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ABSTRACT 

Experimenters frequently select a particular fractional replicate from a complete factorial 

treatment design and then need to determine which effects are partially or completely confoiunded 

(aliased) with each other. The fractional replicate may have arisen by chance, by accident, or by 

design. A method for determining the aliasing structure for a given fractional replicate is addressed 

herein. Two examples with 35-2 and with 37-4 combinations, respectively, are used to demonstrate 

the procedure for symmetrical prime power factorials and orthogonal fractional replicates. The general 

case for non-orthogonal fractional replicates and for any symmetrical or assymmetrical factorial is 

discussed. No simple procedure was found for constructing the aliasing contrast and the aliasing 

structure for the general case. 
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INTRODUCTION 

It 1s not an uncommon occurrence in statistical consulting to find that an experimenter has 

already conducted an investigation using a specified fractional replicate. The particular set of 

combinations forming the fractional replicate may have been obtained by chance, by design, or by 

accident, and it is desired to know which effects are partially or completely confounded, aliased, with 

each other. This can be determined for any fraction by setting up the full design matrix for the full 

factorial as follows. Let XN X N be the incidence matrix for the full factorial with N combinations, let 

f3N x 1 be the vector of single degree of freedom parameters, and let Y N x 1 be the vector of 

observations (or means). Then for any fractional replicate X, {3, andY may be partitioned as follows: 

Y1 

Xf3=Y= (1) 

Y2 

where Y1 is the observation vector for the fractional replicate. Then, 

and 

[ Xu X12l [ :: ] ~ Xu P1 + X12 P2 ~ Yl ' (2) 

/31 + [Xu' Xu]- 1 Xu' x12 /32 = [Xu' Xu]-1 Xu' Y1 ' (3) 

given that Xu' Xu has an inverse. A = [Xu' x 11 ]-1x 11' x 12 is called the aliasing matrix. It 

is useful to define another matrix which is the matrix of the combinations for the identifying subscripts 

of the responses in the Y1 vector. Denote this matrix as S for the Y vector and as S1 for the Y1 

vector. There is a one to one correspondence between the S and X matrices for a specified parametric 

vector {31. If the first parameter in {31 is the mean, then the first row of A gives the defining contrast 

for the fractional replicate Sl. Algebraically this is all very simple, but when n and/or s for sn 

factorials become large (relatively), the implementation of this algebra can become very tedious and 

time-consuming and is prone to errors (for most people). {32 can become quite large as will be 

illustrated below for the second example. 

When sis a prime (or prime power) and S1 is an orthogonal fraction, computer aids are available 

to help with the process of determining the aliasing structure. Computer programs like ALIAS.PRG 

(written by C. E. McCulloch, 1991), WYLIE (written by Steven Wang, 1992), and GAUSS are 

extremely helpful and time-saving. Two examples are presented below to demonstrate this. 
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EXAMPLE ONE 

An experimenter used the following 3-2 of a 35 factorial to obtain 35-2 runs or combinations of 

a 35 factorial: 

S1' = [ 00000 00111 00222 01012 01120 01201 02021 02102 02210 10000 10111 10222 

11012 11120 11201 12021 12102 12210 20000 20111 20222 21012 21120 21201 ( 4) 

22021 22102 22210 ]. 

The matrix S1 has 27 rows and n = 5 columns. This experimenter wished to estimate main effects for 

the five factors (say A, B, C, D, and E) and the four two factor interactions of one of the factors with 

the other four factors (say Ax B, Ax C, Ax D, and Ax E). The particular fraction S1 that he used 

was to take an orthogonal main effects plan for four factors (say B, C, D, and E) in nine runs and 

repeat these combinations for each level of the fifth factor, say A. An ANOVA table for these 27 

combinations is: 

Source of variation 

Total 

Mean 

A 

B 

c 
D 

E 

AxB 

AxC 

Ax D 

A X E 

Degrees of freedom 

27 

1 

2 

2 

2 

2 

2 

4 

4 

4 

4 

Geometrical interactions 

AB + AB2 

AC + AC2 

AD + AD2 

AE + AE2 

The question now is which effects are aliased with the effects in the above ANOVA table. Since 

this is an orthogonal fraction and a prime factorial, we may use the geometrical components of the 

various interaction terms. To determine the generators for this fraction, contruct a matrix n5 x k 

where k is the number of generators to be tried to ascertain the defining contrast and then the aliasing 

structure; the entries in a column will be the exponents of the geometrical interaction letters. To start, 

select k equal to 4 and the terms CDE, BCD2, BD2E, and BC2E, resulting in the matrix 
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0 0 0 0 

0 1 1 1 

D= 1 1 0 2 

1 2 2 0 

1 0 1 1 

(5) 

The product of the matrices S1 and D using GAUSS, resulted in a 27 x 4 matrix which had all zeros, 

modulo 3, in the first two columns. This means that these two interaction terms, CDE and BCD2, are 

completely aliased with the mean and hence can be used as the two generators for this fractional 

replicate. Then using these two generators and their generalized interactions BC2E and BDE2, the 

complete aliasing structure may easily be obtained using WYLIE. For example, the aliases of the 

mean, the defining contrast, and of A, say, are 

I = CDE = BCD2 = BC2E = BDE2 (6) 

A = ACDE = AC2D2E2 = ABCD2 = AB2C2D = ABC2E = AB2CE2 = ABDE2 = AB2D2E (7) 

where = means aliased with. 

In the matrix D, it happened that the two interactions selected were the desired ones but this 

need not be the case. For example, the third and fourth generators could have been selected. Then, 

using ALIAS or WYLIE, it would be noted that B is an alias of BD2E. This means that BDE2 could 

be a generator and we may note that it appears in I as an interaction, i.e., any two of these four effects 

could be the generators. 

EXAMPLE TWO 

The experimentor wished to obtain estimates of the main effects for seven factors, say A, B, C, D, 

E, F, and G, at three levels each and the two factor interactions for three of the factors, say A x B, A 

x C, and B x C . The fractional replicate was constructed as follows. The 27 combinations for a 33 

factorial were selected; then, the levels of ABC were equated to the levels of factor D, levels of ABC2 to 

levels of factor E, levels of AB2C to levels of factor F, and levels of AB2c2 to levels of factor G. This 

means that we know one alias of each of the factors D, E, F, and G. Thus, either the factor or the 

factor squared times the aliases will give four generators which is what is required for the 3 7-4 = 33 

combinations. The 27 combinations selected for this particular fractional replicate are: 

S1' = [0000000 0120210 0210120 1020202 1110112 1200022 2010101 2100011 2220221 

0011212 0101122 0221002 1001111 1121021 1211201 2021010 2111220 2201100 (8) 

0022121 0112001 0202211 1012020 1102200 1222110 2002222 2122102 221201~ . 
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An ANOVA table for this example is: 

Source of variation Degrees of freedom 

Total 27 

Mean 1 

A 2 

B 2 

c 2 

D 2 

E 2 

F 2 

G 2 

A X B 4 

A X C 4 

B X c 4 

The D matrix tried was 

1 1 1 0 1 0 
1 0 1 0 2 1 
1 0 1 0 0 1 

D= 1 2 2 1 0 2 
1 2 0 2 0 2 
1 2 0 1 0 1 
2 2 0 1 1 0 

1 
1 
2 
0 
2 
0 
0 

Geometrical interactions 

1 
2 
1 
0 
0 
2 
0 

1 
2 
2 
0 
0 
0 
2 

AB + AB2 

AC + AC2 

BC + BC2 

(9) 

The entries, modulo three, in the first, second, third, seventh, eighth, and ninth columns of the product 

of the two matrices S1 and D were all zero, modulo 3, meaning that these were all aliases of the mean. 

This means that the four generators ABCD2, ABC2E2, AB2CF2, and AB2C2G2 and their generalized 

interactions are sufficient to construct the defining contrast and consequently all the aliases of the main 

effects and the three two factor interactions listed above. The 40 aliases in the defining contrast with 

the three factor interactions listed first, the four factor interactions listed second, the five factor 

interactions listed third, the six factor interactions listed fourth, and the seven factor interactions listed 

last are: 

I = CDE2 AEF ADG 

= ABCD2 = ABC2~2 = ACDF = ABDE 

AC2EG = AB2FG = DE2F2G = BCDG2 
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BCD2E2F2 = AB2D2EF2 

AD2E2F2G2 ABE2FG2 

(10) 

The four factor generators used for WYLIE are underlined. Other generators from the above set of 

aliases could just as well have been used. 

Note that there are 40 effects aliased with the mean and 80 effects aliased with each of the desired 

effects. The vector f3 has 2,187 single degree of freedom parameters aassociated with the mean and the 

(37 - 1) / (3 - 1) = 1,093 geometrical components. The vector {31 contains 27 parameters and the 

vector {32 contains 2,160 parameters. Thus, the A matrix has only 27 rows but it has 2,160 columns. 

Writing down these aliases manually would be extremely tedious and time-consuming. However, with 

a program like WYLIE this becomes a simple computer task. In fact, WYLIE allows a listing of all 

aliases up to a specified number of letters and if only aliases up to three factor, say, interactions are 

desired, this is easily specified. 

A COMMENT 

The procedure described above works for prime powered factorials and orthogonal fractions. 

Whenever these conditions are not satisfied, resort must be made to determining the x11 and x12 

matrices and then finding the aliasing matrix A. Various types of contrasts among the levels of an 

effect may be used such as, e.g., Helmert, orthogonal polynomial, Hadamard in certain cases, or the 

Anderson-Federer zero-one formulation. Regardless of the nature of the contrast, the construction of 

the design matrix will be an arduous task unless a computer program is written to aid in the process. 

Computer programs to aid in the use of fractional replicates for large factorials are extremely valuable 

aids and more program like the above are necessary. 


