factor y takes five different values: 1,0.5,
0.1,0.001 and 1le-9. The first case for which y=1 is a worst case scenario where the

uncertainty of the ionosphere model is assumed as big as the ionospheric diversity matrix
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M. The last case can be regarded as the case of extremely good knowledge of the

ionosphere.

Figure 57 plots the horizontal and vertical 90% error ellipses for Test Case F0O. These
have been generated with the procedure described in Subsection 7.2.2. The two sets of
five ellipses correspond with the different values of . For the case of =107, the resulting
position errors are solely due to ranging errors. It is evident that vertical accuracy is only

somewhat sensitive to y.

Position error results can now be compared to the results that have been obtained for
the fixed-ionosphere-model base Test Case C0O. The position error pattern in that case is
characterized by a fixed-ionosphere-induced mean error that is relatively small compared
to the effect of measurement-noise-induced errors. The resulting position error pattern
shown in Fig. 43 is similar to that of Test Case F0, and in particular, to the case of y=0.1

in Fig. 57.
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Figure 57: Horizontal and vertical 90% error ellipses for Test Case FO with different values of y.
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Figure 58 presents the ten 80" percentile value maps above CONUS for the
ionospheric peak electron density height parameter /smax for Test Case FO. Note that the
information which is presented in these plots (and in those to follow) is very different
from the information which has been presented in figures such as Fig. 25. The left
column shows 80" percentile maps for the a priori estimates of this parameter while the
right column consists of plot for its a posteriori estimates. Each row is associated with a
different value of y, so that the top row is associated with y =1 (i.e., high uncertainty for
the ionosphere model) and the bottom row is associated with y =10 which is the case of
a very accurate a priori ionosphere model. Note the different color-code scales for the ten
maps of Fig. 58. This approach has been favored over using the same color-code scales
for neighboring panels in an effort to keep the map plots as informative as possible. The
reader should notice that in all cases, for a given row, the right-hand plot of the a
posteriori difference map is characterized by values that are significantly smaller than

those of the left-hand plot that presents the a priori difference map.

As expected, smaller 80" percentile values for the /max parameter have been computed
for smaller values of y, as shown in Fig. 58 that presents all ten 80™ percentile error maps
for that parameter. For the first four cases of y, a significant reduction in the 80
percentile values for the a posteriori estimates is evident. For y=0.5, values in the range
30-35 km have been reduced to about 2-4 km. For the case of y=10~, however, the initial
80" percentile value are very small and so is the difference between a priori and a

posteriori values.
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Figure 58: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric peak electron density height parameter
hmax for Test Case FO. Each row corresponds to a different value of'y.

Similar trends have been observed for the ionospheric scale height parameter Asr,

shown in Fig. 59. It is also notable that the smallest a posteriori 80™ percentile values are

obtained in the region that is close to the location of the receiver, especially in the cases

of large y’s.
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Figure 59: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric scale height parameter 4 for Test Case
F0. Each row corresponds to a different value of y.

However, the trend to have the lowest error nearest to the receiver is not as prominent

with the results for the VTEC parameter, as it can be inferred from the maps shown in

Fig. 60. Regardless, a significant reduction in 80" percentile values is evident for all

cases of y for this parameter as well.
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Figure 60: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric vertical total electron content parameter
VTEC for Test Case FO. Each row corresponds to a different value of y.
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7.6 Test Cases Using Combined Code and Carrier Phase Ranging, Random
Ionosphere Model (Class 4)

This section presents the performance for the batch-filtering algorithm that utilizes a
combined group-delay/beat-carrier-phase configuration, in the presence of random
ionosphere model errors. The studied test cases in this group are in fact the statistical-

analysis variants of Class 2’s test cases that have been presented in Section 7.4.

Table 7 summarizes the primary characteristics for all five Class 4 test cases analyzed
in this section: their standard deviation for both group delay and beat carrier phase
measurement noise, number of ray-paths, direction of signals as they arrive at the
receiver, and the placement pattern for the ground stations from which received signals

were broadcast. As in the previous section, each test case is studied with five different

values for the covariance matrix scaling factor y.

base ray-paths alterr}atlve increased
from stations L
case meas. noise
above only placement
Medium test case # GO
number of meas. noise ¢ [m] 1000/1
available ray-paths 17x4
signals wave arrival
Scenario direction both
(Group G) stations placement grid
High test case # HO Hl H3 H4
number of meas. noise ¢ [m] 1000/1 1000/1 1000/1 1000/10
available ray-paths 32x4 32x4 32x4 32x4
signals i
Somm o ;"fg;i)‘;‘val both above only both both
(Group H) stations placement grid grid perimeter grid

Table 7: Setup configuration for two groups and five test cases of Class 4.
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7.6.1 Test cases with a high number of available ray-paths (Group H)

The base Test Case HO is the random-ionosphere equivalent of Test Case EO. It
considerers the same array of ground stations, ray-paths and receiver location. Group
delay and beat carrier phase measurement noise are similarly identical to those of Test

Case EO.

Figure 61 plots the horizontal and vertical 90% error ellipses for this test case. As
before, the two sets of five ellipses correspond with the different values of y, where for
the case of y=107, the resulting position errors are solely due to ranging errors. Vertical
accuracy appears almost indifferent to p. The horizontal 90% error ellipses are
significantly smaller than their Test Case FO equivalents. In particular, for y=0.001 and
smaller, the remarkably small errors indicate that if there were some sort of ionosphere

monitoring network, then this system might be very accurate.

Position error results can be compared to the results that have been obtained for the
fixed-ionosphere-model base Test Case EO. The position error pattern in that case is
characterized by a fixed-ionosphere-induced mean error that is relatively small compared
to measurement-noise-induced errors. The resulting pattern is very similar to that of the

present Test Case HO for the case of y=0.1 to y=0.5 — see Fig. 45.
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Figure 61: Horizontal and vertical 90% error ellipses for Test Case HO with different values of vy.

Eightieth percentile error maps for the three Chapman parameters are shown in the
next three figures. For the peak electron density height /max parameter map, shown in Fig.
62, residual errors are about half of those computed for the group-delay-measurements-
only base test case, Test Case F0. Residual errors for the scale height parameter hs¢
parameter (Fig. 63) exhibit similar characteristics in terms of the relative reduction in

magnitude when compared to their a priori values and in comparison with Test Case FO.
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Figure 62: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric peak electron density height parameter
hmax for Test Case HO. Each row corresponds to a different value of y.
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Figure 63: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric scale height parameter 4 for Test Case
HO. Each row corresponds to a different value of y.

Consistent with these results, a significant reduction in the magnitude of the residual
errors has been observed for the ionospheric vertical total electron content parameter
VTEC (Fig. 64). In the worst case scenario of y=1, residual errors, in terms of the 80%

percentile, are bounded by a value of 0.15 TECU.
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Figure 64: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric vertical total electron content parameter
VTEC for Test Case HO. Each row corresponds to a different value of y.

Test Case H1 is a variant of Test Case HO that differs in its ray-path geometry. Here,
ray-paths are configured such that all signals approach the receiver from above,
consistent with similar test cases that have been discussed before. Minor modifications to
the signals’ frequencies were made in order to maintain the test case’s physical

feasibility. All other parameters were kept identical to those of the base configuration.
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Figure 65 plots the horizontal and vertical 90% error ellipses for Test Case H1 using
Eq. (100) for the five different M values that result from the five different y values, as
discussed in Section 7.2.2. The dashed gray ellipses are the 90% percentile ellipses for
Test Case HO in the case of y=1, shown here for reference. As with the fixed-ionosphere
test cases of Class 2, horizontal positioning accuracy has improved, while significant
degradation in vertical accuracy is apparent. Comparing the results for Test Case H1 with
the equivalent fixed-ionosphere-model test case, Test Case El, it can be inferred that

errors for the latter test case have a position error distribution similar to that of the former

with a value of y between 0.1 and 0.5.
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Figure 65: Horizontal and vertical 90% error ellipses for Test Case H1 with different values of y.
The dashed ellipses in gray are the 90% error ellipses for Test Case HO with y=1.

Eightieth percentile error maps for the three Chapman parameters are shown in the
next three figures. Consistent with the improved positioning accuracy, for the peak

electron density height smax parameter map, shown in Fig. 66, residual errors are between
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Figure 66: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric peak electron density height parameter
hmax for Test Case H1. Each row corresponds to a different value of y.

1/2 and 3/4 of those computed for the base Test Case HO. Residual errors for the scale
height parameter Asr parameter (Fig. 67) exhibit similar characteristics in terms of the
relative reduction in magnitude when compared to their a priori values and in
comparison with the residual errors that have been recorded for Test Case HO. As shown
in Fig. 68, residual errors for the ionospheric vertical total electron content parameter

VTEC are similarly smaller than with Test Case HO, by roughly 30%. In the worst case
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scenario of y=1, residual errors above CONUS, in terms of the 80" percentile, are

bounded by a value of 0.1 TECU.
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Figure 67: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric scale height parameter 4 for Test Case
HI1. Each row corresponds to a different value of y.

As with fixed-ionosphere-model test cases, a variation of the base test case is used to
assess performance sensitivity to ground stations placement. Test Case H3 is

characterized with a ground stations setup similar to that of Test Case E3, i.e., with an
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array of ground stations that are located along the US coastal and land borders. All other
parameters are identical to those of Test Case HO except for minor adjustments in signal

frequencies that were necessary in order to maintain physical feasibility.
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Figure 68: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric vertical total electron content parameter
VTEC for Test Case H1. Each row corresponds to a different value of y.

Figure 69 plots the horizontal and vertical 90% error ellipses for Test Case H3. For

this test case, the horizontal 90% error ellipse’s semi-major axis is slightly longer than
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that of the base Test Case HO, while the ellipse’s semi-minor axis is about twice as long
as its Test Case HO equivalent. Degradation in vertical accuracy by a factor of 6 has been
observed as well. The horizontal 90% error ellipse that has been obtained for y=0.5

covers the equivalent 90% error ellipse that has been computed for the fixed-ionosphere-

model Test Case E3 (Fig. 51).
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Figure 69: Horizontal and vertical 90% error ellipses for Test Case H3 with different values of y.
The dashed ellipses in gray are the 90% error ellipses for Test Case HO with y=1.

Eightieth percentile error maps for the three Chapman parameters are shown in the
next three figures. Residual errors for the peak electron density height /smax parameter,
shown in Fig. 70, appear comparable to those of Test Case HO in the region that is above
CONUS, with typical values below 1 km. Some degradation has been observed for the
ionospheric scale height parameter Asr, for which data are presented in Fig. 71, as a
posteriori errors for this test case are roughly 40% increased in comparison to the base

test case. Eightieth percentile error values for the ionospheric vertical total electron
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content parameter V'TEC, whose maps are shown in Fig. 72, are about 20% larger than

with Test Case HO.

80th Percentile of A Posteriori HMAX Errors [Km]

50 4 T @ @ :
— S = 4
& @F’ =
S, 40 =1
® } Y=
3 v 2
E 30 ol
© H L1 3
- {
20 i d i 0
-120 -100

=)
3
° v=0.5
el
2
®
|

1.5
=)
e 1
° y=0.1
E
= 0.5
5

0
5 0.2
= v=0.001
E 0.1
=
-

0

x10°

1
=)
3
3 I0'5 y=1e-09
2
®
|

0

-120 -100 -80 -120 -100 -80
Longitude [deg] Longitude [deg]

Figure 70: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric peak electron density height parameter
hmax for Test Case H3. Each row corresponds to a different value of y.
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Figure 71: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric scale height parameter A for Test Case
H3. Each row corresponds to a different value of y.
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Figure 72: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric vertical total electron content parameter
VTEC for Test Case H3. Each row corresponds to a different value of y.

The last test case studied in this group is Test Case H4, whose 1-sigma noise error was
increased to 10 meters for the carrier phase measurements and kept unchanged at 1000
meters for the range-equivalent group delay pseudoranges. The significant degradation in
positioning accuracy in comparison to the base Test Case HO is well conveyed in Fig. 73

which shows the horizontal 90% error ellipses for both cases.
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Figure 73: Horizontal and vertical 90% error ellipses for Test Case H4 with different values of y.
The dashed ellipses in gray are the 90% error ellipses for Test Case HO with y=1.
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7.6.2 Test cases with a medium number of available ray-paths (Group G)

This subsection presents the performance for a scenario with a reduced number of
available measurements. Test cases of Group G consider a set of ground stations that is a
subset of the set of ground stations used with the high-availability-scenario test cases of
Group H. Each ground station is assumed to transmit between 1 and 3 signals with
varying frequencies, so that the total number of ray-paths received at the receiver is 17
and the total number of measurements processed, including both group delay and beat

carrier phase measurements, is 136.

Test Case GO is the base test case for this scenario with a medium number of available
ray-paths. The HF signals for this test case have frequencies in the range 3.0-6.0 MHz.
The number of hops for each ray-path is 1-4, with a mixture of signals arriving from

above and from below at the UE.

The impact of utilizing significantly less measurements than in Test Case HO is
immediately evident (Fig. 74), as the 90% error ellipse for Test Case GO is larger by a
factor of about 4 in both length and width for the case of y=1. Comparing the results
plotted in Fig. 74 with the results plotted in Fig. 54, it can be inferred that the horizontal
90% error ellipse computed for y=0.5 will contain the horizontal 90% error ellipse of Test
Case D0O. However, note that the former ellipse is significantly larger, and the latter has a

mean that is significantly further from zero.
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Figure 74: Horizontal and vertical 90% error ellipses for Test Case GO with different values of y.
The dashed ellipses in gray are the 90% error ellipses for Test Case HO with y=1.

Eightieth percentile error maps for the three Chapman parameters are shown in the
next three figures. Consistent with the inferior positioning accuracy observed, the peak
electron density height Amax parameter map, shown in Fig. 75, residual errors are about
25% bigger than those computed for the high measurement availability Test Case HO.
Residual errors for the scale height parameter As¢ parameter (Fig. 76) similarly exhibit

degraded performance in the form of 20% larger residual errors.
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Figure 75: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric peak electron density height parameter
hmax for Test Case GO. Each row corresponds to a different value of y.
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Figure 76: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric scale height parameter ¢ for Test Case
GO0. Each row corresponds to a different value of y.

For residual VTEC errors, shown in Fig. 77, some degradation from the results

obtained for Test Cade HO is evident. However, the relative errors reduction from the a

priori errors is significant.
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Figure 77: Eightieth percentile value maps for the a priori (left column) and a posteriori (right
column) estimates’ errors for the ionospheric vertical total electron content parameter
VTEC for Test Case G0. Each row corresponds to a different value of y.
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CHAPTER 8
SYSTEM PERFORMANCE ANALYSIS, DISCUSSION,
AND FUTURE DIRECTIONS

Results for the twenty one test cases presented in this study suggest that the problem is
sufficiently observable to make this system a candidate for navigation in GNSS-denied
situations. That is, a position solution can be obtained to a reasonable level of accuracy
despite uncertainty about the ionosphere. At the same time, the filtered estimates of the
ionosphere electron density profile parameters tend to have significantly reduced errors in
comparison to their a priori estimates. Therefore, this method may also be useful for
remote-sensing-based ionosphere characterization in cases where the receiver location is

known a priori.

This chapter discusses the findings for the performance analysis of Chapter 7. The
discussion is structured such that conclusions are drawn at the level of individual test
cases, groups of test cases, or even classes. A significant part of this discussion will be
dedicated to the manner in which the various configuration parameters influence system
performance. This is done through highlighting apparent behavioral trends that have been

observed with the various test case executions.
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8.1 Positioning Characteristics

Positioning accuracy for Group E’s base test case, Test Case EO, is navigation grade,
meaning that with a sufficient number of signals received and dual group-delay/beat-
carrier-phase measurement processing, the achieved accuracy is adequate for the purpose

of navigation and guidance with most applications.

As shown earlier, this test case has a fixed-ionosphere error model with an associated
IEI value of -0.2276. This value of the Ionosphere Error Index places it at the 65
percentile, and therefore makes it reasonable to regard Test Case EO as a ‘typical’
scenario under the assumption that the true uncertainty for the ionosphere can be reliably
modeled by Mo. The fixed ionosphere model error induces a mean error of 5 meters. With
a 25 meters horizontal 90% errors ellipse semi-major axis, and a vertical error standard
deviation of less than one meter, the obtained position solution can be used to determine
the location of a vehicle as an independent source or as input to an integrated Inertial
Navigation System (INS). The same conclusion holds for Test Case El. Performance for

other test cases of Group E may be adequate for navigation, depending on the application.

When a random error model for the ionosphere was considered in Test Case HO, with
the same ground transmitters/ray-paths setup of Test Case E0, a similar level of accuracy
has been observed for y values of near 0.1. Based on the plots of Fig. 61 of Test Case HO,
it can be concluded that navigation grade positioning can be achieved with y values that
are smaller than 0.2. In other words, based on this analysis, navigation grade accuracy
can be achieved if the true uncertainty for the ionosphere error model can be reliably

modeled as yMo where y<0.2.

201



With significantly fewer ray-paths used, Test Case G0’s positioning accuracy has been
proven inferior to that of Test Case HO. In this case, navigation grade accuracy with a
90% horizontal error ellipse semi-major axis of less than 25 meters can only be achieved
when the ionospheric uncertainty can be reliably modeled with y values that are less than
0.01. Vertical positioning, on the other hand, is very accurate for all values of y. This may
be significant for specific applications that are required to maintain position within a

corridor that is limited in its altitude range.

An important result is the level of accuracy that can be obtained with the setup of Test
Case H1, for which all signals approach the receiver from above. It has been observed
that navigation grade accuracy can be achieved for very large values of y. In fact, in spite
of the relative degradation in vertical accuracy, positioning accuracy for this test case is

navigation grade even with an extreme value of y=1.

Class 3’s Test Case FO for which only group delay measurements are processed,
exhibits characteristics that are unacceptable for navigation. Consistently, none of the
fixed-ionosphere test cases of Classes 1 demonstrated navigation grade accuracy when
realistic measurement noise standard deviation was considered. The test case in this class
which exhibits greatest accuracy is Test Case CO that is characterized by an ionosphere-
induces mean horizontal error of 127 meters and a 733 meters semi-major axis. It should
be concluded therefore that sufficient accuracy for navigation purpose cannot be achieved

when group delay measurements are used exclusively.
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8.1.1 Sensitivity to the available number of measurements

As noted before, positioning performance for the setup of Test Case GO, that has fewer
ray-paths than Test Case HO, is inferior to the performance of Test Case HO. Both semi-
major and semi-minor axes of the horizontal 90% error ellipse for this test case are about
three times as big as those of Test Case HO. This was not the case for extremely small
values of y, however. Comparing Fig. 61 for Test Case HO and Fig. 74 for Test Case GO,
it can be concluded that positioning accuracy for the two test cases is comparable for a
small value for y of about 0.001. Put differently, as the ionosphere model errors get

smaller, performance becomes less dependent on the number of received ray-paths.

Consistent with the above findings, the impact of having different numbers of
available measurements on positioning accuracy for fixed-ionosphere test cases is clear,
as it can be concluded from Tables 2 and 5. Scenarios with low and medium numbers of
available signals, as for the test cases of Groups A, B and D, exhibit notably inferior
accuracy, evident in the dimensions of their horizontal 90% error ellipses, and, to some
extent, in their vertical accuracy. With group delay processing only (Class 1 test cases),
the base test case for the medium number of available signals, Test Case B0, has a 90%
error ellipse that is 2.5 times bigger in length and twice as big in width as that of the base
test case for the scenario with a high number of available signals, Test Case C0. Similarly
for Class 2’s test cases, the high number of measurements Test Case EO yielded a 90%
horizontal error ellipse that is 1/3 the length and 1/3 the width of the ellipse that was
computed for the case with a medium number of available measurements, base Test Case

DO.
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Having a limited number of available measurements, therefore, sets a clear bound on
positioning accuracy. It is clear that navigation grade accuracy cannot be achieved with
only 17 ray-paths available that are sampled at four different frequencies, as with Group

D’s and G’s test cases, unless the system is given a very good model for the ionosphere.

8.1.2 Sensitivity to signals’ vertical direction of arrival

The signals’ directional geometry as they arrive at the receiver has also been proven to
impact accuracy. With fixed-ionosphere model test cases, when signals arrive at the
receiver from above the horizon only, as in Test Cases B1 and El, a significant increase
in the vertical direction error by a factor of more than 5 was observed. However, with the
dual group delay/carrier phase measurements processing of Class 2 test cases, even the

somewhat degraded accuracy in the vertical direction is still adequate for navigation.

This observation is supported by the statistical analyses that have been performed for
the random-ionosphere model Test Case HO and Test Case H1. From the plot in Fig. 65 it
is clear that while horizontal accuracy is improved by a factor of 2 for both axes of the
horizontal 90% error ellipse when all signals arrived from above, vertical accuracy
degrades by a factor of about 8. Even with the relatively degraded accuracy in the vertical

direction, errors are expected to provide navigation grade accuracy.

This result may be relevant to antennas with limited Field Of View (FOV). It is also
relevant to applications where the vehicle’s fuselage is expected to block a significant

portion of the antenna’s FOV.
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8.1.3 Sensitivity to a priori ionosphere model error

While the statistical analysis of the test cases of Groups 3 and 4 cannot provide
information for specific a priori ionospheric setups, the impact of the ionosphere model
characteristics of specific setups can be studied through examination of fixed-ionosphere

model test cases.

Equation (99) predicts that large initial errors in the a priori Chapman model
parameters will result in a significant mean error for position and clock offset. Results for
test cases B2 and E2 confirm that with a poor a priori ionosphere model, the positioning
mean error (or positioning ionosphere-induced bias) is indeed further from zero than with

the base test cases that have smaller initial & values.

With the combined group-delay and beat-carrier-phase measurement processing of
Class 2’s test cases, where position errors are typically close to their means (i.e., where
error ellipses are relatively small), the extent of degradation in the accuracy of the a
priori-ionosphere-error-induced mean position error will mostly determine whether the
system is capable of providing the required level of accuracy for navigation. For Test
Case E2 that is characterized by a very significant ionosphere models discrepancy, the
mean horizontal position error of 15 meters is still acceptable for navigation with some
applications. This is not true, however, with Test Case D2 for which the enlarged mean

error is most likely too large for navigation.

For the random-ionosphere-model test cases of Classes 3 and 4, it is assumed that the
actual ionosphere parameters’ error covariance equals the above M matrix that is

considered with the batch filtering algorithm. That is to say, actual errors in the
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ionosphere model are distributed in a way that is consistent with their assumed
distribution. With this in mind, the results shown in Fig. 57 for Test Case FO demonstrate
how position accuracy is closely related to the magnitude of the a priori errors in the
ionosphere model. With a very good a priori model of the ionosphere, i.e., the case of
y=10", position errors are primarily due to measurement noise. It is evident that as y
increases, the horizontal position error increases, until it reaches a maximum where y=1,
for which the dimensions of the horizontal error ellipse are roughly doubled.
Interestingly, the impact of increasing y on errors in the local vertical direction is very

limited for this test case.

Similar observations have been made for other test cases of Classes 3 and 4. For Class
4’s high-ray-paths-availability/combined-code-and-carrier-phase-ranging base test case,
Test Case HO, however, the impact of increasing y has proven limited. Even in the worst
case scenario of y=1, the horizontal 90% error ellipse has a fairly small semi-major axis
of 40 meters (Fig. 61). This is an important observation that suggests that the anticipated
negative impact of very poor a priori ionosphere models may be alleviated when using
the combined measurement types processing and given a sufficiently large number of

available ray-paths.

With Test Case H1, where signals arrive at the receiver from above, increasing y
results in a relatively significant increase in vertical position error (Fig. 65). For the case
of y=1 vertical errors are bounded by 15 meters. Although larger than those of Test Case

HO, these vertical errors are still adequate for navigation. Similar results have been
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observed for Test Case H3, which is characterized by an alternative ground stations

placement.

Figure 73, which shows position errors for Test Case H4, demonstrates how
increasing y might not only increase the size of the 90% error ellipses, but also change
their shape. For this test case, positioning becomes relatively more prone to errors in the

south-north direction as y increases.

An important result concerns the combined group delay/beat carrier phase processing
Test Case GO that is characterized by limited ray-paths availability. As shown in Fig. 74,
vertical accuracy remains very good even for the case of y=1, for which vertical position
errors are less than 7 meters. This observed property of the position error distribution

suggests that the proposed system may be suitable for certain types of application.

8.1.4 Sensitivity to ground stations placement

Test Case B3 for Class 1, Test Case E3 for Class 2, and Test Case H3 for group 4 are
considered in this subsection. These are the alterative-ground-station-placement variants
from the base Test Cases of Groups B, E and H, in which ground stations are located

along the land and sea borders of the United States.

For the fixed-ionosphere model test cases, i.e., Test Cases B3 and E3, it has been
observed that ground station placement impacts positioning accuracy. However, results
are somewhat inconclusive. The horizontal error ellipse for Test Case B3 is smaller than
that of the base Test Case B0, yet Test Case E3’s ellipse is about five times bigger than

that of Group E’s base test case, case EO.
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Comparing the results obtained for the random-ionosphere Test Case H3 with those of
the base Test Case HO, it is evident that with the former, accuracy has degraded

significantly both in the horizontal plane and in the vertical direction.

8.1.5 Sensitivity to measurement noise covariance matrix and actual noise

magnitude

The measurement noise covariance matrix, R, that is used with the batch filter, affects
both the a-priori-ionosphere-error-induced mean error and the way errors are distributed
about their mean value. This result could be anticipated by inspecting both terms of the
right hand side of Eq. (99). While R enters the two right-hand-side terms through the S;!
term (and additionally explicitly for the left term), the actual noise term, v,, affects only
the left term of the equation, meaning that it only affects how errors are distributed about

the mean error.

Looking at Figs. 28 and 43 that describe position errors for the fixed-ionosphere base
Test Cases B0 and C0, and comparing them with Figs. 40 and 44 that plot errors for these
test cases’ reduced-measurement-noise variants, one can conclude that significantly
different mean errors have been observed when scaled-down R matrices were considered
by the batch-filtering algorithm. This result is consistent with the observations of the

previous paragraph.

The manner in which measurement error standard deviation affects positioning
accuracy can be studied through a comparative investigation of the 90% error ellipses
that have been obtained for test cases BO and B4, the 90% error ellipses that have been

obtained for test cases C0O and C4, and the 90% error ellipses that have been obtained for
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test cases HO and H4. Each of these pairs of test cases consists of a base test case and an
altered-measurement-noise variant. Test Case B4’s horizontal 90% error ellipse has semi-
major and semi-minor axes that are about 16 and 21 times smaller than those of Test Case
B0’s semi-major and semi-minor axes, respectively. Similarly, Test Case C4’s horizontal
90% error ellipse has semi-major and semi-minor axes that are roughly 25 and 48 times
smaller than those of Test Case CO’s semi-major and semi-minor axis, respectively.
Accuracy degradation for Test Case H4 is somewhat moderate in terms of changes in the
dimensions of the 90% error ellipses in comparison to Test Case HO. For an increase by a
factor of 10 for the presumed beat carrier phase measurement noise, an increase by a
factor of 3 has been observed for the dimensions of the 90% error ellipse’s semi-major
and semi-minor axis, which is primarily oriented in the north-south direction -- compare
Figs. 61 and 73. The minor axis of the north-south/east-west ellipse and the vertical error
extent, however, show larger increase with the increased beat carrier phase measurement

error of Test Case H4.

These comparisons lead to the somewhat straightforward conclusion that both the
magnitude of the mean error (to some extent) and the error distribution about that mean
(in terms of the 90% error ellipses) are affected by the magnitude of the considered

measurement noise.
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8.1.6 Sensitivity to additional parameters

The beneficial impact of having a wide range of signal frequencies on positioning
accuracy was also evident when variations of the test cases shown here were tested with a
limited range of signal frequencies. These characteristics of the method have been
observed in many sub-cases that have not been presented in this dissertation for the sake

of brevity.
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8.2 A Posteriori Ionosphere Model Accuracy

The algorithm has proven successful in reducing errors for the a priori ionosphere
model parameters in all studied test cases. As one might expect, smaller errors in terms of
the latitude/longitude dependent 80" percentile have been observed near the areas where
ray-paths travel through the ionosphere. These regions where electron density is probed
can be identified in the different a priori / a posteriori Chapman-parameters-estimates
plots by the green points that designate ground bounce off points, as in Fig. 25 and all

similar figures that plot ionosphere parameter errors using a color contour map.

8.2.1 Scenarios with a High Number of Available Signals

For the Class 1 scenario’s base test case with a high number of signals, Test Case CO,
the 80" percentile CONUS area mean a posteriori error of the parameter /imax was 1.3 km
and the mean a posteriori error for the parameter /s was 0.87 km. At the same time, the
mean a posteriori error for the parameter VTEC was 0.11 TECU. Smaller residual errors
were obtained for the Class 2 scenario’s base test case with a high number of signals,
Test Case EO. Its CONUS area 80" percentile mean a posteriori error for the parameter
hmax was 0.42 km and the mean a posteriori error for the parameter /s was 0.30 km. The
mean a posteriori error for the parameter VTEC was as small as 0.04 TECU. Clearly,
these values, roughly three times smaller than their Class 1 equivalents, benefit from the

accuracy of the carrier phase measurements.

Additionally for Class 2’s test cases, worse results in terms of Chapman parameters
residual errors were obtained for the large a priori & test case — Test Case E2. These

errors, typically on the order of 0.1 km for /Amu and Asr and 0.1 TECU for VTEC, are still
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at a level that makes the output of the dual measurements process a useful tool in

ionosphere characterization.

In contrast, the smallest estimation errors were obtained for Test Case E1, where
signals arrive at the receiver from above only. In fact, errors for this case are about 50%
smaller than their Test Case E0’s equivalents. The mean 80 CONUS area percentile a

posteriori error for the VTEC parameter was 0.02 TECU.

For all fixed-ionosphere model test cases in this category, the final value for the ¢
parameter that was computed at the end of the optimization process was smaller than its
initial value. It should be noted that since the £ parameter is defined in terms of the base
10 logarithm of normalized errors in p, and since the elements of p are defined as natural
logarithms of the Chapman parameters and their partial derivatives, changes in ¢ may not

appear as dramatic as the observed reduction in Chapman parameters errors.

With random-ionosphere model test cases, performance is evaluated through
determination of an upper bound for the a posteriori error’s 80" percentile in the region
that is above the CONUS. Test case HO a priori error’s 80" percentile for the ionosphere
peak electron density height parameter /.4, take values between 45 and 50 TECU when
y=1. A dramatic reduction in errors yields an upper bound of about 1 TECU for the
corresponding a posteriori errors map. Consistent results are apparent for the cases of
y=0.5, y=0.1, y=0.001 and y=10°. A significant error reduction has been observed for
both the ionospheric scale height parameter /s for which an a priori upper bound of

about 18 km has been reduced to 0.5 km. Similarly for the ionospheric vertical total
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electron density content parameter VTEC, an upper bound of 13 TECU for the a priori

estimates has been reduced to less than 0.2 TECU for the a posteriori estimates.

The three Chapman parameters errors 80" percentile maps for Test Case H1 exhibit
results that are similar to those of the base test case. For the Asr parameter and for the
VTEC parameter, residual 80™ percentile values which are roughly 15% lower than those
of Test Case HO were recorded. This result is qualitatively consistent with the result
shown above for the equivalent fixed-ionosphere model test cases with signals arrive

from above the horizon only.

The alternative ground stations placement along the land and sea borders of the
CONUS has been shown to provide slightly inferior performance for Class 4’s Test Case
H3 in terms of applying corrections to the ionospheric model. With the /max parameter
80" percentile maps, the a posteriori estimation errors’ upper bounds for the different
values of y are roughly 30%-50% larger than their Test Case HO equivalents. This is also
the case for the At parameter, and to a lesser extent, for the VTEC parameter. It should be
noted, however, that even with the relative degradation in performance that has been
observed, the magnitude of reduction in Chapman parameter errors from their
corresponding a priori values is still very significant. For the VTEC parameter, for
instance, an upper bound for the a priori 80" percentile error map of 16 TECU has been
reduced to about 0.2 TECU. It can be concluded, therefore, that the wider-spread array of
ground stations of Test Case H3 seemed to have performed only slightly worse than that

of the base Test Case HO.
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8.2.2 Scenarios with Medium and Low Numbers of Available Signals

Analyzing Class 2 test cases, it can be concluded that reducing the number of available
measurements affected mostly the observability of the Chapman /max parameter, for
which residual a posteriori errors are about twice as big for test cases DO and D2 of
Group D in comparison to their Group E equivalents — Test Cases EO and E2. Still, a
posteriori residual errors for this parameter are less than one tenth of their a priori values.
A posteriori errors for the iy and VTEC parameters remained fairly small (Table 6), with
a mean 80" CONUS area percentile value of 0.05 TECU for the base Test Case D0 and a
mean 80" percentile value of 0.10 TECU for the high-IEI Test Case D2. This suggests
that for the purpose of ionosphere characterization, a relatively small number of received

signals may be sufficient.

Similarly for group-delay-measurements-only test cases, comparing the medium
number of available measurements Test Cases BO and B4 with the equivalent high
number of available measurements Test Cases CO and C4, some degradation in
performance has been noted for the test cases of Group B. In particular, residual errors
for the /max parameter increased by a whole order of magnitude for Test Case B4. With
even fewer ray-paths considered as with Test case A0, however, no further degradation in

performance has been recorded.

Remarkably for Class 1 test cases, medium and low numbers of available
measurements base test cases BO and A0 exhibit only slightly worse results than the
equivalent Class 2 base test cases. For instance, for Test Case A0 with 21 ray-paths, the

mean 80" CONUS area percentile residual a posteriori error was 0.14 TECU. However,
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performance appears considerably more sensitive to initial IEI. Therefore, the a

posteriori errors for Test Case B2 are roughly five times bigger than for Test Case BO.

Two random-ionosphere model test cases were considered that differ in their number
of available measurements. Inferior accuracy for all three Chapman parameters is evident
for the medium number of available measurements test case, GO, in comparison with the
high number of available measurements test case, HO. With Test Case HO, for the /max
parameter, the 80" percentile errors are bounded by 1.5 km and 0.8 km for y=1 and y=0.5,
respectively, whereas with Test Case GO, the bounds are 2 km 1.5 km for the same values
of y. For the Asr parameter and the same values of y, bound values increased from 0.5 km
and 0.4 km to 0.8 km and 0.9 km, respectively. For the VTEC parameter and the same
values of y, bound values increased from 0.25 TECU and 0.15 TECU to 0.35 TECU and

0.12 TECU, respectively.
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8.3 Batch-Filtering Algorithm Functionality

For the vast majority of cases, solutions for the minimization problem converged to
what appears to be their global minimum. Thus, the presence of nonlinearities in the
model does not pose a significant challenge to solving the underlying batch estimation
problem. It appears that the occurrence of convergence to a solution that is different from
the optimal solution was never encountered for any of the many thousands of simulation
cases carried out throughout this study. This is evident in the fact that the batch-filtering
algorithm has never driven the position solution to a solution that is different from the

solutions that have been computed using the linear approximation of Eq. (97).

Some test cases failed to converge, as in Subsection 6.3.1. A further investigation of
such cases showed that, in almost all of them, the cause was one of the two potential
weaknesses that originate from bounce-point equation and ray-hop solution ambiguities,
discussed in Subsection 6.3.2. For only a handful of simulation executions, the author
was unable to determine the cause for what appears to be a failure in driving the solution

to its optimal set of values.

The benefit of allowing selective use of available measurement is also evident. Many
batch filter executions started by considering only a small subset of the available
measurements in the early Gauss Newton iterations, but ended up using all measurements
for later iterations as the algorithm drove the solution closer to its optimal set of values.
This sort of behavior, typical for test cases with significant errors in their a priori

ionospheric model, usually resulted in longer batch filter execution run times.

216



A practical result concerns the importance of processing both group delay and beat
carrier phase measurements. While the contribution of the latter to positioning accuracy
has been widely discussed in this chapter, it has been observed that the use of
pseudorange measurements is crucial for the robustness of the iterative process when
estimated position and ionosphere parameters are still far from their optimal values. In
fact, in most cases the solution is doomed to diverge unless pseudorange measurements

are incorporated and processed in the early steps of the Gauss-Newton algorithm.

8.4 Future Research

An extension is planned for this study that supplements truth-model simulation tests
with tests involving actual data from a network of HF beacons and receivers. Such a
network is being deployed in South America [38]. It is reasonable to assume that the
problem that will be addressed with the true data experiment will somewhat differ from
the fundamental problem that was studied in this work due to limited availability of
received signals. This may include the case where receiver location and receiver clock
error are known a priori, so that the problem is essentially defined as an ionosphere

estimation problem.

A second extension should consider enhanced ionosphere modeling. As already
mentioned, the current ionosphere parameterization does not allow modeling of distinct D
and E layers. A greater physical fidelity will be achievable by incorporating increased
complexity in the ionospheric model parameterization. Therefore, one useful extension

for this work would be to employ a more realistic ionosphere model that would enable
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representation of the D and E layers. On the disadvantage side, an increased complexity
of the 3-dimensional N.(r) distribution will increase the number of estimated ionosphere
parameters that will be needed in order to characterize N(r). This increased number of
parameters will complicate the filter task of simultaneously estimating receiver position,

receiver clock offset, and ionosphere parameter corrections.

A useful variant of this work would be to consider the case where the estimator lacks a
priori knowledge of the number of bounces for any given signal. This is the case where m
is unknown and must be estimated for each received signal while estimating the receiver
position and clock error along with the ionosphere corrections. Such an estimator would
solve a mixed real/integer batch filtering problem. The navigation community already has
experience with such problems because they are used for precise Carrier-Phase

Differential GPS (CDGPS) [39].

Another possible extension would be to augment the estimation problem with
additional types of fused data. For example, ionogram data or GPS slant TEC data from
a network of receivers might help to improve the estimates of the ionosphere model
corrections. A different approach might be to use data obtained from a space weather data
assimilation system such as GAIM, as described in Ref. [40]. Any improvements to the
ability to estimate the ionosphere or to characterize it a priori should also improve the
receiver position and clock offset estimates. Of course, such a system would need a
method of communicating the independent ionosphere data to the user receiver, which

would complicate its infrastructure.
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Finally, a study that considers the case of a known receiver location is expected to be
beneficial to the field of ionosphere remote sensing. It has been observed that elimination
of the uncertainty that is associated with the receiver location results in enhanced

accuracy for the unknown ionosphere parameters.
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CHAPTER 9
SUMMARY AND CONCLUSION

A batch filter algorithm has been developed that utilizes group-delay/pseudorange and
beat carrier phase measurements from HF signals propagating in the ionosphere to solve
a combined positioning/ionosphere-corrections problem. These HF signals are
transmitted from stationary ground-based beacons at known locations. They propagate to
an over-the-horizon user receiver at an unknown location via multiple bounces off of the

ionosphere and the Earth.

The navigation filter estimates user position, user clock error, beat carrier phase
measurement bias and corrections to parameters that characterize the ionosphere’s three-
dimensional electron density profile. The latter parameters consist of information that is
required to generate latitude/longitude dependent maps for three Chapman model
parameters: height of the peak electron density, altitude scale factor, and vertical total
electron content. As previously mentioned, a more realistic model would likely be needed
for working with real data. The filter starts with a priori estimates of its parameter maps
that are based on fits to the IRI model. It estimates corrections to these parameter maps as

part of its navigation solution.

The nonlinear batch least-squares estimation problem is solved using a modified

Gauss-Newton method. This method has a high rate of achieving successful convergence
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to the optimal value of the underlying cost function, despite the challenge of physical

infeasibility of some signal ray paths at intermediate guesses of the problem solution.

System performance has been investigated using a truth-model simulation. The
simulation and the corresponding batch-filter use an advanced model of HF signals that
propagate in the ionosphere. Twenty one simulated test cases that consider various
combinations of parameters’ characteristics have been considered. Limited Monte-Carlo
simulations have been performed to investigate the performance of the navigation filter.

Theoretical covariance analysis has also been performed to investigate its performance.

The Monte-Carlo simulation results and the covariance analysis results indicate
feasibility for the combined HF navigation/ionosphere-correction concept. It has been
shown that with sufficient availability of received signals, navigation grade accuracy for
positioning, where the 90% horizontal error ellipse’s semi-major and semi-minor axes are
both less than 20 meters and the vertical 90% error bound is less than 5 meters, may be
achievable. A posteriori ionosphere models are consistently improved for these cases in
comparison to their a priori counterparts. Computed a posteriori error 80" percentiles
upper bounds for a representative random-ionosphere model test case were less than 0.75
km for the /max parameter, 0.35 km for the Ay parameter, and 0.1 TECU for the VTEC
parameter, whereas the corresponding a priori upper bounds were 30 km for /max, 10 km

for hsr, and 5 TECU for VTEC.

The important contribution of beat carrier phase measurements to position solution
accuracy is clearly evident. Beat carrier phase is useable by the navigation filter if a given

signal path from a transmitter to the receiver carries signals with a continuously varying
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succession of different frequencies so that the common-mode carrier phase bias can be
estimated and effectively removed from the problem. For a representative test case that
relies on group delay measurements only, the computed 90% horizontal error ellipse’s
semi-major and semi-minor axes were 100 meters and 70 meters, respectively. When beat
carrier phase measurements were added to the batch-filter, the 90% horizontal error
ellipse’s semi-major and semi-minor axes decreased to 35 meters and 20 meters,

respectively.

It has been demonstrated how performance is affected by various characteristics of the
estimation problem. Positioning accuracy is influenced by the level of uncertainty of the
a priori ionosphere model, by the number of available measurements, and receiver
ranging error standard deviation, both group-delay errors and beat carrier phase errors. A
decrease in the a priori ionosphere modeling error tends to decrease the horizontal and
vertical position error. A decreased number of available measurements, however, will
have the opposite effect on positioning accuracy, although this trend becomes less
distinct as the a priori ionosphere modeling errors become smaller. The magnitude of the
ranging error standard deviation has been shown to directly impact the size of the
horizontal and vertical position 90% error ellipses, with a relatively moderate impact for
the random-ionosphere-model test cases compared to the fixed-ionosphere-model test
case. With test cases where signals approach the receiver from above, an enhanced
horizontal accuracy has been observed while vertical position accuracy has degraded.
Inconclusive results have been obtained for an attempt to assess the impact of ground

stations placement on positioning performance.
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APPENDIX A
AUXILIARY CALCULATIONS FOR PHYSICAL AND
MATHEMATHICAL MODELS

A.1 The o Function

An auxiliary three-term-output vector function o performs a one-dimensional
interpolation of the bivariate function f{x,w) at an arbitrary point (xo,wo) given boundary
conditions at two points — (x1,wo) and (x2,wo). The required input arguments for this
function includes a set of partial derivatives of f{x,w) with respect x evaluated at (x1,wo)
and at (x2,wo). In the context of this study, y is used with bi-quintic splines computations.

It takes the general form:

o) L) T
o(xl,f(xl,wo),%(xl,wo),gx{(xl,wo),xz,f(xz,wo) (125)

The three-term output of y is computed as follows. Define:

Ax=x,—x, (126)

and compute
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2
b, = O.SQ(xl,wo)

ox?

0 0
b, :(_10f(xl,w0)+10f(x2,wo)—6£(XI,WO)AX—4é(X2,WO)Ax

2 2
—1.5%(x1,w0)Ax2 +0.5 gx{ (xz,wo)szj—

X

b, =[15f(xl,wo)—15f(x2,wo)+8Zf (xl,wo)Ax+7gl(x2,w0)Ax
X

ox? ox

2 2
+1.5ﬂ(x1,w0)Ax2 —a—f(xz,wo)szj—

2 2
0.59 f(xl,wo)sz +0.59 f(xz,wo)mzjL

2 2
X X

Then:

f(xo,wo):bo+b1(xo—)cl)+b2 (xo—)cl)2 +b3()c0—x1)3
+b, (xo—x1)4+b5 (xo—xl)5

0
é(xo,wo)zb1 +2b, (xo —xl)+3b3(x0 —xl)2 +4b, (x0 —x1)3

4

+ 5D (x0 —xl)

2
X

2
(Z—f(xo,wo) =2b, +6b, (x, —x,)+12b, (x, —x, )2 +20b; (x, —x, )3
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APPENDIX B
TECHNICAL NOTES FOR THE SIMPLIFIED RAY-
PATH MODEL FILTER

B.1 Computing Sensitivity of Bounce-Points Equations to Bounce-Points

Location

With the simplified ray-path model, special care must be taken with the Jacobian
0g/on of the relationship between the bounce-point equation outputs that are set equal to

zero and bounce-points’ locations.

Since some terms of gsmp contain terms defined in Cartesian ECEF coordinates,
geographic LLA coordinates, and in terms of the partial derivatives of the geographic
LLA coordinates with respect to the Cartesian ECEF coordinates, it is necessary to deal
carefully with some entries of the Jacobian matrix. Additional complexity arises from the
manner in which the gsimp functions depend on the unknown p; parameters, which are
used to compute the three Chapman profile parameters via a bi-quintic latitude/longitude

spline.

Let e={xi,y,zx} be the set of ECEF coordinates representing the £ bounce-point, and
let [={¢x,A,alt} be the equivalent set of this point’s LLA coordinates. Then, for a Type-
A equation that applies at an ionospheric bounce point £, the desired sensitivity 1x3

vector is given by
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0 0
8 4k _ 8 4k A (129)
Oe ol

where the right most Jacobian, 4=0l/0e, is that of the standard Cartesian-to-lat/long/alt

transformation for WGS-84 coordinates.

For ionosphere bounce-points’ Type-B equations, recall that these equations were
derived using the normal vector that applies at an ionosphere reflection point. The vector
is defined as the negative gradient of the electron density field with respect to Cartesian
ECEF coordinates. The electron density model is modeled using latitude/longitude
dependence. Consequently, these equations are defined in terms of both geographic LLA
coordinates and their partial derivatives with respect to Cartesian ECEF coordinates.
Therefore, when one takes odd numbered Type-B equations’ derivatives with respect to a
set of Cartesian coordinates, three groups of terms, corresponding with three types of
dependencies, should be evaluated. The total derivative of the k™ Type-B equation with

respect to the /1 term of e takes the form

Dgy, 082z, < agBk R agBk 8/\
= = — 4+ A ;+
Dej Oe Z ol. ZZ

j i=1 i =l i=m j

(@) (i) (iir) (130)

0855 08 O, N> 0Zpy 0’1
= — 4 > _’_+_ i
Oe, Z‘ ol, o, 21; [ jaemaej
ae (iiiy )

(iii,)

Computation of term (i) is immediate. The single-index summation (ii) includes the

partial derivatives of the equation with respect to geographic LLA coordinates and terms
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of /. The double-indices summation (iii) considers the partial derivatives of the equations
with respect A - term (iii,). These terms are multiplied by terms of the ECIF to LLA
coordinates-conversion Hessian (iii5). This unconventional formulation is needed since
the entries of A cannot be represented analytically in an explicit form and therefore
cannot be differentiated. Instead they are known numerically, together with their partial
derivatives with respect to the desired quantities of e. Finally, it should be recognized that

Eq. (130) applies for Type-C equations as well.

B.2 Setting up the 0g/0n Sensitivity Matrix

The procedure of populating the entries of the Jacobian 0g/0y that was discussed in the
previous subsection is technical, although somewhat complicated, with a variety of
different types of terms. Computations for the various terms depend on equation type,
bounce-point index, and the total number of bounce-points in the considered ray-path.
This subsection briefly lists these subcases, yet it does not provide the explicit formulas

that require additional derivation which goes beyond the scope of this text.

As an example, consider a ray-path with four bounce points. The structure of its 12x12
Jacobian sensitivity matrix is illustrated in Fig. 78, where non-zero terms are highlighted
in gray. Matrix rows correspond with Type-A/B/C equations and matrix columns
correspond with ECEF x/y/z coordinates, as labelled in the figure. The 1-4 numbering

corresponds to the four bounce points.
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1 2 3 4 1 2 3 4 1 2 3 4

1 a1 ais a1

Type A 2 a2 a6 a2,10
3 a33 a3,7 as,11
4 4.4 48 a4,12
1| as,z as2 as,5 as,6 as,9 as,10

Type B 2| aed a2 | a63 6,5 | 66 | as7 69 | @610 | @611
3 a7y | a73 | aj4 a76 | az7 | aig az10 | azi az,12
4 ag3 | as4 ag7 | agsg as.11 as,12
1| agn | ag2 9,5 | 96 a9,9 | 9,10

Type C 2 | a1 | aro2 | aio3 al0,5 | aioe | a7 a10,9 | ai10,10 | aio,i1
3 ai2 | a3 | a4 aiLe | a7 | ais aiLlo | a1 | a2
4 a123 | a4 a127 | anng a12,11 | a12,12

Figure 78: The form of a 4 bounce-points ray-path’s Jacobian sensitivity matrix.

For Type-A equations, a,, terms that relate g equations with the x/y/z coordinates of
the four bounce-points have a certain form for odd » and a different form for even #. this
is a consequence of the former defined with Cartesian coordinates and the latter defined
with geographic coordinates. The same holds for a n+m and ann+2m terms where m is the

number of bounce points.

For Type B equations, row 5 (or m+1) has a certain form, where only six entries are
non-zero and the top left entries of each sub-block (i.e. as;, ass and as¢) include
coordinate terms of the transmitter’s position. Other rows related to Type B equations,
except for the last row (row 8 (or 2m) of the whole matrix), have nine non-zero entries
and their forms depend on whether their index is odd or even. Additionally, these rows do
not consider the location of either the transmitter or the receiver. The last row (2m) has
six non-zero terms, where the bottom right entry of each sub-block (i.e. as 4, ass and as, 12)
include terms of the position of the receiver. In this example with an even number of
bounce points, this row will be utilizing Cartesian coordinates since the index of the last

row is four (row eight of the whole matrix). Had there been a fifth bounce-point, these
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terms would have had a different form that originates from the geographic coordinates

used with ionosphere bounce-points.

Type-C equations are similar to Type-B equations in terms of their structure, and thus

the same observations which were made for Type-B related sub-blocks apply.

In summary, when setting up this Jacobian matrix, twelve subcases of the matrix’s

entries forms should be considered:

1. Type-A equations (two subcases)

= Rows with odd index
= Rows with even index

2. Type-B equations (five subcases)

=  First row

= Rows whose odd index is greater than one and less than the number of
bounce points

= Row whose even index is greater than one and less than the number of
bounce points

= Last row with odd index

= Last row with even index

3. Type-C equations (five subcases) — same as with Type-B equations
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APPENDIX C
IMPLEMENTATION AND PRACTICALITIES

MATLAB® CODE is used with this study to construct the different components of the

truth-model simulation and the batch nonlinear least-squares filter.

C1

Software Concepts

The code is characterized with a clear distinction between different software
component types, as described in the next subsection.

Intensive use of MATLAB® symbolic toolbox for generating objects that are used
to obtain needed terms and formulas using embedded symbolic mathematical
operators. This design in meant to provide flexibility when changes to physical
models are to be performed.

Flexibility in combining and connecting components from different sources: code
generated for different phases of this study, code provided by Prof. Mark Psiaki,
and code that was obtained from various websites (free use license only).

Use of code that is generated automatically by auxiliary MATLAB® functions in
order to minimize potential coding errors.

The use of an auto-testing code array to validate functionality of functions and

algorithms.
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C.2 Code components

The code used is fundamentally split into five groups of components.

= Functions that contain batch-estimation code that would potentially run on a
receiver are considered Real Time Code (though, not ‘real time’ in its formal
meaning as these modules’ run time is usually hard to predict). Real time code
can be generated either manually or automatically, i.e., generated by other
functions.

»  Simulation Code, including scripts, functions and GUIDE® objects that are used
to generate the simulation environment, compute truth-model data, run the batch-
filtering algorithm by calling Real Time Code, monitor its progress and to present
simulation output results.

= Derivation Code. This set of scripts and functions is used to generate additional
code, including: (a) Construction of symbolic MATLAB® objects (b) derivation of
needed objects such as equations, formulas and Jacobians, and (c) Automatic
generation of code using the derived symbolic objects.

=  (Core Code. Generic functions that are used by different types of functions.
Raytracing code, for instance, falls under this category as it is used by both truth-
model real time code and the simulation code.

= Test Code. These scripts are used in testing functions and code segments,

including finite differencing tests.
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C.3 Hardware and Process Runtime

The extensive computations that are involved in the solution process were mostly
carried out on an Intel® Xeon® model E7-8867-V4 based workstation with four central

processing units and a total of 72 cores.

Typical runtime for a single ray-path solving procedure is 30 seconds to 4 minutes.
Typical runtime for a single test case of the batch nonlinear least-square filter, excluding
truth-model calculations, is in the order of hours. The author conjectures that, with the
combination of (a) a dedicated hardware, (b) more efficient process parallelization, and
(c) use of low-level coding language, batch filter execution times could be reduced to an

order of a few minutes. >

3 1 thank Cornell University Prof. Dmitry Savransky for exceptional technical advice on both software
and hardware.
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